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Abstract: 

A novel modeling framework that simultaneously improves accuracy, predictability, and 

computational efficiency is presented. It embraces the benefits of three modeling techniques 

integrated together for the first time: surrogate modeling, parameter inference, and data 

assimilation. The use of polynomial chaos expansion (PCE) surrogates significantly decreases 

computational time. Parameter inference allows for model faster convergence, reduced 

uncertainty, and superior accuracy of simulated results. Ensemble Kalman filters (EnKFs) 

assimilate errors that occur during forecasting. To examine the applicability and effectiveness of 

the integrated framework, we developed 18 approaches according to how surrogate models are 

constructed, what type of parameter distributions are used as model inputs, and whether model 

parameters are updated during the data assimilation procedure. We conclude that (1) PCE must 

be built over various forcing and flow conditions and, in contrast to previous studies, it does not 

need to be rebuilt at each time step; (2) model parameter specification that relies on constrained, 

posterior information of parameters (so-called Selected specification) can significantly improve 

forecasting performance and reduce uncertainty bounds compared to Random specification using 

prior information of parameters; and (3) no substantial differences in results exist between single 

and dual EnKFs, but the latter better simulates flood peaks. The use of PCE effectively 

compensates for the computational load added by the parameter inference and data assimilation 

(up to ~80 times faster). Therefore, the presented approach contributes to a shift in modeling 

paradigm arguing that complex, high-fidelity hydrologic and hydraulic models should be 

increasingly adopted for real-time and ensemble flood forecasting. 

Keywords: Real-time ensemble flood forecasting, Uncertainty quantification, Polynomial chaos 

expansions, Generalized Likelihood Uncertainty Estimation, ensemble Kalman filter 
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1. Introduction 

Real-time forecasting is an important component of flood risk management and 

mitigation but is subject to multiple uncertainties caused by meteorological inputs, initial states, 

model structures, and model parameters [Beven, 1989; Ajami et al., 2007; Moradkhani and 

Sorooshian, 2008; Mockler et al., 2016]. Due to the complexities of natural phenomena 

represented by equifinality [Beven and Freer, 2001; Beven, 2006], hysteresis [Wei and 

Dewoolkar, 2006; Ivanov et al., 2010; Fatichi et al., 2015], non-uniqueness [Beven, 2000; 

McKenna et al., 2003; Kim and Ivanov, 2014; Kim et al., 2016a], non-linearity [Kitanidis and 

Bras, 1980; Xie and Zhang, 2010; Kim and Ivanov, 2015], and internal variability [Nikiema and 

Laprise, 2011; Mondal and Mujumdar, 2012; Lafaysse et al., 2014; Kim et al., 2016c; Kim et al., 

2016b; Kim et al., 2018],  perfect predictions using numerical models are infeasible. The 

problem exacerbates, if one attempts to simulate constitutive models derived from empirical or 

phenomenological observations rather than basic conservation laws of physics that would also 

require embracing a large number of parameters. Forecasting systems must therefore rely on 

approaches with intrinsic tools to quantify and reduce associated uncertainties and allow end-

users to make informed decisions [Todini, 1999; 2004].  

Forecasts made with sufficient lead time can mitigate flood damages considerably. 

Results should therefore be provided within a predetermined time horizon and accurate enough 

to promote community confidence in actions taken for emergency preparedness [Todini, 2004; 

APFM, 2013]. Extensive efforts have been devoted to enhance forecast accuracy, predictability, 
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and efficiency in real time with uncertainty quantification (Table 1). However, simultaneous 

improvement of predictive accuracy and efficiency, while evaluating effectiveness, remains a 

major challenge [Liu et al., 2012; Cintra and Velho, 2018]. 

For the purpose of enhancing model accuracy in real-time flood forecasting where no 

information of model states and parameters is available, data assimilation (DA) has been proven 

useful. Due to the nature of forecasting, the effect of future unknowns (model parameters and 

states) on flood prediction will change over time. In addition, uncertainty can be amplified not 

only by the features of the model itself, but also by errors in forcing data and observations. 

Therefore, model adjustment for the forecasting period may be necessary [Young, 2002; 

Moradkhani et al., 2005b]. Several assimilation methods have been developed using Kalman or 

particle filters and optimization or inference techniques such as the back-fitting algorithm [Zhang 

et al., 2018], shuffled complex evolution algorithm [Li et al., 2014], shuffled complex evolution 

metropolis [Vrugt et al., 2005], generalized likelihood uncertainty estimation (GLUE) [Beven 

and Freer, 2001], and sequential Bayesian combination [DeChant and Moradkhani, 2014]. Due 

to the higher computational requirements of the latter techniques, filter-type approaches have 

attracted attention as assimilation tools [Moradkhani and Sorooshian, 2008; Gharamti et al., 

2013]. 

Currently, the ensemble Kalman filter (EnKF) [Evensen, 1994] and its modifications (e.g., 

ensemble Kalman smoothers, ensemble square-root filters, and gain function) are the most 

commonly used techniques in the hydrology community (Table 1), despite the issue of slow 
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convergence caused by intrinsic assumptions, especially for domains with complexities 

[Moradkhani et al., 2005a; Weerts and El Serafy, 2006; Moradkhani et al., 2012; Wang et al., 

2017]. Recent studies have suggested that particle filtering (PF) [Arulampalam et al., 2002] is an 

alternative method to resolve the inclusion of unrealistic Gaussian assumptions in the EnKF. The 

PF method has more advantages than EnKF in reducing numerical instability by providing 

particle weights and using non-Gaussian state-space models [Liu et al., 2012]. However, this 

method is computationally more expensive as it generally requires more ensemble members 

[Moradkhani et al., 2005a; Liu et al., 2012].  

When assimilating data, model parameter specification and state initialization may play a 

crucial role, especially for short-range forecasting [Houtekamer and Zhang, 2016]. Generally, 

ensemble initialization of model states and parameters for the forecasting period can be 

generated approximately, e.g., using a random selection from uniform distributions for 

parameters and setting up the initial state values as an arbitrary number (e.g., zero) at the 

beginning of the forecasting period [Moradkhani et al., 2005a; Vrugt et al., 2005; Moradkhani et 

al., 2012; Xie and Zhang, 2013; DeChant and Moradkhani, 2014; Davison et al., 2017; 

Abbaszadeh et al., 2018]. Alternatively, the ensemble can be generated more carefully, e.g., 

specifying parameters from relevant distributions [Beven and Freer, 2001; Madsen and Skotner, 

2005; Ajami et al., 2007; Clark et al., 2008; He et al., 2012; Mendoza et al., 2012; Chen et al., 

2013; Zahmatkesh et al., 2015] and using a warm-up technique for states [Ajami et al., 2007; He 
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et al., 2012; Mendoza et al., 2012; DeChant and Moradkhani, 2014; Wang et al., 2018], as 

summarized in Table 1. 

The assimilation techniques described above generally require a large number of model 

evaluations to update parameter and state values and present predictive uncertainties, leading to 

computational challenges [Vrugt et al., 2008; Vrugt, 2016; Zhang et al., 2017], even with the 

benefit of parallel computation with multiple processors [Cintra and Velho, 2018]. Because 

keeping calculation time to a minimum is a key element for timely flood warnings and 

responding to emergency situations [Ballio and Guadagnini, 2004; Sene, 2008], it is necessary to 

find alternatives that significantly increase forecast lead time. Surrogate modeling can address 

this challenge by substituting computationally intensive models with computationally efficient 

metamodels, such as the polynomial chaos expansion (PCE). Through the expansion of 

orthogonal polynomials, approximate functions can be constructed and applied to hydrologic 

models. Recent studies have used PCE to perform robust uncertainty assessment of diverse 

hydrologic problems [Sochala and Le Maître, 2013; Fan et al., 2014; Wu et al., 2014; Wang et 

al., 2015; Fan et al., 2016; Wang et al., 2017; Wang et al., 2018; Dwelle et al., 2019] rather than 

running deterministic models. However, few studies have tested its effectiveness in a setting of 

real-time flood forecasting [Wang et al., 2015; Fan et al., 2016; Wang et al., 2017; Wang et al., 

2018].  

To fill the above gaps, we propose a novel integrated modeling framework that improves 

accuracy, predictability, and efficiency of real-time flood forecasting. Eighteen approaches to the 

This article is protected by copyright. All rights reserved.



8 
 
 

framework are presented, combining ways of constructing the surrogate models, specifying 

model parameters and states, and assimilating newly observed data. This study investigates (i) 

the effects of building methods of the PCE model and its capacity for real-time flood forecasting; 

(ii) the effects of specifying methods on predictive performance; (iii) the effects of single- and 

dual-assimilation techniques; and (iv) the computational time of the proposed approaches. 

2. Methodologies and Frameworks 

2.1. Methodologies 

2.1.1. Deterministic rainfall-runoff model: NAM 

To construct a surrogate model, simulate streamflow, quantify uncertainty, and assimilate 

observed data, a Nedbør–Afstrømnings model (NAM) [Nielsen and Hansen, 1973] is employed. 

As one of the widely used deterministic, lumped models, it is considered useful and flexible and 

has been applied to many catchments [Madsen, 2000; Butts et al., 2004; Thompson et al., 2004; 

O’Brien et al., 2013; Mockler et al., 2016]. Specifically, its design assumes three different and 

mutually integrated storages representing a surface zone, lower zone, and routing components 

that simulate overland flow, interflow, and base flow, respectively. The model requires two input 

forcing variables (𝑀𝐼) of spatially averaged precipitation and evapotranspiration, five model 

states (𝑀𝑆 = 5), and nine model parameter values (𝑀𝑃 = 9) listed in Table 2 [DHI, 2014]. The 

latter states and parameters control the amount of water content and the rates of release from the 

conceptualized storage compartments of the model. Because evapotranspiration is assumed to be 
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negligible during the rainy season with flooding events, the number of inputs used in this study is 

1 (𝑀𝐼 = 1). 

2.1.2. Surrogate model: polynomial chaos expansion 

Polynomial chaos expansion (PCE) [Wiener, 1938; Ghanem and Spanos, 1991] can build 

a surrogate model (𝓜𝑃𝐶𝐸) for any (deterministic rainfall-runoff) model (𝓜) through the 

expansions of orthogonal polynomials. This enables a polynomial approximation of the model 

through its deterministic input/output relationship. The form of a PCE model approximating a 

model output (e.g., streamflow 𝑦𝑡) as a function of model parameters 𝜽𝑡 is given as:  

 𝑦𝑡 = 𝓜(𝜽𝑡) ≈ 𝓜𝑃𝐶𝐸𝑡(𝜽𝑡) (1) 

Note that the surrogate model (𝓜𝑃𝐶𝐸) in Eq. 1 has the subscript of 𝑡, indicating that the 

surrogate model is a collection of PCEs constructed at each time step of interest. Also, only the 

parameter 𝜽𝑡 (this includes a subscript of 𝑡 as well) is chosen as an input variable during PCE 

construction, and other forcing or state inputs required to simulate hydrologic models are held 

constant [Sochala and Le Maître, 2013; Fan et al., 2016; Meng and Li, 2018; Wang et al., 2018; 

Dwelle et al., 2019; Tran and Kim, 2019]. This mathematical formulation conveys that PCE 

should be built separately for each time step at which a meteorological condition or model state 

is updated.  

Unlike previous studies based on Eq. 1, this study constructs the surrogate PCE model 

with Eq. 2, which has three characteristics: (i) the model input consists of meteorological data, 
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model states, and model parameters; (ii) model parameters do not change over time, which is 

different from Eq. 1; and (iii) there is no need to constantly create the PCE model over time 

(which is the most important practical feature). The single PCE model represents streamflow 

phenomena over the entire calibration period during which the PCE model was generated. 

Specifically, ensemble model output (𝒀𝒕) at each time step, including streamflow (𝑦𝑡) and states 

(𝒙𝑡), can be written as a function of model inputs (𝑿𝑡), including states (𝒙𝑡−1), climate data (𝒖𝑡), 

and time-invariant parameters (𝜽): 

 𝒀𝒕 = 𝓜(𝑿𝑡) ≈ 𝓜𝑃𝐶𝐸(𝑿𝑡) = � 𝜀αΨα(𝑿𝑡)
α ∈𝐴

 (2) 

 𝒀𝒕 = [𝑦𝑡 𝒙𝑡], 𝑿𝑡 = [𝒙𝑡−1 𝒖𝑡 𝜽]  (3) 

where 𝜀α represents the PCE coefficients to be determined for all multi-indices, 𝜶 =

�𝛼1, … , 𝛼𝑀𝑋� belonging to a set of candidate polynomials 𝐴, {𝜶 ∈ 𝐴}. Ψα(𝑿𝑡) represents the 

multivariate polynomials corresponding to the given input 𝑿𝑡. The polynomials are constructed 

as the product of univariate orthonormal polynomials: 

 Ψα(𝑿𝑡) =  �Ψα𝑗
(𝑗)�𝑿𝑡

𝑗�
𝑀𝑋

𝑗=1

 (4) 

where Ψα𝑗
(𝑗) is the univariate orthonormal polynomials of the j-th variables of the degree α𝑗 . In 

general, the size of 𝑿𝑡, 𝑀𝑋, is equal to the summation of the number of parameters, states, and 
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forcing inputs of the deterministic NAM model (i.e., 𝑀𝑋 = 𝑀𝑃 + 𝑀𝑆 + 𝑀𝐼). Set 𝐴 is determined 

by 𝑀𝑋 and the polynomial degree, 𝑝 of the PCE model as: 

 𝐴 = 𝐴𝑀𝑋,𝑝 = {𝜶 ∈ ℕ𝑀𝑋 ∶  |𝜶| ≤ 𝑝}, 𝑐𝑎𝑟𝑑 𝐴𝑀𝑋,𝑝 = �
𝑀𝑋 + 𝑝

𝑝
� (5) 

Various polynomial bases (e.g., uniform, Gaussian, beta, and gamma) can be chosen for Ψα(𝑿𝑡) 

from the Weiner–Askey scheme, depending on the probabilistic characteristics of model input 

variables 𝑿𝑡 [Xiu and Karniadakis, 2002]. 

Given the set of multivariate orthonormal polynomials (Ψα(𝑿𝑡)), the next step is to 

compute the PCE coefficients (𝜀α), which are influenced by the number of model evaluations 

(called the experimental design, 𝑁) and the polynomial degree, 𝑝 [Blatman and Sudret, 2010; 

Blatman and Sudret, 2011]. Increasing these numbers requires significant computational 

resources and the requirement is higher. When using the projection method [Ghiocel and 

Ghanem, 2002; Le Maı̂tre et al., 2002], one of the methods employed to compute PCE 

coefficients, 𝑁 is determined based on 𝑝 and the size of 𝑿𝑡, 𝑀𝑋 as N = (p+1)𝑀𝑋 . This number is 

large enough that it takes a considerable time to construct the surrogate model [Blatman and 

Sudret, 2011; Tran and Kim, 2019]. Reducing N is desirable as it lessens the computational cost. 

For the least-squares regression method adopted in this study, N is not defined a priori and is 

provided by the researcher, which can enable a significant decrease for the value of N [Berveiller 

et al., 2006; Sudret, 2008; Blatman and Sudret, 2010]. Also, 𝑝 can be determined by the 

complexity of model outputs and the subjectivity of researcher, with many studies choosing 
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values of 2 or 3 [Sochala and Le Maître, 2013; Fan et al., 2014; Wang et al., 2015; Wang et al., 

2017]. Investigating the effects of varying values of 𝑁 and 𝑝 on the PCE model allows for 

determination of the optimal values of the both parameters. According to the approach by 

Blatman and Sudret [2010], a metric of the leave-one-out (𝐿𝑂𝑂) cross-validation error in Eq. 

A.5 can illustrate the performance of the PCE model. A brief overview of the construction of the 

PCE surrogate model is detailed in Appendix A.  

2.1.3. Parameter inference: GLUE 

GLUE [Beven and Binley, 1992] refers to a series of procedures for inferring parameter 

posterior distributions and quantifying the associated uncertainties. The objective of GLUE is to 

select “behavioral” model runs based on the threshold values of likelihood functions with 

observations, among a large number of runs simulated with random combinations of parameter 

values. The latter parameter’s values can be sampled randomly from the prior distributions of 

each parameter (constrained in this study with upper and lower bounds of Table 2) using Monte 

Carlo or Latin hypercube sampling (LHS). For more efficient performance, LHS was used 

[Helton and Davis, 2003]. The likelihood functions proposed in this study are three metrics of 

Nash–Sutcliffe efficiency (𝑁𝑁𝑁), peak error (𝑃𝑁), and volume error (𝑉𝑁) defined in Appendix B, 

representing the model performance with respect to the shape, peak, and volume of hydrograph, 

respectively. Acceptance threshold values are determined according to an approach [Tran and 

Kim, 2019] in which relationships between accuracy and efficiency indices are identified for 

their determinations. Specifically, cutoff threshold values for the likelihood functions of 𝑁𝑁𝑁, 
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𝑃𝑁, and 𝑉𝑁 are suggested as 0.8, 5%, and 5%, respectively [Tran and Kim, 2019]. The model 

runs (or parameters) that satisfy the modelling error within the above thresholds for all the 

likelihood functions are defined here as “behavioral” runs (or parameters). 

2.1.4. Ensemble data assimilation: Single and dual EnKFs 

Among many reported techniques, the single ensemble Karman filter (EnKF) and the 

dual-ensemble Karman filter (dual EnKF) are often chosen to optimally update the ensemble of 

model states (and parameters) of forecasting systems with real-time observations, which can be 

coupled with any models [Evensen, 1994; Burgers et al., 1998; Moradkhani et al., 2005b; 

Whitaker, 2012]. Specific details are provided in Appendix C. 

The EnKF allows for the perturbation of observations to generate replicates of 𝒙𝑡−1 and 

𝜽𝑡, and the correction of the ensemble forecast members through an update step (Eqs. C.10 and 

C.18) [Moradkhani et al., 2005b]. This prevents the EnKF from a collapse in which all ensemble 

forecast members are likely to have similar values [Burgers et al., 1998]. As shown in Eq. C.11, 

observations can be perturbed by adding stochastic noise to the observed value. This observed 

error in measurements is assumed to be independent and is set to be proportional to the observed 

values, following a Gaussian distribution with predetermined variance. In this study, we assume 

that the standard deviation of the observational error is 5% of streamflow observations (i.e., 

noise) at each time step, similar to prior studies [Clark et al., 2008; DeChant and Moradkhani, 

2012; Fan et al., 2016; Bauser et al., 2018]. Sensitivity analysis on the observation error are 
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illustrated in Section S.1 of the Supplementary Material. Furthermore, overshooting or filter 

divergence problem in data assimilation happens when the ensemble size is small or the initial 

values of ensemble members are quite different from the true. To resolve this issue, we used a 

sufficiently large ensemble size and the posterior information of parameters to initialize the 

ensemble of EnKF. 

2.2. New modeling framework 

2.2.1. Obtaining prior and posterior parameter distributions of a deterministic model 

The first preparation step of the modeling framework is to obtain the prior and posterior 

parameter distributions for a deterministic model. There could be various ways to handle this, but 

in this study the following assumptions and methodologies are specifically applied. We first 

assume that each of the parameters follows a uniform distribution within specified bounds – the 

prior parameter distributions are simply attained by utilizing prior-known information for the 

bounds in Table 2. In contrast, the posterior parameter distributions are fitted to the 500 behavior 

parameters of GLUE – the 500 NAM behavior samples are identified as an optimal number from 

our previous study which has confirmed that more than the 500 parameter sets does not change 

the shape of the posterior distributions [Tran and Kim, 2019]. For consistency, this number will 

be also used for making the posterior distributions of PCE-I and PCE-II in Sec. 2.2.2.  

The mathematical expression of this step is as follows. For the warm-up and calibration 

periods, a model 𝓜 (NAM) can be simulated to attain behavioral runs with GLUE, i.e., 
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 �𝑦𝑡𝑖𝑖  𝒙𝑡𝑖𝑖� = 𝓜�𝒙𝑡−1𝑖𝑖 , 𝒖𝑡, 𝜽𝑖𝑖�, 𝑖𝑖 = 1, … , 𝑛𝑤;  𝑡 = 1, … , 𝑡𝑐 (6) 

where 𝑛𝑤 is the number of model runs to obtain the 𝑛 number of the behavioral set based on the 

likelihood scores estimated with the GLUE method [Tran and Kim, 2019]. Among the 𝑛𝑤 

random runs (referring to the light blue shaded region in Fig. 1) that are simulated by using 

parameter sets (𝜽𝑖𝑖) sampled randomly from the prior (uniform) distributions, the only 𝑛 

behavior runs (referring to the light red shaded region in Fig. 1) are employed for making the 

posterior distributions. 

Reducing the effects of uncertainty by initial conditions (𝒙0𝑖𝑖) is necessary for modeling. 

In this framework, a “warm-up” technique was employed to calibrate the deterministic model. 

Generally, a sufficient period of time (called the ‘warm-up’ period) can be set such that the 

influence of the initial condition is dissipated, and the warm-up is performed before entering the 

calibration period. This technique produces behavioral parameter sets much faster in GLUE, 

compared with cases that do not use the warm-up technique.  

2.2.2. Building PCE with two types of experimental design  

We propose two types of approaches for constructing the PCE model, depending on how 

the sample collections of the experimental design (𝓧𝒕) is composed. One approach is to build a 

PCE model (“PCE-I”) by collecting the training samples that are generated from the prior 

parameter distributions. The other approach is (“PCE-II”) uses samples that are formed by the 

posterior parameters distributions. The associated mathematical expression is 
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 �𝑦𝑡𝑖𝑖𝑖  𝒙𝑡𝑖𝑖𝑖� = 𝓜�𝒙𝑡−1𝑖𝑖𝑖 , 𝒖𝑡, 𝜽𝑖𝑖𝑖�, 𝑖𝑖𝑖 = 1, … ,𝑁;  𝑡 = 1, … , 𝑡𝑐 (7) 

where the 𝑁I set of 𝓧𝒕 (i.e., 𝑁 = 𝑁I for PCE-I) consists of model 𝓜 simulation results 

calculated from parameters sampled from the prior distributions (correspond to 𝑁I set sampled 

randomly from the results in the light blue shaded region over the calibration period in Fig. 1) 

[Sudret, 2008; Blatman and Sudret, 2010; Blatman and Sudret, 2011]. In contrast, the 

experimental design of the latter approach assumes that the 𝑁II set of 𝓧𝒕 (i.e., 𝑁 = 𝑁II for PCE-

II) are drawn from the more constrained, posterior parameter distributions (correspond to the 

light red shaded region over the calibration period in Fig. 1) [Tran and Kim, 2019]. All the 

samples were taken through LHS sampling [McKay et al., 1979].  

The former approach can be implemented easily and therefore has been used more 

commonly in the literature [Sudret, 2008; Blatman and Sudret, 2010; Blatman and Sudret, 2011]. 

However, for past periods in which observations exist, the second approach using a well-

calibrated set of parameters is beneficial in significantly reducing computational time [Tran and 

Kim, 2019]. It takes less time to build PCE in the second approach because less training samples 

(𝑁I is generally larger than 𝑁II) are required when estimating coefficients. On the other hand, in 

the context of real-time forecasting when no observations have been attained, the latter approach 

might cause a problem. Specifically, PCE models built with a set of “good” posterior parameters 

sets obtained only for a certain historic period of time would not necessarily demonstrate validity 

for unknown prediction periods. Evaluation of the applicability of the two approaches to real-

time flood forecasting will be addressed in Section 4.  
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Once the PCE models were constructed, the same GLUE procedure is made to obtain the 

posterior parameter distributions of both PCE models: 

 �𝑦𝑡𝑖𝑖  𝒙𝑡𝑖𝑖� = 𝓜𝑃𝐶𝐸�𝒙𝑡−1𝑖𝑖 , 𝒖𝑡, 𝜽𝑖𝑖�, 𝑖𝑖 = 1, … , 𝑛𝑤;  𝑡 = 1, … , 𝑡𝑐 (8) 

Note that the number 𝑛𝑤 is different depending on 𝑴𝒐𝒅𝒆𝒍 =  �NAM, PCE-I, PCE-II�. 

2.2.3. Specifying model parameters for data assimilation 

Determining initial conditions and parameter values before assimilating real-time 

observations over the forecasting period is a necessary step. The mathematical expression for 

preparing data assimilation (forecasting) is written as: 

 �𝑦𝑡𝑖  𝒙𝑡𝑖 � = 𝑴𝒐𝒅𝒆𝒍�𝒙𝑡−1𝑖 , 𝒖𝑡, 𝜽𝑖�, 𝑖 = 1, … , 𝑛;  𝑡 = 1, … , 𝑡𝑐   (9) 

where the initial ensemble of states (𝒙0𝑖 ) is set to an arbitrary number (e.g., zero) at the beginning 

of simulation (i.e., 𝑡 = 0) (Fig. 1). In terms of specifying the model parameters, two types of 

approach are proposed. First, similarly to most previous studies of data assimilation [Moradkhani 

et al., 2005b; Vrugt et al., 2005; Wang et al., 2009; Gharamti et al., 2013; Xie and Zhang, 2013; 

DeChant and Moradkhani, 2014; Davison et al., 2017], the ensemble of parameters over the 

periods (0 ≤ 𝑡 ≤ 𝑡𝑐) is assumed to follow a prior distribution. That is, the 𝑛 number of parameter 

sets are sampled from uniform distributions with predefined bounded ranges (i.e., from the 

results in the light blue shaded region in Fig. 1). The values of parameters remain unchanged, 

while those of state vectors are continuously updated until the beginning of the forecasting 
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period (i.e., 𝑡 = 𝑡𝑐). This is hereafter named “Random” set — referring to the use of random 

parameter sets for running Model of NAM, PCE-I, and PCE-II. 

An alternative way to this Random specification method is enabled by taking the 

advantage of the ability to calibrate model parameters with observed data before the forecasting 

period. Specifically, this method uses the posterior results of GLUE behavioral runs (referring to 

the light red shaded region in Fig. 1), i.e., selected parameter sets for running Model — called 

“Selected” specification method. The selected parameter sets for Model remain unchanged over 

the warm-up and calibration periods as well. As with the former approach, the values of state 

vectors are initially set to be zero at 𝑡 = 0 but are continuously updated until 𝑡 = 𝑡𝑐. We 

expected to see the EnKF process converge much faster and the forecasting results improve. 

2.2.4. Modeling approaches for forecasting 

In total, 18 modeling approaches (see Fig. 2) were developed by combining the modeling 

options with various techniques (NAM + PCE + GLUE + EnKF) in Sections 2.2.2 and 2.2.3. The 

modeling techniques were coupled to successfully perform ensemble flood forecasting and to 

meet the need for accurate and efficient flood forecasting. The 18 approaches represent 

permutations of the 3 × 2 × 3 subcases (Table 3). First, they were divided into three subcases 

corresponding to 𝑴𝒐𝒅𝒆𝒍, depending on whether a deterministic model or a PCE model was used 

over the calibration period (see Sec. 2.2.2) and how the latter was developed. Second, these 

modeling sets were divided into two subcases corresponding to Random or Selected sets, 
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depending on how the parameter sets before the forecasting period were specified (see Section 

2.2.3). Lastly, they were divided into three subcases depending on the methodology of data 

assimilation. The first of the three subcases did not use any data assimilation, and the other two 

used single- and dual-ensemble Kalman filters (see Sec. 2.1.4). We evaluated the modeling 

performance of the coupling framework by assessing accuracy, efficiency, and predictability in 

Sec. 4.2. The performance comparisons of the 18 approaches are expected to be a guide to which 

approach demonstrates better skill and most appropriate and which should be avoided. 

2.3. Performance metrics 

To assess the modeling performance of the 18 approaches, metrics representing accuracy, 

predictability, and efficiency were chosen, beginning with the accuracy metrics of Nash–

Sutcliffe efficiency (𝑁𝑁𝑁), absolute error (𝐴𝑁), and relative entropy (𝑅𝑁) [Kullback and Leibler, 

1951; Kullback, 1997; Kleeman, 2002]. Second, Brier scores (𝐵𝑁) [Brier, 1950], and the range of 

uncertainty (𝑈𝑅) were used to assess the predictability of probabilistic forecasts. Lastly, a metric 

calculating total runtime (𝑇𝑅𝑇) was evaluated to compare the computational efficiency of the 

tested approaches. 

𝑁𝑁𝑁, which is traditionally used to evaluate the accuracy power of deterministic models, 

is computed for each ensemble member (𝑖) over the entire computation time. In this study, 𝑁𝑁𝑁 

is expressed as: 
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 𝑁𝑁𝑁𝑖 = 1 −
∑ (𝑦𝑡𝑂𝑏𝑠 − 𝑦𝑡𝑖)2T
𝑡=1

∑ (𝑦𝑡𝑂𝑏𝑠 − 𝑦𝑚𝑒𝑎𝑛𝑖 )2T
𝑡=1

, 𝑖 = 1, … , 𝑛  (10) 

where 𝑦𝑡𝑂𝑏𝑠 and 𝑦𝑡𝑖 are the actual observation and i-th predicted output at time t; 𝑦𝑚𝑒𝑎𝑛𝑖  is the 

mean of the i-th predicted output over the entire forecasting period; T is the total number of time 

steps over the forecasting period from 𝑡𝑐 to 𝑡𝑓. 

Absolute error (𝐴𝑁) is differences between actual observations and predictions of each 

ensemble members at each time t. Thus, it varies with time and can be written as: 

        𝐴𝑁𝑡𝑖 = �𝑦𝑡𝑂𝑏𝑠 − 𝑦𝑡𝑖�, 𝑡 =  1, … , T;  𝑖 = 1, … , 𝑛  (11) 

Relative entropy (𝑅𝑁) is a measure of the statistical difference between probability 

distributions over the entire forecasting period of observations and model simulations [Kleeman, 

2002; Shukla et al., 2006; Giannakis and Majda, 2012]. Following Kleeman [2002] and Heo et 

al. [2014], 𝑅𝑁 can be defined as: 

 𝑅𝑁𝑖 = �log
𝜎𝑦𝑂𝑏𝑠
2

𝜎𝑦𝑖
2 +

𝜎𝑦𝑖
2

𝜎𝑦𝑂𝑏𝑠
2 − 1 � + �

(𝜇𝑦𝑖 − 𝜇𝑦𝑂𝑏𝑠)
2

𝜎𝑦𝑂𝑏𝑠
2 � , 𝑖 = 1, … , 𝑛  (12) 

where 𝜇𝑦𝑂𝑏𝑠 and 𝜇𝑦𝑖 are the mean, while 𝜎𝑦𝑂𝑏𝑠 and 𝜎𝑦𝑖 are the variance of streamflow 

observation and the i-th model prediction over the entire computation time from 𝑡𝑐 to 𝑡𝑓. Small 

values of relative entropy indicate that distribution of a given model is close to that of the 
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observation. This is also called Kullback-Leibler divergence between the two distributions, 

model and data, assuming Gaussianity of both. 

The Brier score (𝐵𝑁) is one of the most commonly used verification measures for 

assessing the predictability of probabilistic forecasts. The score is defined as the mean squared 

error of the probabilistic forecasts over the verification sample, expressed as: 

 𝐵𝑁 =
1
T
��𝑝𝑡

𝑓 − 𝑜𝑡�
2

T

𝑡=1

 (13) 

where 𝑝𝑡
𝑓 is the forecast probability for the t-th time, which refers to the ratio among ensemble 

reaching a predefined flow threshold; 𝑜𝑡 is the observed probability, which is 1 if observation at 

t-th time, 𝑦𝑡𝑂𝑏𝑠 is larger than the threshold, and 0 if it is not. In this study, this threshold value 

was chosen as the proportional rate of 90% of the true discharge peak. 

The uncertainty range (𝑈𝑅) is the range between the 5th and 95th percentiles of the 

ensemble outcomes (𝑞). It is computed over each computational time 𝑡 in hydrographs, 

expressed in Eq. 14: 

 𝑈𝑅𝑡 = 𝑞𝑡95 − 𝑞𝑡5, 𝑡 =  1, … , T (14) 

Lastly, the total run time (𝑇𝑅𝑇) for all of the approaches is defined as: 
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 𝑇𝑅𝑇 = �𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 × 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 + 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴� × 𝑛 + 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍 (15) 

where 𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 is the run time to compute one simulation of Model (NAM, PCE-I, and PCE-

II) over the warm-up and calibration periods, i.e., from 0 to 𝑡𝑐; 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴 is the run time to 

compute one simulation of Model with different DA methods over the forecasting period, i.e., 

from 𝑡𝑐 to 𝑡𝑓; and 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍 is the run time needed for building Model. For example, because 

it is unnecessary for constructing the deterministic model, the time for NAM is zero. The 

building run times for PCE-I and PCE-II will be calculated in detail in Sec. 4.1.2. The factor 

𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 represents the number of Model runs to obtain a single behavior run in GLUE, and 

remains 1 in A1 to A9, while it depends on Model for the rest of approaches. 

 Eq. 15 is a linear function with respect to the number of ensembles run, in which 

𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 × 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 + 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴 serves as the slope of the linear function and 

𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍 the intercept. The values of the slope and intercept and the executed times of the 18 

approaches are addressed in Section 4.2.  

3. Study Area and Experimental Setups 

In this study, the unified framework is applied to predict hourly streamflow in the Vu Gia 

watershed as shown in Fig. 3. The watershed is one of the largest in central Vietnam, with a total 

area of 1,679.8 km2 in the tropical region. It experiences a typical continental monsoon climate, 

with concentrated rainfall mainly from September to December. As the Vu Gia watershed is 

characterized by a large difference in elevation (slopes of approximately 30 %), floods occur 
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rapidly and frequently. The region has experienced intense severe flooding and significant 

damage [UNDP, 1999; Nga et al., 2015]. 

Streamflow data used for the outlet of the basin was collected hourly at Thanh My station 

– the only hydrometric station in the domain. Rainfall data was also observed hourly and 

obtained from two weather stations near the study area (Thanh My and Kham Duc station). The 

average rainfall over the basin (Fig. 4) was calculated through the Thiessen polygon method. 

Observations from Dec. 1 to 17, 2016, are employed, in which the data from Dec. 1 to 13 was 

used for the warm-up period (i.e., from 0 to 𝑡𝑤), the data from Dec. 13 to 15 for the calibration 

period (i.e., from 𝑡𝑤 to 𝑡𝑐), and the remaining data (assuming numerically that this data was 

newly provided at an hourly basis) corresponds to the forecasting period (i.e., from 𝑡𝑐 to 𝑡𝑓) (Fig. 

4). The effects of the length of warm-up period are illustrated in Supplementary Material. Note 

that rainfall forecasts has not been considered in this experimental design, what is done is 

hindcasting but one refers to the period between 𝑡𝑐 and 𝑡𝑓 as the “forecasting period”, allowing 

for replicating real-life operational flood-forecasting process. Also note that a source of 

uncertainty for rainfall forecasts has not been presented, but it could have been addressed in Eq. 

2 that has the flexibility to include ensemble precipitation inputs (𝒖𝑡). 

Determining the size of ensemble for forecasting (𝑛) is related to quantifying the 

uncertainty bounds and representing the EnKF. In previous studies, the ensemble size was 

selected randomly or large enough (at least 100 members) to fully identify the uncertainty 

confidence intervals [Cameron et al., 2000; Beven and Freer, 2001; Hossain and Anagnostou, 
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2005; Choi and Beven, 2007; Blasone et al., 2008; Jin et al., 2010; Shen et al., 2012]. A 

sufficient number of ensemble parameter sets to achieve both goals of efficiency and uncertainty 

quantification should be determined. Following our previous study [Tran and Kim, 2019], we 

used an n of 500 as the optimal size of the ensemble. 

4. Results 

4.1. Preparation steps before forecasting 

4.1.1. Attaining parameter posterior distributions 

 The posterior distributions of parameters can be generally attained by using Bayesian 

inference. As detailed in Section 2.1.3, we employed a relatively simple and robust method, 

GLUE [Beven and Binley, 1992], that does not require reformulation of the deterministic model 

code. Details on why we choose the likelihood functions of 𝑁𝑁𝑁, 𝑃𝑁, and 𝑉𝑁 (presented in 

Appendix B), how we determine the cutoff threshold values of each function, and which 

parameters are more sensitive, are described in Tran and Kim [2019]. We confirmed the benefits 

of a warm-up technique that significantly speeds up the GLUE process of finding the behavioral 

sets: without warm-up, no behavioral set was obtained from GLUE even after a sufficiently large 

number of NAM model runs, while with warm-up, a behavioral set was obtained after 

approximately 118.0 model runs for NAM (A10 to A12), 26.9 for PCE-I (A13 to A15), and 3.6 

for PCE-II (A16 to A18), respectively. Therefore, the factors, 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 are 118.0, 26.9, and 3.6 

for NAM, PCE-I, and PCE-II, respectively in A10 to A18. 
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4.1.2. Constructing the PCE models 

Determining the coefficients of the PCE-I and PCE-II models depends on the number of 

the experimental design (𝑁) and the polynomial degree (𝑝) [Blatman and Sudret, 2010; Blatman 

and Sudret, 2011]. To discover appropriate values for 𝑁 and 𝑝, the effect of experimental design 

𝑁 on PCE performance was first evaluated. Specifically, a number of simulations were repeated 

with the 𝑁 value varied between 10 and 5,000 but the value of 𝑝 was set as 3, and the 

performance results of 𝐿𝑂𝑂 for streamflow (𝑦) and the five model states (Table 2) computed. 

Fig. 5 shows that the 𝐿𝑂𝑂 values for streamflow and five state variables become smaller as the 

value of 𝑁 increases, and ceases to become smaller when 𝑁 approaches a certain value. For 𝑁 

values larger than this threshold, the model performance was almost indistinguishable (the left 

column plots in Fig. 5). From a visual inspection of Fig. 5, the optimal 𝑁 value for constructing 

the PCE-I and PCE-II models would be 1,000 and 100, respectively.  

A selection of the polynomial degree 𝑝 was made in a fashion similar to the 

aforementioned procedure. The value of 𝑝 was varied from 1 to 6 and 𝑁 was set as 1,000 (PCE-I) 

and 100 (PCE-II). From the results of Fig. 5 (the right column), the gradients of the 𝐿𝑂𝑂 metrics 

assessed changed considerably when 𝑝 was set to 3 and the values remained stable for large 

magnitudes of 𝑝. In terms of reducing the computational time to construct a PCE model, a low 

polynomial degree would be preferred. Thus, a 𝑝 of 3 would be an appropriate value to use when 

building both PCE models. With optimal values of 𝑁 of 1,000 and 100, and a 𝑝 of 3, PCE-I and 
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PCE-II models can be built to quantify the uncertainty range for flow prediction and to compare 

the degree of accuracy and efficiency with the results of the deterministic NAM.  

The total time to establish both PCE models is described (further details are in Tran and 

Kim [2019]). Obviously, the larger the number of the experimental design set, the more time is 

needed for computing 𝑁 ensemble runs. The time required to perform the 𝑁I and 𝑁II ensemble 

runs of NAM was 121.9 and 12.6 seconds for PCE-I and PCE-II, respectively. It also takes much 

more time to estimate PCE-I coefficients if one uses an ensemble set (𝑁I) generated from the 

prior distribution of the parameters than to compute PCE-II coefficients from parameter sets 

informed by the likelihood function. The time required to estimate PCE coefficients was 419.3 

and 11.3 seconds, respectively. The summation of these two times was considered to be the total 

time required to build the PCE models before forecasting: approximately 541.2 and 23.9 seconds 

for PCE-I and PCE-II, respectively. The construction time of PCE-II is much (~22 times) faster 

than that of PCE-I. 

4.1.3. Comparing the ensemble results of NAM and PCE models 

Over the calibration period, ensemble results composed of 500 Random and Selected runs 

were compared for three different models. To make the 500 Selected behavioral results, 58,977, 

13,444, and 1,822 (𝑛𝑤) random runs were required for NAM, PCE-I, and PCE-II, respectively. 

Compared with the NAM itself, using PCE models can reduce the amount of computational runs 
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by a factor of about 4.4 for PCE-I and 32.4 times for PCE-II model. The composing behavioral 

set for PCE-II was even faster (~7.4 times) than for PCE-I. 

Fig. 6 shows hydrographs for the 500 Random (A1 to A9) and Selected (A10 to A18) 

simulations for the three models. Their uncertainties are illustrated with a 90% confidence 

interval, which corresponds to 5 and 95% quantiles of the 500 ensemble members. Because we 

controlled the conditions for the behavioral set of GLUE, the overall comparison with the 

observed values for the results of the Selected cases (A10 to A18) is very satisfactory. 

Specifically, the 𝑁𝑁𝑁 value was always higher than 0.9 and both 𝑃𝑃 and 𝑉𝑉 values were less 

than 5% for all cases. However, streamflow curves for the Random simulations (A1 to A9) 

clearly show different patterns depending on the model. It can be anticipated that the results of 

these Random cases will not be encouraging and their uncertainties will be large. However, the 

results of some cases using PCE-II model were very satisfactory and their uncertainties small. 

As mentioned above, when making using observations to constrain the parameter sets 

(A10 to A18), the results of both PCE models are similar to those of the NAM and no substantial 

differences were observed. This confirmed that both PCE models have an equivalent degree of 

accuracy as the NAM and can provide an excellent match to the deterministic model. In terms of 

efficiency, it is also advantageous to use the PCE model (discussed in Sections 4.2.1 and 5.1), 

and there is no reason to hesitate adopting the PCE model for streamflow prediction. 

4.2. Flood forecasting with 18 approaches 
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For past periods when observations for calibration were collected, all models performed 

well. We then tested the forecasting performance of the three models using the permutation that 

resulted in 18 approaches in Table 3. Results of the real-time flood forecasting for these 

approaches are shown in Fig. 7 and 8, in which the 500 ensemble results are illustrated with a 90% 

confidence interval at each time step. The verification metrics for the simulations, specifically 

𝑁𝑁𝑁, 𝐴𝑁, 𝑅𝑁, 𝐵𝑁, and 𝑈𝑅, and the peak values of hydrographs are compared in Fig. 9 and Fig. 

11. Lastly, the total run time with respect to the ensemble size was computed for the 18 

approaches in Fig. 10. In this section, we analyze the results and draw conclusions from the 

following four perspectives: (i) the applicability of PCE-I and PCE-II models for real-time flood 

forecasting, (ii) the impact of estimating appropriate parameter conditions for forecasting, (iii) 

the effect of using EnKF and dual EnKF, and (iv) the degree of improving efficiency 

performance among the approaches.  

4.2.1. PCE-I versus PCE-II model for real-time flood forecasting 

Depending on the model used in forward simulations (NAM, PCE-I, and PCE-II), the 

results for the 18 approaches were divided into three groups. Almost all of the results of the six 

approaches using the PCE-II model were worse than those obtained with both NAM and PCE-I 

(Figs. 7 and 8). The only exception is for the A1 and A4, which did not have assimilation and 

whose parameter sets used were based on prior uniform distributions. No verification metrics 

computed using the results of forecasting based on PCE-II were satisfactory, except for the 

metric of 𝑈𝑅����. However, if the accuracy is not ensured, the better performance in terms of 𝑈𝑅���� is 

This article is protected by copyright. All rights reserved.



29 
 
 

not meaningful. Specifically, 𝑁𝑁𝑁 values were low, approximately 0.7; 𝐴𝑁 values at flood peak 

time (𝐴𝑁𝑝𝑒𝑎𝑘) were larger than 750 m3/s; 𝑅𝑁 was approximately 0.01; and 𝐵𝑁 was equal to 1 

(Fig. 9). No metric improvements was found for the approaches based on PCE-II, even if 

combinations of assimilation and calibration techniques were applied. We concluded that the 

PCE-II model can reproduce streamflow characteristics well for the past period, but not for the 

future. 

Conversely, the forecasting results of the approaches based on the PCE-I model are 

almost similar to those obtained with NAM, and in some cases even better. The latter can be seen 

in Fig. 9; the verification metrics of 𝑁𝑁𝑁, 𝐴𝑁𝑝𝑒𝑎𝑘, 𝑅𝑁, and 𝑈𝑅���� show better performance for 

PCE-I than for NAM results (e.g., A5 vs. A2, A6 vs. A3, A14 vs. A11, and A15 vs. A12) (see 

Table 4). In particular, the 𝑅𝑁 results in Fig. 9c illustrate that the PCE-I results are closer to the 

observed values than those obtained with NAM (A15 is the best result with the smallest value of 

𝑅𝑁). 𝐵𝑁 corresponding to PCE-I also has smaller values, close to zero, which indicates instances 

of when predictability of probabilistic forecasts matched predictability of observation (Fig. 9d). 

Therefore, the PCE-I model can be adapted to substitute the NAM in performing real-time flood 

forecasting, as well as in capturing the uncertainty of calibration period. 

Comparing the modeling results in terms of the computation speed, it is clear that 

simulating a surrogate model using the PCE theory is significantly faster than with a 

deterministic model such as NAM. The “slopes” of the runtime curves of Fig. 10 indicate both 

PCE approaches are approximately 20 times faster (A4 to A9) and ~80 times faster (A13 to A18) 
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than the corresponding approaches using the NAM. Similarly, if we compare efficiency between 

PCE model approaches, using PCE-II may or may not offer much improvement in efficiency 

over PCE-I. There is only 10 % improvement when Random specification is applied (see the 

slope of A4, A5, A6 vs. A7, A8, A9 in Fig. 10), while there is about six times improvement 

when simulating Selected approaches (see the slope of A13, A14, A15 vs. A16, A17, A18). The 

use of surrogate models therefore did not sacrifice accuracy. The flood prediction accuracy of 

PCE-1 model presented here is similar to that of the original NAM, and computational efficiency 

has been found to be highly superior. 

4.2.2. Random versus Selected specification for forecasting 

The approaches using the Selected specification generally show a better performance than 

those using the Random specification. This is especially noticeable in the NAM and PCE-I 

approaches, and rarely in PCE-II. First, in the approaches without data assimilation, their 

accuracy was significantly improved (compare A1 vs. A10 and A4 vs. A13). The performance of 

A10, represented by the 𝑁𝑁𝑁, 𝐴𝑁𝑝𝑒𝑎𝑘, 𝑅𝑁, and 𝑈𝑅���� metrics, was improved by about 95, 73, 61, 

and 89% compared with A1, and the performance of A13 about 86, 72, 79, and 92% over A5, 

respectively. Despite the noticeable improvement of A10 and A13, these results were still not 

ideal. The large 𝐴𝑁 error at the peak of A10 and A13 was approximately 450 m3/s less than the 

observation, and the 𝐵𝑁 value was close to 1 (Fig. 9, Table 4). On the other hand, in the 

approaches in which data assimilation was used, the improvement effect for Selected 

specification was not greater than when it was not used. The increasing performance for the same 
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metrics was about 55, 22, 36, and 56% (A2 vs. A11), and about 56, 52, 44, and 49% (A3 vs. 

A12). Here, the parameter specification effect was smaller because DA improves the absolute 

error magnitude. 

Determination of states and parameters that can increase accuracy and predictability 

requires more computation time because a large number of model runs are carried out to make an 

inference for posterior distributions. For approaches using NAM (A1 vs. A10, A2 vs. A11, and 

A3 vs. A12), it took 56, 41, and 30 times longer; while for PCE-I (A4 vs. A13, A5 vs. A14, and 

A6 vs. A15), it took 13, 10, and 8 times, respectively (Fig. 10). Because of this computational 

burden, parameter inference can be a weakness for real-time flood forecasts where it is important 

to ensure sufficient time ahead. However, if the surrogate model is employed, the necessary 

repetition of estimating the posterior distribution can be performed quickly, and such a weakness 

can be overcome. 

4.2.3. Single versus dual EnKF in real-time flood forecasting 

Convincing evidence is presented that both single and dual EnKF can improve accuracy 

and predictability during real-time forecasting (with the exception of approaches using PCE-II). 

Both of these techniques perform well but the dual EnKF is the superior choice. As an example 

of the approaches using NAM, the three metrics of 𝐴𝑁𝑝𝑒𝑎𝑘, 𝐵𝑁, and 𝑈𝑅���� in the Random cases 

provided slightly better results: 515.64 vs. 500.45, 0.75 vs. 0.66, and 367.34 vs. 340.12, 

respectively (A2 vs. A3). But, in the Selected cases, there was a relatively large performance 
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improvement for the two metrics of 𝐴𝑁𝑝𝑒𝑎𝑘 and 𝐵𝑁: 401.26 vs. 242.62 and 0.78 vs. 0.24 (A11 vs. 

A12). Similar trends were observed when using PCE-I, and the difference is remarkable, 

especially for the 𝐴𝑁𝑝𝑒𝑎𝑘 metric (e.g., about 2.5 times for A5 vs. A6). 

From the overall inspection, it can be determined that the dual EnKF can adjust the peak 

of a hydrograph more accurately, and give a more confident result with a smaller uncertainty 

range. Therefore, we compared the distribution of flood peak values for 500 ensemble members 

in Fig. 11. This figure confirms that the joint update of states and parameters improves accuracy 

at flood peak more effectively than a single update of states. Also for the joint update, the 

expected value of the distribution was closer to the peak observation, and its variability is smaller 

(a narrower distribution). 

Because the updating process is made twice, the dual EnKF is computationally more 

expensive. The computation time it takes to update states and parameters increased almost 

linearly. That is, the calculation time doubled or tripled for the cases of single and dual EnKF 

(using Random specification), respectively, as compared to the case without assimilations. 

However, for the approaches using the Selected specification, the calculation time did not seem 

to change significantly (Fig. 10), not because the time required for Kalman filtering was reduced, 

but because the time required for the parameter inference was so large that the filtering effect 

was masked. 

5. Discussion 
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5.1. How can PCE be constructed for flood forecasting? 

From the simulated flood forecasting results presented in Section 4.2, it is apparent that 

the manner of PCE construction has a significant impact on forecasting. The biggest difference 

in building PCE-I and PCE-II involves setting the range of the training sample (called 

experimental design). It is not surprising that a surrogate model trained for an event provides 

acceptable results only for the event trained. The flexibility to generalize to well-behaved 

outcomes for another event (e.g., a future event) is relatively low. This is why the calibrated 

model is often not appropriate for future forecasting. On the other hand, if a surrogate model can 

mimic the behavior of the original model to the greatest extent possible in a wide variety of 

situations and conditions, it will be able to capture its characteristics more comprehensively, thus 

playing a sufficient role in forecasting future events. Here we provide evidence the PCE-I model 

behaves like the NAM for the forecasting period, while the PCE-II behaves differently (despite 

both models behaving properly for the calibration period). To examine the robustness of both 

PCE model results, the Sobol’ method (detailed in Appendix D) was used to implement the 

variance-based measures of parameter sensitivities [Sobol', 2001], which is commonly used as a 

global sensitivity analysis technique to determine the key parameters in the model [Wang et al., 

2018]. 

First, the PCE-I posterior histograms of the nine parameters obtained from GLUE for the 

calibration period are similar to those of the NAM, except for Lm and TG (Fig. 12). For these 

two parameters, a posterior histogram difference is a minor issue because the choice of the 
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parameter values does not affect the end result, i.e., the sensitivity of the parameters is low. 

Other parameters of CQOF (1st) and CK12 (2nd) are the two most influential parameters to the 

model results, that is, their sensitivities are high. This result is consistent for both NAM and 

PCE-I (Fig. 13). The slight difference between the results of PCE-I and NAM, observed from the 

investigation of the sensitivity and the posterior distribution, is because we chose an appropriate 

number of training samples when constructing the PCE-I model. If one greatly increases the 

number of training sets, the difference in the above results will essentially disappear. 

Second, the failure of PCE-II to mimic the NAM for the forecasting period can be 

explained largely due to the fact that PCE-II was trained using the only 100 behavioral parameter 

sets that were optimized for the calibration event. Model results will only vary within the 

boundaries that its trained data understand, and it will not be able to simulate the behavior of 

another event with a high skill, i.e., model “overfitting” occurs. However, over the calibration 

period, PCE-II always shows a good predictive performance for almost all parameter sets 

(compare the hydrographs of A1 to A3 with A7 to A9 in Fig. 6). In other words, no matter what 

parameter one chooses, satisfactory results are always achieved, which indicates that the 

influence of parameters is excluded. The posterior histograms of parameters for PCE-II (Fig. 12c) 

are almost uniform, except for the parameter of CQOF, which is the only one that can affect the 

end result, especially maintain the accuracy of the flood peak (note that the sensitivity of this 

parameter for PE is unusually high in Fig. 13c). If we change the threshold value of the 

likelihood function corresponding to the flood peak chosen to make the behavior set a slightly 

This article is protected by copyright. All rights reserved.



35 
 
 

less constrained, this parameter will no longer play a role in constraining the result and follow a 

uniform distribution as well. 

Another interesting aspect of the sensitivity test is that the sensitivity results of PCE-II 

differ from those of NAM and PCE-I, but are similar to those of NAM-II. The sensitivities of 

parameters have been altered in PCE-II. The NAM-II in Fig. 13d is hypothetically introduced to 

mimic the situations of PCE-II. Specifically, it refers to the sensitivity results when the NAM 

model was tested based on the posterior distributions (which are also used to select the training 

parameter set for building PCE-II), not the prior distributions of the parameters. 

5.2. Is it feasible to construct a time-invariant PCE model? 

A long-lasting challenge in hydrologic modeling is how to estimate parameters or state 

vectors optimized for all external and internal conditions. This would not be an issue for 

estimating previously described variables if the amount of data for calibration was sufficient. 

However, in the case of future forecasts during which no observation for calibration is available, 

it poses a problem. To tackle this challenging problem, Fan et al. [2016] and Wang et al. [2017] 

adopted a modeling framework in Eq. 1, so that PCE models should be reconstructed 

continuously at every time step. This method is flawless in theory, but requires additional 

computational resources (see efficiency comparisons in Supplementary Material). That is, the 

time to configure the PCE at every time step must be added to the total model simulation time, 
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i.e., making the slope of Fig. 10 steeper. This disadvantage can be more pronounced when 

constructing surrogate models for complex, process-based deterministic models. 

Unlike previous efforts, this study adopted an alternative modeling framework such as Eq. 

2; that is, the PCE model is time invariant and thus developed only once over the calibration 

period. Therefore, during real-time forecasting, the total run time consists only of computational 

intervals needed for data assimilation of all ensemble members. This enhances computational 

efficiency significantly (see efficiency comparisons in Supplementary Material). This framework 

is not perfect, but the potential error that can occur by using the time-independent PCE model is 

minimized by coupling the data assimilation technique, thus complementing accuracy. From a 

comparison of the results of 18 approaches, we confirmed that the modeling framework needed 

for building a PCE model (especially PCE-I) is feasible. This embraces the notion that the PCE 

construction does not require information for future conditions but can be made with historically 

available data available prior to the forecasting period. 

5.3. Do surrogate and specification sacrifice efficiency? 

Our results indicate that a sophisticated combination of three independent techniques (i.e., 

surrogate modeling, parameter inference, and data assimilation) supplies superior predictive 

performance for real-time ensemble flood forecasting. The combination of many methods 

however leads to an essential reduction in efficiency. Because data assimilation has been shown 

to be necessary, we must accept efficiency deterioration. However, for surrogate modeling and 
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parameter specification, it remains to be determined whether the additional time required by the 

technique combination leads to efficiency deterioration. First, for construction of the surrogate 

model, particularly PCE-I, the efficiency issue may not be relevant because the task does not 

require any observations for calibration and can be completed before the flooding season. In 

contrast, obtaining an ensemble of parameter sets from posterior distributions should be carried 

out immediately prior to the flood forecasting period, when observations are necessary. 

Therefore, it may take an appreciable time for completing this task, and method efficiency may 

be affected. 

5.4. What are the differences between PCE and data-driven models? 

Both PCE and data-driven models can provide satisfactory results for short-term forecast, 

but key differences between them exist. (1) PCE has a functionality of including model 

parameters and states as an input vector – this enables formal uncertainty quantification and 

model sensitivity analysis; (2) hydrologic/hydraulic model state variables (and parameters) are 

theoretically observable and in the case of process-based models have their own physical 

meaning, making it easier to physically interpret the results of PCE; (3) while purely data-driven 

methods are trained with observations, PCE is trained through high-fidelity samples supervised 

by physical relations, thus requiring fewer data samples for training; (4) data-driven models often 

have assumptions about the distributions governing variability of their outputs, and therefore this 

can lead to non-physical results (e.g., negative outputs quantifying mass, streamflow, etc.) and 

fail to display non-normal, bi-modal, or other complex behaviors.  

This article is protected by copyright. All rights reserved.



38 
 
 

5.5. Can modeling framework be applied to high-dimensional problems? 

 While the implementation and analysis of experiments is valid for the presented scope of 

the experimental design, one needs to proceed with care when extending this approach to more 

complex models. The most fundamental concern that remains is whether the proposed 

framework can be applied to high-dimensional problems in which fully distributed models are 

used. The dimension of a distributed model can be defined as the product of the number of grids 

cells and the number of parameters (and states). The dimension order of any truly physical 

models is therefore large, and extending our framework directly to such a model is not 

straightforward – known as the “curse of dimensionality” [Caflisch, 1998; Davis and Rabinowitz, 

2007; Sudret, 2007]. By examining how each of the methods mentioned in the framework 

resolves the problem of reducing dimensions efficiently and to what extent it has been applied, 

the feasibility of applying the proposed framework can be estimated. 

Regarding the surrogate modelling (PCE), techniques such as Bayesian compressive 

sensing [Sargsyan et al., 2014] and sparse regression [Blatman and Sudret, 2008; Blatman and 

Sudret, 2010] proved capability and efficiency in many prior studies using complex models with 

high dimensions, up to 80 dimension [Sargsyan et al., 2014]. However, these studies avoided the 

calculation of fully distributed problems by assuming the spatial variability of parameters to be 

homogeneous. Second, for the parameter specification, any optimization technique applied to 

high-dimensional problems could be relevant. For example, one of the large scale optimization 

algorithms, the competitive swarm optimizer (CSO) [Cheng and Jin, 2015] was employed up to 
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the dimension of 5,000. These algorithms have been successfully optimized for problems of very 

large scale, but their optimizations have been applied to simple analytical functions rather than 

(hydrologic or meteorological) models. To our knowledge, the number of dimensions has not yet 

been high in problems of hydrologic optimization, in which the dimension order is almost 

identical to the number of parameters. The spatial variability of parameters is not fully addressed 

in most studies, although a “multiplier” concept [Pokhrel et al., 2008]. Last, EnKF is made 

possible in problems of higher dimensionality through covariance localization. It is mainly 

applied in meteorological models with many parameters, and the number of dimensions can be 

up to the order of millions, e.g., 2,592,000 [Fujita et al., 2007]. The localization technique was 

able to reduce the dimensions efficiently.  

6. Conclusions 

This study presents a new robust, accurate, and efficient modeling framework that 

consists of the novel integration of three individual techniques: surrogate modeling, parameter 

inference, and data assimilation. This unified framework is suited for ensemble flood forecasts 

quantifying prediction uncertainty. The strengths of each technique are (i) the use of PCE offers 

significant computational savings; (ii) the inference of parameters before data assimilation 

allows for faster convergence, smaller uncertainties, and greater accuracy of the end results; and 

(iii) the Kalman filters assimilate errors that occur in real-time flood forecasting. Based on the 

results of the 18 refined approaches according to the permutations of the above methods, the 

following conclusions can be drawn: 
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• Of the two methods for PCE construction, only PCE-I (constructed based on prior, 

uniform distributions) is acceptable for forecasting, although both methods reproduce 

observations of the calibration period well. Note that PCE-II (constructed based on 

posterior distributions) does not provide satisfactory results, even when coupled with 

other inference and assimilation techniques. The results obtained from PCE-I are similar, 

and in some cases even superior to those based on the original deterministic NAM model. 

The PCE used is a single model constructed before the forecast period and thus does not 

change over time — this is a unique feature different from previous studies in which PCE 

was rebuilt at each calibration or forecasting time step. 

• Especially for short-range forecasting, model parameter input and state initialization 

plays a crucial role. In some previous studies, posterior distributions were employed to 

derive a parameter ensemble before forecasting, but the effect of such parameter 

specification was not quantified for the data assimilation. Selected parameter 

specification (made through the GLUE framework in this study) offers improved 

accuracy and predictability of forecast outcomes over the Random parameter 

specification. However, it is less computationally efficient, and the issue is expected to be 

especially problematic when using complex deterministic models. 

• The usefulness of single and dual EnKFs is demonstrated through comparisons of the 18 

approaches. Both techniques have excellent overall performance, but the dual EnKF 

showed a slightly better performance than the single EnKF. There was a remarkable 
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improvement in reproducing the hydrograph peak values (Table 4). In the absence of 

assimilation, the Selected approach offers superior results and if it cannot be used, data 

assimilation must be applied. 

• The computational time discussed in this study consists of three principal components: 

surrogate building time, parameter inference time, and data assimilation time. Our 

conclusions may marginally vary depending on the particular model used and the region 

in which it is applied, but here the efficiency improvement from using the surrogate 

modeling technique overwhelms any efficiency deterioration derived from the other two 

components. That is, the use of the metamodel makes it possible to effectively address 

computational efficiency. This feasibility is maximized when many ensemble outcomes 

are needed and when complex, physically-based models should be simulated. 

• From the comprehensive analyses presented above, A15 is our first choice and A14 is the 

second. When only a deterministic model is used, we recommend A12 (or A11). Using 

the unified framework developed here, real-time and ensemble flood forecasting are 

promising directions, allowing for satisfactory measures of accuracy, predictability, and 

efficiency. Ultimately, the framework developed in this study contributes to a shift in 

modeling paradigm arguing that complex, high-fidelity, physical hydrologic and 

hydraulic models should be increasingly adopted for real-time and ensemble flood 

forecasting   
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Appendix A. The construction of PCE surrogate model 

A.1. The determination of PCE coefficients 

The least-square regression method is employed to establish the PCE coefficients: 

 
𝜀 = argmin𝜀∈ℝ|𝐴|𝔼 ��𝒀𝒕 − � 𝜀𝜶Ψ𝜶(𝑿𝑡)

𝜶∈𝐴

�
2

� (A.1) 
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where 𝓧𝒕 = �𝒳𝑡
(1), … ,𝒳𝑡

(𝑁)� consists of 𝑁 sets of input variables 𝑿𝑡 (the set 𝓧𝒕 is called the 

experimental design), and 𝒴𝑡 = �𝓜�𝒳𝑡
(1)�, … ,𝓜�𝒳𝑡

(𝑁)�� be the corresponding model 

evaluations �𝒴𝑡
(𝑘) = 𝓜�𝒳𝑡

(𝑘)�, 𝑘 = 1, … ,𝑁�. The estimates of the PCE coefficients are thus 

given by: 

 
𝜀̂  =  argmin𝜀∈ℝ|𝐴|

1
𝑁
��𝒴𝑡

(𝑘) − � 𝜀𝜶Ψ𝜶�𝒳𝑡
(𝑘)�

𝜶∈𝐴

�
2𝑁

𝑘=1

 (A.2) 

which is equivalent to: 

 𝜀̂ = (𝐅T𝐅)−1𝐅T𝒴𝑡 (A.3) 

where 𝐅 is so-called the information matrix of size 𝑁 × |𝐴| whose elements are defined as 

 𝐅𝑘,𝑙 = Ψ𝑙�𝒳𝑡
(𝑘)�      𝑘 = 1, … ,𝑁; 𝑙 = 0, … , 𝑐𝑎𝑟𝑑 𝐴 − 1 (A.4) 

Once a PCE model is derived, the prediction using the model is extremely simple and 

straightforward: Input the values of model input to Eq. 2 and then obtain the values of model 

response 𝒀𝒕. 

A.2. PCE error estimates 

The leave-one-out cross-validation error (𝐿𝑂𝑂) was designed to overcome the over-

fitting limitation of normalized empirical error by using cross-validation [Blatman and Sudret, 
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2010]. In this study, after the number of sets 𝓧𝒕  is defined, the 𝐿𝑂𝑂 is used to determine the 

polynomial degree. The leave-one-out cross-validation error can be written as: 

 
𝐿𝑂𝑂 =  

1
𝑁
��

𝓜�𝒳𝑡
(𝑘)� −𝓜𝑃𝐶𝐸�𝒳𝑡

(𝑘)�
1 − 𝒽𝑘

�

2𝑁

𝑘=1

 (A.5) 

where 𝒽𝑘 is the k–th diagonal term of the matrix 𝐅(𝐅T𝐅)−1𝐅T. 

Several software tools are currently available for research purposes to carry a range of 

UQ tasks, including PCE regression,  e.g., the MIT Uncertainty Quantification Library [Parno et 

al.], the Uncertainty Quantification Toolkit [Debusschere et al., 2016], Dakota [Eldred et al., 

2010], Chaospy [Feinberg and Langtangen, 2015], and the UQLab [Marelli and Sudret, 2017]. 

The latter libraries are used in this study. 

Appendix B. Likelihood functions used in GLUE 

Nash–Sutcliffe efficiency (𝑁𝑁𝑁, [-]): 

 
𝑁𝑁𝑁𝑖 = 1 −

∑ (𝑦𝑡𝑂𝑏𝑠 − 𝑦𝑡𝑖)2T
𝑡=1

∑ (𝑦𝑡𝑂𝑏𝑠 − 𝑦𝑚𝑒𝑎𝑛𝑖 )2T
𝑡=1

, 𝑖 = 1, … , 𝑛  (B.1) 

Peak error (𝑃𝑁, [%]): 

 
𝑃𝑁𝑖 =

�𝑦𝑚𝑎𝑥𝑂𝑏𝑠 − 𝑦𝑚𝑎𝑥𝑖 �
𝑦𝑚𝑎𝑥𝑂𝑏𝑠 × 100,             𝑖 = 1, … , 𝑛 (B.2) 

This article is protected by copyright. All rights reserved.



45 
 
 

Volume error (𝑉𝑁, [%]): 

 
𝑉𝑁𝑖 =

�𝑉𝑂𝑏𝑠 − 𝑉𝑖�
𝑉𝑂𝑏𝑠

× 100,             𝑖 = 1, … , 𝑛 (B.3) 

where 𝑉 is the total volume of hydrograph. 

Appendix C. Ensemble Kalman filter (EnKF) 

C.1. States updated 

An ensemble of state vector, 𝒙 consisting of 𝑛 by 𝑀𝑆 is propagated through 𝑴𝒐𝒅𝒆𝒍 of 

both deterministic model and PCE models, such that each state vector represents one realization 

of the model states. Then, the state forecast is made for each ensemble member as follows 

(forecast step): 

 𝒙𝑡𝑖− = 𝑓�𝒙𝑡−1𝑖+ , 𝒖𝑡, 𝜽𝑖� + 𝑤𝑡
𝑖,       𝑖 = 1, … , 𝑛 (C.1) 

where 𝒙𝑡𝑖− is the i-th forecasted states vector at time 𝑡, 𝒙𝑡−1𝑖+  is the i-th updated states vector at 

time 𝑡 − 1, 𝑀𝑆 is the number of model states 𝒙 = �𝑥𝑗, 𝑗 = 1, … ,𝑀𝑠�, and 𝑛 is the number of 

ensemble members. The nonlinear propagator 𝑓(·) contains 𝑀𝐼 model input vector 

𝒖𝑡, �𝑢1,𝑡, … , 𝑢𝑀𝐼,𝑡� and the i-th model parameter vector 𝜽𝑖 corresponding to the model state 𝒙𝑡−1𝑖+ . 

The term 𝑤𝑡
𝑖 is the i-th model error and presents all uncertainty related to model structure, forcing 

data and model parameter [Moradkhani et al., 2005b]. In this study, the model error is 

represented by the uncertainty of model parameters. 
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Suppose that the actual observation (𝑦𝑡+1𝑂𝑏𝑠) is taken at time 𝑡 + 1 and that we intend to 

assimilate the vector of observations into the model. The predicted output of model, 𝑦𝑡 +1
𝑖  at time 

𝑡 + 1 is computed with the propagator ℎ(·) as a function of 𝜽𝑖, 𝒖𝑡+1, and 𝒙𝑡𝑖−, which can be 

written as: 

 𝑦𝑡+1𝑖 = ℎ�𝒙𝑡𝑖−, 𝒖𝑡+1, 𝜽𝑖� (C.2) 

To represent the error statistics in the forecast step, we assume that at time 𝑡 + 1, we have 

an ensemble of n forecasted states, 𝒙𝑡− ≜ (𝒙𝑡1−, … , 𝒙𝑡𝑛−) and an ensemble of n forecasted 

outputs, 𝑦𝑡+1 ≜ (𝑦𝑡+11 , … , 𝑦𝑡+1𝑛 ). Then the ensemble means of forecasted state (𝒙�𝑡−) and the 

ensemble mean of forecasted output (𝑦�𝑡+1) are estimated by: 

 
𝒙�𝑡− ≜

1
𝑛
�𝒙𝑡𝑖−
𝑛

𝑖=1

 (C.3) 

 
𝑦�𝑡+1 ≜

1
𝑛
�𝑦𝑡+1𝑖
𝑛

𝑖=1

 (C.4) 

 Then, we define the ensemble error matrix of forecasted state, 𝑁𝑡+1−  around the ensemble 

mean by: 

 𝑁𝑡+1− ≜ [𝒙𝑡1− − 𝒙�𝑡− … 𝒙𝑡𝑛− − 𝒙�𝑡−] (C.5) 

and the ensemble of output error matrix, 𝑁𝑡+1
𝑦  is: 
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 𝑁𝑡+1
𝑦 ≜ [𝑦𝑡+11 − 𝑦�𝑡+1 … 𝑦𝑡+1𝑛 − 𝑦�𝑡+1] (C.6) 

The error covariance matrix is calculated including: 

- The error covariance matrix of ensemble forecast state: 

 
𝑄𝑡+1𝑥 =

1
𝑛 − 1

𝑁𝑡+1− (𝑁𝑡+1− )T (C.7) 

- The error covariance matrix of model output: 

 𝑄𝑡+1
𝑦 =

1
𝑛 − 1

𝑁𝑡+1
𝑦 (𝑁𝑡+1

𝑦 )T (C.8) 

- The forecast cross-covariance of the states and output: 

 
𝑄𝑡+1
𝒙𝑦 =

1
𝑛 − 1

𝑁𝑡+1− (𝑁𝑡+1
𝑦 )T (C.9) 

In order for the EnKF to maintain sufficient spreads in ensemble and to prevent from 

filter divergence [Whitaker and Hamill, 2002], observations should be treated as random 

variables. At each time, an observation is perturbed by adding noise drawn from a Gaussian 

distribution of mean zero and predefined covariance [Burgers et al., 1998]. Thus, in the updated 

step, the forecasted state set 𝒙𝑡+1𝑖−  is updated using the Kalman gain 𝐾𝑡+1𝑥  as follow: 

 𝒙𝑡𝑖+ = 𝒙𝑡𝑖− + 𝐾𝑡+1𝑥 �𝑦𝑡+1
𝑂𝑏𝑠,𝑖 − 𝑦𝑡+1𝑖 � (C.10) 
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where 𝑦𝑡+1
𝑂𝑏𝑠,𝑖 is the i-th trajectory of the observation replicates generated by adding to the actual 

observation (𝑦𝑡+1𝑂𝑏𝑠) error, 𝜂 (i.e., a perturbation to observation) that has zero mean and the 

covariance, 𝑁𝑡+1
𝑦𝑂𝑏𝑠, which is determined in Section 2.1.4, as follow: 

 𝑦𝑡+1
𝑂𝑏𝑠,𝑖 = 𝑦𝑡+1𝑂𝑏𝑠 + 𝜂𝑡+1𝑖 , 𝜂𝑡+1𝑖 ~𝑁 �0, 𝑁𝑡+1

𝑦𝑂𝑏𝑠� (C.11) 

The Kalman gain matrix can be calculated by: 

 𝐾𝑡+1𝑥 = 𝑄𝑡+1
𝒙𝑦 �𝑄𝑡+1

𝑦 + 𝑄𝑡+1𝑂𝑏𝑠�
−1

 (C.12) 

where 𝑄𝑡+1𝑂𝑏𝑠 is the covariance matrix of the observation, 𝑦𝑡+1
𝑂𝑏𝑠,𝑖, which is defined similar to 𝑄𝑡+1

𝑦 . 

 𝑄𝑡+1𝑂𝑏𝑠 =
1

𝑛 − 1
𝑁𝑡+1𝑂𝑏𝑠(𝑁𝑡+1𝑂𝑏𝑠)T (C.13) 

 𝑁𝑡+1𝑂𝑏𝑠 ≜ �𝑦𝑡+1
𝑂𝑏𝑠,1 − 𝑦𝑡+1𝑂𝑏𝑠 … 𝑦𝑡+1

𝑂𝑏𝑠,𝑛 − 𝑦𝑡+1𝑂𝑏𝑠� (C.14) 

C.2. Dual parameters-states updated 

The dual EnKF requires two interactive and parallel filters for the states and parameters 

estimation [Moradkhani et al., 2005b]. The parameters are first updated and then the states. In 

order to extend the applicability of the single EnKF to the simultaneous parameters–states EnKF, 

one needs to treat the ensemble size of parameter sets similar to the model state. However, the 

parameter values are not changed after the forecast step:  
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 𝜽𝑡+1𝑖− = 𝜽𝑡𝑖+ (C.15) 

 Using the parameters forecasted and the replicates of forcing data, states of the ensemble 

model and model prediction are computed as follows: 

 𝒙𝑡𝑖− = 𝑓�𝒙𝑡−1𝑖+ , 𝒖𝑡, 𝜽𝑡+1𝑖− � + 𝑤𝑡
𝑖,       𝑖 = 1, …𝑛 (C.16) 

 𝑦𝑡+1𝑖 = ℎ�𝒙𝑡𝑖−, 𝒖𝑡+1, 𝜽𝑡+1𝑖− � (C.17) 

Updating the ensemble parameter member is made: 

 𝜽𝑡+1𝑖+ = 𝜽𝑡+1𝑖− + 𝐾𝑡+1𝜽 �𝑦𝑡+1
𝑂𝑏𝑠,𝑖 − 𝑦𝑡+1𝑖 � (C.18) 

where 𝐾𝑡+1𝜽  is the Kalman gain for correcting the parameter trajectories obtained with: 

 𝐾𝑡+1𝜽 = 𝑄𝑡+1
𝜽𝑦 �𝑄𝑡+1

𝑦 + 𝑄𝑡+1𝑂𝑏𝑠�
−1

 (C.19) 

where 𝑄𝑡+1
𝜽𝑦  is the cross-covariance matrix of model parameters and model output. Now use the 

updated parameter 𝜽𝑡+1𝑖+  to the step given in Appendix C.1 to update the ensemble model states 

simultaneously. 

Appendix D. Sobol’ sensitivity analysis 

 Sobol’ method is a variance-based sensitivity analysis that identifies parameter 

sensitivities by evaluating the variance of model output (𝑦) due to the variability of individual 

parameters and their parameter interactions [Sobol', 2001; Saltelli, 2002; Crestaux et al., 2009]. 
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Instead of the model output, model performance measures (e.g., 𝑁𝑁𝑁, 𝑃𝑁, and 𝑉𝑁 in this study) 

can be used [Tang et al., 2007]. The total variance, 𝐷(𝑦) is decomposed as: 

 
𝐷(𝑦) = �𝐷𝑎

𝑀𝑃

𝑎=1

+ �𝐷𝑎𝑏
𝑎<𝑏

+ ⋯+ 𝐷1…𝑀𝑃 (D.1) 

where 𝐷𝑎 is the variance of 𝑦 due to the changes of 𝑎-th model parameter, 𝜽𝑎, denoting the first 

order contribution to 𝐷(𝑦); 𝐷𝑎𝑏  is the variance of 𝑦 due to the pairwise interactions of 𝑎-th and 

𝑏-th parameters, referring to the second order contribution. 

The first (𝑁𝑎) and total (𝑁𝑇𝑜𝑡𝑎𝑙,𝑎) order Sobol’ sensitivity indices can be respectively 

expressed as: 

 
𝑁𝑎 =

𝐷𝑎
𝐷(𝑦)

 (D.2) 

 
𝑁𝑇𝑜𝑡𝑎𝑙,𝑎 = 1 −

𝐷~𝑎

𝐷(𝑦)
 (D.3) 

where 𝐷~𝑎 is the variance averaged over the contributions resulting from all parameters except 

for 𝜽𝑎. 
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