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Key points: 

 

Multi-source topsoil organic carbon prediction and prediction variance in Mexico and the conterminous 

United States.  

 

Calculated stocks of 46-47 Pg of SOC (0-30cm depth, years 1991-2010) using a simulated annealing 

regression framework.   

 

Predicted stocks >30% below recent global estimates that are largely based on legacy data.  
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Abstract 

 Soil Organic Carbon (SOC) information is fundamental for improving global carbon cycle 

modeling efforts, but discrepancies exist from country-to-global scales. We predicted the spatial 

distribution of SOC stocks (topsoil; 0-30 cm) and quantified modeling uncertainty across Mexico and 

the conterminous United States (CONUS). We used a multi-source SOC dataset (>10000 pedons, 

between 1991-2010) coupled with a simulated annealing regression framework that accounts for 

variable selection. Our model explained ~50% of SOC spatial variability (across 250m grids). We 

analyzed model variance, and the residual variance of six conventional pedotransfer functions for 

estimating bulk density (BD) to calculate SOC stocks. Two independent datasets confirmed that the 

SOC stock for both countries represents between 46 and 47 Pg with a total modeling variance of ±12 

Pg. We report a residual variance of 10.4 ±5.1 Pg of SOC stocks against the six pedotransfer functions. 

When reducing training data to defined decades with relatively higher density of observations (1991-

2000 and 2001-2010, respectively), model variance for predicted SOC stocks ranged between 41 and 

55 Pg. We found nearly 42% of SOC across Mexico in forests and 24% in croplands; whereas 31% was 

found in forests and 28% in croplands across CONUS. Grasslands and shrublands stored 29 and 35% 

of SOC across Mexico and CONUS, respectively.  We predicted SOC stocks >30% below recent 

global estimates that do not account for uncertainty and are based on legacy data. Our results provide  

Insights for interpretation of estimates based on SOC legacy data and benchmarks for improving 

regional-to-global monitoring efforts.   
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1 Introduction 

 Terrestrial ecosystems store >1500 Pg of soil organic carbon (SOC, approximate stock at 1m 

depth) worldwide, but accurate spatial representation of these stocks is needed for fully understanding 

the contribution of soils within the global carbon cycle (Crowther et al. 2017, FAO 2017). For global 

modeling and validating the SOC stored in terrestrial ecosystems, high-resolution gridded datasets such 

as the SoilGrids250m system (Hengl et al. 2017) are increasingly being used to describe spatial SOC 

patterns (Jackson et al. 2017; Harden et al. 2017) and trends (Naipal et al. 2018). Such datasets are also 

required to facilitate the formulation of reliable climate change adaptation guidelines and the 

establishment of regional to global carbon monitoring and information systems (Ciais et al. 2014, 

Stockmann et al. 2015, Vargas et al. 2017, Villarreal et al. 2018). Previous studies suggest that the 

greatest source of discrepancy across regional to global carbon cycling estimates is associated with the 

SOC pool (Jones et al. 2005, Jones and Fallon 2009, Murray-Tortarolo et al. 2016, Crowther et al. 

2016, Tifati et al. 2017). Arguably, current scientific challenges associated with the discrepancy of the 

soil carbon pool are to quantify: 1) the size and distribution of local to regional SOC stocks at scales 

relevant to inform land management decisions (FAO, 2017, Banwart et al. 2017); 2) the amount of 

carbon losses from soils due to heterotrophic respiration (Bond-Lamberty et al. 2018), the amount of 

carbon removed from erosion  (Naipal et al. 2018) or aquatic export (Tank et al. 2018), or changes in 

land use and land cover (Sanderman et al. 2017); and 3) the carbon emissions from impacts of past and 

future climate conditions (Walsh et al. 2017, Crowther et al. 2016, Delgado-Baquerizo et al. 2017). 

Solving these scientific challenges around  carbon cycling requires a good understanding of different 

uncertainty sources around SOC datasets and SOC modeling efforts. 

 Major uncertainties in spatial SOC estimates that are extrapolated from points/pedons to 

continuous estimates across the land surface are related to several factors. These include measurement 

methods, data sources (SOC data and SOC environmental covariates) and their resolution and extent, 
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the different periods of data collection, or using multiple modeling and evaluation strategies (Grunwald 

2009, Stockmann et al., 2013, Ogle et al., 2010). Thus, there is a need for improving interoperability 

for compiling the best available information and describing SOC spatial variability across local to 

global scales (Vargas et al.,  2017). 

 Global modeling outputs for SOC represent the only estimates of SOC across large areas of the 

world without in situ ground observations. These global estimates rely on large datasets that combine 

multiple SOC data collection periods and methods for calculating SOC stocks. These inconsistencies 

represent a known but unquantified bias for calculating SOC stocks (Poeplau et al., 2017). Thus, there 

is a need to test different modeling approaches across areas with high density of SOC observations to 

improve the accuracy, detail and reliability of global SOC estimates (Vitharana et al., 2019).  

The Harmonized World Soil Data Base (HWSD) or the harmonized soil property values for 

broadscale modeling (WISE30sec, Batjes, 2016), are probably the most commonly used datasets for 

spatially quantifying SOC stocks and its spatial variability patterns at the global scale (Köchy et al. 

2015; O’Rourke et al. 2015). The HWSD provides the most complete global soil description from 

synthesizing many regional or national soil maps, but it uses a polygon-based approach that has 

intrinsic quality limitations such as coarse scale (e.g., >1km pixels), discrepancy between national 

datasets and broad categorical generalizations (Stoorvogel et al. 2016, Folberth et al. 2016). Regional 

to global efforts to improve the spatial representation of the global SOC pool also include those by the 

International Union of Soil Sciences (Arrouays et al. 2017), the International Soil Resource 

Information Centre (ISRIC, e.g., Hengl et al. 2014; Batjes et al. 2017; Hengl et al. 2017), the 

International Soil Carbon Network (ISCN, e.g., Nave and Johnson, 2012, Harden et al. 2017), the Land 

GIS project (https://landgis.opengeohub.org) and the GlobalSoilMap consortium (Arrouays et al. 2014; 

Sanchez et al. 2009). Another initiative is the recent call from the United Nations Food and 

Agricultural Organization (FAO) requesting  the development of country specific frameworks for 
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reporting continuous and spatially explicit SOC stocks and patterns (FAO, 2017). These efforts have 

contributed information for global estimates, along with methodologies useful for applying 

standardized protocols for harmonizing SOC measurements from multiple sources for SOC 

assessments. However, validating global SOC estimates and developing country or region specific 

(e.g., North America) SOC prediction frameworks are still needed for increasing knowledge by 

quantifying uncertainties while explaining the discrepancy of current SOC estimates (e.g., country 

specific to global scales). 

Large discrepancies have been reported among global (Tifati et al. 2017) or country specific 

SOC estimates (Guevara et al. 2018). Consequently, reporting uncertainty and bias of SOC estimates 

will allow better parameterization of land surface models, improved local to regional monitoring 

baselines and informed policy and management decisions regarding SOC stocks (Viscarra Rossel et al. 

2014). The current discrepancies around SOC estimates could be partially attributed to SOC sampling 

errors and bias in the SOC sampling locations, but this is information that may not be always available 

for improving SOC estimates. Other sources of errors and spatial artifacts are related with the use of 

different measurement methods (or analytical techniques) for quantifying SOC stocks, lack of 

information on bulk density or rock fragments, and different methods to apply pedotransfer functions 

may generate contrasting results. For predictive SOC mapping (McBratney, et al. 2003), the quality of 

SOC training data and the quality of SOC environmental covariates represent a potential source of 

uncertainty that will propagate to final predictions. Thus, increasing information about how and when 

SOC data is collected and selecting only the most effective SOC environmental covariates (i.e., from 

remote sensing, geomorphometry, climatology surfaces, thematic maps) will reduce the propagation of 

errors on further modeling efforts. Quantifying the errors from inputs and models that influence SOC 

predictions and identifying how they are spatially distributed will benefit planning for future SOC 

sampling strategies, by assuming that a larger sample is required across areas with higher discrepancies 
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and modeling bias (FAO, 2017, Heuvelink, 2014). Optimizing soil sampling strategies is constantly 

required to validate/calibrate SOC predictions and reduce their uncertainties across unsampled areas. 

 North America is a region characterized by a long history of soil data collection that has produced 

unprecedented information of SOC. For example, SOC predictions and estimates across Mexico and 

the CONUS are available from a variety of methods and in different formats. These include soil type 

polygon maps, field observations and reflectance spectroscopy analysis, as well as global SOC 

variability gridded surfaces based on environmental correlation methods (e.g., Bliss et al. 2014; Hengl 

et al. 2014; Wijewardane et al. 2016, Hengl et al. 2017). Further examples include the use of linear 

geostatistics for the interpolation of SOC across Mexico (Cruz-Cárdenas et al. 2014), and SOC 

modeling efforts across the United States (Padarian et al. 2015). For increasing prediction accuracy of 

SOC models, flexible statistics (e.g., machine learning) have been proposed to better predict non-linear 

relationships between SOC observational data and their environmental predictors at global and 

continental scales (Hengl et al. 2017, Ramcharan et al. 2017). Thus, SOC environmental covariates 

(i.e., surrogates of climate, biota, topography and geology) and observational data can be coupled with 

machine learning algorithms to improve the representation of spatial variability and uncertainty in SOC 

stocks. Reducing uncertainties from different sources of information, increasing data-model agreement, 

and simplifying model complexity (by assessing variable importance and removing not informative 

SOC environmental covariates) are required to enable the fine-scale monitoring of SOC stocks across 

countries and regions of the world where no such information is otherwise available (Viscarra-Rossel et 

al. 2014, de Gruijter et al. 2016; Minasny et al. 2017). 

 In this study, we quantified the spatial variability and associated uncertainty of SOC stocks across 

different land use categories of CONUS and Mexico; two countries with rich information of SOC 

measurements. Previous analyses have shown large discrepancies in SOC stocks (0-30 cm, ranging 

from ~38 to ~92 Pg of SOC) derived from country-specific or global SOC estimates (Lajtha et al. 2018, 
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Hengl et al, 2017, Paz-Pellat et al. 2016, Bliss et al. 2014, Wieder et al. 2014). Our main goal was to 

generate a spatial predictive model of SOC variability for the top 30 cm depth at 250 m spatial 

resolution across both countries with information collected between 1991 and 2010.  

We asked the following interrelated questions: 1) Which are the best SOC environmental 

covariates (i.e., prediction factors increasing SOC modeling accuracy) across Mexico and CONUS? 2) 

How much variation in SOC can machine learning methods (e.g., tree-based, kernel based, 

probabilistic-based) explain across this region using repeated cross-validation? 3) What is the SOC 

variance associated with multiple calculation methods for estimating SOC stocks and what is the 

variance associated to multiple model predictions? and 4) What are the sensitivities of these predictions 

associated to different training datasets (i.e., decadal information from different collection periods; 

1991-2000 and 2001-2010)? The value of considering different collection periods is to explore the 

sensitivity of model predictions associated to different training datasets and provide insights for better 

interpretation of decadal changes in SOC stocks. In summary, this study provides benchmark 

information about how SOC spatial distribution is constrained by the soil forming environment (i.e., 

climate, biota, topography and geology), and quantifies the variance (spatial and temporal) from using 

multiple SOC observational datasets. 

 

2 Datasets and methods 

 We followed a digital soil mapping strategy (Figure 1) for the prediction of the spatial variability 

of SOC across both countries. Digital soil maps are generated using field and laboratory observational 

methods coupled with environmental data through quantitative relationships (McBratney et al. 2003, 

Minasny et al. 2008). We assumed that the spatial variability of SOC (represented by observational 

data) can be predicted across large geographical (unsampled) areas as a function of soil forming factors 

(climate, biota, topography and geology, Jenny, 1941). These factors (surrogates of the soil forming 
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environment) are represented through three main sources of information: remote sensing sensors, 

gridded climatology products (e.g., precipitation and temperature) and digital terrain analysis (i.e., 

geomorphometry; see Pike et al. 2009 and Wilson 2012, McBratney, et al. 2003).  
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Figure 1 Flow diagram of the proposed methodology to predict the spatial variability of SOC stocks 

across Mexico and CONUS. Orange folders indicate the SOC data sources used for training and pink 

folders indicate SOC data sources used for validating. These sources were harmonized with the 

SoilGrids250m covariates. White folders indicate the main results of this methodology. Gray ovals 
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indicate main methodological steps. CV: 5-fold cross validation, QRF: quantile regression forest, OK: 

Ordinary Kriging, BD: bulk density.  
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2.1 SOC observational data 

 Legacy SOC estimates across CONUS were obtained from the International Soil Carbon Network 

(ISCN latest version 2018, >18 000 pedons available, Harden et al. 2017). Data from Mexico was 

provided by the Instituto Nacional de Estadística y Geografía (INEGI, SERIES 1 & 2; n >65 000 

pedons available, Krasilnikov et al. 2013). We used only the observations collected between 1991 and 

2010 to minimize confounding factors (related to potential changes in the SOC pool; n = 10385, Figure 

2). We considered all soil horizons containing upper and lower soil depth limit information. The 

combination of using soil depth continuous functions (Bishop et al. 1999; Malone et al. 2009) and 

deriving the weighted average (by depth) from the first sampled soil horizon at 0 cm depth to all soil 

horizons sampled within the first 30 cm of  soil depth, allowed aggregating irregular soil horizons for 

calculating SOC stocks across both countries. The weights for calculating these stocks were selected 

defining the proportion of each horizon within this 0-30 cm interval of soil depth. 

 Most contributors (across CONUS) and INEGI (in Mexico) considered (or adapted) the United 

States Department of Agriculture Soil Taxonomy guidelines for interpreting soil surveys including 

SOC and other soil variables (Soil Survey Staff. 1999). For CONUS, the ISCN database provides a 

harmonized compilation from many contributors (e.g., Natural Resources Conservation Service, United 

States Geological Survey and site-specific research or academic groups; Harden et al. 2017). However, 

the largest contributor for this curated dataset is the United States Department of Agriculture Natural 

Resource Conservation Service, where the SOC concentration was mainly obtained by the Walkley-

Black technique (Soil Survey Staff. 2014). All samples for Mexico were systematically collected and 

analyzed by INEGI (INEGI, 2014, Krasilnikov et al. 2013) and SOC concentration was also measured 

using the Walkley-Black technique (IUSS-WRB-FAO, 2014). Potential error propagation from the use 

of different methods to calculate SOC using information collected over long periods of time (before 

1991) is beyond the scope of this study. We only considered the sensitivity of SOC models (i.e., model 
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outputs) to variations in training data and inputs derived from different pedotransfer functions for 

estimating bulk density (section 2.6).   
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Figure 2 Distribution and descriptive statistics of available datasets. The point map shows the spatial 

sampling locations of available data for the period 1991-2010 (1991-2000 and 2001-2010) (a). The 

colored histograms are representing the statistical distribution of all datasets (i.e., combined CONUS 

and Mexico information) (b). The variogram (relation between distance and variance of observed 

values) and variogram parameters (nugget, sill and range) are representing the spatial structure captured 

with available data (c). Ste is a Stein model parameterization (and its associated Kappa value) for the 
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covariance function between all pairs of points separated by distance units (range in meters) defining 

the spatial structure of SOC available datasets.    
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2.2 Calculation of SOC stocks 

 SOC stocks were derived by a linear combination of soil depth (0-30cm), coarse fragments (CF) 

data, SOC concentration (%), and soil bulk density (BD) following the method proposed by Nelson and 

Sommers (1982) as implemented by Hengl (2017). In general, CF across CONUS was measured in the 

field considering soil fragments >2 mm and direct gravimetric mass-methods. In Mexico, CF was also 

measured in field (considering soil fragments >2 mm), but expressed as percentage of gravel, stones 

and pebbles. For the CONUS dataset, the ISCN has calculated SOC stocks using both modeled (i.e., 

incomplete) and non-modeled (i.e., complete) information about the aforementioned variables (Harden 

et al. 2017). We only used information flagged as ‘complete’ by the ISCN, so no model or pedotransfer 

functions were used for estimating BD and consequently SOC stocks. In Mexico, BD was estimated in 

the field using soil type maps, soil texture, soil organic matter and soil structure following international 

soil mapping guidelines (FAO, 2006, p 51, Table 58). These guidelines are based in a rule-based 

approach originally described in the German soil-mapping guidelines (Ad-hoc-AG Boden, 2005), and 

have been applied to the collection and analysis of soils across Mexico (Siebe et al., 2006) and for the 

contribution of Mexico to the United Nations SOC map (FAO and ITPS, 2018).   

 

2.3 The environmental covariate space 

 For spatially representing soil forming factors (Jenny, 1941) we used environmental covariates 

from the SoilGrids250m system (Hengl et al. 2017). This dataset represents over 150 variables of 

environmental gridded data including terrain derivatives from a digital elevation model (DEM), the 

enhanced vegetation index (EVI), climate (precipitation and land surface temperature) and other soil 

related gridded variables (Figure 3, Supplementary Table S1). This covariate space is representative for 

the analyzed period of time (1991-2010) and is described in detail by previous publications (Hengl, et 

al. 2017, Reuter and Hengl, 2012). We extracted this global information within the geographical limits 
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of the NALCMS (North American Land Change Monitoring System, 77% of land use classification 

accuracy) at 250m spatial resolution (NRCan/CCRS-USGS-INEGI-CONABIO-CONAFOR, 2005).  

 

2.4 Recursive feature elimination  

 We first performed a variable reduction strategy using of a recursive feature elimination technique 

(Kuhn et al. 2008) and multiple models were fitted repeatedly using all possible combinations of highly 

ranked predictors. Predictors were ranked using as indicator the cross-validated prediction error of a 

Random Forest tree ensemble. We selected the Random Forest as our overall accuracy indicator 

method because it showed the highest predictive capacity compared against different machine learning 

algorithms tested in our modeling selection strategy (Supplementary Figure S1). This method is based 

on bagging predictors and the combination of multiples regression trees derived from different random 

data subsets (Breiman, 2001). Each model grows with the number of trees for minimizing the 

prediction variance. Model parameters to define the number of predictors and subsets on each 

regression tree were automatically selected by the means of 10-fold cross validation (Figure 1). Cross 

validation is a re-sampling technique that we used for maximizing the accuracy of results while 

obtaining a robust and stable prediction error estimate used for further selecting the most informative 

predictors. In addition, Random Forests uses an out-of-bag cross-validation form for assessing the 

relevance of each predictor in the model. Thus, multiple lists of the “best” predictors are generated 

from each Random Forest model realization in the recursive feature elimination framework. This 

provides a probabilistic assessment to determine the best predictors to retain at the end of the algorithm 

(Kuhn et al. 2008). After a 5-times repeated 5-fold cross validation for the recursive feature elimination 

technique (to account for the model sensitivity to data variations and reduce overfitting), we selected 

the first 25 environmental covariates for SOC.  
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2.5 Simulated annealing  

 The 25 environmental covariates selected from the recursive feature elimination analysis were 

used on a simulated annealing regression framework for predicting SOC stocks (Kuhn and Johnson, 

2013). Simulated annealing is a well-known optimization framework for soil sampling designs 

(Groenigen and Stein, 1998, Minasny and McBratney, 2006, Szatmári et al. 2018) and for validating 

digital soil maps (Biswas and Zhang, 2018). Simulated annealing is a framework from statistical 

mechanics and combinatorial optimization problems (Firstpatrick, et al. 1983) that here we apply for 

maximizing the feature selection and prediction accuracy of SOC relevant environmental covariates.  

 In a simulated annealing framework, used for prediction (i.e., regression), a global search is 

performed and  random perturbations are induced to the dataset for identifying the variables that are 

more sensitive to data variations and that have higher prediction capacity for the target variable (i.e., 

SOC). We used the cross validated Random Forest error as indicator to analyze the effect of such 

perturbations. This process is constantly repeated, and many iterations are produced in a global learning 

search that should in theory result in better solutions (Kuhn et al. 2008). We used the Random Forest 

regression algorithm within the simulated annealing framework to improve the probability of detecting 

the main drivers of SOC spatial patterns. After a 5-times repeated 5-fold cross validation, the entire 

data set is used for generating a model in the last execution of the simulated annealing global search. 

This model is built on the predictor subset that is associated with the optimal number of iterations 

determined by the cross-validation resampling technique (Kuhn et al. 2008). We used the final model 

of the simulated annealing framework for making predictions across 250m grids reporting the first five 

ranked environmental covariates of each generated model. These environmental covariates were 

selected because they contributed the most to reducing the error in the global search of the simulated 

annealing iterative (i.e., tree ensemble learning) process. 
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Figure 3. Visualization of covariates across the political boundaries between California and Oregon in 

western CONUS. Land surface temperature (a); precipitation (b); precipitable water vapor (c); and a 

digital elevation model (d); see Supplementary Table S1 for detailed description and sources of these 

variables. Gray histograms represent variation across latitude or longitude.  
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2.6 Uncertainty analysis 

 We represented uncertainty of our modeling approach as the sensitivity of prediction models to 

multiple data inputs. We first explored the residual variance of our SOC training data against six SOC 

stocks calculated using six BD pedotransfer functions. Then, we analyzed the spatial structure of these 

residuals using Geostatistics, and computed a model residual error against fully independent SOC 

datasets. Finally, we computed the modeling SOC prediction variance and the full quantile response of 

residuals (from independent datasets and from the BD variance) to the highest ranked environmental 

covariates (Figure 1). We postulate that estimates of SOC fall within a range of errors, and it is 

therefore important to account for variation in model inputs and model outputs. Our main goal was to 

quantify the variability range around predicted SOC stocks using multiple uncertainty indicators.  

 

2.6.1 Pedotransfer functions for bulk density variance  

 We predicted SOC stocks at the pedon locations available in the WoSIS system (Batjes et al. 

2017). We calculated the residual variance of our predictions and independent SOC stocks. These 

independent stocks were calculated using the WoSIS SOC concentration data (%), and six conventional 

pedotransfer functions for estimating BD. This resulted in six different SOC stocks estimates from the 

following pedotransfer functions:  

 

 Saini (1966): BD = 1.62 - 0.06 * OM , Jeffrey (1970): BD = 1.482 - 0.6786 * (log(OM)),  

 Adams (1973): = 100 / (OM /0.244 + (100 - OM)/2.65),  

 Drew (1973): BD = 1 / (0.6268 + 0.0361 * OM),  

 Honeysett and Ratkowsky (1989): BD = 1/(0.564 + 0.0556 * OM),  

 Grigal et al. (1989): BD = 0.669 + 0.941 * exp(1)^(-0.06 * OM). 
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The OM= organic matter content was estimated as OM=SOC concentration * 1.724. These 

functions applied to the WoSIS data were selected because they were developed for a variety of 

soil weathering environments using multiple analytical techniques for measuring SOC and 

because they were recently proposed for the development of the United Nations global SOC 

map (Yigini et al., 2018). In addition, the WoSIS data has been curated under different 

protocols for controlling data quality and global interoperability standards (Batjes et al. 2017) 

and thus, this residual variance will allow us to have an idea of possible dispersion of values 

around the SOC calculated stocks.  

 

2.6.2 Independent datasets for model prediction 

 We calculated model residuals against two fully independent datasets across both countries 

(n=9239). Across CONUS we used 6179 SOC estimates (2010) from the Rapid Carbon Assessment 

Project (RaCA, Soil Survey Staff and Loecke, 2016; Wijewardane et al. 2017) and 3060 (2009-2011) 

SOC estimates from top soil samples extracted from the Mexican National Forest and Soils Inventory 

of the Mexican Forest Service (2009-2011, Supplementary Figure S2). These independent datasets 

have been collected using different sampling designs and using different SOC calculation methods 

from our initial training dataset (INEGI and ISCN). The residual analysis against these independent 

datasets provides an overall measure of the models’ sensitivity to multiple SOC data sources. 

 

2.6.3 Spatial autocorrelation of model residuals 

 We compared the spatial structure (i.e., spatial autocorrelation) of model residuals using linear 

geostatistics. The spatial structure accounts for the variance of values as a response of the geographical 

distance (e.g., meters) between SOC sampling points (Figure 2a). The spatial structure of a soil 

property can be quantified using variograms (a graphical method for modeling the relationship between 
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distance between points and the variance of their values, Figure 2c) and the variogram parameters: 

nugget (uncorrelated variance), sill (spatially-autocorrelated variance) and range (distance to the 

maximum variance) as explained previously (Oliver and Webster, 2014). We used automated 

variogram fitting (Hiemstra, et al. 2008) for calculating the nugget:sill ratio. The nugget is an 

uncorrelated component of soil variation that cannot be explained by our data, it depends on the 

calculation methods, the sampling resolution, and the spatial variability of SOC. The sill is the distance 

between the nugget and the variance stabilization (y - axis) point while increasing distance (x – axis). 

The range is the distance of the variance stabilization point. As in previous studies (Cruz-Cárdenas et 

al. 2014), a nugget:sill of <0.25 was considered evidence of a strong spatial dependence, a relationship 

between 0.25 and 0.75 was considered a moderate spatial dependence, and a relationship > 0.75 was 

considered a weak spatial dependence (Cambardella et al. 1994). We then used these variogram 

parameters to generate error maps by the means of Ordinary Kriging (Oliver and Webster, 2014), as 

explained earlier (Hengl et al. 2004), accounting for the potential spatially autocorrelation of the model 

residuals. 

 

2.6.4 Model residual limits 

 For analyzing the model-based uncertainty, we estimated the quantile conditional response of the 

aforementioned modeling residuals to the ‘best’ environmental covariates identified by our simulated 

annealing framework aiming to estimate model prediction limits. The main purpose of estimating 

model prediction limits is to identify the variance from the most probable predicted SOC stock for each 

pixel across the 250m grids. For this purpose, we used the quantile regression forest approach, which is 

a variant of Random Forests. This method is able to: a) maintain the value of all observations in each 

node for each tree, not just their mean (as is the case of Random Forests) and b) assesses the quantile 

conditional distribution at each predicted location (pixel). This method has the assumption that the full 
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conditional estimated response is not different from the mean of the training dataset (Meinshausen 

2006). This method allowed us to quantify the maximum possible range of SOC prediction limits (e.g., 

95%) given available data and available environmental covariates.  

 All analyses were performed in R (R Core Team 2018) and were repeated using subsets of 

available SOC data for the period 1991 to 2000 (n=4877) and for the period 2001-2010 (n=5508) in 

order to identify possible sensitivities of model predictions associated with  defined (i.e., decadal) 

variations in training datasets.  

 

3 Results 

3.1 Descriptive statistics 

 The harmonized SOC training dataset across both countries (n = 10 385, 1991-2010, Figure 2a) 

showed a right skewed distribution and most estimates were between 0 and 10 kg m
-2

 up to a maximum 

of 87.9 kg m
-2

. While the Mexican dataset dominates the 0-10 kg m
-2  

range, the CONUS dataset has 

larger SOC values (>10 kg m
-2

) (Figure 2b). We used a logarithmic transformation (i.e., log(1+x)) of 

the combined (Mexico-CONUS) dataset to reduce the skewed distribution for further analysis. The 

combined dataset shows a nugget:sill ratio of 0.55, suggesting a moderate spatial autocorrelation of its 

values, a sill of 0.9 and a nugget of 0.5 (units in log(kg m
-2 

+ 1), Figure 2c). 

 

3.2 Recursive feature elimination   

 The five times repeated 5-fold cross validation (applied to the recursive variable elimination 

framework) showed errors of 1.7 (R
2
 = 0.30), 2.0 (R

2
= 0.27) and 2.6 (R

2
=0.34) kg m

-2 
for the models 

1991-2010 (n=10385 ), 1991 to 2000 (n=4877) and 2001-2010 (n=5508), respectively. For the years 

1991-2010, the highest ranked environmental covariates for predicting SOC were: the DEM and 

topographic terrain attributes (the wetness index, the valley bottom flatness index and the valley depth 
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index) and a remotely sensed precipitable water vapor estimate. For the years 1991-2000, the highest 

ranked environmental covariates were: the land surface temperature, the DEM, the wetness index, the 

valley bottom flatness index and the standard deviation of the EVI (surrogate of vegetation 

seasonality). Finally, for the years 2001-2010, the highest ranked environmental covariates were: valley 

bottom flatness index, mean value of the EVI (surrogate of vegetation productivity), the valley depth 

index, the wetness index and the night-time land surface temperature. These results showed consistency 

on the highest ranked environmental covariates such as the DEM and other terrain derivatives, 

considering the three recursive feature elimination models and years. 

 The same technique applied to independent datasets showed similar results (i.e., when combined 

RaCA and the Mexican Forest Service datasets). This independent analysis (years 2010-2012) showed 

an error of 2.9 kg m
-2 

(R
2
=0.47) using all environmental covariates and an error of 3.4 kg m

-2  
(R

2
=0.33) 

using just the highest ranked environmental covariates after the repeated cross-validation. The highest 

five ranked environmental covariates of this model were: the DEM and the topographic wetness index, 

the vegetation seasonality (standard deviation) and vegetation productivity (mean) from the EVI and 

mean monthly precipitation. 

 

3.3 Simulated annealing 

 The simulated annealing framework confirmed the explanatory power of land surface temperature 

and precipitable water vapor, because these variables were consistently ranked as the highest 

environmental covariates in the three models (1991-2010, 1991-2000, 2001-2010). For the three 

models, the simulated annealing framework revealed that mean annual precipitation and/or the total 

annual precipitation were also important predictors for the SOC dataset against a cross-validation 

strategy (5 times repeated, 5-fold). The error estimates from this algorithm were similar compared with 

the previous analysis (see section 3.2), but with higher levels of explained variance for years 1991-
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2010 (2.2 kg m
-2 

; R
2
=0.41), years 1991-2000 (2.1 kg m

-2 
; R

2
=0.31), and years 2001-2010 (2.3 kg m

-2 
; 

R
2
=0.46). 

 The simulated annealing analysis on the independent datasets showed that  a MODIS surface 

reflectance variable (M06MOD4, Supplementary Table S1) becomes one of the first five important 

variables for predicting SOC. Other highest ranked environmental covariates for the independent 

datasets were also consistent with our previous results: the DEM, mean monthly precipitation, the 

standard deviation of the EVI and precipitable water vapor. Modeling errors and explained variances 

(R
2
) on this model were also similar, with a mean error of 3.1 kg m

-2  
(R

2
= 0.42) using only the highest 

ranked environmental covariates. 
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Figure 4 Variogram analysis applied to residuals of SOC models. The variogram of residuals against 

independent datasets (A). The residual variance from the different pedotransfer functions used to 

calculate SOC stocks (B). The combined (independent models and pedotransfer functions) residuals for 

the periods 1991-2000 (C) and 2001-2010 (D). The numbers in the circles indicate the available pairs 

of points at a given distance. Variogram parameters are shown as insets on each plot: Sph = spherical 

model, Ste = Stein model parameterization (and its associated Kappa value).  
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3.4 SOC residual analysis  

 We obtained six different SOC stocks (and mean errors) from the six pedotransfer functions used 

to estimate BD values (Supplementary Figure S3). The equation provided by Drew (Drew 1973: BD = 

1 / (0.6268 + 0.0361 * OM)) was the best correlated function with our SOC prediction (1991-2010, 

r=0.4). The residual variance of our predictions and the multiple SOC estimates derived from different 

BD pedotransfer functions had a standard deviation of 3.5, a median of 1.0, and mean variance of 1.2 

kg m
-2 

. The residual variance of our predictions (1991-2010) against predictions from the independent 

model (RaCA- Mexican Forest Service; n=9239) showed a standard deviation of 2.7, a median of 2.0, 

and a mean value of 2.5 kg m
-2 

. We report a moderate spatial structure (nugget:sill ratio of 0.25) for the 

residuals of our models and independent SOC estimates (Figure 4a). However, the residual variance of 

our predictions against the multiple SOC stocks calculated from different BD pedotransfer functions 

showed a strong spatial structure (nugget:sill ratio <0.1) across both countries (Figure 4b).  

 When combining the residual variance from different BD pedotransfer functions and the residuals 

of the independent validation, we detected a significant increase of the nugget:sill ratio from 0.08 for 

the years 1991-2000 (Figure 4c) to a nugget:sill ratio of 0.25 for the period between 2001-2010 (Figure 

4d). Thus, there was >100% increase of uncorrelated spatial variation of SOC data (nugget:sill ratio 

increased from 0.08 to 0.25) from the model using 1991-2000 data to the model using 2001-2010 data. 

This increase of uncorrelated variation (increase of the nugget:sill ratio of >100%) was found in the 

combined residuals against independent data sets and against the BD pedotransfer function. These 

differences in the nugget:sill ratio are associated with inconsistencies in data sampling strategies and 

multiple collection periods of SOC data (Figure 4).   

This article is protected by copyright. All rights reserved.



 

 

Figure 5 Predicted SOC across CONUS and Mexico. Prediction using data for years 1991-2010 (a); 

Predictions with data for years 1991-2001 (b); and Predictions with data for years 2001-2010 (c). 
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3.5 SOC stocks 

 We estimated a total SOC stock (1991-2010) of 47 Pg (Figure 5a) that varies from 41 to 55 Pg of 

SOC for the models 1991-2000 (Figure 5b) and 2001-2010 (Figure 5c), respectively. For the years 

1991-2010, the residual error map suggested 10.4±5.1 Pg of SOC variance associated with the use of 

multiple pedotransfer functions for BD and consequently calculating SOC stocks. The larger variance 

of associated with BD was found across the surroundings of the Great Lakes, in the states of Vermont, 

New York and borders between Pennsylvania and Ohio, in CONUS (Figure 6a). The residual error map 

of our models against two fully independent datasets (RaCA and Mexican Forest Service), suggested a 

higher value of 28.8 ± 9.1 Pg of SOC variance. The large variance associated with the independent 

datasets was found also across the surroundings of the Great Lakes, but in the states of Wisconsin and 

Minnesota (Figure 6b). Another large variance from the independent validation was found across the 

state of Florida, specifically across the south section in the everglades area where there limited 

observations for the training dataset (Figure 1) 

 

 

Figure 6  Residual error maps interpolated using Ordinary Kriging. The residual error map of 

pedotransfer BD residuals (a). The residual error map of our models against independent validation 

datasets (b).   
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 The estimated SOC stock after applying the same modeling strategy to the external datasets was 

46 Pg of SOC (combined RaCA- Mexican Forest Service, Figure 7a), varying ±1 Pg of SOC with the 

model 1991-2010 (ISCN plus INEGI, 1991-2010, Figure 5a). A linear model of our predictions against 

the independent datasets (RaCA-Mexican Forest Service) showed a mean error of 1.0 kg m
-2  

(R
2
=0.43) 

(Supplementary Figure S4).  

 The best correlation between SOC predictions was found between models 1991-2000 and 1991-

2010 (r=0.8) with ±5 Pg of difference in the predicted SOC stocks. In contrast the model for the year 

2001-2010 was better correlated with the RaCA- Mexican Forest Service combined predictions (r=0.6), 

but the SOC stocks varied for ±7 Pg of SOC. The correlation between the model 1991-2010 and the 

independent analysis was lower (r=0.3) but the SOC stocks showed less variation (±1 Pg of SOC). 

 The variance among all models based on INEGI and ISCN data was ±7.6 Pg of SOC (Figure 7b). 

This value increased up to ±12 Pg of SOC by adding the variance of the models based on the 

independent analysis (Figure 7c). Thus, we provide a SOC stock for both countries between 46 and 47 

Pg of SOC with a total modeling variance of ±12 Pg.  
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Figure 7 Prediction of SOC generated using the independent datasets (Aa). Model variance for 

predictions 1991-2000 and 2001-2010 using the INEGI and ISCN available data (b). Variance of all 

SOC predictions (INEGI-ISCN, RaCA-Mexican Forest Service datasets) (c).   

  

This article is protected by copyright. All rights reserved.



 

3.6 Quantile conditional distribution of residuals 

 The quantile conditional distribution (used to identify the model prediction limits) for the 

residuals against fully independent datasets suggest a maximum possible SOC variance of ±73 Pg of 

SOC. This is the SOC variance from the full quantile conditional response of these residuals to the 

highest ranked environmental covariates. From the BD pedotransfer function variance, the full 

conditional response to the highest ranked environmental covariates showed a lower value of ±20 Pg of 

SOC. Thus, less uncertainty was found from the use of multiple pedotransfer functions than from 

validating against fully independent datasets. These results highlight the large variance of possible SOC 

predictions given the use of multiple training data sources constrained to a relatively short (i.e., two 

decade) period of time. The model-based uncertainty results are shown in Figure 8. For the BD 

pedotransfer function variance, the larger range of model based uncertainty was found across the Great 

Lakes of northern CONUS and the border with Canada (Figure 8A), The model-based uncertainty 

using independent residuals shows the largest values across, Florida, the east coast and the 

surroundings of the Great Lakes in CONUS, as well as some areas of southeast Mexico (Figure 8B).  

 

 

Figure 8 Conditional quantile distribution of SOC residuals to the highest ranked environmental 

covariates from the BD residual variance (a) and for the residual variance against models generated 

with fully independent datasets (b).   
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4 Discussion 

 We predicted SOC (across Mexico and CONUS at 0-30 cm of soil depth) and generated gridded 

estimates at 250m spatial resolution for the period 1991-2010.  We provided predictions of SOC using 

multiple inputs of data and a feature selection framework (recursive elimination of predictors and the 

simulated annealing algorithms) that allowed us to identify the most informative SOC environmental 

covariates to determine SOC stocks between 1991-2010. We calculated SOC stocks for both countries 

(46-47 ±12 Pg) and these values were >30% below previous global estimates such as the SoilGrids 

system or the Harmonized World Soil Database. We have highlighted large discrepancies between 

modeling outputs based on multiple data collection periods (Figure 5) and between global SOC 

products such as the state of the art SoilGrids250m (Supplementary Figure S5). Furthermore, our 

results have implications for the use and interpretation of SOC legacy data or aggregated SOC 

information. Specifically, we found a large difference for predicted SOC stocks (from 41 to 55 Pg of 

SOC) between 1991-2000 and 2001-2010 that cannot be fully attributed to SOC dynamics, but also to 

inconsistencies in the spatial configuration of available datasets, the use of different SOC calculation 

methods, and the different periods of data collection. These results open new research questions about 

the interpretation of apparent changes in SOC stocks across time and future studies should determine: 

a) if regional-to-global differences are due to active management practices/land use change, or b) if 

apparent changes are overshadow by large uncertainty estimates due to inconsistencies in methods and 

modelling variability.   

 

4.1 Highest ranked environmental predictors 

 Our results suggest that using a few informative environmental predictors (e.g., the DEM and 

terrain derivatives, the EVI or precipitation patterns) for the spatial variability of SOC have a similar 

performance (~50% of explained variance) to a high-dimensional covariate space (the 150 
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environmental covariates reported in Supplementary Table 1) across Mexico and CONUS and using 

the available datasets between 1991-2010. The use of a high-dimensional covariate space to predict 

SOC (and other soil properties) may be needed to maximize prediction accuracy at the global scale 

(Hengl et al. 2017); however, for local to regional applications some environmental covariates for SOC 

may be statistically redundant and lead to unnecessarily increases of the computing resources required 

for prediction purposes. Reducing the statistical redundancy of environmental covariates in SOC 

models will simplify computing requirements and model complexity (Guo et al. 2019). Reducing the 

complexity of SOC models would be appealing in further applications of SOC spatial information (e.g., 

land carbon uptake modeling, climate system modeling, niche modeling) which require similar 

predictors as for SOC.  

 Our simulated annealing analysis highlights SOC relationships (positive and negative) with 

climate variables (precipitation and land surface temperature), elevation (and terrain derivatives) and 

vegetation greenness (productivity and seasonality) that are consistent with previous literature 

describing SOC drivers across diverse environmental conditions (Hobley, et al. 2015, Evans et al. 

2011). In addition, when applying the simulated annealing framework to the independent datasets, a 

MODIS surface reflectance short wave infrared band (M06MOD4, Supplementary Table S1) was one 

of the first five important variables predicting SOC, which is consistent with the infrared based 

methods used by the USDA for developing of the RaCA dataset (Wijewardane et al. 2016). The 

prediction capability of the  infrared spectra (e.g., near infrared, mid infrared) for SOC can be attributed 

to the strong spectral absorption characteristics of soil organic matter and BD (the main components of 

SOC) in the infrared spectral bands (Guo et al. 2019). Thus, the main relationships driving our SOC 

predictions can be interpreted and associated with the use of different data inputs and specific 

environmental covariates (e.g., the DEM and terrain parameters, the EVI and the MODIS surface 
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reflectance infrared data , precipitation and temperature gridded surfaces) that can be periodically 

acquired from remote sensing at the global scale.  
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4.2 Uncertainty quantification   

4.2.1 BD pedotransfer functions 

 We report ~10Pg of SOC variance associated with SOC calculation inputs. The combined and 

quality-controlled dataset we used have been processed following international standards for increasing 

precision and accuracy (Harden et al. 2017, Batjes et al. 2017). However, the major limitation of these 

datasets is arguably the low availability of BD and CF data. Inconsistencies in BD and CF data could 

explain the large variance found (Figure 6A) across the highly productive landscapes of the north east 

of CONUS. It has been discussed that SOC stocks are systematically overestimated by misuse of the 

BD and CF content parameters (Poeplau et al. 2017), although for some areas, significant 

underestimations of SOC have been reported (Chen et al. 2018). Thus, correction of BD is fundamental 

to achieve realistic SOC estimates and to reduce the potential overestimation of SOC stocks (Köchy et 

al. 2015). The lack of accurate BD and CF data and the large variance of the global SOC values are key 

issues that could explain the discrepancy between country-to-global SOC estimates (Tifafi et al. 2018). 

Thus, our results provide a spatially explicit measure of SOC variance derived from six conventional 

BD pedotransfer functions that can be used to explain discrepancies between national, regional and 

global SOC estimates.  

 

4.2.2 Spatial and temporal variations of available data 

 We found differences in the spatial structure (i.e., autocorrelation) of modeling residuals from 

multiple models and periods of time (1991-2000 and 2001-2010), that result in large differences on 

predicted stocks (from 41 to 55 Pg of SOC) from these defined periods of time. This period of time 

(1991-2010) have experienced intensive land use and environmental changes across both countries and 

our results could be used for identifying sensitive areas of SOC changes or areas that require further 

research (Figure 5). However, a previous study suggested that SOC could increase under reforestation 
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conditions around 2 Pg per century in the topsoil (Nave et al. 2018), so our “decadal” modeling results 

may be overestimating the SOC gain between those time-periods. Here, we discuss our results under 

this consideration.  

While we detected a reduction of SOC across most of Mexico, we detected a larger gain of SOC 

mainly across higher latitudes of CONUS (when comparing models between 1991-2000 and 2001-

2010). Recent efforts have shown multiple agricultural practices that can lead to substantial SOC gains 

(Singh et al. 2018) and SOC gains have been reported on previous studies across higher latitudes of 

CONUS in response to agricultural practices (Adhikari and Hartemink. 2017). For example, alpine 

forest have been recognized as important SOC sinks under warming conditions (Ding et al. 2017). 

Recent reports have shown that some land carbon uptake models tend to project increases in high 

latitude SOC that are inconsistent with empirical studies that indicate significant losses of SOC with 

predicted climate change across these areas (Lajtha et al. 2018). The uncertainty of current SOC 

available information is one limiting factor for increasing the agreement and explaining the 

aforementioned inconsistencies of SOC models (Crowther et al. 2017). When applying the analysis 

independently on the specific decades (1991-2000 and 2001-2010) we were forced to remove large 

amounts of data across large geographical areas; consequently, these areas were not equally represented 

(in terms of data information) on these models. We argue that the spatial distribution and statistical 

differences on data available for SOC models can explain discrepancies of SOC trends, as previously 

shown at the global scale (van Gestel et al. 2018). Reducing the amount of training data increases 

modeling errors and the uncertainty of SOC predictions (Lagacherie et al. 2019). Thus, we highlight 

that caution must be taken when limited amount of information is used to predict SOC stocks across 

large geographical areas and then use that information to quantify apparent changes in SOC stocks 

without considering uncertainty. In this study, rather than reporting a SOC change between decades, we 

postulate that a better practice is to use all available data (1991-2010) to increase spatial representation. 
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Thus, we were able to model SOC spatial variability and compared results with two fully independent 

datasets to determine the most probable SOC stock estimate (46 to 47 Pg of SOC) for the period around 

1991 and 2010.  

 

4.2.3 Quantile response of residual variance 

 Model prediction limits from the full quantile response of independent model residuals indicated a 

larger SOC variance across both countries (up to 73 Pg of SOC variance) than the full response of the 

residual variance associated with the BD pedotransfer functions (20 Pg of SOC). These results are 

useful for benchmarking SOC models and represent a valuable complement for the uncertainty 

indicators of the predicted SOC spatial variability (Lagacherie et al. 2019). This variance relies on a 

non-parametric and accurate way of estimating conditional quantiles and the overall reliability of tree-

based ensembles such as Random Forests (Meinshausen, 2006). This approach has been used for 

analyzing the uncertainty on soil mapping applications and larger uncertainties have been reported 

when reducing the data availability in numerical experiments (Lagacherie et al. 2019, Vaysse and 

Lagacherie, 2017). Thus, we provide multiple uncertainty indicators as they are useful to better 

interpret model limitations associated with available datasets and complement (across unsampled areas) 

our cross-validation and independent validation results.  We propose that the results of this quantile 

analysis applied to SOC modeling residuals could be used for identifying areas that require higher 

sampling effort due larger discrepancies of multiple SOC model predictions.  

  

4.3 SOC stocks across CONUS and Mexico 

The estimated SOC stock across both countries (46-47 Pg of SOC) could be used for 

quantifying the contribution of SOC to the regional (e.g., North America) carbon cycling for the 

analyzed period of time (1991-2010). Our predicted SOC stock is lower when compared to values 
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obtained from global estimates such as the re-gridded HWSD (Wieder et al. 2014) or the 

SoilGrids250m system (Hengl et al. 2017), where this value increases to ~71 Pg and ~92 Pg of SOC, 

respectively. High discrepancy of these two global products has been reported earlier at global- (Tifati 

et al. 2017), country-, or region-specific scales (Guevara et al. 2018, Chen et al. 2018, Vitharana et al. 

2019). Moreover, our results showed discrepancies comparing country-specific studies reporting SOC 

stocks in CONUS (29.3 Pg of SOC, Bliss et al. 2014) and Mexico (9.15 Pg, Cruz-Gaistardo and Paz-

Pellat, 2014, Paz Pellat, et al. 2016), as we report ~39 Pg of SOC for CONUS and ~7 Pg of SOC for 

Mexico in the first 30cm of  soil. Our results highlight the need to provide country-to-region specific 

estimates using the best available datasets, to improve global SOC estimates by developing analytical 

frameworks for optimizing multiple SOC modeling efforts and sampling strategies (Guevara et al. 

2018).   

We report a density of SOC across CONUS (4.98 kg m
-2

) that was relatively higher than the 

soils of Mexico (4.22 kg m
-2

). Globally, the soil carbon pool (at 1m depth) is estimated to have around 

1500-2400 Pg (Sato et al. 2015), while the SOC pool in the upper 30 cm is estimated to be 755 ± 119 

Pg (Batjes, 2016).  Our results suggest that Mexico represents ~1 % and CONUS ~5 % of the global 

SOC pool at 30 cm depth. Recent revisions highlight that the SOC stock at 30 cm soil depth remains 

unclear (Lajtha et al. 2018), and this study provides new insights for interpreting the discrepancies 

around the topsoil SOC pool across CONUS and Mexico.  

Our SOC estimates across forested areas are comparable to those reported on  studies (Domke 

et al. 2017, Bolaños et al. 2017). However, our results show high uncertainty across areas dominated 

with high SOC values (e.g., >1 gr cm
-2

, some northern and tropical forests, peatlands, other black soils 

dominated areas) and across higher latitudes (Figure 6), as documented in previous studies (Tian, et al. 

2015). Unfortunately, these areas are poorly represented in the available datasets (<10% of available 
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data with values >1 gr cm
-2

) and we encourage future monitoring efforts to increase their 

representativeness. 

 

4.3.1 SOC across land cover classes 

 Our study confirms the presence of important SOC stocks across both forest and agricultural soils. 

Across both countries, we found higher SOC stocks in croplands, representing 26% of total SOC within 

the upper 30cm of soil. Across Mexico, we found that 42% of SOC was stored in forest soils and 24% 

in agricultural soils, while 31% of SOC across CONUS is stored in forest soils and 27% in agricultural 

soils. While organic matter-rich and deep soils dominate most agricultural areas across CONUS 

(Adhikari & Hartemink, 2017), most agricultural soils in Mexico tend to be shallow (Guerrero et al. 

2014, ~30cm depth); consequently, we emphasize that carbon management, monitoring and 

conservation strategies must be developed from a country-specific approach considering country-

specific land cover classes. 

 We found that tropical or sub-tropical broadleaf evergreen forests is the natural vegetation class 

with the highest SOC pool across Mexico (1.22 Pg), while temperate broadleaf deciduous forests had 

the highest SOC pool across CONUS (6.41 Pg). Grasslands and shrublands are also important SOC 

reservoirs, as they store around 37.7% of SOC across Mexico and 34.9% of SOC across CONUS 

(Supplementary Table S2). Such estimates are relevant for public policy around SOC conservation 

efforts (e.g., FAO, 2017) because grasslands and shrublands transitions are increasingly vulnerable to 

global warming and the increase of aridity conditions which would result in a decrease of SOC stocks 

(Petrie et al. 2014, FAO 2017). Thus, accurately quantifying the spatial variability of SOC across 

grasslands and shrublands will be an important component for enhancing SOC sequestration by better 

informing conservation efforts of soil ecosystem functions across North America. 
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 Accurate SOC estimates represent a key variable to quantify human induced disturbances to the 

carbon cycle across land cover classes. We report that temperate forests of CONUS contain the larger 

SOC reserves while tropical or sub-tropical broadleaf evergreen forest and wetlands are the land cover 

classes with higher SOC in Mexico than CONUS (Supplementary Table S2). Respectively, the tropical 

or sub-tropical broadleaf evergreen forests are the most productive ecosystems of Mexico (Murray-

Tortarolo et al. 2016). The wetlands category, with high carbon sequestration potential,  includes 

mangroves (and other coastal wetlands), which have been recognized as the ecosystems with higher 

carbon storage capacity from the site-specific to the global scales (Vázquez-Lule, et al. 2019, Adame et 

al. 2015, Atwood et al. 2017). Our results represent benchmarks for SOC monitoring across these land 

cover classes. Thus, the spatial predictions of SOC at 250m allows for the interpretation of SOC spatial 

patterns across land cover classes of Mexico and CONUS accounting for sensitivities associated with 

the use of multiple data inputs.  

 

4.4 Final remarks 

 Optimizing future SOC sampling strategies while reducing modeling variance and increasing 

model agreement against model independent datasets collected under different circumstances (e.g., 

logistics, design, main purpose, SOC estimation methods) are large challenges for enabling SOC 

carbon mapping and monitoring systems. New and better SOC parameters are required for reducing the 

current discrepancy between multiple sources of SOC data (Tifafi et al. 2017, Guevara et al. 2018) and 

enabling SOC monitoring systems (Viscarra-Rossel et al. 2014). The lack of accurate SOC spatial 

information and the combination of multiple SOC data sources could result in large variance estimates 

across the two countries (e.g., red areas of Figure 6). We propose that areas with high variance suggest 

that these regions require higher SOC sampling efforts.  
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We provide high spatial resolution (e.g., 250m pixels) SOC estimates that account for model 

uncertainty. Such estimates are needed for identifying regions that should be targets for SOC protection 

(Lagacherie & McBratney, 2006). Soil carbon protection is increasingly important to restore the current 

negative imbalance in our soil carbon budget due, for example, to the development of agricultural 

systems and croplands (Sanderman et al. 2017). Accurate SOC estimates at the relevant (local) scale 

for farmers and landowners (e.g., spatial resolution of 250m or less) would be an important component 

to reduce land degradation and improve the efficiency of current efforts for sequestering SOC (Bonfatti 

et al. 2016; Malone et al. 2017). Thus, our results provide insights for identifying and delineating land-

areas with high potential for SOC stocks that account for model sensitivity to multiple data inputs and 

sources. Finally, this research is timely because there is high discrepancy between SOC global 

estimates that needs to be solved in order to better quantify SOC dynamics (Tifati et al. 2017). 

Consequently, this discrepancy can influence the estimates of SOC warming response (Karhu et al. 

2010) and the carbon–climate feedback that could accelerate climate change (Crowther et al. 2016). 

We hope that this study motivates an increase in country-specific soil surveys, data sharing, and 

modeling of SOC estimates at higher spatial resolution with a better quantification of uncertainty. 
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Supplementary Tables:  

 

Supplementary Table S1 Detailed description of the SOC covariates used on for generating predictions 

across 250m grids. This table includes a code, units and source of each SOC prediction factor included 

in the model predictions.  

 

Supplementary Table S2 Estimated Soil Organic Carbon (SOC) stocks in petagrams (Pg) for the 

different land cover classes reported by the North American Land Change Monitoring System. This 

table shows the different SOC stocks estimated for the different data/periods across the combined area 

of CONUS and Mexico, the SOC stock across land cover classes of CONUS and land cover classes of 

Mexico.  

 

Supplementary Figures: 

 

Supplementary Figure S1. Selection of prediction algorithm based on cross validated accuracy metrics. 

Random Forest (rf) generates the lowest error and the highest explained variance. (qrf=quantile 

regression forest, dnn=deep neural network, pls=partial least squared regression, bagEarth=multivariate 

adaptive regression splines, svmRadial=radial kernel support vector machines, kknn=kernel weighted 

nearest neighbors). These results are derived from repeated 5-fold-cross-validation. These methods 

were implemented using the R package caret. Highest explained variance (R2, 0-1), lowest mean 

absolute error (MAE, gr cm-2) or root mean squared errors (RMSE, gr cm-2) were achieved with rf. 

Accuracy indicator represents the individual values for each metric (e.g., R2, MAE, RMSE)  
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Supplementary Figure S2 Independent datasets (RaCA and the Mexican Forest Service). This 

combined dataset was collected between 2009-2012. 

 

Supplementary Figure S3 Results from the different pedotransfer functions applied to BD for 

calculating SOC stocks and report the variance of the calculation method.  We show the distribution of 

values in our predictions (1991-2010 first 3 boxplots), the prediction with independent datasets (2010-

2012) and the residuals against each of the six pedotransfer functions for BD (A). The estimated BD 

data from the six pedotransfer functions (B). The mean absolute errors for each SOC estimated value 

based on  Truncate Taylor series analysis (C).  The horizontal line is an arbitrary reference for 

comparing the values in the three panels.  

 

Supplementary Figure S4 Linear ensemble predicting nearly 50% of SOC variability (Rsquared) using 

our models as explanatory variables for the independent datasets. These results were cross-validated (5 

repeats five folds). The mean absolute error (MAE) and the root mean squared error (RMSE) are 

between 0.1 and 0.2 gr cm -2, the lowest prediction error obtained for SOC data. This ensemble was 

performed using a random forest (rf) models and a kernel based model (kknn), since were the best 

approaches predicting SOC data from supplementary Figure S1.  Accuracy indicator represents the 

individual values for each metric (e.g., R2, MAE, RMSE)  

 

Supplementary Figure S5 Change vector map between our product (1991-2010) and SoilGrids250m 

(our map - SoilGrids250m). Areas in blue indicate areas where our model is predicting higher values 

than SoilGrids250m. Areas in red are showing areas where SoilGrids250m is predicting higher SOC 

carbon values.  
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