
This is the author manuscript accepted for publication and has undergone full peer review but has

not been through the copyediting, typesetting, pagination and proofreading process, which may

lead to differences between this version and the Version of Record. Please cite this article as doi:

10.1111/POMS.13107

This article is protected by copyright. All rights reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

https://doi.org/10.1111/POMS.13107
https://doi.org/10.1111/POMS.13107
https://doi.org/10.1111/POMS.13107

Project Evaluation and Selection with Task Failures

Wenhui Zhao, Antai College, Shanghai Jiao Tong University, Shanghai, China

Nicholas G. Hall, Fisher College of Business, The Ohio State University, Columbus, Ohio *

Zhixin Liu, School of Management, University of Michigan - Dearborn, Dearborn, Michigan

* corresponding author, hall.33@osu.edu

Submitted August 28, 2018; reports received December 4, 2018; revised April 20, 2019; accepted

August 7, 2019.

September 17, 2019

Abstract

We consider a company that schedules the tasks of its projects to maximize their expected

net present value (ENPV) when tasks may fail. The failure of any task terminates the project

immediately. We show that for projects with certain decreasing failure rates, the ENPV

optimization problem can be solved using a linear program. The main focus of our work is on

how constant task failure rates contribute to decreasing project risk as tasks are completed. Under

constant task failure rate, earlier completion of a task improves its probability of success and the

risk profile of the project. However, it may also accelerate costs which worsens discounted cash

flow. We show the equivalence of cash flow discount rate and failure rate. Further, if task failures

are independent, their rates are additive. We develop a model that (a) recognizes the reduction in

project risk when a task is completed, (b) implements this risk reduction into the ENPV calculation,

and (c) permits optimization of the ENPV through sequencing and timing decisions for the tasks.

We design an algorithm to solve the problem optimally. This enables us to validate the contributions

of our work using two computational studies. The first study demonstrates a significant increase

in maximum project ENPV from improved project scheduling. The second study demonstrates a

significant increase in total project portfolio value as a result of better informed project selection.

Our work motivates companies to develop more precise information about the failure risks of their

project tasks.

Keywords: project management, risk of failure, expected net present value, project evaluation

and selection

1

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

1 Introduction

Project management is a highly important, global business process. Various estimates for the

global impact of project management within the world’s economic activity range from 20% (Project

Management Institute 2008) to 30% (Hu et al. 2015), in the latter case implying an annual value

of about $27 trillion. Furthermore, most companies have more available projects than they have

the resources to undertake. Substantial evidence suggests that doing the right projects is a big

factor in doing projects right. Indeed, well chosen projects are typically easy to manage, whereas

poorly selected projects are often dysfunctional and absorb resources from other projects (Cooper

et al. 2001). Hence, companies face two problems of central importance to their competitiveness.

The first problem is how to evaluate their available projects individually. The closely related

second problem is, given their limited resources, how to select which of their available projects

to run. Project evaluation and selection decisions are typically made by a Project Management

Office (Kerzner 2013). Hall (2016) provides an overview of open research problems within project

management.

This paper studies a problem that arises generically in the evaluation and selection of a project

for which overall success is uncertain. We consider a project that is successful if and only if each of

its component tasks is successful. Each task is subject to failure at a known constant rate. Many

examples arise in new product development, research and development, contract manufacturing,

and pharmaceutical development projects. Should any task fail in this environment, the project is

immediately terminated, and its projected future revenues and costs are never earned or incurred.

We provide a detailed motivating example of such projects in Section 2.

As discussed in Section 3.1, the most common quantitative measure of a project’s return is its

net present value (NPV). This performance measure incorporates the anticipated cash flows, both

positive and negative, of the project, and also an appropriate discount rate. One of the reasons for

the frequent use of the NPV measure is its simplicity, since it discounts all the anticipated cash

flows from completion of the project’s tasks using the same rate. Many companies use the NPV

measure to make decisions about whether to run an individual project. However, when individual

tasks, and therefore the project as a whole, are subject to failure with known probability rates, it

is appropriate to use expected net present value (ENPV) in place of NPV.

Thus, consistent with widespread decision making practice, we consider projects that are

evaluated based on their ENPV. The consideration of project failure for such projects is a

distinguishing feature of our work. The earlier a task is completed, the sooner its risk of failure

2

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

is eliminated, which may improve its ENPV. However, earlier task completion may also accelerate

costs which worsens discounted cash flow and ENPV. Due to this tradeoff, and because of resulting

changes to the risk profile of the project, effective scheduling of the tasks becomes both critical

and complex. To address this issue, we model and solve the problem of maximizing the ENPV of

a project that is subject to failure. Our work enables significantly more accurate maximization of

project ENPV through improved scheduling, and thus selection of a better portfolio of projects.

Chapman and Ward (2002) provide an overview of project risk. Project risk typically originates

from uncertainty about the technical and commercial success of the project (MacMillan and

McGrath 2002). Technical uncertainty arises, for example, from uncertain outcomes in research

and development, prototype testing and regulatory approval. Commercial uncertainty arises, for

example, from randomness in time to market, the introduction of competitors’ products and general

economic factors. Mishra et al. (2016) identify three types of risks in federal technology projects,

including complexity risk and contracting risk in the planning process, and execution risk in the

execution process. They find that each type of risk has a potentially significant negative effect on

project performance. Also, as a project proceeds, its risk level declines. An important example

here arises in the development of new pharmaceuticals. As each stage of testing, animal trials,

clinical trials, FDA approval, and marketing, is passed, the risk level of the project declines

significantly. For example, Myers and Shyam-Sunder (1996) document that risk is higher in early

stage pharmaceutical development projects than in mature ones. We model declining risk by

removing the risk of failure that is attributable to an individual task when that task is completed.

Our work contributes to the extensive project management literature by modeling and solving

the problem of maximizing the ENPV of a project that is subject to failure. We formulate a

mathematical model that (a) recognizes the reduction in project risk each time a task is completed,

(b) implements this risk reduction into the ENPV evaluation of the project, and (c) permits

optimization of the ENPV through sequencing and timing decisions for the tasks within the project.

Our work is designed for a project management environment where the company can estimate the

failure rate associated with each of the project’s tasks.

We perform two computational studies to validate the contribution of our work. The first

computational study finds, for a typical project, a significant improvement in maximum ENPV

values that results from improved scheduling decisions identified by our model and algorithm. An

interesting outcome of these results is that the improvement in maximum ENPV is much greater for

some projects than for others. This changes the value of funding some projects relative to others.

Motivated by this observation, the second computational study estimates the increase in overall

3

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

project portfolio value that results when the improved maximum ENPV values are used to guide

selection decisions.

The remainder of the paper is organized as follows. Section 2 provides a description of two

specific applications. In Section 3, we review the relevant literature. In Section 4, we describe

our notation, formally define the problem, and solve two problems with specific decreasing failure

rate functions. Heuristic solutions and upper bounds on problem value are discussed in Section 5.

An algorithm that solves the problem optimally is described in Section 6. Section 7 describes our

computational studies. Finally, Section 8 contains managerial insights and directions for future

research. All proofs appear in an Appendix.

2 Motivating Applications

In this section, we describe two widely used applications of project management as motivating

examples for our work. We also comment on the mechanism by which task and project failure

occur in these applications.

First, we consider a typical software development process managed as a project. This process can

be divided into the following six stages (www.synapseindia.com 2019): planning, analysis, design,

development and implementation, testing, and maintenance. Each of these stages is composed

of multiple tasks, some of which may fail and cause failure of the project. Based on the related

literature, we discuss the timing for failure to occur. El Emam and Koru (2008) conduct a survey

of companies about the failure of their software projects. They find that the combined rate of

cancelled and unsuccessful software projects is significant, at between 26% and 34%. They also

investigate the causes of project failure. The survey respondents provide 41 responses to this

question. The most frequently cited causes are insufficient involvement of senior management,

changes to project requirements, and a lack of necessary management skills. Overall, 29 of the

41 responses identify causes of project failure that occur continuously over time, another 11 may

occur over time or alternatively at project completion, and only one specifically occurs at project

completion. Following this time profile of the causes of project failure, we model the task-related

causes of project failure as occurring at any point in time up to task completion.

As a second example, consider a typical drug development and commercialization process that

is managed as a project (Blau et al. 2004). This process is complex and involves many activities

that may fail. First, in a Phase I clinical trial, the company needs to test the new drug on

animals and also healthy human volunteers. An unacceptable result will terminate the process

and cause the entire project to fail. Second, in a Phase II clinical trial, the company applies the

4

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

new drug to human patients with targeted disease. If the treatment is unsatisfactory, for example

producing either inferior results to competitive products or adverse reactions, then the company

may end the project. Third, in a Phase III clinical trial, the company conducts large-scale clinical

studies on humans patients to confirm the efficacy, and to identify other effects such as drug-to-

drug interactions and side effects, of the new drug. This trial is expensive and again failure may

terminate the drug development project. Fourth, the information about the new drug from the

earlier three trials needs FDA approval. We note that failure in a variety of drug testing trials

cannot be determined until the completion of the trial. However, we also observe that project

failure is not an objectively defined event. Rather, it is defined by senior management’s decision to

cancel the project. Such decisions evolve over time as evidence of project performance accumulates

and senior management opinion evolves, and need not be finalized only at the completion time of

tasks. For example, Zipfel (2003) mentions that “it may be acceptable to consider constant failure

rates within each development stage” in drug development. Therefore, following the literature from

pharmaceutical industry practice, we believe that it is reasonable to model task failure as occurring

at any point in time up to task completion, as in the previous example.

For either of the above applications, failure rates of different tasks can be estimated by investors

and financial institutions, which will adjust the interest rate accordingly when they loan money to

the company. Therefore, when the company determines its schedule of the project, it must consider

interest rates that change with project progress in scheduling the project tasks, including those with

known failure rates, to estimate more accurately and to optimize the expected net present value of

the project.

3 Literature Review

Section 3.1 reviews the literature that discusses the use of NPV and ENPV for project evaluation.

Section 3.2 reviews the literature that considers the problem of scheduling to maximize project

NPV. Section 3.3 discusses work on projects that fail because their component tasks fail. Section 3.4

discusses the availability to management of the detailed information about project failure that is

needed for our model.

3.1 NPV and ENPV for project evaluation

We first review the use of NPV for projects without the risk of failure. As discussed by Remer

and Nieto (1995), NPV is among 25 prominent techniques that are used by project companies for

evaluating projects. Beaves (1993) discusses the limitations of conventional NPV formulas, and

5

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

the need for a generalized NPV formula. Haley and Goldberg (1995) discuss the issue of whether

emphasizing NPV in the analysis and selection of new product research projects hinders innovation,

due to short-term biases. Their empirical results lend support to these concerns. Hodder and

Riggs (1995) describe several pitfalls that arise in the overinterpretation of NPV analysis for project

evaluation. Archer and Ghasemzadeh (1999) describe an integrated framework for project portfolio

selection using NPV. Poh et al. (2002) present a comparative study of several evaluation methods

for research and development projects, based on the Analytic Hierarchy Process. Kettunen and

Salo (2017) show that project portfolio selection using NPV can be biased in the presence of severe

downside risks, and propose a calibration framework to overcome this bias. Several authors use

NPV analysis for evaluating and selecting projects for specific applications. These include Cooper

(1985) for new product selection, Nelson (1986) for manufacturing modernization projects, Oral et

al. (2001) for project selection problems with competing interests among multiple stakeholders, and

Kolisch and Meyer (2006) for pharmaceutical development projects. In comparing projects with

different makespans using ENPV, their makespans should not be dramatically different because of

the opportunity cost of money tied up in the projects. This issue has not prevented NPV being

one of the most prominent measures used for project evaluation (Remer and Nieto 1995). Such

comparisons are apparently valid between projects with similar success probabilities. While it is

necessary for completeness to include ENPV calculations for projects with large failure probability,

we do not recommend the use of ENPV as the primary measure of comparison between projects

with very different probabilities of success.

Wiesemann and Kuhn (2015) provide an extensive review of the literature of ENPV maximiza-

tion under uncertainty about cash flows and durations. Part of the literature assumes that activity

durations follow independent exponential distributions and finds optimal solutions, whereas other

work allows more general distributions but typically provides suboptimal solutions. An example of

the first type of work is by Sobel et al. (2009), who maximize ENPV in a situation with uncertain

task durations, costs and revenues. They model the problem as a Markov decision process. They

show that discount rates can be absorbed into transition probabilities, and they extend their work

to allow for the project to be abandoned during execution. For exponential task durations, they are

able to find optimal solutions for projects with up to 25 tasks. An example of the second type of

work is by Chen and Zhang (2012), who maximize ENPV in a resource-constrained version of the

problem, for which they provide heuristic solutions using ant colony optimization and Monte Carlo

simulation. Wiesemann et al. (2010) consider the maximization of ENPV when task durations and

cash flows are described by a discrete set of scenarios with known probabilities. They describe a

6

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

branch and bound algorithm that finds optimal solutions for projects with up to 50 tasks.

3.2 Maximization of NPV

Herroelen et al. (1997) survey the literature of project management with discounted cash flows,

including both deterministic and stochastic models. They provide a taxonomy of this literature,

and critically review the major contributions. Several papers study the problem of sequencing and

timing the tasks of a project with a constant discount rate, to maximize NPV. Russell (1970) models

this problem as a nonlinear program with linear constraints and a nonconcave objective. However,

Grinold (1972) shows that this problem can be modeled as a linear program which allows an

efficient algorithm based on tree networks. Russell (1986) provides a computational comparison of

the performance of six heuristic scheduling rules for a more general problem that considers resource

constraints. Elmaghraby and Herroelen (1990) provide a critical review of the research literature

on maximizing the NPV of a project. Their main criticism concerns the typical assumption that

the cash flow at the end of a task is independent of its completion time, which is inconsistent

with penalty clauses in many project contracts. They also provide a solution procedure that is

apparently simpler than those of Russell (1970) and Grinold (1972). Computational experience

with this procedure is reported by Herroelen and Gallens (1993).

Doersch and Patterson (1977) use a zero-one integer programming model to solve the problem

of maximizing NPV, subject to capital rationing constraints. Yang et al. (1992) develop a

similar model to maximize NPV, subject to resource limitations that vary over time. Icmeli and

Erenguc (1996), and Vanhoucke et al. (2001b), study the problem of maximizing NPV subject to

resource constraints, and develop branch and bound algorithms for small projects. Schwindt and

Zimmermann (2001) consider the maximization of project NPV subject to general constraints, and

describe a steepest ascent procedure.

Etgar et al. (1996) address the criticism of Elmaghraby and Herroelen (1990) by allowing the

cash flow of a task to depend on its completion time. They use simulated annealing to solve this

problem heuristically for projects with up to 45 tasks. Etgar and Shtub (1999) consider a special

case of the previous model, where a task’s cash flow is a linear function of the completion time of the

task. They provide a simple, optimal algorithm to maximize NPV, but no computational results.

For the same problem, Vanhoucke et al. (2001a) provide a more complex procedure that includes

dominance rules and other computational enhancements, and use it to find optimal solutions for

projects with up to 120 tasks.

7

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

3.3 Risk of project failure

Herroelen (2005) recognizes risk analysis and proactive scheduling as important factors in closing the

gap between theory and practice in project scheduling. De Reyck et al. (2007) provide an extensive

survey of the literature of project scheduling with task failures. Browning and Ramasesh (2007)

recognize the importance of modeling in cases of uncertainty, ambiguity and risk for managing

product development projects. Wu et al. (2014) examine project risk caused by individual’s cost

salience, i.e., the perception that cost of immediate effort is greater than cost of future effort.

Ellinas (2019) shows that, with higher than anticipated probability, task failures can trigger failures

of succeeding tasks and lead to systemic failures of a project.

Bard (1985) studies the parallel development of alternative technologies, which provide

redundancy in a situation where some technologies may fail. Several structural results and exact

algorithms are provided in this environment by Ranjbar and Davari (2013), Coolen et al. (2014)

and Creemers et al. (2015). However, our work does not consider alternative technologies. For

new product development projects, Schmidt and Grossmann (1996) and Jain and Grossmann

(1999) develop optimization models for the scheduling of screening tests in chemical engineering

applications.

De Reyck and Leus (2008) describe a generic model for the optimal scheduling of projects with

general precedence structure, where all tasks must succeed in order for the project to succeed.

They motivate the problem as a pharmaceutical development project, and show that it is NP-hard.

A real example from a U.K. biotech company provides a case study. They develop a branch and

bound algorithm that is capable of finding optimal solutions for projects with up to 40 tasks. A

difference from our work arises in the task failure probability. They model this as a fixed and

known probability; whereas, we model task failure using a constant and known failure rate that

continues to threaten the task, regardless of when it is started, up to the time when it is completed.

Further, their work allows for only one positive cash flow at the end of the project, whereas we

more generally allow milestone payments by the project owner.

3.4 Information for modeling failure

Our modeling of ENPV maximization for projects subject to failure uses predominantly standard

data that would typically be available and used in any project evaluation. This standard data

includes (a) for the project, a common failure rate, and (b) for each task, its deterministic duration

and either cost or revenue. Our only additional data requirement is, for each task, its constant

failure rate from the start of the project until the task is completed. A constant failure rate is

8

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

commonly used in studies of reliability and survivability (Barlow and Proschan 1965, Elandt-

Johnson and Johnson 1999). The use of a constant failure rate follows immediately from an

assumption that the time to failure for a system component is exponentially distributed. This

assumption has been applied to a wide variety of systems, ranging from parts in service (Walker

1997) to recidivistic behavior (Stollmack and Harris 1974). Given available data, there are various

tests that can be applied to test the validity of the constant failure rate assumption (Fercho and

Ringer 1972). In a project management context, such data can be obtained from experiences

with the same or similar tasks. Khanfor et al. (2017) empirically investigate failure prediction in

crowdsourced software development, including estimation of task failure.

4 Problem Definition and Model

We first define our problem and model. In Section 4.1, assumptions and limitations of our model are

discussed. Sections 4.2 and 4.3 address the maximization of ENPV without and with task-specific

risks, respectively.

We consider how a company that is investing in a risky and complex project can evaluate the

ENPV of that project. At the end of each task i, there will be either a positive or negative net cash

flow. Positive cash flows represent either milestone payments for partial completion of the project,

or a final payment on overall completion, from the project owner. Negative cash flows represent

costs, e.g., labor or material costs, that are incurred to perform the task.

Let n denote the number of tasks in the project. The tasks are indexed 1, . . . , n. In addition,

we add two dummy tasks: task 0 at the start, and task n+1 at the end, where task 0 precedes, and

task n+1 succeeds, all of tasks 1, 2, . . . , n, respectively. Task i has a cash flow Fi at its completion

time Ci, where Fi > 0 for cash inflows and Fi < 0 for cash outflows, for i = 1, . . . , n, and we let

F0 = Fn+1 = 0 unless otherwise defined. In case a milestone payment is not bound with a specific

real task but received once a set of real tasks are completed, we can model it using a dummy

task with appropriate precedence constraints. We can also use dummy tasks to model the case

when negative cash flows are not incurred at the completion time of a task, as will be discussed in

Remark 2 in Section 4.3.

Let C0 = 0, i.e., task 0 starts and finishes at time 0. Let ∆ denote the deadline of the project,

after which the project is worthless. Let Di denote the duration of task i, where D0 = Dn+1 = 0,

and Di ≥ 0 for i = 1, . . . , n. Let Si denote the set of immediate successors of task i under the given

precedence constraints, which are

Ck − Ci ≥ Dk, k ∈ Si, i = 0, . . . , n. (1)

9

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Note that Cn+1 is the project makespan, and we require that Cn+1 ≤ ∆, to ensure that the project

finishes before the given deadline.

Let rf denote the exogenous failure rate of the common risk to the project, which applies to all

the tasks of the project. Besides this common risk, we also consider each task i to have a known

unique risk that is independent of the common risk. We denote the task-specific failure rate of task

i by ri. If task i has no failure probability, we set ri = 0. If risk is realized before the completion

of task i, then task i fails. That is, at any time t < Ci, there is ridt probability of the failure of

task i, irrespective of whether task i has been started or not.

4.1 Assumptions and Limitations

We review the assumptions and limitations of our modeling approach. First, we assume that project

cash flows occur at the completion of each task. In practice, cash flows occur at various points

in time. The literature assumes that cash flow payment occurs either at the start of each task,

or at the end of each task, or at one or several time points between the start and end of each

task. For each of these three possibilities, since task durations are fixed, our model works with

small technical adjustments, as discussed in Remark com:negflow below. We note that most of

the literature, including almost all the work we cite (e.g., Russell 1970, Grinold 1972, Doersch and

Patterson 1977, Russell 1986, Yang et al. 1992, Elmaghraby and Herroelen 1990, Herroelen and

Gallens 1993, Icmeli and Erenguc 1996, Vanhoucke et al. 2001b), assumes payment is made at the

end of each task. Hence, we adopt this assumption for consistency with the literature.

Second, we assume deterministic activity times. This assumption is made for two reasons:

analytical tractability, and the fact that in practice many project time estimates are point estimates.

Alternative estimates using probability distributions, where available, would typically perform

better than single point estimates.

Third, we assume an exogenous failure rate to model the common risk to the project. A typical

example of such a common risk is a competitor releasing a similar product that positions the

project company’s product out of the market. This is a very frequent risk in projects, especially

for new product development in competitive markets (for example, computer chips, consumer

electronics, games, and toys). Mitigating this risk of competition is an important issue in supply

chain management; see Niu et al. (2019a) for some representative recent work.

Fourth, we assume each task to have a known unique risk independent of the common risk.

We specifically assume task risk starts from time zero. This assumption is motivated by practical

considerations. For example, consider a pharmaceutical development project where task i requires

10

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

conducting a specific clinical trial. There is a probability that this type of trial will be prohibited

by regulators. In this case, whether task i has been started or not, it will fail immediately. As

another example, suppose task i requires a specific component from a unique supplier. There is

a probability that the factory becomes incapacitated, for example due to closure, or a disaster

such as a fire, flood or earthquake. This causes the failure of task i, whether it has been started

or not. Note that dual sourcing can mitigate such supply risks, though it may bring competition

among suppliers; see Niu et al. (2019b) for some important new developments in this area. A third

example is the loss of an environmental or planning license related to the task, as may occur due

to a change in local government policy. Further and more generally, assuming that task risk starts

from time 0 is consistent with a financier’s perception of risk. To a financier, an unfinished task is

risky even before it starts, and its cash flow is subject to an interest rate reflecting the risk until

task completion.

For consistency with the literature, we assume that the risk of task i ends at Ci. In the context

of a pharmaceutical project, De Reyck and Leus (2008, pp. 370) write, “Activity success or failure

is revealed at the end of each activity.” Several practical examples also support this assumption, as

we now discuss. Once a clinical trial is completed, the risk vanishes, unless that type of clinical trial

is prohibited retroactively, which is unlikely and punitive. For another example, if the task-specific

risk is financial failure or poor technical performance by a subcontractor, these also vanish at task

completion.

We assume that the failure caused by the common risk or any task i’s individual risk results in

the failure of the whole project, as a result of which all the future cash flows that have not been

collected or paid are lost.

We note that the causes of general failure in our model, for example cancellation of the project

or bankruptcy on the part of the project owner, are external to the project company. Some causes

of task-specific failure, for example poor technical performance by a subcontractor, are also external

events that specifically impact the task in question. Risks that are associated intrinsically with the

performance of the task itself start only when the activity starts. Our work does not model those

task-specific risks that arise only within the execution time or performance of the task.

Fifth, we assume that the task specific risk failure rate ri is constant over time, from time 0

until the completion of task i. We observe that this is a standard way to model a constant risk

over time using survival models (Barlow and Proschan 1965, Elandt-Johnson and Johnson 1999).

Sixth, we assume that task failures are independent. That is, the event that there is a task-

specific failure of task i is assumed to be independent of the event that there is a task-specific failure

11

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

of event j for every pair (i, j) of distinct tasks. Moreover, each such event is also independent

of the event that there is a general failure that impacts all the tasks. Although the events are

probabilistically independent, the occurrence of any failure, either internal or external, immediately

results in the failure of the project. We note that independence of task failures is a key assumption

that may be potentially violated in practice. For example, tasks typically use shared resources, and

such resource sharing directly creates dependencies, e.g., positive correlation, among task times

and among failures.

4.2 ENPV maximization without task-specific risk

In classical maximization of project NPV, a project is assumed to have an overall and constant

discount rate to reflect the risk level of the project and the cost of capital. We model this using a

common failure rate rf . Given a constant failure rate rf ≥ 0, the ENPV of a project is

ENPV =
n
∑

i=1

Fi exp(−rfCi). (2)

Equation (2) is maximized in classical ENPV analysis (for example, Wiesemann et al., 2010).

Using C1, C2, . . . , Cn+1 as the decision variables, the decision problem is to schedule the tasks so

as to maximize the ENPV, subject to Constraints (1). The scheduling decisions include timing

the completion of all the tasks, which also implies a sequencing decision for tasks that are not

preordered by (1). Thus, the ENPV maximization problem is:

max
C1,C2,···,Cn

n
∑

i=1

Fi exp(−rfCi) (3)

s.t. Constraints (1),

C0 = 0, (4)

Cn+1 ≤ ∆. (5)

Following Grinold (1972), we transform problem (3)–(5) into a linear program. Let vi =

exp(−rfCi). Then, problem (3)–(5) is linearized as follows:

max
v1,v2,···,vn

n
∑

i=1

Fivi

s.t. exp(rfDk)vk − vi ≤ 0, k ∈ Si, i = 0, . . . , n,

v0 = 1,

vn+1 ≥ exp(−rf∆).

Now, we consider overall project failure rates that decrease with project progress. First, consider

a mixture of h exponential distributions, each with exogenously given failure rate of r′j and weight

12

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

of wj for j = 1, . . . , h, where
∑h

j=1wj = 1. For such a distribution, the cumulative distribution

function at time t is
∑h

j=1wj(1 − exp(−r′jt)), and accordingly the survival function at time t is
∑h

j=1 exp(−r′jt). Thus, the ENPV of a project with these task failure rates is:

ENPV =
n
∑

i=1

Fi

h
∑

j=1

wj exp(−r′jCi).

Let vij = exp(−r′jCi). Then, the problem is linearized as:

max
v11,v12,···,vnh

n
∑

i=1

Fi

h
∑

j=1

wjvij

s.t. exp(r′jDk)vkj − vij ≤ 0, k ∈ Si, i = 0, . . . , n; j = 1, . . . , h,

v0 = 1,

vn+1,j ≥ exp(−r′j∆), j = 1, . . . , h.

Another commonly used decreasing task failure rate is defined by the Weibull distribution

with exogenously given scale parameter 1/r and shape parameter k. For such a distribution, the

cumulative distribution function at time t is 1− exp(−rktk), and accordingly the survival function

at time t is exp(−rktk). When k = 1, the Weibull distribution becomes the exponential distribution

with constant failure rate r. When 0 < k < 1, the Weibull distribution has a decreasing failure

rate. With project failure rate defined by the Weibull distribution, the ENPV of a project is

ENPV =
n
∑

i=1

Fi exp(−rkCk
i), 0 < k < 1.

Let vi = exp(−rkCk
i). Then, the problem is linearized as:

max
v1,v2,···,vn

n
∑

i=1

Fivi

s.t. exp(rkDk)vk − vi ≤ 0, k ∈ Si, i = 0, . . . , n,

v0 = 1,

vn+1 ≥ exp(−rk∆).

Remark 1 For a project with decreasing task failure rates characterized by either a mixture of

exponential distributions or a Weilbull distribution, the ENPV maximization problem can be solved

via linear programming after appropriate logarithmic transformations.

Remark 1 shows that ENPV maximization can be easily achieved for projects with certain

decreasing failure rates. However, these models assume exogenously given decreasing project failure

rates, which do not always apply. Moreover, this analysis does not explain why, in practice, project

risk decreases as tasks are completed. Our work, described below, addresses this issue.

13

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

4.3 ENPV maximization with task-specific risk

In the above ENPV analysis, a key assumption is that only a common failure rate rf is used to

model the overall risk of the project, which ignores the task-specific risk factors. We now propose an

alternative model that captures both common and task-specific risk factors. This model is consistent

with the reality that the risk level of a project typically decreases as the project proceeds and more

tasks are finished.

We first consider a given task completion time sequence. For notational convenience, suppose

that the tasks are indexed based on their completion time sequence, i.e., we have C0 = 0 ≤ C1 ≤

C2 ≤ · · · ≤ Cn and Cn+1 = Cn. The problem defined by a given sequence of task completion

times is a subproblem of the more general problem we are solving. Our optimization model, more

generally, is over all feasible schedules of task completion times.

We now discuss the discounting of the cash flows due to the risks. Note that cash flow F1

occurs at time C1. At time t ≤ C1, whether or not tasks 1, . . . , n have been started, each of

them may fail. We divide the time [0, C1] into m equal-length intervals, with the lengths of each

interval satisfying δ = C1
m

→ 0 as m → ∞. We denote the m intervals by [0, δ], [δ, 2δ], · · ·,

[kδ, (k + 1)δ], · · · , [(m − 1)δ, C1]. For interval [0, δ], the probability for tasks 1, . . . , n to succeed is

(1− rfδ)Π
n
i=1(1− riδ), since the common risk and unique risks of tasks 1, . . . , n are all independent

by assumption.

Given the success of all tasks in the first time interval [0, δ], the probability for no task to fail

in the second time interval is (1− rfδ)Π
n
i=1(1− riδ). Therefore, the probability for the project not

to fail by the end of the second time interval is (1− rfδ)
2Πn

i=1(1− riδ)
2. Continuing similarly, we

obtain the probability for the project not to fail by time C1 as the following:

lim
m→∞

(1− rfδ)
mΠn

i=1(1− riδ)
m = lim

m→∞

(

1−
rfC1

m

)m (

1−
r1C1

m

)m (

1−
r2C1

m

)m

· · ·

(

1−
rnC1

m

)m

= exp(−rfC1) exp(−r1C1) exp(−r2C1) · · · exp(−rnC1)

= exp(−(rf + r1 + r2 + · · ·+ rn)C1) = exp(−R1C1),

where Ri is defined as

Ri ≡ rf +
n
∑

j=i

rj , i = 1, . . . , n, (6)

for notational convenience. Therefore, the ENPV of cash flow F1 at time C1 is defined as

ENPV1 = F1 · exp(−R1(C1 − C0)),

where C0 = 0.

14

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

We next consider cash flow F2. If any failure happens before C1, including the failure of tasks

1, . . . , n, then the project company will not pay or receive F2, since the whole project fails. Given

that tasks 1, . . . , n have not failed by C1, the probability for tasks 2, . . . , n not to fail during

the interval [C1, C2) is exp(−(rf + r2 + · · · + rn)(C2 − C1)) = exp(−R2(C2 − C1)). Thus, the

probability for the project company to pay or receive F2 is exp(−R1(C1−C0)) exp(−R2(C2−C1)) =

exp[−R1(C1 − C0)−R2(C2 − C1)]. Then, the ENPV for F2 is

ENPV2 = F2 · exp[−R1(C1 − C0)−R2(C2 − C1)].

Continuing this process for i = 1, . . . , n, the expected net present value of cash flow Fi of task i

can be written as

ENPVi = Fi exp [−R1(C1 − C0)−R2(C2 − C1)− · · · −Ri(Ci − Ci−1)]

= Fi exp



−
i
∑

j=1

Rj(Cj − Cj−1)



 . (7)

Remark 2 Consider the perspective that Fi < 0 occurring at Ci essentially implies that it is free

to start task i. Other timings of cash flows can alternatively be modeled as follows. Let Fi occur at

time Ci−αiDi, where 0 < αi ≤ 1 is an exogenous parameter. Note that this is the start time of task

i if αi = 1. Further, add a dummy task i′ with F ′
i = Fi, D

′
i = 0, r′i = 0, and precedence constraint

task i′ partly preceding task i, i.e., Ci − C ′
i ≥ αiDi, and reset Fi = 0. Since task i′ has a negative

cash flow and no risk or processing time, under maximization of ENPV it will be postponed to start

at Ci − αiDi.

Note that when each task has a constant failure rate, the expected net present value of each

cash flow can be written as an exponential function where the exponent is a linear function of task

completion times, as in Equation (7). However, for tasks with decreasing failure rate, for example

modeled by either a mixture of exponential distributions or a Weibull distribution, the expected

net present value of a cash flow is characterized by more complicated nonlinear functions of task

completion times, which are hard to linearize.

We now interpret Equation (6). For a project that starts at time 0, R1 is the failure rate of the

whole project during the period [0, C1], since no tasks have been finished and all tasks contribute

to the overall risk of the project. After time C1, R2 becomes the failure rate of the whole project

during the period (C1, C2], since task 1 has completed at time C1 but all the remaining n− 1 tasks

contribute to the overall risk of the project. Continuing thus, finally Rn becomes the failure rate

of the whole project during the period (Cn−1, Cn].

15

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Hence, Equation (6) indicates that, when tasks 1, . . . , i − 1 have been completed but tasks

i, . . . , n have not, the risk of the project is the sum of the total risks of the unfinished tasks. In this

sense, risk is additive. As a result, the risk level of the project declines during its execution, i.e.,

R1 ≥ R2 ≥ · · · ≥ Rn ≥ Rn+1 = rf .

Remark 3 For ENPV maximization, our model includes the following four features:

1. The failure rates, rf , r1, r2, · · · , rn, additively form the failure rate of the whole project at

different time periods as in (6), even though the risks can arise from different sources;

2. For each time interval (Ci−1, Ci], for i = 1, . . . , n, the failure rate Ri of the whole project is

equivalent to the commonly used discount rate compounded continuously, see (7);

3. The overall discount rate of the project decreases with project execution;

4. Each cash flow has its own unique discount rate, depending on the project schedule.

We note that the third and fourth features in Remark 3 are consistent with those recommended

by Damodaran (2007) for risk-adjusted discount rates, i.e., to apply changing discount rate over

time and to use different discount rates for different cash flows.

Using C1, C2, . . . , Cn as the decision variables, the decision problem is to maximize the total

ENPV,

ENPV =
n
∑

i=1

ENPVi. (8)

The implicit assumption in (7) is that the task completion time sequence is given, and hence

the coefficients Rj are given parameters. However, this sequence is decision dependent. Therefore,

to formulate an overall optimization model, we define the binary variables

xij =

{

1, if task i is scheduled as the jth task to complete,
0, otherwise,

for i, j = 1, . . . , n. Then, the task completion time sequence can be represented by the variables

xij , and we have

Rj = rf +
n
∑

k=j

n
∑

l=1

rlxlk, j = 1, . . . , n. (9)

Given the binary variables xij and the discount rates Rj defined above, we now formulate the

following model to maximize the ENPV of the project.

(MIP) max
Ci,xij

n
∑

i=1







[

n
∑

k=1

Fkxki

]

exp



−
i
∑

j=1



(rf +
n
∑

k=j

n
∑

l=1

rlxlk)(Cj − Cj−1)















(10)

s.t.
n
∑

i=1

xij = 1, 1 ≤ j ≤ n, (11)

16

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

n
∑

j=1

xij = 1, 1 ≤ i ≤ n, (12)

n
∑

j=1

xkjCj −
n
∑

j=1

xijCj ≥ Dk, 0 ≤ i ≤ n, k ∈ Si, (13)

xij ∈ {0, 1}, 1 ≤ i, j ≤ n, (14)

(4) and (5).

In problem MIP, Constraints (11) and (12) ensure that each task is scheduled in exactly one

position in the completion time sequence, Constraints (13) enforce the precedence constraints, and

Constraint (5) enforces the deadline constraint. Observe that the risk profile of the project at any

point in time is dependent on scheduling decisions. This results in the following difficulties from

an optimization perspective:

1. the problem contains many binary variables xij ,

2. the objective function is neither convex nor concave, due to the coexistence of both positive

and negative Fi values,

3. the exponential term in the objective function contains products of xij variables with task

completion time decisions, and

4. Constraints (13) are not linear, due to products of xij variables with task completion time

decisions Cj .

The above features make it mathematically challenging to solve problem MIP optimally. We

approach this problem by considering a fully or partially specified task completion time sequence.

Then, based on structural results and bounds obtained for fully or partially specified sequences, we

develop a branch and bound algorithm to solve the overall problem MIP.

5 Approximating the Maximum ENPV

In Section 5.1, we establish upper and lower bounds on the maximum value of ENPV, as defined

by (7) and (8), for a fully specified task completion time sequence. Similar bounds for a partially

specified sequence are established in Section 5.2.

5.1 Bounds for a full sequence

We now consider a given completion time sequence of the n tasks. Under this given sequence, we

reindex the tasks such that C0 = 0 ≤ C1 ≤ C2 ≤ · · · ≤ Cn and Cn+1 = Cn. Then, problem MIP

can be simplified to:

(SSP) max
C1,···,Cn

n
∑

i=1

Fi exp



−
i
∑

j=1

Rj(Cj − Cj−1)





17

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

s.t. constraints (1), (4), (5),

Ci+1 − Ci ≥ 0, 0 ≤ i ≤ n, (15)

where Rj is sequence dependent, and Constraints (15) ensure that the tasks are completed following

the specified sequence.

5.1.1 Transformation of problem (SSP)

We note that the objective function of problem SSP contains an exponential term, and is in general

neither convex nor concave. We next develop methods to find lower and upper bounds on the

optimal objective function value of SSP. Let

yi = exp



−
i
∑

j=1

Rj(Cj − Cj−1)



⇒ ln(yi) = −
i
∑

j=1

Rj(Cj − Cj−1), (16)

and y0 = 1 so that ln(y0) = 0. Using transformations described in the Appendix, we reformulate

problem SSP as the following problem SSP0 with decision variables y0, y1, · · · , yn+1:

(SSP0) max
y0,y1,···,yn+1

n
∑

i=1

Fiyj

s.t.
k
∑

j=i+1

ln(yj)− ln(yj−1)

Rj
≤ −Dk, for 0 ≤ i ≤ n, k ∈ Si, (17)

n+1
∑

j=1

ln(yj)− ln(yj−1)

Rj
≥ −∆, (18)

yi+1 − yi ≤ 0, 0 ≤ i ≤ n, (19)

y0 = 1 and yn+1 ≥ 0. (20)

The objective function of problem SSP0 is linear. However, SSP0 is hard to solve, since

Constraints (17) and (18) are nonlinear. Therefore, we next linearize Constraints (17) and (18)

approximately, to obtain lower and upper bounds on the optimal objective function value, as

described in the Appendix.

5.1.2 Upper and lower bounds

First, we formulate the following linear program to find an upper bound for the original problem

formulated as SSP0:

(SSP1) max
0≤yi≤1

n
∑

i=1

Fiyi

s.t.

k−1
∑

j=m+1

Rk

Rj

(yj−1 − yj) + yk−1 − yk exp(RkDk) ≥ 0, for 0 ≤ m ≤ n, k ∈ Sm, (21)

18

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

[

1−
Rn+1

R1
− exp(−Rn+1∆)

]

y0 −

n
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj + yn+1 ≥ 0, (22)

(19) and (20).

Observe that in the linear program SSP1, Constraints (21) linearize the original Con-

straints (17), and Constraint (22) linearizes Constraint (18). We have the following result.

Theorem 1 The optimal objective function value of problem SSP1 is an upper bound on the optimal

objective function value of problem SSP0.

Next, we formulate the following linear program to find a lower bound for the original problem

formulated as SSP0:

(SSP2) max
0≤yi≤1

n
∑

i=1

Fiyi

s.t.

[

1−
Rk

Rm+1
− exp(−RkDk)

]

ym −

k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yj + yk ≤ 0, for 0 ≤ m ≤ n, k ∈ Sm, (23)

n
∑

j=1

Rn+1

Rj

(yj−1 − yj) + yn − yn+1 exp(Rn+1∆) ≤ 0, (24)

(19) and (20).

In problem SSP2, Constraints (23) linearize the original Constraints (17), and Constraint (24)

linearizes the deadline Constraint (18). Then, we have the following result.

Theorem 2 The optimal objective function value of problem SSP2 is a lower bound on the optimal

objective function value of problem SSP0.

It is possible that the project schedule found by problem SSP1 is not feasible, due to the relaxation

of the constraints in the linearization process. On the other hand, the schedule found by problem

SSP2 is always feasible, since the linearized constraints are tighter than the initial ones. However,

problem SSP2 may not be able to find a feasible schedule when one exists, due to its more stringent

constraint on the deadline. We find from our computational study that, when the deadline ∆ is

20% or more than the minimum possible project makespan, problem SSP2 typically does find a

feasible schedule.

To estimate the quality of the bounds found by problems SSP1 and SSP2, we perform a

computational study. We use the 330 instances generated as described in Section 7.1 below.

We report our results in Table 1, where nc denotes the number of cash flows in each instance.

19

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

For each instance, the sequence of tasks follows the topological order of the tasks generated

by RanGen (Demeluemeester et al. 2003). Table 1 reports the average relative percentage gap,

“Gap%”, between the upper and lower bounds for projects with different numbers of cash flows, i.e.,

100(UB−LB)/UB. These results show that our bounds for the maximum ENPV of a project with

fixed task completion time sequence are very accurate. The success of these bounding techniques

is an important factor in the efficient maximization of ENPV, as discussed in Section 7.1.

nc 10 12 14 16 18 20 22 24 26 28 30

Gap% 0.005 0.004 0.005 0.003 0.005 0.005 0.005 0.008 0.011 0.013 0.015

Table 1: Accuracy of Bounds for a Full Sequence.

5.2 Bounds for a partial sequence

During branch and bound enumeration, it is often necessary to consider a partially specified task

completion time sequence. In that situation, the bounds established in Section 5.1 cannot be

applied. Hence, in this section, we develop upper and lower bounds on the optimal ENPV for a

partial sequence.

We consider a partial sequence of a set of tasks indexed by 0, 1, · · · , l such that C0 = 0 ≤ C1 ≤

C2 ≤ · · · ≤ Cl. Here, l is the last task completed under the partially specified sequence. For tasks

i = l + 1, l + 2, . . . , n + 1, the task completion times are unknown, but we require Ci ≥ Cl. Let

σ′ = {0, 1, . . . , l}, σ′′ = {l + 1, l + 2, . . . , n, n+ 1}, and σ = σ′ ∪ σ′′.

For any task i ∈ σ′′, let Ai be the set of all predecessor tasks in σ′′ that must finish no later

than the start time of task i, and Bi be the set of all successor tasks in σ′′ that must start no

earlier than the completion time of task i, as specified by the precedence constraints. To remove

the sequence dependence on the unsequenced tasks in σ′′ and develop upper and lower bounds on

optimal ENPV, for each task i ∈ σ′′, we let

1. Ri,min = rf +
∑

j∈Bi
rj + ri, and

2. Ri,max = rf +
∑

j∈(σ′′\Ai) rj .

We have the following inequality regarding the relationship of Ri, Ri,min, and Ri,max.

Ri,min ≤ Ri ≤ Ri,max ≤ Rl+1 = rf +
∑

j∈σ′′

rj . (25)

Then, to find an upper bound on the maximum ENPV for a partially specified sequence, we

solve the following program:

(PSSP1) max
0≤yi≤1

n
∑

i=1

Fiyi

20

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

s.t.

k−1
∑

j=i+1

Rk

Rj

(yj−1 − yj) + yk−1 − yk exp(RkDk) ≥ 0, i ∈ σ
′
, k ∈ Si ∩ σ

′
, (26)

l
∑

j=i+1

Rk,max

Rj

(yj−1 − yj) + yl − yk exp(Rk,minDk) ≥ 0, i ∈ σ
′
, k ∈ Si ∩ σ

′′
, (27)

yi − yk exp(Rk,minDk) ≥ 0, i ∈ σ
′′
, k ∈ Si ∩ σ

′′
, (28)

[

1−
Rn+1

R1
− exp(−Rn+1∆)

]

y0 −

l
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj +
Rn+1

Ri,min
yi ≥ 0, i ∈ σ

′′
, (29)

yi+1 − yi ≤ 0, 0 ≤ i ≤ l − 1, (30)

yi − yl ≤ 0, i ∈ σ
′′
, (31)

y0 = 1, yi ≥ 0, i ∈ σ
′′
.

The next result shows that problem PSSP1 establishes an upper bound on the maximum ENPV.

Theorem 3 Given C0 = 0 ≤ C1 ≤ C2 ≤ · · · ≤ Cl and Cl ≤ Cl+1, Cl+2, . . . , Cn+1, the optimal

objective function value of problem PSSP1 is an upper bound on the maximum ENPV of the project

scheduling problem.

We now develop a model for finding a lower bound on the maximum ENPV. First, we assume

the following condition:

DiR1 ≤ 1, (32)

for all 0 ≤ i ≤ n + 1. We note that condition (32) is not restrictive, else the failure rate is

unreasonably high and it is hard to accept the project. Under condition (32), we develop the

following model to find a lower bound on the maximum ENPV for a partially specified task

completion time sequence:

(PSSP2) max
0≤yi≤1

n
∑

i=1

Fiyi

s.t.

[

1−
Rk

Ri+1
− exp(−RkDk)

]

yi −

k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)

yj + yk ≤ 0, i ∈ σ
′
, k ∈ Si ∩ σ

′
, (33)

[

1−
Rk,min

Ri+1
− exp(−Rk,minDk)

]

yi −

l
∑

j=i+1

(

Rk,min

Rj+1
−

Rk,min

Rj

)

yj + yk ≤ 0, i ∈ σ
′
, k ∈ Si ∩ σ

′′
, (34)

[

1−
Rk,min

Ri,max − ri
− exp(−Rk,minDk)

]

yi + yk ≤ 0, i ∈ σ
′′
, k ∈ Si ∩ σ

′′
, (35)

l
∑

j=1

Rn+1

Rj

(yj−1 − yj) + yl − yn+1 exp(Rn+1∆) ≤ 0, (36)

yi+1 − yi ≤ 0, 0 ≤ i ≤ l − 1, (37)

yi − yl ≤ 0, i ∈ σ
′′
, (38)

y0 = 1, yi ≥ 0, i ∈ σ
′′
.

The next result shows that problem PSSP2 finds a lower bound on the maximum ENPV.

21

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Theorem 4 Given C0 = 0 ≤ C1 ≤ C2 ≤ · · · ≤ Cl and Cl ≤ Cl+1, Cl+2, . . . , Cn+1, the optimal

objective function value of problem PSSP2 is a lower bound on the maximum ENPV of the project

scheduling problem.

Similar to the above discussion for a fully specified sequence, it is possible that the project

schedule found by problem PSSP1 is not feasible, whereas if problem PSSP2 finds a schedule it

is always feasible. Problem PSSP2 can fail to find a feasible solution even if the original problem

is feasible, due to the stronger deadline and other constraints. However, problem PSSP2 typically

finds a feasible schedule when the deadline ∆ is not very close to the minimum possible project

makespan.

6 Branch and Bound Algorithm

In this section, we incorporate the bounding techniques presented in Section 5 into a branch and

bound algorithm to maximize the ENPV of a project with risk of task failure. In Section 6.1, we

introduce an elimination rule to restrict the candidate task sequences. In Section 6.2, we introduce

two heuristic rules that simplify the problem by assuming a constant failure rate. One provides a

benchmark, and the other provides a lower bound on optimal value. A heuristic based on sequence

generation is also described in Section 6.2. In Section 6.3, we describe our branch and bound

algorithm.

6.1 An elimination rule

For a given completion sequence σ, letC∗(σ) be the optimal completion time vector, and ENPV∗(σ)

be the corresponding net present value. Let l < m be two tasks in σ, where l has no successors that

are not shared with task m, and task m has no predecessors that are not shared with task l. Let σ′

be the sequence obtained from σ after interchanging l and m. We apply the following elimination

rule.

Theorem 5 If rl = rm, Dl ≥ Dm, and Fl ≤ Fm, then ENPV ∗(σ′) ≥ ENPV ∗(σ).

Theorem 5 is useful in that, if the project manager does not have precise information about the

exact risk value of each task, we may simply classify all the tasks into a few risk categories, e.g.,

high risk tasks, medium risk tasks, and low risk tasks. Then, the same risk value can be assigned to

all the tasks within each category. In this case, since all the tasks within a category have the same

risk, we can apply Theorem 5 if the durations and cash flows of two tasks satisfy the conditions of

the lemma.

22

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

6.2 Heuristics without task-specific risks

A straightforward way to maximize the ENPV heuristically is to use an estimation method that

maximizes ENPV for a fixed failure rate. We introduce two heuristics that apply this idea. In

Section 6.2.1, we introduce a simple method for ENPV estimation, assuming an average failure

rate for both scheduling and ENPV computation. In Section 6.2.2, we describe a heuristic that

uses a constant failure rate to schedule tasks, and then computes the ENPV using both common

and task-specific failure rates.

6.2.1 ENPV maximization with only common failure rate

Grinold (1972) formulates the NPV maximization problem with a constant discount rate as a

simple linear program. Given a constant failure rate rf , or equivalently a constant discount rate,

the ENPV maximization problem can be formulated as a linear program, as shown in Section 4.2.

In situations where there is a lack of detailed understanding of how project risk changes as

tasks are completed, it is natural to assume a constant failure rate for the whole project. There

are various ways to determine the constant failure rate to use. Given the task-specific failure rate

ri of each task i, one possible constant failure rate is the average rate during project execution as

the risk declines from
∑n

i=1 ri to 0. Note that during the execution of a project, the minimum and

maximum task-specific failure rates are 0 and
∑n

i=1 ri, respectively, and thus we use the average of

the two values:

r̄ =
n
∑

i=1

ri/2.

Using this rate, the maximum project ENPV can be estimated as follows.

Grinold estimation with averaged failure rate (GE)

Use Grinold’s method to estimate the project ENPV, where a constant failure rate rf + r̄ is used

both for scheduling and for the ENPV computation of the schedule found.

Note that since the value of ENPV obtained by procedure GE uses a midrange estimate of the

failure rate, it is neither a lower bound nor an upper bound on the maximum ENPV. For this

reason, GE is not implemented within our branch and bound algorithm. However, it is used as a

benchmark in our computational studies in Section 7.

6.2.2 Grinold heuristic

The estimation procedure GE can be improved with more detailed analysis of the risks affecting

the project. A feasible project schedule is found by Grinold’s method which assumes a constant

23

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

failure rate. However, task-specific failure rates can be used to calculate the ENPV of this schedule.

Further, other values of the common failure rate can be used. We propose the following heuristic for

task scheduling and ENPV computation. LetK ≥ 1 denote a constant integer and ε = (
∑n

i=1 ri)/K.

Grinold Heuristic for ENPV computation (GH)

1. Use Grinold’s algorithm to find a feasible schedule for each constant failure rate rf + ε, rf +

2ε, . . . , rf +Kε.

2. Compute the ENPV of each schedule found in Step 1 using Equations (7) and (8) with task-

specific failure rates, and choose a schedule with the largest ENPV.

Remark 4 Since each schedule found by Grinold’s algorithm in Step 1 is feasible, the schedule

selected in Step 2 is also feasible. Moreover, the ENPV of that schedule is evaluated using task-

specific failure rates, consistent with Equation (7). Hence, Heuristic GH finds a lower bound on

the maximum ENPV.

6.2.3 Sequence based heuristic

Note that for any sequence of task completion times satisfying precedence constraints, by solving

problem SSP2, we can find a feasible schedule with an ENPV that is a lower bound on the

maximum ENPV. Consequently, we propose the following sequence generation process with ENPV

computation, which can be run multiple times to deliver multiple lower bounds.

Sequence based heuristic for ENPV computation (SH)

0. Let i = 1 and the initial sequence be empty.

1. Find all the tasks that can be feasibly placed as the ith task of the current sequence, and from

those tasks, with equal probability randomly choose one and place it to be the ith task to complete

in the current sequence.

2. If i = n, stop; else, let i = i+ 1 and go to Step 1.

3. Solve problem SSP2 for the full sequence to find a lower bound on the maximum ENPV.

6.3 Branch and bound

Using Heuristics GH and SH described in Section 6.2 as lower bound methods, and the lower and

upper bounds established in Sections 5.1 and 5.2, we design a branch and bound algorithm to

find a schedule of the tasks in a project with maximum ENPV. Our branch and bound algorithm

starts with only the dummy task 0 scheduled, and constructs partial sequences, one task at a time,

while maintaining feasibility with respect to precedence constraints, and using the elimination rule

24

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

established by Theorem 5. From Theorems 3 and 4, we repeatedly fix longer partial sequences, and

thus obtain smaller upper bounds and larger lower bounds. If the upper bound of a branch is no

larger than the lower bound of another branch, then we eliminate the first branch. The details of

our branch and bound algorithm are as follows:

Branch and Bound Heuristic (BH)

1. Initialization. Specify an allowable tolerance α; a current node is deleted if the maximum lower

bound found so far is no less than (1−α) times the upper bound of the current node. Index all the

tasks in topological order based on the precedence constraints. Let σ′ contain only the dummy task

0, and let σ′′ contain tasks 1, . . . , n+ 1. Run Heuristics GH and SH to find two feasible schedules.

Let the global lower bound, LB, be the maximum of the ENPV values of the schedules found. Let

the global upper bound, UB, be the upper bound found by problem PSSP1 with σ′ and σ′′ as

defined above.

2. Root node. If UB − LB ≤ (1 − α)UB, then stop; otherwise, for each task j in σ′′ that

feasibly completes earliest among all the tasks in σ′′, create a subnode with updated subsequences

σ′ and σ′′ as follows: task j is scheduled to complete no earlier than the last completed task

in σ′, and is removed from σ′′. If no subnode exists, then stop. Each subnode defines a lower

and an upper bound, as specified in Step 3. Let LBmax and UBmax denote the maximum of the

lower and upper bounds of all the subnodes, respectively. Update LB = max{LB,LBmax} and

UB = min{UB,UBmax}.

3. Nonroot node. At initialization of a node, σ′ and σ′′ are defined by its parent node. The lower

bound of the current node, LB′, is found by solving problem SSP2, using a full sequence where

tasks in σ′ are in the sequence specified by σ′, and tasks in σ′′ are in increasing index sequence.

The upper bound of the current node, UB′, is found by solving problem PSSP1, using partial

sequence specified by σ′ defined above. Let LB = max{LB,LB′}. If UB′ − LB ≤ (1 − α)UB′,

then discontinue branching and return to the parent node; otherwise, evolve the current node with

LB′ and UB′ updated when necessary, as for the root node.

7 Computational Studies

In this section, we test the performance of our models and solution procedures for project evaluation

and selection. In Section 7.1, we study the performance of Heuristic BH for finding the maximum

ENPV, and demonstrate its improvement over the benchmark GE and Heuristic GH. Observe that

the schedule found in GE uses methodology proposed by Grinold (1972), whereas Heuristic GH

extends the literature by comparing multiple schedules. In Section 7.2, we study how Heuristic BH

25

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

improves project selection, relative to procedure GE and Heuristic GH. Throughout this section,

the granularity parameter K in Heuristic GH is fixed at 100, and we run Heuristic SH 30,000

times to find a lower bound at the root node. All algorithms are coded in Microsoft Visual C++

2010 Express with IBM ILOG CPLEX Optimization Studio 12.3, and run on a 4.0GHz Intel Core

i7-6700K computer with 32GB of memory. Section 7.3 provides some insights derived from our

results.

7.1 Project evaluation

Our experimental design varies only parameters that affect the performance of the procedures being

tested (Hall and Posner 2001). We control parameters including the number of cash flows, depth of

project network (i.e., the maximum number of tasks in series in the network), tightness of project

deadline, size of failure rates, and pattern of cash flows. For each parameter combination specified

below, we evaluate 30 random instances using networks generated from RanGen (Demeulemeester

et al. 2003). RanGen generates networks with controlled depth indicator, I = (m − 1)/(n − 1),

where m is depth of the network, and n is the number of tasks without including any dummy task.

However, for greater consistency with the project management literature (Perry and Greig 1975,

Dawson and Dawson 1998), we discard the discrete uniformly distributed task times generated by

RanGen, and instead generate task times from the Beta(2,2) distribution, and then rescale them to

be between 1 and 5 (by multiplying by 4 and then adding 1). In all our studies, we use a common

failure rate rf = 0.004.

Our test instances are generated as follows. We assign a positive cash flow to the end-of-project

dummy task that has a zero processing time and is preceded by all the other tasks. Thus, the

number of cash flows is nc = n + 1, and task nc is the end of project dummy task. For other

parameters, we set the depth indicator to 0.5, the ratio of the deadline to the minimum makespan

ratio to 2.0, the task-specific failure rate to be generated with value 0 with probability 0.7, and

values r, 2r and 3r each with probability 0.1 where r = 0.001, and the number of positive cash

flows to 2 (see the Appendix for details on cash flow generation).

We now study how the total number of cash flows, the depth indicator of project network, the

ratio of the deadline to the minimum makespan, the magnitude of the task-specific failure rate,

and the number of positive cash flows, affect the performance of the benchmark procedure GE and

Heuristics GH and BH, respectively.

First, we investigate the effect of the number of cash flows. We let the number of cash flows be

nc ∈ {10, 12, . . . , 30}, and generate 30 instances for each nc value. In total, we generate 11∗30 = 330

26

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

instances to test the effects of nc. Recall that nc = n + 1. When nc ≤ 20, every instance can be

solved by Heuristic BH within one CPU hour with an allowable gap of α = 0. However, when

nc ≥ 22, we need to specify a nonzero tolerance between the lower and upper bounds for several

instances to be solved within one CPU hour. Specifically, we increase α by 0.01 for each additional

CPU hour used, until the corresponding instance is solved. For nc = 22, 24, 26, 28, 30, the numbers

of instances solved with α > 0 are 1, 5, 13, 16, and 22, out of 30, respectively.

Let zGE , zGH , zLB and zUB denote the ENPV found by GE, the same by Heuristic GH,

and the global lower and upper bounds from Heuristic BH, respectively. Our computational

results for the effect of nc appear in Table 2, where each row represents a mean or median

result over the corresponding 30 instances. In Table 2, column “EstGap%” is the mean relative

percentage gap between the ENPV found by GE and the upper bound from Heuristic BH (i.e.,

100(zGE − zUB)/zUB); column “Imp%” is the mean percentage improvement from the ENPV found

by Heuristic GH over that found by Heuristic BH (i.e., 100(zLB − zGH)/zGH); column “GHgap%”

is the mean relative percentage gap between the ENPV found by Heuristic GH and the upper bound

from Heuristic BH (i.e., 100(zUB − zGH)/zUB); column “BHgap%” is the mean relative percentage

gap between the lower and upper bounds found by Heuristic BH (i.e., 100(zUB − zLB)/zUB); column

“Time” is the median running time of Heuristic BH in CPU seconds; and finally, column “Nodes”

is the median number of branch nodes used by Heuristic BH.

nc EstGap% Imp% GHgap% BHgap% Time Nodes
100(zGE−zUB)

zUB

100(zLB−zGH)
zGH

100(zUB−zGH)
zUB

100(zUB−zLB)
zUB

CPU Seconds Median Median

10 1.45 0.42 0.42 0.01 6.5 40
12 1.28 1.43 1.39 0.02 7.6 92
14 2.89 0.96 0.96 0.02 10.3 149
16 1.84 2.16 2.06 0.03 14.0 584
18 1.65 3.28 3.13 0.04 19.8 2,565
20 2.54 5.60 5.12 0.04 52.9 52,274
22 2.70 5.04 4.68 0.11 45.1 20,326
24 6.75 6.37 5.90 0.39 327.5 195,615
26 0.23 10.37 9.37 0.88 1,928.8 1,006,923
28 2.17 11.23 11.43 2.28 3,600.4 2,393,527
30 -0.02 13.05 14.86 4.90 10,335.9 6,403,286

All 2.13 5.45 5.39 0.79 32.3 10,724

Table 2: Performance Sensitivity to Number of Cash Flows.

From Table 2, we observe that procedure GE typically overestimates the maximum ENPV of

projects, especially those with a moderate number of cash flows. It appears that the overestimation

is less severe when the number of cash flows exceeds 26, which may be because upper bounds for

those instances are loose. Heuristic BH significantly improves the schedule found by Heuristic GH,

27

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

especially for larger projects, providing an overall average improvement of 5.45%, and 13.05%

when nc = 30. The gap between the ENPV found by Heuristic GH and the upper bound from

Heuristic BH increases as the number of cash flows increases. The gap between the lower and upper

bounds from Heuristic BH also increases with the number of cash flows, with an overall average of

0.79%.

Next, we set nc = 16 and investigate the effect of the four other parameters together. First,

we study the effect of the depth indicator, I ∈ {0.3, 0.5, 0.7}. Second, we consider the ratio

of the deadline to the minimum makespan, d ∈ {1.4, 1.7, 2.0}. Third, we set the task-specific

failure rate to be 0 with probability 0.7, and values r, 2r and 3r each with probability 0.1, with

r ∈ {0.0005, 0.0010, 0.0015}. Fourth, we study the number of positive cash flows np ∈ {1, 2, 3}; see

the Appendix for details about cash flow generation. Thus, we generate 90 networks from RanGen

for nc = 16 and I = 0.3, 0.5, 0.7, and using these networks we generate 3 ∗ 3 ∗ 3 ∗ 3 ∗ 30 = 2430

instances in total.

Parameter EstGap% Imp% GHgap% BHgap% Time Nodes
100(zGE−zUB)

zUB

100(zLB−zGH)
zGH

100(zUB−zGH)
zUB

100(zUB−zLB)
zUB

CPU Seconds Median Median

I = 0.3 0.69 2.33 2.25 0.06 33.0 15,939.5
I = 0.5 0.75 2.81 2.62 0.07 14.8 792.0
I = 0.7 0.95 2.98 2.75 0.06 12.2 263.5

d = 1.4 0.85 2.78 2.57 0.06 16.7 1,062.0
d = 1.7 0.80 2.69 2.54 0.08 16.7 1,133.5
d = 2.0 0.73 2.65 2.50 0.07 16.7 1,045.0

r = 0.0005 0.64 1.12 1.11 0.02 17.0 1,010.0
r = 0.0010 0.69 2.79 2.64 0.06 16.6 1,116.0
r = 0.0015 1.05 4.21 3.86 0.12 16.6 1,147.5

np = 1 -1.19 4.15 3.77 0.04 18.9 1,733.0
np = 2 1.33 2.63 2.46 0.03 15.8 860.0
np = 3 2.25 1.33 1.38 0.13 15.5 928.0

All 0.79 2.70 2.54 0.07 16.7 1,087.0

Table 3: Sensitivity to Deadline, failure rate, and Number of Positive Cash Flows.

The effects of depth indicator, deadline, failure rate, and positive cash flows on the various

procedures are summarized in Table 3, using the same column interpretations as for Table 2. The

overestimation by GE increases with the depth of the project network, the tightness of the deadline

where a tighter deadline is represented by a smaller d value, the task-specific failure rate, and the

number of positive cash flows. The improvement from Heuristic BH over Heuristic GH increases

with a greater depth indicator, a larger task-specific failure rate, and fewer positive cash flows.

The gap between the ENPV from Heuristic GH and the upper bound from Heuristic BH is not

significantly affected by the tightness of the deadline, but increases with the depth indicator and the

28

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

task-specific failure rate, and decreases with the number of positive cash flows. For Heuristic BH,

a smaller depth indicator, a larger task-specific failure rate, and a smaller number of positive cash

flows make instances harder to solve.

7.2 Project selection

In this section, we study how Heuristic BH improves project selection, relative to procedure GE

and Heuristic GH. Recall that in our study of the effects of various parameters in Section 7.1, we

have in total 11+3 ∗ 3 ∗ 3 ∗ 3 = 92 parameter combinations, with 30 instances generated for each of

them. We assume that the 30 projects for each parameter combination are candidates for project

selection, and define them to form a group.

Companies often select their projects by ranking them (Green et al. 1996, Goletsis et al. 2003).

First, we study how GE, GH, and BH rank projects differently, based on their maximum ENPV

values. For each group, we compute the Kendall tau rank correlation coefficient (Kendall 1938),

as defined in the Appendix, between the ENPV estimates from GE and BH, and also between

the ENPV estimates found by Heuristics GH and BH. We first consider the Kendall coefficient

between the ENPV estimates found by GE and BH. For the eleven groups of instances with nc ∈

{10, 12, . . . , 30}, the coefficients are 0.96, 0.94, 0.92, 0.88, 0.86, 0.80, 0.83, 0.82, 0.75, 0.76, and 0.70,

respectively, with a mean of 0.84. For the other 81 groups of instances, and for different parameter

values of I, D, r, and np, results are summarized in the second column of Table 4. The correlation

decreases with the depth indicator and the task-specific failure rate, but increases with the number

of positive cash flows.

Parameter Coef (GE & BH) Coef (GH & BH) Imp%

I = 0.3 0.92 0.92 1.5
I = 0.5 0.87 0.90 1.7
I = 0.7 0.86 0.90 1.7

d = 1.4 0.88 0.91 1.6
d = 1.7 0.89 0.92 1.6
d = 2.0 0.88 0.91 1.8

r = 0.0005 0.93 0.95 0.7
r = 0.0010 0.88 0.90 1.7
r = 0.0015 0.84 0.89 2.5

np = 1 0.85 0.88 2.6
np = 2 0.88 0.91 1.6
np = 3 0.91 0.94 0.7

All 0.88 0.91 1.7

Table 4: Project Ranking and Portfolio Selection.

Second, we study the rank correlation between the ENPV’s achieved by Heuristics GH and BH.

29

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

For the eleven groups of instances with nc ∈ {10, 12, . . . , 30}, the coefficients are 0.99, 0.96, 0.97,

0.89, 0.92, 0.85, 0.83, 0.86, 0.77, 0.79, and 0.66, respectively, with a mean of 0.86. From Table 4,

we observe that the correlation has a similar pattern to that between the ENPV estimates found

by GE and BH. Overall, compared with GE, Heuristic GH provides project rankings that are more

consistent with those from Heuristic BH.

Third, we study the effect on total project portfolio value that results from Heuristics GH and

BH selecting projects differently, when selection is limited by a budget constraint. To set the budget

constraint, we first specify the cost of each individual project. We define the cost of a project as the

sum of all the negative cash flows of tasks that are not successors, as specified by the precedence

constraints, of the smallest indexed task with a positive cash flow. Then, the portfolio budget limit

is set to half the total cost of the 30 projects that are available for selection. Projects are selected

to maximize the sum of their estimated ENPVs, subject to the budget constraint on cost. This

project selection problem is a classical 0-1 knapsack problem (Kellerer et al. 2004), which we solve

optimally using dynamic programming.

We compare the total values of the project portfolios selected by Heuristics GH and BH. For

the eleven groups of projects with nc ∈ {10, 12, . . . , 30}, Heuristic BH selects project portfolios with

0.2%, 1.0%, 0.8%, 2.9%, 4.2%, 4.5%, 6.7%, 5.1%, 11.6%, 8.5%, and 13.3% greater value, respectively,

for an overall mean of 5.4%. We observe that the gain in project portfolio value is particularly

significant for larger project sizes. For the other 81 groups of instances, and for different parameter

values of I, D, r, and np, the fourth column of Table 4 shows the % improvement in project portfolio

value delivered by Heuristic BH relative to Heuristic GH. This improvement increases slightly with

the depth indicator and decreases slightly with the tightness of the deadline, but increases strongly

with the task-specific failure rate and decreases strongly with the number of positive cash flows.

7.3 Insights

Our main insights, supported by our computational results, are (a) how project risk declines as

tasks are completed, even with constant task failure rate, and (b) how this decreasing project risk

affects the scheduling, evaluation and selection of projects. The quantification of the effect of risk

on the project is technically challenging, and we provide an approach to achieve it. Consistent with

intuition, our work first offers the following general insights:

1. Tasks with larger cash flow, i.e., larger cash inflow or smaller cash outflow, should be processed

earlier, holding other factors constant.

2. For a typical project with a positive ENPV, tasks with larger risk should be processed earlier,

30

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

holding other factors constant.

3. For a typical project with a positive ENPV, tasks with shorter processing time should be

processed earlier, holding other factors constant.

However, the three factors of cash flow, risk, and processing time interact with each other in

complex ways. For example, in the following instance, it is better to process a task with smaller cash

inflow earlier. The instance contains two tasks with rf = 0, F1 = 10, F2 = 100, r1 = r2 = 0.004,

D1 = 10, and D2 = 100, and no precedence constraints. Processing the two tasks consecutively in

the sequence 1 → 2 results in ENPV= 71.10950, while sequence 2 → 1 results in ENPV= 49.25000.

Further, in the following instance, it is better to process a task with smaller risk earlier. The

instance contains two tasks with rf = 0, F1 = 10, F2 = 100, r1 = 0.008, r2 = 0.004, D1 = 100, and

D2 = 10. Processing the two tasks consecutively in the sequence 1 → 2 results in ENPV= 31.95036,

while sequence 2 → 1 results in ENPV= 92.67723.1

The above examples only consider two sequences 1 → 2 and 2 → 1, under which two tasks

are processed consecutively without inserted idle time. Whereas, we use a continuous optimization

model that allows a task to start at any time if feasible, which is more complicated than a pure

sequencing decision. These resulting complications support the value of our optimization approach.

8 Concluding Remarks

This paper studies the maximization of ENPV for projects under risk, and the selection of projects

based on their maximum ENPV. Both the academic and business literatures extensively discuss the

issue that project risk declines as tasks are completed. However, our work is apparently the first that

explicitly models the reality that the project failure rate at any point in time is dependent on which

tasks have been completed. Our optimization model demonstrates that the resulting improvements

in scheduling decisions for a project yield a significant improvement in ENPV. Further, this more

precise maximization of ENPV for individual projects enables improved project selection that yields

a significant increase in project portfolio value.

Our work contains several insights that inform the project scheduling and selection decisions of

managers of project companies. First, it is important to recognize, and incorporate into decision

making, the reduction in project risk that occurs when a task is completed, and how this affects

project evaluation. Second, in order to achieve this, it is important to quantify the risk associated

with individual project tasks and to use that information to schedule projects for maximum ENPV.

1The above three insights and two instances are recommended by an anonymous reviewer.

31

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Third, tasks with higher failure rate and without large cost should be prioritized, since this more

quickly reduces the failure rate of a project, which increases its ENPV. Fourth, ENPV values

that are adjusted for risk of failure may differ significantly from those that are not, and these

differences may be greater for some projects than others, which affects relative project value.

Consequently, a significant improvement in the value of a portfolio of projects can be achieved

by using our model, and this should be useful to companies that run many projects affected by

risk. Finally, our sensitivity analysis results identify project characteristics that are associated with

larger improvement in ENPV from our modeling approach, and this information may be especially

useful to companies that run projects with such characteristics.

Our work also suggests several directions for future research, including for modeling, algorithm

design, and generalizability for additional applications. For modeling, an optimization model can

be developed to represent decreasing task failure rates such as occur with a mixture of exponential

distributions or a Weibull distribution, and/or project failure rate using a more general function of

combinations of the failure rates of the unfinished tasks. We consider fatal risks that cause project

failure, and it would be useful to study less severe risks that affect task duration or cash flow. Also,

it would be valuable to model intrinsic task risks that start only when the task starts. Further, an

empirical study of the way in which project failure rate reduces during execution in specific project

management applications would be valuable. For algorithm design, we recommend the development

and testing of heuristic rules for adjusting failure rates that are simpler than the optimal task-level

optimization approach we describe. In order to address more applications, our work can usefully be

generalized by the consideration of additional practical constraints, for example to model resource

limitations. Also, the scheduling and selection models in our work can be generalized to support

the management of multiple concurrent projects with maximization of total ENPV objective. In

conclusion, we hope that our work will encourage further research on the important topic of ENPV

maximization for projects subject to failure.

Acknowledgments

The authors are grateful to the Department Editor Chelliah Sriskandarajah, the Senior Editor, and

the two anonymous reviewers for their valuable comments, which have significantly improved the

quality of this work. The first author was partially supported by the National Science Foundation

of China [Grants 71421002, 71531010, and 71790592]. The second author was supported in part by

Grant No. 71732003 (Janury 2018 - December 2022) from the National Natural Sciences Foundation

of China, and in part by the Berry Professorship at the Fisher College of Business, The Ohio State

32

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

University.

References

Archer, N.P., F. Ghasemzadeh. 1999. An integrated framework for project portfolio selection.

International Journal of Project Management 17 207–216.

Bard, J.F. 1985. Parallel funding of R&D tasks with probabilistic outcomes. Management Science

31(7) 814–828.

Barlow, R.E., F. Proschan. 1965. Mathematical Theory of Reliability, Wiley.

Beaves, R.G. 1993. The case for a generalized net present value formula. The Engineering

Economist 38(2) 119–133.

Blau, G.E., J.F. Pekny, V.A. Varma, P.R. Bunch. 2004. Managing a portfolio of interdependent new

product candidates in the pharmaceutical industry. Journal of Product Innovation Management

21(4) 227–245.

Browning, T.R., R. V. Ramasesh. 2007. A survey of activity network-based process models for

managing product development projects. Production and Operations Management 16(2) 217–

240.

Chapman, C., S. Ward. 2002. Managing Project Risk and Uncertainty: A Constructively Simple

Approach to Decision Making. Wiley, Chichester, U.K.

Chen, W.-N., J. Zhang. 2012. Scheduling multi-mode projects under uncertainty to optimize cash

flows: A Monte Carlo ant colony system approach. Journal of Computer Science and Technology

27(5) 950–965.

Coolen, K., W. Wei, F.T. Nabibon, R. Leus. 2014. Scheduling modular projects on a resource

bottleneck. Journal of Scheduling 17 67–85.

Cooper, R.G. 1985. Selecting winning new product projects: Using the NewProd system. Journal

of Product Innovation Management 2(1) 34–44.

Cooper, R.G., S.J. Edgett, E.J. Kleinschmidt. 2001. Portfolio management for new product

development: Results of an industry practices study. R&D Management 31(4)361–380.

Creemers, S., B. De Reyck, R. Leus. 2015. Project planning with alternative technologies in

uncertain environments. European Journal of Operational Research 242 465–476.

33

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Damodaran, A. 2007. Strategic risk taking: A framework for risk management. Pearson Prentice

Hall. Chapter 5, Risk adjusted value, pp. 99–144.

Dawson, R.J., C.W. Dawson. 1998. Practical proposals for managing uncertainty and risk in

project planning. International Journal of Project Management 16(5) 299–310.

Demeulemeester, E., M. Vanhoucke, W. Herroelen. 2003. RanGen: A random network generator

for activity-on-the-node networks. Journal of Scheduling 6 17–38.

De Reyck, B., Y. Grushka-Cockayne, R. Leus. 2007. A new challenge in project scheduling: The

incorporation of activity failures. Tijdschrift voor Economie en Management LIII(3) 411–434,

Katholieke Universiteit Leuven, Belgium.

De Reyck, B., R. Leus. 2008. R&D project scheduling when activities may fail. IIE Transactions

40 367–384.

Doersch, R.H., J.H. Patterson. 1977. Scheduling a project to maximize its net present value: A

zero-one programming approach. Management Science 23(8) 882–889.

El Emam, K., A.G. Koru. 2008. A replicated survey of IT software project failures. IEEE Software,

September-October 84–90.

Elandt-Johnson, R.C., N.L. Johnson. 1999. Survival Models and Data Analysis, John Wiley &

Sons, New York, NY.

Ellinas, C. 2019. The domino effect: An empirical exposition of systemic risk across project

networks. Production and Operations Management 28(1) 63–81.

Elmaghraby, S.E., W.S. Herroelen. 1990. The scheduling of activities to maximize the net present

value of projects. European Journal of Operational Research 49(1) 35–49.

Etgar, R., A. Shtub. 1999. Scheduling project activities to maximize the net present value - The

case of linear time-dependent cash flows. International Journal of Production Research 37(2)

329–339.

Etgar, R., A. Shtub, L.J. LeBlanc. 1996. Scheduling projects to maximize net present value - The

case of time-dependent, contingent cash flows. European Journal of Operational Research 96(1)

90–96.

Fercho, W.W., L.J. Ringer. 1972. Small sample power of some tests of the constant failure rate.

Technometrics 14(3) 713–724.

34

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Goletsis, Y., J. Psarras, J.E. Samouilidis. 2003. Project ranking in the Armenian energy sector

using a multicriteria method for groups. Annals of Operations Research 120(1–4) 135–157.

Green, R.H., J.R. Doyle, W.D. Cook. 1996. Preference voting and project ranking using DEA and

cross-evaluation. European Journal of Operational Research 90(3) 461–472.

Grinold, R.C. 1972. The payment scheduling problem. Naval Research Logistics Quarterly 19(1)

123–136.

Haley, G.T., S.M. Goldberg. 1995. Net present value techniques and their effect on new product

research. Industrial Marketing Management 24(3) 177–190.

Hall, N.G. 2016. Research and teaching opportunities in project management. In Optimization

Challenges in Complex, Networked and Risky Systems, pp. 329–388, INFORMS, Catonsville,

MD.

Hall, N.G., M.E. Posner. 2001. Generating experimental data for computational testing with

machine scheduling applications. Operations Research 49 854–865.

Herroelen, W. 2005. Project scheduling – Theory and practice. Production and Operations

Management 14(4) 413–432.

Herroelen, W.S., E. Gallens. 1993. Computational experience with an optimal procedure for the

scheduling of activities to maximize the net present value of projects. European Journal of

Operational Research 65(2) 274–277.

Herroelen, W.S., P. Van Dommelen, E.L. Demeulemeester. 1997. Project network models with

discounted cash flows – A guided tour through recent developments. European Journal of

Operational Research 100(1) 97–121.

Hodder, J.E., H.E. Riggs. 1995. Pitfalls in evaluating risky projects. Harvard Business Review

63(1) 128–135.

Hu, X., N. Cui, E. Demeulemeester. 2015. Effective expediting to improve project due date and

cost performance through buffer management. International Journal of Production Research

53(5) 1460–1471.

Icmeli, O., S.S. Erenguc. 1996. A branch and bound procedure for the resource constrained project

scheduling problem with discounted cash flows. Management Science 42(10) 1395–1408.

35

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Jain, V., I.E. Grossmann. 1999. Resource-constrained scheduling of tests in new product

development. Industrial & Engineering Chemistry Research 38 3013–3026.

Kellerer, H., U. Pferschy, D. Pisinger. 2004. Knapsack Problems. Springer, Berlin, Germany.

Kendall, M.G. 1938. A new measure of rank correlation. Biometrika 30(1–2) 81–93.

Khanfor, A., Y. Yang, G. Vesonder, G. Ruhe, D. Messinger. 2017. Failure prediction in

crowdsourced software development, The 24th Asia-Pacific Software Engineering Conference,

accepted.

Kerzner, H. 2013. Project Management: A Systems Approach to Planning, Scheduling, and

Controlling, 11th edition. Wiley, Hoboken, NJ.

Kettunen, J., A. Salo. 2017. Estimation of downside risks in project portfolio selection. Production

and Operations Management 26(10) 1839–1853.

Kolisch, R., K. Meyer. 2006. Selection and scheduling of pharmaceutical research projects.

Perspectives in Modern Project Scheduling. International Series in Operations Research and

Management Science 92 321–344.

MacMillan, I.C., R.G. McGrath. 2002. Crafting R&D project portfolios. Research-Technology

Management 45(5) 48–59.

Mishra, A., S.R. Das, J.J. Murray. 2016. Risk, process maturity, and project performance: An

empirical analysis of US federal government technology projects. Production and Operations

Management 25(2) 210–232.

Myers, S.C., L. Shyam-Sunder. 1996. Measurement of pharmaceutical industry risk and the cost-

of-capital. In Competitive Strategies in the Pharmaceutical Industry, ed. R.B. Helms, American

Enterprise Institute, Washington, D.C., 208–237.

Nelson, C.A. 1986. A scoring model for flexible manufacturing system project selection. European

Journal of Operational Research 24(3) 346–369.

Niu, B., K. Chen, X. Fang, X. Yue, X. Wang. 2019a. Technology specifications and production

timing in a co-opetitive supply chain. Production and Operations Management 28(8) 1990–2007.

Niu, B., J. Li, J. Zhang, H.K. Cheng, Y. Tan. 2019b. Strategic analysis of dual sourcing and dual

channel with an unreliable alternative supplier. Production and Operations Management 28(3)

570–587.

36

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Oral, M., O. Kettani, Ü. Cinar. 2001. Project evaluation and selection in a network of

collaboration: A consensual disaggregation multi-criterion approach. European Journal of

Operational Research 130(2) 332–346.

Perry, C., I.D. Greig. 1975. Estimating the mean and variance of subjective distributions in PERT

and decision analysis. Management Science 21(12) 1477–1480.

Poh, K.L., B.W. Ang, F. Bai. 2002. A comparative analysis of R&D project evaluation methods.

R&D Management 31(1) 63–75.

Project Management Institute. 2008. Should You Be Teaching Project Management. Project

Management Institute, Newtown Square, PA. Retrieved August 23, 2019, http://www.

mosaicprojects.com.au/PDF/Why teach PM.pdf.

Quinn, J.B., F.G. Hilmer. 1994. Strategic outsourcing. Sloan Management Review 35 43–55.

Ranjbar, M., M. Davari. 2013. An exact method for scheduling of the alternative technologies in

R&D projects. Computers & Operations Research 40 395–405.

Remer, D.S., A.P. Nieto. 1995. A compendium and comparison of 25 project evaluation techniques.

International Journal of Production Research 42 79–96.

Russell, A.H. 1970. Cash flows in networks. Management Science 16(1):357–373.

Russell, R.A. 1986. A comparison of heuristics for scheduling projects with cash flows and resource

restrictions. Management Science 32(10) 1291–1300.

Schmidt, C.W., I.E. Grossmann. 1996. Optimization models for the scheduling of testing tasks in

new product development. Industrial & Engineering Chemistry Research 35 3495–3510.

Schwindt, C., J. Zimmermann. 2001. A steepest ascent approach to maximizing the net present

value of projects. Mathematical Methods of Operations Research 53 435–450.

Sobel, M.J., J.G. Szmerekovsky, V.Tilson. 2009. Scheduling projects with stochastic activity

duration to maximize expected net present value. European Journal of Operational Research

198 697–705.

Stollmack, S., C.M. Harris. 1974. Failure-rate analysis applied to recidivism data. Operations

Research 22(6) 1192–1205.

37

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Vanhoucke, M., E. Demeulemeester, W. Herroelen. 2001a. Maximizing the net present value of a

project with linear time-dependent cash flows. International Journal of Production Research

39(14) 3159–3181.

Vanhoucke, M., E. Demeulemeester, W. Herroelen. 2001b. On maximizing the net present value

of a project under renewable resource constraints. Management Science 47(8) 1113–1121.

Walker, J. 1997. Base stock level determination for “insurance type” spares. International Journal

of Quality and Reliability Management 14(6) 569–574.

Wiesemann, W., D. Kuhn. 2015. The stochastic time-constrained net present value problem.

Chapter 35 in Handbook on Project Management, v.2, International Handbooks on Information

Systems, 753–780.

Wiesemann, W., D. Kuhn, B. Rustem. 2010. Maximimizing the net present value of a project

under uncertainty. European Journal of Operational Research 202(2) 356–367.

Wu, Y., K, Ramachandran, V. Krishnan. 2014. Managing cost salience and procrastination in

projects: Compensation and team composition. Production and Operations Management 23(8)

1299–1311.

www.synapseindia.com 2019. 6 stages of software development process. Retrieved August 23, 2019,

https://www.synapseindia.com/6-stages-of-software-development-process/141

Yang, K.K., F.B. Talbot, J.H. Patterson. 1992. Scheduling a project to maximize its net present

value: an integer programming approach. European Journal of Operational Research 64(2)

188–198.

Zipfel, A. 2003. Modeling the probability-cost-profitability architecture of portfolio management

in the pharmaceutical industry. Drug Information Journal 37 185–205.

38

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Appendix

Transformation of SSP to SSP0: From (16), we have

yi ≥ yi+1 ≥ 0,

for 0 ≤ i ≤ n in the given sequence. Then,

Ci − Ci−1 = −
ln(yi)− ln(yi−1)

Ri
, for 1 ≤ i ≤ n+ 1.

Observe that the completion time Ci =
∑i

j=1(Cj − Cj−1). Then, we transform the precedence

constraints for the Ci’s into constraints in the ln(yi) terms. To see this, we first rewrite precedence

Constraints (1) as

Ck − Ci =
k
∑

j=i+1

(Cj − Cj−1) ≥ Dk, for 0 ≤ i ≤ n, k ∈ Si,

and then,

k
∑

j=i+1

(Cj − Cj−1) = −
k
∑

j=i+1

ln(yj)− ln(yj−1)

Rj
≥ Dk, for 0 ≤ i ≤ n, k ∈ Si,

or equivalently
k
∑

j=i+1

ln(yj)− ln(yj−1)

Rj
≤ −Dk, for 0 ≤ i ≤ n, k ∈ Si.

Using the decision variables y0, . . . , yn+1, Constraint (5) can be rewritten as

Cn+1 =
n+1
∑

j=1

(Cj − Cj−1) = −
n+1
∑

j=1

ln(yj)− ln(yj−1)

Rj
≤ ∆.

Approximation of Constraints (17) and (18): We next linearize Constraints (17) and (18)

approximately, to find lower and upper bounds on the optimal value of problem SSP0. It is

straightforward to verify that, after a natural exponential transformation, the left-hand-side of

Constraints (17) becomes
k
∏

j=i+1

(

yj
yj−1

)
1
Rj

.

We next show how to approximate this expression using linear terms.

For 0 ≤ m < k ≤ n+ 1, we define

B1(m, k) =



max







k−1
∑

j=m+1

Rm+1

Rj+1

(

yj+1

ym
−

yj
ym

)

+
ym+1

ym
, 0











1
Rm+1

,

B2(m, k) =





k−1
∑

j=m+1

Rm+1

Rj+1

(

ym
yj+1

−
ym
yj

)

+
ym
ym+1





− 1
Rm+1

,

39

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

B3(m, k) =





k−1
∑

j=m+1

Rk

Rj

(

yj−1

yk
−

yj
yk

)

+
yk−1

yk





− 1
Rk

,

B4(m, k) =





k−1
∑

j=m+1

Rk

Rj

(

yk
yj−1

−
yk
yj

)

+
yk
yk−1





1
Rk

.

Given these definitions of Bi(m, k) for i = 1, 2, 3, 4, we have the following bounding result.

Lemma 1 Let 0 ≤ Ri+1 ≤ Ri and 0 ≤ yi+1 ≤ yi for 0 ≤ i ≤ n. For 0 ≤ m < k ≤ n+ 1, we have

(

ym
yk

)− 1
Rk

≤ max{B1(m, k), B3(m, k)}

≤
k
∏

j=m+1

(

yj
yj−1

)
1
Rj

≤ min{B2(m, k), B4(m, k)} ≤

(

yk
ym

)
1

Rm+1
. (39)

Proof: First, we show that

B1(m, k) ≤
k
∏

j=m+1

(

yj
yj−1

)
1
Rj

≤ B2(m, k).

The proof is by induction. When m + 1 = k, it is clear that the inequality holds as an equality.

We assume that the inequality holds when m+ 1 = t+ 1 where 1 ≤ t ≤ k − 1. That is, B1(t, k) ≤
∏k

j=t+1

(

yj
yj−1

)
1
Rj ≤ B2(t, k). Then, we need to show that it holds when m + 1 = t. Note that

Rt

Rt+1
≥ 1 and for x ≥ 0 and a ≥ 1, we have xa ≥ a(x−1)+1. If

∑k−1
j=t+1

Rt+1

Rj+1

(

yj+1

yt
−

yj
yt

)

+ yt+1

yt
≥ 0,

then

B1(t, k)

(

yt

yt−1

) 1
Rt

=

[

k−1
∑

j=t+1

Rt+1

Rj+1

(

yj+1

yt
−

yj

yt

)

+
yt+1

yt

]

Rt

Rt+1

1
Rt
(

yt

yt−1

) 1
Rt

≥

{

Rt

Rt+1

[

k−1
∑

j=t+1

Rt+1

Rj+1

(

yj+1

yt
−

yj

yt

)

+
yt+1

yt
− 1

]

+ 1

} 1
Rt
(

yt

yt−1

) 1
Rt

(40)

=

[

k−1
∑

j=t

Rt

Rj+1

(

yj+1

yt−1
−

yj

yt−1

)

+
yt

yt−1

] 1
Rt

= B1(t− 1, k),

where inequality (40) holds from the facts that Rt ≥ Rt+1, x
a ≥ a(x − 1) + 1 for a ≥ 1, and

x ≥ 0. Then, from the induction hypothesis,
∏k

j=t

(

yj
yj−1

)
1
Rj ≥ B1(t, k)

(

yt
yt−1

)
1
Rt ≥ B1(t − 1, k).

Alternatively, if
∑k−1

j=t+1
Rt+1

Rj+1

(

yj+1

yt
−

yj
yt

)

+ yt+1

yt
< 0 so that B1(t, k) = 0, then

k−1
∑

j=t

Rt

Rj+1

(

yj+1

yt−1
−

yj
yt−1

)

+
yt
yt−1

=







Rt

Rt+1





k−1
∑

j=t+1

Rt+1

Rj+1

(

yj+1

yt
−

yj
yt

)

+
yt+1

yt
− 1



+ 1







(

yt
yt−1

)

40

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

=







Rt

Rt+1





k−1
∑

j=t+1

Rt+1

Rj+1

(

yj+1

yt
−

yj
yt

)

+
yt+1

yt



−
Rt

Rt+1
+ 1







(

yt
yt−1

)

≤ 0.

Consequently, we have B1(t− 1, k) = 0. Again,
∏k

j=t

(

yj
yj−1

)
1
Rj ≥ B1(t, k)

(

yt
yt−1

)
1
Rt ≥ B1(t− 1, k).

Thus, the induction step for B1(m, k) is proved.

For B2(m, k), we have

B2(t, k)

(

yt

yt−1

) 1
Rt

=

[

k−1
∑

j=t+1

Rt+1

Rj+1

(

yt

yj+1
−

yt

yj

)

+
yt

yt+1

]

Rt

Rt+1

(

− 1
Rt

)

(

yt−1

yt

)− 1
Rt

≤

{

Rt

Rt+1

[

k−1
∑

j=t+1

Rt+1

Rj+1

(

yt

yj+1
−

yt

yj

)

+
yt

yt+1
− 1

]

+ 1

}− 1
Rt
(

yt−1

yt

)− 1
Rt

(41)

=

[

k−1
∑

j=t

Rt

Rj+1

(

yt−1

yj+1
−

yt−1

yj

)

+
yt−1

yt

]− 1
Rt

= B2(t− 1, k),

where inequality (41) holds from the facts that Rt ≥ Rt+1, x
a ≥ a(x− 1) + 1 for a ≥ 1 and x ≥ 0,

and x−z is decreasing in x for z > 0 and x ≥ 0. We can verify that
∑k−1

j=t+1
Rt+1

Rj+1

(

yt
yj+1

− yt
yj

)

+ yt
yt+1

≥

1 > 0 since yj ≤ yi for j > i, which guarantees the requirements on xa and x−z. The remainder of

the induction step proof follows that for B1(m, k).

Next, we show that

B3(m, k) ≤
k
∏

j=m+1

(

yj
yj−1

)
1
Rj

≤ B4(m, k),

again by induction. When k = m+1, it is clear that the inequality holds as an equality. We assume

that the inequality holds when k = t where t ≥ m + 1. That is, B3(m, t) ≤
∏k

j=t+1

(

yj
yj−1

)
1
Rj ≤

B4(m, t). Then, we need to show it holds when k = t+ 1.

For B3(m, k), we have

B3(m, t)

(

yt+1

yt

) 1
Rt+1

=

[

t−1
∑

j=m+1

Rt

Rj

(

yj−1

yt
−

yj

yt

)

+
yt−1

yt

]

Rt+1

Rt

(

− 1
Rt+1

)

(

yt

yt+1

)− 1
Rt+1

≥

{

Rt+1

Rt

[

t−1
∑

j=m+1

Rt

Rj

(

yj−1

yt
−

yj

yt

)

+
yt−1

yt
− 1

]

+ 1

}− 1
Rt+1

(

yt

yt+1

)− 1
Rt+1

(42)

=

[

t
∑

j=m+1

Rt+1

Rj

(

yj−1

yt+1
−

yj

yt+1

)

+
yt

yt+1

]− 1
Rt+1

= B3(m, t+ 1),

where inequality (42) holds from the fact Rt ≥ Rt+1, x
a ≤ a(x − 1) + 1 for a ≤ 1 and x ≥ 0, and

x−z is decreasing in x for z > 0 and x ≥ 0. We can verify that
∑t−1

j=m+1
Rt

Rj

(

yj−1

yt
−

yj
yt

)

+ yt−1

yt
> 0

41

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

since yj ≤ yi for any j > i, which guarantees the requirements on xa and x−z. The remainder of

the proof follows that for B1(m, k) and B2(m, k).

For B4(m, k), we have

B4(m, t)

(

yt+1

yt

) 1
Rt+1

=

[

t−1
∑

j=m+1

Rt

Rj

(

yt

yj−1
−

yt

yj

)

+
yt

yt−1

]

Rt+1

Rt

(

1
Rt+1

)

(

yt+1

yt

) 1
Rt+1

≤

{

Rt+1

Rt

[

t−1
∑

j=m+1

Rt

Rj

(

yt

yj−1
−

yt

yj

)

+
yt

yt−1
− 1

]

+ 1

} 1
Rt+1

(

yt+1

yt

) 1
Rt+1

(43)

=

[

t
∑

j=m+1

Rt+1

Rj

(

yt+1

yj−1
−

yt+1

yj

)

+
yt+1

yt

] 1
Rt+1

= B4(m, t+ 1),

where inequality (43) follows from the facts that Rt ≥ Rt+1, x
a ≤ a(x− 1)+1 for a ≤ 1 and x ≥ 0,

and xz is increasing in x for z > 0 and x ≥ 0. We can verify

t−1
∑

j=m+1

Rt

Rj

(

yt
yj−1

−
yt
yj

)

+
yt
yt−1

=
t−1
∑

j=m+1

yt
yj

(

Rt

Rj+1
−

Rt

Rj

)

+
Rt

Rm+1

yt
ym

> 0

since Rj ≤ Ri for any j > i, which guarantees the requirements on xa and xz.

Next, we show that
(

ym
yk

)− 1
Rk ≤ B3(m, k), i.e.,

∑k−1
j=m+1

Rk

Rj

(

yj−1

yk
−

yj
yk

)

+
yk−1

yk
≤ ym

yk
. This result

holds if k = m+ 1, since yj ≤ yi for any j > i. Now, suppose it holds for k = t. For k = t+ 1,

t
∑

j=m+1

Rt+1

Rj

(

yj−1

yt+1
−

yj

yt+1

)

+
yt − ym

yt+1
=

Rt+1

Rt

t
∑

j=m+1

Rt

Rj

(

yj−1

yt+1
−

yj

yt+1

)

+
yt − ym

yt+1

=
Rt+1

Rt

[

t−1
∑

j=m+1

Rt

Rj

(

yj−1

yt+1
−

yj

yt+1

)

+

(

yt−1

yt+1
−

yt

yt+1

)

]

+
yt − ym

yt+1

=
Rt+1

Rt

[

yt

yt+1

(

t−1
∑

j=m+1

Rt

Rj

(

yj−1

yt
−

yj

yt

)

+
yt−1

yt

)

−
yt

yt+1

]

+
yt − ym

yt+1

≤
Rt+1

Rt

[

yt

yt+1

ym

yt
−

yt

yt+1

]

+
yt − ym

yt+1

=
ym − yt

yt+1

(

Rt+1

Rt

− 1
)

≤ 0,

where the first inequality follows from the induction hypothesis. Therefore,
∑t

j=m+1
Rt+1

Rj

(

yj−1

yt+1
−

yj
yt+1

)

+ yt
yt+1

≤ ym
yt+1

, and the proof is complete.

Finally, we show that B2(m, k) ≤
(

yk
ym

)
1

Rm+1 =
(

ym
yk

)− 1
Rm+1 . Hence, we need to show

∑k−1
j=m+1

Rm+1

Rj+1

(

ym
yj+1

− ym
yj

)

+ ym
ym+1

≥ ym
yk

. If k = m+ 1, since yj ≤ yi for any j > i, this inequality

holds. For k > m+ 1, since Rm+1 ≥ Rj for j = m+ 2, · · · , k − 1 and yj ≤ yi for j > i, we have

k−1
∑

j=m+1

Rm+1

Rj+1

(

ym
yj+1

−
ym
yj

)

+
ym
ym+1

≥
k−1
∑

j=m+1

(

ym
yj+1

−
ym
yj

)

+
ym
ym+1

=
ym
yk

.

42

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

One issue with B1(m, k) is that when the first term within the bracket is negative, the applicable

bound B1(m, k) is 0. Therefore, we use the term B3(m, k) as a lower bound on the original nonlinear

term. Also, our preliminary computational studies show that in most cases B4(m, k) is smaller than

B2(m, k). Hence, we use B4(m, k) as an upper bound on the original nonlinear term. Using bounds

B3(m, k) and B4(m, k), we can approximate Constraints (17) as

k−1
∑

j=m+1

Rk

Rj

(

yj−1

yk
−

yj
yk

)

+
yk−1

yk
≥ exp(RkDk), for 0 ≤ m ≤ n, k ∈ Sm, and (44)

k−1
∑

j=m+1

Rk

Rj

(

yk
yj−1

−
yk
yj

)

+
yk
yk−1

≤ exp(−RkDk), for 0 ≤ m ≤ n, k ∈ Sm. (45)

We observe that Constraints (44) can be linearized as Constraints (21):

k−1
∑

j=m+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk) ≥ 0, for 0 ≤ m ≤ n, k ∈ Sm.

However, Constraint (45) is still not linear, since the left-hand-side contains multiple terms with

different nonconstant denominators. We need to approximate the left-hand-side of Constraint (45)

further, in order to linearize it. Doing so requires the following result.

Lemma 2 Let ai ≥ 0, xi ≥ 0 for i = 1, 2, . . . , n. Let xmin = min{x1, x2, . . . , xn} and xmax =

max{x1, x2, . . . , xn}. We then have

max

{

2
∑n

i=1 ai
xmin

−

∑n
i=1 aixi
x2min

,
2
∑n

i=1 ai
xmax

−

∑n
i=1 aixi
x2max

}

≤
n
∑

i=1

ai
xi

≤

(

1

xmin
+

1

xmax

) n
∑

i=1

ai −

∑n
i=1 aixi

xminxmax
.

Proof: Note that

n
∑

i=1

aixi − x2max

n
∑

i=1

ai
xi

=
n
∑

i=1

ai

(

x2i − x2max

xi

)

=
n
∑

i=1

ai

(

1−
xmax

xi

)

(xi + xmax)

≤ (xmin + xmax)

(

n
∑

i=1

ai − xmax

n
∑

i=1

ai
xi

)

= (xmin + xmax)
n
∑

i=1

ai − xminxmax

n
∑

i=1

ai
xi

− x2max

n
∑

i=1

ai
xi
.

As a result,

xminxmax

n
∑

i=1

ai
xi

≤ (xmin + xmax)
n
∑

i=1

ai −
n
∑

i=1

aixi

⇒
n
∑

i=1

ai
xi

≤

(

1

xmin
+

1

xmax

) n
∑

i=1

ai −
1

xmin

1

xmax

n
∑

i=1

aixi.

43

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

On the other hand,

xi −
x2max

xi
= xi +

x2max

xi
− 2

x2max

xi
≥ 2xmax − 2

x2max

xi
.

Consequently,

n
∑

i=1

aixi − x2max ·
n
∑

i=1

ai
xi

=
n
∑

i=1

ai

(

xi −
x2max

xi

)

≥ 2xmax

n
∑

i=1

ai

(

1−
xmax

xi

)

= 2xmax

n
∑

i=1

ai − 2x2max

n
∑

i=1

ai
xi
.

As a result, we have

n
∑

i=1

ai
xi

≥
2

xmax

n
∑

i=1

ai −
1

x2max

n
∑

i=1

aixi.

Similarly, we have

xi −
x2min

xi
= xi +

x2min

xi
− 2

x2min

xi
≥ 2xmin − 2

x2min

xi
.

Therefore,

n
∑

i=1

aixi − x2min

n
∑

i=1

ai
xi

=
n
∑

i=1

ai

(

xi −
x2min

xi

)

≥ 2xmin

(

n
∑

i=1

ai − xmin

n
∑

i=1

ai
xi

)

= 2xmin

n
∑

i=1

ai − 2x2min

n
∑

i=1

ai
xi
.

Finally, we have

n
∑

i=1

ai
xi

≥
2

xmin

n
∑

i=1

ai −
1

x2min

n
∑

i=1

aixi.

The bounds on
∑n

i=1
ai
xi

defined in Lemma 2 are close to each other when the difference between

xmin and xmax is small, as now shown.

Remark 5 If |xmin − xmax| → 0, then
∣

∣

∣

∣

∣

max

{

2
∑n

i=1 ai
xmin

−

∑n
i=1 aixi
x2min

,
2
∑n

i=1 ai
xmax

−

∑n
i=1 aixi
x2max

}

−

(

1

xmin
+

1

xmax

) n
∑

i=1

ai +

∑n
i=1 aixi

xminxmax

∣

∣

∣

∣

∣

→ 0.

We now apply Lemma 2 to relax the left-hand-side of (45), in order to linearize the constraint.

We rewrite term B4(m, k) as follows:

B4(m, k) =





k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yk
yj

+
Rk

Rm+1

yk
ym





1
Rk

.

Then, we have the following result.

44

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Lemma 3 We have

B4(m, k)Rk =
k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yk
yj

+
Rk

Rm+1

yk
ym

≤ 1 +
yk
ym

−





k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yj
ym

+
Rk

Rm+1



 .

Proof: Let am+1 =
Rk

Rm+1
, xm+1 =

ym
yk

, and ai =
Rk

Ri+1
− Rk

Ri
≥ 0 and xi =

yi
yk

for i = m+2, · · · , k−1.

Note that
∑k

i=m+1 ai = 1, xmin =
yk−1

yk
and xmax = ym

yk
. Then, we have

k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yk

yj
+

Rk

Rm+1

yk

ym
≤

yk

ym
+

yk

yk−1
−

yk

ym

yk

yk−1

[

k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yj

yk
+

Rk

Rm+1

ym

yk

]

≤
yk

ym
+ 1−

yk

ym

[

k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yj

yk
+

Rk

Rm+1

ym

yk

]

= 1 +
yk

ym
−

[

k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yj

ym
+

Rk

Rm+1

]

,

where the first inequality follows from the second part of Lemma 2, and the second inequality

follows from yk
yk−1

≤ 1 and

1−
yk
ym





k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yj
yk

+
Rk

Rm+1

ym
yk



 = 1−





k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yj
ym

+
Rk

Rm+1





≥ 1−





k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

+
Rk

Rm+1





= 0.

Following Lemma 3, we can rewrite inequality (45) as

1 +
yk
ym

−





k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yj
ym

+
Rk

Rm+1



 ≤ exp(−RkDk), for 0 ≤ m ≤ n, k ∈ Sm,

which is linear and can be further rewritten as Constraint (23):

[

1−
Rk

Rm+1
− exp(−RkDk)

]

ym −
k−1
∑

j=m+1

(

Rk

Rj+1
−

Rk

Rj

)

yj + yk ≤ 0, for 0 ≤ m ≤ n, k ∈ Sm.

This completes the approximation of Constraints (17) and (18).

Proof of Theorem 1: To prove the theorem, we show that the polytope of problem SSP0 is

contained in the polytope of problem SSP1. Note that Constraints (19) and (20) are the same in

problems SSP0 and SSP1. Thus, we only need to show that Constraints (17) and (18) of problem

SSP0 imply the corresponding constraints of problem SSP1, i.e., (21) and (22), respectively.

From Lemma 1, we have

B3(i, k) =





k−1
∑

j=i+1

Rk

Rj

(

yj−1

yk
−

yj
yk

)

+
yk−1

yk





− 1
Rk

≤
k
∏

j=i+1

(

yj
yj−1

)
1
Rj

≤ exp(−Dk),

45

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

where the last inequality follows from Constraints (17) of problem SSP0. Observe that





k−1
∑

j=i+1

Rk

Rj

(

yj−1

yk
−

yj
yk

)

+
yk−1

yk





− 1
Rk

≤ exp(−Dk)

⇔
k−1
∑

j=i+1

Rk

Rj

(

yj−1

yk
−

yj
yk

)

+
yk−1

yk
≥ exp(RkDk)

⇔
k−1
∑

j=i+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk) ≥ 0,

which are Constraints (21) of problem SSP1. Hence, whenever Constraints (17) of problem SSP0

hold, Constraints (21) of problem SSP1 hold.

From Lemmas 1 and 3, we have

exp(−∆) ≤
n+1
∏

j=1

(

yj
yj−1

)
1
Rj

≤ B4(0, n+ 1)

≤







1 +
yn+1

y0
−





n
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj
y0

+
Rn+1

R1











1
Rn+1

,

where the first inequality follows from deadline Constraint (18) of problem SSP0. Observe that







1 +
yn+1

y0
−





n
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj
y0

+
Rn+1

R1











1
Rn+1

≥ exp(−∆)

⇔ 1 +
yn+1

y0
−





n
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj
y0

+
Rn+1

R1



 ≥ exp(−Rn+1∆)

⇔

[

1−
Rn+1

R1
− exp(−Rn+1∆)

]

y0 −
n
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj + yn+1 ≥ 0,

which are Constraints (22) of problem SSP1. Thus, whenever Constraints (18) of problem SSP0

hold, Constraints (22) of problem SSP1 hold. Therefore, we conclude that the feasible set of the

original problem SSP0 is contained in the feasible set of problem SSP1, and hence problem SSP1

provides an upper bound on the optimal value of the original problem.

Proof of Theorem 2: To prove the theorem, we show that the polytope of problem SSP2 is

contained in the polytope of problem SSP0. Note that Constraints (19) and (20) are the same for

problems SSP0 and SSP2. Thus, we only need to show that Constraints (23) and (24) of problem

SSP2 imply the corresponding constraints of problem SSP0, i.e., (17) and (18), respectively.

From Lemmas 1 and 3, for 0 ≤ i ≤ n and k ∈ Si, we have

k
∏

j=i+1

(

yj
yj−1

)
1
Rj

≤







1 +
yk
yi

−





k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)

yj
yi

+
Rk

Ri+1











1
Rk

.

46

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Consequently, if







1 +
yk
yi

−





k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)

yj
yi

+
Rk

Ri+1











1
Rk

≤ exp(−Dk)

hold, then

k
∏

j=i+1

(

yj
yj−1

)
1
Rj

≤ exp(−Dk),

which are Constraints (17) of problem SSP0, hold. Note that







1 +
yk
yi

−





k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)

yj
yi

+
Rk

Ri+1











1
Rk

≤ exp(−Dk)

⇔ 1 +
yk
yi

−





k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)

yj
yi

+
Rk

Ri+1



 ≤ exp(−RkDk)

⇔

[

1−
Rk

Ri+1
− exp(−RkDk)

]

yi −
k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)

yj + yk ≤ 0,

which are Constraints (23) of problem SSP2. Hence, whenever Constraints (23) hold, Con-

straints (17) of problem SSP0 also hold.

From Lemma 1, we have

n+1
∏

j=1

(

yj
yj−1

)
1
Rj

≥ B3(0, n+ 1) =





n
∑

j=1

Rn+1

Rj

(

yj−1

yn+1
−

yj
yn+1

)

+
yn
yn+1





− 1
Rn+1

.

Consequently, if





n
∑

j=1

Rn+1

Rj

(

yj−1

yn+1
−

yj
yn+1

)

+
yn
yn+1





− 1
Rn+1

≥ exp(−∆)

holds, then

n+1
∏

j=1

(

yj
yj−1

)
1
Rj

≥ exp(−∆)

holds, which is Constraint (18) of problem SSP0. Observe that





n
∑

j=1

Rn+1

Rj

(

yj−1

yn+1
−

yj
yn+1

)

+
yn
yn+1





− 1
Rn+1

≥ exp(−∆)

⇔
n
∑

j=1

Rn+1

Rj

(

yj−1

yn+1
−

yj
yn+1

)

+
yn
yn+1

≤ exp(Rn+1∆)

⇔
n
∑

j=1

Rn+1

Rj
(yj−1 − yj) + yn − yn+1 exp(Rn+1∆) ≤ 0,

47

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

which is Constraint (24) of problem SSP2. Hence, whenever Constraint (24) holds, Constraint (18)

of problem SSP0 also holds. Therefore, we conclude that the feasible set of problem SSP2 is

contained in the feasible set of problem SSP0, and hence problem SSP2 provides a lower bound on

the optimal value of the original problem SSP0.

Proof of Theorem 3: First, from the one-to-one correspondence of Ci and yi, for i = 0, 1, · · · , n+1,

we can change the conditions C0 = 0 ≤ C1 ≤ C2 ≤ · · · ≤ Cl and Cl ≤ Cl+1, Cl+2, . . . , Cn ≤ Cn+1

into y0 = 1 ≥ y1 ≥ y2 ≥ · · · ≥ yl and yl ≥ yl+1, yl+2, . . . , yn+1.

Note that if l = n + 1, i.e., the partially given sequence includes all the tasks, then problem

PSSP1 is just problem SSP1. Now, we consider the case l < n + 1. Observe that (26) is exactly

(21) in problem SSP1. For notational convenience, we denote any tasks finished between i and

k ∈ Si by i + 1, i + 2, · · · , k − 1. Let i ∈ σ′ and k ∈ σ′′. We now show that Constraints (21) with

the appropriate Constraints (19) of problem SSP1 imply Constraints (27) of problem PSSP1. To

do so, we need the following inequality:

k−1
∑

j=l+1

Rk

Rj
(yj−1 − yj) + yk−1 − yl =

k−1
∑

j=l+1

(

Rk

Rj+1
−

Rk

Rj

)

yj +

(

Rk

Rl+1
− 1

)

yl

≤ yl





k−1
∑

j=l+1

(

Rk

Rj+1
−

Rk

Rj

)

+

(

Rk

Rl+1
− 1

)





= 0, (46)

where the inequality follows from yj ≤ yl, for j = l+1, · · · , k−1 in Constraints (19) of problem SSP1.

Then, from problem SSP1, by substituting Constraints (19) for yi+1 − yi ≤ 0 and Ri+1 ≤ Ri

into Constraints (21), the left-hand-side of Constraints (21) becomes

k−1
∑

j=i+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk)

=
l
∑

j=i+1

Rk

Rj
(yj−1 − yj) +

k−1
∑

j=l+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk)

≤
l
∑

j=i+1

Rk

Rj
(yj−1 − yj) + yl − yk exp(Rk,minDk),

where the inequality holds since Rk,min ≤ Rk from Inequality (25), and from (46).

Then, since Rk,max ≥ Rk ≥ Rk,min from Inequality (25), we have

k−1
∑

j=i+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk)

≤
l
∑

j=i+1

Rk,max

Rj
(yj−1 − yj) + yl − yk exp(Rk,minDk),

48

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

which is the left-hand-side of Constraints (27) of problem PSSP1. Hence, Constraints (21) with

the appropriate Constraints (19) of problem SSP1 imply Constraints (27) of problem PSSP1.

We next show that Constraints (21) with the appropriate Constraints (19) of problem SSP1

imply Constraints (28) of problem PSSP1. Let i ∈ σ′ and k ∈ σ′′ for k ∈ Si. From Constraints (21)

of problem SSP1, we have

k−1
∑

j=i+1

Rk

Rj
(yj−1 − yj) + yk−1 − yk exp(RkDk)

= yi
Rk

Ri+1
+

k−1
∑

j=i+1

yj

(

Rk

Rj+1
−

Rk

Rj

)

− yk exp(RkDk)

≤ yi





Rk

Ri+1
+

k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)



− yk exp(RkDk) (47)

≤ yi − yk exp(Rk,minDk),

which is the left-hand-side of Constraints (28) of problem PSSP1. Therefore, Constraints (21) with

the appropriate Constraints (19) of problem SSP1 imply Constraints (28) of problem PSSP1.

Finally, we show Constraints (22) with the appropriate Constraints (19) of problem SSP1 imply

Constraints (29) of problem PSSP1. From Constraint (22) of problem SSP1, together with yi+1 ≤ yi

from Constraints (19),

[

1−
Rn+1

R1
− exp(−Rn+1∆)

]

y0 −
n
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj + yn+1

=

[

1−
Rn+1

R1
− exp(−Rn+1∆)

]

y0 −
l
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj −
n
∑

j=l+1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj + yn+1

≤

[

1−
Rn+1

R1
− exp(−Rn+1∆)

]

y0 −
l
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj −
n
∑

j=i

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj + yn+1

=

[

1−
Rn+1

R1
− exp(−Rn+1∆)

]

y0 −
l
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj +
Rn+1

Ri
yi −

n
∑

j=i+1

Rn+1

Rj+1
(yj − yj+1)

≤

[

1−
Rn+1

R1
− exp(−Rn+1∆)

]

y0 −
l
∑

j=1

(

Rn+1

Rj+1
−

Rn+1

Rj

)

yj +
Rn+1

Ri
yi,

where the first inequality follows from i ≥ l + 1. Note that for i ∈ σ′′, we have Ri,min ≤ Ri.

Therefore, Constraint (22) of problem SSP1 implies Constraints (29) of problem PSSP1.

As a result, the polytope of problem SSP1 is contained in the polytope of problem PSSP1, and

thus the maximum value of problem PSSP1 is an upper bound on the maximum ENPV of the

project scheduling problem.

Proof of Theorem 4: Observe that for i, k ∈ σ′ where k ∈ Si, since the partial sequence between

i and k is given, Constraints (33) of problem PSSP2 are the same as Constraints (23) of problem

49

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

SSP2. For Constraint (34), since l ≤ k − 1, from Constraints (19) and (23),

[

1−
Rk

Ri+1
− exp(−RkDk)

]

yi −
k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)

yj + yk

≤

[

1−
Rk

Ri+1
− exp(−RkDk)

]

yi −
l
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)

yj + yk.

For a function h(x) = x
Ri+1

+ exp(−xDk) for x ≥ 0, we have h′(x) = 1
Ri+1

−Dk exp(−xDk). Then,

whenever DkRi+1 ≤ 1, we have h′(x) ≥ 0. Now, DkRi+1 ≤ 1 is guaranteed by condition (32). As

a result, 1− Rk

Ri+1
− exp(−RkDk) ≤ 1−

Rk,min

Ri+1
− exp(−Rk,minDk). Therefore,

[

1−
Rk

Ri+1
− exp(−RkDk)

]

yi −
k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)

yj + yk

≤

[

1−
Rk,min

Ri+1
− exp(−Rk,minDk)

]

yi −
l
∑

j=i+1

(

Rk,min

Rj+1
−

Rk,min

Rj

)

yj + yk.

Then, Constraints (34) of problem PSSP2 imply Constraints (23) and the appropriate Con-

straints (19) of problem SSP2.

For Constraints (35) of problem PSSP2, the left-hand-side of Constraints (23) is

[

1−
Rk

Ri+1
− exp(−RkDk)

]

yi −
k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)

yj + yk

≤

[

1−
Rk

Ri+1
− exp(−RkDk)

]

yi + yk

≤

[

1−
Rk,min

Ri+1
− exp(−Rk,minDk)

]

yi + yk

≤

[

1−
Rk,min

Ri,max − ri
− exp(−Rk,minDk)

]

yi + yk,

where the second inequality follows from the fact that h(x) = x
Ri+1

+ exp(−xDk) is increasing in x

for x ≥ 0, and the third inequality follows from the fact that Ri,max−ri ≥ Ri+1, as a consequence of

Ri,max ≥ Ri from Inequality (25). Then, Constraints (35) of problem PSSP2 imply Constraints (23)

and the appropriate constraints of (19) of problem SSP2.

We now show that Constraint (36) of problem PSSP2 implies Constraint (24) of problem SSP2,

by applying (47) in the proof of Theorem 3 to the tasks in σ′′. From (47), we have

k−1
∑

j=i+1

Rk

Rj
(yj−1 − yj) + yk−1 ≤ yi





Rk

Ri+1
+

k−1
∑

j=i+1

(

Rk

Rj+1
−

Rk

Rj

)



 = yi.

As a result, we have

l
∑

j=1

Rn+1

Rj
(yj−1 − yj) + yl − yn+1 exp(Rn+1∆)

50

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

≥
l
∑

j=1

Rn+1

Rj
(yj−1 − yj) +

n
∑

j=l+1

Rn+1

Rj
(yj−1 − yj) + yn − yn+1 exp(Rn+1∆)

=
n
∑

j=1

Rn+1

Rj
(yj−1 − yj) + yn − yn+1 exp(Rn+1∆).

Thus, when Constraint (36) of problem PSSP2 holds, i.e.,
∑l

j=1
Rn+1

Rj
(yj−1 − yj)+yl−yn+1 exp(Rn+1∆) ≤

0, Constraint (24) of problem SSP2 also holds, i.e.,
∑n

j=1
Rn+1

Rj
(yj−1 − yj)+yn−yn+1 exp(Rn+1∆) ≤

0. Hence, Constraint (36) of problem PSSP2 implies Constraint (24) and the appropriate

Constraints (19) of problem SSP2.

As a result, the polytope of problem PSSP2 is contained in the polytope of problem SSP2.

Hence, the optimal value of problem PSSP2 is a lower bound on the maximum ENPV of the

project scheduling problem.

Proof of Theorem 5. Let Ci(σ
′) = C∗

i (σ) for any i ∈ V \ {l,m}, Cl(σ
′) = C∗

m(σ) and Cm(σ′) =

C∗
l (σ). Note that C(σ′) defines a feasible schedule, since task l has no successors that are not shared

with task m, and task m has no predecessors that are not shared with task l, C∗
l (σ) ≤ C∗

m(σ) as

implied by l < m, and Dl ≥ Dm. Note that the ENPV value of a task i in σ under completion

time C∗(σ) is

ENPV∗
i (σ) = Fi exp



−
i
∑

j=1

Rj(C
∗
j (σ)− C∗

j−1(σ))



 .

Then, ENPVi(σ
′) =ENPV∗

i (σ) for 0 ≤ i < l. Since rl = rm, the total risk profile does not change

due to the interchange of tasks. Then, for l < i < m, we have

ENPV∗
i (σ) = Fi exp

(

−
l−1
∑

j=1

Rj(C
∗
j (σ)− C∗

j−1(σ))−Rl(C
∗
l (σ)− C∗

l−1(σ))

−Rl+1(C
∗
l+1(σ)− C∗

l (σ))−
i
∑

j=l+2

Rj(C
∗
j (σ)− C∗

j−1(σ))

)

= Fi exp

(

−
l−1
∑

j=1

Rj(Cj(σ
′)− Cj−1(σ

′))−Rl(Cm(σ′)− Cl−1(σ
′))

−Rl+1(Cl+1(σ
′)− Cm(σ′))−

i
∑

j=l+2

Rj(Cj(σ
′)− Cj−1(σ

′))

)

= ENPVi(σ
′).

Similarly, the conclusion holds for m < i ≤ n + 1. For ease of exposition, we let δi denote

the discount coefficient of cash flow Fi, for i = l,m. Again, since the risk profile does

not change from the setting of C(σ′), we have ENPV∗
l (σ)+ENPV∗

m(σ) = Flδl + Fmδm and

ENPVl(σ
′)+ENPVm(σ′) = Fmδl+Flδm. Since Flδl+Fmδm−Fmδl−Flδm = (Fl−Fm)(δl−δm) ≤ 0,

we have ENPV∗
l (σ)+ENPV∗

m(σ) ≤ENPVl(σ
′)+ENPVm(σ′).

Definition of the Kendall tau Rank Correlation Coefficient

Let (x1, y1), . . . , (xn, yn) be a set of n different evaluations. A pair of evaluations (xi, yi) and (xj , yj)

51

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

are concordant if xi > xj and yi > yj , or xi < xj and yi < yj ; and are discordant if xi > xj and

yi < yj , or xi < xj and yi > yj . Then, the Kendall coefficient τ , where −1 ≤ τ ≤ 1, is defined as

τ =
2(number of concordant pairs− number of discordant pairs)

n(n− 1)
.

Cash Flow Generation in the Computational Study

In our formulations in Section 4, we assume that the cash flow of the end-of-project dummy task

is 0. However, with a minor adjustment to those formulations, we can allow the cash flow of the

end-of-project dummy task to be nonzero. For the results in Table 2 with two positive cash flows,

the cash flows are generated as follows. First, we generate nc − 2 negative cash flows from the

continuous uniform distribution U [−1.0, 0.0], and let CN denote their sum. Second, a positive cash

flow in the amount of −CN is assigned both to the end-of-project dummy task and to a mid-project

task with average depth of 2
3((nc − 2)I + 2) = (nc + 2)/3. Note that, including the end-of-project

dummy task, the project depth is (nc − 2)I + 2, and I = 0.5. If (nc + 2)/3 is integer, then the

positive cash flow is assigned to a task with depth of (nc+2)/3; whereas, if (nc+2)/3 is not integer,

then the positive cash flow is assigned to a task with depth either ⌊(nc+2)/3⌋ or ⌈(nc+2)/3⌉, with

an average depth of (nc + 2)/3.

For the results in Table 3 with np ∈ {1, 2, 3}, we first generate nc − np negative cash flows

from the continuous uniform distribution U [−1.0, 0.0], and find their sum CN . We index the tasks

topologically with the last task nc as a dummy task that completes the project. Then, we assign

a positive cash flow in the amount of −2CN to task nc, if np = 1; of −CN to tasks nc/2 and nc,

if np = 2; and of −2CN/3 to tasks (nc − 1)/3, 2(nc − 1)/3 and nc, if np = 3. Recall that nc = 16,

and hence all the task indices are integer. Finally, the negative cash flows are assigned to the other

nc − np tasks.

52

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

