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Åbo Akademi University, Turku, Finland; †Division of Gastroenterology and Hepatology, ‡Division of
Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, California, USA;
§Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA; {Department of Molecular
and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; and
kVeterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan, USA

ABSTRACT Human mutations in keratin 8 (K8) and
keratin 18 (K18), the intermediate filament proteins of he-
patocytes, predispose to several liver diseases. K8-null mice
develop chronic liver injury and fragile hepatocytes, dys-
functionalmitochondria, andTh2-type colitis.We tested the
hypothesis that autoantibody formation accompanies the
liver damage that associates with K8/K18 absence. Sera
from wild-type control, K8-null, and K18-null mice were an-
alyzed by immunoblotting and immunofluorescence stain-
ingofcell andmouse tissuehomogenates.Autoantibodies to
several antigenswere identified in 81%ofK8-nullmalemice
8moorolder. Similar autoantibodiesweredetected in aging
K18-null male mice that had a related liver phenotype but
normal colon compared with K8-null mice, suggesting that
the autoantibodies are linked to liver rather than colonic
disease. However, these autoantibodies were not observed
in nontransgenic mice subjected to 4 chronic injurymodels.
The autoantigens are ubiquitous and partition with mito-
chondria. Mass spectrometry and purified protein analysis
identified, mitochondrial HMG-CoA synthase, aldehyde
dehydrogenase, and catalase as the primary autoantigens,
and glutamate dehydrogenase and epoxide hydrolase-2 as
additional autoantigens. Therefore, absence of the hepato-
cyte keratins results in production of anti-mitochondrial
autoantibodies (AMA) that recognize proteins involved in
energy metabolism and oxidative stress, raising the possi-
bility that AMA may be found in patients with keratin
mutations that associate with liver and other diseases.—
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Keratins make up the intermediate filament (IF) cyto-
skeleton of epithelial cells and include the obligate het-
eropolymeric keratin types I (keratins 9–28, 31–40) and II
(keratins 1–8, keratins 71–80) (1). Simple-type epithelia,
as found in the liver, pancreas, and intestine, express
multiple keratins (keratins 7, 8, 18–20) (2, 3), but adult
hepatocytes are unique because they express only keratin
8 (K8) and keratin 18 (K18) (3). The main function of
keratins is to protect from cellular stress (4, 5) as sup-
ported by .80 human diseases that are caused or pre-
disposed to by mutations in IF proteins (2, 6, 7). Human
K8, K18 and K19 variants predispose to progression of
several liver diseases including primary biliary cirrhosis
(PBC) (8), hepatitis C virus infection (9), and acute liver
failure (10). In contrast, the role of K8 mutations in in-
flammatory bowel disease (IBD) is less clear, likely due to
functional redundancy of additional keratins (11). Mul-
tiple transgenic mouse models that lack keratins or ex-
press keratin mutants (3, 12) support the human disease
relationship of K8/K18. For example, K8- or K18-null
(K82/2, K182/2) mice develop spontaneous mild hep-
atitis (13–15) and are highly susceptible to apoptosis and
toxin-mediated liver injury (16, 17). Both K82/2 and
K182/2mouse livers lack any K8 and K18 protein because
the absence of one keratin causes proteosomal degrada-
tion of its partner keratin (18). Although the intestine
appears normal in K182/2mice (14), K82/2mice develop
a Th2-type ulcerative colitis, colorectal hyperproliferation,
microflora-dependent decreased susceptibility to apoptosis,
and mistargeting of subcellular proteins (13, 19–21). These
intestinal manifestations are similarly observed in several
IBDmousemodels, including those lacking T-cell receptor-a
(22) or IL-10 (23).
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Patients with IBD or liver autoimmune diseases often
produce serum autoantibodies that are used in diagnosis
(24, 25). Common autoantibodies in the autoimmune
liver diseases primary sclerosing cholangitis (PSC), PBC,
and autoimmune hepatitis include anti-mitochondrial
autoantibodies (AMA), anti-nuclear antibodies, smooth
muscle antibody, or antibody to liver kidney microsome
type-1 (25, 26). Patients with IBD may also harbor serum
antibodies including perinuclear anti-neutrophil cytoplas-
mic antibodies (in ulcerative colitis) and anti-Saccharomyces
cerevisiae antibodies (in Crohn’s disease) (24). The phe-
notypes of K82/2 mice that involve the colon and liver,
coupled with the association of K8 variants with PBC (8),
prompted us to hypothesize that autoantibody formation
accompanies the liver damage associated with K8 or K18
absence in K82/2 and K182/2 mice. We validated this
hypothesis by showing that aging male mice develop
AMA, and we identified some of the autoantigen com-
ponents recognized by these antibodies.

MATERIALS AND METHODS

Animal experiments and cells

K82/2, K8+/2, wild-type K8+/+ (13), and K182/2 mice were
bred and genotyped as described elsewhere (13, 14). Mice that
overexpress wild-type human K18 and mutant Arg90Cys hu-
man K18 (K18 R89C) (27) were also used. Mice received hu-
mane care, and their use was performed in accordance with
the Committees on Use and Care of Animals. Tissue lysates
generated from FVB/n mice were used for serum screening.
Mice were also exposed to 4 different liver injury models, in-
cluding: 1) a combined high-fat and high-carbohydrate diet
that consists of a Surwit diet supplemented with fructose
and sucrose (in the drinking water) for 14 wk as described
elsewhere (28); 2) the established porphyrinogenic 3,5-
diethoxycarbonyl-1,4-dihydrocollidine liver injury model in
which mice were fed a powdered chow (Formulab Diet 5008,
LabDiet, St. Louis, MO, USA) containing 0.1% diethoxycarbonyl
dihydrocollidine (Sigma-Aldrich, St. Louis, MO, USA) for 3 mo
(29); and the liver fibrosis models that involved administering 3)
CCl4 for 8 wk or 4) thioacetamide for 6 wk (30). Sera were
collected and used for autoantibody screening as described
below. Cell lines (American Type Culture Collection, Manas-
sas, VA, USA) used included human Huh7 hepatoma and
HT29 colon carcinoma cells, mouse NIH-3T3 fibroblasts and
pancreatic LTDA cells. Cells were cultured at 37°C in media
as recommended by the supplier.

Antibodies

Primary antibodies used were rabbit anti-superoxide dismutase 2
(SOD-2), anti-prohibitin (Abcam, Cambridge, MA, USA); anti-
gpp130; anti-Hsp70 (EnzoLife Sciences, Farmingdale, NY,USA);
rabbit anti-vinculin (Sigma-Aldrich); anti-catalase and anti-PMP70
(Thermo Fisher Scientific, Waltham, MA, USA); anti-cytochrome
c (Cell Signaling, Danvers, MA, USA); anti-K8 and anti-K19 (De-
velopmental Studies Hybridoma Bank, University of Iowa, Iowa
City, IA, USA). Secondary antibodies were horseradish peroxidase
(HRP)-conjugated anti-mouse IgG (Amersham Biosciences, Pis-
cataway, NJ, USA); FITC-anti-mouse IgG andTexas Red-anti-rabbit
(The Jackson Laboratory, Bar Harbor, ME, USA); and goat HRP-
anti-mouse IgA, HRP-conjugated anti-IgA, anti-IgG or anti-IgM
(Kirkegaard & Perry Laboratories, Gaithersburg, MD, USA).

Serum collection and screening for autoantibodies

Micewere euthanizedbyCO2 inhalation, andbloodwas drawnby
intracardiac puncture or from the submandibular vein using
Golden rod lancets (MediPoint Inc., Mineola, NY, USA). Blood
was collected in serum separator tubes (BD Microtainer; BD
Biosciences, Franklin Lakes, NJ, USA), stored at 4°C overnight
andcentrifugedat 14,000 rpm(5min) toobtain serum. Serawere
portioned into aliquots and stored at220°C. Individual serawere
screened for immunoreactivity to mouse liver total lysates using
SDS-PAGE and immunoblotting with the Miniblotter System
(Immunetics, Boston, MA, USA). Sera were incubated at 1:200
dilution in 5% fat-freemilk (2 h) in PBS (pH7.4), then incubated
with HRP-anti-mouse IgG and detected using the Enhanced
ChemiluminescencePluskit (PerkinElmer,Waltham,MA,USA).
Sera were scored as positive if a signal was obtained in the 40–60
kDa range matching control sera.

Tissue collection and histology

Mouse tissues were fixed in 10% formalin for histologic analysis,
or snap-frozen in liquidnitrogen forproteinanalysis. Fixed tissues
were processed for paraffin embedding, sectioned, and stained
with hematoxylin and eosin. Livers were scored in a blinded
fashion (A.H.) for pathologic changes including inflammation,
necrosis, vacuoles, giant cells, fat, andhemorrhageusinga4-point
scale (0–4, none to maximum changes per parameter).

Immunofluorescence staining

Subconfluent NIH-3T3 and HT29 cells were grown on glass cover
slips. Cells were fixed with 4% paraformaldehyde (in PBS, pH 7.4)
then rinsedwith 0.2%Nonidet P-40 (NP-40) andblocked (2.5%
bovine serumalbumin inPBS).K82/2andK8+/+mouse sera (1:30
dilutions) were used as primary antibodies, and nuclei were
stained withToto-3 (Invitrogen, Carlsbad, CA,USA). Liver tissue
was fresh frozen in optimal cutting temperature compound,
cryosectioned,fixed in220°C acetone for 10min, and stained as
described above with anti-PMP70 antibodies and Draq5 (Cell
Signaling, Danvers, MA, USA). Samples were analyzed by an
LSM510META confocalmicroscope (Carl Zeiss, Jena, Germany).

Protein solubility and trypsin digestion

Cells were lysed in 0.1%NP-40buffer inPBS/5mMEDTA,pH7.5
(45 min, 4°C) and pelleted (14,000 rpm, 5 min), and the super-
natant was collected (NP-40 soluble fraction) (31). Thepellet was
then solubilized in 0.1% Empigen/PBS, incubated, and pelleted
asdescribedpreviously toprovide theEmpigen-soluble andpellet
(detergent-insoluble) fractions. The lysates were diluted in re-
ducingLaemmli samplebuffer and testedbyblotting for reactivity
to mouse sera. To test whether the autoantigen is a protein, the
soluble fraction was incubated (37°C) with or without trypsin,
followed by separation using 12% acrylamide gels. Antigen in-
tegrity was determined by blotting using the mouse sera.

Mitochondrial and peroxisome isolation and
mass spectrometry

The liver mitochondrial fraction was isolated as described (32).
Peroxisomes were isolated using a kit (Perox1, Sigma-Aldrich,
as recommended by the supplier) from K8+/+ and AMA-positive
K82/2 mice (8-mo-old males) that were placed on a water-only
diet for 18 h prior to isolation.Mitochondrial homogenates were
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separated in 2 dimensions by isoelectric focusing (first dimension),
then SDS-PAGE (second dimension). Identical gels were stained
using Coomassie Brilliant Blue or transferred for immunoblotting
usingantibody-positiveK8 sera.Antibody-reactiveprotein spotswere
excised from gels and/or the membrane, immersed with 100%
acetonitrile, then digested overnight (37°C, 0.1 mg/ml trypsin)
in 10 mM ammonium acetate containing 10% acetonitrile. The
trypsinized proteins were identified using an Agilent 1100 LC mass
spectrometry system (Agilent Technologies, Santa Clara, CA, USA).
Mass spectrometry/mass spectrometry analysis was performed
using the Spectrum Mill software (Agilent). A valid score (P ,
0.05) is 13 for peptides and 20 for proteins, and a minimum of
2 valid peptides were counted for each protein.

Antigen identification approach

Immunofluorescence microscopy (as described above) was used
to demonstrate that K82/2 or K182/2 autoantibody-positive
mouse sera reacted with mitochondrial antigens. Serum autoan-
tibody binding to the mitochondrial fraction was confirmed by
immune blotting. Antigen confirmation was scored as positive if
the purified test antigen bound selectively to autoantibody-
positive mouse serum by immunoblotting of the test antibody
with the purified antigen. Antigen verification was also carried
out by testing whether preabsorption of the test AMA+ antibody
with the purified protein decreased the reactivity of the auto-
antibody by immunoblotting. The purified antigens included
glutamatedehydrogenase (GDH)1(Sigma-Aldrich),mitochondrial
3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGCS2; Gen-
way, San Diego, CA, USA) and bovine catalase (Sigma-Aldrich).
K82/2 serum was preabsorbed with the purified target proteins
(7.5 ml serum + 1.38 ml protein at 1.45 mg/ml in 200 ml PBS-
Tween). Samples were mixed for 30 min (22°C), then brought
up to 1500 ml with PBS for immunoblotting of liver/cell lysates.

Statistics

Thenumbers are given as average6 SD, and statistical analysis was
performed by Student’s t test.

RESULTS

Autoantibodies are readily detected in sera of aging
male K82/2 and K182/2 mice

To test whether K82/2 mice develop autoantibodies, sera
from K82/2 and control K8+/+ littermate mice were
screened for autoantibodies by immunoblotting normal
mouse liver lysates as potential antigen using 1:200 serum
dilution. Among 10 pairs of mice, 60% of K82/2 mice but
none of age- and sex-matched littermate K8+/+ mice dis-
played consistent reactivity toward a major antigen in the
40–60 kDa range (Fig. 1A). Screening of additional mice
focusing on this molecular weight region confirmed the
presence of a frequently occurring K82/2 autoantibody
against a dominant autoantigen labeled as band C, and
intermittent weaker reactivity toward 3 additional auto-
antigens labeled bands A, B, D (Fig. 1B). The autoanti-
bodies were found in 57% of all random-selected and
screened mice and in 81% of male mice 8 mo of age and
older (Fig. 1C, D; Table 1), but rarely in young males or
female K82/2 mice or in aging K8+/+ mice (Fig. 1D,
Table 1). No differences in antigen reactivity were noted if
the liver lysatesusedwere frommaleor femalemice, young

or old mice, wild-type or K82/2 mice (not shown). Using
secondary antibodies againstmouse IgA, IgG, and IgM, the
autoantibodies were determined to be IgG (not shown).

We then used sera from K182/2 mice, which manifest
only a liver phenotype (14, 15), to dissect whether the
autoantibodies are related to the liver or colon phenotype
in theK82/2mice. Similar toK82/2mice, 11- to 12-mo-old
K182/2 male mice develop autoantibodies that corre-
spond to antigen C at a frequency of 75% (Table 1, Fig.
1D). Histologic scoring showed a trend (P = 0.18) but no
significant difference in liver damage in autoantibody-
positive comparedwithautoantibody-negativemaleK82/2

and K182/2 mice (Supplemental Table 1). In addition,
therewasnodifference in liverhistologybetweenmale and
female K82/2 mice (not shown). No autoantibodies were
detected in sera of mice that overexpress human wild-type
K18 or a K18 R90C mutation (not shown). Similarly, no
consistent autoantibodies in the same molecular weight
range were observed in sera of mice subjected to 4 in-
dependent chronic liver injury models (high fat, por-
phyrinogenic toxin and 2 fibrosis injury models; see
Materials and Methods), and only few occasional mice
manifested a weak signal (Supplemental Fig. 1). Even if
mouse models may have lower titers than the human dis-
ease (33), the serumdilutionof 1:200weusedgavea robust
signal inpositivemice.Taken together,K82/2andK182/2

male mice produce upon aging serum IgG-type autoanti-
bodies that recognize 40–60 kDa autoantigens.

The main autoantigen is a ubiquitous and
soluble protein

To further characterize the autoantigens, representative
C-antigen-reactive-sera from K82/2 mice and sera from
K8+/+ mice were used to detect antigens in various tissues
and cell lines. Sera from K82/2 but not K8+/+ mice rec-
ognized antigens in human and mouse cell lines of fibro-
blast, liver, colon, and exocrine pancreatic origin (Fig.
1E),where theonlyK82/2mouse antigen signals detected
(Fig. 1E)matched inmolecular weight those of themouse
tissue in the 50 kDa range (not shown). A similar antigen
was also detected in lysates of small intestine, colon, kid-
ney, lung, heart, spleen, and brain (Supplemental Fig. 1).

To analyze the properties of the autoantigens, NIH-3T3
cell lysates were fractionated into detergent soluble (NP-
40, Empigen) and insoluble fractions. The major C auto-
antigen is foundprimarily in theNP-40 fraction, in contrast
to the IF protein vimentin, which is soluble primarily in the
stronger detergent Empigen (Fig. 1F). The antigen rec-
ognized by K82/2 sera is a protein, because it is readily
digested by trypsin in NIH-3T3 cell lysates after 5 min at
37°C(Fig. 1G).TheK82/2autoantigen is thus aubiquitous
protein that is readily solubilized by NP-40.

The K82/2 autoantigens are mitochondrial proteins

To determine the subcellular localization of the antigens
recognized by the K82/2 autoantibodies, an immunoflu-
orescence staining was performed on NIH-3T3 cells. Sera
positive for the 40–60 kDaproteinsmanifested cytoplasmic
reticular and perinuclear staining patterns (Fig. 2B,D) not
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Figure 1. Autoantibodies are present in sera from aging K82/2 and K182/2 male mice. A–D) Sera from K8+/+, K82/2, or K182/2

mice were analyzed by immunoblotting of total mouse liver lysates using a miniblotter setup. A) Ten age- and sex-matched K8+/+

and K82/2 mouse pairs (Pair #) were analyzed, and the arrow points to a protein band (antigen) that is consistently observed
only in K82/2 sera. B) Only male mouse serum is analyzed to test for autoantibodies, and bands marked A–D highlight the 4
major autoantigens recognized using K82/2 but not K8+/+ sera. C) Sera from 10 male mice with the indicated ages were

(continued on next page)
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seen in antibody-negative K82/2 sera (Fig. 2F) or K8+/+

sera (Fig. 2A, C, E). Similar results were obtained using
HT29 cells (not shown). Costaining using autoantibody-
positive K82/2 sera with markers for Golgi and mito-
chondria revealed primarily a mitochondrial distribution
for the autoantigen (Fig. 3A). Sera from a few K82/2 and
K182/2 mice colocalized with ends of F-actin stress fibers
and vinculin at filopodia (not shown). Occasional sera
from aging mice carried autoantibodies to unidentified
proteins (see Fig. 1), which were not further analyzed.

To biochemically identify the autoantigens, mouse liver
mitochondria were purified by subcellular fractionation
(Fig. 3B) and separated using 2-dimensional electrophore-
sis. Themitochondrial-enriched proteins were visualized by
Coomassie Brilliant Blue staining (Fig. 4A) and analyzed by
immunoblottingusingK82/2 sera (Fig. 4B) onparallel gels.
The Coomassie Brilliant Blue-stained dots that colocalized
with the immune-reactive spots were identified using mass
spectrometry as GDH1 for antigen B and a mixture of mi-
tochondrial HMG-CoA synthase (HMGCS2), catalase, and
aldehyde dehydrogenase (ALDH)E2 for antigenC; the less
abundant antigen A was identified as epoxide hydrolase 2
(Table 2).

Validation of GDH1 and HMGCS2 as
primary autoantigens

To validate the identified antigens, the commercially pu-
rified GDH1 and HMGCS2 proteins were analyzed by 2
approaches: 1) directly by immunoblotting purified puta-
tive antigens with K82/2 mouse sera to determine if the
autoantibody identifies these proteins as antigens, and 2)
preabsorption of sera with purified GDH1 and HMGCS2
autoantigens. Autoantibodies against antigen B but not an-
tigen C detected purified GDH1 (Fig. 4C). Preabsorption of
antigen B sera using purified GDH1 diminished but did not

completely remove the Western blot signal for GHD1, sup-
porting that theBantigencorresponds inpart toGDH1(Fig.
4D). Likewise, bacterially expressed HMGCS2 loaded onto
gels and probed with mouse serum shows that the K82/2 C
sera reacts stronger with HMGCS2, compared with K8+/+

serum(Fig. 4E).Preabsorptionof2differentK82/2 serawith
HMGCS2 and probing of filters with K82/2 serum shows
a decreased signal when the serum was preabsorbed (Fig.
4F). For catalase, also aminor decrease inC antigen signal in
liver lysates was noted after incubation of the mouse serum
with purified bovine catalase (not shown).

screened. D) Sera from aging (8 mo or older) K82/2 females and K182/2 male mice were tested for autoantibody presence using
K82/2 as positive controls. The secondary (2nd) antibody control (lane 1) is indicated. C, D) Arrows highlight autoantigen C and
asterisks (*), nonspecific signal. E) Mouse and human cell line lysates were tested by immunoblotting using sera from K82/2 and
K8+/+ mice. F) NIH-3T3 fibroblasts were sequentially solubilized with NP-40 then Empigen and further analyzed (together with
the total cell fraction or the post-Empigen pellet) by immunoblotting with K8+/+ or K82/2 serum, or anti-vimentin antibody as
a control. G) NIH-3T3 NP-40 lysates were incubated with or without trypsin for the indicated times and then analyzed by
immunoblotting using K82/2 serum or the secondary antibody control alone as a specificity control. Arrow highlights the
autoantigen. Ab, antibody; Emp, Empigen; h, human; m, mouse; mon, month.

TABLE 1. Prevalence of autoantibodies recognizing 40-60 kDa liver
antigens

Genotype Age (mo) Total (n)

AMA
positive Phenotype

% n Liver Colon

K8+/+ M + F 2–18 51 6 3 N N
K8+/2 M + F 8–18 16 6 1 N N/Ab

K82/2 M + Fa 2–7 16 0 0 A A
M + F 8–24 60 57 34 A A
M 8–24 27 81 22 A A
F 8–24 6 0 0 A A

K182/2 M 11–12 20 75 15 A N

A, abnormal histology; N, normal histology. aSeventy-five percent
males. bK8+/2 colon appears normal but has a mild phenotype (19).

Figure 2. K82/2 mouse autoantibodies manifest a cytoplasmic
reticular staining pattern. K8+/+ (A, C, E) and K82/2 (B, D, F)
sera from 3 mice (1–3) per genotype were used as primary
antibodies to stain NIH-3T3 cells followed by FITC-labeled
secondary anti-mouse antibody. The K82/2 sera were positive
(B, D) or negative (F) for autoantibody reactivity as de-
termined by immunoblotting. E) Insert represents secondary
antibody alone control staining. N, nuclei.
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DISCUSSION

IFmutations cause or predispose tomultiple tissue-specific
human diseases, and these diseases parallel the tissue-
specific expression of IFs and are phenocopied in IF-
related geneticmousemodels (3, 34). Someof the diseases
have an autoimmune component; however, it is unknown
whether the mouse models mimic the human disease in
terms of presence of autoantibodies as has been described
in other mouse models of autoimmune disease (26, 35).
Our findings show that aging K82/2 and K182/2 male
mice produce AMA at reasonably high titers. The liver is
the likely source of autoantigens because K82/2 and
K182/2 knockout mice both have a similar major pheno-
type in the liver (15), althoughK82/2butnotK182/2mice
also develop spontaneous colitis (13, 19–21). The liver
phenotype, which has been extensively studied in K82/2

mice, includes predisposition to hepatotoxic injury (36–38)
and apoptosis (16, 17) and profound hepatocyte fragility
upon liver perfusion (39). Both genotypes have patchy loss
of hepatocytes with replacement by multinucleated giant
cells (15). K182/2 but not K82/2 mice develop spontane-
ousMallory-Denkbodies (MDBs)withold age (14), thereby
suggesting that the MDBs are not related to the AMA,
albeit male mice are more susceptible to MDB formation
(40). In the K82/2 and K182/2 livers, hepatocyte rather
than biliary damage is likely the source of antigen exposure.
The reason for this assessment is that there is no major
pathology in the biliary system (not shown) (13) and bile
ducts express primarily K19 and K7, in contrast to adult
hepatocytes, which express only K8 and K18 (41), with the
latter beingmore susceptible to injury in the absence of K8.

K82/2 hepatocyte mitochondria are smaller and ir-
regularly distributed and have decreased ATP and cy-
tochrome c levels (42), with altered hepatic glucose/

glycogen metabolism (43). Notably, proteomic analysis
of K82/2hepatocytes (42) showed that 13mitochondrial
proteins had altered charged isoforms, including 3 of
the autoantigens (GDH, ALDH,HMGCS2) we identified
herein. It is likely that the keratin-dependent chronic
mitochondrial stress and hepatocyte fragility lead to ex-
posure of inner mitochondrial proteins to the immune
system with consequent production of AMA, which
highlights hepatocytemitochondria as likely to be central
in this phenotype. In PBC, where PBC-specific AMA is an
important hallmark of disease and PDC-E2 the major
antigen, the affected cholangiocyte apoptotic bodies are
believed to be the antigen-presenting entity (26). The
male preponderance of AMA in K82/2/K182/2 mice is
unlike PBC, which is more frequent in females (44), but
resembles PSC, which has a 2:1 male:female ratio and is
typically associated with antineutrophil cytoplasmic
antibodies rather than AMA (45). It is likely that sex-
dependent human autoimmune diseases are related
to hormonal causes, fetal microchimerism, or X-
chromosome changes (26). Given that catalase is one
of the autoantigens we observed, peroxisomal damage is
also a potential source of the autoantigens. Notably, we
did not observe an obvious alteration in the organiza-
tion of peroxisomes or loss of the peroxisomal mem-
brane protein PMP70 (based on immunofluorescence
staining and immunoblotting, respectively; not shown).
However, our findings cannot completely exclude the
possibility of a peroxisomal defect that could contribute
to the generation of the autoantibodies we observed.

The K82/2/K182/2 and the K18 R90C mice have either
absent or disrupted cytoskeletal keratin networks, re-
spectively. However, AMA were not found in K18 R90C
mice, which raises the possibility that the presence of some
keratins, albeit disorganized, is protective. However,

Figure 3. K82/2 sera recognize mitochondrial autoantigens. A) NIH-3T3 cells were double-stained with K82/2 serum (a, b, d, e;
green) that tested positive for autoantigen-binding by immunoblotting, and the Golgi protein gpp130 (a; red) or the
mitochondrial protein SOD-2 (b, c, e; red). The merged images of c and d illustrate colocalization of the autoantibody and SOD-
2 (e; yellow). B) Mouse liver mitochondrial (lanes 1 and 2), cytosol (lanes 3 and 4), and total liver lysate (lane 5) fractions were
blotted with serum from an antibody-positive K82/2 mouse, with prohibitin (mitochondrial marker) or Hsp70 (cytosolic
marker). N, nuclei.
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another contributing factor may be the altered thymic
epithelium inK82/2mice(46), although thishasnotbeen
examined in K182/2 or K18 R90C mice and the immu-
nologic consequences of such disruption of the thymic
epithelium are unknown. In addition, chronic liver injury
per se (up to 8wk, Supplemental Fig. 1) doesnot appear to
be the culprit in the formation of the autoantibodies, al-
though we cannot exclude the possibility that longer-term
chronic injury (which we did not test) may potentially

result in autoantibody formation independent of keratin
absence or mutation. The implication of our findings is
that the defect caused by keratin absence from birth, to-
gether with the age effect, promotes antibody formation
but in the context of male gender.

TheK82/2mouse autoantigensHMGCS2, catalase, and
ALDHE2 are involved in energymetabolism andoxidative
stress. HMGCS2, a rate-limiting ketogenic pathway en-
zyme, is important for energy production under ketogenic

Figure 4. Identification and verification of the K82/2 autoantigens. A, B) Total mouse liver lysates were separated by isoelectric
focusing then SDS-PAGE. Proteins were stained by Coomassie Brilliant Blue (A) or blotted with K82/2 serum that recognizes all 4
autoantigens. Liver lysates separated only by SDS-PAGE are included (1D, right side of the panels). C) GDH1 (lanes 1) and total
liver lysates (lanes 2) were separated by SDS-PAGE on the same gels for each serum, transferred, and analyzed by
immunoblotting using K82/2 sera containing the C, B, or C and B autoantibodies, or with K8+/+ serum as control. GDH1 is
recognized by K82/2 sera containing antibody B but not C (indicated by boxes). D) Purified GDH1, liver lysates, and NIH-3T3
lysates were separated on parallel gels and transferred for blotting. Prior to blotting, the K82/2 serum was preabsorbed (right
panel) or not (left panel) with GDH1, then used for immunoblotting. E) Purified HMGCS2 was immunoblotted with K82/2

serum (lane 1) or K8+/+ serum (lane 2). F) HMGCS2 was immunoblotted with 2 independent K82/2 sera (serum #1 and
serum #2) containing antibody C that had been preabsorbed (lanes 2) or not (lanes 1) with purified HMGCS2. Note that
preabsorption leads to a marked reduction in autoantibody reactivity.
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conditions such as starvation (47) andwas recently found to
be down-regulated in the colon of K82/2 mice (48).
Whether such circulating autoantibodies would have path-
ophysiologic consequences in another organ is not known.
The K82/2 mice have colitis, which starts within the first
2 wk after birth (19) indicating that the colitis phenotype
is not caused by autoantibody formation. Notably, anti-
catalase autoantibodies were reported in 60% of a PSC
patient cohort (49) and in rat models of acute fibrosing
cholangitis (50). The antioxidant catalase was also found as
one of the anti-soluble liver antigens in autoimmune hepa-
titis type-1 (51). ALDH E2 is important in oxidative stress
and part of a large family of NAD(P)+-dependent dehy-
drogenases (52). Anti-ALDH antibodies are found in cases
of unexplained infertility (53) and cancer (54), and ALDH
4A1 levels are significantly changed in K82/2 hepatocyte
mitochondria (42). GDH1, a mitochondrial matrix protein
with roles in glutamate and energy metabolism, was also
identified among the autoantigens. GDH mutations leads
to the hyperinsulinism/hyperammonemia syndrome (55),
and GDH is up-regulated in liver disease (56). The
remaining autoantigen we identified, epoxide hydrolase
2, is a cytoplasmic protein that is important in detoxifica-
tion (57). Taken together, our findings raise the possibility
that AMAmay also be found in patients who harbor keratin
variants that predispose to liver disease progression or in
association with other IF-associated diseases.
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Foundation, EU FP7 IRG, and ÅAU Center of Excellence
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17. Leifeld, L., Kothe, S., Söhl, G., Hesse, M., Sauerbruch, T., Magin,
T. M., and Spengler, U. (2009) Keratin 18 provides resistance to Fas-
mediated liver failure in mice. Eur. J. Clin. Invest. 39, 481–488

18. Ku,N.O.,andOmary,M.B.(2000)Keratins turnoverbyubiquitination
in a phosphorylation-modulated fashion. J. Cell Biol. 149, 547–552

19. Toivola, D. M., Krishnan, S., Binder, H. J., Singh, S. K., and Omary,
M. B. (2004) Keratins modulate colonocyte electrolyte transport via
protein mistargeting. J. Cell Biol. 164, 911–921

20. Habtezion, A., Toivola, D. M., Butcher, E. C., and Omary, M. B.
(2005) Keratin-8-deficient mice develop chronic spontaneous
Th2 colitis amenable to antibiotic treatment. J. Cell Sci. 118,
1971–1980

21. Habtezion, A., Toivola, D.M., Asghar,M. N., Kronmal, G. S., Brooks,
J. D., Butcher, E. C., and Omary, M. B. (2011) Absence of keratin 8
confers a paradoxical microflora-dependent resistance to apoptosis
in the colon. Proc. Natl. Acad. Sci. USA 108, 1445–1450

22. Mombaerts, P., Mizoguchi, E., Grusby, M. J., Glimcher, L. H., Bhan,
A. K., and Tonegawa, S. (1993) Spontaneous development of
inflammatory bowel disease in T cell receptor mutant mice. Cell 75,
274–282
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