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Abstract
In many settings, including oncology, increasing the dose of treatment results in both

increased efficacy and toxicity. With the increasing availability of validated biomark-

ers and prediction models, there is the potential for individualized dosing based on

patient specific factors. We consider the setting where there is an existing dataset of

patients treated with heterogenous doses and including binary efficacy and toxicity

outcomes and patient factors such as clinical features and biomarkers. The goal is to

analyze the data to estimate an optimal dose for each (future) patient based on their

clinical features and biomarkers. We propose an optimal individualized dose finding

rule by maximizing utility functions for individual patients while limiting the rate

of toxicity. The utility is defined as a weighted combination of efficacy and toxicity

probabilities. This approach maximizes overall efficacy at a prespecified constraint

on overall toxicity. We model the binary efficacy and toxicity outcomes using logis-

tic regression with dose, biomarkers and dose–biomarker interactions. To incorporate

the large number of potential parameters, we use the LASSO method. We addition-

ally constrain the dose effect to be non-negative for both efficacy and toxicity for all

patients. Simulation studies show that the utility approach combined with any of the

modeling methods can improve efficacy without increasing toxicity relative to fixed

dosing. The proposed methods are illustrated using a dataset of patients with lung

cancer treated with radiation therapy.
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1 INTRODUCTION

The goal of personalized medicine is to give the right treatment to the right patient at the right dose using all we know about the

patient. Available knowledge about individual patients is increasingly including biomarkers which allow personalizing treatment

decisions. One approach to personalized medicine is to identify the right patient for a given treatment. For example, in the

setting of a single binary outcome and two potential treatments, Foster, Taylor, and Ruberg (2011) proposed a “Virtual Twins”

method involving predicting response probabilities for treatment and control “twins” for each subject by random forest, and

then using regression or classification trees to identify subgroups of patients with large positive treatment effect estimates. A

related but different approach is to identify the right treatment for a patient, often referred to as optimal treatment regimes

(OTR). A treatment regime is defined as the function that maps a patient’s covariate vector to one of the treatment choices. One

approach to identify an OTR is a two-step method that involves building a model for conditional expectation of the outcome
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given treatment as the first step, then maximizing the mean expected reward to get the optimal treatment for each subject. In

an alternative approach, rather than modeling the marginal outcome, outcome weighted learning (OWL) methods maximize the

reward from following a treatment regime directly, which is equal to the expected outcome in a subset of patients who actually

followed that regime, inversely weighted by the probability of being assigned to the regime (Zhao, Zeng, Rush, & Kosorok,

2012). Maximizing the reward with respect to the treatment regime is equivalent to minimizing the expectation for patients who

did not follow the regime, and can be interpreted as minimizing the weighted classification error in a classification problem

(Zhang, Tsiatis, Davidian, Zhang, & Laber, 2012a). Zhang, Tsiatis, Laber, and Davidian (2012b) also proposed the doubly

robust augmented inverse probability weighted estimator (AIPWE) in which an outcome model is combined with a model for

the probability of a treatment which is important when analyzing observational data. The OWL method has been extended to

continuous treatment dose settings such as optimal dose finding (Chen, Zeng, & Kosorok, 2016).

In many settings, it is not possible to describe a patient’s outcome using a single variable. For example, in oncology, it is typical

to describe patient outcomes in terms of toxicity and efficacy variables. Several strategies have been proposed for identifying an

optimal treatment or dose based on the trade-off between efficacy and toxicity. Thall and Cook (2004) proposed using efficacy-

toxicity trade-off contours that partition the two-dimensional outcome probability domain such that efficacy–toxicity pairs on

the same contour are equally desirable. Dose could then be selected to maximize desirability. More commonly, a utility matrix

is elicited from clinicians by assigning numerical utilities to each possible bivariate outcome. The optimal dose is then defined

as the value maximizing the posterior mean utility (Guo & Yuan, 2017).

Guo and Yuan (2017) proposed a Phase I/II trial design incorporating biomarkers in which the optimal dose for an individual

patient is selected to maximize utility. A joint model of ordinal toxicity and efficacy outcomes is specified and canonical partial

least squares are used to extract a small number of components from the covariate matrix containing dose, biomarkers, and dose-

by-biomarker interactions. Wang, Fu, and Zeng (2018) proposed two approaches to identify a personalized optimal treatment

strategy that maximizes clinical benefit under a constraint on the average risk in the situation of a binary treatment option and

continuous outcomes.

In this paper, we propose a utility-based method to estimate optimal doses for individual patients in the setting of binary

efficacy and toxicity outcomes. To allow for potentially large numbers of biomarkers and patient factors, we utilize 𝑙1-penalty

via LASSO (Tibshirani, 1996). At the individual level, we find the optimal dose by maximizing utility functions defined as

the probability of efficacy minus the weighted probability of toxicity, which is equivalent to a utility matrix (Schipper et al.,

2014). The weight term in the utility equation could be elicited from clinicians to quantify the relative undesirability of toxi-

city relative to lack of efficacy. Alternatively, it can be viewed as a tuning parameter selected to achieve a desired overall (at

the population level) rate of toxicity. In the vast majority of oncology treatments and many other disease settings, both effi-

cacy and toxicity outcomes are monotonically linked to increasing dose. While “flat” curves are common (Postel-Vinay et al.,

2009), it is uncommon for increasing dose to lead to decreased toxicity or efficacy. We note that monotonicity may not hold

for outcomes such as progression free survival which include death as an event, since they are potentially a consequence of

either toxicity or lack of efficacy. When estimating outcomes as a function of dose only it is often not necessary to impose

this constraint. However, when including many potential dose–biomarker interactions, it is likely that some patients will be

estimated to have decreasing toxicity or efficacy with increasing dose due to statistical noise . To prevent this and to improve

efficiency we propose a method that constrains the estimated dose–efficacy and dose–toxicity relationships to be nondecreasing

for all patients. We call this constrained LASSO, which can be solved by decomposition and quadratic programming (He, 2011)

and alternating direction method of multipliers (ADMM) (Gaines, Kim, & Zhou, 2018). In Section 3, we report results of a

simulation study and in section 4 we illustrate the proposed methods using a dataset of patients with lung cancer treated with

radiation therapy.

2 METHOD

2.1 Binary outcome setting
We assume the available data, (𝑥𝑖, 𝑑𝑖, 𝐸𝑖, 𝑇𝑖), 𝑖 = 1,… , 𝑛, comprises 𝑛 independent and identically distributed copies of

(𝑥, 𝑑, 𝐸, 𝑇 ), where 𝑥, a 𝑝-dimensional centered vector of subject-specific features, 𝑑 ∈ [−1, 1] denotes continuous dose of treat-

ment, 𝐸 is the binary efficacy outcome, and 𝑇 is the binary toxicity outcome. A large probability of 𝐸 and small probability of

𝑇 is preferable.

An individualized dose rule is the map from 𝑥 to the dose domain:  ∶ ℝ𝑝 → [−1, 1]. Under  , a patient with covariate 𝑥 is

recommended to dose 𝑑 =  (𝑥). For any treatment rule  , the population expected efficacy and toxicity are 𝔼 (𝐸) and 𝔼 (𝑇 ).
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Our goal is to estimate an individualized dose rule that maximizes the population expected efficacy while controlling the overall

expected toxicity under some tolerance level, that is

max 𝔼 (𝐸) , subject to 𝔼 (𝑇 ) ≤ 𝜏, (1)

where 𝜏 is the prespecified maximal tolerance level of average toxicity.

Define 𝛿𝐸(𝑥𝑖, 𝑑𝑖) = P(𝐸 = 1|𝑑𝑖, 𝑥𝑖) − P(𝐸 = 1|𝑑𝑖 = −1, 𝑥𝑖), 𝛿𝑇 (𝑥𝑖, 𝑑𝑖) = P(𝑇 = 1|𝑑𝑖, 𝑥𝑖) − P(𝑇 = 1|𝑑𝑖 = −1, 𝑥𝑖). 𝛿𝐸(𝑥𝑖, 𝑑𝑖)
and 𝛿𝑇 (𝑥𝑖, 𝑑𝑖) can be interpreted as the difference in expected efficacy and toxicity outcomes for a patient if treated at the lowest

dose (𝑑𝑖 = −1) or some higher dose (𝑑𝑖). Let 𝔼𝑥 to denote the population average of the function across the distribution of 𝑥.

After introducing the Lagrange multiplier, solving Equation (1) is equivalent to

max 𝔼𝑥[𝛿𝐸{𝑥𝑖, (𝑥𝑖)} − 𝜃𝛿𝑇 {𝑥𝑖, (𝑥𝑖)}], (2)

where 𝜃 > 0 is chosen such that 𝔼𝑥[𝛿𝑇 {𝑥𝑖, (𝑥𝑖)}] ≤ 𝜏 − 𝔼𝑥[P(𝑇 = 1|𝑑𝑖 = −1, 𝑥𝑖)]. The expression in Equation (2) is a utility

function quantifying the trade-off between efficacy and toxicity. By fitting separate models for 𝐸 and 𝑇 using methods such as

logistic regression via maximum likelihood or constrained LASSO as described below, we can calculate the utility values for

individual patients over the range of possible dose values, and calculate the dose rule that maximizes Equation (2).

Consider the model logit{P(𝑌 = 1)} = 𝑓 (𝑥, 𝑑, 𝛽) = 𝛽0 +𝑊 𝛽 between outcome 𝑌 , that is, 𝐸 or 𝑇 , and covariates including

biomarkers 𝑥, dose 𝑑, and dose–biomarker interactions 𝑑𝑥, that is, 𝑊 = (𝑥, 𝑑, 𝑑𝑥). To fit the model we use the generalized

LASSO with 𝑙1-penalty on the log-likelihood and no penalty on 𝛽0. To enforce a nondecreasing relationship of efficacy and

toxicity with dose, we add constraints on derivatives with respect to 𝑑 to be non-negative, that is,
𝜕

𝜕𝑑
𝑓 (𝑥𝑖, 𝑑, 𝛽) ≥ 0 for all 𝑥𝑖.

We call this method constrained LASSO (cLASSO), for which the constraint can be written as𝐶𝛽 ≥ 0, where𝐶 is a 𝑛 × (2𝑝 + 1)
matrix of [𝟎𝑛×𝑝,1𝑛×1,𝒙𝑛×𝑝]. Then the cLASSO method is to

minimize − log𝐿(𝛽,𝑊 , 𝑌 ) + 𝜆‖𝛽‖1 = −
𝑛∑
𝑖=1

[𝑌𝑖(𝛽0 +𝑊𝑖𝛽) − log{1 + exp(𝛽0 +𝑊𝑖𝛽)}] + 𝜆‖𝛽‖1 (3)

subject to 𝐶𝛽 ≥ 0.

To solve (3) we decompose 𝛽 into its positive and negative part, 𝛽 = 𝛽+ − 𝛽−, as the relation |𝛽| = 𝛽+ + 𝛽− handles the 𝑙1
penalty term. Let𝑊 ∗ = (𝑊 ,−𝑊 ), and 𝛽∗ = (𝛽+𝑇 ,−𝛽−𝑇 )𝑇 . By plugging these into (3) and adding the additional non-negativity

constraints on 𝛽+ and 𝛽−, the constrained LASSO is formulated and can be solved, for example, by spg() in R, which uses the

spectral projected gradient method for large-scale optimization with simple constraints. That is,

minimize −
𝑛∑
𝑖=1

[𝑌𝑖(𝛽0 +𝑊 ∗
𝑖
𝛽∗) − log{1 + exp(𝛽0 +𝑊 ∗

𝑖
𝛽∗)}] + 𝜆14𝑝+2

𝑇 𝛽∗ (4)

subject to (𝐶,−𝐶)𝛽∗ ≥ 0, 𝛽+ ≥ 0, 𝛽− ≥ 0.

The derivative of (4) with respect to (𝛽0, 𝛽∗) is

−
𝑛∑
𝑖=1

{
𝑌𝑖(1,𝑊 ∗

𝑖
) −

exp(𝛽0 +𝑊 ∗
𝑖
𝛽∗)

1 + exp(𝛽0 +𝑊 ∗
𝑖
𝛽∗)

(1,𝑊 ∗
𝑖
)
}
+ 𝜆(0,14𝑝+2

𝑇 ). (5)

The minimizer to (4) always satisfies 𝛽+
𝑗
𝛽−
𝑗
= 0 for 𝑗 = 1,… , 2𝑝 + 1, as shown in the Appendix. We use 10-fold cross-

validation (CV) to choose 𝜆 to minimize the CV deviance.

For any fixed value of theta, and using the above estimated models of efficacy and toxicity, we can find the optimal dose for

each patient that maximize (2), then we use grid search to find the smallest 𝜃 achieving the constraint on toxicity. Specifically

the algorithm is as follows:

1. Set a grid 0 = 𝜃1 < 𝜃2 < ⋯ < 𝜃𝐾

2. For each 𝑚 = 1,… , 𝐾:

(a) set 𝜃 = 𝜃𝑚

(b) For each subject 𝑖 = 1,… , 𝑛 with covariate 𝑥𝑖: calculate 𝑑
opt

𝑖
= argmax(𝛿𝐸(𝑥𝑖, 𝑑) − 𝜃𝛿𝑇 (𝑥𝑖, 𝑑)), estimate P(𝐸 =

1|𝑑opt

𝑖
, 𝑥𝑖) and P(𝑇 = 1|𝑑opt

𝑖
, 𝑥𝑖)

3. Select the smallest 𝜃̂ such that 𝔼𝑥[P(𝑇 = 1|𝑑opt

𝑖
(𝜃), 𝑥𝑖)] ≤ 𝜏 . Then 𝑑

opt

𝑖
(𝜃̂) is the estimated optimal dose for patient 𝑖.
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For binary outcomes under the logistic link function, both 𝛿𝐸(𝑥, 𝑑) and 𝛿𝑇 (𝑥, 𝑑) are functions involving the intercept, main

effect of 𝑥, as well as dose related covariates 𝑑 and 𝑑𝑥. Estimation of 𝑑opt at given 𝜃 for each subject is solved by one-dimensional

optimization using optimize() in R, which uses a combination of golden section search and successive parabolic interpolation.

Because of the nondecreasing dose-efficacy and dose–toxicity relationship, a larger 𝜃 will recommend a smaller 𝑑opt, and the

corresponding population average efficacy and toxicity will be smaller. So the smallest 𝜃 achieving the constraint on average

toxicity will achieve the largest average efficacy. The range and size of the grid can be prespecified and should include a range

of feasible values. In our simulation and data example, we used a range of 0.01 to 4, in steps of 0.001. We note that for the

determination of 𝑑
opt

𝑖
, we consider the subject level 𝐸 − 𝑇 trade-off, while for the determination of 𝜃, we look at the population

level 𝐸 − 𝑇 trade-off.

2.2 Multiple outcome setting
In some applications there are multiple toxicity outcomes which must be considered and balanced against efficacy when selecting

treatment dose. Without loss of generality, we consider two different toxicity outcomes 𝑇1, 𝑇2 and the goal is to

max 𝔼 (𝐸) , subject to 𝔼 (𝑇1) ≤ 𝜏1,𝔼 (𝑇2) ≤ 𝜏2, (6)

where 𝜏1, 𝜏2 are the prespecified maximal tolerance levels of average toxicity for each toxicity outcome.

Define 𝛿𝐸(𝑥𝑖, 𝑑𝑖) = P(𝐸 = 1|𝑑𝑖, 𝑥𝑖) − P(𝐸 = 1|𝑑𝑖 = −1, 𝑥), 𝛿𝑇1 (𝑥𝑖, 𝑑𝑖) = P(𝑇1 = 1|𝑑𝑖, 𝑥𝑖) − P(𝑇1 = 1|𝑑𝑖 = −1, 𝑥𝑖), 𝛿𝑇2 (𝑥𝑖,
𝑑𝑖) = P(𝑇2 = 1|𝑑𝑖, 𝑥𝑖) − P(𝑇2 = 1|𝑑𝑖 = −1, 𝑥𝑖). Then Equation (6) is equivalent to

max 𝔼𝑥[𝛿𝐸{𝑥𝑖, (𝑥𝑖)} − 𝜃1𝛿𝑇1{𝑥𝑖, (𝑥𝑖)} − 𝜃2𝛿𝑇2{𝑥𝑖, (𝑥𝑖)}], (7)

where 𝜃1 > 0, 𝜃2 > 0 are chosen such that 𝔼𝑥[𝛿𝑇1{𝑥𝑖, (𝑥𝑖)}] ≤ 𝜏1 − 𝔼𝑥[P(𝑇1 = 1|𝑑𝑖 = −1, 𝑥𝑖)], and 𝔼𝑥[𝛿𝑇2{𝑥𝑖, (𝑥𝑖)}] ≤ 𝜏2 −
𝔼𝑥[P(𝑇2 = 1|𝑑𝑖 = −1, 𝑥𝑖)].

We specify parametric logistic models for𝐸, 𝑇1, 𝑇2 as functions of biomarkers, dose, and dose–biomarker interactions. Denote

the parameter estimates from those logistic models as 𝛽𝐸, 𝛽𝑇1 , 𝛽𝑇2 . We propose a random walk and Metropolis algorithm to select

𝜃1, 𝜃2 to achieve the constraints on toxicity. The algorithm is as follows:

1. Set a chain length, 𝐵, fix 𝜎2 > 0 and initialize 𝜃0 = (𝜃01 , 𝜃
0
2) to a starting value that makes 𝔼𝑥[P(𝑇1 = 1|𝑑opt

𝑖
(𝜃0), 𝑥𝑖)] ≤

𝜏1,𝔼𝑥[P(𝑇2 = 1|𝑑opt

𝑖
(𝜃0), 𝑥𝑖)] ≤ 𝜏2.

2. For 𝑏 = 0,… , 𝐵:

(a) Generate 𝜃𝑏+1 ∼ 𝑁(𝜃𝑏, 𝜎2𝑰) and 𝜃𝑏+1 > 𝟎
(b) For each subject 𝑖 = 1,… , 𝑛 with covariate 𝑥𝑖: compute 𝑑

opt

𝑖
= argmax{𝛿𝐸(𝑥𝑖, 𝑑) − 𝜃𝑏+11 𝛿𝑇1

(𝑥𝑖, 𝑑) − 𝜃𝑏+12 𝛿𝑇2
(𝑥𝑖, 𝑑)},

estimate P(𝐸 = 1|𝑑opt

𝑖
(𝜃𝑏+1), 𝑥𝑖), P(𝑇1 = 1|𝑑opt

𝑖
(𝜃𝑏+1), 𝑥𝑖), and P(𝑇2 = 1|𝑑opt

𝑖
(𝜃𝑏+1), 𝑥𝑖)

(c) Compute 𝑞 = min[1,𝔼𝑥{P(𝐸 = 1|𝑑opt

𝑖
(𝜃𝑏+1), 𝑥𝑖)}∕𝔼𝑥{P(𝐸 = 1|𝑑opt

𝑖
(𝜃𝑏), 𝑥𝑖)}]

(d) Generate 𝑈 ∼ 𝑈 (0, 1);
if 𝔼𝑥[P(𝑇1 = 1|𝑑opt

𝑖
(𝜃𝑏+1), 𝑥𝑖)] ≤ 𝜏1,𝔼𝑥[P(𝑇2 = 1|𝑑opt

𝑖
(𝜃𝑏+1), 𝑥𝑖)] ≤ 𝜏2, and 𝑈 ≤ 𝑞, set 𝜃𝑏+1 = 𝜃𝑏+1; otherwise, set

𝜃𝑏+1 = 𝜃𝑏

3. After generating a chain (𝜃0,… , 𝜃𝐵), we select the 𝜃𝑘 that leads to the largest value of 𝔼𝑥[P(𝐸 = 1|𝑑opt

𝑖
(𝜃𝑘), 𝑥𝑖)] as the

optimal solution, and the 𝑑
opt

𝑖
(𝜃𝑘) is the optimal dose for patient 𝑖.

In stage 2(b) in the above algorithm, 𝑑opt at given 𝜃 for each subject is solved by one-dimensional optimization using opti-
mize() in R. The variance of the proposal distribution 𝜎2 in stage 2(a) is chosen to make the acceptance proportion between

0.25 and 0.5. When there are multiple constraints we found that the random walk and Metropolis algorithm is more efficient than

using a finite grid search over the multiple dimensions of 𝜃. In our experience, as long as the chain is long enough, the maxima

of the population average efficacy will be achieved. This can be checked by running the algorithm in parallel for different initial

choices of 𝜃0. It is noted that there is no guarantee that both toxicity constraints will be met at the boundary.
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3 SIMULATION STUDIES

In this section, we performed numerical studies to investigate the performance of the proposed method under different settings.

We simulated five i.i.d covariates, 𝑥1,… , 𝑥5 from a standard normal distribution, 𝑑 from Uniform (−1,1), and then generated

N = 200 binary outcomes 𝐸 and 𝑇 from the regression models

logit(P(𝐸 = 1)) = 𝛽0,𝐸 +𝑊𝐸𝛽𝐸,

logit(P(𝑇 = 1)) = 𝛽0,𝑇 +𝑊𝑇𝛽𝑇 ,

where 𝑊𝐸 = 𝑊𝑇 = (𝑥, 𝑑, 𝑑𝑥). A range of scenarios for 𝛽 were considered, but we first describe scenario 0, as given in Table 1.

For scenario 0 (𝛽0,𝐸 , 𝛽𝐸) =(0, 1, 0, 0, 0, 0, 1, .4, .4, .4, −.8, 0), and (𝛽0,𝑇 , 𝛽𝑇 ) = (−1.386, −1, 0, 0, 0, 0, 1, −.4, −.4, −.4, .8, 0).

In generating 𝑥’s, we also applied the constraints that 𝑥 must satisfy 1 + 0.4𝑥1 + 0.4𝑥2 + 0.4𝑥3 − 0.8𝑥4 > 0 and 1 − 0.4𝑥1 −
0.4𝑥2 − 0.4𝑥3 + 0.8𝑥4 > 0 to reflect the nondecreasing dose-efficacy and dose–toxicity curves for all subjects. This excludes

up to 35% of the originally simulated observations.

To illustrate the utility approach to dose selection, we plotted individual level E–T trade-off for three different subjects in

Figure 1 and population level E–T trade-off in Figure 2. Different dose-efficacy and dose–toxicity curves among subjects result

in selection of different optimal dose values across 𝜃.

For variable selection, we forced the main effect for dose to be selected by removing its associated parameter from the

penalty term and only consider the selection of covariates and dose–covariate interactions. The methods we compared are

forward selection (FS), regular LASSO, cLASSO, and fixed dosing (FD) in which dose only logistic models were fit. FS was

implemented by step() in R using AIC as criteria. Regular LASSO was implemented by glmnet() in R with 10-fold CV.

The boxplots in Figure 3 shows the average efficacy from the above methods with the same toxicity constraint, from which

we see that cLASSO has higher average efficacy compared to the other methods, especially fixed-dose. We also calculate the

theoretical improvement from using the true models which would only be known in a simulation study setting. The improvement,

defined as proportion of possible gain compared to the gain from FD to theory, {𝔼 (𝐸) − 𝔼FD(𝐸)}∕{𝔼Theory (𝐸) − 𝔼FD(𝐸)},

for FS, regular LASSO, and cLASSO is 0.513, 0.518, 0.589, respectively. cLASSO has higher efficacy than LASSO for 69.0%

of the simulated datasets.

We also considered a null case in which there are no covariates or dose–covariates interactions, so that the dose effects are

the same across all subjects. The average efficacy with toxicity constrained at 0.2 for theory, FS, regular LASSO, cLASSO

and FD are 0.503, 0.470, 0.490, 0.491, 0.499, respectively. With no effect of covariates, the dose-only model (FD) is as good

as the theory, and the models with covariates included have slightly worse performance than the dose-only model. Among the

modeling approaches, cLASSO has better performance than FS.

A few other scenarios were considered: In scenario 1 there are only main effects of covariate and no dose–covariate inter-

actions, and the main effects of the same 𝑥 are in opposite directions in efficacy and toxicity models. In scenario 2, the dose–

covariate interaction effects are the same in efficacy and toxicity models, but the main effects of covariates are different. In

scenarios 3 and 4, there are 15 and 45 additional noise covariates added to increase 𝑝 from 5 to 20 and 50, to examine the

performance with high dimensional data. In scenarios 5 and 6, with the same coefficients as in scenarios 0 and 3, the sample

size increased to 400. In practice, the covariates may be highly correlated resulting in multicollinearity. In scenario 7, 𝑥’s are not

independent and correlation among 𝑥1, 𝑥2, 𝑥3 is 0.6. We also considered several situations in which the logistic regression model

with linear effects is mis-specified. In scenario 8, the true effect of covariate 𝑥4 is stepwise at 0, that is, the effect only exits for

𝑥4 > 0. But when fitting models, it is mis-specified as linear. In scenario 9, the true models have 𝑒𝑥𝑝(𝑥4) as the covariate, but

in the fitted models 𝑥4 is used, which is mis-specified. In scenario 10, an interaction of 𝑥2 and 𝑥3 is included as main effect in

both true models for efficacy and toxicity, but in the fitted models this interaction is not included.

Table 1 shows the simulation results with the above setting. We also considered another setting with more covariate main

effects and fewer dose–covariate interactions, and with the nondecreasing constraints, 12% of the simulated observations were

excluded. In scenarios 1 and 2, when the dose related coefficients for efficacy and toxicity models are the same or 0, the main

effects of covariates still played a role in the optimal dose finding with the logistic link, and cLASSO still has better performance

than the other methods. In scenarios 3 and 4, with the increased number of noise covariates, the magnitude of improvement

decreased, but the cLASSO still performs better than the other methods. In scenarios 5 and 6, with the larger sample sizes, the

magnitude of improvement increased, and cLASSO outperforms the other methods. In scenario 7, with correlated covariates

where the performance of LASSO is known to be suboptimal, cLASSO still performs better than LASSO and FS. In scenarios

8, 9, and 10, when the logistic regression model with linear effects is mis-specified, all the methods have smaller magnitude of

improvement, but cLASSO still performs better than LASSO and FS, showing the robustness of cLASSO.
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T A B L E 1 Simulation results. Summary of average Efficacy improvement compared with fixed dose with P(Toxicity) constrained to be ≤ 0.2.

Results from 1000 simulated trials. Each scenario true logistic models for E and T include main effect for the biomarkers, dose and biomarker–dose

interactions, with coefficients as shown below

Efficacy and Toxicity model coefficients Possible cLASSO >

Scenarios Biomarker Dose Interactions FS LASSO cLASSO Improvement LASSO
0 E 1 0 0 0 0 1 .4 .4 .4 −.8 0 0.513 0.518 0.589 0.147 69.0%

T −1 0 0 0 0 1 −.4 −.4 −.4 .8 0

1 E 1 0 0 0 0 1 0 0 0 0 0 0.393 0.659 0.694 0.052 53.3%

T −1 0 0 0 0 1 0 0 0 0 0

2 E 1 0 0 0 0 1 .4 .4 .4 −.8 0 0.344 0.340 0.375 0.070 56.7%

T −1 0 0 0 0 1 .4 .4 .4 −.8 0

3 E 1 0 0 0 0 1 .4 .4 .4 −.8 0 0.216 0.332 0.354 0.146 60.4%

T −1 0 0 0 0 1 −.4 −.4 −.4 .8 0

4 E 1 0 0 0 0 1 .4 .4 .4 −.8 0 NA 0.246 0.272 0.146 60.0%

T −1 0 0 0 0 1 −.4 −.4 −.4 .8 0

5 E 1 0 0 0 0 1 .4 .4 .4 −.8 0 0.692 0.691 0.762 0.148 71.7%

T −1 0 0 0 0 1 −.4 −.4 −.4 .8 0

6 E 1 0 0 0 0 1 .4 .4 .4 −.8 0 0.433 0.431 0.461 0.148 66.3%

T −1 0 0 0 0 1 −.4 −.4 −.4 .8 0

7 E 1 0 0 0 0 1 .4 .4 .4 −.8 0 0.561 0.561 0.628 0.147 66.2%

T −1 0 0 0 0 1 −.4 −.4 −.4 .8 0

8 E 1 0 0 0 0 1 .4 .4 .4 −.8 0 0.378 0.399 0.450 0.200 58.2%

T −1 0 0 0 0 1 −.4 −.4 −.4 .8 0

9 E 1 0 0 0 0 1 .4 .4 .4 −.8 0 0.360 0.402 0.481 0.206 64.6%

T −1 0 0 0 0 1 −.4 −.4 −.4 .8 0

10 E 1 0 0 0 0 1 .4 .4 .4 −.8 0 0.455 0.466 0.551 0.146 69.3%

T −1 0 0 0 0 1 −.4 −.4 −.4 .8 0

0⋆ E 1 .2 .3 .1 0 1 0 .2 −.1 .6 0 0.618 0.648 0.694 0.132 62.9%

T −1 −.2 −.3 −.1 0 1 0 −.2 .1 −.6 0

1⋆ E 1 .2 .3 .1 0 1 0 0 0 0 0 0.410 0.590 0.641 0.055 56.4%

T −1 −.2 −.3 −.1 0 1 0 0 0 0 0

2⋆ E 1 .2 .3 .1 0 1 0 .2 −.1 .6 0 0.373 0.497 0.647 0.053 77.5%

T −1 −.2 −.3 −.1 0 1 0 .2 −.1 .6 0

3⋆ E 1 .2 .3 .1 0 1 0 .2 −.1 .6 0 0.280 0.429 0.460 0.131 62.1%

T −1 −.2 −.3 −.1 0 1 0 −.2 .1 −.6 0

4⋆ E 1 .2 .3 .1 0 1 0 .2 −.1 .6 0 NA 0.307 0.342 0.133 61.7%

T −1 −.2 −.3 −.1 0 1 0 −.2 .1 −.6 0

5⋆ E 1 .2 .3 .1 0 1 0 .2 −.1 .6 0 0.788 0.802 0.833 0.134 64.0%

T −1 −.2 −.3 −.1 0 1 0 −.2 .1 −.6 0

6⋆ E 1 .2 .3 .1 0 1 0 .2 −.1 .6 0 0.512 0.613 0.640 0.133 62.0%

T −1 −.2 −.3 −.1 0 1 0 −.2 .1 −.6 0

7⋆ E 1 .2 .3 .1 0 1 0 .2 −.1 .6 0 0.671 0.716 0.756 0.134 65.0%

T −1 −.2 −.3 −.1 0 1 0 −.2 .1 −.6 0

8⋆ E 1 .2 .3 .1 0 1 0 .2 −.1 .6 0 0.391 0.435 0.457 0.153 54.8%

T −1 −.2 −.3 −.1 0 1 0 −.2 .1 −.6 0

9⋆ E 1 .2 .3 .1 0 1 0 .2 −.1 .6 0 0.317 0.372 0.435 0.081 65.6%

T −1 −.2 −.3 −.1 0 1 0 −.2 .1 −.6 0

(Continues)
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T A B L E 1 (Continued)

Efficacy and Toxicity model coefficients Possible cLASSO >

Scenarios Biomarker Dose Interactions FS LASSO cLASSO Improvement LASSO
10⋆ E 1 .2 .3 .1 0 1 0 .2 −.1 .6 0 0.519 0.559 0.624 0.132 68.4%

T −1 −.2 −.3 −.1 0 1 0 −.2 .1 −.6 0

a. The intercept for Efficacy models is 0, for Toxicity models is −1.386.

b. Possible improvement = 𝔼Theory (𝐸) − 𝔼FD (𝐸), the percentage of improvement = {𝔼 (𝐸) − 𝔼FD (𝐸)}∕{𝔼Theory (𝐸) − 𝔼FD (𝐸)}.

c. Scenarios 3, 6, 3⋆, 6⋆ have 15 noise covariates with coefficients 0 added; scenarios 4, 4⋆ have 45 noise covariates with coefficients 0 added.

d. Scenarios 5, 6, 5⋆, 6⋆ have doubled sample size of 400.

e. Scenario 7, 7⋆ have 𝑐𝑜𝑟(𝑥1, 𝑥2, 𝑥3) = 0.6.

f. Scenarios 8, 9, 10, 8⋆, 9⋆, 10⋆ have mis-specified models.

In scenario 8, 8⋆, the true effect of covariate 𝑥4 is stepwise at 0, e.g., logit(P(𝐸 = 1)) = 𝑥1 + 𝑑 + (0.4𝑥1 + 0.4𝑥2 + 0.4𝑥3 − 0.8𝐼(𝑥4 > 0))𝑑.

In scenario 9, 9⋆, the true models have 𝑒𝑥𝑝(𝑥4) as the covariate,e.g., logit(P(𝐸 = 1)) = 𝑥1 + 𝑑 + (0.4𝑥1 + 0.4𝑥2 + 0.4𝑥3 − 0.8𝑒𝑥𝑝(𝑥4))𝑑.

In scenario 10, 10⋆, an interaction of 𝑥2 and 𝑥3 is included as main effect in both true models for efficacy and toxicity, e.g., logit(P(𝐸 = 1)) = 𝑥1 + 𝑥2𝑥3 + 𝑑 + (0.4𝑥1 +
0.4𝑥2 + 0.4𝑥3 − 0.8𝑥4)𝑑.

F I G U R E 1 Top: Individual level E–T plot with choice of dose with theoretical 𝛽𝐸, 𝛽𝑇 for three subjects. The utility curve uses 𝜃 = 1. Bottom:

Individual level optimal dose as a function of 𝜃 for the same three subjects

In Table B1, we present the results from simulations that considered two toxicity outcomes, T1 and T2. The scenarios were

constructed using a subset of the previous efficacy and toxicity models as in Table 1 with toxicity outcome T2 added and

constrained at 0.23. The situations considered included a variety of biomarker main effects, dose–biomarker interactions, corre-

lations between the biomarkers and additional noise biomarkers. The results in Table B1 provide similar conclusions regarding

the relative merit of cLASSO compared to the other methods as in the single toxicity outcome case.

4 APPLICATION

In this section, we applied the proposed method to real data collected from patients with nonsmall cell lung cancer who received

radiation treatment. Patients treated with stereotactic body radiation therapy or with follow-up less than 1 year were excluded

from the analysis, leaving 105 patients in the dataset to be analyzed. Of the 105 patients, 46 had no local, regional, or distant

progression in 2 years. Two toxicity outcomes were considered: grade 3+ heart toxicity and grade 3+ lung toxicity. In total, eight

patients had grade 3+ heart toxicity, and 11 patients had grade 3+ lung toxicity that required hospitalization. The clinical features

we consider for possible inclusion in models include sex, age, current smoker, Karnofsky performance status (KPS), concurrent

chemotherapy, simple stage, T stage, N stage of the cancer, as shown in Table 2. We also include pretreatment cytokines level

such as interferon 𝛾 (IFN-𝛾), interleukin-1 𝛽 (IL-1𝛽), interleukin-2 (IL-2), interleukin-6 (IL-6), tumor necrosis factor 𝛼 (TNF-𝛼)

as prognostic factors. Patients in this study received different doses ranging from 45 to 96 Gy, partially due to the preference

of different clinicians as well as the stage of the disease, location of the tumor and the patients performance status. The dose to

the tumor site (efficacy dose) is different from the dose received by the lung and heart, but we assume the ratio of them is fixed

for each patient. When the optimal efficacy dose is chosen within the observed dose range (45–96 Gy), it is multiplied by this

known fixed (for each patient) ratio to obtain the lung and heart dose corresponding to the selected tumor dose. There are 14
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F I G U R E 2 Left: Population level E–T plot with choice of 𝜃 with theoretical 𝛽𝐸, 𝛽𝑇 , Right: Population level E–T trade-off at different toxicity

tolerance levels

F I G U R E 3 Simulation results for scenario 0. Boxplot of average

efficacy with same toxicity for 1,000 simulation trials. The compared

methods are theory with true coefficients; FS, forward selection, LASSO;

cLASSO: constrained LASSO; FD, fixed dosing. All methods are

constrainted at P(T) = 0.20. Means are 0.599, 0.528, 0.528, 0.539, 0.452,

respectively

patients with no cytokine data collected, and multiple imputation with all the covariates and outcomes included is applied to fill

in the missing values.

For the given set of doses in the study, the average probability of no progression in 2 years (efficacy) is 0.438, the average

probability of heart toxicity is 0.076, the average probability of lung toxicity is 0.105, and average tumor dose across patients is

71.20. The goal of this analysis is to estimate an optimal dosing rule that maximize the probability of no progression in 2 years,

with heart and lung toxicity level no greater than observed overall toxicity for this population of patients. The efficacy model

for the probability of no progression in 2 years including as covariates the eight clinical features with their interactions with

tumor dose as well as tumor dose has in total 17 possible covariates. The heart toxicity model is built similarly, and the lung

toxicity model also includes the five most important cytokines and their interaction with lung dose. Table 3 shows the covariates

selection by cLASSO in each model. The random walk method of selecting 𝜃 ran for 5,000 iterations to ensure convergence.

With the models built by cLASSO, using the selected optimal dose for each patient gave an expected efficacy of 0.485, an

expected heart toxicity at 0.077, an expected lung toxicity at 0.108, and the average tumor dose across patients was 80.21 Gy.

With similar expected lung toxicity and heart toxicity rates, the average efficacy increased by 0.047 from 0.438 to 0.485.

5 DISCUSSION

In this paper, we propose an optimal individualized dose finding rule by maximizing utility functions for individual patients.

This approach maximizes overall efficacy at a prespecified constraint on overall toxicity. We model the binary efficacy and

toxicity outcomes using logistic regression with dose, biomarkers and dose–biomarker interactions. To incorporate the larger

number of biomarkers and their interaction with doses, we employed the LASSO with linear constraints on the dose related

coefficients to constrain the dose effect to be non-negative. Simulation studies show that this approach can improve efficacy

without increasing toxicity relative to fixed dosing. Constraining each patient’s estimated dose–efficacy and dose–toxicity curves

to be nondecreasing improved performance relative to standard LASSO. This utility method was extended to multiple toxicities.
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T A B L E 2 Descriptive statistics of patients (n = 105)

Variable Mean Range
Age (years) 65.43 39.60–85.20

KPS 85.52 60–100

IFN-𝛾 113.31 0.52–6547.50

IL-1𝛽 10.26 0.04–92.61

IL-2 23.50 0.04–312.22

IL-6 41.93 0.07–730.84

TNF-𝛼 18.48 0.54–149.37

Tumor dose (Gy) 71.20 45.66–96.08

Lung dose (Gy) 14.47 3.17–26.11

Heart dose (Gy) 12.22 0.02–46.13

Variable Category Percentage
Gender Female 24

Male 76

Smoking Current 42

Never or former 58

Chemotherapy Yes 85

No 15

Simple stage 1 10

2 10

3 79

4 1

T stage 1 18

2 23

3 27

4 32

N stage 0 23

1 12

2 45

3 20

To force the dose-toxicity or dose–efficacy curve to be nondecreasing with dose, the constraints for linear combination of

dose related coefficients only ensure that the patients in the current data satisfy this monotonicity criteria, but monotonicty is not

guaranteed for all future patients whose 𝑥 is not in the observed data. An alternative approach that would ensure monotonicity

with respect to dose for all patients would be to force all relevant dose and dose-covariate coefficients to be non-negative. But

with the dose–biomarker interactions, it is unnecessary to force all the dose related coefficients to be non-negative, because

some of them could be negative but the linear combination of them is non-negative for a selected range of dose and covariate

values. Thus, simply constraining all the dose related coefficients to be non-negative is too conservative. It is noted that our

method is not appropriate in cases where the toxicity or efficacy endpoint may first increase and then decrease with increasing

dose, but is still applicable when there is an increasing effect followed by a plateau.

While we implemented a constrained version of LASSO, other penalized regression approaches such as Elastic Net could also

be considered (Zou & Hastie, 2005), or Bayesian methods using Bayesian LASSO (Park & Casella, 2008), or other Bayesian

variable selection methods such as “spike-and-slab” (Kuo & Mallick, 1998).

Our method constrains the population averaged toxicity level to be below a given tolerance level. This does not explicitly put

any upper bound on the expected toxicity probability for an individual patient. Our method could be modified by including an

upper bound on the probability of toxicity for each patient. Thus, in addition to constraints on average toxicity, we also consider

adding constraints to individual toxicity, that is, adding large penalty for extremely high toxicity, which will make the utility

function more complex. An indirect way of achieving this would be to use a nonlinear function of the probability of toxicity,

rather than just the toxicity rate in Equation (1).
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T A B L E 3 Variable selections in each model

Method cLASSO
Model Efficacy Heart toxicity Lung toxicity
Main effect Dose ⋆ ⋆ ⋆

Age ⋆

Sex

Smoking

KPS ⋆ ⋆

Chemotherapy ⋆

S stage

T stage ⋆

N stage ⋆

IFN-𝛾 — —

IL-1𝛽 — —

IL-2 — —

IL-6 — —

TNF-𝛼 — — ⋆

Interactions with dose Age ⋆ ⋆

Sex ⋆

Smoking

KPS

Chemotherapy

S stage

T stage

N stage ⋆

IFN-𝛾 — —

IL-1𝛽 — — ⋆

IL-2 — —

IL-6 — —

TNF-𝛼 — —

Estimated outcomes if these patients were

treated at optimal doses

0.485 0.077 0.108

— represents a covariate which is not considered for inclusion in the model.

⋆ represents a covariate selected by cLASSO for the corresponding model.

Empty cell represent covariates considered for inclusion but not selected by cLASSO.

In this paper, we have considered binary outcomes and logistic models that included main effect and dose–biomarker interac-

tions. The method could be generalized to other type of outcomes, such as censored survival times for the efficacy outcome. An

ordinal outcome for toxicity could also be accommodated by requiring a different tolerance threshold for each level of toxicity.

More flexible forms for the effect of dose and biomarkers could also be considered (e.g., regression splines), and provided the

dose monotonicity constraint can be algebraically formulated, the cLASSO would still be applicable.
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APPENDIX A: PROOF
The minimizer to problem (4) always satisfies 𝛽+

𝑗
𝛽−
𝑗
= 0 for 𝑗 = 1,… , 2𝑝 + 1.

Proof. Proof by contradiction: Consider the minimizer of (4) 𝛽 = 𝛽+ − 𝛽−. Without loss of generality, assume we have 𝛽+1 >

0, 𝛽−1 > 0. Consider another representation of the same 𝛽 = 𝛽+ − 𝛽−.

𝛽+1 = 𝛽+1 − min(𝛽+1 , 𝛽
−
1 ), 𝛽

−
1 = 𝛽−1 − min(𝛽+1 , 𝛽

−
1 )

𝛽+
𝑗
= 𝛽+

𝑗
, 𝛽−

𝑗
= 𝛽−

𝑗
for 𝑗 = 2,… , 2𝑝 + 1.

Obviously, (𝛽+, 𝛽−) satisfies the constraints of problem (4), and 𝛽+1 + 𝛽−1 < 𝛽+1 + 𝛽−1 , 𝛽
+
1 − 𝛽−1 = 𝛽+1 − 𝛽−1 .
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Then the objective function (4) can be bounded as

𝐿(𝛽+, 𝛽−)

= −
𝑛∑
𝑖=1

{𝑦𝑖(𝛽0 +𝑋𝑖(𝛽+ − 𝛽−)) − log(1 + 𝑒𝛽0+𝑋𝑖(𝛽+−𝛽−))} + 𝜆

2𝑝+1∑
𝑗=1

(𝛽+ + 𝛽−)

= −
𝑛∑
𝑖=1

{𝑦𝑖(𝛽0 +𝑋𝑖(𝛽+ − 𝛽−)) − log(1 + 𝑒𝛽0+𝑋𝑖( ̃𝛽+− ̃𝛽−))} + 𝜆

2𝑝+1∑
𝑗=1

(𝛽+ + 𝛽−)

> −
𝑛∑
𝑖=1

{𝑦𝑖(𝛽0 +𝑋𝑖(𝛽+ − 𝛽−)) − log(1 + 𝑒𝛽0+𝑋𝑖( ̃𝛽+− ̃𝛽−))} + 𝜆

2𝑝+1∑
𝑗=1

(𝛽+ + 𝛽−)

= 𝐿(𝛽+, 𝛽−).

This contradicts with the assumption that (𝛽+, 𝛽−) is the minimizer of (4). □

APPENDIX B: ADDITIONAL SIMULATION RESULTS
T A B L E B 1 Simulation results for two toxicities. Summary of average Efficacy improvement compared with fixed dose with P(Toxicity 1)

constrained to be ≤ 0.2 and P(Toxicity 2) constrained to be ≤ 0.23. Results from 1,000 simulated trials. Each scenario true logistic model for E, T1,

and T2 includes main effect for the biomarkers, dose and biomarker–dose interactions, with coefficients as shown below

Efficacy and Toxicity model coefficients Possible cLASSO >

Scenarios Biomarker Dose Interactions FS LASSO cLASSO Improvement LASSO
A0 E 1 0 0 0 0 1 .4 .4 .4 -.8 0 0.581 0.549 0.606 0.121 66.3%

T1 -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

A1 E 1 0 0 0 0 1 0 0 0 0 0 0.682 0.781 0.800 0.036 50.2%

T1 -1 0 0 0 0 1 0 0 0 0 0

T2 -1 0 0 0 0 1 0 0 0 0 0

A2 E 1 0 0 0 0 1 .4 .4 .4 -.8 0 0.639 0.627 0.695 0.114 67.2%

T1 -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

A3 E 1 0 0 0 0 1 .4 .4 .4 -.8 0 0.454 0.471 0.510 0.121 59.3%

T1 -1 0 0 0 0 1 -.4 -.4 -.4 .8 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

A0⋆ E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0 0.659 0.661 0.705 0.111 62.3%

T1 -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

A1⋆ E 1 .2 .3 .1 0 1 0 0 0 0 0 0.575 0.677 0.700 0.039 50.9%

T1 -1 -.2 -.3 -.1 0 1 0 0 0 0 0

T2 -1 0 0 0 0 1 0 0 0 0 0

A2⋆ E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0 0.702 0.667 0.731 0.125 55.1%

T1 -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

A3⋆ E 1 .2 .3 .1 0 1 0 .2 -.1 .6 0 0.622 0.593 0.658 0.115 60.3 %

T1 -1 -.2 -.3 -.1 0 1 0 -.2 .1 -.6 0

T2 -1 0 0 0 0 1 -.5 0 0 0 .5

a. The intercept for Efficacy models is 0, for Toxicity 1 models is -1.386, for Toxicity 2 models is -1.2

b. Possible improvement=𝔼Theory (𝐸) − 𝔼FD (𝐸), the percentage of improvement={𝔼 (𝐸) − 𝔼FD (𝐸)}∕{𝔼Theory (𝐸) − 𝔼FD (𝐸)}.

c. The random walk method of selecting 𝜃 was run for 1,000 iterations.

d. Scenario A2, A2⋆ have 𝑐𝑜𝑟(𝑥1, 𝑥2, 𝑥3) = 0.6.

e. Scenarios A3, A3⋆ have 15 noise covariates with coefficients 0 added.


