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Abstract

For regression with covariates missing not at random where the missingness

depends on the missing covariate values, complete‐case (CC) analysis leads to

consistent estimation when the missingness is independent of the response

given all covariates, but it may not have the desired level of efficiency. We

propose a general empirical likelihood framework to improve estimation

efficiency over the CC analysis. We expand on methods in Bartlett et al.

(2014, Biostatistics 15, 719–730) and Xie and Zhang (2017, Int J Biostat 13, 1–20)
that improve efficiency by modeling the missingness probability conditional on

the response and fully observed covariates by allowing the possibility of

modeling other data distribution‐related quantities. We also give guidelines on

what quantities to model and demonstrate that our proposal has the potential to

yield smaller biases than existing methods when the missingness probability

model is incorrect. Simulation studies are presented, as well as an application to

data collected from the US National Health and Nutrition Examination Survey.
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1 | INTRODUCTION

Regression analysis is often complicated by the presence
of missing data. Handling missing data inappropriately
can lead to biased estimation and/or loss of efficiency.
The most commonly used assumption about the miss-
ingness mechanism is missing‐at‐random (MAR), where
the missingness depends on the observed data but not on
the missing data. There is a rich collection of effective
methods dealing with MAR data, including multiple
imputation (Rubin, 1987), inverse probability weighting
(Horvitz and Thompson, 1952), augmented inverse
probability weighting (Robins et al., 1994), and other
likelihood‐based methods (Little and Rubin, 2002).
However, in many settings, the assumption of MAR is
too strong, and the missingness does depend on the
missing data even conditional on the observed data.

Developing general methods dealing with such missing‐
not‐at‐random (MNAR) data is very challenging due to
model identifiability issues. See, for example, Rotnitzky
and Robins (1997), Ibrahim et al. (1999), Wang et al.
(2014), Miao and Tchetgen Tchetgen (2016), and Han
(2018), for some relevant discussions.

In this article, we consider regression analysis with
MNAR covariates where the missingness is assumed to
be independent of the response given by all covariates of
interest. This is a practically important setting, especially
when the covariates are measured at the beginning of the
study but the response is measured at a later time point.
In this case, it is natural and logical to assume that the
missingness of covariates does not depend on the future
response values conditional on all covariate values, but
may depend on the covariates. For such a setting, a
complete‐case (CC) analysis based only on subjects with



CHE et al. 271

fully observed data leads to a consistent estimation of the
regression parameters. However, the CC analysis ignores
information in the partially observed subjects and thus
may not have the desired level of efficiency, especially
when the proportion of subjects with missing data is not
small. How to effectively use the partially observed
information to improve estimation efficiency over the CC
analysis is of great interest.

By modeling the missingness given both the response
and the subset of fully observed covariates, Bartlett et al.
(2014) proposed the augmented complete‐case (ACC)
estimator. Note that the missingness model they assumed
is not for the MNAR mechanism, which depends on the
subset of missing covariates as well, but is rather for the
missingness probability conditional on all fully observed
variables in the data set. With this model assumption,
Bartlett et al. (2014) derived the optimal augmentation
term that ensures an efficiency improvement over the CC
analysis. Noting that the ACC estimating function is a
simple sum of the CC analysis estimating function and an
augmentation term, Xie and Zhang (2017) proposed to
treat the two pieces as an over‐identified estimating
function and estimated the regression parameters based
on the empirical likelihood method (Qin and Lawless,
1994), which essentially finds the optimal linear combi-
nation of the two pieces instead of simply summing
them. Such an application of the empirical likelihood
method has also been considered for MAR data. See, for
example, Qin et al. (2009).

Both Bartlett et al. (2014) and Xie and Zhang (2017)
assumed a model for the missingness given all the fully
observed variables to improve efficiency over the CC
analysis. It may be possible to model other quantities to
achieve the same goal. One straightforward example is,
with the observed data, to model the distribution of the
response given the subset of fully observed covariates.
Note that this model is different from the regression
model of primary interest that models the response given
all covariates. It is natural to ask how to accommodate
these different model assumptions into estimation and if
they are also able to extract information from the
partially observed subjects. In this article, we propose a
general empirical likelihood‐based framework for effi-
ciency improvement that can accommodate different
model assumptions. These assumptions yield extra
estimating functions in addition to the ones used for
the CC analysis. We also provide some guidelines on
what quantities to model for good efficiency improve-
ment. Our suggestions have the potential to yield smaller
biases compared to existing methods when the missing-
ness probability model is incorrectly specified. We
provide both arguments based on intuition and numer-
ical results based on simulation studies. As an illustration

of the proposed method, we analyze data collected from
the US National Health and Nutrition Examination
Survey (NHANES).

The rest of this article is organized as follows. Section 2
gives the setup and a review of relevant methods. Section 3
covers the proposed general framework. Section 4 provides
some guidelines on what quantities to model to obtain
better efficiency improvement. Sections 5 and 6 contain
simulation studies and a data application, respectively.
Some discussion is given in Section 7.

2 | SETUP AND LITERATURE
REVIEW

Let Y denote the response variable and X Z( , ) the vector
of covariates. The model of interest is the regression of Y
on X Z( , ) specified by

∣X Z X Z βE Y g( , ) = ( , ; ),0 (1)

where ⋅g ( ) is a known monotone and continuously
differentiable link function and β is the regression
parameter with true value β0. When data are fully
observed, a typical way of estimating β0 is to solve
∑ U X Z βY 0( , , ; ) =i
n

i i i=1 , where U X Z βY( , , ; ) =
d X Z β βϵ( , ; ) ( ), β X Z βϵ Y g( ) = − ( , ; ), and d X Z β( , ; )
is a user‐specified function of X Z( , ) and may depend on
β as well. One example is

∂
∂ ∣d X Z β X Z β
β

X Zg Y( , ; ) = ( , ; ) Var( , ) ,−1

which leads to a semiparametrically efficient estimator
for β0 under the regression model (1) (eg, Tsiatis, 2006).

We consider the case where Y and Z are fully
observed but X is subject to missingness. Let R denote an
indicator variable such that R = 1 if X is observed and
R = 0 if X is missing. The observed data are n
independent and identically distributed copies of

X ZY R R( , , , ). In this article we consider the MNAR
mechanism where the missingness of X can depend on
the possibly missing X but is conditionally independent
of Y given X and Z ; that is, ⊥ X ZR Y | ( , ). Such a MNAR
mechanism is oftentimes more plausible than the MAR
mechanism, especially when the response Y is measured
at a later time point.

Under this MNAR mechanism, the CC analysis by
solving ∑ U X Z βR Y 0( , , ; ) =i

n
i i i i=1 yields a consistent

estimator for β0. However, the CC estimator does not
use any information from the partially observed subjects
and thus may not have the desired level of estimation
efficiency.

2 | CHE ET AL.
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To improve efficiency over the CC analysis, additional
model assumptions other than (1) need to be made.
Bartlett et al. (2014) assumed a logistic regression
model Z απ Y( , ; ) for ∣ ZP R Y( = 1 , ), where the para-
meter α has true value α0 such that Z απ Y( , ; ) =0

∣ ZP R Y( = 1 , ). Since both Y and Z are fully observed, a
consistent estimator α̂ of α0 can be obtained by
maximizing the binomial likelihood

∏ Z α Z απ Y π Y( , ; ) {1 − ( , ; )} .
i

n

i i
R

i i
R

=1

1−i i (2)

Bartlett et al. (2014) proposed the ACC estimator β̂ACC for
β0 by solving

∑ U X Z β V Z β αR Y Y R 0{ ( , , ; ) + ( , , ; , ˆ )} = ,
i

n

i i i i i i i
=1

(3)

where V Z β α Z α ϕ Z βY R R π Y Y( , , ; , ) = { − ( , ; )} ( , ; )
and ϕ Z βY( , ; ) is a user‐specified function that has the
same dimension as β. They showed that the optimal
ϕ Z βY( , ; ) that leads to the smallest asymptotic variance
of β̂ACC is

∣ϕ Z β U X Z β ZY E Y Y R( , ; ) = − { ( , , ; ) , , = 1}.opt (4)

When a nonoptimal ϕ Z βY( , ; ) is used, however,
although β̂ACC is still consistent, it may lose efficiency
compared with the CC estimator. In this case,
Bartlett et al. (2014) proposed a modification to (3)
by considering the optimal linear combination of
U X Z βR Y( , , ; ) and V Z β αY R( , , ; , ˆ ) so that the result-

ing estimator, denoted by β̂ACC2, is at least as efficient as
the CC estimator.

Noticing that both U X Z βR Y( , , ; ) and V ZY R( , , ;
β α, ) in (3) have mean zero when evaluated at β0 and
α0, Xie and Zhang (2017) considered the overidentified
estimating function,

U X Z β
V Z β α
R Y
Y R

( , , ; )
( , , ; , ˆ )

⎛
⎝⎜

⎞
⎠⎟ (5)

for β. They also considered combining this estimating
function with the score function for α corresponding
to (2) to form another over‐identified estimating
function

∂
∂

U X Z β
V Z β α

α
α α

α
α

R Y
Y R

R π Y Z
π Y Z π Y Z

π Y Z

( , , ; )
( , , ; , )

− ( , ; )
( , ; ){1 − ( , ; )}

( , ; )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(6)

for β α( , ). Xie and Zhang (2017) proposed to use the
empirical likelihood method (Qin and Lawless, 1994) to
estimate β0 based on the estimating functions in (5) or
(6). They showed that, when ϕ Z βY( , ; )opt is used in
V Z β αY R( , , , , ), estimators based on both (5) and (6) are
asymptotically equivalent to the ACC estimator. When a
nonoptimal ϕ Z βY( , ; ) is used, the estimator based on (6)
is at least as efficient as both the CC estimator and the
estimator based on (5), but the estimator based on (5)
may be less efficient than the CC estimator. Refer to
Xie and Zhang (2017) for a more detailed efficiency
comparison.

3 | A GENERAL ESTIMATION
FRAMEWORK

The methods in Bartlett et al. (2014) and Xie and Zhang
(2017) represent two ways to augment the CC estimating
function U X Z βR Y( , , ; ), and both rely on a correct
model for ∣ ZP R Y( = 1 , ). It is possible to assume
models for quantities other than ∣ ZP R Y( = 1 , ). We
propose a general empirical likelihood‐based estimation
framework that can accommodate different modeling
strategies.

In general, let h Z β θY R( , , ; , ) denote a set of
estimating functions for β, which depend on the fully
observed variables, Y , Z , and R, and some nuisance
parameter θ that is introduced when modeling quan-
tities beyond (1). Combining U X Z βR Y( , , ; ) and
h Z β θY R( , , ; , ), we have an over‐identified set of
estimating functions for β. Our proposed empirical
likelihood‐based estimator β̂EL for β0 is the corre-
sponding component of the maximizer defined
through

∏pmax subject to
β θp p i

n

i, …, , , =1n1

∑ ∑⩾ U X Z β
h Z β θp p p R Y
Y R

00, = 1, ( , , ; )
( , , ; , )

= .i
i

n

i
i

n

i
i i i i

i i i=1 =1

⎛
⎝⎜

⎞
⎠⎟

(7)

where X Zp dF R Y= ( , , , )i i i i i , i n= 1, …, , are a discrete
distribution on the observed data. Here we require the
dimension of h Z β θY R( , , ; , ) be larger than the dimen-
sion of θ. A discussion on this point is given after
Theorem 1 below.

On the basis of the results in Qin and Lawless (1994),
we have the following theorem regarding the consistency
and the asymptotic distribution of β̂EL. The derivation is
given in the Supporting Information.
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Theorem 1. If h Z β θE Y R 0{ ( , , ; , )} =0 0 for a unique
θ0, then β̂EL is consistent and β βn ( ˆ − )EL 0 has an
asymptotic normal distribution with mean zero and
variance

{ }( )U UU U ABAE R E R E R( ) ( ) +β β
T T T−1 −1

(8)

where U U X Z βY= ( , , ; )0 , ∂ ∕∂U U X Z β βY= ( , , ; )β 0 ,
h h Z β θY R= ( , , ; , )0 0 , ∂ ∕∂h h Z β θ βY R= ( , , ; , )β 0 0 , and

∂ ∕∂h h Z β θ θY R= ( , , ; , )θ 0 0 ,

⋅

( )

{ }( ) ( )

( )
( )

{ }

A U UU Uh h

hh hU UU Uh
B hh hU UU Uh h

h hh hU UU Uh h

h

E R E R E R E

E E R E R E R
E E R E R E R E

E E E R E R E R E

E

= ( ) ( ) −

{ ( ) − ( ) ( ) ( )} ,
= ( ) − ( ) ( ) ( ) − ( )

× ( ) − ( ) ( ) ( ) ( )

× .

β
T T T

β
T

T T T T

T T T T
θ

θ
T T T T T

θ

θ
T

−1

−1 −1

−1

−1 −1 −1

From Lemma 1 in the Supporting Information, B is
positive semidefinite and so is ABAT , therefore, the
asymptotic variance of β̂EL is no larger than that of the

CC estimator, { }U UU UE R E R E R( ) ( ) ( )β β
T T −1 −1

.
It is crucial to ensure that the dimension of

h Z β θY R( , , ; , ) is larger than the dimension of θ.
Only in this case does h Z β θY R( , , ; , ) provide extra
information for the estimation of β0 in addition to
the information needed for estimating θ0. Mathemati-
cally, if the dimension of h Z β θY R( , , ; , ) is no larger
than the dimension of θ, the constrained maximization
(7) simply leads to ∕p nˆ = 1i and β̂EL being the CC
estimator.

It is easy to see that when assuming a correct model
Z απ Y( , ; ) for ∣ ZP R Y( = 1 , ), this general framework

covers (6) as proposed in Xie and Zhang (2017), where
h Z β θY R( , , ; , ) comprises the latter two components of (6)
and θ α= . Note that this framework can be further
extended to cover the case where part or all ofθ is estimated
separately and then plugged into h Z β θY R( , , ; , ) for esti-
mation of β. Such an extension would cover (5) as proposed
in Xie and Zhang (2017), where h Z β θ VY R Y( , , ; , ) = ( ,
Z β αR, ; , ), and θ α= is estimated separately. In this
article, we do not explicitly consider such an extension for
two reasons. First, when θ comprises parameters from
different models, there are different choices of which part is
estimated separately and the asymptotic distribution of the
resulting estimator for β0 depends on the specific choice.
This makes it difficult to establish a general result for
efficiency comparison. Second, estimating part of θ
separately does not guarantee an efficiency improvement
over the CC estimator, as shown by the results in Xie and

Zhang (2017) corresponding to using (5). Refer to Section 7
for some relevant discussion.

This general framework allows the possibility of
modeling quantities different from ∣ ZP R Y( = 1 , ) to
improve efficiency over the CC analysis. A straightforward
example is to model ∣ZE Y( ). For instance, assuming
a model ∣Z γ γ ZE Y μ γ( ; ) = ( + )c Z

T with a known link
function ⋅μ ( ) and unknown parameter γ , we may

take h Z β θY R( , , ; , ) to be { }d Z γ ZY μ γ( ) − ( + )c Z
T and

θ to be γ , where d Z( ) is a user‐specified vector function of
Z with dimension larger than the dimension of γ . When
this model is correctly specified in the sense
that ∣ ∣Z γ ZE Y E Y( ; ) = ( )0 for γ γ= 0, Theorem 1
guarantees that β̂EL is more efficient than the CC
estimator. Another example is to model both

∣ ZP R Y( = 1 , ) and ∣ZE Y( ). In this case, we could take
h Z β θY R( , , ; , ) to be

∂
∂

{ }( )

V Z β α
α

α α
α
α

d Z γ Z

Y R
R π

π π
π

Y μ γ

( , , ; , )
− ( )

( ){1 − ( )}
( )

( ) − +c Z
T

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

and θ to be α γ( , ). Consistency and efficiency improve-
ment over the CC analysis, in this case, requires both

∣ ZP R Y( = 1 , ) and ∣ZE Y( ) to be correctly modeled.
Model compatibility issues may arise when modeling

additional quantities since we have already assumed a
model of interest (1). For example, (1) may impose some
restrictions on how to model ∣ZE Y( ). When (1) is a
linear model with ⋅g ( ) the identity link function, ∣ZE Y( )
may also be taken as a linear model with ⋅μ ( ) the identity
link. When ⋅g ( ) is the logit link; however, taking ⋅μ ( ) to
be the logit link usually does not lead to a model for

∣ZE Y( ) that is mathematically compatible with (1), and
it is difficult or impossible to find a link function ⋅μ ( ) that
leads to mathematical compatibility. Our attitude on this
issue is that, because most parametric models are not
totally “correct” in the real world, there is always some
degree of misspecification, even when the models are
mathematically compatible. In practice, we use “work-
ing” models to fit the data. These models should not
deviate substantially from the observed data, and we
support this through model checking and model diag-
nosis. Model compatibility thus has to be taken with a
grain of salt. Therefore, our attitude is to seek models that
are mathematically compatible if possible, but in any
case, ones that are sufficiently consistent with the
observed data. Model‐checking and diagnosis techniques
can be used to reduce the chance of serious model
incompatibility.

4 | CHE ET AL.
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4 | CHOICES OF QUANTITIES TO
MODEL

The efficiency improvement over the CC analysis implied
by Theorem 1 is achieved by making model assumptions
in addition to the model of interest in (1). Bartlett et al.
(2014) and Xie and Zhang (2017) assumed a model for

∣ ZP R Y( = 1 , ). Other model assumptions can be con-
sidered as well. Different assumptions involve different
amounts of information and thus lead to different
efficiency improvements over the CC analysis. Although
it is natural to ask what quantities should be modeled in
order to have the most improvement, providing an
answer is tremendously challenging, if not impossible,
since even for the two cases of modeling ∣ ZP R Y( = 1 , )
and ∣ZE Y( ) there does not seem to be a direct efficiency
comparison. Note, for example, the complex dependence
of ABAT in (8) on β and h Z β θY R( , , ; , ). Such a
generally non‐simplifiable dependence makes it almost
impossible to find the “best” quantity to model.
Compounding the problem is the incompatibility issue
wherein many settings there is no mathematically
compatible model. In this case, models that agree closely
with the observed data will presumably lead to estimates
with small bias and efficiency improvement, but this
needs to be investigated using numerical studies.

To gain insight into what quantities should be
modeled we consider a simpler situation by dropping
the dependence of h Z β θY R( , , ; , ) on R, β, and θ. In
other words, we find the optimal estimating function
h ZY( , ) with h ZE Y 0{ ( , )} = under the true underlying
distribution. From Theorem 1, with h Z β θY R( , , ; , )
replaced by h ZY( , ), the asymptotic variance in (8) be-

comes U U h UE R R E R( ){Var(Resid( , ))} ( )β
T

β
−1 −1⎡⎣ ⎤⎦ , where

U h U Uh hh hR R E R EResid( , ) = − ( ) ( )T T −1 is the resi-
dual of the projection of UR on the linear space spanned
by h. Due to this special structure, simple algebra shows
that the optimal h ZY( , ) leading to the most efficiency
improvement over the CC analysis is given by

∣
∣

∣

h Z U X Z β Z
Z

U X Z β Z

Y E R Y Y

P R Y
E Y Y R

( , ) = { ( , , ; ) , }

= ( = 1 , )
× { ( , , ; ) , , = 1}.

opt 0

0

However, h ZY( , )opt is not directly applicable due to its
dependence on the unknown underlying data distribution.
First, it depends on the data distribution through the
unknown β0. To overcome this, we consider the estimating
function ∣ ∣Z U X Z β ZP R Y E Y Y R( = 1 , ) { ( , , ; ) , , = 1}
instead of h ZY( , )opt . Second, h ZY( , )opt depends
on the data distribution through the unknown

∣ ZP R Y( = 1 , ) and ∣X Zf Y R( , , = 1). To overcome this,
we assume models ∣Z α Z απ Y P R Y( , ; ) = ( = 1 , ; )
and ∣X Z γf Y R( , , = 1; ) that depend on nuisance
parameters α and γ . Based on these considerations, the
auxiliary estimating function we suggest is

∣
h Z β θ

Z α U X Z β Z γ
Y
π Y E Y Y R

( , ; , )
= ( , ; ) { ( , , ; ) , , = 1; },

use

where θ α γ= ( , ) and ∣U X Z β Z γE Y Y R{ ( , , ; ) , , = 1; } is
taken under the model ∣X Z γf Y R( , , = 1; ). It is easy to
verify that h Z β θE Y 0{ ( , ; , )} =use 0 0 , where θ α γ= ( , )0 0 0
and γ0 is the true value of γ such that

∣ ∣X Z γ X Zf Y R f Y R( , , = 1; ) = ( , , = 1)0 . Based on rea-
sons given below Theorem 1, we consider estimating α0
and γ0 jointly with β0. This consideration leads to
replacing h Z β θY R( , , ; , ) in (7) by

∂
∂

h Z β θ
α

α α
α

α
S X Z γ

Y
R π Y Z

π Y Z π Y Z
π Y Z

R Y

( , ; , )
− ( , ; )

( , ; ){1 − ( , ; )}
( , ; )

( , , ; )

,

use⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(9)

where the second component is the score function corres-
ponding to (2) for estimating α0 and S X Z γY( , , ; ) is a
user‐specified estimating function for estimating γ0 such
that S X Z γE R Y 0{ ( , , ; )} =0 . For example, S X Z γY( , , ; )
may be taken to be the score function corresponding to
the model ∣X Z γf Y R( , , = 1; ).

Implementation based on (9) involves two model
assumptions in addition to (1), one for ∣ ZP R Y( = 1 , )
and one for ∣X Zf Y R( , , = 1). Both models need to be
correctly specified for the proposed estimator β̂EL to be
consistent. In comparison, the ACC estimator in Bartlett
et al. (2014) treats the model ∣X Z γf Y R( , , = 1; ) as
a working model and its consistency only requires
correct specification of Z απ Y( , ; ). However, when

∣X Z γf Y R( , , = 1; ) is incorrectly specified, the ACC
estimator may be less efficient than the CC estimator.
Since the main objective is to improve efficiency over the
CC estimator because it is already consistent,

∣X Z γf Y R( , , = 1; ) still needs to be a “good” model for
the ACC method, if not the “correct” one. In contrast, as
discussed at the end of Section 3, in the real world there is
always some degree of misspecification for parametric
models. Therefore, we think that (9) is also worth
consideration in scenarios where the ACC method is
expected to provide an improvement over the CC analysis.
Note that the model for ∣X Zf Y R( , , = 1) is fitted based on
the complete cases. Complications for specifying, fitting,
and checking this model may arise when X is multivariate,
especially if it is a mix of continuous and discrete variables.

CHE ET AL. | 5
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When the dimension of β is larger than that of γ ,
S X Z γR Y( , , ; ) in (9) may be dropped in the imple-

mentation, because in this case U X Z βR Y( , , ; ) com-
bined with the first two components of (9) already
provides a set of over‐identified estimating functions for
β α γ( , , )0 0 0 . The benefit of dropping S X Z γR Y( , , ; ) from
(9) in this case is twofold. First, the reduction of the total
number of estimating functions may improve the numer-
ical performance of the empirical likelihood method,
especially when this number is large. Second and more
importantly, it will substantially reduce the bias of β̂EL
when ∣X Z γf Y R( , , = 1; ) is misspecified. The reason is
that, when ∣X Z γf Y R( , , = 1; ) is misspecified,
S X Z γR Y( , , ; ) provides “incorrect” information about

the data distribution. When this “incorrect” information is
accommodated in calculating β̂EL and γ̂ , it pulls β̂EL away
from the true value β0. Dropping S X Z γR Y( , , ; ) removes
this undesired impact. On the contrary, the ACC and Xie
and Zhang’s (2017) methods still require S X Z γR Y( , , ; )
as the estimating function to estimate γ , and thus still
make full use of this “incorrect” information. Because of
this, our proposed estimator can become less biased than
the ACC and Xie and Zhang’s (2017) when the model for

∣ ZP R Y( = 1 , ) is also misspecified. Simulation Study 2 in
Section 5 provides numerical evidence supporting this
intuition. This observation is of high importance because,
in the real world, it is likely that models for

∣ ZP R Y( = 1 , ) and ∣X Zf Y R( , , = 1) are both misspeci-
fied and none of the existing estimators is consistent. Thus
a possibly smaller bias by our proposed method becomes
highly desired.

We also note that h Z β θY( , ; , )use does not have a
rigorous theoretical justification, and (9) is not necessa-
rily the “optimal” estimating function in theory.
Although using (9) is guaranteed to improve efficiency
over the CC analysis when corresponding models are
correctly specified, there is not a direct efficiency
comparison to the ACC method.

5 | SIMULATION STUDIES

5.1 | Study 1

This simulation study uses the setup in Bartlett et al.
(2014). The data are generated as R ~ Bernoulli(0.5) and

Y
X
Z

R
R
R~

0.2

0
,

1 0.25 0.25
0.25 1 0.25
0.25 0.25 1

,
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟

and the observed data vector is Y RX Z R( , , , ). This data
generating process implies that the missingness of X is
MNAR and ⊥ ∣R Y X Z( , ). In addition, it ensures that

∣P R Y Z( = 1 , ) can be correctly modeled by a logistic
regression. The conditional mean model of interest is

∣E Y X Z β β X β Z( , ) = + +c X Z with β β β β= ( , , ) =c X Z0
(0, 0.2, 0.2). This simulation takes

U βY X Z X Z Y β β X β Z( , , ; ) = (1, , ) ( − − − ).c X Z
T

Following Bartlett et al. (2014), let απ Y Zlogit{ ( , ; )} =
α α Y α Z+ +c Y Z be the correctly specified model for

∣P R Y Z( = 1 , ), ∣ γf X Y Z R( , , = 1; )1 the correctly speci-
fied model N γ γ Y γ Z γ( + + , )c Y Z σ

2 for ∣f X Y Z R( , , = 1),
and ∣ γf X Y Z R( , , = 1; )2 the misspecified model
N γ γ Y γ Z γ( + + , )c Y Z σ

2 2 2 for ∣f X Y Z R( , , = 1). The two
models for ∣f X Y Z R( , , = 1) are used to calculate
ϕ βY Z( , ; )opt in (4).

We present the performance of the following estimators.

1. The CC analysis estimator β̂CC.
2. Two ACC estimators β̂ACC−1 and β̂ACC−2, both of

which use απ Y Z( , ; ), but β̂ACC−1 is based on
∣ γf X Y Z R( , , = 1; )1 and β̂ACC−2 is based on
∣ γf X Y Z R( , , = 1; )2 .

3. Two ACC2 estimators β̂ACC2−1 and β̂ACC2−2 as pro-
posed in Bartlett et al. (2014), based on the ACC
estimators β̂ACC−1 and β̂ACC−2, respectively.

4. Two estimators from Xie and Zhang (2017) β̂XZ1−1 and
β̂XZ1−2 based on (5), using the same models as those
for β̂ACC−1 and β̂ACC−2, respectively.

5. Two estimators from Xie and Zhang (2017) β̂XZ2−1 and
β̂XZ2−2 based on (6), using the same models as those
for β̂ACC−1 and β̂ACC−2, respectively.

6. Two estimators β̂EL−1 and β̂EL−2 based on our
proposed method with (9), using the same models
as those for β̂ACC−1 and β̂ACC−2, respectively.

For β̂EL−1 and β̂EL−2, the S X Z γY( , , , ) in (9) is taken
to be

Y Z X γ γ Y γ Z
X γ γ Y γ Z γ

(1, , ) ( − − − )
( − − − ) −

c Y Z

c Y Z σ

T

2 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

and

Y Z X γ γ Y γ Z
X γ γ Y γ Z γ

(1, , ) ( − − − )
( − − − ) −

,c Y Z

c Y Z σ

2 2 T 2 2

2 2 2 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

respectively.
Table 1 summarizes the simulation results based on

1000 replications. It is seen that, EL‐1 based on correctly
specified models performs equally well compared to the
ACC and Xie and Zhang’s (2017) estimators using the same
models, and all have improved efficiency over the CC

6 | CHE ET AL.



CHE et al.276

estimator. Note that in this case the ACC estimating
equation in (3) represents the best linear combination of
U X Z βR Y( , , ; ) and V Z β αY R( , , ; , ), and thus the

corresponding ACC estimator has the maximum efficiency.
It is also seen that EL‐2 based on the misspecified model

∣ γf X Y Z R( , , = 1; )2 is biased. However, we would like to
point out that ∣ γf X Y Z R( , , = 1; )2 is unlikely to be
chosen as a model for ∣f X Y Z R( , , = 1) in the real world.
It includes quadratic effects of Y and Z without any linear
effects. The likelihood ratio test comparing models

∣ γf X Y Z R( , , = 1; )1 and ∣ γf X Y Z R( , , = 1; )2 to the
normal linear regression with Y , Z , YZ , Y 2, and Z2 as
regressors rejected the two models 60 and 985 times out of
1000 replications when n = 400, respectively, and these
numbers became 52 and 1000 when n = 1000, showing
that it would be extremely unlikely to choose

∣ γf X Y Z R( , , = 1; )2 to model ∣f X Y Z R( , , = 1). There-
fore the bias of EL‐2 in this scenario should not be
interpreted exclusively as a sign against our proposed
method but rather an indication of the need for a model
consistent with the observed data.

5.2 | Study 2

This study considers three covariates, X ~ Exponential(2),
W N~ (0, 1), and ∣Z W N W~ ( , 1). Given the covariates,
Y is generated as Y β β X β Z β W ϵ= + + + +c X Z W ,
where β β β β β= ( , , , ) = (0, 1, 1, 1)c X Z W0 and ϵ N~ (0, 1)
is independent of the covariates X , W , and Z . The
missingness of X is generated as ∣P R Y X Z W( = 1 , , , ) =

X Z Wexpit(1 − 0.5 + + ), under which about 50% of
subjects have missing X . The conditional mean model of
interest is ∣E Y X Z W β β X β Z β W( , , ) = + + +c X Z W ,
and this simulation takes

U βY X Z W X Z W Y β β X

β Z β W

( , , , ; ) = (1, , , ) ( − −

− − ),
c X

Z W

T

In this simulation setting, it is very challenging, if not
impossible, to derive a correct model for ∣P R Y Z W( = 1 , , ).
We consider the logistic regression model

απ Y Z W α α Y α Z α Wlogit{ ( , , ; )} = + + + ,c Y Z W

TABLE 1 Simulation results for study 1

Bias (empirical standard error) [RMSE]

β β( = 0)c c0 β β( = 0.2)X X0 β β( = 0.2)Z Z0

n= 400

CC 0.001 (0.094) [0.094] 0.001 (0.071) [0.071] 0.001 (0.070) [0.070]

ACC‐1 0.001 (0.093) [0.093] 0.002 (0.069) [0.069] 0.001 (0.052) [0.052]

ACC‐2 0.003 (0.094) [0.094] −0.001 (0.072) [0.072] 0.002 (0.053) [0.053]

ACC2‐1 0.005 (0.093) [0.093] −0.001 (0.069) [0.069] 0.001 (0.053) [0.053]

ACC2‐2 0.007 (0.095) [0.095] −0.002 (0.070) [0.070] 0.000 (0.054) [0.054]

XZ1‐1 0.003 (0.093) [0.093] −0.001 (0.069) [0.069] 0.001 (0.053) [0.053]

XZ1‐2 0.001 (0.095) [0.095] 0.000 (0.072) [0.072] 0.001 (0.054) [0.054]

XZ2‐1 0.003 (0.093) [0.093] −0.001 (0.069) [0.069] 0.001 (0.053) [0.053]

XZ2‐2 0.002 (0.095) [0.095] 0.000 (0.072) [0.072] 0.001 (0.054) [0.054]

EL‐1 0.001 (0.094) [0.094] 0.001 (0.070) [0.070] 0.001 (0.053) [0.053]

EL‐2 0.158 (0.072) [0.173] −0.151 (0.067) [0.165] 0.045 (0.052) [0.068]

n= 1000

CC 0.002 (0.064) [0.064] −0.001 (0.045) [0.045] −0.001 (0.043) [0.043]

ACC‐1 0.001 (0.063) [0.063] 0.000 (0.045) [0.045] −0.001 (0.032) [0.032]

ACC‐2 0.002 (0.065) [0.065] −0.001 (0.046) [0.046] 0.000 (0.032) [0.032]

ACC2‐1 0.003 (0.064) [0.064] −0.001 (0.045) [0.045] −0.001 (0.032) [0.032]

ACC2‐2 0.004 (0.064) [0.064] −0.002 (0.045) [0.045] −0.001 (0.033) [0.033]

XZ1‐1 0.002 (0.063) [0.063] −0.002 (0.045) [0.045] −0.001 (0.032) [0.032]

XZ1‐2 0.001 (0.064) [0.064] −0.001 (0.045) [0.045] −0.001 (0.032) [0.032]

XZ2‐1 0.003 (0.063) [0.063] −0.002 (0.045) [0.045] −0.001 (0.032) [0.032]

XZ2‐2 0.002 (0.064) [0.064] −0.001 (0.045) [0.045] −0.001 (0.032) [0.032]

EL‐1 0.001 (0.064) [0.064] 0.000 (0.045) [0.045] −0.001 (0.032) [0.032]

EL‐2 0.155 (0.166) [0.059] −0.151 (0.051) [0.159] 0.043 (0.033) [0.054]
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which is misspecified. To assess the goodness‐of‐fit of this
model (Model 1) to the observed data, we compare it to
two more complex models; one is a logistic regression with
all the main effects and two way interactions of Y , Z , and
W (Model 2), and the other is the generalized additive
model (Hastie and Tibshirani, 1990) with logit link and all
main effects of Y , Z , and W smoothed by fourth‐order
splines (Model 3). Taking n = 400 out of 1000 replications,
the likelihood ratio test rejected Model 1 54 times when
comparing it to Model 2 and 143 times when comparing it
to Model 3, and the numbers of rejections became 44 and
136 with n = 1000. Therefore, model απ Y Z W( , , ; ) would
not be rejected most of the time.

For ∣f X Y Z W R( , , , = 1), it is also very difficult to
specify the correct model. Instead, we consider the
following three models: ∣ γf X Y Z W R( , , , = 1; )1 is the
truncated normal distribution N γ γ Y γ Z γ W( + + + ,c Y Z W
γ I X) ( > 0)σ

2 , ∣ γf X Y Z W R( , , , = 1; )2 is the truncated
normal distribution N γ γ Y γ I X( + , ) ( > 0)c Y σ

2 and
∣ γf X Y Z W R( , , , = 1; )3 is the normal distribution

N γ γ Y γ( + , )c Y σ
2 . These models are used to calculate

ϕ βY Z W( , , ; )opt in (4). Figure 1 shows a typical P‐P plot
of these three models based on one simulation with
n = 400. It clearly indicates that ∣ γf X Y Z W R( , , , = 1; )3
is not a good model and is inferior to the other two.
Samples with n = 1000 yield similar plots.

To further assess the goodness‐of‐fit of
∣ γf X Y Z W R( , , , = 1; )1 and ∣ γf X Y Z W R( , , , = 1; )2 ,

we compare them to two more complex models; one is
normal linear regression left truncated at 0 with all the
main effects and two way interactions of Y , Z , and W
(Model 4), and the other is normal linear regression left
truncated at 0 with all the main and quadratic effects of
Y , Z , and W (Model 5). Taking n = 400 out of 1000

replications, the likelihood ratio test rejected ∣f X Y Z( , ,1
γW R, = 1; ) five times and ∣ γf X Y Z W R( , , , = 1; )2 406

times when compared to Model 4 and 7 and 399 times
when compared to Model 5. These numbers became 2,
981, 7, and 980 with n = 1000. In addition, the likelihood
ratio test comparing ∣ γf X Y Z W R( , , , = 1; )2 with

∣ γf X Y Z W R( , , , = 1; )1 rejected the former 567 times
with n = 400 and 994 times with n = 1000 out of 1000
replications. These tests suggest that ∣f X Y Z( , ,1

γW R, = 1; ) seems an adequate model whereas
∣ γf X Y Z W R( , , , = 1; )2 is not.

Table 2 summarizes the simulation results based on
1000 replications. The CC, ACC, ACC2, XZ1, XZ2, and
EL estimators follow the same notation used in Study 1,
now with three models ∣ γf X Y Z W R( , , , = 1; )1 ,

∣ γf X Y Z W R( , , , = 1; )2 , and ∣ γf X Y Z W R( , , , = 1; )3
considered. The S X Z γY( , , , ) for estimating γ for all
estimators is taken to be the score functions for these
three models. Noting that ∣ γf X Y Z W R( , , , = 1; )2 and

∣ γf X Y Z W R( , , , = 1; )3 are clearly inadequate based on
our model checking and γ has lower dimension than β
for these two models, the two estimators EL2‐2 and EL2‐3
drop the S X Z γY( , , , ) in (9), as discussed in Section 4.
It is seen that, as expected, the ACC, ACC2, XZ1, XZ2,
and EL estimators are all biased since neither

∣P R Y Z W( = 1 , , ) nor ∣f X Y Z W R( , , , = 1) is correctly
modeled by any of the models under consideration, albeit
the levels of bias vary somewhat. The ACC‐3 and ACC2‐3
estimators based on a clearly inadequate model

∣ γf X Y Z W R( , , , = 1; )3 surprisingly have smaller bias
than ACC‐1 and ACC2‐1 estimators based on a better
model ∣ γf X Y Z W R( , , , = 1; )1 , but this might be just a
numerical coincidence under this simulation setting. In
addition, estimators EL2‐2 and EL2‐3 have very small
bias, providing some numerical evidence supporting our
intuition in Section 4. We have done some further
numerical studies with different sets of parameter
values that allow variation in the strength of the X effect
in both the conditional mean model of interest and the
missingness mechanism, and they all perform very
similarly to the results in Table 2. We would like to
point out, however, that the small bias of EL2‐2 and
EL2‐3 does not have a rigorous theoretical justification
and this simulation study only covers one set of
scenarios. Further empirical studies motivated by real
settings are recommended.

6 | DATA APPLICATION

As an application, we analyze the data collected in the
year 2003 to 2004 from the NHANES. NHANES is a
program conducted by the Centers for Disease Control
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FIGURE 1 P‐P plot for the three models for ∣f X Y Z W( , , ,
R = 1) with n = 400
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and Prevention to assess the health and nutritional
status of both adults and children in the United States.
We study the effect of an average number of alcoholic
drinks consumed per day on days when the subject drank
alcohol (X̃ ) on the systolic blood pressure (SBP, mmHg)

(Y ), adjusting for age (in decade above 50) and body mass
index (BMI, kg/m2) (Z). As pointed out in Little and
Zhang (2011) and Bartlett et al. (2014), it is reasonable to
assume that the SBP and BMI are missing completely at
random, and thus in our analysis, we only include the

TABLE 2 Simulation results for study 2

Bias (empirical standard error) [RMSE]

β β( = 0)c c0 β β( = 1)X X0 β β( = 1)Z Z0 β β( = 1)W W0

n= 400

CC 0.004 (0.222) [0.222] −0.007 (0.101) [0.101] 0.006 (0.149) [0.149] −0.001 (0.206) [0.206]

ACC‐1 −0.168 (0.208) [0.267] 0.060 (0.096) [0.113] 0.036 (0.139) [0.144] 0.029 (0.190) [0.192]

ACC‐2 −0.161 (0.213) [0.267] 0.059 (0.099) [0.116] 0.036 (0.140) [0.145] 0.030 (0.191) [0.193]

ACC‐3 0.065 (0.243) [0.252] 0.003 (0.100) [0.100] −0.050 (0.213) [0.219] −0.058 (0.302) [0.308]

ACC2‐1 −0.142 (0.213) [0.257] 0.019 (0.101) [0.103] 0.044 (0.143) [0.150] 0.036 (0.193) [0.196]

ACC2‐2 −0.135 (0.215) [0.254] 0.015 (0.101) [0.102] 0.042 (0.143) [0.149] 0.034 (0.193) [0.196]

ACC2‐3 −0.043 (0.218) [0.222] −0.005 (0.101) [0.101] 0.030 (0.142) [0.145] 0.024 (0.192) [0.194]

XZ1‐1 −0.225 (0.226) [0.319] 0.105 (0.110) [0.152] 0.036 (0.145) [0.149] 0.029 (0.198) [0.200]

XZ1‐2 −0.189 (0.217) [0.288] 0.088 (0.105) [0.137] 0.032 (0.142) [0.146] 0.026 (0.195) [0.197]

XZ1‐3 −0.150 (0.207) [0.256] 0.063 (0.099) [0.118] 0.029 (0.141) [0.144] 0.024 (0.193) [0.194]

XZ2‐1 −0.162 (0.232) [0.283] 0.043 (0.108) [0.116] 0.042 (0.146) [0.152] 0.036 (0.199) [0.202]

XZ2‐2 −0.170 (0.232) [0.288] 0.048 (0.107) [0.117] 0.042 (0.145) [0.151] 0.033 (0.198) [0.200]

XZ2‐3 −0.204 (0.217) [0.298] 0.061 (0.101) [0.119] 0.045 (0.145) [0.152] 0.040 (0.196) [0.200]

EL‐1 −0.177 (0.226) [0.287] 0.048 (0.108) [0.118] 0.048 (0.145) [0.153] 0.042 (0.198) [0.202]

EL‐2 0.310 (0.219) [0.379] −0.153 (0.113) [0.190] −0.048 (0.145) [0.153] −0.055 (0.195) [0.202]

EL‐3 0.234 (0.201) [0.309] −0.090 (0.096) [0.132] −0.059 (0.134) [0.146] −0.063 (0.185) [0.195]

EL2‐2 0.012 (0.223) [0.223] −0.013 (0.101) [0.102] 0.005 (0.134) [0.134] 0.002 (0.188) [0.188]

EL2‐3 0.011 (0.223) [0.223] −0.013 (0.101) [0.102] 0.006 (0.135) [0.135] 0.001 (0.189) [0.189]

n= 1000

CC −0.003 (0.136) [0.136] 0.002 (0.061) [0.061] −0.001 (0.094) [0.094] −0.001 (0.130) [0.130]

ACC‐1 −0.170 (0.127) [0.212] 0.064 (0.059) [0.087] 0.030 (0.087) [0.092] 0.028 (0.119) [0.123]

ACC‐2 −0.166 (0.129) [0.210] 0.065 (0.060) [0.088] 0.032 (0.089) [0.094] 0.029 (0.120) [0.124]

ACC‐3 0.056 (0.149) [0.159] 0.012 (0.062) [0.063] −0.058 (0.133) [0.145] −0.055 (0.190) [0.197]

ACC2‐1 −0.150 (0.130) [0.199] 0.036 (0.061) [0.071] 0.034 (0.089) [0.095] 0.033 (0.121) [0.126]

ACC2‐2 −0.141 (0.131) [0.193] 0.032 (0.062) [0.070] 0.033 (0.089) [0.094] 0.031 (0.120) [0.124]

ACC2‐3 −0.050 (0.136) [0.145] 0.006 (0.062) [0.062] 0.024 (0.090) [0.093] 0.020 (0.124) [0.125]

XZ1‐1 −0.210 (0.134) [0.249] 0.095 (0.065) [0.115] 0.030 (0.091) [0.095] 0.030 (0.123) [0.126]

XZ1‐2 −0.189 (0.132) [0.230] 0.088 (0.064) [0.109] 0.027 (0.090) [0.094] 0.026 (0.121) [0.124]

XZ1‐3 −0.156 (0.127) [0.201] 0.067 (0.061) [0.091] 0.025 (0.090) [0.093] 0.023 (0.121) [0.123]

XZ2‐1 −0.149 (0.142) [0.206] 0.042 (0.071) [0.082] 0.035 (0.090) [0.097] 0.033 (0.122) [0.127]

XZ2‐2 −0.169 (0.143) [0.222] 0.058 (0.068) [0.090] 0.033 (0.090) [0.096] 0.031 (0.121) [0.125]

XZ2‐3 −0.198 (0.132) [0.238] 0.070 (0.063) [0.094] 0.037 (0.091) [0.099] 0.034 (0.123) [0.128]

EL‐1 −0.181 (0.136) [0.226] 0.062 (0.065) [0.090] 0.038 (0.092) [0.100] 0.037 (0.124) [0.129]

EL‐2 0.295 (0.158) [0.335] −0.151 (0.081) [0.172] −0.046 (0.094) [0.105] −0.051 (0.129) [0.139]

EL‐3 0.211 (0.128) [0.247] −0.074 (0.061) [0.096] −0.059 (0.083) [0.102] −0.064 (0.118) [0.134]

EL2‐2 0.008 (0.145) [0.145] −0.005 (0.068) [0.068] 0.000 (0.086) [0.086] −0.004 (0.117) [0.118]

EL2‐3 0.005 (0.140) [0.140] −0.003 (0.063) [0.063] 0.000 (0.087) [0.087] −0.004 (0.119) [0.119]
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subjects with these two variables fully observed. Among
the n = 2111 subjects included in the analysis, 720 have
missing values for alcohol consumption, and it is
reasonable to assume this missingness depends on
alcohol consumption itself but is independent of the
SBP given alcohol consumption, age, and BMI (Bartlett
et al., 2014).

The model specifications follow Bartlett et al. (2014).
Hereafter write X X= log( ˜ + 1) = log(no. of drinks +1).
The conditional mean model is

∣ ZE X β β

β β β

(SBP , ) = + log(no. of drinks+1)

+ BMI + age + age ,
c 1

2 3 4
2

where SBP is centered at 125mmHg. For the missingness
probability ∣ ZP R Y( = 1 , ), a logistic regression is as-
sumed as

Z απ Y α α α α
α

logit{ ( , ; )} = + age + BMI + SBP
+ SBP .
c 1 2 3

4
2

A negative binomial regression is fitted for ∣f X Y( ˜ ,
Z R, = 1), with all the linear and quadratic terms of age,
BMI, and SBP as regressors.

The U Z βY X( , , ; ) is taken to be

β β

β β β

1
log(no. of drinks + 1)

BMI
age
age

× (SBP − − log(no. of drinks +1)

− BMI − age − age ).
c

2

1

2 3 4
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

We calculate the CC estimator, the ACC estimator, and
our proposed estimator using (9), where S Z γY X( , , ; ) is
taken to be the score function for the negative binomial
regression model for ∣ Zf X Y R( ˜ , , = 1) (eg, Lawless,
1987).

Table 3 contains the results of our data analysis. All
methods indicate that alcohol consumption is positively
associated with increased SBP adjusting for the other
covariates. The same conclusion can be made for BMI.
Both the ACC and the proposed methods suggest a
significant nonlinear association between age and SBP,
while the CC analysis fails to detect the significance.
Overall, based on the models considered, the ACC and
the proposed methods have similar results and both
outperform the CC analysis by providing smaller
standard errors.

7 | DISCUSSION

In our proposed method, we jointly estimate the
parameter of interest β and the nuisance parameter θ
by solving estimating equations altogether using the
empirical likelihood method. When the dimension of θ
becomes large, the numerical performance by simulta-
neously solving all estimating equations may deteriorate.
An alternative is to estimate part or all of θ separately.
For example, α in Z απ Y( , ; ) and γ in ∣X Zf Y( , ,

γR = 1; ) can be separately estimated by maximizing
(2) and ∏ ∣X Z γf Y R( , , = 1; )i

n
i i i i

R
=1

i, respectively, and
then β can be estimated by the empirical likelihood
method using the estimating function

U X Z β
h Z β θ
R Y

Y
( , , ; )
( , ; , ˆ)

,
use

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

with θ α γˆ = ( ˆ, ˆ) plugged in. In general, there is no clear
efficiency comparison between this alternative method
and the CC analysis.

It is noted that our recommended estimator in Section
4 is consistent when working models for both

∣ ZP R Y( = 1 , ) and ∣X Zf Y R( , , = 1) are correctly spe-
cified. Our view of consistency is that it is a very useful
theoretical concept, but in practice, models are rarely
“correct.” Thus we seek methods that are (a) based on

TABLE 3 Analysis results for the NHANES data

CC ACC EL

Estimate (SE) P value Estimate (SE) P value Estimate (SE) P value

Intercept −1.929 (0.798) 0.015 −2.130 (0.741) 0.004 −1.921 (0.745) 0.010

Alcohola 1.267 (0.583) 0.030 1.321 (0.598) 0.027 1.094 (0.550) 0.047

BMI 0.414 (0.080) <0.001 0.388 (0.066) <0.001 0.396 (0.062) <0.001

Age 3.943 (0.261) <0.001 3.888 (0.198) <0.001 3.835 (0.227) <0.001

Age2 0.265 (0.143) 0.065 0.319 (0.104) 0.002 0.315 (0.107) 0.003
alog(number of drinks + 1).
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working model assumptions that are checkable from the
observed data, (b) are consistent if the working model
is correct, and (c) perform well under mild model
misspecification. We think that this view is consistent
with some other authors’. For example, Seaman and
Vansteelandt (2018) have recently given an excellent
discussion of “doubly robust” methods for MAR pro-
blems, and discuss bias issues and how they are hard to
avoid in practice. More numerical investigations are
needed to study the performance of the proposed method
under model misspecification.
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