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W e consider a company that schedules the tasks of its projects to maximize their expected net present value (ENPV)
when tasks may fail. The failure of any task terminates the project immediately. We show that for projects with certain

decreasing failure rates, the ENPV optimization problem can be solved using a linear program. The main focus of our work
is on how constant task failure rates contribute to decreasing project risk as tasks are completed. Under constant task failure
rate, earlier completion of a task improves its probability of success and the risk profile of the project. However, it may also
accelerate costs, which worsen discounted cash flow. We show the equivalence of cash flow discount rate and failure rate.
Further, if task failures are independent, then the failure rates are additive. We develop a model that (a) recognizes the reduc-
tion in project risk when a task is completed, (b) implements this risk reduction into the ENPV calculation, and (c) permits
optimization of the ENPV through sequencing and timing decisions for the tasks. We design an algorithm to solve the prob-
lem optimally. This enables us to validate the contributions of our work using two computational studies. The first study
demonstrates a significant increase in maximum project ENPV from improved project scheduling. The second study demon-
strates a significant increase in total project portfolio value as a result of better informed project selection. Our work motivates
companies to develop more precise information about the failure risks of their project tasks.
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1. Introduction

Project management is a highly important, global busi-
ness process. Various estimates for the global impact
of project management within the world’s economic
activity range from 20% (Project Management Institute
2008) to 30% (Hu et al. 2015), in the latter case imply-
ing an annual value of about $27 trillion. Furthermore,
most companies have more available projects than
they have the resources to undertake. Substantial evi-
dence suggests that doing the right projects is a big fac-
tor in doing projects right. Indeed, well chosen
projects are typically easy to manage, whereas poorly
selected projects are often dysfunctional and absorb
resources from other projects (Cooper et al. 2001).
Hence, companies face two problems of central impor-
tance to their competitiveness. The first problem is
how to evaluate their available projects individually.
The closely related second problem is, given their lim-
ited resources, how to select their available projects to
run. Project evaluation and selection decisions are typ-
ically made by a Project Management Office (Kerzner
2013). Hall (2016) provides an overview of open
research problems within project management.

This paper studies a problem that arises generically
in the evaluation and selection of a project for which
overall success is uncertain. We consider a project that
is successful if and only if each of its component tasks is
successful. Each task is subject to failure at a known
constant rate. Many examples arise in new product
development, research and development, contract
manufacturing, and pharmaceutical development
projects. Should any task fail in this environment, the
project is immediately terminated, and its projected
future revenues and costs are never earned or
incurred. We provide detailed motivating examples
of such projects in section 2.
As discussed in section 3.1, the most common quan-

titative measure of a project’s return is its net present
value (NPV). This performance measure incorporates
the anticipated cash flows, both positive and negative,
of the project, and also an appropriate discount rate.
One of the reasons for the frequent use of the NPV
measure is its simplicity, since it discounts all the
anticipated cash flows from completion of the pro-
ject’s tasks using the same rate. Many companies use
the NPV measure to make decisions about whether to
run an individual project. However, when individual
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tasks, and therefore the project as a whole, are subject
to failure with known probability rates, it is appropri-
ate to use expected net present value (ENPV) in place
of NPV.
Thus, consistent with widespread decision making

practice, we consider projects that are evaluated
based on their ENPV. The consideration of project
failure for such projects is a distinguishing feature of
our work. The earlier a task is completed, the sooner
its risk of failure is eliminated, which may improve its
ENPV. However, earlier task completion may also
accelerate costs, which worsens discounted cash flow
and ENPV. Due to this tradeoff, and because of result-
ing changes to the risk profile of the project, effective
scheduling of the tasks becomes both critical and
complex. To address this issue, we model and solve
the problem of maximizing the ENPV of a project that
is subject to failure. Our work enables significantly
more accurate maximization of project ENPV through
improved scheduling, and thus selection of a better
portfolio of projects.
Chapman and Ward (2002) provide an overview of

project risk. Project risk typically originates from
uncertainty about the technical and commercial suc-
cess of the project (MacMillan and McGrath 2002).
Technical uncertainty arises, for example, from uncer-
tain outcomes in research and development, proto-
type testing and regulatory approval. Commercial
uncertainty arises, for example, from randomness in
time to market, the introduction of competitors’ prod-
ucts and general economic factors. Mishra et al.
(2016) identify three types of risks in federal technol-
ogy projects, including complexity risk and contracting
risk in the planning process, and execution risk in the
execution process. They find that each type of risk has
a potentially significant negative effect on project per-
formance. Also, as a project proceeds, its risk level
declines. An important example here arises in the
development of new pharmaceuticals. As each stage
of testing, animal trials, clinical trials, FDA approval,
and marketing, is passed, the risk level of the project
declines significantly. For example, Myers and
Shyam-Sunder (1996) document that risk is higher in
early stage pharmaceutical development projects than
in mature ones. We model declining risk by removing
the risk of failure that is attributable to an individual
task when that task is completed.
Our work contributes to the extensive project man-

agement literature by modeling and solving the prob-
lem of maximizing the ENPV of a project that is
subject to failure. We formulate a mathematical model
that (a) recognizes the reduction in project risk each
time a task is completed, (b) implements this risk
reduction into the ENPV evaluation of the project,
and (c) permits optimization of the ENPV through
sequencing and timing decisions for the tasks within

the project. Our work is designed for a project man-
agement environment where the company can esti-
mate the failure rate associated with each of the
project’s tasks.
We perform two computational studies to validate

the contribution of our work. The first computational
study finds, for a typical project, a significant
improvement in maximum ENPV values that result
from improved scheduling decisions identified by our
model and algorithm. An interesting outcome of these
results is that the improvement in maximum ENPV is
much greater for some projects than for others. This
changes the value of funding some projects relative to
others. Motivated by this observation, the second
computational study estimates the increase in overall
project portfolio value that results when the improved
maximum ENPV values are used to guide selection
decisions.
The remainder of this study is organized as follows.

Section 2 provides a description of two specific appli-
cations. In section 3, we review the relevant literature.
In section 4, we describe our notation, formally define
the problem, and solve two problems with specific
decreasing failure rate functions. Heuristic solutions
and upper bounds on problem value are discussed in
section 5. An algorithm that solves the problem opti-
mally is described in section 6. Section 7 describes our
computational studies. Finally, section 8 contains
managerial insights and directions for future
research. All proofs appear in an Appendix.

2. Motivating Applications

In this section, we describe two widely used applica-
tions of project management as motivating examples
for our work. We also comment on the mechanism by
which task and project failure occur in these applica-
tions.
First, we consider a typical software development

process managed as a project. This process can be
divided into the following six stages (www.synapsein-
dia.com 2019): planning, analysis, design, development
and implementation, testing, and maintenance. Each of
these stages is composed of multiple tasks, some of
which may fail and cause failure of the project. Based
on the related literature, we discuss the timing for fail-
ure to occur. El Emam and Koru (2008) conduct a sur-
vey of companies about the failure of their software
projects. They find that the combined rate of canceled
and unsuccessful software projects is significant, at
between 26% and 34%. They also investigate the causes
of project failure. The survey respondents provide 41
responses to this question. The most frequently cited
causes are insufficient involvement of senior manage-
ment, changes to project requirements, and a lack of
necessary management skills. Overall, 29 of the 41
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responses identify causes of project failure that occur
continuously over time, another 11 may occur over time
or alternatively at project completion, and only one
specifically occurs at project completion. Following this
time profile of the causes of project failure, we model
the task-related causes of project failure as occurring at
any point in time up to task completion.
As a second example, consider a typical drug

development and commercialization process that is
managed as a project (Blau et al. 2004). This process
is complex and involves many activities that may
fail. First, in a Phase I clinical trial, the company
needs to test the new drug on animals and also
healthy human volunteers. An unacceptable result
will terminate the process and cause the entire pro-
ject to fail. Second, in a Phase II clinical trial, the
company administers the new drug to human
patients with a targeted disease. If the treatment is
unsatisfactory, for example, producing either inferior
results to competitive products or adverse reactions,
then the company may end the project. Third, in a
Phase III clinical trial, the company conducts large-
scale clinical studies on humans patients to confirm
the efficacy, and to identify other effects such as
drug-to-drug interactions and side effects, of the
new drug. This trial is expensive and again failure
may terminate the drug development project. Fourth,
the information about the new drug from the earlier
three trials needs FDA approval. We note that failure
in a variety of drug testing trials cannot be deter-
mined until the completion of the trial. However, we
also observe that project failure is not an objectively
defined event. Rather, it is defined by senior man-
agement’s decision to cancel the project. Such deci-
sions evolve over time as evidence of project
performance accumulates and senior management
opinion evolves, and need not be finalized only at
the completion time of tasks. For example, Zipfel
(2003) mentions that “it may be acceptable to con-
sider constant failure rates within each development
stage” in drug development. Therefore, following
the literature from pharmaceutical industry practice,
we believe that it is reasonable to model task failure
as occurring at any point in time up to task comple-
tion, as in the previous example.
For either of the above applications, failure rates

of different tasks can be estimated by investors and
financial institutions, which will adjust the interest
rate accordingly when they loan money to the pro-
ject company. Therefore, when the company deter-
mines its schedule of the project, it must consider
interest rates that change with project progress in
scheduling the project tasks, including those with
known failure rates, to estimate more accurately
and to optimize the expected net present value of
the project.

3. Literature Review

Section 3.1 reviews the literature that discusses the
use of NPV and ENPV for project evaluation. Sec-
tion 3.2 reviews the literature that considers the prob-
lem of scheduling to maximize project NPV.
Section 3.3 discusses work on projects that fail
because their component tasks fail. Section 3.4 dis-
cusses the availability to management of the detailed
information about project failure that is needed for
our model.

3.1. NPV and ENPV for Project Evaluation
We first review the use of NPV for projects without
the risk of failure. As discussed by Remer and Nieto
(1995), NPV is among 25 prominent techniques that
are used by project companies for evaluating projects.
Beaves (1993) discusses the limitations of conven-
tional NPV formulas, and the need for a generalized
NPV formula. Haley and Goldberg (1995) discuss the
issue of whether emphasizing NPV in the analysis
and selection of new product research projects hin-
ders innovation, due to short-term biases. Their
empirical results lend support to these concerns. Hod-
der and Riggs (1995) describe several pitfalls that
arise in the overinterpretation of NPV analysis for
project evaluation. Archer and Ghasemzadeh (1999)
describe an integrated framework for project portfolio
selection using NPV. Poh et al. (2002) present a com-
parative study of several evaluation methods for
research and development projects, based on the Ana-
lytic Hierarchy Process. Kettunen and Salo (2017)
show that project portfolio selection using NPV can
be biased in the presence of severe downside risks,
and propose a calibration framework to overcome this
bias. Several authors use NPV analysis for evaluating
and selecting projects for specific applications. These
include Cooper (1985) for new product selection, Nel-
son (1986) for manufacturing modernization projects,
Oral et al. (2001) for project selection problems with
competing interests among multiple stakeholders,
and Kolisch and Meyer (2006) for pharmaceutical
development projects. In comparing projects with dif-
ferent makespans using ENPV, their makespans
should not be dramatically different because of the
opportunity cost of money tied up in the projects. This
concern has not prevented NPV being one of the most
prominent measures used for project evaluation
(Remer and Nieto 1995). While it is necessary for com-
pleteness to include ENPV calculations for projects
with large failure probability, we do not recommend
the use of ENPV as the primary measure of compar-
ison between projects with very different probabilities
of success.
Wiesemann and Kuhn (2015) provide an extensive

review of the literature of ENPV maximization under
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uncertainty about cash flows and durations. Part of
the literature assumes that activity durations follow
independent exponential distributions and finds opti-
mal solutions, whereas other work allows more gen-
eral distributions but typically provides suboptimal
solutions. An example of the first type of work is by
Sobel et al. (2009), who maximize ENPV in a situation
with uncertain task durations, costs and revenues.
They model the problem as a Markov decision pro-
cess. They show that discount rates can be absorbed
into transition probabilities, and they extend their
work to allow for the project to be abandoned during
execution. For exponential task durations, they are
able to find optimal solutions for projects with up to
25 tasks. An example of the second type of work is by
Chen and Zhang (2012), who maximize ENPV in a
resource-constrained version of the problem, for
which they provide heuristic solutions using ant col-
ony optimization and Monte Carlo simulation. Wiese-
mann et al. (2010) consider the maximization of ENPV
when task durations and cash flows are described by a
discrete set of scenarios with known probabilities.
They describe a branch and bound algorithm that
finds optimal solutions for projects with up to 50 tasks.

3.2. Maximization of NPV
Herroelen et al. (1997) survey the literature of project
management with discounted cash flows, including
both deterministic and stochastic models. They pro-
vide a taxonomy of this literature, and critically
review the major contributions. Several papers study
the problem of sequencing and timing the tasks of a
project with a constant discount rate, to maximize
NPV. Russell (1970) models this problem as a nonlin-
ear program with linear constraints and a non-con-
cave objective. However, Grinold (1972) shows that
this problem can be modeled as a linear program
which allows an efficient algorithm based on tree net-
works. Russell (1986) provides a computational com-
parison of the performance of six heuristic scheduling
rules for a more general problem that considers
resource constraints. Elmaghraby and Herroelen
(1990) provide a critical review of the research litera-
ture on maximizing the NPV of a project. Their main
criticism concerns the typical assumption that the
cash flow at the end of a task is independent of its
completion time, which is inconsistent with penalty
clauses in many project contracts. They also provide a
solution procedure that is apparently simpler than
those of Russell (1970) and Grinold (1972). Computa-
tional experience with this procedure is reported by
Herroelen and Gallens (1993).
Doersch and Patterson (1977) use a zero-one integer

programming model to solve the problem of maxi-
mizing NPV, subject to capital rationing constraints.
Yang et al. (1992) develop a similar model to

maximize NPV, subject to resource limitations that
vary over time. Icmeli and Erenguc (1996) and Van-
houcke et al. (2001b), study the problem of maximiz-
ing NPV subject to resource constraints, and develop
branch and bound algorithms for small projects.
Schwindt and Zimmermann (2001) consider the maxi-
mization of project NPV subject to general constraints,
and describe a steepest ascent procedure.
Etgar et al. (1996) address the criticism of Elmagh-

raby and Herroelen (1990) by allowing the cash flow
of a task to depend on its completion time. They use
simulated annealing to solve this problem heuristi-
cally for projects with up to 45 tasks. Etgar and Shtub
(1999) consider a special case of the previous model,
where a task’s cash flow is a linear function of the
completion time of the task. They provide a simple,
optimal algorithm to maximize NPV, but no computa-
tional results. For the same problem, Vanhoucke et al.
(2001a) provide a more complex procedure that
includes dominance rules and other computational
enhancements, and use it to find optimal solutions for
projects with up to 120 tasks.

3.3. Risk of Project Failure
Herroelen (2005) recognizes risk analysis and proac-
tive scheduling as important factors in closing the gap
between theory and practice in project scheduling. De
Reyck et al. (2007) provide an extensive survey of the
literature of project scheduling with task failures.
Browning and Ramasesh (2007) recognize the impor-
tance of modeling in cases of uncertainty, ambiguity,
and risk for managing product development projects.
Wu et al. (2014) examine project risk caused by indi-
viduals’ cost salience, that is, the perception that the
cost of immediate effort is greater than the cost of
future effort. Ellinas (2019) shows that, with higher
than anticipated probability, task failures can trigger
failures of succeeding tasks and lead to systemic fail-
ures of a project.
Bard (1985) studies the parallel development of

alternative technologies, which provide redundancy
in a situation where some technologies may fail. Sev-
eral structural results and exact algorithms are pro-
vided in this environment by Ranjbar and Davari
(2013), Coolen et al. (2014) and Creemers et al. (2015).
However, our work does not consider alternative
technologies. For new product development projects,
Schmidt and Grossmann (1996) and Jain and Gross-
mann (1999) develop optimization models for the
scheduling of screening tests in chemical engineering
applications.
De Reyck and Leus (2008) describe a generic model

for the optimal scheduling of projects with general
precedence structure, where all tasks must succeed in
order for the project to succeed. They motivate the
problem as a pharmaceutical development project,
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and show that it is NP-hard. A real example from a
U.K. biotech company provides a case study. They
develop a branch and bound algorithm that is capable
of finding optimal solutions for projects with up to 40
tasks. A difference from our work arises in the task
failure probability. They model this as a fixed and
known probability; whereas, we model task failure
using a constant and known failure rate that contin-
ues to threaten the task, regardless of when it is
started, up to the time when it is completed. Further,
their work allows for only one positive cash flow at
the end of the project, whereas we more generally
allow milestone payments by the project owner.

3.4. Information for Modeling Failure
Our modeling of ENPV maximization for projects
subject to failure uses predominantly standard data
that would typically be available and used in any pro-
ject evaluation. These standard data include (a) for
the project, a common failure rate, and (b) for each
task, its deterministic duration and either cost or rev-
enue. Our only additional data requirement is, for
each task, its constant failure rate from the start of the
project until the task is completed. A constant failure
rate is commonly used in studies of reliability and
survivability (Barlow and Proschan 1965, Elandt-
Johnson and Johnson 1999). The use of a constant fail-
ure rate follows immediately from an assumption that
the time to failure for a system component is expo-
nentially distributed. This assumption has been
applied to a wide variety of systems, ranging from
parts in service (Walker 1997) to recidivistic behavior
(Stollmack and Harris 1974). Given available data,
there are various tests that can be applied to test the
validity of the constant failure rate assumption (Fer-
cho and Ringer 1972). In a project management con-
text, such data can be obtained from experiences with
the same or similar tasks. Khanfor et al. (2017) empiri-
cally investigate failure prediction in crowdsourced
software development, including estimation of task
failure.

4. Problem Definition and Model

We first define our problem and model. In section 4.1,
assumptions and limitations of our model are
discussed. Sections 4.2 and 4.3 address the maximiza-
tion of ENPV without and with task-specific risks,
respectively.
We consider how a company that is investing in a

risky and complex project can evaluate the ENPV of
that project. At the end of each task i, there will be
either a positive or negative net cash flow. Positive
cash flows represent either milestone payments for
partial completion of the project, or a final payment
on overall completion, from the project owner.

Negative cash flows represent costs, e.g., labor or
material costs that are incurred to perform the task.
Let n denote the number of tasks in the project. The

tasks are indexed 1,. . .,n. In addition, we add two
dummy tasks: task 0 at the start, and task n + 1 at the
end, where task 0 precedes, and task n + 1 succeeds,
all of tasks 1,2,. . .,n, respectively. Task i has a cash
flow Fi at its completion time Ci, where Fi > 0 for cash
inflows and Fi < 0 for cash outflows, for i = 1,. . .,n,
and we let F0 = Fn+1 = 0 unless otherwise defined. In
case a milestone payment is not associated with a
specific real task, but received once a set of real tasks
are completed, we can model it using a dummy task
with appropriate precedence constraints. We can also
use dummy tasks to model the case when negative
cash flows are not incurred at the completion time of
a task, as will be discussed in Remark 2 in section 4.3.
Let C0 = 0, that is, task 0 starts and finishes at time

0. Let D denote the deadline of the project, after which
the project is worthless. Let Di denote the duration of
task i, where D0 = Dn+1 = 0, and Di ≥ 0 for i = 1,. . .,n.
Let Si denote the set of immediate successors of task i
under the given precedence constraints, which are

Ck � Ci �Dk; k 2 Si; i ¼ 0; . . .; n: ð1Þ

Note that Cn+1 is the project makespan, and we
require that Cn+1 ≤ D, to ensure that the project fin-
ishes before the given deadline.
Let rf denote the exogenous failure rate of the com-

mon risk to the project, which applies to all the tasks
of the project. Besides this common risk, we also con-
sider each task i to have a known unique risk that is
independent of the common risk. We denote the task-spe-
cific failure rate of task i by ri. If task i has no failure
probability, we set ri = 0. If risk is realized before the
completion of task i, then task i fails. That is, at any
time t < Ci, there is ridt probability of the failure of
task i, irrespective of whether task i has been started or not.

4.1. Assumptions and Limitations
We review the assumptions and limitations of our
modeling approach. First, we assume that project cash
flows occur at the completion of each task. In practice,
cash flows occur at various points in time. The litera-
ture assumes that cash flow payment occurs either at
the start of each task, or at the end of each task, or at
one or several time points between the start and end
of each task. For each of these three possibilities, since
task durations are fixed, our model works with small
technical adjustments, as discussed in Remark 2 in
section 4.3. We note that most of the literature, includ-
ing almost all the work we cite (e.g., Doersch and Pat-
terson 1977, Elmaghraby and Herroelen 1990, Grinold
1972, Herroelen and Gallens 1993, Icmeli and Erenguc
1996, Russell 1970, 1986, Vanhoucke et al. 2001b, Yang
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et al. 1992), assumes payment is made at the end of
each task. Hence, we adopt this assumption for con-
sistency with the literature.
Second, we assume deterministic activity times.

This assumption is made for two reasons: analytical
tractability, and the fact that in practice many project
time estimates are point estimates. Alternative esti-
mates using probability distributions, where avail-
able, would typically perform better than single point
estimates.
Third, we assume an exogenous failure rate to

model the common risk to the project. A typical exam-
ple of such a common risk is a competitor releasing a
similar product that positions the project company’s
product out of the market. This is a very frequent risk
in projects, especially for new product development
in competitive markets (for example, computer chips,
consumer electronics, games, and toys). Mitigating
this risk of competition is an important issue in sup-
ply chain management; see Niu et al. (2019a) for some
representative recent work.
Fourth, we assume each task to have a known

unique risk independent of the common risk. We
specifically assume task risk starts from time zero.
This assumption is motivated by practical considera-
tions. For example, consider a pharmaceutical devel-
opment project, where task i requires conducting a
specific clinical trial. There is a probability that this
type of trial will be prohibited by regulators. In this
case, whether task i has been started or not, it will fail
immediately. As another example, suppose task i
requires a specific component from a unique supplier.
There is a probability that the supplier’s factory
becomes incapacitated, for example, due to closure, or
a disaster such as a fire, flood or earthquake. This
causes the failure of task i, whether it has been started
or not. Note that dual sourcing can mitigate such sup-
ply risks, though it may introduce competition among
suppliers; see Niu et al. (2019b) for some important
new developments in this area. A third example is the
loss of an environmental or planning license related
to the task, as may occur due to a change in local gov-
ernment policy. Further and more generally, assum-
ing that task risk starts from time 0 is consistent with
a financier’s perception of risk. To a financier, an
unfinished task is risky even before it starts, and its
cash flow is subject to an interest rate reflecting the
risk until task completion.
For consistency with the literature, we assume that

the risk of task i ends at Ci. In the context of a pharma-
ceutical project, De Reyck and Leus (2008) pp. 370)
write, “Activity success or failure is revealed at the
end of each activity.” Several practical examples also
support this assumption, as we now discuss. Once a
clinical trial is completed, the risk vanishes, unless
that type of clinical trial is prohibited retroactively,

which is unlikely and punitive. For another example,
if the task-specific risk is financial failure or poor tech-
nical performance by a subcontractor, these also van-
ish at task completion.
We assume that the failure caused by the common

risk or any task i’s individual risk results in the failure
of the whole project, as a result of which all the future
cash flows that have not been collected or paid are
lost.
We note that the causes of general failure in our

model, for example, cancellation of the project or
bankruptcy on the part of the project owner, are exter-
nal to the project company. Some causes of task-specific
failure, for example, poor technical performance by a
subcontractor, are also external events that specifically
impact the task in question. Risks that are associated
intrinsically with the performance of the task itself
start only when the activity starts. Our work does not
model those task-specific risks that arise only within
the execution time or performance of the task.
Fifth, we assume that the task-specific risk failure

rate ri is constant over time, from time 0 until the com-
pletion of task i. We observe that this is a standard
way to model a constant risk over time using survival
models (Barlow and Proschan 1965, Elandt-Johnson
and Johnson 1999).
Sixth, we assume that task failures are independent.

That is, the event that there is a task-specific failure of
task i is assumed to be independent of the event that
there is a task-specific failure of event j for every pair
(i,j) of distinct tasks. Moreover, each such event is also
independent of the event that there is a general failure
that impacts all the tasks. Although the events are
probabilistically independent, the occurrence of any
failure, either internal or external, immediately results
in the failure of the project. We note that indepen-
dence of task failures is a key assumption that may be
potentially violated in practice. For example, tasks
typically use shared resources, and such resource
sharing directly creates dependencies, e.g., positive
correlation, among task times and among failures.

4.2. ENPV Maximization without Task-Specific
Risk
In classical maximization of project NPV, a project is
assumed to have an overall and constant discount rate
to reflect the risk level of the project and the cost of
capital. We model this using a common failure rate rf.
Given a constant failure rate rf ≥ 0, the ENPV of a
project is

ENPV ¼
Xn
i¼1

Fi expð�rfCiÞ: ð2Þ

Equation (2) is maximized in classical ENPV analy-
sis (for example, Wiesemann et al. 2010). Using
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C1,C2,. . .,Cn+1 as the decision variables, the decision
problem is to schedule the tasks so as to maximize
the ENPV, subject to Constraints (1). The scheduling
decisions include timing the completion of all the
tasks, which also implies a sequencing decision for
tasks that are not preordered by (1). Thus, the ENPV
maximization problem is as follows:

max
C1;C2;���;Cn

Xn
i¼1

Fi expð�rfCiÞ

s.t. Constraintsð1Þ;
ð3Þ

C0 ¼ 0; ð4Þ
Cnþ1 �D: ð5Þ

Following Grinold (1972), we transform problem
(3)–(5) into a linear program. Let vi = exp (�rfCi).
Then, problem (3)–(5) is linearized as follows:

max
v1;v2;���;vn

Xn
i¼1

Fivi

s.t. expðrfDkÞvk � vi � 0; k 2 Si; i ¼ 0; . . .; n;

v0 ¼ 1;

vnþ1 � expð�rfDÞ:

Now, we consider overall project failure rates that
decrease with project progress. First, consider a mix-
ture of h exponential distributions, each with exogen-
ously given failure rate of r0j and weight of wj for

j = 1,. . .,h, where
Ph

j¼1 wj ¼ 1. For such a distribu-

tion, the cumulative distribution function at time t isPh
j¼1 wjð1� expð�r0jtÞÞ, and accordingly the survival

function at time t is
Ph

j¼1 expð�r0jtÞ. Thus, the ENPV

of a project with these task failure rates is:

ENPV ¼
Xn
i¼1

Fi
Xh
j¼1

wj expð�r0jCiÞ:

Let vij ¼ expð�r0jCiÞ. Then, the problem is linearized
as:

max
v11;v12;���;vnh

Xn
i¼1

Fi
Xh
j¼1

wjvij

s.t. expðr0jDkÞvkj � vij � 0; k 2 Si;

i ¼ 0; . . .; n; j ¼ 1; . . .; h;

v0 ¼ 1;

vnþ1;j � expð�r0jDÞ; j ¼ 1; . . .; h:

Another commonly used decreasing task failure
rate is defined by the Weibull distribution with

exogenously given scale parameter 1/r and shape
parameter k. For such a distribution, the cumulative
distribution function at time t is 1� exp (�rktk), and
accordingly the survival function at time t is
exp (�rktk). When k = 1, the Weibull distribution
becomes the exponential distribution with constant
failure rate r. When 0 < k < 1, the Weibull distribu-
tion has a decreasing failure rate. With the project fail-
ure rate defined by the Weibull distribution, the
ENPV of a project is

ENPV ¼
Xn
i¼1

Fi expð�rkCk
i Þ; 0\k\1:

Let vi ¼ expð�rkCk
i Þ. Then, the problem is

linearized as:

max
v1;v2;���;vn

Xn
i¼1

Fivi

s.t. expðrkDkÞvk � vi � 0; k 2 Si; i ¼ 0; . . .; n;

v0 ¼ 1;

vnþ1 � expð�rkDÞ:

REMARK 1. For a project with decreasing task failure
rates characterized by either a mixture of exponen-
tial distributions or a Weilbull distribution, the
ENPV maximization problem can be solved via lin-
ear programming after appropriate logarithmic
transformations.

Remark 1 shows that ENPV maximization can be
easily achieved for projects with certain decreasing
failure rates. However, these models assume exogen-
ously given decreasing project failure rates, which do
not always apply. Moreover, this analysis does not
explain why, in practice, project risk decreases as
tasks are completed. Our work, described below,
addresses this issue.

4.3. ENPV Maximization with Task-Specific Risk
In the above ENPV analysis, a key assumption is
that only a common failure rate rf is used to model
the overall risk of the project, which ignores the
task-specific risk factors. We now propose an alter-
native model that includes both common and task-
specific risk factors. This model is consistent with
the reality that the risk level of a project typically
decreases as the project proceeds and more tasks
are finished.
We first consider a given task completion time

sequence. For notational convenience, suppose that
the tasks are indexed based on their completion time
sequence, that is, we have C0 = 0 ≤ C1 ≤ C2 ≤ ⋯ ≤ Cn
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and Cn+1 = Cn. The problem defined by a given
sequence of task completion times is a subproblem of
the more general problem we are solving. Our optimi-
zation model, more generally, is over all feasible sche-
dules of task completion times.
We now discuss the discounting of the cash flows

due to the risks. Note that cash flow F1 occurs at time
C1. At time t ≤ C1, whether or not tasks 1,. . .,n have
been started, each of them may fail. We divide the
time [0,C1] into m equal-length intervals, with the
lengths of each interval satisfying d ¼ C1

m ! 0 as
m?∞. We denote the m intervals by [0,d], [d,2d], ⋯,
[kd,(k + 1)d],⋯,[(m�1)d,C1]. For interval [0,d], the
probability for tasks 1,. . .,n to succeed is
ð1� rfdÞPn

i¼1ð1� ridÞ, since the common risk and
unique risks of tasks 1,. . .,n are all independent by
assumption.
Given the success of all tasks in the first time

interval [0, d], the probability for no task to fail in
the second time interval is ð1� rfdÞPn

i¼1ð1� ridÞ.
Therefore, the probability for the project not to fail
by the end of the second time interval is
ð1� rfdÞ2Pn

i¼1ð1� ridÞ2. Continuing similarly, we
obtain the probability for the project not to fail by
time C1 as the following:

lim
m!1ð1� rfdÞmPn

i¼1ð1� ridÞm

¼ lim
m!1 1� rfC1

m

� �m

1� r1C1

m

� �m

1� r2C1

m

� �m

� � � 1� rnC1

m

� �m

¼ expð�rfC1Þ expð�r1C1Þ expð�r2C1Þ � � � expð�rnC1Þ
¼ expð�ðrf þ r1 þ r2 þ � � � þ rnÞC1Þ ¼ expð�R1C1Þ;

where Ri is defined as

Ri � rf þ
Xn
j¼i

rj; i ¼ 1; . . .; n; ð6Þ

for notational convenience. Therefore, the ENPV of
cash flow F1 at time C1 is defined as

ENPV1 ¼ F1 � expð�R1ðC1 � C0ÞÞ;
where C0 = 0.
We next consider cash flow F2. If any failure

happens before C1, including the failure of tasks 1,. . .,
n, then the project company will not pay or receive
F2, since the whole project fails. Given that tasks 1,. . .,
n have not failed by C1, the probability for
tasks 2,. . .,n not to fail during the interval [C1,C2)
is exp (�(rf + r2 + ⋯ + rn)(C2�C1)) = exp (�R2(C2�
C1)). Thus, the probability for the project company
to pay or receive F2 is exp (�R1(C1�C0))

exp (�R2(C2�C1)) = exp [�R1(C1�C0)�R2(C2�C1)].
Then, the ENPV for F2 is

ENPV2 ¼ F2 � exp½�R1ðC1 � C0Þ � R2ðC2 � C1Þ�:

Continuing this process for i=1,. . .,n, the expected
net present value of cash flow Fi of task i can be
written as

ENPVi¼Fiexp

�R1ðC1�C0Þ�R2ðC2�C1Þ� ����RiðCi�Ci�1Þ½ �

¼Fiexp �
Xi

j¼1

RjðCj�Cj�1Þ
2
4

3
5: ð7Þ

REMARK 2. Consider the perspective that Fi < 0
occurring at Ci essentially implies that it is free to
start task i. Other timings of cash flows can alterna-
tively be modeled as follows. Let Fi occur at time
Ci�aiDi, where 0 < ai ≤ 1 is an exogenous para-
meter. Note that this is the start time of task i if
ai = 1. Further, add a dummy task i

0
with F0i ¼ Fi,

D0
i ¼ 0, r0i ¼ 0, and precedence constraint task i

0

partly preceding task i, that is, Ci � C0
i � aiDi, and

reset Fi = 0. Since task i
0
has a negative cash flow

and no risk or processing time, under maximization
of ENPV it will be postponed to start at Ci�aiDi.

Note that when each task has a constant failure
rate, the expected net present value of each cash
flow can be written as an exponential function
where the exponent is a linear function of task com-
pletion times, as in Equation (7). However, for tasks
with decreasing failure rate, for example, modeled
by either a mixture of exponential distributions or a
Weibull distribution, the expected net present value
of a cash flow is characterized by more complicated
nonlinear functions of task completion times, which
are hard to linearize.
We now interpret Equation (6). For a project that

starts at time 0, R1 is the failure rate of the whole
project during the period [0,C1], since no tasks have
been finished and all tasks contribute to the overall
risk of the project. After time C1, R2 becomes the
failure rate of the whole project during the period
(C1,C2], since task 1 has completed at time C1 but
all the remaining n�1 tasks contribute to the overall
risk of the project. Continuing thus, finally Rn

becomes the failure rate of the whole project during
the period (Cn�1,Cn].
Hence, Equation (6) indicates that, when tasks 1,. . .,

i�1 have been completed but tasks i,. . .,n have not,
the risk of the project is the sum of the total risks of the
unfinished tasks. In this sense, risk is additive. As a
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result, the risk level of the project declines during its
execution, that is, R1 ≥ R2 ≥ ⋯ ≥ Rn ≥ Rn+1 = rf.

REMARK 3. For ENPV maximization, our model
includes the following four features:

1. The failure rates, rf,r1,r2,⋯,rn, additively form
the failure rate of the whole project at differ-
ent time periods as in Equation (6), even
though the risks can arise from different
sources.

2. For each time interval (Ci�1,Ci], for i = 1,. . .,n,
the failure rate Ri of the whole project is
equivalent to the commonly used discount
rate compounded continuously, see (7).

3. The overall discount rate of the project
decreases with project execution.

4. Each cash flow has its own unique discount
rate, depending on the project schedule.

We note that the third and fourth features in Remark
3 are consistent with those recommended by Damo-
daran (2007) for risk-adjusted discount rates, that is, to
apply a changing discount rate over time and to use
different discount rates for different cash flows.
Using C1,C2,. . .,Cn as the decision variables, the

decision problem is to maximize the total ENPV,

ENPV ¼
Xn
i¼1

ENPVi: ð8Þ

The implicit assumption in Equation (7) is that the
task completion time sequence is given, and hence the
coefficients Rj are given parameters. However, this
sequence is decision dependent. Therefore, to formu-
late an overall optimization model, we define the bin-
ary variables

xij¼ 1; if task i is scheduledas the jth task to complete;
0; otherwise;

�

for i,j=1,. . .,n. Then, the task completion time
sequence can be represented by the variables xij,
and we have

Rj ¼ rf þ
Xn
k¼j

Xn
l¼1

rlxlk; j ¼ 1; . . .; n: ð9Þ

Given the binary variables xij and the discount rates
Rj defined above, we now formulate the following
model to maximize the ENPV of the project.

(MIP)

max
Ci ;xij

Xn
i¼1

Xn
k¼1

Fkxki

" #
exp �

Xi

j¼1

ðrfþ
Xn
k¼j

Xn
l¼1

rlxlkÞðCj�Cj�1Þ
2
4

3
5

0
@

1
A

8<
:

9=
;

ð10Þ

s.t.
Xn
i¼1

xij ¼ 1; 1� j� n; ð11Þ

Xn
j¼1

xij ¼ 1; 1� i� n; ð12Þ

Xn
j¼1

xkjCj �
Xn
j¼1

xijCj �Dk; 0� i� n; k 2 Si; ð13Þ

xij 2 f0; 1g; 1� i; j� n;

ð4Þ and ð5Þ: ð14Þ

In problem MIP, Constraints (11) and (12) ensure
that each task is scheduled in exactly one position in
the completion time sequence, Constraints (13)
enforce the precedence constraints, and Constraint (5)
enforces the deadline constraint. Observe that the risk
profile of the project at any point in time is dependent
on scheduling decisions. This results in the following
difficulties from an optimization perspective:

1. the problem contains many binary variables
xij,

2. the objective function is neither convex nor
concave, due to the coexistence of both posi-
tive and negative Fi values,

3. the exponential term in the objective function
contains products of xij variables with task
completion time decisions, and

4. Constraints (13) are not linear, due to products
of xij variables with task completion time deci-
sions Cj.

The above features make it mathematically challen-
ging to solve problem MIP optimally. We approach
this problem by considering a fully or partially speci-
fied task completion time sequence. Then, based on
structural results and bounds obtained for fully or
partially specified sequences, we develop a branch
and bound algorithm to solve the overall problem
MIP.

5. Approximating the Maximum ENPV

In section 5.1, we establish upper and lower bounds
on the maximum value of ENPV, as defined by (7)
and (8), for a fully specified task completion time
sequence. Similar bounds for a partially specified
sequence are established in section 5.2.

5.1. Bounds for a Full Sequence
We now consider a given completion time sequence
of the n tasks. Under this given sequence, we reindex
the tasks such that C0 = 0 ≤ C1 ≤ C2 ≤ ⋯ ≤ Cn and
Cn+1 = Cn. Then, problemMIP can be simplified to:
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(SSP) max
C1;���;Cn

Xn
i¼1

Fi exp �
Xi

j¼1

RjðCj � Cj�1Þ
0
@

1
A

s.t. constraintsð1Þ; ð4Þ; ð5Þ;
Ciþ1�Ci�0; 0� i�n;

ð15Þ
where Rj is sequence dependent, and Constraints
(15) ensure that the tasks are completed following
the specified sequence.

5.1.1. Transformation of Problem (SSP). We note
that the objective function of problem SSP contains an
exponential term, and is in general neither convex nor
concave. We next develop methods to find lower and
upper bounds on the optimal objective function value
of SSP. Let

yi ¼ exp �
Xi

j¼1

RjðCj � Cj�1Þ
0
@

1
A ) lnðyiÞ

¼ �
Xi

j¼1

RjðCj � Cj�1Þ; ð16Þ

and y0 = 1 so that ln (y0) = 0. Using transformations
described in the Appendix, we reformulate problem
SSP as the following problem SSP0 with decision
variables y0; y1; � � � ; ynþ1:

(SSP0) max
y0;y1;���;ynþ1

Xn
i¼1

Fiyi

s.t.
Xk

j¼iþ1

lnðyjÞ� lnðyj�1Þ
Rj

� �Dk; for 0� i�n; k2 Si;

ð17Þ
Xnþ1

j¼1

lnðyjÞ � lnðyj�1Þ
Rj

� � D; ð18Þ

yiþ1 � yi � 0; 0� i� n; ð19Þ
y0 ¼ 1 and ynþ1 � 0: ð20Þ

The objective function of problem SSP0 is linear.
However, SSP0 is hard to solve, since Constraints
(17) and (18) are nonlinear. Therefore, we next lin-
earize Constraints (17) and (18) approximately, to
obtain lower and upper bounds on the optimal
objective function value, as described in the
Appendix.

5.1.2. Upper and Lower Bounds. First, we
formulate the following linearprogramtofindanupper
bound for the original problem formulated as SSP0:

ðSSP1Þ max
0�yi�1

Xn
i¼1

Fiyi

s:t:
Xk�1

j¼mþ1

Rk

Rj
yj�1 � yj
� �þ yk�1 � yk expðRkDkÞ�0;

for 0�m�n;k 2 Sm; ð21Þ

1� Rnþ1

R1
� expð�Rnþ1DÞ

� �
y0

�
Xn
j¼1

Rnþ1

Rjþ1
� Rnþ1

Rj

� �
yj þ ynþ1 � 0;

ð19Þ and ð20Þ:

ð22Þ

Observe that in the linear program SSP1, Con-
straints (21) linearize the original Constraints (17),
and Constraint (22) linearizes Constraint (18). We
have the following result.

THEOREM 1. The optimal objective function value of pro-
blem SSP1 is an upper bound on the optimal objective
function value of problem SSP0.

Next, we formulate the following linear program to
find a lower bound for the original problem formu-
lated as SSP0:

(SSP2) max
0�yi�1

Xn
i¼1

Fiyi

s.t. 1� Rk

Rmþ1
�expð�RkDkÞ

� �
ym

�
Xk�1

j¼mþ1

Rk

Rjþ1
�Rk

Rj

� �
yjþyk � 0; for 0�m�n; k2 Sm;

ð23Þ
Xn
j¼1

Rnþ1

Rj
yj�1 � yj
� �þ yn � ynþ1 expðRnþ1DÞ� 0;

ð19Þ and ð20Þ:
ð24Þ

In problem SSP2, Constraints (23) linearize the ori-
ginal Constraints (17), and Constraint (24) linearizes
the deadline Constraint (18). Then, we have the fol-
lowing result.

THEOREM 2. The optimal objective function value of pro-
blem SSP2 is a lower bound on the optimal objective
function value of problem SSP0.

It is possible that the project schedule found by pro-
blem SSP1 is not feasible, due to the relaxation of the
constraints in the linearization process. On the other
hand, the schedule found by problem SSP2 is always
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feasible, since the linearized constraints are tighter
than the initial ones. However, problem SSP2 may not
be able to find a feasible schedule when one exists,
due to its more stringent constraint on the deadline.
We find from our computational study that when the
deadline D is 20% or more than the minimum possible
project makespan, problem SSP2 typically does find a
feasible schedule.
To estimate the quality of the bounds found by pro-

blems SSP1 and SSP2, we perform a computational
study. We use the 330 instances generated as described
in section 7.1 below. We report our results in Table 1,
where nc denotes the number of cash flows in each
instance. For each instance, the sequence of tasks fol-
lows the topological order of the tasks generated by
RanGen (Demeulemeester et al. 2003). Table 1 reports
the average relative percentage gap, “Gap%,” between
the upper and lower bounds for projects with different
numbers of cash flows, that is, 100(UB�LB)/UB. These
results show that our bounds for the maximum ENPV
of a project with fixed task completion time sequence
are very accurate. The success of these bounding tech-
niques is an important factor in the efficient maximiza-
tion of ENPV, as discussed in section 7.1.

5.2. Bounds for a Partial Sequence
During branch and bound enumeration, it is often
necessary to consider a partially specified task com-
pletion time sequence. In that situation, the bounds
established in section 5.1 cannot be applied. Hence, in
this section, we develop upper and lower bounds on
the optimal ENPV for a partial sequence.
We consider a partial sequence of a set of tasks

indexed by 0,1,⋯,l such that C0 = 0
≤ C1 ≤ C2 ≤ ⋯ ≤ Cl. Here, l is the last task completed
under the partially specified sequence. For tasks
i = l + 1,l + 2,. . .,n + 1, the task completion times are
unknown, but we require Ci ≥ Cl. Let r0 = {0,1,. . .,l},
r00 = {l + 1,l + 2,. . .,n,n + 1}, and r = r0∪r00.
For any task i 2 r00, let Ai be the set of all predeces-

sor tasks in r00 that must finish no later than the start
time of task i, and Bi be the set of all successor tasks in
r00 that must start no earlier than the completion time
of task i, as specified by the precedence constraints.
To remove the sequence dependence on the unse-
quenced tasks in r00 and develop upper and lower
bounds on optimal ENPV, for each task i 2 r00, we let

1. Ri;min ¼ rf þ
P

j2Bi
rj þ ri, and

2. Ri;max ¼ rf þ
P

j2ðr00nAiÞ rj.

We have the following inequality regarding the
relationship of Ri, Ri,min, and Ri,max.

Ri;min �Ri �Ri;max �Rlþ1 ¼ rf þ
X
j2r00

rj: ð25Þ

Then, to find an upper bound on the maximum
ENPV for a partially specified sequence, we solve the
following program:

(PSSP1) max
0� yi � 1

Xn
i¼1

Fiyi

s.t.
Xk�1

j¼iþ1

Rk

Rj
yj�1 � yj
� �þ yk�1 � yk expðRkDkÞ� 0;

i 2 r0; k 2 Si \ r0; ð26Þ

Xl

j¼iþ1

Rk;max

Rj
yj�1�yj
� �þyl�yk expðRk;minDkÞ�0;

i2 r0; k2 Si\r00;

ð27Þ

yi � yk expðRk;minDkÞ� 0; i 2 r00; k 2 Si \ r00; ð28Þ

1�Rnþ1

R1
� expð�Rnþ1DÞ

� �
y0 �

Xl

j¼1

Rnþ1

Rjþ1
�Rnþ1

Rj

� �
yj

þ Rnþ1

Ri;min
yi�0; i 2 r00; ð29Þ

yiþ1 � yi � 0; 0� i� l� 1; ð30Þ

yi � yl � 0; i 2 r00;
y0 ¼ 1; yi � 0; i 2 r00:

ð31Þ

The next result shows that problem PSSP1 estab-
lishes an upper bound on the maximum ENPV.

THEOREM 3. Given C0 = 0 ≤ C1 ≤ C2 ≤ ⋯ ≤ Cl and
Cl ≤ Cl+1,Cl+2,. . .,Cn+1, the optimal objective function
value of problem PSSP1 is an upper bound on the
maximum ENPV of the project scheduling problem.

We now develop a model for finding a lower bound
on the maximum ENPV. First, we assume the follow-
ing condition:

DiR1 � 1; ð32Þ

Table 1 Accuracy of Bounds for a Full Sequence

nc 10 12 14 16 18 20 22 24 26 28 30

Gap% 0.005 0.004 0.005 0.003 0.005 0.005 0.005 0.008 0.011 0.013 0.015
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for all 0≤i≤n + 1. We note that condition (32) is not
restrictive, else the failure rate is unreasonably high
and it is hard to accept the project. Under condition
(32), we develop the following model to find a lower
bound on the maximum ENPV for a partially speci-
fied task completion time sequence:

(PSSP2) max
0�yi�1

Xn
i¼1

Fiyi

s.t. 1� Rk

Riþ1
�expð�RkDkÞ

� �
yi�

Xk�1

j¼iþ1

Rk

Rjþ1
�Rk

Rj

� �
yjþyk � 0;

i2r0; k2Si\r0;

ð33Þ

1� Rk;min

Riþ1
� expð�Rk;minDkÞ

� �
yi

�
Xl

j¼iþ1

Rk;min

Rjþ1
� Rk;min

Rj

� �
yj þ yk � 0;

i 2 r0; k 2 Si \ r00;

ð34Þ

1� Rk;min

Ri;max � ri
� expð�Rk;minDkÞ

� �
yi þ yk � 0;

i 2 r00; k 2 Si \ r00;
ð35Þ

Xl

j¼1

Rnþ1

Rj
yj�1 � yj
� �þ yl � ynþ1 expðRnþ1DÞ� 0; ð36Þ

yiþ1 � yi � 0; 0� i� l� 1; ð37Þ

yi � yl � 0; i 2 r00;
y0 ¼ 1; yi � 0; i 2 r00:

ð38Þ

The next result shows that problem PSSP2 finds a
lower bound on the maximum ENPV.

THEOREM 4. Given C0 = 0 ≤ C1 ≤ C2 ≤ ⋯ ≤ Cl and
Cl ≤ Cl+1,Cl+2,. . .,Cn+1, the optimal objective function
value of problem PSSP2 is a lower bound on the
maximum ENPV of the project scheduling problem.

Similar to the above discussion for a fully specified
sequence, it is possible that the project schedule found
by problem PSSP1 is not feasible, whereas if problem
PSSP2 finds a schedule it is always feasible. Problem
PSSP2 can fail to find a feasible solution even if the origi-
nal problem is feasible, due to the stronger deadline and
other constraints. However, problem PSSP2 typically
finds a feasible schedule when the deadline D is not very
close to the minimum possible project makespan.

6. Branch and Bound Algorithm

In this section, we incorporate the bounding techni-
ques presented in section 5 into a branch and bound

algorithm to maximize the ENPV of a project with
risk of task failure. In section 6.1, we introduce an
elimination rule to restrict the candidate task
sequences. In section 6.2, we introduce two heuristic
rules that simplify the problem by assuming a con-
stant failure rate. One provides a benchmark, and the
other provides a lower bound on optimal value. A
heuristic based on sequence generation is also
described in section 6.2. In section 6.3, we describe
our branch and bound algorithm.

6.1. An Elimination Rule
For a given completion sequence r, let C�(r) be the
optimal completion time vector, and ENPV�(r) be the
corresponding net present value. Let l < m be two
tasks in r, where l has no successors that are not
shared with task m, and task m has no predecessors
that are not shared with task l. Let r0 be the sequence
obtained from r after interchanging l and m. We
apply the following elimination rule.

THEOREM 5. If rl = rm, Dl ≥ Dm, and Fl ≤ Fm, then
ENPV�(r0) ≥ ENPV�(r).

Theorem 5 is useful in that, if the project manager
does not have precise information about the exact risk
value of each task, we may simply classify all the
tasks into a few risk categories, e.g., high risk tasks,
medium risk tasks, and low risk tasks. Then, the same
risk value can be assigned to all the tasks within each
category. In this case, since all the tasks within a cate-
gory have the same risk, we can apply Theorem 5 if
the durations and cash flows of two tasks satisfy the
conditions of the lemma.

6.2. Heuristics without Task-Specific Risks
A straightforward way to maximize the ENPV heuris-
tically is to use an estimation method that maximizes
ENPV for a fixed failure rate. We introduce two heur-
istics that apply this idea. In section 6.2.1, we intro-
duce a simple method for ENPV estimation,
assuming an average failure rate for both scheduling
and ENPV computation. In section 6.2.2, we describe
a heuristic that uses a constant failure rate to schedule
tasks, and then computes the ENPV using both com-
mon and task-specific failure rates.

6.2.1. ENPV Maximization with Only Common
Failure Rate. Grinold (1972) formulates the NPV
maximization problem with a constant discount rate
as a simple linear program. Given a constant failure
rate rf, or equivalently a constant discount rate, the
ENPV maximization problem can be formulated as a
linear program, as shown in section 4.2.
In situations where there is a lack of detailed under-

standing of how project risk changes as tasks are
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completed, it is natural to assume a constant failure
rate for the whole project. There are various ways to
determine the constant failure rate to use. Given the
task-specific failure rate ri of each task i, one possible
constant failure rate is the average rate during project
execution as the risk declines from

Pn
i¼1 ri to 0. Note

that during the execution of a project, the minimum
and maximum task-specific failure rates are 0 andPn

i¼1 ri, respectively, and thus we use the average of
the two values:

�r ¼
Xn
i¼1

ri=2:

Using this rate, the maximum project ENPV can be
estimated as follows.

Grinold estimation with averaged failure rate (GE)
Use Grinold’s method to estimate the project ENPV,
where a constant failure rate rf þ �r is used both for
scheduling and for the ENPV computation of the
schedule found.
Note that since the value of ENPV obtained by pro-

cedure GE uses a midrange estimate of the failure
rate, it is neither a lower bound nor an upper bound
on the maximum ENPV. For this reason, GE is not
implemented within our branch and bound algo-
rithm. However, it is used as a benchmark in our
computational studies in section 7.

6.2.2. Grinold Heuristic. The estimation proce-
dure GE can be improved with more detailed analysis
of the risks affecting the project. A feasible project
schedule is found by Grinold’s method which
assumes a constant failure rate. However, task-speci-
fic failure rates can be used to calculate the ENPV of
this schedule. Further, other values of the common
failure rate can be used. We propose the following
heuristic for task scheduling and ENPV computation.
Let K ≥ 1 denote a constant integer and

e ¼ ðPn
i¼1 riÞ=K.

Grinold Heuristic (GH) for ENPV computation

1. Use Grinold’s algorithm to find a feasible
schedule for each constant failure rate rf + ɛ,
rf + 2ɛ,. . .,rf + Kɛ.

2. Compute the ENPV of each schedule found in
Step 1 using Equations (7) and (8) with task-
specific failure rates, and choose a schedule
with the largest ENPV.

REMARK 4. Since each schedule found by Grinold’s
algorithm in Step 1 is feasible, the schedule selected
in Step 2 is also feasible. Moreover, the ENPV of
that schedule is evaluated using task-specific failure
rates, consistent with Equation (7). Hence, Heuristic
GH finds a lower bound on the maximum ENPV.

6.2.3. Sequence-Based Heuristic. Note that for
any sequence of task completion times satisfying
precedence constraints, by solving problem SSP2, we
can find a feasible schedule with an ENPV that is a
lower bound on the maximum ENPV. Consequently,
we propose the following sequence generation pro-
cess with ENPV computation, which can be run mul-
tiple times to deliver multiple lower bounds.

Sequence based heuristic (SH) for ENPV computation

1. Let i = 1 and the initial sequence be empty.
2. Find all the tasks that can be feasibly placed

as the ith task of the current sequence, and
from those tasks, with equal probability ran-
domly choose one and place it to be the ith
task to complete in the current sequence.

3. If i = n, stop; else, let i = i + 1 and go to Step 1.
4. Solve problem SSP2 for the full sequence to

find a lower bound on the maximum ENPV.

6.3. Branch and Bound
Using Heuristics GH and SH described in section 6.2
as lower bound methods, and the lower and upper
bounds established in sections 5.1 and 5.2, we design
a branch and bound algorithm to find a schedule of
the tasks in a project with maximum ENPV. Our
branch and bound algorithm starts with only the
dummy task 0 scheduled, and constructs partial
sequences, one task at a time, while maintaining feasi-
bility with respect to precedence constraints, and
using the elimination rule established by Theorem 5.
From Theorems 3 and 4, we repeatedly fix longer par-
tial sequences, and thus obtain smaller upper bounds
and larger lower bounds. If the upper bound of a
branch is no larger than the lower bound of another
branch, then we eliminate the first branch. The details
of our branch and bound algorithm are as follows:

Branch and Bound Heuristic (BH)

1. Initialization. Specify an allowable tolerance
a; a current node is deleted if the maximum
lower bound found so far is no less than
(1�a) times the upper bound of the current
node. Index all the tasks in topological order
based on the precedence constraints. Let r0

contain only the dummy task 0, and let r00

contain tasks 1,. . .,n + 1. Run Heuristics GH
and SH to find two feasible schedules. Let the
global lower bound, LB, be the maximum of
the ENPV values of the schedules found. Let
the global upper bound, UB, be the upper
bound found by problem PSSP1 with r0 and
r00 as defined above.

2. Root node. If UB�LB ≤ (1�a)UB, then stop;
otherwise, for each task j in r00 that feasibly
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completes earliest among all the tasks in r00,
create a subnode with updated subsequences
r0 and r00 as follows: task j is scheduled to
complete no earlier than the last completed
task in r0, and is removed from r00. If no sub-
node exists, then stop. Each subnode defines
a lower and an upper bound, as specified in
Step 3. Let LBmax and UBmax denote the maxi-
mum of the lower and upper bounds of all
the subnodes, respectively. Update LB = max
{LB,LBmax} and UB = min{UB,UBmax}.

3. Nonroot node. At initialization of a node, r0

and r00 are defined by its parent node. The
lower bound of the current node, LB

0
, is found

by solving problem SSP2, using a full
sequence where tasks in r0 are in the sequence
specified by r0, and tasks in r00 are in increas-
ing index sequence. The upper bound of the
current node, UB

0
, is found by solving pro-

blem PSSP1, using partial sequence specified
by r0 defined above. Let LB = max{LB,LB

0
}. If

UB
0�LB ≤ (1�a)UB

0
, then discontinue branch-

ing and return to the parent node; otherwise,
evolve the current node with LB

0
and UB

0

updated when necessary, as for the root node.

7. Computational Studies

In this section, we test the performance of our models
and solution procedures for project evaluation and
selection. In section 7.1, we study the performance of
Heuristic BH for finding the maximum ENPV, and
demonstrate its improvement over the benchmark GE
and Heuristic GH. Observe that the schedule found in
GE uses methodology proposed by Grinold (1972),
whereas Heuristic GH extends the literature by com-
paring multiple schedules. In section 7.2, we study
how Heuristic BH improves project selection, relative
to procedure GE and Heuristic GH. Throughout this
section, the granularity parameter K in Heuristic GH
is fixed at 100, and we run Heuristic SH 30,000 times
to find a lower bound at the root node. All algorithms
are coded in Microsoft Visual C++ 2010 Express with
IBM ILOG CPLEX Optimization Studio 12.3, and run
on a 4.0 GHz Intel Core i7-6700K computer with
32GB of memory. Section 7.3 provides some insights
derived from our results.

7.1. Project Evaluation
Our experimental design varies only parameters that
affect the performance of the procedures being tested
(Hall and Posner 2001). We control parameters
including the number of cash flows, depth of project
network (i.e., the maximum number of tasks in series
in the network), tightness of project deadline, size of
failure rates, and pattern of cash flows. For each

parameter combination specified below, we evaluate
30 random instances using networks generated from
RanGen (Demeulemeester et al. 2003). RanGen gener-
ates networks with controlled depth indicator,
I = (m�1)/(n�1), where m is depth of the network,
and n is the number of tasks without including any
dummy task. However, for greater consistency with
the project management literature (Dawson and Daw-
son 1998, Perry and Greig 1975), we discard the dis-
crete uniformly distributed task times generated by
RanGen, and instead generate task times from the
Beta(2,2) distribution, and then rescale them to be
between 1 and 5 (by multiplying by 4 and then adding
1). In all our studies, we use a common failure rate
rf = 0.004.
Our test instances are generated as follows. We

assign a positive cash flow to the end-of-project
dummy task that has a zero processing time and is
preceded by all the other tasks. Thus, the number of
cash flows is nc = n + 1, and task nc is the end of pro-
ject dummy task. For other parameters, we set the
depth indicator to 0.5, the ratio of the deadline to the
minimum makespan to 2.0, the task-specific failure
rate to be generated with value 0 with probability 0.7,
and values r, 2r and 3r each with probability 0.1,
where r = 0.001, and the number of positive cash
flows to 2 (see the Appendix for details on cash flow
generation).
We now study how the total number of cash flows,

the depth indicator of the project network, the ratio of
the deadline to the minimum makespan, the magni-
tude of the task-specific failure rate, and the number
of positive cash flows, affect the performance of the
benchmark procedure GE and Heuristics GH and BH,
respectively.
First, we investigate the effect of the number of cash

flows. We let the number of cash flows be
nc 2 f10; 12; . . .; 30g, and generate 30 instances for
each nc value. In total, we generate 11�30 = 330
instances to test the effects of nc. Recall that
nc = n + 1. When nc ≤ 20, every instance can be
solved by Heuristic BH within one CPU hour with an
allowable gap of a = 0. However, when nc ≥ 22, we
need to specify a nonzero tolerance between the lower
and upper bounds for several instances to be solved
within one CPU hour. Specifically, we increase a by
0.01 for each additional CPU hour used, until the cor-
responding instance is solved. For nc = 22,24,26,28,30,
the numbers of instances solved with a > 0 are
1,5,13,16, and 22, out of 30, respectively.
Let zGE, zGH, zLB and zUB denote the ENPV found by

GE, the same by Heuristic GH, and the global lower
and upper bounds from Heuristic BH, respectively.
Our computational results for the effect of nc appear
in Table 2, where each row represents a mean or med-
ian result over the corresponding 30 instances. In
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Table 2, column “EstGap%” is the mean relative per-
centage gap between the ENPV found by GE and the
upper bound from Heuristic BH (i.e., 100(zGE�zUB)/zUB);
column “Imp%” is the mean percentage improve-
ment from the ENPV found by Heuristic GH over
that found by Heuristic BH (i.e., 100(zLB�zGH)/zGH);
column “GHgap%” is the mean relative percentage
gap between the ENPV found by Heuristic GH and
the upper bound from Heuristic BH (i.e., 100
(zUB�zGH)/zUB); column “BHgap%” is the mean rel-
ative percentage gap between the lower and upper
bounds found by Heuristic BH (i.e., 100(zUB�zLB)/zUB);
column “Time” is the median running time of
Heuristic BH in CPU seconds; and finally, column
“Nodes” is the median number of branch nodes
used by Heuristic BH.
From Table 2, we observe that procedure GE typi-

cally overestimates the maximum ENPV of projects,
especially those with a moderate number of cash
flows. It appears that the overestimation is less severe
when the number of cash flows exceeds 26, which
may be because upper bounds for those instances are
loose. Heuristic BH significantly improves the sched-
ule found by Heuristic GH, especially for larger pro-
jects, providing an overall average improvement of
5.45%, and 13.05% when nc = 30. The gap between the
ENPV found by Heuristic GH and the upper bound
from Heuristic BH increases as the number of cash
flows increases. The gap between the lower and
upper bounds from Heuristic BH also increases with
the number of cash flows, with an overall average of
0.79%.
Next, we set nc = 16 and investigate the effect of the

four other parameters together. First, we study the
effect of the depth indicator, I 2 {0.3,0.5,0.7}. Second,
we consider the ratio of the deadline to the minimum
makespan, d 2 {1.4,1.7,2.0}. Third, we set the task-
specific failure rate to be 0 with probability 0.7, and
values r, 2r and 3r each with probability 0.1, with
r 2 {0.0005,0.0010,0.0015}. Fourth, we study the

number of positive cash flows np 2 f1; 2; 3g; see the
Appendix for details about cash flow generation.
Thus, we generate 90 networks from RanGen for
nc = 16 and I = 0.3,0.5,0.7, and using these networks
we generate 3�3�3�3�30 = 2430 instances in total.
The effects of depth indicator, deadline, failure rate,

and positive cash flows on the various procedures are
summarized in Table 3, using the same column inter-
pretations as for Table 2. The overestimation by GE
increases with the depth of the project network, the
tightness of the deadline where a tighter deadline is
represented by a smaller d value, the task-specific fail-
ure rate, and the number of positive cash flows. The
improvement from Heuristic BH over Heuristic GH
increases with a greater depth indicator, a larger task-
specific failure rate, and fewer positive cash flows.
The gap between the ENPV from Heuristic GH and
the upper bound from Heuristic BH is not signifi-
cantly affected by the tightness of the deadline, but
increases with the depth indicator and the task-speci-
fic failure rate, and decreases with the number of pos-
itive cash flows. For Heuristic BH, a smaller depth
indicator, a larger task-specific failure rate, and a
smaller number of positive cash flows make instances
harder to solve.

7.2. Project Selection
In this section, we study how Heuristic BH improves
project selection, relative to procedure GE and
Heuristic GH. Recall that in our study of the effects of
various parameters in section 7.1, we have in total
11 + 3�3�3�3 = 92 parameter combinations, with 30
instances generated for each of them. We assume that
the 30 projects for each parameter combination are
candidates for project selection, and define them to
form a group.
Companies often select their projects by ranking

them (Goletsis et al. 2003, Green et al. 1996). First, we
study how GE, GH, and BH rank projects differently,
based on their maximum ENPV values. For each

Table 2 Performance Sensitivity to Number of Cash Flows

nc

EstGap% Imp% GHgap% BHgap% Time Nodes
100ðzGE�zUB Þ

zUB

100ðzLB�zGH Þ
zGH

100ðzUB�zGH Þ
zUB

100ðzUB�zLB Þ
zUB

CPU seconds median Median

10 1.45 0.42 0.42 0.01 6.5 40
12 1.28 1.43 1.39 0.02 7.6 92
14 2.89 0.96 0.96 0.02 10.3 149
16 1.84 2.16 2.06 0.03 14.0 584
18 1.65 3.28 3.13 0.04 19.8 2,565
20 2.54 5.60 5.12 0.04 52.9 52,274
22 2.70 5.04 4.68 0.11 45.1 20,326
24 6.75 6.37 5.90 0.39 327.5 195,615
26 0.23 10.37 9.37 0.88 1,928.8 1,006,923
28 2.17 11.23 11.43 2.28 3,600.4 2,393,527
30 �0.02 13.05 14.86 4.90 10,335.9 6,403,286
All 2.13 5.45 5.39 0.79 32.3 10,724
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group, we compute the Kendall tau rank correlation coef-
ficient (Kendall 1938), as defined in the Appendix,
between the ENPV estimates from GE and BH, and
also between the ENPV estimates found by Heuristics
GH and BH. We first consider the Kendall coefficient
between the ENPV estimates found by GE and BH.
For the eleven groups of instances with
nc 2 f10; 12; . . .; 30g, the coefficients are 0.96, 0.94,
0.92, 0.88, 0.86, 0.80, 0.83, 0.82, 0.75, 0.76, and 0.70,
respectively, with a mean of 0.84. For the other 81
groups of instances, and for different parameter val-
ues of I, D, r, and np, results are summarized in the
second column of Table 4. The correlation decreases
with the depth indicator and the task-specific failure
rate, but increases with the number of positive cash
flows.
Second, we study the rank correlation between the

ENPV’s achieved by Heuristics GH and BH. For the
eleven groups of instances with nc 2 f10; 12; . . .; 30g,
the coefficients are 0.99, 0.96, 0.97, 0.89, 0.92, 0.85, 0.83,
0.86, 0.77, 0.79, and 0.66, respectively, with a mean of
0.86. From Table 4, we observe that the correlation
has a similar pattern to that between the ENPV esti-
mates found by GE and BH. Overall, compared with

GE, Heuristic GH provides project rankings that are
more consistent with those from Heuristic BH.
Third, we study the effect on total project portfolio

value that results from Heuristics GH and BH select-
ing projects differently, when selection is limited by a
budget constraint. To set the budget constraint, we
first specify the cost of each individual project. We
define the cost of a project as the sum of all the nega-
tive cash flows of tasks that are not successors, as
specified by the precedence constraints, of the small-
est indexed task with a positive cash flow. Then, the
portfolio budget limit is set to half the total cost of the
30 projects that are available for selection. Projects are
selected to maximize the sum of their estimated
ENPVs, subject to the budget constraint on cost. This
project selection problem is a classical 0–1 knapsack
problem (Kellerer et al. 2004), which we solve opti-
mally using dynamic programming.
We compare the total values of the project portfo-

lios selected by Heuristics GH and BH. For the eleven
groups of projects with nc 2 f10; 12; . . .; 30g, Heuristic
BH selects project portfolios with 0.2%, 1.0%, 0.8%,
2.9%, 4.2%, 4.5%, 6.7%, 5.1%, 11.6%, 8.5%, and 13.3%
greater value, respectively, for an overall mean of
5.4%. We observe that the gain in project portfolio
value is particularly significant for larger project sizes.
For the other 81 groups of instances, and for different
parameter values of I, D, r, and np, the fourth column
of Table 4 shows the % improvement in project port-
folio value delivered by Heuristic BH relative to
Heuristic GH. This improvement increases slightly
with the depth indicator and decreases slightly with
the tightness of the deadline, but increases strongly
with the task-specific failure rate and decreases
strongly with the number of positive cash flows.

7.3. Insights
Our main insights, supported by our computational
results, are (a) how project risk declines as tasks are
completed, even with constant task failure rate, and

Table 3 Sensitivity to Deadline, Failure Rate, and Number of Positive Cash Flows

Parameter
EstGap% Imp% GHgap% BHgap% Time Nodes
100ðzGE�zUB Þ

zUB

100ðzLB�zGH Þ
zGH

100ðzUB�zGH Þ
zUB

100ðzUB�zLB Þ
zUB

CPU seconds median Median

I = 0.3 0.69 2.33 2.25 0.06 33.0 15,939.5
I = 0.5 0.75 2.81 2.62 0.07 14.8 792.0
I = 0.7 0.95 2.98 2.75 0.06 12.2 263.5
d = 1.4 0.85 2.78 2.57 0.06 16.7 1,062.0
d = 1.7 0.80 2.69 2.54 0.08 16.7 1,133.5
d = 2.0 0.73 2.65 2.50 0.07 16.7 1,045.0
r = 0.0005 0.64 1.12 1.11 0.02 17.0 1,010.0
r = 0.0010 0.69 2.79 2.64 0.06 16.6 1,116.0
r = 0.0015 1.05 4.21 3.86 0.12 16.6 1,147.5
np = 1 �1.19 4.15 3.77 0.04 18.9 1,733.0
np = 2 1.33 2.63 2.46 0.03 15.8 860.0
np = 3 2.25 1.33 1.38 0.13 15.5 928.0
All 0.79 2.70 2.54 0.07 16.7 1,087.0

Table 4 Project Ranking and Portfolio Selection

Parameter Coef (GE & BH) Coef (GH & BH) Imp%

I = 0.3 0.92 0.92 1.5
I = 0.5 0.87 0.90 1.7
I = 0.7 0.86 0.90 1.7
d = 1.4 0.88 0.91 1.6
d = 1.7 0.89 0.92 1.6
d = 2.0 0.88 0.91 1.8
r = 0.0005 0.93 0.95 0.7
r = 0.0010 0.88 0.90 1.7
r = 0.0015 0.84 0.89 2.5
np = 1 0.85 0.88 2.6
np = 2 0.88 0.91 1.6
np = 3 0.91 0.94 0.7
All 0.88 0.91 1.7
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(b) how this decreasing project risk affects the
scheduling, evaluation and selection of projects. The
quantification of the effect of risk on the project is
technically challenging, and we provide an approach
to achieve it. Consistent with intuition, our work first
offers the following general insights:

1. Tasks with larger cash flow, that is, larger
cash inflow or smaller cash outflow, should
be processed earlier, holding other factors
constant.

2. For a typical project with a positive ENPV,
tasks with larger risk should be processed
earlier, holding other factors constant.

3. For a typical project with a positive ENPV,
tasks with shorter processing time should be
processed earlier, holding other factors con-
stant.

However, the three factors of cash flow, risk, and
processing time interact with each other in complex
ways. For example, in the following instance, it is bet-
ter to process a task with smaller cash inflow earlier.
The instance contains two tasks with rf = 0, F1 = 10,
F2 = 100, r1 = r2 = 0.004, D1 = 10, and D2 = 100, and
no precedence constraints. Processing the two tasks
consecutively in the sequence 1?2 results in
ENPV = 71.10950, while sequence 2?1 results in
ENPV = 49.25000. Further, in the following instance,
it is better to process a task with smaller risk earlier.
The instance contains two tasks with rf = 0, F1 = 10,
F2 = 100, r1 = 0.008, r2 = 0.004, D1 = 100, and D2 = 10.
Processing the two tasks consecutively in the
sequence 1?2 results in ENPV = 31.95036, while
sequence 2?1 results in ENPV = 92.67723.1

The above examples only consider two sequences
1?2 and 2?1, under which two tasks are processed
consecutively without inserted idle time; whereas, we
use a continuous optimization model that allows a
task to start at any time if feasible, which is more com-
plicated than a pure sequencing decision. These
resulting complications support the value of our opti-
mization approach.

8. Concluding Remarks

This paper studies the maximization of ENPV for pro-
jects under risk, and the selection of projects based on
their maximum ENPV. Both the academic and busi-
ness literatures extensively discuss the issue that pro-
ject risk declines as tasks are completed. However,
our work is apparently the first that explicitly models
the reality that the project failure rate at any point in
time is dependent on which tasks have been com-
pleted. Our optimization model demonstrates that the
resulting improvements in scheduling decisions for a
project yield a significant improvement in ENPV.

Further, this more precise maximization of ENPV for
individual projects enables improved project selection
that yields a significant increase in project portfolio
value.
Our work contains several insights that inform the

project scheduling and selection decisions of man-
agers of project companies. First, it is important to rec-
ognize, and incorporate into decision making, the
reduction in project risk that occurs when a task is
completed, and how this affects project evaluation.
Second, in order to achieve this, it is important to
quantify the risk associated with individual project
tasks and to use that information to schedule projects
for maximum ENPV. Third, tasks with higher failure
rate and without large cost should be prioritized,
since this more quickly reduces the failure rate of a
project, which increases its ENPV. Fourth, ENPV val-
ues that are adjusted for risk of failure may differ sig-
nificantly from those that are not, and these
differences may be greater for some projects than
others, which affects relative project value. Conse-
quently, a significant improvement in the value of a
portfolio of projects can be achieved by using our
model, and this should be useful to companies that
run many projects affected by risk. Finally, our sensi-
tivity analysis results identify project characteristics
that are associated with larger improvement in ENPV
from our modeling approach, and this information
may be especially useful to companies that run pro-
jects with such characteristics.
Our work also suggests several directions for future

research, including for modeling, algorithm design,
and generalizability for additional applications. For
modeling, an optimization model can be developed to
represent decreasing task failure rates such as occur
with a mixture of exponential distributions or a Wei-
bull distribution, and/or project failure rate using a
more general function of combinations of the failure
rates of the unfinished tasks. We consider fatal risks
that cause project failure, and it would be useful to
study less severe risks that affect task duration or cash
flow. Also, it would be valuable to model intrinsic
task risks that start only when the task starts. Further,
an empirical study of the way in which project failure
rate reduces during execution in specific project man-
agement applications would be valuable. For algo-
rithm design, we recommend the development and
testing of heuristic rules for adjusting failure rates that
are simpler than the optimal task-level optimization
approach we describe. In order to address more appli-
cations, our work can usefully be generalized by the
consideration of additional practical constraints, for
example to model resource limitations. Also, the
scheduling and selection models in our work can be
generalized to support the management of multiple
concurrent projects with maximization of total ENPV
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objective. In conclusion, we hope that our work will
encourage further research on the important topic of
ENPV maximization for projects subject to failure.
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