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Summary
In this paper, we present an adaptive algorithm to construct response sur-
face approximations of high-fidelity models using a hierarchy of lower fidelity
models. Our algorithm is based on multi-index stochastic collocation and auto-
matically balances physical discretization error and response surface error to
construct an approximation of model outputs. This surrogate can be used for
uncertainty quantification (UQ) and sensitivity analysis (SA) at a fraction of the
cost of a purely high-fidelity approach. We demonstrate the effectiveness of our
algorithm on a canonical test problem from the UQ literature and a complex
multiphysics model that simulates the performance of an integrated nozzle for
an unmanned aerospace vehicle. We find that, when the input-output response
is sufficiently smooth, our algorithm produces approximations that can be over
two orders of magnitude more accurate than single fidelity approximations for
a fixed computational budget.
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1 INTRODUCTION

Quantifying uncertainty in simulation-based prediction of engineered systems is essential for credible certification and
design. Traditional sampling-based approaches for quantifying uncertainty, such as Monte Carlo (MC), require repeated
evaluations at varying parameter realizations. Consequently, MC methods are often computationally intractable for
high-fidelity simulation models because they require a prohibitively large number of evaluations to obtain moderate accu-
racy in response statistics. In contrast, surrogate methods such as polynomial chaos,1-4 Gaussian processes,5,6 low-rank
decompositions,7-10 and sparse grid interpolation11-14 can be used to build an approximation of the input-output response,
often at a fraction of the cost of MC sampling. Once the surrogate has been constructed, various uncertainty quantifi-
cation (UQ) tasks, such as sensitivity analysis, density estimation, etc., can then be performed on the approximation at
negligible cost.*

Despite the improved efficiency of surrogate methods relative to MC sampling, building a surrogate can still be
prohibitively expensive for high-fidelity simulation models. Fortunately, a selection of models of varying fidelity and

*Reduced order models can also be used to construct surrogates and have been applied successfully for UQ on many applications.15-17 These methods
do not construct response surface approximations, but rather solve the governing equations on a reduced basis.
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computational cost are typically available for many applications. For example, aerospace models span fluid dynamics,
structural and thermal response, control systems, etc. Leveraging an ensemble of models can facilitate significant reduc-
tions in the overall computational cost of UQ, by integrating the predictions of quantities of interest (QoI) from multiple
sources.

Multifidelity methods utilize an ensemble of models, enriching a small number of high-fidelity simulations with
larger numbers of simulations from models of varying prediction accuracy and reduced cost, to enable greater exploration
and resolution of uncertainty while maintaining deterministic prediction accuracy. The effectiveness of multifidelity
approaches depends on the ability to identify and exploit relationships among models within the ensemble. The relation-
ships among models within a model ensemble vary greatly, and most existing approaches focus on exploiting a specific
type of structure for a presumed model sequence. For example, References 18-21 build approximations that leverage
a hierarchy of models of increasing fidelity, with varying physics and/or numerical discretizations. Multilevel22 and
multi-index23 also leverage a set of models of increasing fidelity, with the additional assumption that a model sequence
forms a convergent hierarchy. Such a hierarchy can be formed from a sequence of finite element discretizations to the
solutions of a partial differential equation (PDE), for example, which converges to the exact solution of the governing
equations as the finite element mesh is refined. Some attention has been given to building multi-fidelity approximations
using models that do not admit a strict ordering of fidelity;24,25 however, literature in this area is limited.

In this paper, we focus on multi-level/multi-index surrogate methods, observing that access to a sequence of numerical
model discretizations can be more practical than access to an ensemble of models of varying physics fidelity. Multilevel
methods22,26,27 build the multi-fidelity surrogate as a linear combination of approximations of the differences between
the QoI of models of increasing fidelity/discretization. Resources are allocated to each model level, controlled by a single
hyper-parameter, specifying the level of discretization for example, in a manner that balances computational cost with
increasing accuracy. In many applications, however, multiple hyper-parameters may control the model discretization,
such as the mesh and time step sizes. In these situations, it may not be clear how to construct a one-dimensional (1D)
hierarchy represented by a scalar hyper-parameter. To overcome this limitation, a generalization of multi-level collocation,
referred to as multi-index stochastic collocation (MISC), was developed to deal with multivariate hierarchies with multiple
refinement hyper-parameters.23

In this paper, we will present an adaptive extension of MISC and use this algorithm to reduce the cost of quantifying
uncertainty in the performance of a supersonic jet engine nozzle. The main contributions of this paper are:

• The extension of MISC to function approximation. The original MISC papers focused on estimation of moments using
quadrature.

• The development of an adaptive multi-index collocation approach based upon sparse grid approximation. The seminal
multi-index collocation paper used a priori estimates of model and parameter importance to allocate samples across
the model ensemble. Our algorithm adaptively balances discretization error introduced by numerically solving the
governing equations, response surface error, and parameter importance.

• Formulation of a multi-index method for variance based sensitivity analysis.
• Application of multi-index collocation to an engineering application of practical importance, specifically UQ of a nozzle

of an unmanned aerospace vehicle.

Multi-level/multi-index surrogate methods are closely related to many multilevel/multifidelity sampling
algorithms.24,25,28-32 These sampling algorithms leverage correlation between the outputs of multiple models to reduce
the variance in statistical estimators of quantities such as expectation. This variance reduction can result in orders of
magnitude reduction in the computational cost of quantifying uncertainty, but like traditional MC sampling, the error
decreases slowly as the number of samples is increased which can still render this approach infeasible in some contexts.
As a rough guide, multi-fidelity surrogate methods are best applied to models which with moderate dimensionality
and smooth input-output responses and sampling based methods are better suited to models with large numbers of
parameters and for QoI with low regularity.

The remainder of this paper is organized as follows. Section 2 introduces two motivating examples: an
advection-diffusion model problem and an aero-thermo-structural analysis of the performance of a supersonic jet engine
nozzle. Section 3 presents the numerical discretization used to solve the aforementioned models, and introduces the
sparse grid interpolation method which is the foundation of our approach. The adaptive multi-index collocation method
is presented in Section 4, and Section 5 describes how to use MISC for global sensitivity analysis. Finally, in section 6, we
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highlight the strengths of the adaptive multi-index method (AMISC) as demonstrated on the advection-diffusion model
problem and the engineering-scale model of the supersonic nozzle.

2 PROBLEM SETUP

We seek to quantify uncertainty in a broad class of stochastic partial differential equations (PDE). Let D ⊂ R𝓁 , for 𝓁 = 1, 2,
or 3 and dim(D) = 𝓁, be a physical domain; T > 0 be a real number; andΓ ⊆ Rd, for d ≥ 1 and dim(Γ) = d, be the stochastic
space. The PDE is defined as { ut(x, t,Z) = (u),(u(x, t,Z)) = 0,

u(x, 0,Z) = u0(x,Z),
(1)

where t is the time, x = (x1,… , x𝓁) is the physical coordinate,  is a (nonlinear) differential operator,  is the boundary
condition operator, u0 is the initial condition, and Z = (Z1,… ,Zd) ∈ Γ are a set of random variables characterizing the
random inputs to the governing equation. The solution u ∈ V is a vector-valued stochastic quantity

u ∶ D × [0,T] × Γ → R
n, (2)

for some suitable function space V and where D = D × 𝜕D is the closure of the interior domain. As an example, u(x, t, z)
can be a vector of temperatures, pressures, and velocities for a specific location in the domain x, specific time t, and for a
specific realization z of the stochastic variable Z.

Often, one is more interested in quantifying uncertainty in a particular functional of the solution, called the quantity
of interest (QoI), rather than the full solution. Let

F[u] ∶ V → R
q, q > 0. (3)

be such a function, where F is typically a continuous and bounded functional. Then, we are interested in estimating
statistics of the function

f (z) = F[u(⋅, z)] ∶ Γ → R
q. (4)

which assigns the value of the quantity of interest F[u] to each realization of the random variables z. Expression (4) allows
us to express the QoI as a function of the random variables without needed to explicitly state the dependence of the QoI
on the PDE solution.

2.1 Advection diffusion equation

As a stochastic model problem, we will use the following transient advection-diffusion PDE, in two spatial dimensions
(D = [0, 1]2), to highlight the strengths and weaknesses of our proposed approach,

𝜕u
𝜕t

(x, t, z) + ∇u(x, t, z) − ∇ ⋅ [k(x, z)∇u(x, t, z)] = g(x, t) (x, t, z) ∈ D × [0, 1] × Γ

u(x, t, z) = 0 (x, t, z) ∈ 𝜕D × [0, 1] × Γ, (5)

with forcing g(x, t) = (1.5 + cos(2𝜋t)) cos(x1), and subject to the initial condition u(x, 0, z) = 0. Following,11 we model the
diffusivity k as a random field represented by the Karhunen-Loéve (like) expansion (KLE)

log(k(x, z) − 0.5) = 1 + z1

(√
𝜋L
2

)1∕2

+
d∑

k=2
𝜆k𝜙(x)zk, (6)
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with

𝜆k =
(√

𝜋L
)1∕2

exp

(
−
(⌊ k

2
⌋𝜋L)2

4

)
k > 1, 𝜙(x) =

⎧⎪⎨⎪⎩
sin

(
(⌊ k

2
⌋𝜋x1)
Lp

)
k even ,

cos
(

(⌊ k
2
⌋𝜋x1)
Lp

)
k odd ,

(7)

where Lp = max(1, 2Lc), L = Lc
Lp

and Lc = 0.5.
In this example we truncate (6) at d = 10 terms and choose Zk, k ∈ {1… , d} to be uncorrelated independent and

identical uniform random variables distributed on [−
√

3,
√

3]. Using 10 terms captures 99.99999996 percent of the total
energy of the untruncated expansion. We choose a random field which is effectively 1D so that the error in the finite
element solution is more sensitive to refinement of the mesh in the x1-direction than to refinement in the x2-direction.

The advection diffusion Equation (5) is solved using linear finite elements and implicit backward-Euler timestepping.
In the following we will show how solving the PDE with varying numbers of finite elements and timesteps can reduce
the cost of approximating the quantity of interest

f (z) = ∫D
u(z) 1

2𝜋𝜎2 exp

(
−
||x − x⋆||22

𝜎2

)
dx, (8)

where x⋆ = (0.3, 0.5) and 𝜎 = 0.16. The advection diffusion model, defined here, can be inexpensively evaluated and
therefore allows for exhaustive exploration of the behavior of our proposed multi-index collocation approach.

2.2 Aero-thermo-structural model of a jet engine nozzle

One of the main objectives of this paper is to quantify uncertainty in a supersonic jet engine nozzle. Realistic modeling
of the nozzle requires a multiphysics approach that couples aerodynamic, structural and thermal analyses. In this paper
we use the model introduced in Reference 33, and Figure 1 provides a conceptual diagram of its components. This model
performs a steady-state analysis of top-of-climb flight, where temperatures and stresses are the highest. Forty random
variables were identified and characterized from experimental data, simulations, or expert judgment. Each variable and
its distribution is described in Appendix A.

We have developed an automated suite of coupled multidisciplinary analysis tools for the steady aero-thermal-
structural analysis of a supersonic nozzles called MULTI-F. MULTI-F is written in Python and calls the open source codes
SU234 and AERO-S35 for fluid and thermal/structural analyses, respectively. The internal and external flow is modeled by
Euler equations which are solved using SU2. One-way feed-forward coupling is used to model the interaction between the
fluid and structural analyses. Specifically the temperature obtained from the aerodynamic analysis furnishes the bound-
ary condition on the inner wall of the thermal model. The pressure and temperatures obtained from the aerodynamic
and thermal analyses then are used to provide the inner wall pressure and the temperature distribution used in a linear
structural analysis. An elastostatic boundary value problem representing the equilibrium of internal and external forces
is considered for the structural analysis while a Poisson boundary value problem representing the steady state heat trans-
fer is considered for the thermal analysis. The other boundary conditions are state-independent; a convection boundary
condition is specified on the outer wall of the thermal model, while a fixed displacement boundary condition is imposed
on the outer edges of the baffles and stringers in the structural model.

F I G U R E 1 (Left) schematic of the
nozzle components. (Right) Component
numbering. These figures can be found
in Reference 33 [Color figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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In the following we will leverage different resolutions of both the CFD and structural meshes to reduce the cost of
quantifying uncertainty in four model QoI: mass, thrust, load-layer temperature failure ratio, and thermal-layer failure
criteria.

3 MULTIFIDELITY MODELING

In this paper, we present a method to efficiently estimate statistics of the QoI (4) obtained from models of complex
physical systems (1) . For most, if not all, practical applications, the solutions of the governing equations and statis-
tics of the resulting QoI cannot be computed analytically and numerical approximations must be employed. In this
section, we discuss the impact of numerical simulation errors and response surface errors on the quantification of
uncertainty.

Given a set of governing Equation (1), we assume access to a PDE solver that approximates the solution u of these
equations for a given fixed z. We also assume this solver has a set of hyper-parameters—mesh size, time step, maximum
number of iterations, convergence tolerance, etc.—which can be used to estimate the QoI f at varying accuracy and cost.
Differing settings for these hyper-parameters produces simulations of varying fidelities (resolution). We refer to approaches
that leverage only one model or solver setting as single-fidelity methods and approaches that leverage multiple models
and settings as multi-fidelity methods.

As stated in the introduction, quantifying uncertainty in numerical simulations can be costly, consequently it is
common to construct a surrogate (function approximation) of the model parameters-to-output map. In this section, we
introduce the solver parameters used to solve the two models considered in this paper (Section 3.1) and then present
the method used to build surrogates of a single fidelity model (Section 3.2). These foundations are used to construct a
multi-fidelity surrogate in Section 4.

3.1 Physical approximation

The accuracy and cost of a model is often determined by a set of solver parameters, such as mesh size, time step, tol-
erances of numerical solvers. Let n𝛼 denote the number of such parameters for a given model. Furthermore let l𝛼i ∈ N

denote the number of values that each solver parameter can assume, such that the multi-index 𝜶 = (𝛼1,… , 𝛼n𝛼
) ∈ Nn𝛼 ,

𝛼i ∈ 𝛼i = {1,… , l𝛼i} can be used to index specific values of the solver parameters. Finally let f̂𝜶(z) to denote a
single-fidelity physical approximation of the QoI f(z) using the solver parameters indexed by 𝜶. In this section we detail
the solver indices 𝜶 for the two models considered in this paper and describe their effect on the accuracy and cost of f̂𝜶(z).

3.1.1 Advection-diffusion model

The advection-diffusion Equation (5) is solved using the Galerkin finite element method with linear finite elements and
the implicit backward-Euler time-stepping scheme. Let h1 and h2 denote the mesh-size in the spatial directions x1 and
x2. Then given some base coarse discretization hj,0, we create a sequence of l𝛼j uniform triangular meshes of increasing
fidelity by setting h𝛼j = hj,0 ⋅ 2−𝛼j , 0 ≤ 𝛼j < l𝛼j , where hj,0 = 1

4
and l𝛼j = 6, j = 1, 2. The number of vertices in the spatial

mesh is (h−1
𝛼1

+ 1)(h−1
𝛼2

+ 1).
The backward-Euler scheme used to evolve the advection-diffusion equation in time is an implicit method and uncon-

ditionally stable; consequently, the time-step size Δt can be made very large. In this paper, we use an ensemble of l𝛼3

time-step sizes Δt𝛼1,𝛼3 = Δt𝛼3,0 ⋅ 2−𝛼3 , 0 ≤ 𝛼3 < l𝛼3 to solve (5) and set l𝛼3 = 6 and Δt𝛼3,0 = 1∕4. For high enough 𝛼1 and 𝛼2,
the ensemble represents a sequence of models of increasing accuracy.

The cost of solving the advection-diffusion is dependent on both the number of mesh vertices and the number of
time-steps. The number of mesh vertices is 2(𝛼1+2)(𝛼2+2), whereas the number of time-steps is 2𝛼3+2. In the following
we use a conservative estimate for the computational cost of evaluating the advection diffusion model. Specifically we
assume that the cost is O(2(𝛼1+2)(𝛼2+2)(𝛼3+2)). This cost model is representative of the best scaling that one could hope
for when solving the advection diffusion on a large scale. It mimics the use of a linear solver whose costs grows lin-
early with the number of degrees of freedom and a finite element assembly which is constant regardless of the mesh
discretization.
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F I G U R E 2 The error in E[f ] for varying mesh and temporal resolutions. The legend labels denote the mesh discretization parameter
values (𝛼1, 𝛼2, 𝛼3) used to solve the advection diffusion equation. Numeric values represent discretization parameters that are held fixed while
the symbol ⋅ denotes that the corresponding parameter is varying. The dashed lines represent the theoretical rates of the convergence of the
deterministic error when refining h1 (left), h2 (middle), and Δt (right)

Figure 2 depicts the changes induced in the error of the mean of the QoI, that is, E[f ], as the mesh and temporal
discretizations are changed.†The error decreases quadratically with both h1 and h2 and linearly with Δt until a sat-
uration point is reached. These saturation points occur when the error induced by a coarse resolution in one mesh
parameter dominates the others. For example the left plot shows that when refining h1 the final error in E[f ] is dic-
tated by the error induced by using the mesh size h2, provided Δt is small enough. Similarly the right plot shows,
that for fixed h2, the highest accuracy that can be obtained by refining Δt is dependent on the resolution of h1.
In Section 6.1, we leverage this varying cost-vs-accuracy profile to efficiently estimate uncertainty in the advection-
diffusion QoI.

3.1.2 Aero-thermal-structural model for a jet engine nozzle

The nozzle model has two solver parameters which control accuracy and cost. These parameters specify the mesh resolu-
tions for the fluid and structural analyses. The internal and external nozzle flow is calculated using SU2, an open-source
software suite for multiphysics simulations.34 The governing Euler equations are discretized in SU2 using a finite volume
method with a standard edge-based data structure. The first discretization index 0 ≤ 𝛼1 < 3 indexes the resolution of the
CFD mesh. Specifically the meshes indexed by 𝜶 represent a sequence of three increasingly refined meshes. The coarsest
CFD mesh is depicted in the left of Figure 3.

The nozzle thermal and structural analyses are calculated using AERO-S, an open-source finite element method
(FEM) analysis software.35 The second discretization index 0 ≤ 𝛼2 < 5 of the nozzle model indexes a sequence of
increasingly refined structural meshes. The coarsest structural mesh is depicted on the right of Figure 3.

The relative computational cost of each nozzle model approximation is given in Table 1. The cost is given in wall time
using 4 CPUs for the CFD model and 1 CPU for the structural model (the structural model cannot currently be run in
parallel).‡

3.2 Stochastic approximation

Given evaluations of f̂𝜶(z) at various realizations of the random parameters z, this section describes a method to construct
surrogates that can interpolate these samples. With this goal let 𝜷 = (𝛽1,… , 𝛽n𝛽

) ∈ N
n𝛽 denote a multi-index that controls

the computational cost of constructing a surrogate and its corresponding accuracy. For example, 𝛽i could be the num-
ber of univariate samples in the ith variable dimension, 1 ≤ i ≤ n𝛽 = d, used to construct a tensor product interpolant.

†The expectation is computed using the same ten samples for all model resolutions. This allows the error in the statistical estimate induced by small
numbers of samples to be ignored. The reference solution is obtained using the model indexed by (6, 6, 6).
‡The timings in Table 1 were obtained with 4 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (3.40GHz with turbo boost) processors and 64GB of RAM.
The absolute numbers are not important, only the relative timings.
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F I G U R E 3 (Left) The coarse (𝛼1 = 0) 2D CFD mesh for the nozzle geometry and pressure contours for the fluid moving from left
to right. (Right) The coarse mesh (𝛼2 = 0) of the structural model with geometry specified using the three-dimensional parameterization.
The fluid moves from left to right

𝜶1 𝜶2 0 1 2 3 4

0 36.3 39.3 44.2 61.5 131.2

1 88.5 90.5 95.7 113.1 184.2

2 293.6 297.4 300.0 317.5 384.5

T A B L E 1 Computational cost (in seconds on 4 CPUs) of the
nozzle model

We refer to the entries of 𝜷 as stochastic approximation hyper-parameters and denote the surrogate, built with this choice
of parameters, as f̂𝜶,𝜷 .

Numerous methods, such as those discussed in the introduction, have been developed to build surrogates of simulation
models. In this paper we choose to focus on sparse grid surrogates because the single-fidelity formulation, presented in
this section, can easily be extended to use multiple model fidelities as shown in Section 4.

3.2.1 Tensor-product interpolation

In this section, we describe tensor-product interpolation. Knowledge of tensor-product interpolation is an essential com-
ponent of sparse grid approximation. Let f̂𝜶,𝜷(z) be an M-point tensor-product interpolant of the function f̂𝜶 , with n𝛽 = d.
This interpolant is a weighted linear combination of tensor-product of univariate Lagrange polynomials

𝜙i,j(zi) =
m𝛽i∏

k=1,k≠j

zi − z(k)i

z(j)i − z(k)i

, i ∈ {1,… , d}, (9)

defined on a set of univariate points z(j)i , j ∈ {1,… ,m𝛽i}.§ Specifically the multivariate interpolant is given by

f̂𝜶,𝜷(z) =
∑
j≤𝜷

f̂𝜶(z(j))
d∏

i=1
𝜙i,ji(zi). (10)

The partial ordering j ≤ 𝜷 is true if all the component wise conditions are true.
Constructing the interpolant requires evaluating the function f̂𝜶 on the grid of points

𝜷 =
d
⊗
i=1

i
𝛽i
=
[
z(1) … z(M𝜷 )

]
∈ R

d×M𝜷 . (11)

§For tensor-product approximation and sparse grid approximation we can use n𝛽 and d interchangeably because n𝛽 = d.
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We denote the resulting function evaluations by 𝜶,𝜷 = f̂𝜶(𝜷) =
[
f̂𝜶(z(1)) … f̂𝜶(z(M𝜷 ))

]T ∈ R
M𝜷×q, where the number

of points in the grid is M𝜷 =
∏d

i=1 m𝛽i .
It is often reasonable to assume that, for any z, the cost of each simulation is constant for a given 𝜶. So letting W𝜶

denote the cost of a single simulation, we can write the total cost of evaluating the interpolant W𝜶,𝜷 = W𝜶M𝜷 . Here, we
have assumed that the computational effort to compute the interpolant once data has been obtained is negligible, which
is true for sufficiently expensive models f̂𝜶 . In this paper, we use the nested Clenshaw-Curtis points

z(j)i = cos
(
(j − 1)𝜋

m𝛽i

)
, j ∈ {1,… ,m𝛽i}, (12)

to define the univariate Lagrange polynomials. The number of points m(l) of this rule grows exponentially with
the level l, specifically m(0) = 1 and m(l) = 2l + 1 for l ≥ 1. We remark here that any univariate sequence of
points can be used to construct a sparse grid. However, the most efficient rules are nested and tailored to the
distribution of the random variables Z. Clenshaw-Curtis points are popular for uniform variables and weighted
Leja sequences36 can be used for any continuous bounded variable as well as for a broad class of unbounded
variables.

When using surrogates for uncertainty quantification, it is often useful to compute the expectation of the approxima-
tion. The expectation 𝜇𝜶,𝜷 of a tensor product interpolant can be computed without explicitly forming the interpolant and
is given by

𝜇𝜶,𝜷 = ∫Γ

∑
j≤𝜷

f̂𝜶(z(j))
d∏

i=1
𝜙i,ji (zi) d𝜔(z) =

∑
j≤𝜷

f̂𝜶(z(j))vj. (13)

The expectation is simply the weighted sum of the Cartesian-product of the univariate quadrature weights vj =∏d
i=1 ∫Γi

𝜙i,ji(zi) d𝜔(zi), which can be computed analytically.

3.2.2 Sparse grid interpolation

The computational effort required to generate function values for a tensor-product interpolation is proportional to the
number of grid points, which grows exponentially with the number of random parameters d. In this section we introduce
sparse grid interpolation which can construct multivariate function approximations with accuracy comparable to that of
tensor-product approximations, but at a fraction of the cost.

The sparse grid interpolant and expectation of the function f̂𝜶 can be expressed as a linear combination of
low-resolution tensor-product interpolants37

f̂𝜶,(z) =
∑
𝜷∈

c𝜷 f̂𝜶,𝜷(z) 𝜇𝜶, =
∑
𝜷∈

c𝜷 𝜇𝜶,𝜷 , (14)

where the coefficients c𝜷 are given by

c𝜷 =
∑

j∈⊗d
i=1{0,1}

(−1)|j|1𝜒(𝜷 + j), 𝜒(k) =
{

1 k ∈ 
0 otherwise

. (15)

Recalling that 𝜷 are the grid points needed to build the tensor product interpolation f̂𝜶,𝜷 , then the points in a sparse
grid are  = ∪𝜷∈𝜷 . When using nested univariate sequences to construct the tensor product grids we can write

 = ∪
𝜷∈diff

𝜷
, diff

𝜷
= 𝜷∖ ∪

𝜷⋆∈
𝜷⋆≤𝜷

𝜷⋆ , ||𝜷||1 > 0,

where diff
0 = Ø and diff

𝜷
∩diff

𝜷⋆ = Ø if 𝜷 ≠ 𝜷⋆. This decomposition of the sparse grid points indicates that many sparse
grid points are shared among its constituent tensor-product grids, and thus the total number of points in the sparse grid
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d 2 5 10 20 40

M(l) 2.5e+01 3.1e+03 9.8e+06 9.5e+13 9.1e+27

M𝜷 1.3e+01 6.1e+01 2.2e+02 8.4e+02 3.3e+03

T A B L E 2 The number of points M(l) in a
isotropic sparse grid and the number of points Ml in
a tensor-product for increasing number of random
parameters and fixed l = 2

satisfies

M() = card() = card
(

∪
𝜷∈𝜷

)
≤ ∑

𝜷∈
M𝜷 .

The index set  used in a sparse grid approximation (14) can be tailored to minimize error whilst also minimizing
cost, that is, the number of function evaluations. The only restriction on the index set is that it must be downward closed.
An index set  is downward closed if 𝜷1 ∈  implies that 𝜷2 ∈  for all 𝜷2 ≤ 𝜷1.

Finding an efficient index set  can be cast as an optimization problem. With this goal, let

ΔE𝜶,𝜷 = ||f̂𝜶,∪{𝜷} − f̂𝜶,|| ΔW𝜶,𝜷 = |Work[f̂𝜶,∪{𝜷}] − Work[f̂𝜶,]|, (16)

respectively denote the norm of the difference between the sparse grid with and without the interpolant f𝜶,𝜷 and the work
needed to add f𝜶,𝜷 to the sparse grid. Noting that the error in the sparse grid satisfies ||f − f̂𝜶,|| ≤ ∑

𝜷∉ΔE𝜶,𝜷 , we can
formulate finding a quasi-optimal index set as a binary knapsack problem38

max
∑

[𝜷]∈N
n𝛽
0

ΔE𝜶,𝜷𝛿𝜷 such that
∑

[𝜷]∈N
n𝛽
0

ΔW𝜶,𝜷𝛿𝜷 ≤ Wmax, 𝛿𝜷 ∈ {0, 1}, (17)

for some maximum work Wmax. The solution  = {𝜷|𝛿𝜷 = 1} to this problem balances the computational work of adding
a specific interpolant with the reduction in error that would be achieved.¶

One approach for solving the knapsack problem is to use estimates of the error ΔE𝜶,𝜷 derived from assumptions on
the smoothness of the function f𝜶 . The resulting grid depends on the space of functions that f𝜶 belongs to, and not on
the function itself. Assuming that the function f𝜶 has continuous mixed derivatives of order r in each random variable
dimension and ΔW𝜶,𝜷 = card(diff

𝜷
), yields the traditional isotropic sparse grid index set and corresponding sparse grid

coefficients given below

(l) = {𝜷|(max(0, l − 1) ≤ ||𝜷||1 ≤ l − d − 2} c𝜷 = (−1)l−||𝜷||1 ( d − 1
l − ||𝜷||1

)
. (18)

Note again we have used the fact n𝛽 = d and that the form of the isotropic index set and coefficients reflect our choice
to set 𝛽i ≥ 0.# The sparse grid using (18) is often referred to as the Smolyak algorithm.39

There is no exact formula for the number of points in an isotropic sparse grid. However, for fixed level l and large
enough d, the number of points in the Clenshaw-Curtis isotropic sparse grid satisfies

M(l) ≈ 2l

l!
dl,

where we use ≈ to denote the strong equivalence of sequences.40 This is much smaller than the number of points in the
tensor-product grid

Ml = md
l = (2l + 1)d l = (l,… , l).

In Table 2, we compare the number of points M(l) in a isotropic sparse grid and the number of points Ml in a
tensor-product grid for increasing number of random parameters and fixed l = 2. It is clear that the number of points in
the sparse grid increases much more slowly than the number of points in the tensor-product grid.

¶Note  is only “quasi” optimal since the error decomposition maximized in the knapsack problem is only an upper bound for the true error.
# Much of the literature assumes 𝛽i > 0, in which case (l) = {𝜷|(l + 1 ≤ ||𝜷||1 ≤ l + d} and c𝜷 = (−1)l+d−||𝜷||1 ( d−1

l+d−||𝜷||1
)
.
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F I G U R E 4 (Left) the function f̂𝜶(z) = cos(2𝜋z1) cos(𝜋z2). (Middle) the tensor product interpolant f̂𝜶,(2,2)(z). (Right) the isotropic
sparse grid interpolant f̂𝜶,(2)(z). The black circles depict the samples used to build each interpolant

For a function with r continuous mixed derivatives, the isotropic level-l sparse-grid based on Clenshaw-Curtis
abscissas with M(l) points satisfies:37

||f − f̂(l)||L∞(Γ) ≤ Cd,rM−r(l)(log M(l))(r+2)(d−1)+1, (19)

and the tensor-product interpolant satisfies

||f − f̂l||L∞(Γ) ≤ Kd,rM−r∕d
l , (20)

where the constants Cd,r and Kd,r depend on the smoothness r and the dimension d, but not on the number of points in
the grid. From (19), we can see that the error in a sparse grid approximation depends only weakly on the dimension d.
In contrast, the error in a tensor product interpolant (20) depends exponentially on the number of random parameters d.
For both sparse grid and tensor product interpolation, the error in each approximation improves as the smoothness r
increases.

We remark here that, although an improvement over tensor-product interpolation, the logarithmic term in the sparse
grid error bound can become large when the number of model variables becomes sufficiently large. In these situations,
adaptive strategies for constructing the index set  have proven to be very effective. We present one such adaptive strategy
in Section 4.2.

3.2.3 An example of isotropic sparse grid approximation

In this section we use a simple example to provide insight into the construction and utility of sparse grid approximations.
Consider the function‖

f̂𝜶(z) = cos(2𝜋z1) cos(𝜋z2), (21)

which depends on two random variables Z = (Z1,Z2) which are uniformly distributed in Γ = [−1, 1]2. The contours of
this function are depicted in Figure 4. Figure 4 also plots the points used to build a l = 2 tensor-product approximation,
the points used to construct a l = 2 sparse grid approximation, and the contours of the resulting approximations.

The isotropic sparse grid, depicted in the right plot of Figure 4, is the weighted linear combination of the tensor-product
interpolants shown in Figure 5. The sparse grid points are the union of the points of the low resolution grids with nonzero
coefficients c𝜷 . The sparse grid achieves a similar accuracy to the tensor-product interpolant f̂𝜶,(2,2)(z) (see the middle plot
of Figure 4 and the top right plot of Figure 5) but does not need to use the unique points diff

𝜷
(depicted by green squares)

in the finest tensor-product grids (indexed by (1, 2), (2, 1), and (2, 2)). Moreover despite the sparse grid being comprised of
low-resolution/low-accuracy tensor-product interpolants, the linear combination of these interpolants produces a much
more accurate approximation than any single low-resolution interpolant. Avoiding the construction of fine tensor-product

‖Note the function in Equation (21) has no physical solver parameters, however, we keep the subscript 𝜶 to be consistent with the notation in the rest
of the paper.
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F I G U R E 5 The tensor-product grids and contours of the interpolants used to construct the level l = 2 isotropic sparse grid f̂𝜶,(2)(z).
The numbers in the top right of each plot are the coefficients c𝜷 in (18). The tensor interpolants without coefficients do not contribute
to the sparse interpolant. The green squares depict the unique samples diff

𝜷
of the tensor-product grid 𝜷 that do not exist in another

tensor-product grid 𝜷⋆ , 𝜷⋆ ≤ 𝜷. Both the samples depicted by the black circles and the green squares are used to build an
interpolant

interpolants, which require large numbers of points, is the primary mechanism by which sparse grids mitigate the curse
of dimensionality.

Note the approximation f̂0,0 is not included in the sparse grid interpolant. As the level l is increased more lower-level
tensor-product interpolants will be excluded from the sparse grid approximation.

4 MULTI-INDEX COLLOCATION

Sparse-grids and other surrogate methods can mitigate the curse of dimensionality by exploiting structure in the function
being approximated. However, many if not all surrogate methods can be infeasible in high-dimensions if the computa-
tional cost of evaluating a model is high. In this section, we present a method for building surrogates in such situations,
which leverages simulations of lower-fidelity models of reduced cost to increase the tractability of building surrogates
of a high-fidelity model. We focus on sparse grid function approximation; however, in Section 5, we briefly discuss
how the algorithm we use for managing evaluations of models of varying fidelity can be generalized to other types of
approximations, such as polynomial chaos expansion constructed on arbitrary points sets, Gaussian processes, low-rank
approximations, or even neural networks.

Using the triangle inequality, it is straightforward to decompose the error in the sparse grid approximation f̂𝜶, of the
exact model f , built using evaluations of f̂𝜶 , into the sum of the a deterministic and stochastic approximation errors.
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||f − f̂𝜶,||Lp(Γ) ≤ ||f − f̂𝜶||Lp(Γ) + ||f̂𝜶 − f̂𝜶,||Lp(Γ). (22)

Here, the first term on the right-hand side represents the deterministic error and the second term represents
the stochastic error. These two errors should be balanced to minimize inefficiency resulting from over-resolving a
nondominant source of error. Figure 2 demonstrates that mesh discretizations can effect the accuracy of statistics
computed using a numerical model. For example, when the time step is to large, refining the spatial mesh has no effect
on error in the mean E[f̂𝜶]. Analogously (22) implies that refining the mesh when the stochastic error is larger will have
no effect on overall error ||f − f̂𝜶,||Lp(Γ).

Multi-level/Multi-index collocations methods22,23,26,41 combine a sequence of approximate physical models with a
sequence of interpolants both to balance physical and stochastic errors and to reduce the computational cost of achieving
a specified level of accuracy. In this paper, we extend the multi-index stochastic collocation method (MISC) presented in
Reference 23. The other multilevel methods cited can be formulated as specialized instances of MISC.

Given an ensemble of models 𝜶 = ⊗
n𝛼

i=1𝛼i of varying physical fidelity (numerical discretization), which can
be used to approximate the QoI f , MISC approximates the QoI and its mean with the following generalization of
Equation (14)

f̂ (z) =
∑

[𝜶,𝜷]∈
c𝜶,𝜷 f̂𝜶,𝜷(z), 𝜇 =

∑
[𝜶,𝜷]∈

c𝜶,𝜷 𝜇𝜶,𝜷 , (23)

MISC works most effectively provided the following assumption

Assumption 1. Given a sequence of tolerance parameters, the error in the successive approximations of f decreases as
the fidelity increases, that is, ||f̂𝜶⋆ − f ||Lp(Γ) < ||f̂𝜶 − f ||Lp(Γ), if 𝜶⋆ > 𝜶.

Similarly to sparse grid function approximation (see Section 3.2.2), the structure of the index set of the MISC approx-
imation (23) directly controls the computational cost of building, and the accuracy of, a multi-index surrogate. However,
unlike the sparse grid index set , the MISC index set  not only controls the allocation of samples to each random
variable, but also the allocation of resources to each of the model discretizations.

Given a MISC approximation f̂ , let f̂ ∪{[𝜶,𝜷]} be the new MISC approximation obtained by including a new
tensor-product interpolant f̂𝜶,𝜷 . Similarly to Section 3.2.2, let

ΔE𝜶,𝜷 = ||f̂ ∪{[𝜶,𝜷]} − f̂ || ΔW𝜶,𝜷 = |Work[f̂ ∪{[𝜶,𝜷]}] − Work[f̂ ]|, (24)

denote the difference between two successive MISC approximations and the work needed to update the MISC approxi-
mation, respectively. For a given 𝜶, the cost of running a simulation at a single realization of z is again denoted as W𝜶 ,
such that we have ΔW𝜶,𝜷 = W𝜶card(diff

𝜶,𝜷
).

With the goal of generating a MISC approximation that balances the computational work and error, we can again
formulate and solve a knapsack problem to define the index set  . The knapsack problem is identical to (17), except
now the optimization is not just over 𝜷 ∈ N, but also over 𝜶 ∈ N. If the quantities ΔE𝜶,𝜷 and ΔW𝜶,𝜷 are available, the
quasi-optimal** solution to the knapsack problem is

 =
{
[𝜶, 𝜷] ∈ N

n𝛼+n𝛽

0 | ΔE𝜶,𝜷

ΔW𝜶,𝜷

> 𝜖

}
, (25)

where 𝜖 is chosen to reflect the desired accuracy in the MISC approximation.23 Computing this index set is not practical
as it requires computing all possible interpolants and then choosing the approximations which significantly contribute
to the MISC error. The interpolants ignored would contribute little to error but may incur significant cost. In this paper,
we propose using an adaptive algorithm to greedily choose the most cost effective interpolants to add to a index set  . We
will present our adaptive algorithm in Section 4.2; however, we first provide an example of using MISC with an isotropic
index set to approximate a simple algebraic ensemble of models. This example is intended to develop intuition about the
fundamental mechanisms which lead to the improved efficiency of MISC, as compared to single fidelity strategies.

**The solution is only quasi optimal because it is based upon an upper bound on the approximation error, that is ||f − f̂ || ≤ ∑
[𝜶,𝜷]∉ΔE𝜶,𝜷 .
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4.1 An example of isotropic MISC approximation

The isotropic MISC approximation of a function f is

f̂ (l) =
∑

[𝜶,𝜷]∈ (l)
(−1)l−||𝜶+𝜷||1 ( n𝛼 + n𝛽 − 1

l − ||𝜶 + 𝜷||1
)

f̂𝜶,𝜷 , (26)

where  (l) = {[𝜶, 𝜷]|(max(0, l − 1) ≤ ||𝜶 + 𝜷||1 ≤ l + n𝛼 + n𝛽 − 2}. Consider the MISC approximation of the function

f (z) = cos
(
𝜋

2

(
z1 +

4
5

))
, (27)

using the sequence of approximations f̂𝛼1 = cos( 𝜋
2
(z1 + 4

5
+ 𝜖𝛼1)) where 𝜖i > 𝜖i+1 ≥ 0. These approximations, shown in the

left of Figure 6 for 𝜖𝛼1=0 = 1∕5, 𝜖𝛼1=1 = 1∕10 and 𝜖𝛼1=2 = 1∕20, converge to the true function as epsilon is driven to zero,
that is, f̂𝛼1(z) → f (z) as 𝛼1 → ∞.

In Figure 7, we plot the tensor-product grids and corresponding interpolants that make up the MISC approximation.
The interpolants f̂𝛼1,𝜷 converge to f̂𝛼1 as 𝜷 increases. However for low values of 𝛼1 the deterministic prediction error is
large. Refinement of both 𝛼1 and 𝜷 is needed for the interpolants to converge to f .

Let  |𝜶 = {[𝜶⋆, 𝜷⋆]|𝜷⋆ ∈  ,𝜶⋆ = 𝜶} denote the set of unique stochastic multi-indices for a given deterministic
refinement 𝜶. Then for each physical discretization 𝜶 the MISC approximation requires evaluating the function f̂𝜶 on the
points

 |𝜶 = ∪
𝜷∈ |𝜶𝜷 , (28)

where M |𝜶 = card( |𝜶 ) is the number of samples, of the random variables, at which f̂𝜶 is evaluated. The total number
of samples used by the MISC approximation, for any index set  , is

M =
∑
𝜶∈

M |𝜶 ,

where  = {𝜶|𝜶 ∈  } is the set of unique physical discretizations indices.
As can be seen in Figure 7, the number of evaluations allocated to an approximate model f𝛼1 decreases as the level

of fidelity 𝛼1 increases, that is, M |𝜶 > M |𝜶⋆ , if 𝜶⋆ > 𝜶. For example, 5 samples are allocated to evaluating f̂0, 3 to f̂1

and 1 to f̂2.
Despite the fact only one sample is allocated to evaluating f̂2, the MISC approximation, shown in the right plot of

Figure 6, is more accurate than any of the tensor-product interpolants that make up the MISC approximation (grids with a
gray background). Understanding of this observation can be gained by viewing the discrepancies between models f̂i+1 − f̂i
depicted in the middle plot of Figure 6. The magnitude of these discrepancies decreases substantially as 𝛼1 increases.

F I G U R E 6 (Left) The function f (27) and the approximations f̂𝛼1
. (Middle) The discrepancies between successive approximations

f̂𝛼1
and f̂𝛼1+1. (Right) The most accurate (largest 𝛽1) single fidelity interpolants f𝛼1 ,𝛽1

, used by MISC, which use only evaluations of one
approximate model f̂𝛼1

, 𝛼1 = 0, 1, 2, and the MISC approximation f̂ which combines each of these interpolants (and some less accurate
interpolants) [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 7 The tensor-product grids and interpolants of the level l = 2 isotropic MISC approximation f̂ (2)(z). The grids plotted with a
gray background are included in the MISC approximation, whereas the remaining grids are ignored. The numbers in the top-right of each
plot are the coefficients c𝜶,𝜷 = (−1)l−||𝜶+𝜷||1 ( d−1

l−||𝜶+𝜷||1
)

in (26). The dash-dotted black lines represent the tensor-product interpolants f̂𝜶,𝜷 .

These interpolants converge to the lower fidelity models f̂𝜶 (dashed blue lines) as 𝜷 increases, and to the high-fidelity model f (solid red line)
as both 𝜶 and 𝜷 are increased [Color figure can be viewed at wileyonlinelibrary.com]

Thus a constant approximation f̂2,0 of f̂2 is sufficient to balance the deterministic and stochastic errors, that is, the error
caused by nonzero values of 𝜖 and using a finite number of samples to build the interpolants, respectively. This constant
approximation is useful because it reduces the bias in the MISC interpolant by decreasing the physical discretization
error. In contrast the approximation f̂0,2 is useful as it captures the variation of the function f with respect to the variable
z1 thereby reducing the stochastic error.

We remark here that the total number of samples used to build the MISC approximation is much larger than the
number of samples used to build f̂2,2. In general, the number of points in a MISC approximation is much greater than the
number of points in a single fidelity sparse grid approximation of the highest fidelity model f𝜶⋆ , with equivalent cost, that
is, M( ) ≫ M𝜶⋆, . However, for nontrivial models, the total work needed to build the MISC approximation f̂ will be less
than the work needed to build the single fidelity sparse grid approximation f𝜶⋆, of f𝜶⋆ , since many of these samples occur
at lower fidelity.

4.2 Adaptivity

The isotropic MISC approximation (26) balances computational expense with accuracy. The same number of model eval-
uations are used for two physical discretization parameters 𝜶 ≠ 𝜶⋆ if ||𝜶||1 = ||𝜶⋆||1. For example the same number of

http://wileyonlinelibrary.com
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model evaluations will be used to evaluate f̂𝜶 and f̂𝜶⋆ if n𝛼 = 2 and 𝜶 = (2, 1) and 𝜶⋆ = (1, 2). The isotropic formulation
does not account for differences in the cost of evaluating the two models. If f̂𝜶 is twice as expensive as evaluating f̂𝜶⋆ , then
ideally this should be reflected in the sample allocation used by the MISC approximation. The isotropic formulation also
assumes each variable and f̂𝜶⋆ contributes equally to the error in the MISC approximation. However, often only a subset
of variables significantly influences the variability of a function. This parameter sensitivity should also be accounted for
when building the MISC approximation.

We propose using a greedy algorithm to adaptively choose the most cost effective interpolants to add to the MISC
approximation. Our adaptive algorithm is based on the algorithm proposed in Reference 42 and pseudo-code for the
algorithm is shown in Algorithm 1. The algorithm is initialized with a MISC approximation comprising of a set of indices
 representing the current approximation, a set of active indices  that indicate the physical discretization, random
dimensions for potential refinement, and sparse grid coefficients = {c𝜶,𝜷}𝜶,𝜷∈ . Often = {0}, = {ek, k ∈ [n𝛼 + n𝛽]},
and  = {c0,0 = 1}. Here, we use ek to denote the unit vector with a value of 1 in the kth position.

Algorithm 1 INTERPOLATE[{f̂𝜶(z)},, ,, 𝜏,Wmax]→ f̂

1: while NOT TERMINATE[,N, 𝜏,Wmax] do
2: [𝜶⋆, 𝜷⋆] ∶= argmax[𝜶,𝜷]∈𝛾𝜶,𝜷 ⊳ Determine the index with the highest priority
3:  ∶=  ⧵ [𝜶⋆, 𝜷⋆] ⊳ Remove [𝜶⋆, 𝜷⋆] from the active set
4: =UPDATE[ , [𝜶⋆, 𝜷⋆],] ⊳ Update the sparse grid coefficients
5:  ∶=  ∪ [𝜶⋆, 𝜷⋆] ⊳ Add [𝜶⋆, 𝜷⋆] to the MISC set
6:  ∶= REFINE[𝜶⋆, 𝜷⋆, ] ⊳ Find all admissible forward neighbors of [𝜶⋆, 𝜷⋆]
7: 𝛾𝜶,𝜷 ∶= INDICATOR[𝜶, 𝜷] ∀ [𝜶, 𝜷] ∈  ⊳ Calculate the priority of the neighbors
8:  ∶=  ∪ ⊳ Add the forward neighbors to the active index set
9: end while

The algorithm begins by selecting the index [𝜶⋆, 𝜷⋆] ∈  with the largest refinement indicator 𝛾𝜶,𝜷 . The interpolant
f̂𝜶⋆,𝜷⋆ is added to the sparse grid and its indices are used to identify new candidate interpolants for consideration in reduc-
ing the approximation error. This process continues until a computational budget (Wmax) limiting the total computational
work (

∑
ΔW𝜶,𝜷) is reached or until a global error indicator (eg,

∑
ΔE𝜶,𝜷) drops below a predefined threshold 𝜏. These

exit criteria are checked using the TERMINATE routine in step 1 of Algorithm 1. The UPDATE function from step 4 of
Algorithm 1 is summarized in Algorithm 2; it adds the interpolant f̂𝜶⋆,𝜷⋆ to the MISC approximation. The INDICATOR
routine from step 7 of Algorithm 1 controls which indices are added to the sparse grid via the use of index error and global
error metrics. These indicators provide estimates of the contribution of an index to reducing the error in the interpolant,
and of the error in the entire interpolant, respectively.

Algorithm 2 UPDATE[ , , [𝜶⋆,𝜷⋆]] →  ⋃
{[𝜶⋆,𝜷⋆]}

1: c𝜶⋆,𝜷⋆ = 1
2: for [𝜶, 𝜷] ∈  do
3: Δ = [𝜶, 𝜷] − [𝜶⋆, 𝜷⋆]
4: if mini∈[n𝛼+n𝛽 ]Δ ≥ 0 and maxi∈[n𝛼+n𝛽 ]Δ ≤ 1 then
5: c𝜶,𝜷 = c𝜶,𝜷 + (−1)‖Δ‖1

6: end if
7: end for

In this paper we use the following indicators to guide refinement

ΔE𝜇

𝜶,𝜷
= 1|f̂0,0| |E[f̂ ∪{[𝜶,𝜷]}(z)] − E[f̂ (z)]| ΔE𝜎2

𝜶,𝜷
= 1|f̂0,0|2 |V[f̂ ∪{[𝜶,𝜷]}(z)] − V[f̂ (z)]|

𝛾𝜶,𝜷 = 1
ΔW𝜶,𝜷

(𝜅ΔE𝜇

𝜶,𝜷
+ (1 − 𝜅)ΔE𝜎2

𝜶,𝜷
), 𝜅 ∈ [0, 1]. (29)
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F I G U R E 8 Two steps of the adaptive sparse grid algorithm for n𝛼 = n𝛽 = 1. The gray and red boxes represent the sets  and ,
respectively. The numbers within the boxes are the sparse grid coefficients. The second and fourth plots represent the samples assigned to
each level of physical discretization level 𝛼1. The points corresponding to the tensor-product interpolations indexed by the set  and the
active set  are given in black and red, respectively [Color figure can be viewed at wileyonlinelibrary.com]

The refinement indicator 𝛾𝜶,𝜷 attempts to maximize the reduction of the error in the mean and variance of the approx-
imation whilst minimizing cost. Specifically the error indicator measures (via a convex combination) the contribution of
the interpolant f̂𝜶,𝜷 to the mean and variance of the MISC approximation f̂ which can be computed using (23).

We remark here that initialization challenges exist when using 𝜅 = 0 to construct an adaptive MISC approximation.
For any index [𝜶, 𝜷] with 𝜷 = 0, the interpolants f̂𝜶,𝜷 are built using only a single point and so are just constant functions.
For these interpolants, the variance is zero and so not a useful indicator of the impact of refinement for initial𝜶 candidates.
Also note that the error indicators, ΔE𝜇

𝜶,𝜷
and ΔE𝜎2

𝜶,𝜷
, are relative to the magnitude of the function and its square at the

center of the sparse grid. This is important to ensure that mean or the variance components of the indicator dominate
simply because they are on a different scales.

The index [𝜶, 𝜷] with the largest refinement indicator is refined using the function REFINE (step 6 of Algorithm 1)
by adding all indices [𝜶, 𝜷] + ek, k ∈ [n𝛼 + n𝛽] that satisfy the following downward-closed admissibility criterion

[𝜶, 𝜷] + ek − ej ∈  for j ∈ [n𝛼 + n𝛽], lk > 1. (30)

The active set  is then rebuilt by adding each index corresponding to the indices from (30).
Figure 8 depicts two steps of the adaptive sparse grid algorithm for n𝛼 = n𝛽 = 1. The first and third plots depict the

index sets  and  represented by the gray and red, respectively. The numbers within the boxes are the sparse grid
coefficients. The second and fourth plots represent the samples assigned to each level of physical discretization level
𝛼1, l𝛼1 = 0,… , 3. The points corresponding to the tensor-product interpolants indexed by the set  and the active set
 are given in black and red, respectively. The new work required to refine an index is given by the cost of running
the simulation at all the red points diff

𝜶,𝜷
. In a previous step, the index (𝛼1, 𝛽1) = (0, 1) was chosen for refinement. Both

forward neighbors k = [𝜶, 𝜷] + en, n ∈ [n𝛼 + n𝛽] are added to the active set  (red boxes in first figure) because these
indices satisfy the admissibility criteria. This requires evaluating both the functions f̂0 and f̂1 at 2 new points. In the next
step, the index (𝛼1, 𝛽1) = (0, 2) is selected for refinement. In this step, only one new index (𝛼1, 𝛽1) = (0, 2) + (0, 1) = (0, 3)
is added to the active set (third figure) because the other forward neighbor (𝛼1, 𝛽1) = (0, 2) + (1, 0) = (1, 2) does not satisfy
the admissibility criteria. Adding the index (2, 0) to  requires evaluating f̂0 at 4 new points.

4.3 Multilevel collocation

Multilevel collocation (MLC)22 is a specialized instance of multi-index collocation. MLC assumes that there is only
one discretization index which controls the model accuracy and cost, that is, 𝜶 = (𝛼1). We can easily apply the AMISC
algorithm to the multilevel setting by simply defining the index set 𝜶 correctly. For the advection-diffusion considered
in this paper we make the reasonable choice that𝜶 = {⊗3

i=1{1},… , ⊗3
i=1{k}}, k ∈ {1,… , 5}. This multi-index model set

has a one-to-one mapping with the 1D multilevel hierarchy ̂𝜶 = {1, 2, 3, 4, 5}. We do not consider multi-level methods
for the nozzle problem as it is unclear how to define a reasonable 1D hierarchy for that model.

The original multi-level algorithm22 allocate samples to models of different model discretizations using a priori theo-
retical error estimates. Consequently it is challenging to apply this approach to practical problems where such theoretical
estimates are unavailable. A partially adaptive a posteriori MLC strategy was proposed in Reference 43. However, when

http://wileyonlinelibrary.com
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using this approach, the resolution of the approximation built over the stochastic space is a priori tied to the resolution of
the numerical solver used to solve the PDE. The adaptive multi-index collocation presented here can easily be applied in
the multi-level setting without the restrictions of the aforementioned approaches. The computational cost and accuracy
of multi-level and multi-index sparse grid collocation are compared in Section 6.1.

Finally it is important to note that multi-level surrogate methods have been developed which do not use sparse grids
to build multivariate approximations over the stochastic space. Gaussian processes were used in References 18-20 and
low-rank reduced order models were used in Reference 21. These methods are not considered further here since, similar
to multi-level sparse grid collocation, if a model does indeed have multiple discretization hyper-parameters it can be
unclear how to define a suitable 1D model hierarchy.

5 MULTI-INDEX SENSITIVITY ANALYSIS

Quantifying the sensitivity of a model output f to the model parameters Z can be an important component of assess-
ing uncertainty in model predictions. For example, parameter sensitivities can be used to prioritize data collection.
Using data or additional knowledge to reduce uncertainty in sensitive model inputs can significantly decrease prediction
uncertainty. This section demonstrates how to use MISC for global sensitivity analysis, specifically for computing Sobol
indices.44

Sobol indices are frequently used to estimate the sensitivity of a function to single, or combinations of input param-
eters. Sobol indices can be estimated numerically using Monte Carlo methods;45 however, they can be computed
analytically from a sparse grid.46,47 For any tensor-product probability density function 𝜔, there exists a transformation
of the Lagrange polynomial basis into a orthonormal polynomial basis,48 also known as a polynomial chaos expansion
(PCE). Applying such a transformation facilitates simple and analytical computation of Sobol indices from the coefficients
of the PCE.2 The following sections describe the basic properties of a PCE and how to transform an MISC approximation
into a PCE for the purpose of computing Sobol indices.

5.1 Polynomial chaos expansions

Polynomial chaos expansions (PCE)1,3,49 represent the model output f̂𝜶(z) as an expansion of orthonormal polynomials

f̂𝜶(z) ≈ f̂𝜶,Λ(z) =
∑
𝜆∈Λ

𝜂𝜆𝜙𝜆(z), |Λ| = N. (31)

The basis functions 𝜙𝜆 are typically constructed to be orthonormal with respect to the density 𝜔, that is

(𝜙𝜆(i) (z), 𝜙𝜆(j) (z))L2
𝜔
(Ω) ∶= ∫Γ

𝜙𝜆(i) (z)𝜙𝜆(j) (z) d𝜔(z) = 𝛿i,j,

where 𝛿i,j is the Kronecker delta function and 𝜆(i), 𝜆(j) are two different multivariate indices where 𝜆 = (𝜆1 … , 𝜆d) ∈ N
d
0.

When the components of z are independent we can express the basis functions 𝜙 as tensor products of univariate
orthonormal polynomials. That is

𝜙𝜆(z) =
d∏

i=1
𝜙i
𝜆i
(zi), ∫Ωi

𝜙i
j(zi)𝜙i

k(zi)𝜔i(zi) dzi = 𝛿j,k, j, k ≥ 0, deg𝜙i
j = j. (32)

The mean and variance of the PCE can be computed directly from the expansion coefficients.

E[f̂𝜶,Λ] = 𝜂0, V[f̂𝜶,Λ] =
∑
𝝀∈Λ
𝝀≠0

𝜂2
𝝀
. (33)

The Sobol indices can also be computed analytically from the expansion using the identity

V[f̂u] =
∑
𝝀∈Λu

𝜂2
𝝀

Λu = {𝜆|𝜆i > 0, i ∈ u, 𝜆j = 0, j ∉ u}. (34)
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5.2 Transforming a sparse grid into a polynomial chaos expansion

Let  denote the transformation of a Lagrange polynomial interpolant f̂𝜶,𝜷 to an orthonormal polynomial interpolant
f̂𝜶,Λ. From (23), we have  [f̂ (z)] =

∑
[𝜶,𝜷]∈ c𝜶,𝜷  [f̂𝜶,𝜷(z)], where c𝜷 are the Smolyak coefficients. Thus, to transform the

sparse grid, we only need the ability to transform each tensor-product interpolation individually. To apply the transforma-
tion of the tensor-product interpolants, we must only compute transformations of 1D basis functions. In one dimension,
the polynomial interpolant of a set of points is unique. Consequently, we can express the j-th univariate Lagrange basis
function in the i-th variable dimension as

li,j(zi) =
m𝛽i∑
k=1

𝜈k𝜙
i
k(zi) 𝜈k = ∫Γk

li,j(zi)𝜙i
k(zi) d𝜔(zi) j = 1,… ,m𝛽i , i = 1,… , d. (35)

We can compute the coefficients of the orthonormal basis using Gaussian quadrature. Note this step does not require
any evaluations of the model f̂𝜶 and can be precomputed offline and stored for future use. Given the orthonormal
representation of the univariate Lagrange polynomials, the tensor-product interpolant can be expressed as

f̂𝜶,𝜷(z) =
∑
j≤𝜷

f̂𝜶(z(j))
d∏

i=1
li,ji(zi) =

∑
j≤𝜷

f̂𝜶(z(j))
d∏

i=1

(m𝛽i∑
k=1

𝜈k𝜙
i
k(zi)

)
=

∑
𝝀∈Λ𝜷

𝜂𝜆𝜙𝝀(z), (36)

where Λ𝜷 = {𝝀|𝝀 ≤ 𝜷}. This expression can be now used with (34) to compute Sobol indices analytically and efficiently
from the sparse grid.

Note that the algorithm described here is different from the algorithms proposed in References 46 and 47. These
approaches solve a multivariate interpolation problem to compute the coefficients 𝛾 of the tensor-product PCE basis in
(36). The dominant cost of that approach is the inversion of the multivariate Vandermonde-like matrix evaluated at each of
the tensor product points, which requires O(M3(𝛽)) operations. By focusing on univariate transformations of the Lagrange
basis, we can compute the coefficients of the multivariate PCE via an outer product of the univariate orthonormal basis
coefficients at a cost of O(M2(𝛽)). This reduction in the cost of computing the PCE transformation is practically significant,
but the complexity of the sparse grid transformation still grows linearly with the number of points in the sparse grid. Note
that the cost of either transformation algorithm is typically negligible to the cost of evaluating the models f̂𝜶 .

Remark 1. In this paper, we use sparse grids to form a MISC approximation. Sparse grids naturally combine the refine-
ment of the discretization parameters and the refinement of the interpolants. Noting that the MISC approximation can
be expressed in the general form f̂ (z) =

∑
[𝜶,𝜷]∈ c𝜶,𝜷 f̂𝜶,𝜷(z), Equation (36) suggest that sparse grids are not the only

means to build a MISC approximation. Specifically, one could draw from a broad class of surrogate models to construct
the approximations f̂𝜶,𝜷 . One could use PCE constructed using interpolation, least-squares or 𝓁1 minimization, but one
could also use Gaussian processes, low-rank approximations, or even neural networks. Given a method to build f̂𝜶,𝜷 ,
the adaptive algorithm described in Section 4.2 can be used to guide the selection of the indices [𝜶, 𝜷] so long as a
sampling method, which can be controlled by the stochastic discretization parameter 𝜷, is available. It is straightfor-
ward to construct such sampling methods; for example, one approach is to let 𝜷 be a scalar controlling the number of
Monte-Carlo or Latin-hypercube samples used to build a regression-based PCE or Gaussian process. Alternatively, one
can use sampling schemes such as multivariate Leja sequences for polynomial interpolation, which are more amenable
to dimension-adaptivity.49

6 RESULTS

In this section, we explore the efficacy and properties of our proposed approach, first using the advection-diffusion model
problem and then using the engineering model of a jet engine nozzle.

To measure the performance of an approximation, we will use the 𝓁∞ error on a set of test nodes. We generate a set of
Q random samples {z(j)}Q

j=1 ⊂ Γ drawn from the density 𝜔 of the uncertain variables Z. The relative error is computed as

||f − f̂ ||L∞(Γ) =
1

maxj∈[Q]f (z(j)) − minj∈[Q]f (z(j))
argmaxj∈[Q]|f (z(j)) − f̂ (z(j))|,
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where f is the exact function and f̂ is the interpolative approximation. We set Q = 1000 and Q = 500 for the advection
diffusion and nozzle models, respectively.

We use the 𝓁∞ norm to quantify error as we are interested in probabilities of failure, and convergence almost surely
is required to guarantee convergence of probability density functions (PDFs) of the QoI.50 We use the range of the values
of the reference function f over the validation samples to normalize the error, enabling us to highlight how our adaptive
approximations balance error among multiple QoI.

6.1 Advection diffusion model

In this section, we will use the adaptive MISC algorithm to approximate the quantity of interest (8) obtained from the
advection diffusion model (5). For this model, an efficient and accurate approximation must balance spatial refinement,
temporal refinement, and the stochastic interpolation error. The details of the physical discretization are provided in
Section 3.1.1.

In Figure 9, we compare the adaptive MISC algorithm (AMISC) with a single level adaptive sparse grid (see Section
3.2.2). Specifically, we plot the error in each approximation as the total work is increased. Work is measured relative to the
cost of performing a single simulation using the approximate model f̂5,5,5 with the highest fidelity discretization parame-
ters. For example, if 𝜏𝜶 is the wall time needed to simulate the model f𝜶 at one realization of the parameters z, then the work
needed to run this model is W𝜶 = 𝜏𝜶∕𝜏5,5,5 ≤ 1. For this particular advection-diffusion problem, we do not know the true
QoI exactly, so we use the model with 𝜶 = (6, 6, 6) as the truth when computing errors. Each time the error is measured,
all points associated with indices in both the active index set  and the current index set  are used and thus contribute
to the value of work on the horizontal axis. The notation in the legend is used to denote the index sets 𝜶 defining the
ensemble of models considered by the different algorithms.𝜶 = ⊗3

i=1{5}denotes the single fidelity approximation using
evaluations of only the highest fidelity model f̂(5,5,5), 𝜶 = ⊗3

i=1{1,… , k} and 𝜶 = {⊗3
i=1{1},… , ⊗3

i=1{k}}, respectively
denote multi-index and multi-level approximation where the highest fidelity model evaluated is f̂(k,k,k), k ∈ {3, 4, 5}. The
gray boxes refer to two iterations during the evolution of the MISC algorithm. The point labeled 1 is taken when 500
model evaluations (of any fidelity) have been run and label 2 after 2000 model evaluations. The cost profiles of the MISC
algorithm at these two iterations are depicted in Figures 10 and 11.

The error in both single-level sparse grid and AMISC approximations eventually saturate when the physical discretiza-
tion error of the highest fidelity approximate model is reached. As the maximum value of 𝛼1 is increased, the error in the
approximations saturates at a smaller error. The AMISC approximations, however, achieve the same level of error as the
single fidelity approach at only a fraction of the work. The results in Figure 9 are generated by setting 𝜅 = 1 in (29). Despite
the fact we only adapt to reduce the error in the mean, we still can reduce the 𝓁∞ error in the AMISC and single-fidelity
approximations.

F I G U R E 9 (Left) Comparison of the convergence of single-fidelity and multi-fidelity approximations of the advection-diffusion model.
(Right) Comparison of AMISC with adaptive multilevel approximation. The legend labels denote the index sets 𝜶 defining the ensemble of
models considered by the different algorithms. 𝜶 = ⊗3

i=1{5} denotes the single fidelity approximation using evaluations of only the highest
fidelity model f̂(5,5,5), 𝜶 = ⊗3

i=1{1,… , k} and 𝜶 = {⊗3
i=1{1},… , ⊗3

i=1{k}} respectively denote multi-index and multi-level approximation
where the highest fidelity model evaluated is f̂(k,k,k), k ∈ {3, 4, 5}
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F I G U R E 10 The number of simulations (left) and fraction of total work (right) assigned to each approximate advection diffusion
model at the point labeled 1 in Figure 9. Here M |𝜶 = card( |𝜶 ) is the number of samples, of the random variables, at which f̂𝜶 is
evaluated. The number on top of the bars in the left plot are the exact values of M |𝜶 and the numbers on the bars on the right plot are
the fraction of total work assigned to each model indexed by 𝜶. Finally the labels of the horizontal axis represent the indices 𝜶 to which
AMISC has assigned at least one evaluation [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 The number of simulations (left) and fraction of total work (right) assigned to each approximate advection diffusion
model at the point labeled 2 in Figure 9. Here M |𝜶 = card( |𝜶 ) is the number of samples, of the random variables, at which f̂𝜶 is
evaluated. The number on top of the bars in the left plot are the exact values of M |𝜶 and the numbers on the bars on the right plot are
the fraction of total work assigned to each model indexed by 𝜶. Finally the labels of the horizontal axis represent the indices 𝜶 to which
AMISC has assigned at least one evaluation [Color figure can be viewed at wileyonlinelibrary.com]

The AMISC algorithm reduces the total computational cost by over two orders of magnitude, except in regions where
the physical discretization error of the highest fidelity model begins to dominate.†† This reduction is achieved by sampling
the lower-level model approximations more than the higher-level models, and only sampling the high-fidelity models
when the physical discretization error starts to dominate the stochastic error. Figures 10 and 11 plot the total number of

††If the cost profile of a set of model resolutions increases more rapidly, then the computational benefit of AMISC also increases. For example, if the
conservative cost model for solving the advection-diffusion problem presented in Section 3.1.1 is replaced with a cost model that grows more quickly
with the mesh and temporal resolution, then the benefits of the multi-fidelity methods will increase relative to their single fidelity counterparts.

http://wileyonlinelibrary.com
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simulations the MISC algorithm assigns to each approximate model for two points in the algorithms evolution (labeled 1
and 2 in Figure 9). When the stochastic error is approximately equal to the saturation point of the blue curve, most simu-
lations are allocated to the low-fidelity models which only involve models with indices 𝛼i ≤ 3, i = 1,… , 3 (see Figure 10).
However when the stochastic error is below the black curve, numerous samples are allocated to the higher-fidelity models
with indices 𝛼i > 3 (see Figure 11). Although most evaluations are assigned to the lowest-level models, the highest fidelity
models contribute significantly to the total work (Figure 11 right) despite being evaluated much less frequently. This is
the behavior we desire. Specifically, the high-fidelity models are only evaluated when needed to maintain deterministic
prediction accuracy.

The right plot of Figure 9 compares multi-index collocation with multi-level collocation using the multi-level hierarchy
defined in Section 4.3. Multi-index collocation obtains significant computational savings when high-levels of accuracy
are required. The computational savings increase as the number of levels utilized by the multi-level method increase.
Furthermore, if the cost differential across a set of model resolutions becomes more significant, the computational benefit
of MISC compared to MLC will increase.

The results generated using MLC were found using, what turned out to be, a reasonable 1D model hierarchy. It is easy
to construct other hierarchies which significantly degrade the performance of MLC relative to AMISC. One major benefit
of AMISC is that when a model does have multiple discretization hyper-parameters, one does not need to decide how to
form a 1D model hierarchy.

As expected, the multi-level and multi-index approximation saturate at the same points when fixing the highest fidelity
model used in the approximations consistently. The multi-index method does take longer to reach the exact saturation
point, however, the error gets close to the saturation point much more quickly than the multi-level method. The small inef-
ficiencies of the multi-index near the saturation points are caused by the downward-closed index set constraint for cases
where final reductions in deterministic discretization error could only be addressed using the most resolved model, result-
ing in some loss in relative benefits for the tails of the convergence histories. This effect can be avoided by increasing the
resolution of the highest fidelity model. Doing so will not effect the computational cost of the AMISC algorithm unless the
evaluations of the higher fidelity model is needed to reduce the deterministic prediction error. Future work will leverage
this fact to explore extensions to AMISC approaches that do not require the highest fidelity model to be specified a priori.

6.2 Aero-thermal-structural analysis of a jet engine nozzle

In this section, we will use the adaptive MISC algorithm to approximate the four quantities of interest obtained from the
nozzle model, and then use this approximation to quantify sensitivities and uncertainty in these QoI. The four model QoI
we consider are mass, thrust, load-layer temperature failure ratio, and thermal-layer failure criteria. For both failure-based
QoI, a value greater than one indicates failure, and both are computed using the modified P-norm function (PN-function),
which aggregates pointwise values into a global quantity:

g(ci) =

(
1
N

N∑
i

cp
i

) 1
p

. (37)

As p increases, the PN-function approaches the value maxi(ci), where ci denote local stress or temperature values.
Here, we set p = 10.

6.2.1 AMISC approximation

In this section, we detail the performance of the AMISC method for approximating the aforementioned QoI of the nozzle
model. When considering our nozzle model, an efficient and accurate approximation must balance CFD and structural
model errors. The relative computational cost of each nozzle model approximation is given in Table 1, where cost is
reported in wall time using 4 CPUs for the CFD model and 1 CPU for the structural model.

For this problem, we are interested in approximating four QoI, so we must adjust slightly the refinement indicator
introduced in Section 4.2. Specifically, we use a worst case error indicator that refines the multi-index set in the AMISC
approximation according to the largest error across the set of QoI. Letting 𝛾 i

𝜶,𝜷
denote the error indicator (29) for the ith
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F I G U R E 12 Comparison of the convergence of single-fidelity and multi-fidelity approximations of (clockwise from top left) mass,
thrust, temperature layer failure and load layer failure. The legend labels denote the index sets 𝜶 defining the ensemble of models
considered by the different algorithms. 𝜶 = {2}⊗ {4} denotes the single fidelity approximation using evaluations of only the highest
fidelity model f̂(2,4), and 𝜶 = {0, 1, 2}⊗ {0, 1, 2, 3, 4} denotes the multi-index approximation where the highest fidelity model
evaluated is f̂(2,4)

QoI, we use

𝛾𝜶,𝜷 = max
i∈[4]

𝛾 i
𝜶,𝜷

, (38)

across the set of 4 QoI. We select 𝜅 = 1∕2 in order to balance error reduction for the mean and variance of the approxi-
mation. The latter is consistent with our desire to use variance-based decomposition for global sensitivity analysis. The
former ensures that the refinement indicator is not zero for constant functions, including approximations for 𝜷 = 0 (see
the comment in Section 4.2). Also note that the use of a relative error indicator is important to ensure that the thrust does
not dominate refinement since its scale is orders of magnitude larger than the other QoI (Figure 14 shows the differing
scales for the four QoI).

In Figure 12, we compare the adaptive MISC algorithm (AMISC) with a single-level adaptive sparse grid (see Section
3.2.2). Work is measured relative to the cost of simulation using the highest fidelity discretization parameters (model f̂3,5).
We terminate refinement of each approximation after the cost of 3400 high-fidelity samples is reached. We again observe
that, with the exception of the mass QoI, AMISC can approximate each QoI with the same accuracy as a single fidelity
approximation at only a fraction of the cost. The AMISC approximation at some points on the convergence curves is
an order of magnitude less expensive. This approaches the limit of potential acceleration, as there is only a factor of 20
difference in cost between the cheapest and most expensive models.

From performing parameter sweeps of each QoI using our MISC approximation we observed that mass is very close to
a linear function of the random variables. Consequently, a level 1 single-fidelity sparse grid with 81 points can accurately
represent mass (top left). 81 is the minimum number of points required to start the adaptive algorithm (Algorithm 1). The
81 points are used to compute the error indicators 𝛾 i

𝜶,𝜷
for the lowest fidelity model, indexed by 𝜶 = (0, 0). These initial
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points are comprised of one point at the center of the domain and 2 points at the upper and lower bounds of each of the
40 random parameters.

The AMISC approximation of mass achieves the same final error as the single fidelity approximation, but it is
slightly less accurate for moderate cost (up to 600 equivalent high-fidelity samples). However, it is more flexible than
the single-fidelity approach in that AMISC can produce reasonably accurate approximations using less than 10 equiv-
alent high-fidelity samples. This would be important if our computational budget was more restricted than the 3400
high-fidelity samples used here.

Note that the convergence curves of the approximation of thrust (top right) is noisy in the right tail. This is related
to the tolerance we use for the nonlinear CFD solver; in particular, the error is saturating at the error dictated by this
tolerance. We could also include the solver tolerance as a physical discretization parameter, but this is left for future work.

The AMISC approximation of the thermal-layer failure criteria (lower right) is cheaper to construct for accuracies
up to 10−4. For higher accuracy, the single-fidelity approximation is cheaper to construct. In the latter situation, the two
coarsest structural meshes cannot be used to reduce the total error, which is smaller than the deterministic prediction
error of those models. Consequently, only evaluating the highest fidelity structural model can reduce the error. Due to
the assumption that the sparse grid index set  is downward closed, the AMISC procedure requires that, for a given
value of the discretization parameter 𝛼2 = k, the models parameterized by all 𝛼2 = j < k must be evaluated before the
model indexed by k is evaluated. This results in redundant computation, in the form of low-fidelity evaluations when
only the model 𝛼2 = k can be used to reduce the error of the approximation. For this same reason, the single-level sparse
grid approximation of the load-layer failure criteria (bottom left) will eventually become more efficient than the AMISC
approximation if we were to increase the number of samples used to generate the convergence curves.

Note that for any amount of work, the adaptive strategy we use to build both the AMISC and single-fidelity approxi-
mations attempts to balance the error in each QoI. This is because we use a worst-case error indicator which refines the
approximation so that the largest error among QoI is reduced. Over the entire evolution of the adaptive algorithm, the
refinement of both the single-fidelity and AMISC approximations is primarily driven by the need to reduce error in the
temperature layer criteria, since the error in the approximation of this QoI is much larger than the error in the other QoI
for a given cost. For example, the error of the AMISC approximation of the temperature-layer failure criteria is approxi-
mates 4 × 10−2 when work is 100, whereas the error in the load-layer QoI is 2 × 10−3 and the errors in the mass and thrust
are even smaller. Consequently, at this point in the sparse grid evolution, work will be assigned to reduce the error in the
load layer criteria until its error becomes comparable to the errors in the other QoI.

In Figure 13, we plot the number of model evaluations allocated to each model discretization. The AMISC algorithm
determined that the CFD and structural model are both large sources of deterministic prediction error. This is reflected by

F I G U R E 13 The number of simulations (left) and fraction of total work (right) assigned to each nozzle model. Here M |𝜶 =
card( |𝜶 ) is the number of samples, of the random variables, at which f̂𝜶 is evaluated. The number on top of the bars in the left plot
are the exact values of M |𝜶 and the numbers on the bars on the right plot are the fraction of total work assigned to each model
indexed by 𝜶. Finally the labels of the horizontal axis represent the indices 𝜶 to which AMISC has assigned at least one evaluation
[Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 14 PDFs for (left to right) mass, thrust, load layer failure and temperature layer failure [Color figure can be viewed at
wileyonlinelibrary.com]

the large number of samples allocated to the most refined CFD and structural models. It is interesting to note, however,
that it is not necessary to refine both the CFD and structural meshes simultaneously. There is only one sample allocated
to a model, 𝜶 = (1, 1), for which both the CFD and the structural mesh have been refined . The error in the CFD model
output, which is used as input to the structural model, does not significantly affect the prediction of the structural quan-
tities of interest—the load layer and temperature layer failure criteria. From assessing the values of ΔEi

𝜶,𝜷
∕ΔW𝜶,𝜷 in the

final grid, we determined that refinement of the CFD discretization parameter was driven mainly by the error in the mass
and thrust. And not surprisingly, refinement of the structural discretization parameter was primarily driven by errors in
the two structural QoI.

6.2.2 Uncertainty quantification

In this section, we use the AMISC approximation to quantify uncertainty in the nozzle model. Specifically we report
sensitivity metrics and construct PDFs for each QoI.

In Figure 14, we plot the marginal PDFs of each quantity of interest. The PDFs are approximated using Gaussian kernel
density estimation using 106 approximate values of the QoI obtained by randomly sampling the AMISC approximation
according to the distribution of the random parameters. The PDFs of both mass and thrust appear uniform. This suggests
that, because the inputs are uniform, the input-output map for these QoI are primarily linear. This conclusion is also
supported by plots of 1D cross sections of the map, which appear linear visually (plots omitted for brevity). The PDFs of
both failure-based QoI concentrate mass on low values for each response. Since we deem failure to occur when the failure
criteria exceed 1, there is a relatively small chance of failure in the load layer and numerically zero chance of failure in
the temperature layer.

In Figure 15, we plot the dominant sources of uncertainty in the nozzle predictions. Specifically, we identify the
parameters and parameter combinations that have large Sobol indices. The parameter combinations depicted contribute
a portion of the first 99.9% of variance of at least one nozzle QoI. It is interesting to note that, for each QoI, one parameter
acting independently of all other parameters contributes over 90% of the total variance. Moreover almost all contributions
to 99.9% of the variance of each QoI are caused by individual parameters. Only two second-order interactions are signif-
icant. However, the convergence curves in Figure 12 suggest that resolving multivariate interactions becomes important
as we drive the surrogate error to tight tolerances. This is confirmed by further investigation of high-order Sobol indices
that are small but nonzero. We omit these values for brevity.

The most sensitive parameter identified for each QoI matches physical intuition. The density of the CMC heat layer
𝜌CMC is the largest contribution to the uncertainty in the mass of the nozzle, consistent with the observations that the
minimum density of this layer is an order of magnitude larger than the maximum density of the other layers and the
volume of this layer is greater than any other layer. The inlet stagnation pressure Pi has the greatest influence on thrust.
The heat transfer coefficient 𝛽 which transfers heat from the nozzle to the environment has the greatest impact on the

http://wileyonlinelibrary.com
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0

F I G U R E 15 Sobol indices that contribute a portion of the first 99.9% of the variance of at least one nozzle QoI. The labels of the x-axis
represent the parameter of the Sobol index. The maximum value of any Sobol index is one. We zoom in on the y-scale to better highlight the
smaller Sobol index values, and report values greater than the 0.1 plot scale in the gray boxes. The definition of the parameter symbols can be
found in Appendix A

Load layer temperature failure ratio, which is the ratio of the temperature in the load layer to the maximum allowable
temperature. When 𝛽 is decreased, less heat is able to escape the nozzle and thus the temperature in the nozzle increases.
Finally, the failure strain in the CMC heat layer 𝜖CMC

f has the greatest impact on the failure of the thermal failure.
The sensitivity analysis presented here suggests that uncertainty in the model can be reduced by obtaining data that

constrains uncertainty on three parameters, 𝜌CMC, 𝛽 and 𝜖CMC
f . The inlet stagnation temperature is a function of the flight

conditions and so its variance cannot be constrained unless the aircraft mission is modified. Collecting experimental data
and using Bayesian inference to infer updated parameter distributions to reduce uncertainty in model predictions is a
topic for future work.

7 CONCLUSIONS

We have described an integrated sparse grid approach for uncertainty quantification and sensitivity analysis, which gener-
ates a surrogate model that spans both random dimensions and model resolution dimensions. Novel aspects of this work
include the extension from moment estimation to function approximation, extension to an adaptive multi-index con-
struction (from MISC to AMISC), and demonstration of more complete UQ workflows for realistic applications, including
computation of global sensitivity analysis and probability density functions for a jet engine nozzle application.

AMISC takes a possible set of fidelity levels and greedily allocates samples to the models which provide the most
predictive utility per unit cost. The set of possible models must be specified before the algorithm is initiated. Given a
vector of values for each discretization parameter of a model, we defined the set of possible models to be those indexed by
the Cartesian product of these vectors. As an example, the advection diffusion model considered in this paper had three
discretization parameters which controlled the accuracy and cost of the simulation. Each one of these hyper-parameters
could take 6 values resulting in 63 = 216 possible model fidelities.

Given a Cartesian product of possible model discretizations, AMISC applies adaptive generalized sparse grid refine-
ment to select the tensor product approximation, from among multiple grid refinement candidates, that maximizes benefit
per unit cost. Reflecting a focus on complex engineering applications with multiple statistics of interest, we used an
adaptive criterion based upon a convex combination of mean and variance, across a vector of QoI, to guide refinement.

In the advection-diffusion model problem presented, AMISC was able to effectively allocate resources to the down-
ward closed subset of the 216 model fidelities. The total computational cost required by AMISC to construct a surrogate
with specified accuracy was over two orders of magnitude smaller relative to a sparse grid applied to only the most resolved
model. Moreover, an instructive transition from early resolution of stochastic error to late resolution of deterministic
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discretization bias is evident in the convergence history, demonstrating how multiple error sources are managed by the
algorithm.

In the nozzle example, we show a variable level of improvement in efficiency for the four different QoI, where the
efficiency is strongly dependent on the nonlinearity of the response. With greater nonlinearity, the AMISC approach
displays strong savings. However, savings are not evident for nearly linear functions due to the additional overhead of
carrying multiple models; rather, benefits are limited to greater flexibility in constructing rough approximations for low
cost targets. Some inefficiencies were also caused by the downward-closed index set constraint for cases where final
reductions in deterministic discretization error could only be addressed using the most resolved model, resulting in some
loss in relative benefits for the tails of the convergence histories. Finally, we also demonstrate several downstream UQ
products for the jet nozzle problem, including Sobol indices and probability density functions for each QoI, generated by
processing and interrogating the final AMISC approximations.

In this paper, the relative cost of each model was determined using a small number of pilot runs prior to using
AMISC. In future work, we intend to modify AMISC to determine relative model cost online during the evolution of the
algorithm. Similarly, this paper focused on the case when the number of possible model discretizations is fixed a priori,
as was necessary in the nozzle application. That is, we consider the highest-fidelity model to be most accurate and our
aim is to efficiently construct a surrogate of the statistics of this model by including evaluations of a structured set of
lower-fidelity models. In the future, we intend to extend our approach to consider an infinite set of possible discretiza-
tions, which converge to the exact solution to the governing equations. Finally, we intend to explore approaches that alter
the downward-closed requirement, in order to allow additional refinement freedom. This is expected to be particularly
helpful when model discrepancies do not demonstrate a smooth, monotonic decay.
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APPENDIX NOZZLE MODEL INPUT UNCERTAINTIES

The materials of the nozzle, inlet conditions, atmospheric conditions, and heat transfer are all sources of uncertainty
that effect predictions of our nozzle model. In this section we explicitly identify and characterize (assign a probability
distribution) to each source of uncertainty.

Material constants
Figure A1 shows the individual wall layers in the nozzle wall. The material properties of each of these layers affect nozzle
performance. The thermal insulation “aerogel” is not modeled, but all other layers are modeled. An incomplete set of
material properties is gathered from a variety of experimental data sources.

Missing macroscopic properties are either determined through fundamental physical analysis of the material's struc-
ture or are approximated by values for similar materials. Table A1 provides the properties used in the MULTI-F analysis
for the CMC material, Table A2 for the GR-BMI material, and Table A3 for the TI-HC material. Last, Table A4 lists the
thermal conductivity of the air gap and gives the distribution for the assumed yield stress of the composite panel material
used for the baffles.

F I G U R E 1 Individual layers in the nozzle wall [Color figure can be viewed at
wileyonlinelibrary.com]

T A B L E A1 Assumed isotropic
material properties for the heat layer's
ceramic matrix composite material
(CMC)

Property symbol Units Distribution

Density 𝜌CMC kg
m3  (2293.789, 2496.486)

Elastic modulus ECMC GPa  (58.940, 76.163)

Poisson ratio 𝜈CMC  (0.23, 0.43)

Thermal conductivity kCMC W
m-K

 (1.37, 1.45)

Thermal expansion coefficient 𝛼CMC K−1 × 10−6  (0.228, 0.252)

Max service temperature TCMC
max K  (963, 983)

Failure strain 𝜖CMC
f %  (0.049788, 0.096441)

https://doi.org/10.1007/s10596-012-9311-5
http://www.hindawi.com/journals/cbj/2013/562767/abs/
http://www.sciencedirect.com/science/article/pii/S00457825193%2001884
http://wileyonlinelibrary.com
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Property Symbol Units Distribution

Density 𝜌GR kg
m3  (1563, 1573)

Elastic moduli E1 = E2 GPa  (57, 63)

In-plane shear modulus G12 GPa  (22.6, 24.0)

Poisson ratios 𝜈12 = 𝜈21  (0.334, 0.354)

Mutual influence coef (first kind) 𝜇1,12 = 𝜇2,12  (−0.1, 0.1)

Mutual influence coef (second kind) 𝜇12,1 = 𝜇12,2  (−0.1, 0.1)

Thermal conductivity k1 = k2
W

m-K
 (3.208, 3.546)

Thermal conductivity k3
W

m-K
 (3.243, 3.585)

Thermal expansion coef 𝛼1 = 𝛼2 K−1 × 10−6  (1.16, 1.24)

Thermal expansion coef 𝛼12 K−1 × 10−6  (−0.04, 0.04)

Max service temperature TGR
max K  (500, 510)

Failure strain (tension) 𝜖t
f ,1 = 𝜖t

f ,2 %  (0.675, 0.825)

Failure strain (compression) 𝜖c
f ,1 = 𝜖c

f ,2 %  (−0.572,−0.494)

Failure strain (shear) 𝛾f %  (0.153, 0.187)

T A B L E A2 Macroscopic
laminate material properties
for the load layer's
graphite/bismaleimide (GR-BMI)
composite layers used in the
axisymmetric shell specification

Property Symbol Units Distribution

Density 𝜌TI kg
m3  (177.77, 181.37)

Elastic modulus ETI GPa  (1.587, 2.823)

Poisson ratio 𝜈TI  (0.160, 0.196)

Thermal conductivity kTI W
m-K

 (0.680, 0.736)

Thermal expansion coefficient 𝛼TI K−1 × 10−6  (2.88, 3.06)

Max service temperature TTI
max K  (745, 765)

Yield stress 𝜎TI
Y MPa  (9.676, 16.951)

T A B L E A3 Assumed isotropic
macroscopic material properties for
titanium honeycomb layer (TI-HC)

Property Symbol Units Distribution

Thermal conductivity kgap W
m-K

 (0.0320, 0.0530)

Yield strength 𝜎Y ,B MPa  (56.876, 99.219)

T A B L E A4 Assumed properties of air gap between
thermal and load layers and of the panel structure used
in baffles

T A B L E A5 Mission parameters

Parameter Symbol Units Nominal Value Distribution

Inlet stagnation pressure Pi Pa  (86362.122, 113062.433)

Inlet stagnation temperature Ti K  (928.729, 981.600)

Atmospheric pressure Pa Pa  (17386.668, 20206.125)

Atmospheric temperature Ta K  (202.856, 231.297)

Heat transfer coefficient to environment 𝛽
W

m2-K
 (4.043, 37.376)
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Mission parameters
We focus on a typical reconnaissance mission for a small high-subsonic unmanned military aircraft. The mission includes
climbing at maximum rate to a cruise altitude of 43 000 ft, cruising at Mach 0.92 for a specified distance to an observation
point (eg, 500 km), loitering at an altitude of 43 000 ft and Mach 0.5 for 2 hours, and then returning to the takeoff point.
On the return, the aircraft descends to 10 000 ft and cruises at Mach 0.9 in a high-speed “dash” segment lasting several
kilometers before landing. The analysis of this mission showed that the climb segment was the most critical for nozzle
performance since maximum thrust was required at all altitudes, leading to the highest temperatures and pressures at the
inlet of the nozzle. In particular, the state of climb right before beginning the cruise segment was the most critical in terms
of stresses and temperatures experienced by the nozzle. Consequently, we focus on the climb segment of the mission here.
Table A5 summarizes the mission parameters used in the nozzle analysis. We assume the altitude and mach number are
fixed at 40 000 ft and 0.511, respectively.


