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ABSTRACT Excessive activation of the complement
system is detrimental in acute inflammatory disorders. In
this study, we analyzed the role of complement-derived
anaphylatoxins in the pathogenesis of experimental acute
lung injury/acute respiratory distress syndrome (ALI/
ARDS) in C57BL/6J mice. Intratracheal administration
of recombinant mouse complement component (C5a)
caused alveolar inflammation with abundant recruitment of
Ly6-G+CD11b+ leukocytes to the alveolar spaces and severe
alveolar-capillary barrier dysfunction (C5a-ALI; EC50[C5a] =
20 ng/g body weight). Equimolar concentrations of C3a or
desarginated C5a (C5adesArg) did not induce alveolar in-
flammation. The severity of C5a-ALI was aggravated in
C5-deficient mice. Depletion of Ly6-G+ cells and use of
C5aR12/2 bone marrow chimeras suggested an essential
role of C5aR1+ hematopoietic cells in C5a-ALI. Blockade of
PI3K/Akt and MEK1/2 kinase pathways completely abro-
gated lung injury. The mechanistic description is that C5a
altered the alveolar cytokine milieu and caused significant
release of CC-chemokines. Mice with genetic deficiency of
CC-chemokine receptor (CCR) type 5, the common re-
ceptorof chemokine (C-Cmotif) ligand (CCL)3,CCL4, and
CCL5, displayed reduced lung damage. Moreover, treat-
ment with a CCR5 antagonist, maraviroc, was protective
against C5a-ALI. In summary, our results suggest that the
detrimental effects of C5a in thismodel are partly mediated
through CCR5 activation downstream of C5aR1, which
may be evaluated for potential therapeutic exploitation in
ALI/ARDS.—Russkamp, N. F., Ruemmler, R., Roewe, J.,
Moore, B. B., Ward, P. A., Bosmann, M. Experimental
design of complement component 5a-induced acute lung
injury (C5a-ALI): a role of CC-chemokine receptor type 5

during immune activation by anaphylatoxin. FASEB J.
29, 3762–3772 (2015). www.fasebj.org
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ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) and acute lung
injury (ALI) aremajor health care problems, with;200,000
cases annually in the United States and an overall mortality
rate of 20–40% (1, 2). ALI/ARDS is characterized by the
acute onset of dyspnea, severe hypoxemia, and bilateral ra-
diographic lung infiltrations.These symptoms are causedby
excessive alveolar inflammation and accompanying pul-
monary edema (1, 3). No specific treatment is yet available,
which points up the need for a better understanding of the
underlying molecular pathogenesis to eventually improve
the prognosis of patients who have ALI/ARDS. Small-
animal models may contribute substantially to this quest.

The exudative phase of ARDS is characterized by an
intra-alveolar accumulation of inflammatory cells, the de-
velopment of protein-rich edema, hemorrhage, and the
formation of alveolar hyaline membranes (1). Substantial
evidence implies a role for pattern recognition receptors,
cytokine release, neutrophil extracellular traps, comple-
ment activation, production of reactive oxygen species in
thisprocess (4, 5).Underhomeostatic conditions, thefluid
lining of airways and alveoli contains substantial amounts
of locally produced complement components that provide
protection against inhaled pathogens (6). Althoughpatients
with hereditary complement deficiencies may display se-
vere and recurring respiratory tract infections (7), excessive
activation of the complement cascade can be extremely
detrimental in the lungs (8). A particularly deleterious role
has been associated with alveolar generation of activated
complement component 5 (C5)a (4, 8).

Abbreviations: ALI, acute lung injury; ARDS, acute respi-
ratory distress syndrome; BALF, bronchoalveolar lavage fluid;
BSA, bovine serum albumin; BW, body weight; C, complement
component; C5adesArg, desarginated complement component
C5a; C5aR1, complement component 5a receptor 1; CCL3,
chemokine (C-C motif) ligand 3 (MIP-1a); CCL4, chemokine
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Cleavage of C5 into C5a and C5b occurs in all traditional
complement activation pathways. In addition, plasma/
leukocyte-derived serine proteases exhibit C5-cleaving activ-
ity and can initiate a so-called extrinsic pathway of comple-
ment activation (9, 10). Whereas C5b acts as anchor for
assembly of the membrane attack complex for direct path-
ogen lysis,C5aexhibitshighbiologiceffectsonhostcells.C5a
(11 kDa, 74–77 amino acids, depending on species) has
a short plasma half-life as it is degraded to desarginated C5a
(C5adesArg) by carboxypeptidase N within minutes (11, 12).
C5a-induced cellular responses aremediated by 2 receptors:
a G-protein–coupled receptor termed complement com-
ponent5a receptor1 [C5aR1; clusterofdifferentiation(CD)
88] and the largely homologous C5aR2 (C5L2, GPR77),
which lacks an intracellular adaptor molecule (13, 14). Li-
gation of C5aR1 promotes chemotaxis and intracellular
activationof the PI3K andMAPKpathways (15), but the role
of C5aR2 in inflammation is still a matter of dispute (16).

There is compelling evidence that complement activation
contributes to the pathogenesis of ARDS via local generation
of C5a. Bronchoalveolar lavage fluid (BALF) from patients
with ARDS contains substantial amounts of C5a (17, 18).
Experimentalactivationof thecomplementsysteminrodents
after intravenous administrationof cobra venom factor leads
to an ARDS-like condition in a C5a-dependent manner
(19). Similar symptoms have been observed when purified
C5awas administered intratracheally in severalmammalian
species (20–23). Interruption of endogenousC5a signaling
protects rodents and primates in diverse models of ALI/
ARDS (9, 24–26). The mechanistic explanation is that C5a
facilitates the transmigration of polymorphonuclear neu-
trophils (PMNs) fromthepulmonary circulation toalveolar
walls and spaces (e.g., through up-regulation of adhesion
molecules such as intracellular adhesion molecule-1 and
P-selectin) (27, 28). Moreover, C5a is a potent inducer of
the pulmonary cytokine response (26, 29).

Despite a body of evidence indicating the deleterious
effects of complement activation in ALI/ARDS, a suitable
experimental model for direct examination of the role of
C5a and C5a-receptors has not yet been characterized in
adequate detail. Consequently, the understanding of mo-
lecular mechanisms that are initiated by C5a in lungs is still
insufficient. In this study, we used a model of C5a-induced
ALI in mice to assess the adverse effects of alveolar gener-
ationofC5aand to identify interactions thatmaycontribute
to this process. We found that activation of CC-chemokine
receptor (CCR) 5 downstream of C5aR1 determines the
severity ofC5a-inducedALI, whichmay be important in the
quest for therapeutic strategies for ALI/ARDS.

MATERIALS AND METHODS

Animals

All experiments were conducted in accordance with the animal
protection act of Germany, the State Investigation Office of
Rhineland-Palatinate, the U.S. National Institutes of Health
Guidelines, and the University Committee on Use and Care of
Animals of the University of Michigan.

The followingmouse strains (10- to 12-wk-old, 25 gmales) were
purchased fromThe JacksonLaboratory (BarHarbor,ME,USA):
C57BL/6J, CCR52/2 (B6.129P2-Ccr5tm1Kuz/J), C5-deficient
(B10.D2-Hc0 H2d H2-T18c/oSnJ mice), C5-sufficient (B10.D2-
Hc1 H2d H2-T18c/nSnJ), and TLR42/2 (B6.B10ScN-Tlr4lps-
del/JthJ). C5aR12/2 mice (backcrossed for .10 generations on
C57BL/6J) were bred and housed at the University of Michigan.

ALI

Mice were anesthetized with ketamine and xylazine before sur-
gical exposure of the trachea (22). For induction of ALI, mice
received the following substances in 40 ml phosphate buffered
saline (PBS) as an intratracheal instillation: recombinant mouse
C5a or C3a (rmC5a or rmC3a; R&D Systems, Minneapolis, MN,
USA),C5adesArg/C5a(Hycult, PlymouthMeeting,PA,USA),LPS
(Escherichia coli, O111:B4, Sigma-Aldrich, St. Louis,MO,USA), or
anti-BSA IgG (MP Biomedicals, Santa Ana, CA, USA), together
with 0.5 mg i.v. bovine serum albumin (BSA; Sigma-Aldrich).

BALF analysis

At the end of the experiments, the lungs were lavaged with 1 ml
sterile PBS. The albumin concentration was assessed by ELISA
(Bethyl Laboratories, Montgomery, TX, USA). BALF cellularity
was counted with a hemocytometer after lysis of erythrocytes.
Multiple cytokines/chemokines were quantifiedwith theBioPlex
Pro assay (Bio-Rad, Hercules, CA, USA) (30).

Bone marrow transplantation

Bone marrow chimeric mice were generated as described else-
where(31). In short, syngeneic recipientmicewere irradiatedwith
13 Gy delivered in 2 fractions separated by 3 h (X-ray source).
Wholebonemarrowcells (53106) fromdonormicewere infused
intravenously into the recipients. Sufficient engraftment was
confirmed by flow cytometry of circulating leukocytes 6 wk after
transplantation and before experimental use.

High-resolution magnetic resonance imaging

Acquisition of high-resolution magnetic resonance imaging (HR-
MRI) scans was performed as described by us earlier (22). Briefly,
magnetic resonance images were acquired in a 7.0T MR Scanner
(Agilent, Palo Alto, CA, USA) within 10 min after euthanization of
the individualmice, to avoidmotionartifacts causedby ventilation.A
fast spin-echo sequence was used to generate axial proton density/
T1-weighted images.Fifteencontiguousslices(slice thickness,1mm)
were obtained with a total scan time of;4 min per mouse.

Immunoprecipitation and Western blot analysis

For detection of C5a, the lungs were homogenized and lysed
in RIPA buffer containing protease inhibitors (Roche Diag-
nostics, Indianapolis, IN, USA). Total lung proteins (1 mg) or
BALF(500ml)was immunoprecipitatedwith a customized rabbit
anti-C5a affinity-purified antiserum (immunogenic sequence:
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CTIANKIRKESPHKPVQLGR; Lampire Biological Laboratories,
Everett, PA, USA) and protein A agarose beads. Proteins were
separated by electrophoresis (15%SDS-polyacrylamidegel), and
blotted onto nitrocellulose membranes that were treated with
the anti-C5a antiserum, followed by incubation with horseradish
peroxidase-conjugated secondary antibodies (GE Healthcare
Life Sciences, Marlborough, MA, USA) and chemiluminescent
substrate (Denville Scientific, South Plainfield, NJ, USA).

Microscopy

For bright-fieldmicrocopy, paraformaldehyde (4%) was used for
fixation of lungs, and 3 mm paraffin-embedded sections were
stained with hematoxylin and eosin (H&E) (32).

TransmissionelectronmicrographswereacquiredwithaCM100
electronmicroscope (Philips, Leuven, TheNetherlands) on 70nm
lung sections, which were prepared according to a published
method (22).

For fluorescent microscopy, lungs were snap frozen in Tissue-
Tek optimal cutting temperature compound (Sakura Finetek,
Torrance,CA,USA), cryosectioned, andfixed in 4% formaldehyde
(Thermo Fisher Scientific, Waltham, MA, USA). After blocking
(10%normalmouse serum,7%BSA) thesectionswere treatedwith
rat IgG2b isotypecontrol or rat anti-Ly6Gantibody (cloneRB6-8C5;
eBioscience, SanDiego,CA,USA) followedby 1hwithdonkey anti-
rat AF594 (Life Technologies-Invitrogen, Carlsbad, CA, USA) and
mounted with Prolong Gold (Invitrogen). A BX-51 microscope
(340/0.9,360/1.4oil, and3100/1.4oil),withaDP-70cameraand
DP Controller Software (all from Olympus, Center Valley, PA,
USA), was used for image acquisition.

PMNswereharvestedbyperitoneal lavageafter intraperitoneal
injection of 23 1 ml casein solution (9% w/v; Sigma-Aldrich), at
215 and23h before lavage, and cultured inRPMI 1640medium
(25 mM HEPES, 100 U/ml penicillin-streptomycin, and 0.1%
BSA) at 37°C and 5% CO2.

Flow cytometry

Cells were stained with the following anti-mouse antibodies and
matched isotype controls according to standard protocols (15):
Ly-6G-eFluor450 and Ly-6G-APC (clone RB6-8C5; eBioscience),
p-Akt(threonine308)-PE (clone J1-223.371; BD Biosciences, Frank-
lin Lakes, NJ, USA), p-MEK1/2(serine218/serine222)-AF647 (clone
O24-836; BD Biosciences), p-ERK1(threonine203/tyrosine205)/
ERK2(threonine183/tyrosine185)-AF488 (clone 20A; BD Bio-
sciences), C5aR1-PE (clone 20/70; BioLegend, San Diego,
CA, USA), CCR5-PE (clone HM-CCR5; BioLegend), CD11b-
eFluor450 (clone M1/70; eBioscience), and CD45-FITC
(clone 30-F11; eBioscience). In some experiments, counting
beads were added to flow cytometry samples to calculate the
number of cells. Data were collected on a FACSCanto II (BD
Biosciences) and analyzed with FlowJo 7.6.4 (Tree Star, Ashland,
OR, USA) or WinList (Verity Software House, Topsham, ME,
USA) software.

Reagents

Circulating PMNs were depleted by using 200 mg/mouse of anti-
mouse-Ly-6G IgG (clone RB6-8C5; eBioscience) at day –1 before
ALI experiments and were used, together with isotype IgG2b
(clone eB149/10H5, eBioscience), as the control. Wortmannin
[1mg/g body weight (BW); Invivogen, San Diego, CA, USA] and
SL-327 (100 mg/g BW; Tocris Bioscience, Bristol, United King-
dom) were injected intraperitoneally. Maraviroc (10 mg/g BW,
Tocris Bioscience) was given as an oral gavage 30 min before

induction of ALI, whereas control animals received PBS vehicle
(,0.1% DMSO final concentration). The doses of these drugs
were deduced from previous reports (33–35).

Statistical analysis

Data were analyzed and visualized with Prism, version 6.05 (Graph-
Pad, San Diego, CA, USA). Data are expressed as means 6 SEM.
Groupdifferenceswere tested for significanceby thenonparametric
Wilcoxon-Mann-Whitney test or unpaired Student’s t test. In vitro
experiments were repeated a minimum of 3 times. The number of
mice used for in vivo studies was$5/group for most experiments.
We considered differences significant at P, 0.05.

RESULTS

Endogenous C5a is generated in murine models
of ALI

Initially, we investigated the role of endogenous C5a in 2
established experimental models of ALI. The development
of bilateral pulmonary infiltrates is a major criterion for the
clinicaldiagnosisofARDS inhumans, andHR-MRIrevealed
substantial infiltrates in C57BL/6Jmice that were subjected
toLPS-ALI or IgG immune-complex–inducedALI (IC-ALI)
but not in sham-surgery control animals (Fig. 1A, arrow-
heads). Albumin concentrations in BALFs served as surro-
gate endpoints of ALI as they were used to assess the degree
of damage to the alveolar-capillary barrier integrity. In LPS-
ALI and IC-ALI, thepeakof injury to thebarrier occurred at
8 h (Fig. 1B), the time point used for all subsequent
experiments.Lung injurywasprecededby thegenerationof
the anaphylatoxin C5a in BALF and lung homogenate in
both ALI models (Fig. 1C). The pivotal role of endogenous
C5a was confirmed, because mice that were genetically
deficient in C5 were partially protected from development
of LPS-ALI (Fig. 1D).

Airway administration of rmC5a results in recruitment
of leukocytes and disruption of alveolar-capillary
barrier function

To investigate the pulmonary effects of C5a, we used
a model of C5a-ALI in C57BL/6J mice (22). Instillation of
rmC5a [2–160 ng/g BW, intratracheally (i.t.)] resulted in
a dysfunction of the alveolar-capillary barrier as well as in
voluminous recruitment of white blood cells (WBCs) to the
BALF in a dose-dependent manner (Fig. 2A). For reliable
induction of ALI, we used intratracheal administration of
20 ng rmC5a per gram BW in subsequent experiments. A
time-course experiment revealed that maximum lung
damage and influx of WBCs occurred 8 h after adminis-
tration of rmC5a, although a significant increase in these
hallmark parameters was detectable 4 h earlier (Fig. 2B).
For subsequent experiments, samples were collected at the
8 h time point. We excluded relevant contamination with
endotoxin in the E. coli–derived rmC5a by the observation
that it was equally potent in TLR42/2 mice (Fig. 2C). Be-
cause C5a is inactivated immediately by the plasma enzyme
carboxypeptidase N in physiologic conditions, the effects
of its degradation product, C5adesArg, were also studied.
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AlthoughC5adesArgwas implicated in thedevelopmentofALI
decades ago (20), pulmonary challenge with rmC5adesArg
(in equimolar doses, as compared to doses of rmC5a) did
not elicit a detectable inflammatory response (Fig. 2D).
Furthermore, airway administration of rmC3a did not
reproduce the ALI phenotype that was observed when
equimolar concentrations of rmC5a were used (Fig. 2E).

It has been reported that activated alveolarmacrophages
and PMNs release serine proteases that cleave local C5 into
C5a (an extrinsic protease pathway of complement activa-
tion) (9, 10). To test whether intratracheal C5a adminis-
tration would initiate a proinflammatory autoamplification
loop through cleavage of more C5 by phagocyte-derived
proteases, we induced C5a-ALI in C5-deficient mice. A hy-
pothetical amplification loop was expected to cause less
lung injury in themice. However, the opposite observation
was made: C5-deficient mice displayed intensified disrup-
tion of the alveolar-capillary barrier and a higher influx of
phagocytes (WBCs) in response to C5a (Fig. 2F). No dif-
ferences were noted in the expression levels of C5aR1 on
phagocytes fromC5-deficientmice compared with levels in
C5-sufficient mice (data not shown).

To further characterize C5a-ALI, we assessed lung
damage by magnetic resonance tomography and micros-
copy studies. HR-MRI showed central bilateral lung areas
of high signal intensity consistent with pulmonary con-
solidation in C5a-challenged animals but not in sham-
treated controls (Fig. 2G, arrowheads). Histopathology
sections showedcharacteristic featuresofALI in lungs after
administration of rmC5a, such as abundant presence of

inflammatory cells, alveolar fibrin depositions, and
intra-alveolar hemorrhage (Fig. 2H). In conclusion,
thesedata suggest thatC5a, rather thanC3aorC5adesArg, is
a potent mediator of the acute inflammatory response
during ALI.

Development of C5a-ALI is dependent on
Ly-6G+CD11b+ PMNs

C5a is a potent chemoattractant stimulus for PMNs. As
a result, more than 85% of the WBCs that were recruited
by C5a to the alveolar cavity were Ly-6G+CD11b+ PMNs
(Fig.3A). In the sham-surgery (PBS)miceonly 5%ofBALF
cells were PMNs, whereasmost of the nucleated cells in the
sham group were CD11b+Ly-G62 alveolar macrophages.
Fluorescence microscopy showed abundant expression of
the PMN-specific surfacemarkerLy-6G inC5a-injured lung
parenchyma (Fig. 3B, top). Moreover, transmigration of
PMNs into the alveolar spaces was detected by transmission
electron microscopy. The presence of fibrin depositions
(arrowheads) and damaged type II alveolar epithelial
cells (arrow) was also observed (Fig. 3B, bottom). To
further investigate the role of PMNs in C5a-ALI, we in-
duced experimental neutropenia by administration of
a depleting antibody directed against the Ly-6G epitope
on PMNs. Efficient depletion of circulating PMNs in pe-
ripheral blood was confirmed by automated cell counts
(Fig. 3C). PMN-depleted C57BL/6J mice showed re-
duced BALF cellularity and significant protection from

Figure 1. Endogenous C5a mediates ALI. A) Chest scans acquired by HR-MRI of C57BL/6J mice 8 h after induction of LPS-ALI
or IC-ALI or sham surgery (PBS). Arrowheads: areas of pulmonary infiltration. B) Disruption of the alveolar-capillary barrier
integrity as measured by ELISA of alveolar albumin concentrations in BALF sampled 4, 8, or 12 h after induction of LPS-ALI or
IC-ALI. C) Western blot analysis for C5a in BALF and whole-lung lysate that were obtained at different time points after LPS-ALI
or IC-ALI. D) Alveolar albumin concentrations in C5-deficient mice vs. C5-sufficient mice 8 h after induction of LPS-ALI. All
experiments were performed in C57BL/6J mice. *P , 0.05.
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C5a-induced alveolar-capillary barrier dysfunction, as
evaluated by alveolar albumin concentrations (Fig. 3D).

Expression of C5aR1 on hematopoietic cells is
essential in the pathogenesis of C5a-ALI

TheC5a receptor, C5aR1, has been shown to be expressed
by hematopoietic cells as well as by a range of nonimmune
cells in the alveolar microenvironment, including endo-
thelial cells,fibroblasts, andalveolar epithelial cells (36, 37).
However, in a novel C5aR1-reporter mouse strain, no sub-
stantial expression of C5aR1 was observed in alveolar epi-
thelial cells in steady-state conditions (38). To evaluate the
contribution of structural nonimmune lung cells in C5a-
ALI, C5aR12/2-deficient bone marrow was transplanted
into irradiated C57BL/6J wild-type (wt) recipient mice. An

irradiation and transplantation scheme was applied that
also has been shown to deplete recipient alveolar mac-
rophages efficiently (31). Sufficient engraftment of the
transplanted bone marrow was demonstrated by the ab-
sence of circulating CD45+Ly-6G+CD11b+C5aR1+ cells in
recipientmice 6 wk after transplantation (Fig. 4A). In the
control group, bone marrow from C57BL/6J mice was
transferred into irradiated syngeneic wt mice. Chimeric
mice with selective absence of C5aR1 on hematopoietic
cells were greatly protected from alveolar-capillary bar-
rier dysfunction and recruitment of WBCs during C5a-
ALI (Fig. 4B). Conversely, hallmark features of C5a-ALI
were restored inC5aR12/2 recipientmice thathadreceived
bone marrow from the wt mice (Fig. 4C). Histopathology
studies showed profound reduction of pulmonary in-
flammation in lung sections fromwtmice that had received
C5aR12/2 bone marrow (Fig. 4D). These data suggest that

Figure 2. Airway administration of rmC5a causes ALI (rmC5a, rmC3a and rmC5adesArg dose, 20 ng/g BW, i.t., unless otherwise specified;
negative control, equal dose of PBS). A) Alveolar albumin concentrations and WBC counts 8 h after intratracheal administration of
different doses of rmC5a in C57BL/6J mice. B) Time course of C5a-ALI, as assessed by alveolar albumin concentrations and WBC
counts. C) C57BL/6J (wt) mice and TLR42/2 mice received rmC5a, and alveolar albumin and WBCs were assessed 8 h later. Sham
surgery (PBS) was the negative control. Alveolar albumin concentrations and WBC counts 8 h after instillation of (D) rmC5adesArg
vs. rmC5a or control PBS; (E) rmC3a vs. rmC5a or control PBS; or (F) rmC5a in C5-sufficient vs. C5-deficient mice. G) Chest scans
(HR-MRI) 8 h after administration of rmC5a or PBS. Arrowheads: areas of pulmonary infiltration. H) Representative micrographs of
lung sections 8 h after administration of rmC5a or PBS. All experiments were performed in C57BL/6J mice unless otherwise indicated.
*P , 0.05, **P , 0.01, ***P , 0.001; ns, not significant when compared with PBS. H&E staining. Magnification, 3400.
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the detrimental effects induced by C5a are mediated by
C5aR1+ hematopoietic cells (most likely PMNs) and
that the effects of C5a ligation with C5aR1 on struc-
tural cells are of limited relevance during acute lung
inflammation.

Blockade of PI3K and MEK1/2 signaling in vivo
abrogates C5a-ALI

C5aR1 is a G-protein–coupled receptor that mediates in-
tracellular phosphorylation of PI3K/Akt and MEK/ERK
signaling proteins in leukocytes (15, 39). In cell cultures of
PMNs (C57BL/6J), stimulation with C5a for 20 min (as
compared to PBS-treated controls) resulted in increased
frequencies of phospho-Akt+Ly-6G+ (3.0 vs. 14.7%), phos-
pho-MEK1/2+Ly-6G+ (4.4 vs.20.6%), andphospho-ERK1/
2+Ly-6G+ (3.7 vs. 16.0%) cells (Fig. 5A, left). This activa-
tion was completely abrogated in PMNs derived from
C5aR12/2 mice (Fig. 5A, right). To investigate the rele-
vance of these signaling cascades in C5a-ALI, we tested
specific protein kinase inhibitors . Systemic administration
of the PI3K inhibitor wortmannin completely prevented
the development of alveolar-capillary barrier dysfunction
and PMN recruitment during C5a-ALI (Fig. 5B). Similar
effectswereobservedafter treatmentwith thecell-permeable
MEK1/2 inhibitor SL-327 (Fig. 5C). Lungs of mice trea-
ted with either wortmannin or SL-327 before C5a-ALI
showed less alveolar accumulation of PMNs, intra-alveolar
hemorrhage, and fibrin deposits (Fig. 5D). These data

indicate that concomitant activation of the PI3K/Akt and
theMEK1/2 pathways were necessary for the development
of C5a-induced lung inflammation. Whether the ERK1/2
pathway is essential, which seems likely, remains to be
determined.

C5a modulates the alveolar cytokine milieu and
induces the release of ligands to CCR5

TheactivationofPI3KandMEK/ERKpathways is known to
modulate cytokine responses, and we therefore sought to
investigate the presence of mediators in the alveolar com-
partmentduringC5a-ALI.BALFrecovered fromC57BL/6J
mice that had been subjected to C5a-ALI contained signif-
icantly different concentrations of several mediators, as
compared to that from control mice (Table 1). Elevated
concentrations were observed for IL-1b, IL-6, IL-12(p40),
CCL3, CCL4, CCL5, CCL11, TNFa, granulocyte colony-
stimulating factor (G-CSF), and granulocyte-macrophage
colony-stimulating factor (GM-CSF), whereas other medi-
ators were not affected (Table 1).

In conclusion, the alveolar cytokinemilieu was selectively
tilted toward a proinflammatory condition by C5a, which
may indicate that indirect effects and amplification loops
involvingcytokines contribute toC5a-induced lungdamage.
In an interesting finding, C5a caused a release of the CC-
chemokines, CCL3 [macrophage inflammatory protein
(MIP)-1a], CCL4 (MIP-1b), and CCL5 (RANTES), which
bind to a common receptor: CCR5.This chemokine release

Figure 3. C5a-induced ALI is dependent on Ly-6G+CD11b+ PMNs (C5a dose: 20 ng/g BW, i.t; negative control: equal dose of PBS).
A) CD11b and Ly-6G surface expression on BALF cells was assessed by flow cytometry. Mice were subjected to C5a-ALI for 8 h. B)
Top: Ly-6G expression in lungs of C57BL/6J mice that had been subjected to C5a-ALI or PBS sham surgery. Bottom: transmission
electron micrographs of lungs 8 h after administration of rmC5a or PBS. Arrowheads: fibrin depositions; arrow: a damaged type II
alveolar epithelial cell. Magnification, 32600. C) Experimental neutropenia was induced by injection of a depleting antibody
against Ly-6G (a-Ly-6G). Control mice received isotype IgG (Ctrl IgG). To assess neutropenia, automated complete blood counts
were acquired from EDTA blood. D) Neutropenic mice and Ctrl IgG were subjected to C5a-ALI. Alveolar albumin concentrations
and WBCs were detected 8 h after instillation of rmC5a. All images are of C57BL/6J mice. **P , 0.01, ***P , 0.001.
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pattern suggests that engagementofCCR5 is aparticipant in
the harmful outcomes in C5a-ALI.

Genetic deficiency or pharmacological inhibition of
CCR5 protects against C5a-ALI

To study the role of CCR5 as a potential downstream ef-
fector mechanism during C5a-ALI, we first evaluated the
expression of CCR5 on Ly-6G+CD11b+ PMNs (Fig. 6A).
Next, we subjected CCR52/2 mice to C5a-ALI alongside
C57BL/6J wt mice, which served as controls. CCR52/2

mice were significantly protected from the adverse events
of C5a-ALI. Disruption of the alveolar-capillary barrier was
reducedby;50%and the recruitment of leukocytes to the
alveolar compartment was reduced by;65% (Fig. 6B).

CCR5 is a coreceptor for the internalization of HIV, and
CCR5 inhibitors constitute an important pillar in the treat-
ment of HIV-positive patients. To determine whether phar-
macological blockade of CCR5would have beneficial effects
during ALI, we used the antiretroviral drug and CCR5 re-
ceptor antagonist, maraviroc, in C5a-ALI. C57BL/6J mice
received either maraviroc or vehicle by oral administra-
tion (gavage) briefly, before intratracheal instillation of
rmC5a. C57BL/6Jmice treated withmaraviroc exhibited
significantly attenuated BALF cellularity and alveolar-
capillary barrier dysfunction during C5a-ALI (Fig. 7A).

Reduction of BALF cells was caused by the diminished
recruitment of Ly-6G+CD11b+ PMNs, whereas the num-
ber of F4/80+CD11c+ alveolar macrophages remained
unaffected (Fig. 7B).

In conclusion, these data identify CCR5 as a novel factor
in the propagation of C5a-induced tissue damage in lungs.
AntagonismofCCR5byuseofdrugs suchasmaravirocmay
have beneficial effects during ALI/ARDS.

DISCUSSION

In this study,wecharacterizedanexperimentalmodelofC5a-
ALI in mice. Our observation that CCR5 determined the
severityofC5a-induced lungdamagemaybe important in the
quest for therapeutic strategies forALI/ARDS. Furthermore,
we found the PI3K/Akt and MEK1/2-ERK1/2 signaling
pathways to be necessary during pulmonary recruitment of
Ly-6G+CD11b+C5aR1+ hematopoietic cells. These data con-
firm the relevance of PI3K/Akt and MEK1/2-ERK1/2 acti-
vation downstream of C5aR1 in leukocytes in vivo (15, 39).

Intratracheal administration of rmC5a in mice rapidly
causeddose-dependent changes that were pathognomonic
for ALI/ARDS. Similar observations were made decades
agowhenC5awaspurified fromactivated serumofpigs and
humans and used to induce alveolar inflammation in
guinea pigs and rabbits (20, 21, 40). However, these early

Figure 4. Expression of the C5aR1 receptor on hematopoietic cells is essential during C5a-ALI (rmC5a dose: 20 ng/g BW, i.t.). A)
Lethally irradiated C57BL/6J (wt) mice received C5aR12/2 bone marrow (C5aR12/2/wt) or wt bone marrow [(wt/wt), control
group] 6 wk earlier. To confirm sufficient engraftment, C5aR1 expression was assessed in peripheral blood leukocytes by flow
cytometry. B) BALF albumin concentrations and WBC counts 8 h after intratracheal administration of rmC5a in bone marrow
chimeric mice (wt/wt and C5aR12/2/wt). C) Irradiated C5aR12/2 mice received either wt bone marrow (wt/C5aR12/2) or
C5aR12/2 bone marrow (C5aR12/2/C5aR12/2, control group). Albumin concentrations and WBC counts 8 h after instillation
of rmC5a are presented. D) Representative lung sections 8 h after intratracheal administration of rmC5a in C5aR12/2/wt and
wt/wt bone marrow chimeric mice. **P , 0.01. H&E staining. Magnification, 3400.
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reports should be interpreted carefully, because contami-
nation with minute amounts of costimulatory molecules
such as LPS cannot be excluded with certainty. A careful
characterization of C5a-ALI appeared to be desirable,
seeing that we and others have reported recently on the
feasibility of rmC5a-mediated induction of lung inflam-
mation (22, 23). In contrast to the earlier reports, neither
C5adesArg nor C3a induced lung inflammation in our
hands, when compared to equimolar concentrations of
C5a. However, C5adesArg was effective in modulating the
release of G-CSF in macrophage cultures (41).

Because of the discrepancy between the short half-life of
C5a and its relatively long-lasting in vivo effects, a contribu-
tion of a C5a-induced autoamplification loop was consid-
ered. It has been reported that activated PMNs and alveolar
macrophages produce serine proteases that are capable
of local activation of complement (10, 42). Therefore, we

investigated whether exogenously administered C5a indu-
ces further generation of endogenous C5a through cleav-
age of C5 by proteases from activated phagocytes. This
hypothetical autoamplification loop should be inter-
rupted in C5-deficient mice. However, C5-deficient mice
displayed substantially increased phagocyte recruitment
and a higher severity of C5a-ALI, than did C5-sufficient
controlmice. Because the expression levels of C5aR1were
similar in recruited phagocytes of C5-deficient and C5-
sufficientmice, an explanation for thegreater sensitivityof
C5-deficient mice in C5a-ALI remains to be determined.

Our observations question the long-standing paradigm
that C5a requires costimulatory signals for its major bi-
ologic activities. For example, we found rmC5a to be
equally active in TLR42/2 mice for induction of lung in-
flammation, arguing against the need for an endotoxin as
a costimulus with C5a in vivo.

Figure 5. C5aR1-mediated activation of the PI3K/Akt and MEK/ERK signaling pathways is essential in the development of C5a-
ALI. A) Casein-elicited peritoneal PMNs were isolated from C57BL/6J (wt) mice or C5aR12/2 mice and stimulated with rmC5a
(1 mg/ml) or PBS (negative control) for 20 min. Cells were stained for Ly-6G and phospho-Akt(Thr308), phospho-MEK1/2
(Ser218/222), or phospho-ERK1(Thr203/Tyr205)/ERK2(Thr183/Tyr185) and analyzed by flow cytometry. Data are
representative of 3 independent experiments. B) Alveolar albumin concentrations and WBC counts 8 h after administration
of rmC5a (20 ng/g BW, i.t.) and treatment with the phosphoinositide 3-kinase inhibitor wortmannin (1 mg/g BW, i.p.) or PBS
vehicle in C57BL/6J mice. C) Alveolar albumin concentrations and WBC counts 8 h after administration of rmC5a (20 ng/g BW,
i.t.) and treatment with the MEK1/2-inhibitor SL-327 (100 mg/g BW, i.p.) or PBS vehicle in C57BL/6J mice. D) Representative
lung sections of mice subjected to C5a-ALI (C5a: 20 ng/g BW, i.t. 8 h), treated with wortmannin, SL-327, or vehicle
[concentrations as in (B, C)]. **P , 0.01, ***P , 0.001. H&E staining. Magnification, 3400.
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Expression and activation of C5aR1 has been demon-
strated in structural cells of the lungs, such as the alveolar
epithelial cells (36, 37). However, the relevance of C5aR1
signaling in nonhematopoietic cells in vivo is not entirely
clear. Data from novel C5aR1 reporter mice failed to dem-
onstrate substantial expression of C5aR1 on nonmyeloid
lung cells in steady-state conditions (38). To study the role of
hematopoietic cells inC5a-ALI,wecreated2complementary
groups of bone marrow chimeric mice on a C57BL/6J
background. It is important to note that alveolar macro-
phages are tissue-resident immune cells of monocytic origin
that develop early in life and proliferate self-sufficiently in
the alveoli (43, 44). To exclude a confounding effect of this

population, an irradiation andbonemarrow transplantation
scheme was chosen that efficiently depletes recipient alveo-
lar macrophages, along with circulating and bone marrow–
based hematopoietic cells. Indeed, our transplantation
scheme resulted in a population of alveolar macrophages
that was ;88% donor derived (31). In the first group of
chimericmice,C5aR1deficiencywas restricted to cells of the
hematopoietic lineage (donor/recipient: C5aR12/2/wt).
These animals were largely protected from C5a-induced
lung damage. Conversely, reconstitution of C5aR1-deficient
mice with C5aR1+ bone marrow from wt mice (donor/
recipient: wt/C5aR12/2) was sufficient to restore the detri-
mental effects of C5a in the lungs. These results support the
idea that ligationofC5a toC5aR1 is critical in hematopoietic
cells. Accordingly, direct effects of C5a on structural lung
cells in the absence of C5aR1+ hematopoietic cells may be
less important in C5a-ALI.

A mechanistic explanation for the development of the
alveolar-capillary barrier dysfunction during C5a-ALI was
recently presented, suggesting that local release of TNFa
from PMNs in response to C5a causes a widening of endo-
thelial gap junctions (45). Release of TNFa during IC-ALI
requires thegenerationofC5a (26). Inaddition, the release
of various other chemokines and cytokines is influenced
by C5a and depends on activation of the PI3K/Akt and
MEK1/2-ERK1/2 signaling pathways (26, 29, 39, 41, 46).
Pulmonary deposition of C5a caused substantial release
of the CC-chemokines CCL3, -4, and -5 into the alveoli.
An essential role of these chemokines has been identified
in other complement-dependentmodels of ALI (29, 47).
CCL3, -4, and -5 mediate cell activation and chemotaxis
through ligation with CCR5, which we found to be
expressed on PMNs. CCR52/2 mice displayed markedly
attenuated lung damage during C5a-ALI. Likewise, the al-
losteric CCR5 inhibitor maraviroc significantly reduced
alveolar-capillarybarrierdysfunctionandPMNrecruitment.
These findings strongly suggest that the adverse effects of
pulmonary generation of C5a are partly mediated by in-
duction of CC-chemokines and subsequent activation of
CCR5. Our data are in line with the finding that CCR5
contributes to endotoxin-induced lung inflammation (33).
To what degree a formation of C5aR1/CCR5 heterodimers
contributes to the inflammatory response elicited by C5a is

TABLE 1. Mediator concentrations in bronchoalveolar lavage fluids
during C5a-ALI

Analyte Sham C5a-ALI P

Chemokines
CCL2 46.1 6 10.6 83.3 6 11.1 0.0511
CCL3 21.9 6 0.2 42.8 6 6.6 0.006*
CCL4 9.2 6 1.9 115.1 6 25.7 0.0063*
CCL5 11.5 6 1.9 298.5 6 67.6 0.0054*
CCL11 71.8 6 9.6 191.4 6 5.0 ,0.0001*
CXCL1 221 6 39.6 99 6 9.1 0.0239*

Cytokines
IL-1a 9.6 6 1.1 9.6 6 2.1 0.9903
IL-1b 49.7 6 13.6 94.4 6 9.2 0.0341*
IL-2 9.1 6 2.6 11.4 6 2.5 0.5603
IL-6 47.5 6 51.5 474.3 6 92.4 0.0039*
IL-9 62.07 6 8.7 77.1 6 5.4 0.193
IL-10 12.6 6 0.8 15.8 6 1.1 0.0553
IL-12(p40) 27.2 6 3.9 53.5 6 5.2 0.0068*
IL-12(p70) 31.8 6 1.3 30.0 6 1.6 0.4281
IL-13 32.9 6 2.9 56.0 6 10.3 0.0734
IFN-g 19.5 6 1.3 20.0 6 2.7 0.8649
TNF-a 109.7 6 12.4 1198 6 292.5 0.0099*
G-CSF 345.7 6 60.5 1361 6 287 0.0134*
GM-CSF 18.5 6 0.9 25.9 6 2.7 0.0397*

Data are mean 6 SEM concentrations (pg/ml). C5a-ALI was induced
by instillation of rmC5a (40 ng/g BW, i.t.), control animals received an
equivalent volume of PBS intratracheally, and BALF was recovered 8 h
later. No relevant quantities of IL-3, -4, -5, and -17 were detected in the
BALF (,10 pg/ml). *Significant differences by unpaired Student’s t test.

Figure 6. CCR5 mediates adverse events during C5a-ALI. A) Casein-elicited peritoneal PMNs were isolated, and Ly-6G+CD11b+

cells were analyzed for surface expression of CCR5 by flow cytometry. Isotype antibody was used as the control. Data are
representative of 3 independent experiments. B) BALF albumin concentrations and WBC counts 8 h after administration of
rmC5a (20 ng/g BW, i.t.) in C57BL/6J mice or CCR52/2 mice. *P , 0.05, **P , 0.01.
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not clear (48). Maraviroc is an FDA-approved drug with
a favorable safety profile for antiretroviral treatment ofHIV.
This profile would facilitate clinical studies for testing mar-
aviroc in patients at risk of ALI/ARDS.

C5-deficientmiceare lessprotected thanareC5aR1- and
C5aR2-deficient mice in endotoxin-induced lung damage
(LPS-ALI) (22, 49). It is possible that C5aR1 and -2 play
additional roles in the acute inflammatory response to
endotoxin (e.g., via crosstalk between C5aR1 and TLR4 or
via a proposed heterodimerization of C5aR1 with CCR5
(48). It is in this context that we present C5a-ALI as an
alternative experimental model for investigating the
complement-dependent mechanisms of ALI that have
been established in prior studies (22, 26, 50, 51).

In summary, pulmonary challenge with recombinant
C5a reproduced many of the detrimental events that are
characteristic of ALI/ARDS. Our data suggest that the
detrimental pulmonary effects of C5a are predominantly
mediated by recruited Ly-6G+CD11b+C5aR1+ PMNs in
conjunction with a specific signature of C5a-induced
mediators, which also includes the CC-chemokines,
CCL3, -4, and -5. The investigation of C5a-ALI in mice
may prove to be valuable for a better understanding of the
pathophysiology of human ARDS. C5a-ALI, for instance,
may be preferable over endotoxin-dependent models of

ALI, especially given the high degree of difference in en-
dotoxin sensitivity between species, which can result in
confusing associations of inflammatory responses in
humansvs. rodents (52).Beyond this, insights regarding the
effectsof complement activation inacute inflammationmay
be transferred from this model to other inflammatory dis-
eases. Last, with the uncovered role of CCR5downstreamof
the C5aR1-induced inflammatory response, we present
a proinflammatory amplification loop with potential thera-
peutic relevance in ARDS.
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