
Received: 23 June 2019 Revised: 6 September 2019 Accepted: 5 October 2019

DOI: 10.1002/nme.6248

R E S E A R C H A R T I C L E

Output-based mesh optimization for hybridized and
embedded discontinuous Galerkin methods

Krzysztof J. Fidkowski1 Guodong Chen1

1Department of Aerospace Engineering,
University of Michigan, Ann Arbor,
Michigan

Correspondence
Krzysztof J. Fidkowski, Department of
Aerospace Engineering, University of
Michigan, 1320 Beal Avenue, 3029 FXB,
Ann Arbor, MI, 48188.
Email: kfid@umich.edu

Funding information
Boeing, 1200596; U.S. Department of
Energy, DE-SC0010341

Summary
This paper presents a method for optimizing computational meshes for the pre-
diction of scalar outputs when using hybridized and embedded discontinuous
Galerkin (HDG/EDG) discretizations. Hybridization offers memory and compu-
tational time advantages compared to the standard discontinuous Galerkin (DG)
method through a decoupling of elemental degrees of freedom and the introduc-
tion of face degrees of freedom that become the only globally coupled unknowns.
However, the additional equations of weak flux continuity on each interior face
introduce new residuals that augment output error estimates and complicate
existing element-centric mesh optimization methods. This work presents tech-
niques for converting face-based error estimates to elements and sampling their
reduction with refinement in order to determine element-specific anisotropic
convergence rate tensors. The error sampling uses fine-space adjoint projec-
tions and does not require additional solves on subelements. Together with a
degree-of-freedom cost model, the error models drive metric-based unstructured
mesh optimization. Adaptive results for inviscid and viscous two-dimensional
flow problems demonstrate (i) improvement of EDG mesh optimality when
using error models that incorporate face errors, (ii) the relative insensitivity of
HDG mesh optimality to the incorporation of face errors, and (iii) degree of free-
dom and computational-time benefits of hybridized methods, particularly EDG,
relative to DG.

K E Y W O R D S
adjoints, embedded discontinuous Galerkin, error estimation, hybridized discontinuous Galerkin,
mesh optimization, output-based adaptation

1 INTRODUCTION

Although discontinuous Galerkin (DG) methods1-6 have enabled high-order accurate computational fluid dynamics sim-
ulations, their memory footprint and computational costs remain large. Two approaches for reducing the expense of DG
are (i) modifying the discretization; and (ii) optimizing the computational mesh. In this work we pursue both approaches
and compare their relative benefits.

Hybridization of DG7-11 is an approach that modifies the high-order discretization to reduce its expense for a
given mesh. The high cost of DG arises from the large number of degrees of freedom required to approximate an
element-wise discontinuous high-order polynomial solution. Furthermore, these degrees of freedom are globally cou-
pled, increasing the memory requirements for solvers that require storage of the residual Jacobian matrix, even with an

Int J Numer Methods Eng. 2020;121:867–887. wileyonlinelibrary.com/journal/nme © 2019 John Wiley & Sons, Ltd. 867

https://orcid.org/0000-0002-5106-136X

868 FIDKOWSKI and CHEN

element-compact stencil. Hybridized discontinuous Galerkin (HDG) methods reduce the number of globally coupled
degrees of freedom by decoupling element solution approximations and stitching them together through weak flux conti-
nuity enforcement. HDG methods introduce face unknowns that become the only globally coupled degrees of freedom in
the system. Since the number of face unknowns scales as 𝑝dim−1 compared to the 𝑝dim scaling for elements, where p is the
approximation order and dim is the spatial dimension, HDG methods can be computationally cheaper and use less mem-
ory compared to DG. The embedded discontinuous Galerkin (EDG) method10,12 is a particular type of HDG method in
which the approximation space of face unknowns is continuous, further reducing the number of globally coupled degrees
of freedom.

Another approach to reducing the cost of high-order simulations is mesh optimization. In finite-element discretiza-
tions, the number of elements affects the cost and accuracy of the simulations. A mesh is considered optimal if it delivers
the highest possible accuracy with the fewest possible elements. Much work has been done in this area, including
heuristic,13-16 semi-heuristic,17-20 and more recently, rigorous21 techniques. Of particular interest in engineering appli-
cations are methods which directly address accuracy of scalar outputs, and such output-based methods have also been
extensively studied in the context of CFD.5,17,22-28

This work introduces a mesh optimization approach for hybridized discretizations, effectively combining the two
cost-reduction approaches. Novel contributions of this work include the development of two algorithms for incorporating
face error contributions from hybridized methods into an element-based mesh optimization procedure, and a compar-
ison of the three discretizations on meshes tailored to each discretization, using multiple cost measures. In addition to
reducing computational costs, the resulting adaptive method improves (i) robustness of the solution through quantita-
tive error estimates, and (ii) robustness of the solver through a mesh size continuation approach in which the problem is
solved on successively finer meshes.

The outline for the remainder of this paper is as follows. Section 2 presents the DG, HDG, and EDG discretizations.
Section 3 derives adjoint-based error estimates, which drive discretization-specific mesh optimization techniques that are
presented in Section 4. Section 5 demonstrates the adaptive method for selected two-dimensional flows, and Section 6
concludes with a summary and a discussion of future directions.

2 DISCRETIZATION

We simulate the compressible Navier-Stokes equations,

𝜕u
𝜕𝑡

+ ∇ ⋅ H⃗(u,∇u) = 0, (1)

where u(�⃗�, 𝑡) ∈ R𝑠 = [𝜌, 𝜌𝑣, 𝜌𝐸]𝑇 is the conservative state vector of rank s, and H⃗(u,∇u) = F⃗(u) + G⃗(u,∇u) is the total
flux, consisting of the convective and viscous components. The viscous flux is assumed linear in the state gradients,
Gi(u,∇u) = −Kij(u) 𝜕ju. Presently we consider the steady-state equations, 𝜕u

𝜕𝑡
= 0, although for clarity in exposition, we

leave the unsteady term in the weak forms.

2.1 Discontinuous Galerkin (DG)
Denote by Th the set of Nelem elements in a nonoverlapping tessellation of the domain Ω. As shown in Figure 1B, in DG,
the state is approximated by polynomials of order p on each element, with no continuity constraints imposed on the
approximations on adjacent elements. Formally, uℎ ∈ ℎ = [ℎ]𝑠, where ℎ = {𝑢 ∈ 𝐿2(Ω) ∶ 𝑢|Ω𝑒 ∈ 𝑝 ∀Ω𝑒 ∈ 𝑇ℎ}, and
𝑝 denotes polynomials of order p on the reference space of element Ωe. The weak form of (1) follows from multiplying
the equation by test functions in the same approximation space, integrating by parts, and coupling elements via unique
fluxes,

∫Ω𝑒
w𝑇ℎ
𝜕uℎ
𝜕𝑡
𝑑Ω − ∫Ω𝑒

∇w𝑇ℎ ⋅ H⃗(uℎ,∇uℎ) 𝑑Ω + ∫𝜕Ω𝑒w
𝑇
ℎ Ĥ ⋅ 𝑛 𝑑𝑠 − ∫𝜕Ω𝑒𝜕𝑖w

+𝑇
ℎ

K+
𝑖𝑗(u

+
ℎ
− ûℎ)𝑛𝑗 𝑑𝑠 = 0 ∀wℎ ∈ ℎ, (2)

where (⋅)T denotes transpose, and on the element boundary 𝜕Ωe, (⋅)+, (⋅)− denote quantities taken from the element or
its neighbor, respectively. The last term symmetrizes the semilinear form for adjoint consistency. The unique state on an
interior face is ûℎ = (u+

ℎ
+ u−
ℎ
)∕2.

FIDKOWSKI and CHEN 869

F I G U R E 1 Schematic
description of the solution
approximation using various
high-order methods [Color figure
can be viewed at
wileyonlinelibrary.com]

x

y

uh (x,y)

Th

(A) Continuous Galerkin

x

y

uh (x,y)

Th

(B) Discontinuous Galerkin

x

y

uh (x,y)
qh (x,y)ûh

Eh

(C) Hybridized Discontinuous Galerkin
x

y

uh (x,y)

qh (x,y)ûh

Eh

(D) Embedded Discontinuous Galerkin

Ĥ ⋅ 𝑛 denotes the unique normal flux on faces, computed from the approximated solution and its gradient. We use
the Roe approximate Riemann solver29 for the convective flux, and the second form of Bassi and Rebay (BR2)30 for the
viscous flux. Choosing a basis for the test and trial spaces yields a system of nonlinear equations,

Rℎ(Uℎ) = 0, (3)

where Uℎ ∈ R𝑁ℎ is the discrete state vector of basis function coefficients, Nh is the number of unknowns, and Rh is the
discrete steady residual vector.

2.2 Hybridized and embedded discontinuous Galerkin
The starting point for the HDG discretization is the conversion of (1) to a system of first-order equations,

q⃗ − ∇u = 0⃗, (4)

𝜕u
𝜕𝑡

+ ∇ ⋅ H⃗(u, q⃗) = 0, (5)

where q⃗ is the state gradient. Multiplying these two equations by test functions v⃗ℎ ∈ [ℎ]dim,wℎ ∈ ℎ and integrating by
parts over an element Ωe yields the weak form: we seek uℎ ∈ ℎ, and q⃗ℎ ∈ [ℎ]dim, such that

∫Ω𝑒
v⃗𝑇ℎ ⋅ q⃗ℎ 𝑑Ω + ∫Ω𝑒

∇ ⋅ v⃗𝑇ℎuℎ 𝑑Ω − ∫𝜕Ω𝑒 v⃗
𝑇
ℎ ⋅ 𝑛 ûℎ 𝑑𝑠 = 0 ∀v⃗ℎ ∈ [ℎ]dim, (6)

∫Ω𝑒
w𝑇ℎ
𝜕uℎ
𝜕𝑡
𝑑Ω − ∫Ω𝑒

∇w𝑇ℎ ⋅ H⃗ 𝑑Ω + ∫𝜕Ω𝑒w
𝑇
ℎ Ĥ ⋅ 𝑛 𝑑𝑠 = 0 ∀wℎ ∈ ℎ, (7)

where ûℎ is a new independent unknown: the state approximated on faces of the mesh. Note that through (7), element
degrees of freedom are coupled to the face degrees of freedom, but not to each other. The introduction of additional
unknowns on faces requires additional equations, which arise from weak enforcement of flux continuity across faces,

∫𝜎𝑓𝝁
𝑇
ℎ

{
Ĥ ⋅ 𝑛 |||𝐿 + Ĥ ⋅ 𝑛||| 𝑅} 𝑑𝑠 = 0 ∀𝝁ℎ ∈ ℎ. (8)

In this equation, ℎ denotes the order-p approximation space on the faces 𝜎f ∈ Fh of the mesh: ℎ = [ℎ]𝑠, where
ℎ = {𝑢 ∈ 𝐿2(𝜎𝑓) ∶ 𝑢|𝜎𝑓 ∈ 𝑝 ∀𝜎𝑓 ∈ 𝐹ℎ}, and the subscripts L and R refer to the left and right sides of a face. As shown

http://wileyonlinelibrary.com

870 FIDKOWSKI and CHEN

in Figure 1, both HDG and EDG introduce ûℎ, with the key difference that in EDG, the approximation space ℎ is
continuous at mesh nodes (and edges in three dimensions). This leads to a large reduction in the number of degrees of
freedom for face approximations in EDG VS HDG. On the other hand, in HDG, the face approximations are independent
and generally discontinuous at nodes and edges in three dimensions. This increases the size of the global system but
yields well-defined blocks in the Jacobian matrix that simplify preconditioning.

The fluxes in (7) are one-sided, meaning that they depend only on the state and gradient inside the element, and the
face state,

Ĥ ⋅ 𝑛 = H⃗(ûℎ, q⃗ℎ) ⋅ 𝑛 + 𝝉(ûℎ,uℎ, 𝑛), 𝝉 =
|||| 𝜕𝜕u (F̂ ⋅ 𝑛)

||||u∗
ℎ

(uℎ − ûℎ) + 𝜂�⃗�ℎ ⋅ 𝑛. (9)

Note that 𝜏 consists of a convective stabilization computed about the Roe-average state, u∗
ℎ
, and a BR2 viscous

stabilization,31 where 𝜂 is set to the number of faces and �⃗�ℎ is the BR2 auxiliary variable driven by the state jump uℎ − ûℎ.
Choosing bases for the trial/test spaces in Equations 6, 7, 8 gives a nonlinear system of equations,

R𝑄
ℎ
= 0, R𝑈ℎ = 0, RΛ

ℎ = 0, (10)

with the Newton update system [
Aℎ Bℎ
Cℎ Dℎ

][ΔQℎ
ΔUℎ
Δ𝚲ℎ

]
+
⎡⎢⎢⎢⎣
R𝑄
ℎ

R𝑈
ℎ

RΛ
ℎ

⎤⎥⎥⎥⎦ =
[0

0
0

]
, (11)

where Qh, Uh, and Λh are the discrete unknowns in the approximation of q⃗ℎ, uh, and ûℎ, respectively. [Ah,Bh;Ch,Dh] is
the primal Jacobian matrix partitioned into element-interior and interface unknown blocks. Note that Ah and Bh con-
tain both Qh and Uh components. In addition, Ah is element-wise block diagonal, and hence easily invertible using
element-local operations.

Statically condensing out the element-interior states gives a smaller system for the face degrees of freedom,

(Dℎ − CℎA−1
ℎ Bℎ)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
ℎ

Δ𝚲ℎ +
(
RΛ
ℎ − CℎA−1

ℎ

[
R𝑄
ℎ
;R𝑈ℎ

])
= 0. (12)

Solving this set of equations constitutes the global solve of the problem. Following the global solve for Δ𝚲h, an
element-local back-solve yields the updates to Qh and Uh,

[
ΔQℎ
ΔUℎ

]
= −A−1
ℎ

([
R𝑄
ℎ

R𝑈
ℎ

]
+ BℎΔ𝚲ℎ

)
. (13)

2.3 Degrees of freedom and matrix sparsity
On a given mesh, the DG, HDG, and EDG discretizations will have different degree of freedom counts and residual Jaco-
bian sparsity patterns. Figure 2 presents an example of the degree of freedom placement for p = 2 approximation on a
ten-element mesh of triangles. Note that in HDG and EDG, we do not introduce the trace variable, ûℎ, on boundary faces,
as the flux there is computed in the same way as in DG.

Table 1 shows average degree of freedom counts of DG, HDG, and EDG, for regular simplex-element meshes. Since
different discretizations associate degrees of freedom with different structures of the mesh (elements, faces, edges, nodes),
the results in the table normalize the total degrees of freedom by the nodes in the mesh, under assumptions of mesh
regularity and ignoring boundaries. As expected, for all orders in two and three dimensions, EDG uses the fewest degrees
of freedom out of the three discretizations. The relative benefit of EDG is greatest at the lower approximation orders. Note
that HDG on tetrahedra actually consumes more degrees of freedom than DG for lower orders, due to the large number
of faces relative to elements.

In addition to degrees of freedom, the number of nonzeros and the sparsity pattern of the Jacobian matrix also affect
the computational cost. For the example mesh in Figures 2 and 3 shows the sparsity patterns of the resulting residual
Jacobian matrices, with static condensation applied to HDG and EDG. The number of nonzeros refers to the globally

FIDKOWSKI and CHEN 871

(A) DG (B) HDG (C) EDG

F I G U R E 2 Element (blue) and face (red) degree of freedom placement for a sample mesh, using various discretizations

T A B L E 1 Degree of freedom
counts per vertex of regular
simplex-element meshes in two and
three dimensions

Triangles Tetrahedra

Method p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4

DG 6 12 20 30 24 60 120 210

HDG 6 9 12 15 36 72 120 180

EDG 1 4 7 10 1 8.2 27.4 58.6

(A) DG, nnz=1080 (B) HDG, nnz=330 (C) EDG, nnz=177

F I G U R E 3 Matrix sparsity patterns for the ten-element mesh in Figure 2. Matrix sizes are shown to scale [Color figure can be viewed
at wileyonlinelibrary.com]

coupled (condensed) matrices. Note that the number of matrix nonzeros for EDG is about a factor of 6 smaller than for
DG. However, a caveat is that the arrangement of nonzeros in blocks in DG and HDG can be favorable for preconditioner
effectivity.

2.4 Adjoint discretization
For a scalar output Jh, computed from the discrete solution Uh, the discrete adjoint 𝚿h is a vector of sensitivities of Jh to
residual source perturbations. For DG, these perturbations refer to (3), and the associated adjoint equation is(

𝜕Rℎ
𝜕Uℎ

)𝑇
𝚿ℎ +

(
𝜕𝐽ℎ
𝜕Uℎ

)𝑇
= 0. (14)

http://wileyonlinelibrary.com

872 FIDKOWSKI and CHEN

For HDG and EDG, residual perturbations refer to (10), and with three sets of residuals, the analog of (14) is

[
A𝑇
ℎ

C𝑇
ℎ

B𝑇
ℎ

D𝑇
ℎ

] ⎡⎢⎢⎢⎣
𝚿𝑄
ℎ

𝚿𝑈ℎ
𝚿Λ
ℎ

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
(𝜕𝐽ℎ∕𝜕Qℎ)𝑇

(𝜕𝐽ℎ∕𝜕Uℎ)𝑇

(𝜕𝐽ℎ∕𝜕𝚲ℎ)𝑇

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
0
0
0

⎤⎥⎥⎥⎦ , (15)

Statically condensing out the element-interior adjoints gives a smaller system for the face adjoints,

(
D𝑇ℎ − B𝑇ℎA

−𝑇
ℎ C𝑇ℎ

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑇
ℎ

𝚿Λ
ℎ +

(
𝜕𝐽ℎ
𝜕𝚲ℎ

𝑇

− B𝑇ℎA
−𝑇
ℎ

[
𝜕𝐽ℎ
𝜕Qℎ

𝑇

; 𝜕𝐽ℎ
𝜕Uℎ

𝑇
])

= 0. (16)

Note that the operator appearing in this equation is the transpose of the primal operator in (12). After solving this global
system for 𝚿Λ

ℎ , 𝚿
𝑄
ℎ

and 𝚿𝑈ℎ follow from an element-local back-solve.

3 OUTPUT ERROR ESTIMATION

3.1 The adjoint-weighted residual
An adjoint solution can be used to estimate the numerical error in the corresponding output of interest, J, through the
adjoint-weighted residual.23,25 Let H denote a coarse/current discretization space, and h a fine one, for example, obtained
by increasing the approximation order by one, p → p + 1. Denote by U𝐻

ℎ
the state injected from the coarse to the fine

space, and similarly for Q𝐻
ℎ

and 𝚲𝐻ℎ in HDG/EDG. Computing the fine-space residuals with these injected states and
weighting them by the fine-space adjoint gives an estimate of the output error between the coarse and fine spaces,

DG: 𝐽ℎ
(
U𝐻ℎ

)
− 𝐽ℎ (Uℎ) ≈ −𝛿𝚿𝑇ℎRℎ

(
U𝐻ℎ

)
(17)

HDG/EDG: 𝐽ℎ(U𝐻ℎ) − 𝐽ℎ(Uℎ) ≈ −(𝛿𝚿𝑄
ℎ
)𝑇R𝑄
ℎ

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝛿𝐽𝑄

−(𝛿𝚿𝑈ℎ)
𝑇R𝑈ℎ

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝛿𝐽𝑈

−(𝛿𝚿Λ
ℎ)
𝑇RΛ
ℎ

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝛿𝐽Λ

, (18)

where all of the residuals are evaluated using the coarse state injected into the fine space, including Q𝐻
ℎ

and 𝚲𝐻ℎ for
HDG/EDG. For the fine space, we increment the approximation order by one on each element and face and obtain the
fine-space adjoint by solving exactly on this fine space. We obtain 𝛿𝚿h for use in the error estimates by subtracting from
the fine-space adjoint an injection of the coarse-space adjoint. Note that (18) separates the error estimate into three
components, one for each residual.

3.2 Error localization
The error estimates involving element residuals can be localized to element (e) contributions, resulting in the error
indicators

DG: 𝑒 ≡ |||𝛿𝚿𝑇ℎ,𝑒Rℎ,𝑒(U𝐻ℎ)|||, (19)

HDG/EDG: 𝑄𝑒 ≡ |||𝛿𝚿𝑄𝑇ℎ,𝑒R𝑄ℎ,𝑒|||, 𝑈𝑒 ≡ |||𝛿𝚿𝑈𝑇ℎ,𝑒 R𝑈ℎ,𝑒|||. (20)

On the other hand, the error contribution 𝛿JΛ is associated with an inner product over faces, in the space ℎ. For HDG,
this error could be localized to faces, but for EDG, the localization is not as simple due to the continuous approximation
space ℎ.

3.3 HDG and EDG face error treatment
The mesh optimization algorithm used in this study works with an element-based error estimate, as the model for the
error is based on the size of the elements. We therefore must convert the HDG and EDG face output error contribution,

FIDKOWSKI and CHEN 873

𝛿JΛ, to contributions associated with elements. In this work, we present two methods for such a conversion. We assume
two spatial dimensions, so the notation of “faces” switches to “edges.”

3.3.1 Edge-based averaging
The variational form of the face contribution to the output error is

𝛿𝐽Λ = −
∑
𝑓

∫𝜎𝑓 (𝛿𝝍
Λ
ℎ)
𝑇
{

Ĥ ⋅ 𝑛|𝐿 + Ĥ ⋅ 𝑛|𝑅} 𝑑𝑠, (21)

where 𝝍Λ
ℎ
∈ ℎ is the edge-based adjoint approximation, and the term in curly brackets is the strong-form residual of

the flux-continuity Equation (8). Note that this residual is computed on the fine-space, using the injected coarse-space
solution. Define 𝛿Ĥ ⋅ 𝑛|𝐿 ≡ Ĥ ⋅ 𝑛|𝐿 − Ĥ ⋅ 𝑛|exact, where “exact” refers to the flux computed from the exact (no numerical
error) solution, and similarly for 𝛿Ĥ ⋅ 𝑛|𝑅. The edge output error estimate can then be written as

𝛿𝐽Λ = −
∑
𝑓

∫𝜎𝑓 (𝛿𝝍
Λ
ℎ)
𝑇 {Ĥ ⋅ 𝑛|𝐿 + Ĥ ⋅ 𝑛|𝑅} 𝑑𝑠

= −
∑
𝑓

∫𝜎𝑓 (𝛿𝝍
Λ
ℎ)
𝑇 {𝛿Ĥ ⋅ 𝑛|𝐿 + 𝛿Ĥ ⋅ 𝑛|𝑅} 𝑑𝑠

= −
∑
𝑒
∫𝜕Ω𝑒(𝛿𝝍

Λ
ℎ)
𝑇 𝛿Ĥ ⋅ 𝑛 𝑑𝑠

= −
∑
𝑒
∫Ω𝑒

∇ ⋅ [(𝛿𝝍Λ
ℎ)
𝑇 𝛿H⃗] 𝑑Ω

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Λ
𝑒

(22)

The quantity Λ
𝑒 is an element-based contribution, calculated in practice by equally distributing edge contributions

to elements, as shown in Figure 4. In HDG, this means that each element picks up half of the output error from
the adjacent edges. In EDG, the discrete adjoint-weighted residuals from the Λ error estimate are not tied to sin-
gle edges, but are instead associated with nodes or edges. The weight for the division is therefore the inverse of the
number of elements adjacent to the structure. Finally, the motivation for writing 𝛿JΛ as in (22), using the divergence
theorem, is to allow the formulation of an element-based error model during element subdivision sampling for mesh
optimization.

3.3.2 Residual lumping
An alternative method for converting edge errors to elements is based on rewriting the edge adjoint in terms of the element
adjoint and lumping residuals from edges to elements via the reverse of static condensation. This method relies on the
assumption that the output J does not depend on the edge degrees of freedom, 𝚲, which is the case for any practical

F I G U R E 4 Weights for distributing residuals, and adjoint-weighted residuals from
globally coupled EDG degrees of freedom to elements. Edge weights are 1

2
and node

weights are the inverse of the node cardinality [Color figure can be viewed at
wileyonlinelibrary.com]

1
2

1
5

Ωe

1
2

1
2

1
5

1
6

http://wileyonlinelibrary.com

874 FIDKOWSKI and CHEN

domain or boundary-integral output, as 𝚲 is not used on boundary edges. Note that in this section we drop the h subscript
from vectors and matrices to simplify the notation. In this case, the adjoint system in (15) becomes

[
A𝑇 C𝑇
B𝑇 D𝑇

] [
𝚿𝑈
𝚿Λ

]
+

[
𝜕𝐽

𝜕U
𝑇

0

]
=
[

0
0

]
, (23)

where we have lumped the Q unknowns with the U unknowns to simplify the notation. Taking the transpose and solving
for the adjoint, [

𝚿𝑈

𝚿Λ

]𝑇
= −

[
𝜕𝐽

𝜕U

0

][A B
C D

]−1

. (24)

Using the matrix block-inverse formula with L ≡ A − BD−1C

[A B
C D

]−1

=

[
L−1 −L−1BD−1

−D−1CL−1 D−1 + D−1CL−1BD−1

]
, (25)

the adjoint vectors are
(𝚿𝑈)𝑇 = − 𝜕𝐽

𝜕U
L−1, (26)

(𝚿Λ)𝑇 = 𝜕𝐽
𝜕U

L−1BD−1 = −(𝚿𝑈)𝑇BD−1. (27)

The total adjoint-weighted residual error estimate is

𝛿𝐽 = 𝛿𝐽𝑈 + 𝛿𝐽Λ = (𝚿𝑈)𝑇R𝑈 + (𝚿Λ)𝑇RΛ = (𝚿𝑈)𝑇R𝑈 − (𝚿𝑈)𝑇BD−1RΛ = (𝚿𝑈)𝑇 (R𝑈 − BD−1RΛ)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

lumped residual

. (28)

The conversion of the edge residuals to elements requires the application of D−1. Fortunately, D has the same sparsity
pattern as the global Jacobian , and so the same data structures and solver can be used. Finally, we note that this method
also assumes that D is invertible, which has been observed to be true for all cases tested.

4 ADAPTATION

Estimates of the output error not only provide information about the accuracy of a solution, but can also drive mesh
adaptation. A fair comparison of DG, HDG, and EDG requires optimal meshes for each discretization. In previous work,
we presented an output-based mesh optimization algorithm for DG,32 which built on earlier work of Yano.21 This section
describes an extension of this algorithm, Mesh Optimization through Error Sampling and Synthesis (MOESS), to HDG
and EDG.

4.1 Mesh Metrics
A Riemannian metric field,(�⃗�) ∈ Rdim× dim, can be used to encode information about the size and stretching of elements
in a mesh. A mesh that conforms to a metric field is one in which each edge has the same length, to some tolerance, when
measured with the metric. The Bi-dimensional Anisotropic Mesh Generator (BAMG)33 supports metric-based remeshing
and is used to obtain the results in the present work.

The optimization algorithm determines changes to the current, mesh-implied, metric, 0(�⃗�), which is calculated for
each simplex element by requiring unit measure of its edges under the metric. The element metrics are then averaged
to the nodes using an affine-invariant algorithm.34 Changes to the metric are introduced using a symmetric step matrix,
 ∈ Rdim× dim, according to

 = 1
2
0 exp() 1

2
0 . (29)

FIDKOWSKI and CHEN 875

4.2 Error convergence models
MOESS requires a model for how the error changes as the metric changes. We use an element-based model that relates
the error indicator on element e to the step matrix 𝑒. For DG, this is21

DG: 𝑒 = 𝑒0 exp [tr(𝑒𝑒)], (30)

where 𝑒 is an element-specific error rate tensor determined through a sampling procedure, as described in Section 4.5.
The total error over the mesh is the sum of the elemental errors, =

∑𝑁𝑒
𝑒=1 𝑒.

For HDG and EDG, each element contributes to the output error in three ways: through the Q, U, and Λ equations.
We define separate models for how the associated three error indicators change with 𝑒,

HDG and EDG: 𝑈𝑒 = 𝑈𝑒0𝑒tr(𝑅𝑈𝑒 𝑒), 𝑄𝑒 = 𝑄𝑒0𝑒tr(𝑅𝑄𝑒 𝑒), Λ
𝑒 = Λ
𝑒0𝑒

tr(𝑅Λ𝑒 𝑒), (31)

where 𝑈𝑒 , 𝑄𝑒 , and Λ
𝑒 are element-specific error rate tensors, also identified through sampling. The total error indicator

on element e is 𝑒 = 𝑈𝑒 + 𝑄𝑒 + Λ
𝑒 .

4.3 Cost model
Mesh refinement reduces error but increases cost, measured by degrees of freedom. These can be the globally coupled
degrees of freedom, which are element-specific for DG and face/edge/node-specific for HDG and EDG. Elemental degrees
of freedom can also be included in the case of HDG and EDG, potentially with a weighting factor, to account for the cost
of static condensation and back-solves. In all of these cases, assuming a uniform order p and constant factor relationships
between the number of elements and nodes/edges/faces, the total cost is directly proportional to the number of elements,
 = 𝑁𝑒0, where 0 is the cost per element.

When the step matrix Se is applied to the metric of element e, the area of the element decreases by exp
[

1
2
tr(𝑆𝑒)

]
. As

the number of new elements occupying the original area Ωe increases by this factor, the elemental cost model is

𝐶𝑒 = 𝐶0 exp
[1

2
tr(𝑒)

]
. (32)

Note that this cost model remains the same between DG, HDG, and EDG, with the only difference in the definition
of C0.

4.4 Metric optimization algorithm
The goal of mesh optimization is to determine the step matrix field,(�⃗�), that minimizes the error at a given cost. The step
matrix field is approximated by values at the mesh vertices, 𝑣, which are arithmetically averaged to adjacent elements.
The cost only depends on the trace of the step matrix, and we therefore separate the vertex step matrices into trace (𝑠𝑣)
and trace-free (̃𝑣) parts, 𝑣 = 𝑠𝑣 + ̃𝑣.

The optimization algorithm then consists of the following steps:21,32

1. Given a mesh, solution, and adjoint, calculate the error indicator(s) and rate tensor(s) for each element e.
2. Set 𝛿𝑠 = 𝛿𝑠max∕𝑛step, 𝑣 = 0.
3. Begin loop: i = 1…nstep

(a) Calculate 𝑒, 𝜕𝑒𝜕𝑒 , and 𝜕𝑒
𝜕𝑒 .

(b) Calculate derivatives of and with respect to sv and ̃𝑣.
(c) At each vertex form the ratio 𝜆𝑣 =

𝜕∕𝜕𝑠𝑣
𝜕∕𝜕𝑠𝑣 and

• Refine the metric for 30% of the vertices with the largest |𝜆v|: 𝑣 = 𝑣 + 𝛿𝑠
• Coarsen the metric for 30% of the vertices with the smallest |𝜆v|: 𝑣 = 𝑣 − 𝛿𝑠

(d) Update the trace-free part of Sv to enforce stationarity with respect to shape changes at fixed area: 𝑆𝑣 = 𝑆𝑣 +
𝛿𝑠(𝜕∕𝜕̃𝑣)∕(𝜕∕𝜕𝑠𝑣).

876 FIDKOWSKI and CHEN

(e) Rescale 𝑆𝑣 → 𝑆𝑣 + 𝛽, where 𝛽 is a global constant calculated from (32) to constrain the total cost to the desired
dof value: 𝛽 = 2

𝑑
log target

 , where target is the target cost.

This algorithm iteratively equidistributes 𝜆v globally so that, at optimum, all elements have the same marginal error to cost
ratio. User-defined values that work generally well in the above algorithm are nstep = 20 and 𝛿𝑠max = 2 log 2. In practice,
the mesh optimization and flow/adjoint solution are performed several times at a given target cost, target, until the error
stops changing.

4.5 Error sampling
The error convergence models in Section 4.2 rely on convergence tensors, for example, 𝑒 for DG, for each element e. We
estimate this rate tensor a posteriori by sampling a small number of refinements for each element, as shown in Figure 5,
and performing a regression. However, as described next and first introduced in our previous work,32 we never actually
modify the mesh when considering the refinement samples, which greatly simplifies the algorithm.

Each element refinement is also associated with the refinement of a certain number of adjacent edges. For HDG and
EDG with the edge-based averaging localization, these edge refinements reduce the error contributions of those edges
to the element error indicator Λ

𝑒 , per (22). Therefore, the same refinements shown in Figure 5 can be used to sample
all three error contributions in this localization. To determine how much the error(s) decrease(s) for each refinement
option, we use element and edge-local projections of the fine-space adjoints to semi-refined spaces associated with each
element/edge refinement option.

4.5.1 Discontinuous Galerkin
Consider first one element,Ωe, in a DG discretization. The fine space adjoint,𝚿h,e, provides an estimate of the output error
in the current order p solution, as measured relative to the p + 1 solution: this is 𝑒0. Now, suppose that we are looking at
refinement option i in Figure 5: this creates a solution space that is finer than the original, though we assume not as fine
as increasing the order to p + 1. If we have an order p adjoint on this refined space, 𝚿Hi, where the i indicates that we are
considering refinement option i, we can compute an error indicator Δ𝑒𝑖, which estimates the error between the coarse
solution and that on refinement option i. The remaining error associated with refinement option i is then given by the
difference,

𝑒𝑖 ≡ 𝑒0 − Δ𝑒𝑖. (33)

Calculating Δ𝑒𝑖 requires an adjoint-weighted residual evaluation on the element refined under option i. To simplify
this calculation we project𝚿Hi back into the p + 1 space on the original element and evaluate the adjoint weighted residual
there. That is, we perform

Δ𝑒𝑖 ≡ 𝚿𝐻𝑖 𝑇ℎ,𝑒 ℎ,𝑒(U𝐻ℎ), (34)

where 𝚿𝐻𝑖ℎ is 𝚿Hi projected from order p on refinement option i into order p + 1 on the original element. The final sim-
plification is that we do not solve for 𝚿Hi but instead project the fine-space (p + 1) adjoint to order p under refinement
option i.

In summary, the error uncovered by refinement option i, Δ𝑒𝑖, is estimated by the adjoint-weighted residual in (34),
with all calculations occurring at order p + 1 on the original element. Using L2 projections in reference space, the com-
bination of projections can be encapsulated into one transfer matrix that converts 𝚿h into 𝚿𝐻𝑖ℎ , both represented in the
order p + 1 space on the original element:

Option 4Option 3Option 2Option 1Original

F I G U R E 5 Four refinement options for a triangle, with edge refinements highlighted. Each one is considered implicitly during error
sampling, though the elements are never actually refined

FIDKOWSKI and CHEN 877

𝚿𝐻𝑖ℎ = T𝑖𝚿ℎ, (35)

T𝑖 = [M0(𝜙𝑝+1
0 , 𝜙
𝑝+1
0)]−1

𝑛𝑖∑
𝑘=1

T𝑖𝑘, (36)

T𝑖𝑘 = M𝑘(𝜙𝑝+1
0 , 𝜙
𝑝
𝑘
)[M𝑘(𝜙𝑝𝑘, 𝜙

𝑝
𝑘
)]−1M𝑘(𝜙𝑝𝑘, 𝜙

𝑝+1
𝑘

)[M𝑘(𝜙𝑝+1
𝑘
, 𝜙𝑝+1
𝑘

)]−1M𝑘(𝜙𝑝+1
𝑘
, 𝜙𝑝+1

0). (37)

In these equations, ni is the number of subelements in refinement option i, k is an index over these subelements, 𝜙𝑝
𝑘
, 𝜙𝑝+1
𝑘

are order p and p + 1 basis functions on subelement k, 𝜙𝑝0, 𝜙
𝑝+1
0 are order p and p + 1 basis functions on the original

element, and components of the mass-like matrices are defined as

M𝑘(𝜙𝑙, 𝜙𝑚) = ∫Ω𝑘
𝜙𝑙𝜙𝑚𝑑Ω, M0(𝜙𝑙, 𝜙𝑚) = ∫Ω0

𝜙𝑙𝜙𝑚𝑑Ω, (38)

where Ωk is subelement k and Ω0 is the original element. Note that the transfer matrix Ti can be calculated for each
refinement option i once in reference space and then used for all elements, so that the calculation of Δ𝑒𝑖 consumes
minimal additional cost – and most importantly, no solves or residual evaluations are needed on the refined element, as
these generally require cumbersome data management and transfer.

4.5.2 Hybrid and embedded discontinuous Galerkin
In HDG and EDG, the sampling of error for the calculation of rate tensors for 𝑈𝑒 and 𝑄𝑒 proceeds as outlined in
the preceding description for DG. In addition, when using the residual lumping localization approach presented in
Section 3.3.2, no additional steps are needed, as the edge residuals are already included with the element residuals. On
the other hand, when using the edge-based averaging approach to compute Λ

𝑒 , the elemental error indicator is the sum
of adjoint-weighted flux residuals integrated over the edges of Ωe, as given in (22). Let 𝑓 be the error indicator associated
with one edge 𝜎f , which from (21) is

𝑓 ≡
|||||∫𝜎𝑓𝝍Λ𝑇

ℎ {Ĥ ⋅ 𝑛|𝐿 + Ĥ ⋅ 𝑛|𝑅} 𝑑𝑠||||| .
Just as for elements, we consider all available refinement options j for an edge. For each of these refinement options,
we compute 𝑓𝑗 , the remaining error associated with refinement option j of edge f , using the same adjoint-projection
procedure as presented for elements. This requires the calculation of edge adjoint transfer matrices, T𝑓𝑗 , which again is
performed in reference space.

Performing a residual distribution for the unrefined element e yields the baseline error indicator, Λ
𝑒0. Then, for each

element refinement option i, the errors of refined edges are reduced to𝑓𝑗 using the results of the edge sampling procedure.
The residual distribution is then performed again, yielding Λ

𝑒𝑖 .

4.5.3 Regression
After calculating the element error indicators, for example, 𝑒𝑖 for DG, and the errors remaining after each refinement
option i according to (33), we use least-squares regression to estimate the corresponding rate tensors, for example, 𝑒 for
DG. Note that for triangles, we have four refinement options and three independent entries in the symmetric 𝑒 tensor.
Using (30), we formulate the regression to minimize the following error, summed over refinement options,

∑
𝑖

[
log 𝑒𝑖

𝑒0 − tr(𝑒𝑒𝑖)
]2

. (39)

In this equation, 𝑒𝑖 is the step matrix associated with refinement option i, given by (from Equation (29)),

𝑒𝑖 = log
(
− 1

2
0 𝑖− 1

2
0

)
, (40)

878 FIDKOWSKI and CHEN

where 𝑖 is the affine-invariant metric average of the mesh-implied metrics of all subelements in refinement option i.
Differentiating (39) with respect to the independent components of 𝑒 yields a linear system for these components.
For HDG and EDG, this regression is performed separately for the two or three element-based errors appearing in
Equation (31).

5 RESULTS

This section presents results that compare the performance of the DG, HDG, and EDG discretizations in an output-based
mesh-optimization framework. All three discretizations are implemented in a unified code and share the same structures,
functions, and algorithms. The implementations differ only in the high-level residual and Jacobian matrix construction
procedures.

The discrete global systems are solved using GMRES, preconditioned by a block-Jacobi smoother. The size of the
blocks is specific to the discretization. For DG, the blocks are element-based, and for HDG, the blocks are edge-based. In
EDG, there is no clear grouping of the globally coupled unknowns into blocks, and so instead a “point”-Jacobi method
is used, where a “point” actually corresponds to a s × s block of unknowns associated with one degree of freedom. The
smaller block size makes the EDG preconditioner less powerful for a given Jacobian matrix size, in that more iterations
are required to achieve a desired error tolerance. This number of iterations grows with the mesh size, such that large
problems will warrant more powerful preconditioners.

MOESS adaptations are performed at various orders using a target number of element-interior (U) degrees of free-
dom. Computational time results are obtained using serial runs on a workstation with Intel Xeon Sandy Bridge 2.0 GHz
processors with 15MB L3 Cache and 64GB total RAM.

5.1 Inviscid flow
The first test case consists of inviscid flow over a NACA 0012 airfoil at 𝛼 = 2◦,M = 0.5. The output of interest is the drag
coefficient, which is expected to be zero but in fact converges to a nonzero value in the limit of infinite resolution due to
the imposition of farfield boundary conditions at a finite distance (100 chord lengths) from the airfoil. As such, the exact
value of the drag is computed on a very fine adapted mesh of 45 000 elements and approximation order p = 4. Figure 6
shows the initial mesh and Mach number contours. The mesh is curved to the geometry using a cubic mapping from
reference space.

Before considering performance of the adaptive algorithm, we present results from a uniform refinement study. All
three discretizations, DG, HDG, and EDG, are run using approximation orders p = 1, 2, 3, on the same sequence of meshes
obtained by uniformly refining the initial mesh. Figure 7 shows the convergence of the error in the drag coefficient
using four measures of cost: the number of elements, the number of globally coupled degrees of freedom, the number of
nonzeros in the residual Jacobian matrix, and the computational time.

From the plot VS the number of elements, we see that for the same mesh, DG and HDG yield nearly identical results,
whereas the EDG result has more error, particularly at p = 1. This is expected due to the continuous approximation of

(A) Initial mesh, 326 elements (B) Mach number contours

F I G U R E 6 Inviscid flow: initial mesh and solution Mach contours [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com

FIDKOWSKI and CHEN 879

102 103 104

elements

10-5

10-4

10-3

10-2

10-1
D

ra
g

co
ef

fic
ie

nt
 e

rr
or

102 104

globally-coupled dof

104 106

Jacobian nonzeros

100 102 104

CPU time (s)

DG p1
DG p2
DG p3

HDG p2
HDG p3
EDG p1
EDG p2
EDG p3

HDG p1

F I G U R E 7 Inviscid flow: uniform-refinement output convergence results

the trace state in EDG, which is associated with generally larger jumps between the element and trace solutions and
results in a more dissipative scheme. The comparison VS globally coupled degrees of freedom is a left-shift of the EDG
and HDG data relative to DG. The large shift of p = 1 EDG makes it advantageous over DG and HDG, both of which
have the same number of degrees of freedom at p = 1 per Table 1. For p = 2 and p = 3, whereas EDG shows a slight
advantage on coarser meshes, by the finer meshes, HDG and DG are more efficient. A similar trend is observed VS
the number of Jacobian nonzeros, where EDG shows benefits down to slightly finer meshes, but then is overtaken by
HDG and DG. Finally, the CPU timing results are similar, with EDG performing well at p = 1, and HDG becoming most
efficient at the higher-orders. Recall that the block preconditioner for DG and HDG is more powerful (larger blocks)
compared to EDG. We next show how these conclusions change when adaptive meshes are used instead of uniform
refinement.

Figure 8 shows the adaptive convergence of the drag coefficient output with the same four cost measures as in the
uniform refinement study. Results for p = 1 and p = 3 are shown separately, as three adaptive methods are now considered
for EDG and HDG. These methods differ in the error localization approach: “U only” indicates that only the element-based
errors are used to drive the adaptation, and that edge errors are ignored; “edge-based” denotes the averaging of edge/node
errors as described in Section 3.3.1; and “res lump” denotes the residual-lumping approach described in Section 3.3.2.
The mesh optimizations in each case were run for 20 adaptive iterations, starting with the initial mesh, for each target
number of element-based degrees of freedom. The data points shown are the average errors and costs over the last six
optimization iterations.

For a given number of elements, DG and HDG exhibit nearly identical errors at both orders, which is similar to
the results of the uniform-refinement study. At p = 1, EDG fares consistently worse for a given number of elements. In
addition, the difference between the three adaptive approaches is small: all EDG errors are approximately three times
larger than those of DG and HDG. At p = 3, the EDG results including edge error estimates close the gap relative to DG
and HDG in terms of number of elements. However, the U-only EDG adaptive indicator lags behind, particularly on the
coarser meshes, where it produces larger errors compared to the other adaptive approaches.

Looking next at the comparison VS the globally coupled degrees of freedom, we see that the left-shift of the EDG
errors has a significant impact on the results. For a given error level, the EDG simulations consume about a third of the
degrees of freedom of DG, for both p = 1 and p = 3. HDG coincides with DG at p = 1, but then exhibits a reduction in
the degrees of freedom by p = 3 and ends up between EDG and DG. The relationship between the data remains similar
in the comparison VS Jacobian nonzeros, with HDG more closely approaching EDG. Nevertheless, in all cases, EDG
demonstrates a clear advantage over DG and HDG in the relevant cost measures, with the largest benefits at the lower
orders.

Figure 9 shows the final (20th iteration, 200 target elements) adapted meshes for the various discretizations at
p = 3. Areas targeted for refinement consist primarily of the leading and trailing edges in this relatively benign test case.
The meshes are fairly similar, with the exception of the trailing edge refinement. The EDG U-only error estimate mesh
shows less refinement of the trailing edge compared to the other methods, including EDG with an edge error treatment.
This lower degree of refinement is likely responsible for the larger drag errors on these meshes. On the other hand, incor-
porating the Λ error estimate into the mesh optimization error model leads to more refinement at the trailing edge and
lower errors.

880 FIDKOWSKI and CHEN

102 103 104 102

102 103 104 103 104 105 106 100 102

103 104 103 104 105 100 102

elements

10-4

10-3

10-2
D

ra
g

co
ef

fic
ie

nt
 e

rr
or

globally-coupled dof Jacobian nonzeros CPU time (s)

(A) p = 1

(B) p = 3

200 400 600 800

elements

10-8

10-6

10-4

10-2

D
ra

g
co

ef
fic

ie
nt

 e
rr

or

globally-coupled dof Jacobian nonzeros CPU time (s)

DG
HDG U only
HDG edge-based
HDG res lump
EDG U only
EDG edge-based
EDG res lump

DG
HDG U only
HDG edge-based
HDG res lump
EDG U only
EDG edge-based
EDG res lump

F I G U R E 8 Inviscid flow: adaptive output convergence results [Color figure can be viewed at wileyonlinelibrary.com]

nelem=195, ndofU=1950, ndofL=0

(A) DG

nelem=201, ndofU=2010, ndofL=1136

(B) HDG, U only

nelem=198, ndofU=1980, ndofL=1120

(C) HDG, edge-based

nelem=205, ndofU=2050, ndofL=701

(D) EDG, U only

nelem=205, ndofU=2050, ndofL=700

(E) EDG, edge-based

nelem=206, ndofU=2060, ndofL=703

(F) EDG, res lump

F I G U R E 9 Inviscid flow: meshes adapted for p = 3 approximation using various discretizations and adaptive methods, with
approximately 200 elements

5.2 Laminar viscous flow
The second test case is viscous flow over a NACA 0012 airfoil at 𝛼 = 2◦,M = 0.5, Re = 5000. The output of interest is again
the drag coefficient, and the exact value for error calculations is computed with p = 4 approximation on a mesh adapted
to significantly more degrees of freedom than that used for the comparisons. Figure 10 shows the initial mesh and Mach
number contours. The mesh is curved to the geometry using a cubic mapping from reference space.

http://wileyonlinelibrary.com

FIDKOWSKI and CHEN 881

(A) Initial mesh, 326 elements (B) Mach number contours

F I G U R E 10 Viscous flow: initial mesh and solution Mach contours [Color figure can be viewed at wileyonlinelibrary.com]

(B) p = 3

102 103 102 103 104 104 105 106 100 102

10-7

10-6

10-5

10-4

10-3

D
ra

g
co

ef
fic

ie
nt

 e
rr

or

102 103 104 102 103 104 103 104 105 100 102

elements

10-4

10-3

10-2

D
ra

g
co

ef
fic

ie
nt

 e
rr

or

globally-coupled dof Jacobian nonzeros CPU time (s)

elements # globally-coupled dof Jacobian nonzeros CPU time (s)

(A) p =1

DG
HDG U only
HDG edge-based
HDG res lump
EDG U only
EDG edge-based
EDG res lump

DG
HDG U only
HDG edge-based
HDG res lump
EDG U only
EDG edge-based
EDG res lump

F I G U R E 11 Viscous flow: adaptive output convergence results [Color figure can be viewed at wileyonlinelibrary.com]

We consider adaptive simulations using the various discretizations and edge-error localization approaches. Figure 11
shows the convergence of the output using p = 1 and p = 3 approximation orders, for the four different cost measures. As
in the previous study, mesh optimizations in each case were run for 20 adaptive iterations, starting with the initial mesh,
for each target number of element-based degrees of freedom. The data points shown are the average errors and costs over
the last six mesh optimization iterations.

As in the inviscid case, for p = 1, DG and HDG are more accurate than EDG for a given number of elements. The
output error for a given number of elements is approximately three times larger for EDG than DG and HDG, which
again show similar results. In addition, edge-based and residual-lumping EDG again performs better than U-only EDG.
This benefit diminishes at higher orders, but in general, incorporating the edge error estimates reduces the output errors
in the optimized meshes. Note that, in contrast to the EDG case, incorporating edge errors into the HDG adaptation

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

882 FIDKOWSKI and CHEN

nelem=409, ndofU=4090, ndofL=0

(A) DG

nelem=407, ndofU=4070, ndofL=2368

(B) HDG, U only

nelem=413, ndofU=4130, ndofL=2404

(C) HDG, edge-based

nelem=402, ndofU=4020, ndofL=1389

(D) EDG, U only

nelem=401, ndofU=4010, ndofL=1386

(E) EDG, edge-based

nelem=417, ndofU=4170, ndofL=1441

(F) EDG, res lump

F I G U R E 12 Viscous flow: meshes adapted for p = 3 approximation using various discretizations and adaptive methods, with
approximately 400 elements

does not significantly impact its convergence. For p = 3, the EDG results VS number of elements are on par with DG
and HDG.

Comparing the same data VS number of globally coupled degrees of freedom, we see the effect of the left-shift in
the results favors the hybridized methods. At p = 1, EDG is clearly the most advantageous, with a factor of about three
savings in degrees of freedom relative to HDG and DG. At p = 3, the HDG results are closer to EDG, which is still about
the same factor cheaper than DG. The comparison VS Jacobian nonzeros shows similar trends – at p = 3, DG requires
approximately a factor of five more Jacobian nonzeros than EDG and HDG. The advantage of EDG persists in CPU time
for p = 1, and both hybridized methods are advantageous over DG at p = 3, by a factor of 8-10.

Figure 12 shows the final (20th iteration, 400 target elements) adapted meshes for the various discretizations at
p = 3. Areas targeted for refinement consist primarily of the leading edge, boundary layer, and stagnation streamline
in front of the airfoil. The meshes are visually similar in this case, though the three sets of EDG results do show dif-
ferences in the output. This suggests that optimal meshes may not be straightforward to identify purely from a visual
analysis.

5.3 RANS flow
The third test case is Reynolds-averaged turbulent flow over a flat plate at M = 0.5, 𝛼 = 0◦, and Re = 106. The flat plate
has unit length, and the computational domain extends two units ahead of and behind the flat plate. A symmetry bound-
ary condition is applied on these boundaries, as well as on the top boundary, which is two length units above the plate.
Stagnation quantities are prescribed on the left boundary, and the static pressure is specified on the right boundary. The
RANS-SA equations, with negative turbulent viscosity modification,35,36 are used for these runs. To aid solver conver-
gence, the RANS equations and working variable are scaled by the square root of the Reynolds number.37 The output of
interest is the drag coefficient on the flat plate. Figure 13 shows the initial mesh, to scale and with a zoom applied in the
vertical direction.

Figure 14 shows the adaptive convergence results for p = 1 and p = 3, using the various discretizations and edge-error
localization approaches. As in the previous cases, mesh optimizations were run for 20 adaptive iterations, starting with
the initial mesh, for each target number of elements. The data points shown are the average errors over the last six
optimization iterations.

For this case, the p = 1 results show a substantial difference in errors between the three EDG adaptive methods. Not
incorporating the edge-based error estimates into the adaptive indicator results in meshes for which the EDG drag coef-
ficient error is over an order of magnitude larger than the DG and HDG results, at a given number of elements. When
the edge-based contribution is included into EDG, the results improve. In this case, the most improvement is observed

FIDKOWSKI and CHEN 883

-2 -1 0 1 2 3
0

0.5

1

1.5

2
original mesh

(A) Initial mesh, 571 elements

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2 ×10-3 original mesh

(B) Zoom of the initial mesh

F I G U R E 13 RANS flow: initial mesh, with a zoomed-in view of the boundary layer

elements

D
ra

g
co

ef
fic

ie
nt

 e
rr

or

globally-coupled dof Jacobian nonzeros CPU time (s)

(A) p = 1

10-8

10-7

10-6

10-5

10-4

10-3

10-7

10-2 10-3 10-2 10-3 10-310-4 10-0 10-210-4 10-5

10-6

10-5

10-4

10-3

D
ra

g
co

ef
fic

ie
nt

 e
rr

or

102 103 104 103 104 105 106 100 106

(B) p = 3

200 400 600 800

elements # globally-coupled dof Jacobian nonzeros CPU time (s)

DG
HDG U only
HDG edge-based
HDG res lump
EDG U only
EDG edge-based
EDG res lump

DG
HDG U only
HDG edge-based
HDG res lump
EDG U only
EDG edge-based
EDG res lump

F I G U R E 14 RANS flow: adaptive output convergence results [Color figure can be viewed at wileyonlinelibrary.com]

from the edge-based averaging error localization, as opposed to the residual lumping. This difference diminishes signif-
icantly for p = 3, where the three sets of EDG results are close and nearly coincident with DG and HDG. Note again
that incorporating edge error estimates into the error localization for HDG does not significantly impact the adaptive
performance.

Comparing the errors VS number of globally coupled degrees of freedom, we see that EDG is again advantageous
compared to DG and HDG. For p = 1, the poorly performing “U-only” EDG method is actually still on par with DG and
HDG, and the “edge-based” EDG results are approximately a factor of 5 cheaper. For p = 3, EDG still consumes the fewest
degrees of freedom, but HDG is closing the gap. This gap between the hybridized methods at p = 3 is even lower in the

http://wileyonlinelibrary.com

884 FIDKOWSKI and CHEN

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2 ×10 -3
nelem=348, ndofU=1044, ndofL=0

(A) DG

0

0.5

1

1.5

2 ×10 -3
nelem=347, ndofU=1041, ndofL=998

(B) HDG, U only

0

0.5

1

1.5

2 ×10 -3
nelem=344, ndofU=1032, ndofL=992

(C) HDG, edge-based

0

0.5

1

1.5

2 ×10 -3 nelem=342, ndofU=1026, ndofL=205

(D) EDG, U only

0

0.5

1

1.5

2 ×10 -3 nelem=346, ndofU=1038, ndofL=199

(E) EDG, edge-based

0

0.5

1

1.5

2 ×10 -3 nelem=341, ndofU=1023, ndofL=198

(F) EDG, res lump

F I G U R E 15 RANS flow: meshes adapted for p = 1 approximation using various discretizations and adaptive methods, with
approximately 345 elements

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2 ×10-3 nelem=104, ndofU=1040, ndofL=0

(A) DG

0

0.5

1

1.5

2 ×10-3 nelem=103, ndofU=1030, ndofL=564

(B) HDG, U only

0

0.5

1

1.5

2 ×10-3 nelem=104, ndofU=1040, ndofL=568

(C) HDG, edge-based

0

0.5

1

1.5

2 ×10-3 nelem=105, ndofU=1050, ndofL=354

(D) EDG, Uonly

0

0.5

1

1.5

×10-3 nelem=102, ndofU=1020, ndofL=343

(E) EDG, edge-based

0

0.5

1

1.5

2 ×10-3 nelem=103, ndofU=1030, ndofL=347

(F) EDG, res lump

F I G U R E 16 RANS flow: meshes adapted for p = 3 approximation using various discretizations and adaptive methods, with
approximately 100 elements

comparison with Jacobian nonzeros and CPU time. At p = 1 for both of these cost measures, EDG remains the most
efficient.

Figures 15 and 16 show the final (20th iteration, coarsest target cost) adapted meshes for the various discretizations
using p = 1 and p = 3. Small elements are needed to resolve the singularities at the leading and trailing edges of the flat
plate. In addition, anisotropic elements are used to efficiently resolve the flow over the flat plate. Note that the figures use
vastly different scales in the horizontal and vertical directions, so that the anisotropy is much larger than that apparent
from the figures. As expected, for a constant number of element degrees of freedom, the higher-order meshes become
coarser. The anisotropy required at higher orders does not diminish noticeably. At p = 1, a marked difference between
the U-only EDG mesh and the other meshes is the resolution near the leading and trailing edges of the flat plate. The
U-only EDG mesh does target these areas, but not to the same extent vertically away from the flat plate. This lack of
resolution slightly above the leading and trailing edges is likely responsible for the large difference in the drag coefficient

FIDKOWSKI and CHEN 885

errors on the U-only EDG meshes compared to the results on the meshes generated by the other two error-localization
approaches.

6 CONCLUSIONS

This paper compares standard and hybridized discontinuous Galerkin discretizations in terms of cost and accuracy on
three representative aerodynamic problems. Two hybridized methods are considered: HDG and EDG, with the latter a
variant of HDG in which the trace space is continuous, a property that yields fewer globally coupled degrees of free-
dom, particularly at lower orders. All methods are compared in an output-based mesh optimization setting, where for a
given cost, an optimal mesh for predicting a scalar output is constructed iteratively through metric-based global remesh-
ing. The optimization is specific to each discretization, as differences in the number and type of equations yield different
contributions to the adjoint-weighted residual cost estimate. To this end, two methods are proposed for accounting for
the error contribution arising from the weak enforcement of flux continuity on faces in a hybridized discretization:
(i) averaging to elements and creating a separate error model for the element-based quantity; and (ii) lumping face residu-
als to elements through an inverse Schur complement solve and using only the element-based adjoint-weighted residual.
Both methods are implemented for HDG and EDG and compared alongside the simpler approach of ignoring the face
error contributions during mesh optimization.

Conclusions obtained from convergence studies can be summarized as follows:

1. Uniform refinement studies may be misleading when comparing the discretizations. For a simple inviscid test case,
the benefit of EDG in lower computational costs is eventually overcome by its increased dissipation at the singular
trailing edge, and all methods coalesce to similar error versus cost curves for a given order.

2. Mesh optimization is critical to obtaining the expected convergence rates for each discretization, and all discretizations,
including EDG, show convergence results that do not plateau when using optimized meshes.

3. HDG and DG results are generally similar for a given mesh, and HDG shows cost benefits over DG for p > 1 on
triangles, as expected from a-priori degree of freedom calculations.

4. On optimized meshes, EDG is more dissipative than DG and HDG at p = 1 but this difference diminishes at higher
orders.

5. Incorporating face errors into the mesh optimization procedure can significantly affect the error convergence of
EDG, particularly in the presence of singularities at low orders. On the other hand, HDG is less impacted by the
incorporation of face errors, and the simpler approach of optimizing only on element contributions works well.

6. Out of all the cases tested, EDG consistently yields the most efficient solution method under various cost measures:
degrees of freedom, Jacobian nonzeros (memory storage), and computational time.

Remaining questions concern the performance of these methods for three-dimensional test problems, where cost sav-
ings of hybridization diminish at higher orders, and performance on more taxing aerodynamic simulations, such as those
with shocks. These are the areas of our continuing work.

ACKNOWLEDGEMENTS

The authors acknowledge support from the Department of Energy under grant DE-FG02-13ER26146/DE-SC0010341, and
from The Boeing Company, contract 1200596, with technical monitor Dr Mori Mani.

ORCID

Krzysztof J. Fidkowski https://orcid.org/0000-0002-5106-136X

REFERENCES

1. Reed W, Hill T. Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Scientific Laboratory Technical Report
LA-UR-73-479; 1973.

2. Bassi F, Rebay S. High–order accurate discontinuous finite element solution of the 2-D Euler equations. Journal of Computational Physics.
1997;138:251-285.

https://orcid.org/0000-0002-5106-136X
https://orcid.org/0000-0002-5106-136X

886 FIDKOWSKI and CHEN

3. Houston P, Schwab C, Süli E. Discontinuous hp-Finite Element Methods for First-Order Hyperbolic Problems. SIAM Journal on Numerical
Analysis. 2000;37(5):1618-1643.

4. Cockburn B, Shu CW. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing.
2001;16(3):173-261.

5. Hartmann R, Houston P. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. Journal of
Computational Physics. 2002;183(2):508-532.

6. Sun S, Wheeler M. Mesh adaptation strategies for discontinuous Galerkin methods applied to reactive transport problems. In: Chu H,
Savoie M, Sanchez B, eds. International Conference on Computing, Communication and Control Technologies. Vol 1. Austin, TX: Interna-
tional Institute of Informatics and Systemics; 2004:223-228.

7. Nguyen N, Peraire J, Cockburn B. an implicit high-order hybridizable discontinuous Galerkin, method for linear convection-diffusion
equations. Journal of Computational Physics. 2009;228:3232-3254.

8. Cockburn B, Gopalakrishnan J, Lazarov R. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods
for second order elliptic problems. SIAM Journal on Numerical Analysis. 2009;47(2):1319-1365.

9. Nguyen NC, Peraire J, Cockburn B. Hybridizable Discontinuous Galerkin Methods. In: Hesthaven JS, Rønquist EM, BT J, et al., eds.
Spectral and High Order Methods for Partial Differential Equations. 76 of Lecture Notes in Computational Science and Engineering. Berlin
Heidelberg: Springer-Verlag; 2011:63-84. https://doi.org/10.1007/978-3-642-15337-2_4.

10. Peraire J, Nguyen NC, Cockburn B. An embedded discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations.
AIAA Paper 2011-3228; 2011.

11. Rhebergen S, Cockburn B. Space-time hybridizable discontinuous Galerkin method for the advection-diffusion equation on moving and
deforming meshes. In: de Moura CA, Kubrusly CS, eds. The Courant-Friedrichs-Lewy (CFL) Condition. Boston: Birkhäuser; 2013:45-63.

12. Fernandez P, Nguyen N, Peraire J. The hybridized discontinuous Galerkin method for implicit large-eddy simulation of transitional
turbulent flows. Journal of Computational Physics. 2017;336:308-329.

13. Castro-Diaz MJ, Hecht F, Mohammadi B, Pironneau O. Anisotropic unstructured mesh adaptation for flow simulations. International
Journal for Numerical Methods in Fluids. 1997;25:475-491.

14. Baker TJ. Mesh adaptation strategies for problems in fluid dynamics. Finite Elements in Analysis and Design. 1997;25:243-273.
15. Buscaglia GC, Dari EA. Anisotropic mesh optimization and its application in adaptivity. International Journal for Numerical Methods in

Engineering. 1997;40(22):4119-4136.
16. Habashi WG, Dompierre J, Bourgault Y, Ait-Ali-Yahia D, Fortin M, Vallet MG. Anisotropic mesh adaptation: towards user-independent,

mesh-independent and solver-independent CFD. Part I: general principles. International Journal for Numerical Methods in Fluids.
2000;32:725-744.

17. Venditti DA, Darmofal DL. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows. Journal of
Computational Physics. 2003;187(1):22-46.

18. Park MA. Three-dimensional turbulent RANS adjoint–based error correction. AIAA Paper 2003-3849; 2003.
19. Fidkowski KJ, Darmofal DL. A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes

equations. Journal of Computational Physics. 2007;225:1653-1672. https://doi.org/10.1016/j.jcp.2007.02.007.
20. Yano M, Modisette J, Darmofal D. The Importance of mesh adaptation for higher-order discretizations of aerodynamics flows. AIAA Paper

2011-3852; 2011.
21. Yano M. An Optimization Framework for Adaptive Higher-Order Discretizations of Partial Differential Equations on Anisotropic Simplex

Meshes (PhD thesis). Massachusetts Institute of Technology, Cambridge, Massachusetts; 2012.
22. Pierce NA, Giles MB. Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Review. 2000;42(2):247-264.
23. Becker R, Rannacher R. An optimal control approach to a posteriori error estimation in finite element methods. In: Iserles A, ed. Acta

Numerica. Cambridge, UK: Cambridge University Press; 2001:1-102.
24. Nemec M, Aftosmis MJ. Error estimation and adaptive refinement for embedded-boundary Cartesian meshes. AIAA Paper 2007-4187;

2007.
25. Fidkowski KJ, Darmofal DL. Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA

Journal. 2011;49(4):673-694. https://doi.org/10.2514/1.J050073.
26. Fidkowski K. High-order output-based adaptive methods for steady and unsteady aerodynamics. In: Deconinck H, Abgrall R, eds. 37th

Advanced CFD Lectures Series. Sint-Genesius-Rode, BelgiumL: von Karman Institute for Fluid Dynamics; 2013.
27. Dahm JP, Fidkowski KJ. Error estimation and adaptation in hybridized discontinous Galerkin methods. AIAA Paper 2014-0078; 2014
28. Woopen M, Balan A, May G, Schütz J. A comparison of hybridized and standard DG methods for target-based hp-adaptive simulation of

compressible flow. Computers & Fluids. 2014;98:3-16.
29. Roe P. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics. 1981;43:357-372.
30. Bassi F, Rebay S. GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations. In: Cockburn B, Karniadakis G,

Shu CW, eds. Discontinuous Galerkin Methods: Theory, Computation and Applications. Berlin, Germany: Springer; 2000:197-208.
31. Fidkowski KJA. Hybridized Discontinuous Galerkin Method on Mapped Deforming Domains. Computers and Fluids. 2016;139(5):80-91.

https://doi.org/10.1016/j.compfluid.2016.04.004.
32. Fidkowski KJ. A Local Sampling Approach to Anisotropic Metric-Based Mesh Optimization. AIAA Paper 2016-0835; 2016
33. Borouchaki H, George P, Hecht F, Laug P, Saltel E. Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie I:

Algorithmes. INRIA-Rocquencourt, France. Tech Report No. 2741; 1995.
34. Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing. International Journal of Computer Vision. 2006;66(1):41-66.

https://doi.org/10.1007/978-3-642-15337-2_4
https://doi.org/10.1016/j.jcp.2007.02.007
https://doi.org/10.2514/1.J050073
https://doi.org/10.1016/j.compfluid.2016.04.004

FIDKOWSKI and CHEN 887

35. Allmaras S, Johnson F, Spalart P. Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model.
Seventh International Conference on Computational Fluid Dynamics (ICCFD7). 2012;1902.

36. Ceze MA, Fidkowski KJ. Drag Prediction Using Adaptive Discontinuous Finite Elements. AIAA Journal of Aircraft. 2014;51(4):1284-1294.
https://doi.org/10.2514/1.C032622.

37. Ceze MA, Fidkowski KJ. Constrained pseudo-transient continuation. International Journal for Numerical Methods in Engineering.
2015;102:1683-1703. https://doi.org/10.1002/nme.4858.

How to cite this article: Fidkowski KJ, Chen G. Output-based mesh optimization for hybridized and embedded
discontinuous Galerkin methods. Int J Numer Methods Eng. 2020;121:867–887. https://doi.org/10.1002/nme.6248

https://doi.org/10.2514/1.C032622
https://doi.org/10.1002/nme.4858

