
Appendix

Transformation of SSP to SSP0: From (16), we have

yi ≥ yi+1 ≥ 0,

for 0 ≤ i ≤ n in the given sequence. Then,

Ci − Ci−1 = − ln(yi)− ln(yi−1)

Ri
, for 1 ≤ i ≤ n+ 1.

Observe that the completion time Ci =
∑i

j=1(Cj − Cj−1). Then, we transform the precedence

constraints for the Ci’s into constraints in the ln(yi) terms. To see this, we first rewrite precedence

Constraints (1) as

Ck − Ci =
k∑

j=i+1

(Cj − Cj−1) ≥ Dk, for 0 ≤ i ≤ n, k ∈ Si,

and then,

k∑
j=i+1

(Cj − Cj−1) = −
k∑

j=i+1

ln(yj)− ln(yj−1)

Rj
≥ Dk, for 0 ≤ i ≤ n, k ∈ Si,

or equivalently
k∑

j=i+1

ln(yj)− ln(yj−1)

Rj
≤ −Dk, for 0 ≤ i ≤ n, k ∈ Si.

Using the decision variables y0, . . . , yn+1, Constraint (5) can be rewritten as

Cn+1 =
n+1∑
j=1

(Cj − Cj−1) = −
n+1∑
j=1

ln(yj)− ln(yj−1)

Rj
≤ ∆.

Approximation of Constraints (17) and (18): We next linearize Constraints (17) and (18)

approximately, to find lower and upper bounds on the optimal value of problem SSP0. It is

straightforward to verify that, after a natural exponential transformation, the left-hand-side of

Constraints (17) becomes
k∏

j=i+1

(
yj
yj−1

) 1
Rj

.

We next show how to approximate this expression using linear terms.

For 0 ≤ m < k ≤ n+ 1, we define

B1(m, k) =

max


k−1∑

j=m+1

Rm+1

Rj+1

(
yj+1

ym
− yj

ym

)
+

ym+1

ym
, 0


 1

Rm+1

,

B2(m, k) =

 k−1∑
j=m+1

Rm+1

Rj+1

(
ym
yj+1

− ym
yj

)
+

ym
ym+1

− 1
Rm+1

,
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B3(m, k) =

 k−1∑
j=m+1

Rk

Rj

(
yj−1

yk
− yj

yk

)
+

yk−1

yk

− 1
Rk

,

B4(m, k) =

 k−1∑
j=m+1

Rk

Rj

(
yk
yj−1

− yk
yj

)
+

yk
yk−1

 1
Rk

.

Given these definitions of Bi(m, k) for i = 1, 2, 3, 4, we have the following bounding result.

Lemma 1 Let 0 ≤ Ri+1 ≤ Ri and 0 ≤ yi+1 ≤ yi for 0 ≤ i ≤ n. For 0 ≤ m < k ≤ n+ 1, we have

(
ym
yk

)− 1
Rk ≤ max{B1(m, k), B3(m, k)}

≤
k∏

j=m+1

(
yj
yj−1

) 1
Rj

≤ min{B2(m, k), B4(m, k)} ≤
(
yk
ym

) 1
Rm+1

. (39)

Proof: First, we show that

B1(m, k) ≤
k∏

j=m+1

(
yj
yj−1

) 1
Rj

≤ B2(m, k).

The proof is by induction. When m + 1 = k, it is clear that the inequality holds as an equality.

We assume that the inequality holds when m+ 1 = t+ 1 where 1 ≤ t ≤ k − 1. That is, B1(t, k) ≤∏k
j=t+1

(
yj

yj−1

) 1
Rj ≤ B2(t, k). Then, we need to show that it holds when m + 1 = t. Note that

Rt
Rt+1

≥ 1 and for x ≥ 0 and a ≥ 1, we have xa ≥ a(x−1)+1. If
∑k−1

j=t+1
Rt+1

Rj+1

(
yj+1

yt
− yj

yt

)
+ yt+1

yt
≥ 0,

then

B1(t, k)

(
yt

yt−1

) 1
Rt

=

[
k−1∑

j=t+1

Rt+1

Rj+1

(
yj+1

yt
− yj

yt

)
+

yt+1

yt

] Rt
Rt+1

1
Rt
(

yt
yt−1

) 1
Rt

≥

{
Rt

Rt+1

[
k−1∑

j=t+1

Rt+1

Rj+1

(
yj+1

yt
− yj

yt

)
+

yt+1

yt
− 1

]
+ 1

} 1
Rt
(

yt
yt−1

) 1
Rt

(40)

=

[
k−1∑
j=t

Rt

Rj+1

(
yj+1

yt−1
− yj

yt−1

)
+

yt
yt−1

] 1
Rt

= B1(t− 1, k),

where inequality (40) holds from the facts that Rt ≥ Rt+1, x
a ≥ a(x − 1) + 1 for a ≥ 1, and

x ≥ 0. Then, from the induction hypothesis,
∏k

j=t

(
yj

yj−1

) 1
Rj ≥ B1(t, k)

(
yt

yt−1

) 1
Rt ≥ B1(t − 1, k).

Alternatively, if
∑k−1

j=t+1
Rt+1

Rj+1

(
yj+1

yt
− yj

yt

)
+ yt+1

yt
< 0 so that B1(t, k) = 0, then

k−1∑
j=t

Rt

Rj+1

(
yj+1

yt−1
− yj

yt−1

)
+

yt
yt−1

=

 Rt

Rt+1

 k−1∑
j=t+1

Rt+1

Rj+1

(
yj+1

yt
− yj

yt

)
+

yt+1

yt
− 1

+ 1


(

yt
yt−1

)
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=

 Rt

Rt+1

 k−1∑
j=t+1

Rt+1

Rj+1

(
yj+1

yt
− yj

yt

)
+

yt+1

yt

− Rt

Rt+1
+ 1


(

yt
yt−1

)
≤ 0.

Consequently, we have B1(t− 1, k) = 0. Again,
∏k

j=t

(
yj

yj−1

) 1
Rj ≥ B1(t, k)

(
yt

yt−1

) 1
Rt ≥ B1(t− 1, k).

Thus, the induction step for B1(m, k) is proved.

For B2(m, k), we have

B2(t, k)

(
yt

yt−1

) 1
Rt

=

[
k−1∑

j=t+1

Rt+1

Rj+1

(
yt

yj+1
− yt

yj

)
+

yt
yt+1

] Rt
Rt+1

(
− 1

Rt

) (
yt−1

yt

)− 1
Rt

≤

{
Rt

Rt+1

[
k−1∑

j=t+1

Rt+1

Rj+1

(
yt

yj+1
− yt

yj

)
+

yt
yt+1

− 1

]
+ 1

}− 1
Rt
(
yt−1

yt

)− 1
Rt

(41)

=

[
k−1∑
j=t

Rt

Rj+1

(
yt−1

yj+1
− yt−1

yj

)
+

yt−1

yt

]− 1
Rt

= B2(t− 1, k),

where inequality (41) holds from the facts that Rt ≥ Rt+1, x
a ≥ a(x− 1) + 1 for a ≥ 1 and x ≥ 0,

and x−z is decreasing in x for z > 0 and x ≥ 0. We can verify that
∑k−1

j=t+1
Rt+1

Rj+1

(
yt

yj+1
− yt

yj

)
+ yt

yt+1
≥

1 > 0 since yj ≤ yi for j > i, which guarantees the requirements on xa and x−z. The remainder of

the induction step proof follows that for B1(m, k).

Next, we show that

B3(m, k) ≤
k∏

j=m+1

(
yj
yj−1

) 1
Rj

≤ B4(m, k),

again by induction. When k = m+1, it is clear that the inequality holds as an equality. We assume

that the inequality holds when k = t where t ≥ m + 1. That is, B3(m, t) ≤
∏k

j=t+1

(
yj

yj−1

) 1
Rj ≤

B4(m, t). Then, we need to show it holds when k = t+ 1.

For B3(m, k), we have

B3(m, t)

(
yt+1

yt

) 1
Rt+1

=

[
t−1∑

j=m+1

Rt

Rj

(
yj−1

yt
− yj

yt

)
+

yt−1

yt

]Rt+1
Rt

(
− 1

Rt+1

) (
yt

yt+1

)− 1
Rt+1

≥

{
Rt+1

Rt

[
t−1∑

j=m+1

Rt

Rj

(
yj−1

yt
− yj

yt

)
+

yt−1

yt
− 1

]
+ 1

}− 1
Rt+1

(
yt

yt+1

)− 1
Rt+1

(42)

=

[
t∑

j=m+1

Rt+1

Rj

(
yj−1

yt+1
− yj

yt+1

)
+

yt
yt+1

]− 1
Rt+1

= B3(m, t+ 1),

where inequality (42) holds from the fact Rt ≥ Rt+1, x
a ≤ a(x − 1) + 1 for a ≤ 1 and x ≥ 0, and

x−z is decreasing in x for z > 0 and x ≥ 0. We can verify that
∑t−1

j=m+1
Rt
Rj

(
yj−1

yt
− yj

yt

)
+ yt−1

yt
> 0
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since yj ≤ yi for any j > i, which guarantees the requirements on xa and x−z. The remainder of

the proof follows that for B1(m, k) and B2(m, k).

For B4(m, k), we have

B4(m, t)

(
yt+1

yt

) 1
Rt+1

=

[
t−1∑

j=m+1

Rt

Rj

(
yt

yj−1
− yt

yj

)
+

yt
yt−1

]Rt+1
Rt

(
1

Rt+1

) (
yt+1

yt

) 1
Rt+1

≤

{
Rt+1

Rt

[
t−1∑

j=m+1

Rt

Rj

(
yt

yj−1
− yt

yj

)
+

yt
yt−1

− 1

]
+ 1

} 1
Rt+1

(
yt+1

yt

) 1
Rt+1

(43)

=

[
t∑

j=m+1

Rt+1

Rj

(
yt+1

yj−1
− yt+1

yj

)
+

yt+1

yt

] 1
Rt+1

= B4(m, t+ 1),

where inequality (43) follows from the facts that Rt ≥ Rt+1, x
a ≤ a(x− 1)+1 for a ≤ 1 and x ≥ 0,

and xz is increasing in x for z > 0 and x ≥ 0. We can verify

t−1∑
j=m+1

Rt

Rj

(
yt

yj−1
− yt

yj

)
+

yt
yt−1

=
t−1∑

j=m+1

yt
yj

(
Rt

Rj+1
− Rt

Rj

)
+

Rt

Rm+1

yt
ym

> 0

since Rj ≤ Ri for any j > i, which guarantees the requirements on xa and xz.

Next, we show that
(
ym
yk

)− 1
Rk ≤ B3(m, k), i.e.,

∑k−1
j=m+1

Rk
Rj

(
yj−1

yk
− yj

yk

)
+

yk−1

yk
≤ ym

yk
. This result

holds if k = m+ 1, since yj ≤ yi for any j > i. Now, suppose it holds for k = t. For k = t+ 1,

t∑
j=m+1

Rt+1

Rj

(
yj−1

yt+1
− yj

yt+1

)
+

yt − ym
yt+1

=
Rt+1

Rt

t∑
j=m+1

Rt

Rj

(
yj−1

yt+1
− yj

yt+1

)
+

yt − ym
yt+1

=
Rt+1

Rt

[
t−1∑

j=m+1

Rt

Rj

(
yj−1

yt+1
− yj

yt+1

)
+

(
yt−1

yt+1
− yt

yt+1

)]
+

yt − ym
yt+1

=
Rt+1

Rt

[
yt

yt+1

(
t−1∑

j=m+1

Rt

Rj

(
yj−1

yt
− yj

yt

)
+

yt−1

yt

)
− yt

yt+1

]
+

yt − ym
yt+1

≤ Rt+1

Rt

[
yt

yt+1

ym
yt

− yt
yt+1

]
+

yt − ym
yt+1

=
ym − yt
yt+1

(
Rt+1

Rt
− 1
)
≤ 0,

where the first inequality follows from the induction hypothesis. Therefore,∑t
j=m+1

Rt+1

Rj

(
yj−1

yt+1
− yj

yt+1

)
+ yt

yt+1
≤ ym

yt+1
, and the proof is complete.

Finally, we show that B2(m, k) ≤
(

yk
ym

) 1
Rm+1 =

(
ym
yk

)− 1
Rm+1 . Hence, we need to show∑k−1

j=m+1
Rm+1

Rj+1

(
ym
yj+1

− ym
yj

)
+ ym

ym+1
≥ ym

yk
. If k = m+ 1, since yj ≤ yi for any j > i, this inequality

holds. For k > m+ 1, since Rm+1 ≥ Rj for j = m+ 2, · · · , k − 1 and yj ≤ yi for j > i, we have

k−1∑
j=m+1

Rm+1

Rj+1

(
ym
yj+1

− ym
yj

)
+

ym
ym+1

≥
k−1∑

j=m+1

(
ym
yj+1

− ym
yj

)
+

ym
ym+1

=
ym
yk

.
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One issue with B1(m, k) is that when the first term within the bracket is negative, the applicable

bound B1(m, k) is 0. Therefore, we use the term B3(m, k) as a lower bound on the original nonlinear

term. Also, our preliminary computational studies show that in most cases B4(m, k) is smaller than

B2(m, k). Hence, we use B4(m, k) as an upper bound on the original nonlinear term. Using bounds

B3(m, k) and B4(m, k), we can approximate Constraints (17) as

k−1∑
j=m+1

Rk

Rj

(
yj−1

yk
− yj

yk

)
+

yk−1

yk
≥ exp(RkDk), for 0 ≤ m ≤ n, k ∈ Sm, and (44)

k−1∑
j=m+1

Rk

Rj

(
yk
yj−1

− yk
yj

)
+

yk
yk−1

≤ exp(−RkDk), for 0 ≤ m ≤ n, k ∈ Sm. (45)

We observe that Constraints (44) can be linearized as Constraints (21):

k−1∑
j=m+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk) ≥ 0, for 0 ≤ m ≤ n, k ∈ Sm.

However, Constraint (45) is still not linear, since the left-hand-side contains multiple terms with

different nonconstant denominators. We need to approximate the left-hand-side of Constraint (45)

further, in order to linearize it. Doing so requires the following result.

Lemma 2 Let ai ≥ 0, xi ≥ 0 for i = 1, 2, . . . , n. Let xmin = min{x1, x2, . . . , xn} and xmax =

max{x1, x2, . . . , xn}. We then have

max

{
2
∑n

i=1 ai
xmin

−
∑n

i=1 aixi
x2min

,
2
∑n

i=1 ai
xmax

−
∑n

i=1 aixi
x2max

}
≤

n∑
i=1

ai
xi

≤
(

1

xmin
+

1

xmax

) n∑
i=1

ai −
∑n

i=1 aixi
xminxmax

.

Proof: Note that

n∑
i=1

aixi − x2max

n∑
i=1

ai
xi

=
n∑

i=1

ai

(
x2i − x2max

xi

)

=
n∑

i=1

ai

(
1− xmax

xi

)
(xi + xmax)

≤ (xmin + xmax)

(
n∑

i=1

ai − xmax

n∑
i=1

ai
xi

)

= (xmin + xmax)
n∑

i=1

ai − xminxmax

n∑
i=1

ai
xi

− x2max

n∑
i=1

ai
xi
.

As a result,

xminxmax

n∑
i=1

ai
xi

≤ (xmin + xmax)
n∑

i=1

ai −
n∑

i=1

aixi

⇒
n∑

i=1

ai
xi

≤
(

1

xmin
+

1

xmax

) n∑
i=1

ai −
1

xmin

1

xmax

n∑
i=1

aixi.
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On the other hand,

xi −
x2max

xi
= xi +

x2max

xi
− 2

x2max

xi
≥ 2xmax − 2

x2max

xi
.

Consequently,

n∑
i=1

aixi − x2max ·
n∑

i=1

ai
xi

=
n∑

i=1

ai

(
xi −

x2max

xi

)

≥ 2xmax

n∑
i=1

ai

(
1− xmax

xi

)

= 2xmax

n∑
i=1

ai − 2x2max

n∑
i=1

ai
xi
.

As a result, we have

n∑
i=1

ai
xi

≥ 2

xmax

n∑
i=1

ai −
1

x2max

n∑
i=1

aixi.

Similarly, we have

xi −
x2min

xi
= xi +

x2min

xi
− 2

x2min

xi
≥ 2xmin − 2

x2min

xi
.

Therefore,

n∑
i=1

aixi − x2min

n∑
i=1

ai
xi

=
n∑

i=1

ai

(
xi −

x2min

xi

)

≥ 2xmin

(
n∑

i=1

ai − xmin

n∑
i=1

ai
xi

)

= 2xmin

n∑
i=1

ai − 2x2min

n∑
i=1

ai
xi
.

Finally, we have

n∑
i=1

ai
xi

≥ 2

xmin

n∑
i=1

ai −
1

x2min

n∑
i=1

aixi.

The bounds on
∑n

i=1
ai
xi

defined in Lemma 2 are close to each other when the difference between

xmin and xmax is small, as now shown.

Remark 5 If |xmin − xmax| → 0, then∣∣∣∣∣max

{
2
∑n

i=1 ai
xmin

−
∑n

i=1 aixi
x2min

,
2
∑n

i=1 ai
xmax

−
∑n

i=1 aixi
x2max

}
−
(

1

xmin
+

1

xmax

) n∑
i=1

ai +

∑n
i=1 aixi

xminxmax

∣∣∣∣∣→ 0.

We now apply Lemma 2 to relax the left-hand-side of (45), in order to linearize the constraint.

We rewrite term B4(m, k) as follows:

B4(m, k) =

 k−1∑
j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yk
yj

+
Rk

Rm+1

yk
ym

 1
Rk

.

Then, we have the following result.
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Lemma 3 We have

B4(m, k)Rk =
k−1∑

j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yk
yj

+
Rk

Rm+1

yk
ym

≤ 1 +
yk
ym

−

 k−1∑
j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yj
ym

+
Rk

Rm+1

 .
Proof: Let am+1 =

Rk
Rm+1

, xm+1 =
ym
yk

, and ai =
Rk
Ri+1

− Rk
Ri

≥ 0 and xi =
yi
yk

for i = m+2, · · · , k−1.

Note that
∑k

i=m+1 ai = 1, xmin =
yk−1

yk
and xmax = ym

yk
. Then, we have

k−1∑
j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yk
yj

+
Rk

Rm+1

yk
ym

≤ yk
ym

+
yk

yk−1
− yk

ym

yk
yk−1

[
k−1∑

j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yj
yk

+
Rk

Rm+1

ym
yk

]

≤ yk
ym

+ 1− yk
ym

[
k−1∑

j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yj
yk

+
Rk

Rm+1

ym
yk

]

= 1 +
yk
ym

−

[
k−1∑

j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yj
ym

+
Rk

Rm+1

]
,

where the first inequality follows from the second part of Lemma 2, and the second inequality

follows from yk
yk−1

≤ 1 and

1− yk
ym

 k−1∑
j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yj
yk

+
Rk

Rm+1

ym
yk

 = 1−

 k−1∑
j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yj
ym

+
Rk

Rm+1


≥ 1−

 k−1∑
j=m+1

(
Rk

Rj+1
− Rk

Rj

)
+

Rk

Rm+1


= 0.

Following Lemma 3, we can rewrite inequality (45) as

1 +
yk
ym

−

 k−1∑
j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yj
ym

+
Rk

Rm+1

 ≤ exp(−RkDk), for 0 ≤ m ≤ n, k ∈ Sm,

which is linear and can be further rewritten as Constraint (23):[
1− Rk

Rm+1
− exp(−RkDk)

]
ym −

k−1∑
j=m+1

(
Rk

Rj+1
− Rk

Rj

)
yj + yk ≤ 0, for 0 ≤ m ≤ n, k ∈ Sm.

This completes the approximation of Constraints (17) and (18).

Proof of Theorem 1: To prove the theorem, we show that the polytope of problem SSP0 is

contained in the polytope of problem SSP1. Note that Constraints (19) and (20) are the same in

problems SSP0 and SSP1. Thus, we only need to show that Constraints (17) and (18) of problem

SSP0 imply the corresponding constraints of problem SSP1, i.e., (21) and (22), respectively.

From Lemma 1, we have

B3(i, k) =

 k−1∑
j=i+1

Rk

Rj

(
yj−1

yk
− yj

yk

)
+

yk−1

yk

− 1
Rk

≤
k∏

j=i+1

(
yj
yj−1

) 1
Rj

≤ exp(−Dk),
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where the last inequality follows from Constraints (17) of problem SSP0. Observe that

 k−1∑
j=i+1

Rk

Rj

(
yj−1

yk
− yj

yk

)
+

yk−1

yk

− 1
Rk

≤ exp(−Dk)

⇔
k−1∑

j=i+1

Rk

Rj

(
yj−1

yk
− yj

yk

)
+

yk−1

yk
≥ exp(RkDk)

⇔
k−1∑

j=i+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk) ≥ 0,

which are Constraints (21) of problem SSP1. Hence, whenever Constraints (17) of problem SSP0

hold, Constraints (21) of problem SSP1 hold.

From Lemmas 1 and 3, we have

exp(−∆) ≤
n+1∏
j=1

(
yj
yj−1

) 1
Rj

≤ B4(0, n+ 1)

≤

1 +
yn+1

y0
−

 n∑
j=1

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj
y0

+
Rn+1

R1


1

Rn+1

,

where the first inequality follows from deadline Constraint (18) of problem SSP0. Observe that

1 +
yn+1

y0
−

 n∑
j=1

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj
y0

+
Rn+1

R1


1

Rn+1

≥ exp(−∆)

⇔ 1 +
yn+1

y0
−

 n∑
j=1

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj
y0

+
Rn+1

R1

 ≥ exp(−Rn+1∆)

⇔
[
1− Rn+1

R1
− exp(−Rn+1∆)

]
y0 −

n∑
j=1

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj + yn+1 ≥ 0,

which are Constraints (22) of problem SSP1. Thus, whenever Constraints (18) of problem SSP0

hold, Constraints (22) of problem SSP1 hold. Therefore, we conclude that the feasible set of the

original problem SSP0 is contained in the feasible set of problem SSP1, and hence problem SSP1

provides an upper bound on the optimal value of the original problem.

Proof of Theorem 2: To prove the theorem, we show that the polytope of problem SSP2 is

contained in the polytope of problem SSP0. Note that Constraints (19) and (20) are the same for

problems SSP0 and SSP2. Thus, we only need to show that Constraints (23) and (24) of problem

SSP2 imply the corresponding constraints of problem SSP0, i.e., (17) and (18), respectively.

From Lemmas 1 and 3, for 0 ≤ i ≤ n and k ∈ Si, we have

k∏
j=i+1

(
yj
yj−1

) 1
Rj

≤

1 +
yk
yi

−

 k−1∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

)
yj
yi

+
Rk

Ri+1


1

Rk

.
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Consequently, if1 +
yk
yi

−

 k−1∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

)
yj
yi

+
Rk

Ri+1


1

Rk

≤ exp(−Dk)

hold, then

k∏
j=i+1

(
yj
yj−1

) 1
Rj

≤ exp(−Dk),

which are Constraints (17) of problem SSP0, hold. Note that

1 +
yk
yi

−

 k−1∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

)
yj
yi

+
Rk

Ri+1


1

Rk

≤ exp(−Dk)

⇔ 1 +
yk
yi

−

 k−1∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

)
yj
yi

+
Rk

Ri+1

 ≤ exp(−RkDk)

⇔
[
1− Rk

Ri+1
− exp(−RkDk)

]
yi −

k−1∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

)
yj + yk ≤ 0,

which are Constraints (23) of problem SSP2. Hence, whenever Constraints (23) hold, Con-

straints (17) of problem SSP0 also hold.

From Lemma 1, we have

n+1∏
j=1

(
yj
yj−1

) 1
Rj

≥ B3(0, n+ 1) =

 n∑
j=1

Rn+1

Rj

(
yj−1

yn+1
− yj

yn+1

)
+

yn
yn+1

− 1
Rn+1

.

Consequently, if  n∑
j=1

Rn+1

Rj

(
yj−1

yn+1
− yj

yn+1

)
+

yn
yn+1

− 1
Rn+1

≥ exp(−∆)

holds, then

n+1∏
j=1

(
yj
yj−1

) 1
Rj

≥ exp(−∆)

holds, which is Constraint (18) of problem SSP0. Observe that

 n∑
j=1

Rn+1

Rj

(
yj−1

yn+1
− yj

yn+1

)
+

yn
yn+1

− 1
Rn+1

≥ exp(−∆)

⇔
n∑

j=1

Rn+1

Rj

(
yj−1

yn+1
− yj

yn+1

)
+

yn
yn+1

≤ exp(Rn+1∆)

⇔
n∑

j=1

Rn+1

Rj
(yj−1 − yj) + yn − yn+1 exp(Rn+1∆) ≤ 0,
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which is Constraint (24) of problem SSP2. Hence, whenever Constraint (24) holds, Constraint (18)

of problem SSP0 also holds. Therefore, we conclude that the feasible set of problem SSP2 is

contained in the feasible set of problem SSP0, and hence problem SSP2 provides a lower bound on

the optimal value of the original problem SSP0.

Proof of Theorem 3: First, from the one-to-one correspondence of Ci and yi, for i = 0, 1, · · · , n+1,

we can change the conditions C0 = 0 ≤ C1 ≤ C2 ≤ · · · ≤ Cl and Cl ≤ Cl+1, Cl+2, . . . , Cn ≤ Cn+1

into y0 = 1 ≥ y1 ≥ y2 ≥ · · · ≥ yl and yl ≥ yl+1, yl+2, . . . , yn+1.

Note that if l = n + 1, i.e., the partially given sequence includes all the tasks, then problem

PSSP1 is just problem SSP1. Now, we consider the case l < n + 1. Observe that (26) is exactly

(21) in problem SSP1. For notational convenience, we denote any tasks finished between i and

k ∈ Si by i + 1, i + 2, · · · , k − 1. Let i ∈ σ′ and k ∈ σ′′. We now show that Constraints (21) with

the appropriate Constraints (19) of problem SSP1 imply Constraints (27) of problem PSSP1. To

do so, we need the following inequality:

k−1∑
j=l+1

Rk

Rj
(yj−1 − yj) + yk−1 − yl =

k−1∑
j=l+1

(
Rk

Rj+1
− Rk

Rj

)
yj +

(
Rk

Rl+1
− 1

)
yl

≤ yl

 k−1∑
j=l+1

(
Rk

Rj+1
− Rk

Rj

)
+

(
Rk

Rl+1
− 1

)
= 0, (46)

where the inequality follows from yj ≤ yl, for j = l+1, · · · , k−1 in Constraints (19) of problem SSP1.

Then, from problem SSP1, by substituting Constraints (19) for yi+1 − yi ≤ 0 and Ri+1 ≤ Ri

into Constraints (21), the left-hand-side of Constraints (21) becomes

k−1∑
j=i+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk)

=
l∑

j=i+1

Rk

Rj
(yj−1 − yj) +

k−1∑
j=l+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk)

≤
l∑

j=i+1

Rk

Rj
(yj−1 − yj) + yl − yk exp(Rk,minDk),

where the inequality holds since Rk,min ≤ Rk from Inequality (25), and from (46).

Then, since Rk,max ≥ Rk ≥ Rk,min from Inequality (25), we have

k−1∑
j=i+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk)

≤
l∑

j=i+1

Rk,max

Rj
(yj−1 − yj) + yl − yk exp(Rk,minDk),
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which is the left-hand-side of Constraints (27) of problem PSSP1. Hence, Constraints (21) with

the appropriate Constraints (19) of problem SSP1 imply Constraints (27) of problem PSSP1.

We next show that Constraints (21) with the appropriate Constraints (19) of problem SSP1

imply Constraints (28) of problem PSSP1. Let i ∈ σ′ and k ∈ σ′′ for k ∈ Si. From Constraints (21)

of problem SSP1, we have

k−1∑
j=i+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk)

= yi
Rk

Ri+1
+

k−1∑
j=i+1

yj

(
Rk

Rj+1
− Rk

Rj

)
− yk exp(RkDk)

≤ yi

 Rk

Ri+1
+

k−1∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

)− yk exp(RkDk) (47)

≤ yi − yk exp(Rk,minDk),

which is the left-hand-side of Constraints (28) of problem PSSP1. Therefore, Constraints (21) with

the appropriate Constraints (19) of problem SSP1 imply Constraints (28) of problem PSSP1.

Finally, we show Constraints (22) with the appropriate Constraints (19) of problem SSP1 imply

Constraints (29) of problem PSSP1. From Constraint (22) of problem SSP1, together with yi+1 ≤ yi

from Constraints (19),[
1− Rn+1

R1
− exp(−Rn+1∆)

]
y0 −

n∑
j=1

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj + yn+1

=

[
1− Rn+1

R1
− exp(−Rn+1∆)

]
y0 −

l∑
j=1

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj −

n∑
j=l+1

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj + yn+1

≤
[
1− Rn+1

R1
− exp(−Rn+1∆)

]
y0 −

l∑
j=1

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj −

n∑
j=i

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj + yn+1

=

[
1− Rn+1

R1
− exp(−Rn+1∆)

]
y0 −

l∑
j=1

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj +

Rn+1

Ri
yi −

n∑
j=i+1

Rn+1

Rj+1
(yj − yj+1)

≤
[
1− Rn+1

R1
− exp(−Rn+1∆)

]
y0 −

l∑
j=1

(
Rn+1

Rj+1
− Rn+1

Rj

)
yj +

Rn+1

Ri
yi,

where the first inequality follows from i ≥ l + 1. Note that for i ∈ σ′′, we have Ri,min ≤ Ri.

Therefore, Constraint (22) of problem SSP1 implies Constraints (29) of problem PSSP1.

As a result, the polytope of problem SSP1 is contained in the polytope of problem PSSP1, and

thus the maximum value of problem PSSP1 is an upper bound on the maximum ENPV of the

project scheduling problem.

Proof of Theorem 4: Observe that for i, k ∈ σ′ where k ∈ Si, since the partial sequence between

i and k is given, Constraints (33) of problem PSSP2 are the same as Constraints (23) of problem
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SSP2. For Constraint (34), since l ≤ k − 1, from Constraints (19) and (23),

[
1− Rk

Ri+1
− exp(−RkDk)

]
yi −

k−1∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

)
yj + yk

≤
[
1− Rk

Ri+1
− exp(−RkDk)

]
yi −

l∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

)
yj + yk.

For a function h(x) = x
Ri+1

+ exp(−xDk) for x ≥ 0, we have h′(x) = 1
Ri+1

−Dk exp(−xDk). Then,

whenever DkRi+1 ≤ 1, we have h′(x) ≥ 0. Now, DkRi+1 ≤ 1 is guaranteed by condition (32). As

a result, 1− Rk
Ri+1

− exp(−RkDk) ≤ 1− Rk,min

Ri+1
− exp(−Rk,minDk). Therefore,

[
1− Rk

Ri+1
− exp(−RkDk)

]
yi −

k−1∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

)
yj + yk

≤
[
1− Rk,min

Ri+1
− exp(−Rk,minDk)

]
yi −

l∑
j=i+1

(
Rk,min

Rj+1
− Rk,min

Rj

)
yj + yk.

Then, Constraints (34) of problem PSSP2 imply Constraints (23) and the appropriate Con-

straints (19) of problem SSP2.

For Constraints (35) of problem PSSP2, the left-hand-side of Constraints (23) is

[
1− Rk

Ri+1
− exp(−RkDk)

]
yi −

k−1∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

)
yj + yk

≤
[
1− Rk

Ri+1
− exp(−RkDk)

]
yi + yk

≤
[
1− Rk,min

Ri+1
− exp(−Rk,minDk)

]
yi + yk

≤
[
1− Rk,min

Ri,max − ri
− exp(−Rk,minDk)

]
yi + yk,

where the second inequality follows from the fact that h(x) = x
Ri+1

+ exp(−xDk) is increasing in x

for x ≥ 0, and the third inequality follows from the fact that Ri,max−ri ≥ Ri+1, as a consequence of

Ri,max ≥ Ri from Inequality (25). Then, Constraints (35) of problem PSSP2 imply Constraints (23)

and the appropriate constraints of (19) of problem SSP2.

We now show that Constraint (36) of problem PSSP2 implies Constraint (24) of problem SSP2,

by applying (47) in the proof of Theorem 3 to the tasks in σ′′. From (47), we have

k−1∑
j=i+1

Rk

Rj
(yj−1 − yj) + yk−1 ≤ yi

 Rk

Ri+1
+

k−1∑
j=i+1

(
Rk

Rj+1
− Rk

Rj

) = yi.

As a result, we have

l∑
j=1

Rn+1

Rj
(yj−1 − yj) + yl − yn+1 exp(Rn+1∆)
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≥
l∑

j=1

Rn+1

Rj
(yj−1 − yj) +

n∑
j=l+1

Rn+1

Rj
(yj−1 − yj) + yn − yn+1 exp(Rn+1∆)

=
n∑

j=1

Rn+1

Rj
(yj−1 − yj) + yn − yn+1 exp(Rn+1∆).

Thus, when Constraint (36) of problem PSSP2 holds, i.e.,
∑l

j=1
Rn+1

Rj
(yj−1 − yj)+yl−yn+1 exp(Rn+1∆) ≤

0, Constraint (24) of problem SSP2 also holds, i.e.,
∑n

j=1
Rn+1

Rj
(yj−1 − yj)+yn−yn+1 exp(Rn+1∆) ≤

0. Hence, Constraint (36) of problem PSSP2 implies Constraint (24) and the appropriate

Constraints (19) of problem SSP2.

As a result, the polytope of problem PSSP2 is contained in the polytope of problem SSP2.

Hence, the optimal value of problem PSSP2 is a lower bound on the maximum ENPV of the

project scheduling problem.

Proof of Theorem 5. Let Ci(σ
′) = C∗

i (σ) for any i ∈ V \ {l,m}, Cl(σ
′) = C∗

m(σ) and Cm(σ′) =

C∗
l (σ). Note that C(σ′) defines a feasible schedule, since task l has no successors that are not shared

with task m, and task m has no predecessors that are not shared with task l, C∗
l (σ) ≤ C∗

m(σ) as

implied by l < m, and Dl ≥ Dm. Note that the ENPV value of a task i in σ under completion

time C∗(σ) is

ENPV∗
i (σ) = Fi exp

− i∑
j=1

Rj(C
∗
j (σ)− C∗

j−1(σ))

 .

Then, ENPVi(σ
′) =ENPV∗

i (σ) for 0 ≤ i < l. Since rl = rm, the total risk profile does not change

due to the interchange of tasks. Then, for l < i < m, we have

ENPV∗
i (σ) = Fi exp

(
−

l−1∑
j=1

Rj(C
∗
j (σ)− C∗

j−1(σ))−Rl(C
∗
l (σ)− C∗

l−1(σ))

−Rl+1(C
∗
l+1(σ)− C∗

l (σ))−
i∑

j=l+2

Rj(C
∗
j (σ)− C∗

j−1(σ))

)

= Fi exp

(
−

l−1∑
j=1

Rj(Cj(σ
′)− Cj−1(σ

′))−Rl(Cm(σ′)− Cl−1(σ
′))

−Rl+1(Cl+1(σ
′)− Cm(σ′))−

i∑
j=l+2

Rj(Cj(σ
′)− Cj−1(σ

′))

)
= ENPVi(σ

′).

Similarly, the conclusion holds for m < i ≤ n + 1. For ease of exposition, we let δi denote

the discount coefficient of cash flow Fi, for i = l,m. Again, since the risk profile does

not change from the setting of C(σ′), we have ENPV∗
l (σ)+ENPV∗

m(σ) = Flδl + Fmδm and

ENPVl(σ
′)+ENPVm(σ′) = Fmδl+Flδm. Since Flδl+Fmδm−Fmδl−Flδm = (Fl−Fm)(δl−δm) ≤ 0,

we have ENPV∗
l (σ)+ENPV∗

m(σ) ≤ENPVl(σ
′)+ENPVm(σ′).

Definition of the Kendall tau Rank Correlation Coefficient

Let (x1, y1), . . . , (xn, yn) be a set of n different evaluations. A pair of evaluations (xi, yi) and (xj , yj)
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are concordant if xi > xj and yi > yj , or xi < xj and yi < yj ; and are discordant if xi > xj and

yi < yj , or xi < xj and yi > yj . Then, the Kendall coefficient τ , where −1 ≤ τ ≤ 1, is defined as

τ =
2(number of concordant pairs− number of discordant pairs)

n(n− 1)
.

Cash Flow Generation in the Computational Study

In our formulations in Section 4, we assume that the cash flow of the end-of-project dummy task

is 0. However, with a minor adjustment to those formulations, we can allow the cash flow of the

end-of-project dummy task to be nonzero. For the results in Table 2 with two positive cash flows,

the cash flows are generated as follows. First, we generate nc − 2 negative cash flows from the

continuous uniform distribution U [−1.0, 0.0], and let CN denote their sum. Second, a positive cash

flow in the amount of −CN is assigned both to the end-of-project dummy task and to a mid-project

task with average depth of 2
3((nc − 2)I + 2) = (nc + 2)/3. Note that, including the end-of-project

dummy task, the project depth is (nc − 2)I + 2, and I = 0.5. If (nc + 2)/3 is integer, then the

positive cash flow is assigned to a task with depth of (nc+2)/3; whereas, if (nc+2)/3 is not integer,

then the positive cash flow is assigned to a task with depth either ⌊(nc+2)/3⌋ or ⌈(nc+2)/3⌉, with

an average depth of (nc + 2)/3.

For the results in Table 3 with np ∈ {1, 2, 3}, we first generate nc − np negative cash flows

from the continuous uniform distribution U [−1.0, 0.0], and find their sum CN . We index the tasks

topologically with the last task nc as a dummy task that completes the project. Then, we assign

a positive cash flow in the amount of −2CN to task nc, if np = 1; of −CN to tasks nc/2 and nc,

if np = 2; and of −2CN/3 to tasks (nc − 1)/3, 2(nc − 1)/3 and nc, if np = 3. Recall that nc = 16,

and hence all the task indices are integer. Finally, the negative cash flows are assigned to the other

nc − np tasks.
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