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Summary

With the number of small Unmanned Aircraft Systems (sUAS) in the national
airspace projected to increase in the next few years, there is growing interest in a
traffic management system capable of handling the demands of this aviation sec-
tor. It is expected that such a system will involve trajectory prediction, uncertainty
propagation, and path planning algorithms. In this work, we use linear covariance
propagation in combination with a quadratic programming-based collision detection
algorithm to rapidly validate declared flight plans. Additionally, these algorithms
are combined with a Dynamic, Informed RRT* algorithm, resulting in a computa-
tionally efficient algorithm for chance-constrained path planning. Detailed numerical
examples for both fixed-wing and quadrotor sUAS models are presented.
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1 INTRODUCTION

1.1 Motivation
There were 110,604 registered small Unmanned Aircraft Systems (sUAS) in the United States at the end of 2017, and that
number is expected to quadruple by 20221. There has been great interest, accordingly, in a UAS Traffic Management (UTM)
system to handle the demands of this rapidly growing aviation sector2,3. In at least one potential design of such a system, real-
time communication channels exist between a central computation platform and the sUAS. This would provide the vehicles
access to valuable computation resources and information about nearby vehicles, terrain, and atmospheric conditions, allowing
for safe and efficient route planning.
One of the responsibilities of such a UTM system will likely be to apply a risk-based approach where geographical needs and

use cases determine the airspace performance requirements4. Addressing this will require a sUAS trajectory prediction model
that validates vehicle flight performance and allows for UTM to determine whether or not the vehicle can operate in the airspace
given real-time information about wind, other vehicles, and/or obstacles. Given a large number of vehicles predicted to be in
operation, this trajectory prediction model must accommodate multiple vehicle types and airspace environments (wind, terrain,
etc.). Another challenge in this setting is that the trajectory could depend on proprietary information such as control systems,
methods and gain tuning specific to a particular vehicle. Implementing a system that is reliant on such information could be
prohibitive due to constant modifications that would be required to accommodate diverse and evolving control laws and due to
the potential legal barriers to acquiring proprietary information from all operators.
In the context of UTM operations, where varied vehicle types and uncertainties are expected, there is a need for a model that

represents expected vehicle performance while accounting for the uncertainty in the context of operational environments. The
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2 Berning ET AL

motivation for thework detailed in this paper is to develop computationally efficient trajectory validation and planning algorithms
that utilize uncertainty quantification (UQ) and propagation techniques to provide an assessment of the vehicle performance and
risk of violating constraints.

1.2 Problem Statement
The work described in this paper focuses on two separate but related problems: rapid uncertainty propagation for trajectory
validation and chance-constrained path planning.
For the former, we seek an algorithm that takes the vehicle’s dynamics, initial state, parameters, and desired trajectory as

inputs, and outputs some quantification of the uncertainty associated with the vehicle’s state trajectory over the specified flight
horizon, as well as an assessment of whether the probability of trajectories violating constraints is sufficiently low at any given
time instant. For the latter, we are interested in the ability to re-plan or repair the trajectory if it is found that the vehicle’s
probabilistic trajectory tube intersects with a keep-out zone. Such a tube and constraint are illustrated in Figure 1.

FIGURE 1 Nominal trajectory (dotted), probabilistic trajectory tube in the presence of uncertainties and an obstacle (red).

1.3 Literature Review
The source of uncertainty considered in this work is atmospheric turbulence and stochastic wind gusts, which affect the response5
and safety6,7 of aircraft. These effects are particularly pronounced in relatively lightweight sUAS. Hoblit8 provides a detailed
description of discrete and continuous gust models and Richardson9 provides a thorough review of the modeling techniques
involved. The Dryden and Von Kármán models are the two most common gust/turbulence models10,11,12,13,14, which are used
in both Federal Aviation Administration (FAA) and military specifications. Both consider the linear and angular velocity com-
ponents of the gusts to be varying stochastic processes and then specify those components’ Power Spectral Density (PSD). The
Dryden model utilizes rational PSDs, while the Von Kármán model uses irrational PSDs. The latter matches experimental gust
observations more closely than the former, but its use of irrational spectral densities prevents its spectral factorization from
being exactly expressed.
We also consider the problem of propagating the vehicle’s state uncertainty subject to the aforementioned wind gust distur-

bances. Given an initial probability distribution of a state, the objective of a UQ algorithm is to obtain a characterization of the
state’s probability distribution at a future instant in time. For this work, we require the algorithm to compute the uncertainty for
all time instants between the initial and final times. The conceptually simple solution is through a Monte Carlo (MC) simulation,
but the computational intensity of this method limits its usefulness for our application15,16. Linearization techniques suffer from
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diminished accuracy for highly nonlinear systems or for long time horizons, but their simplicity and high computational effi-
ciency make them well-suited for real-time trajectory optimization or path planning17,18. Other nonlinear UQ methods include
unscented transformation (UT)19,20, polynomial chaos (PC) expansions21, and Gaussian mixture models (GMM)22,23,24. A thor-
ough survey of many other UQ methods is provided by Luo25, though none of these were deemed appropriate for our use due to
our models’ large number of states, the presence of stochastic inputs, and the need for rapid computations. For that reason, the
linear covariance propagation method is an attractive choice for our problem. The ease of incorporating exogenous disturbances
and computing a complete time history of the covariance further distinguish it from the other UQ methods.
There is a wide array of solution strategies for planning a vehicle’s path subject to uncertainty, including convex program-

ming26, mixed integer linear programming27, graph search28, fast marching trees29, and probabilistic roadmaps30. One of the
more popular approaches31,32,33,34,35 utilizes a class of stochastic search algorithms called Rapidly-exploring Random Trees
(RRTs)36. These algorithms are well suited for real-time implementation32 and are sampling-based, so they scale well with
problem size, but only offer a probabilistic guarantee of completeness. A comparison of sequential quadratic programming,
genetic algorithms, and RRT is provided by Borowski and Frew35. Extensions to RRT such as RRT*37, Informed RRT*38,
and Dynamic RRT*39, improve optimality of the solution, increase sampling efficiency, and allow for dynamically changing
constraints, respectively. These three RRT extensions are utilized in this work.

1.4 Original Contributions
The main contribution of this paper is the amalgamation of existing Dynamic RRT* and Informed RRT* algorithms, and the
addition of an obstacle buffer resizing technique, resulting in a single algorithm that allows computationally efficient, chance-
constrained path planning for sUAS. In particular, this contribution addresses a dilemma in chance-constrained path planning
under uncertainty: trajectory re-planning changes the outcome of the covariance propagation, which, when obstacles or exclusion
zones are involved, may require further re-planning.
This paper builds upon previous work40 that considered rapid uncertainty propagation, collision detection, and trajectory

optimization for fixed-wing, 2D longitudinal flight dynamics. The numerical examples presented here utilize both fixed-wing
and quadrotor sUAS in full 3D flight in a non-static atmosphere with inner loop and outer loop controllers in closed form. Other
contributions in support of the path planning algorithm are linear covariance propagation of the uncertainty in initial states and
exogenous disturbances for three dimensional vehicle motion, and a quadratic programming-based approach to 3D collision
detection.

2 MODELING

The purpose of this paper is to present and illustrate with simulations a procedure for rapid uncertainty propagation and chance
constrained path planning that is broadly applicable in the sUAS setting in terms of models and uncertainties assumed. This
section introduces the two systems used for numerical examples in this work: a quadrotor sUAS model and a fixed-wing sUAS
model.
The quadrotor sUAS is modeled as a double integrator with quadratic aerodynamic drag, constant drag coefficient, dynamic

extension controller, and a Dryden-based wind disturbance. The full model can be found in Appendix A. The fixed-wing sUAS
model is based on a 6-state model for longitudinal and lateral flight in a moving atmosphere, with inner and outer-loop controllers
added and a Dryden wind gust model. The full model can be found in Appendix B.
The above models given by Eqs. (A2) – (A11) for the quadrotor or Eqs. (B38) – (B43) for the fixed-wing aircraft can be

viewed as a single system of differential equations of the form:

Ẋ = f
(

X,Xdes(t), n(t), �
)

, (1)
where the state is X = [r, V0, �x1, �x2, �x3]⊤ for the quadrotor model or X = [x, y, ℎ, V ,  , , T , Vdes,  des, �u, �w, �v]⊤ for the
fixed-wing model, � is the set of vehicle, environmental, and control parameters, and n is the white noise input.
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3 TECHNICAL APPROACH

3.1 Covariance Propagation
For the uncertainty propagation analysis, we linearize the sUAS model in Eq. (1). The linearized model has the following form:

�Ẋ = A(t)�X(t) + Bn(t)n(t), (2)

A(t) =
)f
)X

|

|

|

|

|

X=X̄(t)
n=0
Xdes(t)

, (3)

Bn(t) =
)f
)n

|

|

|

|

|

X=X̄(t)
n=0
Xdes(t)

. (4)

Here, X̄(t) is the nominal trajectory obtained by propagating Eq. (1) subject to n = 0 and specified time history of Xdes.
Physically, this corresponds to the nominal trajectory that the sUAS would fly under no-wind conditions.
Under the assumption that n(t) is a standard white noise process, the state covariance matrix, P , satisfies the Lyapunov

differential equation41:

Ṗ (t) = A(t)P (t) + P (t)A⊤(t) + Bn(t)B⊤n (t). (5)

Note that (5) can be solved using any standard ODE solver. The initial condition for P is the zero matrix if the vehicle’s initial
state is known deterministically, or may be chosen as a diagonal matrix of state covariances, otherwise.
Now, we can use the nominal trajectory X̄(t), covariance matrix P (t), and a Gaussian distribution density function to

estimate the probability that the vehicle is contained in a specified set at time t. For the quadrotor model: given the mean
r̄(t) = [x̄1(t), x̄2(t), x̄3(t)]⊤ and the block of the covariance matrix corresponding to these states, Σ!(t) = P(1∶3,1∶3)(t), we can
build a set from the definition of a probability ellipsoid42:

Prob [! ∈ ℝ3 ∶ (! − r̄(t))⊤Σ−1! (t)(! − r̄(t)) ≤ c2] = �, (6)
where � ∈ [0, 1] is a prescribed probability level and c is solved for using the three degree-of-freedom chi-squared distribution43.
Thus the vehicle has a � probability of being within the set (6) at time t.
For verification purposes, Eq. (1) is also solved numerically in a series of MC simulations. For these computations, the white

Gaussian noise is computed using MATLAB’s randn() function, scaled by the inverse square root of the integration time step44.
A comparison between the linear covariance propagation and the covariance matrix estimated from the MC runs is shown in
Section 4.

3.2 Collision Detection
For trajectory validation purposes, it is desirable to have a collision detection algorithm that can quickly determine whether or
not the trajectory tube formed by the set of probability ellipsoids defined in Eqn. (6) intersects with an obstacle, represented in
this work as a cuboid, as illustrated in Figure 2.
The ellipsoid-cuboid intersection at time instant t is formulated as a quadratic programming (QP) problem that can be solved

by a standard QP solver:

min
z
(z − r̄(t))⊤Σ−1! (t)(z − r̄(t)) (7)

s.t.
AOz ≤ bO.

Here, z, the optimization parameter, is a concatenation of x1, x2 and x3 coordinates: z = [x1, x2, x3]⊤ and AOz ≤ bO are the
linear inequalities that represent the cuboid obstacle. Thus we are solving for the point z that belongs to the smallest ellipsoid
centered at r̄(t) that still touches the cuboid obstacle defined by AOz ≤ bO. Let z∗ denote the solution to this QP and let
c∗2(t) = (z∗ − r̄(t))⊤Σ−1! (t)(z

∗ − r̄(t)). If c∗2(t) ≥ c2, then there is no intersection between the ellipsoid and cuboid at time t, and
the chance constraint is not violated.
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(a) � = 0.5 (b) � = 0.9 (c) � = 0.999

FIGURE 2 Collision scenario for varying values of �.

For the numerical implementation of this collision detection scheme, the frequency at which collisions are checked is an
algorithm tuning parameter, and (7) is only solved after it has been determined that the overbounding spheres of the ellipsoid
and cuboid intersect. The latter check is computationaly very simple.

3.3 Path Planning
In our prototypical UTM scenario mentioned in Section 1, the covariance propagation and tube generation algorithms discussed
in Section 3.1 inform the functionality to validate aircraft trajectories. If a desired flight plan is found to be unsafe due to possible
collisions with obstacles, the UTM system should return a safe flight path for the UAS to fly. Here, the UAS is operating in a
densely populated urban environment with many no-fly zones or obstacles. For scenarios such as this, with a large number of
nonconvex obstacle constraints, a Rapidly-expanding Random Tree (RRT) algorithm is useful.
This section lays out the modifications made to the standard 2D RRT algorithm36 for the purpose of generating a desired

constant-altitude flight pathXdes. Note that the path planning is handled in two dimensions, under the assumption that the UAS
operates in an urban environment at a constant desired altitude, but all tube generation and collision checks are three-dimensional.

3.3.1 Informed Subset
By their nature, RRT* algorithms find optimal paths between the initial state and every state in the search space, regardless of
what final state the user is actually interested in. This is an inefficient use of computational resources that the Informed variant38
attempts to address. By only sampling within an ellipsoidal subset and excluding regions of the sample space that cannot possibly
improve the solution, the algorithm makes a better-informed decision about where to look for optimal paths.
This informed subset is defined as follows:

Qf̂ =
{

q ∈ Q |

|

|

‖xstart − q‖ + ‖q − xgoal‖ ≤ cbest
}

(8)

where cbest is the current best solution cost, Q is the global sample space, xstart is the initial state and xgoal is the desired final
state and ‖⋅‖ denotes the euclidean distance.
This Informed variant is outlined in Algorithm 1 from38, where  is the current set of nodes, rw is the rewiring radius, and

N is the total number of iterations. Note that the subroutine SampleEllipse(xstart, xgoal, cbest) returns a randomly sampled point
that is contained within the ellipse defined in (8), and lines 6–17 in Algorithm 2 include the rewiring steps essential to the RRT∗
algorithm variant.
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Algorithm 1  = Informed RRT∗(x0, xf )

1: 0 ← x0
2: cbest ←∞
3: for k = 1…N do
4: k+1 = AddNode(k)
5: end for
6: return N

Algorithm 2 k+1 = AddNode(k)
1: xrand ← SampleEllipse(xstart, xgoal, cbest); % cbest is cost of current best solution
2: xnearest ← Nearest( , xrand);
3: xnew ← Steer(xnearest, xrand);
4: if NoCollision(xnearest, xnew) then
5:  ←  + xnew;
6: Xnear ← Near( , xnew, rw);
7: xmin ← xnearest;
8: cmin ← Cost(xmin) + ||coordinates(xnearest) − coordinates(xnew)||
9: for ∀xnear ∈ Xnearest do
10: cnew ← Cost(xnear) + ||coordinates(xnear) − coordinates(xnew)||
11: if cnew < cmin then
12: if NoCollision(xnearest, xnew) then
13: xmin ← xnear
14: cmin ← cnew
15: end if
16: end if
17: end for
18: Parent(xnew)← xmin
19: end if
20: return 

3.3.2 Chance Constraints and Dynamic Extension
If the solution of Algorithm 1was passed to the tube generation algorithm asXdes, there would be no guarantee that the generated
tube would not intersect the obstacles. The solution to a path planning problem with obstacles often passes very closely to the
obstacle, where any nonzero uncertainty in the state would produce a tube that would intersect the obstacle. Thus a buffer region
is added to the obstacles and adjusted periodically in a manner informed by full covariance propagation.
This buffer can be seen in Figure 3, which represents a single outer-loop iteration in which the buffer is held constant. Here,

the green triangle is the starting point xstart, the blue circle is the end point xgoal, the green line is the current best solution, the
dashed red ellipse is the current informed subset as defined in Eqn. (8), and the black lines represent the total set of sampled
nodes and connecting vertices. The solid red rectangle is the actual obstacle, while the dashed red rectangle is the buffered
obstacle that is actually passed to Algorithm 1 and used in the subroutine NoCollision(xnearest, xnew). The bottom subfigure is
the same as the top, but with the covariance tube as defined by (6) overlaid, illustrating how the buffer prevents the tube from
intersecting the true obstacle.
The dynamic extension to this algorithm involves intermittently halting the standard RRT algorithm, propagating the nominal

vehicle trajectory and covariance, and adjusting the obstacle buffer sizes accordingly. This requires an algorithm that informs the
buffer size adjustments, answering the question: "By howmuch should we grow or shrink the buffer such that the covariance tube
just touches the obstacle?". To answer this, we start with the easier question of "What size ellipsoid just touches the obstacle?"
This is illustrated in Figure 4 and can be expressed as a QP:
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FIGURE 3 Results of Algorithm 1 with a buffered obstacle.

min
z
(z − r̄(t))⊤Σ−1r (t)(z − r̄(t)) (9)

s.t.
AOz ≤ bO. (10)

We alter (10) to take into account the size of the buffer as follows:

AOz ≤ bO + ld (11)

where l is a vector of ones and d is a scalar representing the size of the buffer. We can then vary d until c2∗ = c2, which solves
for the buffer size such that the smallest ellipsoid that intersects the buffer is the same size as the actual covariance ellipsoid.
This solution is used as the buffer size for the next iteration. Note that this new buffer size is only an approximation of the actual
solution since the size of the covariance tube is dependent on the solution to the inner loop,Xdes, which changes every iteration.
Letting l be a vector of all ones has the effect of buffering the obstacle by an equal amount in all directions, as opposed to

extending the buffer only in certain directions. Equal buffering on all sides of the obstacle may result in less optimal trajectories
in a situation where the vehicle’s trajectory interacts with multiple edges of an obstacle and this is viewed as the trade-off for
not including the computationally nontrivial logic for a more discriminating buffer re-sizing. Additionally, expanding the buffer
in all directions reduces the RRT search space more than merely expanding in one direction, which aids convergence.
Because the size of the probability ellipsoids vary spatially, the optimal buffer size is not necessarily the same for every

obstacle. Thus, buffer changes happen independently for every obstacle. There are two cases to be considered: the buffer shrinks
or stays the same, and the buffer grows. If a buffer is shrunken or left unchanged, no RRT nodes are changed, and the algorithm
continues as normal. However, if a buffer grows, the nodes and connecting vertices that are now contained within the newly-
sized obstacle are no longer valid. They are thus deleted, leaving only the parent trees and the now-stranded branches. Then, the
Informed RRT* algorithm is used to grow branches from the parent tree until any part of the stranded branch is re-connected. At
this point, any nodes left without a parent are removed from the set of nodes, and the Informed RRT* algorithm continues to run
according to Algorithm 1 until the next covariance propagation and buffer resize. This is laid out in more detail in Algorithm 3.

4 RESULTS

4.1 Trajectory Validation
The first result of interest is a validation of the linear covariance (LC) propagation described in Section 3.1 versus the results
of the Monte Carlo simulations. For both the fixed-wing and quadrotor models, a simple desired trajectory was prescribed, and

This article is protected by copyright. All rights reserved.
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FIGURE 4 Cuboid buffer expansion illustration. The shaded ellipsoid and red cuboid represent the original confidence ellipsoid
and obstacle, respectively. The wire mesh ellipsoid and blue cuboid represent the expanded sets that just touch the original
obstacle and confidence ellipsoid, respectively.

the state covariance computed from a 10,000 run MC simulation is compared to the LC results computed from Eqn. (5). For the
quadrotor model, the desired trajectory is a three phase ascent-cruise-descent mission profile. For the fixed-wing model, it is a
constant-altitude trajectory with a sinusoid shape in the lateral direction.
The comparison results are shown in Figures 5 – 8. Here, x̄1, x̄2, x̄3, x̄, ȳ, and ℎ̄ represent either the mean position, or the

nominal trajectory X̄(t), from the MC and LC simulations, respectively. All plots show good agreement between MC and LC,
with the largest deviations being ≈ 15% in the �2x2 channel in Figure 5. This justifies our use of LC propagation in path planning
under uncertainty. Note that the deviations in x̄2 appear large in the plot, but the vertical axis range is quite small. Also note
that the nominal trajectory for the fixed-wing example does not track the desired trajectory exactly, but that is a function of the
model’s controller, which is not the focus of this work, as explained in Section 2.
All computations are performed in the MATLAB environment running on a dual-core Intel Core i5 at 2.7 GHz, and all

confidence ellipsoid tubes use � = 0.999. This value was chosen for illustration purposes, though some UTM applications
may call for smaller or larger values. For the quadrotor model, the LC propagation took 0.062s of computation time for 40s of
simulated flight time. For the fixed-wing model, it took 0.18s of computation time for 35s of simulated flight time.

FIGURE 5 State and covariance time histories for prescribed quadrotor trajectory.
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Algorithm 3  = Dynamic Informed RRT∗(x0, xf )

1: 0 ← x0
2: cbest ←∞
3: � ←∞
4: for m = 1…M do
5: k = 0
6: while k < Nmax AND � > tol do
7: k = k + 1
8: k = AddNode(k−1)
9: costi = F indBestP atℎ(i)
10: if i > Nconv then
11: � = |

costi−costi−Nconv
costi−Nconv

|

12: end if
13: end while
14: if m ≠M then
15: d = CompObsDist(k, O) % Compute distance between obstacle and covariance tube
16: for j = 1…Nobs do
17: if dj ≥ 0 then
18: bj = bj − dj
19: else if dj < 0 then
20: bj = bj − dj
21:  = CleanupNodes( , Oj) % remove nodes that are no longer valid
22:  = Regrow( , Oj , params) % regrow until orphaned nodes are reconnected or pruned
23: end if
24: end for
25: end if
26: end for
27: return 

FIGURE 6 Quadrotor 3D trajectory. The covariance tube is constructed from a set of confidence ellipsoids defined by (6), the
dashed line is the desired trajectory, and the solid line is the nominal trajectory X̄(t).
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FIGURE 7 State and covariance time histories for prescribed fixed-wing trajectory.

FIGURE 8 Fixed-wing sUAS 3D trajectory. The covariance tube is constructed from a set of confidence ellipsoids defined by
(6), the dashed line is the desired trajectory, and the solid line is the nominal trajectory X̄(t).

4.2 Path Planning
Now that we have shown that the LC propagation scheme is sufficiently fast and accurate when compared to MC simulations
of the nonlinear system, we can use the LC propagation algorithm to enable chance-constrained path planning as laid out in
Section 3.3. For brevity, only the quadrotor model is utilized in this section.
Figures 9 and 10 show the results of Algorithm 3 for a three obstacle scenario. A solution is found that is very close to the

minimum path length between xstart and xgoal, while still ensuring that the � confidence ellipsoid tube does not intersect any of
the obstacles. Total computation time for this example was 30.5s.
Note that the buffer re-sizing algorithm converges, but only to a region, the size of which is dictated by tol. There is no

guarantee that the algorithm will exit without a constraint violation, but, based on extensive simulation studies, the magnitude
of the violation will be sufficiently small for sufficiently largeM and small tol.

5 CONCLUSIONS

Future UTM systems will need to rely on rapid UQ for trajectory validation and path planning in order to account for the effects
of wind turbulence/gusts and other uncertainties and disturbances. This work combines existing Dynamic RRT* and Informed
RRT* algorithms, and adds an obstacle buffer resizing technique to solve a challenge of chance-constrained path planning:
trajectory re-planning changes the outcome of the covariance propagation. The results presented here shows that this RRT*-based
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FIGURE 9 Chance-constrained Informed Dynamic RRT* solution for quadrotor model with three obstacles.

FIGURE 10 3D plot of obstacles and flight path with � confidence tube overlaid.

algorithm, in combination with QP-based collision checking for trajectory validation, successfully solves the aforementioned
problem, resulting in a computationally efficient chance-constrained path planner. Trajectory validation examples were presented
for both quadrotor and fixed-wing models in 3D flight in a non-static atmosphere. Path planning examples were presented for
the quadrotor model, showing near-optimal navigation around 3 obstacles while enforcing chance state constraints.
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APPENDIX

A QUADROTORMODELING

As a balance between model fidelity and computational efficiency, the quadrotor model used for uncertainty propagation is built
upon double integrator dynamics augmented with aerodynamic drag of the following form:

r =
⎡

⎢

⎢

⎣

x1
x2
x3

⎤

⎥

⎥

⎦

, V0 =
⎡

⎢

⎢

⎣

ẋ1
ẋ2
ẋ3

⎤

⎥

⎥

⎦

, Vq = V0 −w, (A1)

V̇0 = u −
1
2m

�SCDVq
‖

‖

‖

Vq
‖

‖

‖

, (A2)

where x1, x2, and x3 are the vehicle’s coordinates in an inertial reference frame, Vq is its velocity with respect to the atmosphere,
w ∈ ℝ3 is the velocity of the local atmosphere with respect to the ground, u ∈ ℝ3 is the control input, m is the vehicle mass,
� is the air density, S is the reference area, and CD is the coefficient of drag, assumed to be constant. This model assumes that
an inner-loop controller for vehicle attitude and thrust has been implemented that has a feed forward term to cancel out gravity
and has sufficiently high bandwidth that we can control acceleration directly. It also assumes a non-static atmosphere and a drag
coefficient that remains constant regardless of vehicle state or direction of the relative wind vector Vq . Uncertainty in the drag
coefficient can, however, be handled using our UQ and planning algorithms.
When using the above model for uncertainty propagation, it is important that a controller be added so that the uncertainty in

vehicle states does not grow so large as to be useless for trajectory prediction purposes. The method presented here is agnostic
to controller choice, but for modeling purposes, it is beneficial if the controller can be expressed in a closed form that is easily
linearizable. This work utilizes a dynamic extension controller of the following form:

e = r − rdes, (A3)
Sc = ė +Kqe, (A4)
u = r̈des −Kq ė − ΛqSc , (A5)

whereKq ∈ ℝ3×3 and Λq ∈ ℝ3×3 are controller gains that may be treated as tuning parameters to match the flight characteristics
of our model to the flight characteristics of a real-world vehicle for which the UTM may be trying to predict its trajectory.
Finally, we consider the model for our wind disturbance. A Dryden wind model specifies the power spectral density (PSD)

for the body-fixed longitudinal, lateral, and vertical directions of a fixed-wing aircraft. Other works45 apply this model directly
to quadrotors. Here, the longitudinal channel is replicated in the x1, x2, and x3 directions of the inertial frame. The resulting
Dryden-like wind model is summarized as

Hi(s) = �i

√

2Li
�||V0||

1
1 + Li

||V0||
s
, (A6)

Ai =
−||V0||
Li

, (A7)

Bi = 1, (A8)

Ci =
√

2||V0||�i

√

Li
||V0||

1
Li
√

�
, (A9)

�̇i = Ai�i + Bin, (A10)
wi = Ci�i, (A11)

for i = {x1, x2, x3}. Here,Hi is the transfer function of Dryden model coloring filter,Ai,Bi, andCi are its state space realization,
�i is the gust intensity parameter, Li is the characteristic length, and n is the Gaussian white noise input8. The output of this
model, w = [w1, w2, w3]⊤, is the wind velocity vector in (A2).
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B FIXED-WING AIRCRAFT MODELING

To illustrate another typical setting which involves sUAS, the EOMs for a fixed-wing aircraft under closed-loop control in a
non-static atmosphere were derived. Hull46 provides EOM’s for longitudinal flight with moving atmosphere and EOM’s for full
three-dimensional flight in a static atmosphere, but does not provide EOM’s for 3D flight in a moving atmosphere.
Figure B1 shows the unit vectors and rotations necessary to define flight in three dimensions. Here, frame A is the inertial

frame, while frames B, C , and D are rotated by angles  ,  , and �, respectively, where  is velocity yaw or heading angle,  is
velocity pitch, and � is velocity roll.

FIGURE B1 Three-dimensional flight: unit vectors and rotations.

Additionally, the thrust, drag, lift and gravity forces acting on the aircraft can be defined as follows:

T⃗ = T îD, (B12)

D⃗ = −DîD, (B13)

L⃗ = −Lk̂D, (B14)
mg⃗ = mgk̂A, (B15)

and the velocity of the aircraft can be represented as V⃗ = V îD, as seen in Figure B2.
following equations:

� = ��( des −  ), (B16)
CL = C̄L + �CL(des − ), (B17)
Ṫ = �T ,1(Tdes − T ), (B18)

Tdes = T̄ + �T ,2(Vdes − V ). (B19)

Here,  des, des, Tdes, and Vdes are the desired values of the vehicle’s yaw, pitch, thrust, and velocity, respectively. The feed
forward terms C̄L and T̄ are the values of CL and T , respectively, that are required to maintain steady flight:
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FIGURE B2 Three-dimensional flight: forces and velocity.

C̄L =
2mg cos()
SV 2�

, (B20)

T̄ = mg sin() + 1
2
CD0SV

2� +
2Kdm2g2 cos()2

SV 2�
. (B21)

The vehicle’s drag polar parameter is denotedKd . Similar to the quadrotor model, controller gains ��, �CL , �T ,1, and �T ,2 may
be tuned to better replicate the behavior of a real-world UAS.
The outer-loop controller is separated into two components: longitudinal and lateral. Its design requires us to add two addi-

tional states (Vdes and  des) and to estimate �̈des via finite differences, which is undesirable from a computational efficiency
perspective, but avoids wrap-around issues.
For the longitudinal controller, V is assumed to be constant and only the ℎ̇ dynamics are considered:

ℎ̇ = V sin(), (B22)
Control ∶ , (B23)
e = ℎ − ℎdes, (B24)
ė = −�e, (B25)

des = sin
−1
(

ℎ̇des − �(ℎ − ℎdes)
V

)

. (B26)

Note that because above controller is part of the outer-loop, the output is des and not  .
For the lateral controller, we need to control  ̇ so a different approach is pursued. Here,  is assumed to be constant and only

the ẋ and ẏ kinematics are considered:
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ẋ = V cos() cos( ), (B27)
ẏ = V cos() sin( ), (B28)

Controls ∶ V̇ ,  ̇ , (B29)

� =
[

x
y

]

, e = � − �des, (B30)

S = ė + �e, (B31)
Ṡ = �̈ − �̈des + �ė, (B32)

Ṡ =
[

cos() cos( des) −Vdes cos() sin( des)
cos() sin( des) Vdes cos() cos( des)

] [

V̇des
 ̇des

]

− �̈des + �ė, (B33)
Ṡ = A� − �̈des + �ė, (B34)
Ṡ = − ΛfS, − Λf Hurwitz, (B35)

[

V̇
 ̇

]

= A−1[�̈des − �ė − ΛfS]. (B36)

This control is invalid if A is singular, corresponding to a pitch angle of ±90◦ or a desired velocity of Vdes = 0, which are
flight conditions not encountered in this work.
For the wind disturbance, the Dryden wind model defines wind in the longitudinal, lateral, and vertical body fixed directions,

not in the x, y, ℎ directions. In the two dimensional case40, we assumed that  is small and thus we have wind in the x and
ℎ directions. In the three-dimensional case, however, we cannot necessarily make the same assumptions about  . Thus, the
following wind definitions are used:

w = wu îD +wwĵD +wvk̂D = wx îA +wyĵA +wℎk̂A. (B37)

We can now write the full equations of motion as follows:

ẋ =V cos() cos( ) +wx, (B38)
ẏ =V cos() sin( ) +wy, (B39)
ℎ̇ =V sin() +wℎ, (B40)

V̇ =T −D
m

− g sin() − ẇx cos() cos( )

− ẇy cos() sin( ) + ẇℎ sin(), (B41)

 ̇ = −1
V m cos()

[

L sin(�) − mẇx sin( )

+ mẇy cos( )
]

, (B42)

̇ = 1
V m

[

L cos(�) − mg cos() + mẇx cos( ) sin()

+ mẇy sin() sin( ) + mẇℎ cos()
]

, (B43)

where
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wx = wu cos() cos( ) −ww(cos(�) sin( )
+ cos( ) sin() sin(�)) −wv(sin(�) sin( )
− cos(�) cos( ) sin()), (B44)

wy = wv(cos( ) sin(�) + cos(�) sin() sin( ))
+ww(cos(�) cos( ) − sin() sin(�) sin( ))
+wu cos() sin( ), (B45)

wℎ = wv cos() cos(�) −wu sin()
−ww cos() sin(�), (B46)

CD = CD0 +KdC
2
L, (B47)

L = 1
2
CL�SV

2, (B48)

D = 1
2
CD�SV

2. (B49)

If we assume that |ẇu|, |ẇw|, |ẇv|≫ |̇|, | ̇|, |�̇| then we can express the wind accelerations as follows:

ẇx = ẇu cos() cos( ) − ẇw(cos(�) sin( )
+ cos( ) sin() sin(�)) − ẇv(sin(�) sin( )
− cos(�) cos( ) sin()), (B50)

ẇy = ẇv(cos( ) sin(�) + cos(�) sin() sin( ))
+ ẇw(cos(�) cos( ) − sin() sin(�) sin( ))
+ ẇu cos() sin( ), (B51)

ẇℎ = ẇv cos() cos(�) − ẇu sin()
− ẇw cos() sin(�). (B52)

The power spectral densities (PSD) for the Dryden model are defined following8.
For the longitudinal channel:

Φu(Ω) = �2u
2Lu
�

1
[1 + L2u + Ω2]2

, (B53)

For the lateral channel:

Φw(Ω) = �2w
Lw
�

1 + 3L2wΩ
2

[1 + L2wΩ2]2
, (B54)

For the vertical channel:

Φv(Ω) = �2v
Lv
�
1 + 3L2vΩ

2

[1 + L2vΩ2]2
, (B55)

where Ω = !
V
. The corresponding coloring filters are as follows:
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Gu(s) = �u

√

2Lu
�V

1
1 + Lu

V
s
, (B56)

Gw(s) = �w

√

Lw
�V

1 +
√

3Lw
V

s
(

1 + Lw
V
s
)2
, (B57)

Gv(s) = �v

√

Lv
�V

1 +
√

3Lv
V
s

(

1 + Lv
V
s
)2
. (B58)

These have state space realizations of the form:

�̇i = Ai�i + Bin, (B59)
wi = Ci�i, (B60)
ẇi = CiAi�i + CiBin, (B61)

for i ∈ {u,w, v}, where n is the Gaussian white noise input and the matrices are defined as follows:

Au =
−V
Lu

, Aw =

[

−2V
Lw

−V 2

L2w
1 0

]

, Av =

[

−2V
Lv

−V 2

L2v
1 0

]

, (B62)

Bu = 1, Bw =
[

1
0

]

, Bv =
[

1
0

]

, (B63)

Cu =

√

2V �u
√

Lu
V

Lu
√

�
, Cw =

V �w
√

Lw
V

Lw
√

�

[
√

3 V
Lw

]

,

Cv =
V �v

√

Lv
V

Lv
√

�

[
√

3 V
Lv

]

. (B64)
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