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Abstract 

Prospective environmental assessment of emerging technology is necessary in order to inform 

designers of beneficial changes early in a technology’s development, and policy makers looking 

to fund projects and nudge manufacturers towards the most sustainable application of a 

technology. Existing analyses often have shortcomings such as failing to consider the 

environmental impacts in all stages of a product’s lifecycle; implicitly assuming that the 

emerging technology will be cost effective wherever it is technically viable; and assuming 

optimistic application scenarios that discontinue long established trends in human behavior. In 

this article, we propose a new approach, complementary to the prospective and anticipatory 

Life Cycle Assessment (LCA) literature, addressing the above concerns and attempting to make 

sense of the large uncertainties inherent in such analyses by using distributions to model all the 

inputs. The paper focuses on emerging manufacturing technologies, such as incremental sheet 

forming (ISF), but the issues examined are also applicable to new end-use products, such as 

autonomous vehicles. This paper makes use of approaches (such as Bass modeling and product 

cannibalization considerations) familiar to those in the business community who anticipate 

market diffusion of a new technology and the effect on existing technology sales. 

The proposed methodology is demonstrated by estimating the potential environmental impacts 

in the US car industry by 2030 of an emerging double-sided ISF process. Energy and cost models 

of ISF and drawing are used to estimate potential mean savings of around 100 TJprimary and 60 

million USD per year by 2030. 
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<heading level 1> Introduction 

There is an increasing focus in government, academia and business on the potential 

environmental impacts of new technologies. “How much energy will this save?” and “By how 

much will this cut greenhouse gas emissions?” are questions now routinely asked of researchers 

by funding bodies. “This” typically refers to a new product, such as autonomous vehicles, or a 

new manufacturing process, such as additive manufacturing (AM). Subsequently, analyses 

attempting to answer these questions are becoming common in government reports and 

academic papers. In the DOE Quadrennial Technology Review there is now a chapter dedicated to 

“Innovating Clean Technologies in Advanced Manufacturing” that highlights such work (US 

Department of Energy 2015); for example, Huang et al.'s (2015) study on future energy and 

emissions savings derived from the use of AM to make aircraft components. Such studies not 

only inform short term funding decisions but guide legislation; for example, the potential for 

energy efficient lighting to save energy at the national level forms a central thesis in the US 

Energy Independence and Security Act of 2007 (US Congress 2007) and the American Recovery 

and Reinvestment Act of 2009 (US Congress 2010). Given the potential influence of prospective 

assessments, there is a need for scrutiny of existing methodologies.  

In recent years, there has been a proliferation of publications on the anticipated 

environmental benefits of emerging technologies. Table S1 of the supporting 

information available on the Journal’s website presents a representative sample. 

Some analyses consider the impacts in a single phase of the product’s life cycle 

(usually use phase); see, for example, Brodrick's (2010) predictions of US energy 

savings from the use of energy-efficient solid state lighting, or Levy et al.'s (2016) 

analysis on US energy savings and emissions reductions from increased 

insulation in new homes. Typically, however, the studies follow an extended life 

cycle assessment (LCA) methodology: the relative impacts of a new technology 

are calculated by comparing the cradle-to-grave LCA of an emerging technology 

to a base case scenario. These relative impacts are then translated into national 

level savings by scaling according to the national market size for the service 

being provided. This approach assumes that sufficient incentives exist for 

consumers or manufacturers to buy and use the technology. Few studies produce 

cost models that allow the new and existing technology to be compared in 

different applications (a notable exception is the above analysis by Brodrick). 

Without such models, researchers run the risk of implicitly assuming that a 

technology will be used wherever it is technically viable.  
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Previous work centered at the Technical University in Denmark (Bhander et al. 2003) and 

Arizona State University (Wender and Seager 2011; Wender et al. 2014a; Wender et al. 2014b; 

Wender et al. 2017) has seen concepts developed around anticipatory/prospective LCAs of 

individual products or technologies that include parameter uncertainty in the technology model, 

allowing feedback to the technology developers. Uncertainties are high in these assessments. As 

highlighted by Wender et al. (2014), current LCA practices often rely on point-value estimates 

for environmental impact intensities (e.g., CO2eq per kg of material produced); whereas, often 

only the order of magnitude is known with confidence (Ashby 2012). In anticipatory LCA, these 

uncertainties are compounded by scenario and model uncertainty. In order to convey the 

uncertainty of the final results, the Arizona State authors present overlaid probability 

distributions corresponding to the likely impacts caused by the baseline and alternative 

technologies (Prado-Lopez et al. 2016). Anticipatory LCAs allow for one-to-one comparisons 

between an emerging and existing technology; however, the net industry level impacts of a new 

technology depend on the scale at which it is used, what it is used for, and whether or not it 

displaces the existing technology. 

Existing studies implicitly assume that new technology displaces existing technology one-for-

one; however, this assumption contradicts findings elsewhere in the literature. For example, 

Thomas (2003) models the rebound effect for reuse, finding that the only scenario in which 

reuse can fully replace new product sales is when the second-hand price is zero and the value 

customers place on the newness of the product is low; mutually exclusive conditions in most 

cases. Fremstad (2017) offers an alternative analysis, finding that Craigslist likely does reduce 

waste disposal in California and Florida. Elsewhere, there has been significant work in recent 

years on the displacement of primary material production because of recycling. Vadenbo et al. 

(2016) devise a reporting framework to allow transparent accounting of displacement 

potentials when evaluating resource recovery. Geyer et al. (2015) brand the assumption of a 

one-to-one displacement in recycling a “common misconception,” and Zink et al. (2016) use 

partial equilibrium modeling to argue that one-to-one displacement is unlikely in commodity 

markets. The above studies are from the industrial ecology literature but there are analogous 

studies in the marketing literature (e.g., Mason and Milne 1994; Srinivasan et al. 2005) often 

written under the banner of ‘product cannibalization.’ The marketing literature implicitly 

encourages increased consumption because much of it is dedicated to how companies can avoid 

product cannibalization.  

The improved performance (e.g., increased efficiency and lower price) of a new technology may 

lead to a rebound effect (Jevons 1866; Hertwich 2005), opening up new markets and increasing 

overall sales. For example, Tsao et al. (2010) demonstrate that improvements in lighting 

efficiency and performance have so far led to ever greater demands for lighting services, from 

electrification and near continuous lighting of homes and offices to megawatt LED screens in 

sports stadia. The historical trend highlighted by Tsao et al. does not invalidate the predictions 

of Brodrick and others, that assume one-to-one displacement of LED lighting for other 

technologies (e.g., fluorescent or incandescent lighting). However, it does suggest that 

researchers should consider that a long established socio-economic consumption trend could 

continue. The rebound effect is not limited to the consumption of direct energy. For example, 

Zink and Geyer (2017) describe how circular economy activities (reuse and recycling) can 

increase overall material production, offsetting any environmental benefits.  
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Even a successful, cost-effective technology will not achieve 100% market share 

instantaneously. It takes time for a technology to “diffuse,” for the innovation to 

spread across markets over time (Chandrasekarn and Tellis 2007). Technology 

diffusion is often depicted as an S-curve: first, innovators use the technology; 

then, as time progresses the majority picks it up; and then finally laggards buy 

the technology, at which point it has saturated the market (Rogers 2003). A 

popular description is the Bass (1969) model (equation 1) which, with tuned 

coefficient values, has been found to fit data for most product introductions. 

S(t)= p+q
F(t -1)

m

æ

è
ç

ö

ø
÷´ (m-F(t -1))(1) 

Where S(t) is the predicted number of sales in year t, F(t) is the cumulative number of sales, p is 

the coefficient of innovation, q is the coefficient of imitation, m is the potential market size, and t 

is time measured in years. Few papers examining the environmental benefits of emerging 

technology consider technology diffusion. Notable exceptions include Das et al. (2016) who use 

an adoption scenario based on previous vehicle technology adoption rates in order to predict 

future energy savings from vehicle lightweighting.  

<heading level 2> Scope of current work 

The analysis presented in this article focuses on energy demand, which is typically a good 

indicator of other environmental impacts (Ashby 2012); however, stakeholders will often be 

concerned with multiple, potentially conflicting, criteria (e.g., energy efficiency and NOx 

emissions). Elsewhere, a host of literature is dedicated to evaluating tradeoffs and developing 

strategies for making optimal decisions when faced with conflicting objectives. Strategies 

include intuitive ranking plus documentation/review of the options defined in the Pareto set; 

reformulating an objective as a constraint; using penalty functions or weight factors in order to 

evaluate tradeoffs and find optimal solutions. Useful references for the reader include Keeney 

and Raiffa's (1993) book on preferences and value tradeoffs, and Michael Ashby’s work on 

multi-objective optimization in material design and selection (Ashby 2000, 2011). 

The Proposed methodology is demonstrated in Potential impacts of a new manufacturing process 

by considering a new double-sided incremental sheet forming (ISF) process (Figure 1). ISF is a 

dieless forming process: the sheet metal blank is clamped around the periphery, and CNC 

indenters trace out a tool path, progressively indenting the sheet and making a three 

dimensional part out of the flat blank (Hirt and Bambach 2012).  
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Figure 1: ISF process and machine 

Double sided incremental sheet 
forming technology 

Specification 

Forming area (blank sizes) Rectangular blanks with side lengths in 0.5 m 
increments up to 2.0x1.5 m 

Forming depth 0.475 m 
Tolerance Bilateral profile tolerance of ±1 mm 
Surface finish   Ra < 30 µm   
Maximum tool speed 5 m per minute 
Maximum wall angle 90 degrees 
Production rate  0.1-1 parts hour-1 for sheet metal parts made by 

car companies 
Tool lead time 0 days, with successfully formed parts produced 

first time 
Table 1: Specifications for a new ISF process 

Traditionally, car industry prototyping has used hydraulic stamping presses and part-specific 

cast and machined zinc drawing die-sets. ISF presents the opportunity to avoid the die-making 

process, saving time, money, and energy. However, since the earliest ISF processes were 

developed in the 1990s, ISF has seen limited industrial adoption because of slow forming times 

(Lamminen et al. 2004) and the poor dimensional accuracy of the formed part (Allwood et al. 

2005). A recent US Department of Energy funded project has seen extensive research into 

overcoming the above issues and aims to achieve the specifications shown in Table 1.  

<heading level 1> Proposed methodology 

The industry level environmental impacts of a new technology depend on: (1) Technology level 

impacts and costs of the emerging technology compared to conventional technology (for 

manufacturing processes these would be calculated for a relevant functional unit, such as per 

part produced); (2) The effect on aggregate consumption due to the scale at which the emerging 

technology is used (e.g., annual production of parts). 

Practitioners can use Figure 2 (which presents a flow chart of tasks and alternative tools for 

completing the tasks) in order to complete the proposed methodology. Multiple options are 
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included in Figure 2 because the appropriate tool will depend on the technology, data 

availability, and the resources available to the researcher. The following sub-section is 

dedicated to handling the many uncertainties. Subsequently, each stage of the methodology is 

discussed. 

 

Figure 2: Proposed methodology. Numbering: recommended procedure. Bullet points: 

alternative tools. Notes: 1. Montgomery (2009); 2. Cooper et al. (2016); 3. Nagy et al. (2013) ; 4. Linstone 

(1975); 5. Nadeau et al. (2010); 6. Aulet (2013); 7. Rossie (2015); 8. Huang et al. (2015); 9. Gillingham et al. 

(2016); 10. Dahmus (2014); 11. Greening et al. (2000); 12. Van den Bulte (2002); 13. Morgan et al. (1998).  

References provide guidance on using the suggested tools 

<heading level 2> Dealing with uncertainty 

Uncertainties are high when performing a LCA, and these uncertainties are exacerbated when 

considering the applications of, and potential improvements to, the technology in the future. 

Here, we focus on the selection of probability distributions when modeling inputs from 

empirical data.  

<heading level 3> Frequentist and Bayesian approaches  

Many authors discuss the frequentist and Bayesian approaches to uncertainty, with Morgan et 

al. (1998) providing a good overview in the context of risk analysis in policy making. The 

frequentist approach defines the probability of an event as equal to the frequency with which it 
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occurs in empirical data. The Bayesian approach accounts not only for the empirical data but for 

a prior belief regarding the probability (e.g., that a quantity can only take on positive values less 

than ten). The Bayesian approach takes advantage of all relevant knowledge known to a 

researcher but can introduce subjectivity. A researcher should specify the prior 

distribution/knowledge when implementing a Bayesian approach. 

<heading level 3> Assigning distributions 

The choice of probability distribution can have a significant impact on the calculated likelihood 

of event. Figure 3 presents some popular distributions, with example applications and key 

notes.  

 

Figure 3:  Popular probability distributions. Informed predominantly by Morgan et al. (1998) 

and Montgomery (2009) 

The central limit theorem establishes that, when independent random variables are added, their 

sum tends towards a normal distribution even if the original variables themselves are not 

normally distributed. This is why the normal distribution is commonly used. For example, in the 

case study presented later, a normal distribution is used to model the number of concept cars 

developed in the US each year (equaling the sum of distributions from individual car 

companies). Alternatively, technology inputs (e.g., die masses and electricity requirements) are 

assigned uniform distributions because a range of values is known but there is no evidence to 

suggest that a particular value is more likely to occur than any other (see Table S3 of the 

supporting information on the Web). 

https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Normal_distribution
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If sufficient empirical data has been collected it is possible to use statistical methods to select a 

distribution and estimate its parameters. Potential distribution shapes can first be evaluated by 

plotting the data as histograms. Subsequently, the kurtosis of the data, which is a measure of 

how outlier-prone a distribution is, may be calculated. Quantile-quantile plots of the data may 

also be used to visually inspect the correspondence of the data to a chosen distribution. 

Montgomery (2009) provides detailed instructions on kurtosis calculations.  

<heading level 2> Technology level impacts (now and in the future) 

The energy and cost impacts of a new technology will likely vary across the range of possible 

applications. For example, it may be cheaper and require less energy to use a plastic AM process 

to produce a one-off component (e.g., personalized insoles), but injection molding may be 

cheaper and less energy intensive for mass produced parts (e.g., plastic lunch-boxes). Lifecycle 

energy and cost models should be constructed for each relevant technology as functions of key 

technology characteristics (e.g., regarding AM, the chamber temperature for extruding different 

plastics) and market characteristics (e.g., the number of lunch-boxes and the type of plastic 

needed). The models can be used to compare the technologies in different market segments 

rather than relying on extrapolation from lone case studies. It may be necessary to model 

multiple conventional technologies if potential applications of the new technology span existing 

markets (e.g., autonomous vehicles might be used to undertake some journeys currently 

completed using passenger cars and trains).  

<heading level 3> Learning curves and future technology costs 

The cost of a new technology may decrease over time. Multiple laws have been proposed to 

predict technology improvement. For example, Moore’s law predicts the exponential growth in 

the number of transistors on a dense integrated circuit (Moore 1965) and is widely interpreted 

as meaning that the cost of a technology decreases exponentially with time. Wright’s law, 

originally regarding aeroplane production, predicts that production cost decreases as a function 

of cumulative production (Wright 1936). Nagy et al. (2013) review the ability of six such 

postulated laws to predict the cost of production across 62 technologies. They find that Moore’s 

law and Wright’s law are, in the absence of other knowledge, the best methods at predicting 

progress and that they are typically equivalent because an exponential decrease in cost is often 

accompanied by an exponential increase in production. Elsewhere, Nadeau et al. (2010) 

emphasize that the learning process is not guaranteed, with major cost elements not necessarily 

aligned with major opportunities for cost reduction. They advocate the use of process-based 

cost modeling, requiring a detailed knowledge of the cost structure but allowing intelligent 

predictions of future cost without having to rely on learning curve laws.  

<heading level 2> Effect on consumption 

The effect of the emerging technology on aggregate consumption will depend on the scale at 

which it is used, and the degree to which the final applications represent displacement of 

incumbent technology versus new, additional, consumption.  

<heading level 3> Displacement of incumbent technology 

The scale of use depends on both endogenous factors (properties of the emerging technology) 

and exogenous factors (properties of the marketplace and customer/manufacturer behavior). 
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Initial estimates of the addressable market will come from brainstorming, see Aulet's (2013) 

guide to brainstorming market segmentation for new technologies, and searching the literature 

for where others have speculated that the technology could be useful. Researchers can then 

conduct interviews with industry experts and get their perspectives. A range of stakeholders 

should be engaged otherwise opportunities might be missed and/or infeasible applications 

included. The estimate of the addressable market should likely be a distribution given the 

uncertainties. 

The technology level models can be applied to the addressable market in order to determine the 

sweet spots: applications where the new technology is both environmentally beneficial and cost 

effective. Future growth of these sweet spot applications can then be calculated from industry 

reports (sometimes these include corresponding uncertainty) or historical trends. A technology 

diffusion analysis can then consider how quickly the emerging technology displaces incumbents 

in these applications, determining a “scale of use” for any future year.  

Figure 4 shows the results of implementing the methodology in order to find the 

environmentally beneficial scale of use for an emerging technology in 2030 (see the later case 

study). As the histogram plots progress from left to right, the size of the addressable market 

shrinks as it is considered through multiple filters. First, the technical market size: can the 

technology provide the service, or for a manufacturing technology, feasibly make the part? 

Second, the energy demand associated with the new technology is compared to conventional 

technologies using the energy models derived as part of Technology level impacts (now and in 

the future): can the new technology save energy across the technical market? Third, cost 

comparisons are made with conventional technologies using the cost models derived as part of 

Technology level impacts: can the new technology save money across the energy-saving market? 

Fourth, a range of technology diffusion scenarios (see Technology Diffusion) allow the size of the 

market to be predicted by any given date.  
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Figure 4: The effect of “filters” on the addressable market. Distribution from 10,000 Monte Carlo 

simulations 

<heading level 3> Additional consumption  

More work is required to understand the complex dynamics between new innovations, prices, 

and overall demand for materials and energy. However, summarizing the lessons learned from 

existing work, those engaged in prospective analysis should consider the following: 

 New applications. A researcher is likely to have discovered (while performing a 

literature review and conducting stakeholder interviews) any intentions to use the 

emerging technology in new applications. For example, cheap 3d printing might be used 

to make personalized products for consumers and prototypes for manufacturers that 

otherwise would not have been made. These items are not replacing, and are only 

adding, to current consumption. It may be possible to estimate the size of these new 

markets; for example, by engaging with the stakeholders who intend to pursue these 

new opportunities. It may be necessary expand the system boundaries of the analysis in 

order to take into account any broader environmental benefits associated with the 

additional consumption. 

 Greater consumption in the same market. It may be possible to predict the effect of lower 

prices on consumption by calculating the cost elasticity of demand using historical 

consumption and price data. For example, Tsao et al. (2010) found that mankind has 

historically spent around 0.7% of GDP on lighting. Elsewhere, the cost elasticities of 

demand are reviewed for various energy products across developed and developing 

countries (Gillingham et al. 2016) and for space heating and transport applications in 

the US (Thomas and Azevedo 2013). The rebound effect associated with new hybrid 

vehicles and train systems has been examined by Haan et al. (2007) and Spielmann et al. 

(2008) respectively, and Fouquet and Pearson (2012) also examine the lighting 

rebound. Dahmus (2014) considers historical rebound effects across multiple material 

production and transportation technologies. Historical precedents do not make rebound 

effects inevitable, but they should be considered.  

 Saturated markets may temper rebound effects. A lower cost technology may not prompt 

additional consumption if the market is nearing saturation. For example, previous 

researchers have found that the aggregated energy rebound in developed countries is 

low (Greening et al. 2000) compared to developing countries with lower material wealth 

(Roy 2000; Antal and Van den Bergh 2014). 

<heading level 3> Technology diffusion 

A range of scenarios should be considered in order to anticipate how quickly the technology is 

picked up by customers. The diffusion scenarios may be informed by: (1) semi-structured 

interviews with industry experts, employing the Delphi method as described by Linstone 

(1975); (2) sales of the new technology if they exist; (3) historical analyses of analogous 

technologies. Analogs may be chosen because they belong in the same industry. Pae and 

Lehmann (2003) and Van den Bulte (2002) present many aggregated diffusion curves for 

different industries. Alternatively, Thomas (1985) argues that analogs can be chosen by defining 

broader similarities; for example, the degree of social interaction (word-of-mouth, social media 
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etc.) between potential users, the costs of the technology and the relative affluence of potential 

users, and network effects such as the degree to which a surrounding infrastructure is needed in 

order to support the innovation (e.g., lengthy and costly certification procedures are required 

for new aerospace parts) (Peres et al. 2010). Considering a range of adoption scenarios is 

necessary because, as highlighted by Massiani and Gohs (2015), a pitfall in anticipatory 

diffusion modeling is the large range of historical precedents a researcher could use to select 

parameter values. It is recommended that researchers either assign a probability distribution to 

the diffusion curve (see the later case study) or explore high, medium and low adoption 

scenarios, as demonstrated by Huang et al. (2015). 

<heading level 2> Prospective impacts and feedback to technology developers 

Prospective impacts for a year of interest can be calculated by applying the technology level 

impact models to the results of the diffusion analysis (see the “scale of use” distribution in 

Figure 4). The impact will be the net effect of a switch from old to new technologies in those 

applications that represent displacement of incumbent technology. The impact will be the gross 

effect only of applying the emerging technology to those new applications that represent 

additional consumption and rebound effects.   

In order to account for the compounded uncertainty it is recommended that a Monte Carlo 

analysis is used in which a value is drawn at random from the distribution for each input 

(Morgan et al. 1998). This set of random values defines a set, or Monte Carlo simulation, and the 

corresponding output value is calculated. Repetitions of this procedure produces an output 

distribution, illustrative of the uncertainty in the final results. In order to provide valuable 

feedback to technology developers it is recommended that key technology and market 

uncertainties (e.g., production rate of a manufacturing technology) be altered and the 

simulations repeated in a sensitivity analysis. Response surfaces may be generated if multiple 

parameter variations are of interest. 

<heading level 1> Potential impacts of a new manufacturing process  

The proposed methodology is used here in order to estimate the potential energy and cost 

savings in the US car industry by 2030 from the development of a new ISF process for making 

prototype sheet metal parts. Car companies produce large sheet metal parts (e.g., hoods, doors 

and fenders) in-house.  

Car production is synonymous with mass production; however, during prototyping small 

batches of identical parts are produced. In mass production, forming tools are made from steel 

and iron; for lower volume part production, low melting resins and metals, such as zinc, are cast 

and machined to the final shape (ASM 1995; Bernard et al. 2001). These tools take several 

weeks to manufacture, whereas ISF production can begin as soon as the part design and forming 

tool path has been finalized. ISF is, however, a slow process (0.1-1 parts per hour, including 

preparation and removal time) compared to drawing.  

During early part design, up to 20 units may be produced using zinc (or resin) dies. Engineers 

use these parts to examine the aesthetic appearance of the components, try various fastening 

methods, and experiment with stone peck (impact) tests on parts and fatigue tests on small 

assemblies. During full vehicle prototyping, around 250 more units are made of each part using 

new, updated zinc die-sets. For each part design, therefore, 270 copies are produced during 
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prototyping using two different sets of dies (20 copies on one die-set and 250 copies on the 

other). Figures S1-S3 in the supporting information on the Web show the total lead time to 

produce different numbers of parts using alternative sheet metal forming (SMF) technologies. It 

would take over a year to make even a moderate number of parts (2,000 units) using ISF, 

compared to less than 3 months using conventional drawing. ISF is unable to compete at 

production volumes in the car industry; however, it should be noted that in lower volume 

industries such as aerospace and HVAC this is not necessarily the case. In light of these lead time 

considerations, this analysis focuses on the use of ISF to make 20-unit and 250-unit batches of 

parts. The baseline analysis considers using ISF to displace low-volume zinc die-set part 

production. Interviews with car companies and die makers, however, revealed that car 

companies sometimes use single sided zinc or resin dies in fluid cell forming (FCF) presses in 

order to reduce tooling costs. Looking to the future, it is important to understand the potential 

energy and cost savings of using ISF compared to these alternative forming methods, as well as 

compared to traditional zinc die drawing; see Guiding technology development later in this 

paper. 

<heading level 2> Technology level impacts – energy and cost models 

Physically reasoned models for ISF, drawing, and FCF are presented in Cooper et al. (2017) and 

Cooper and Gutowski (2016) respectively. The boundaries of the analyses are shown in Figure 

5. The energy requirements and costs of using the formed parts are assumed irrelevant because 

the final part weight and geometry are likely to be similar irrespective of forming method. The 

models are presented in full in Section 3 of the supporting information on the Web and are used 

to predict per-part primary energy requirements and costs (mean and standard deviation) 

based on the final part material (typically steel or aluminum), size (surface area, thickness, and 

depth), and the lifetime number of parts produced on the die-set. The impacts and costs of a die-

set are amortized (allocated equally) over the total number of parts produced using that die 

(20-unit or 250-unit batches). For ISF, it is also necessary to know the speed with which the tool 

traverses the sheet, and the incremental step size with which the tool progresses into the sheet 

after each tool path orbital. The following realistic default values (measured values already 

being used in research and development) have been used: 0.5 mm step size and 5 m/min tool 

speed.  

 

Figure 5: Boundaries of analyses. i=environmental impacts (primary energy), c=costs, see Table 

S2 of supporting information on the Web. The ‘recycled content’ method is used for all analyses. 
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<heading level 2> Consumption in 2030 

By 2030, it is estimated that ISF could be used to form a mean of about 260,000 

sheet metal parts per year. For these parts, ISF production will be cheaper and 

less energy intensive than conventional zinc die drawing. There are many 

uncertainties, including: (1) the number of part geometries (within a new vehicle) 

that can be formed using ISF; (2) the number of new cars that will be developed 

in the US in 2030; (3) the number of part geometries (in 20-unit or 250-unit 

batches) for which ISF production will reduce energy consumption and costs; and 

(4) the expansion of ISF across industry from a current position of low or trivial 

use. Distributions were defined for each of these uncertainties as described in the 

sub-sections below. Figure 4 summarizes the uncertainty in each consideration 

(technical, energy, cost, technology diffusion). Section 4 of the supporting 

information on the Web presents the raw data, and the mean, standard 

deviation, and kurtosis of each distribution. 

<heading level 3> Technical market size by 2030 

A typical inventory of sheet metal parts (and blank sizes) in an American passenger car is 

presented in Omar (2011). The material is assumed to be low carbon galvanized cold rolled 

steel because, despite the use of some aluminum, steel remains the predominant material used 

in car sheet metal parts. The parts from Omar were compared to the ISF specification (Table 1) 

in order to determine if ISF can form the geometry. Side body panels, for example, are too large 

to be formed in even the largest ISF machines. It is assumed that ISF can form parts where blank 

dimensions are smaller than 1.5 m. It is unclear whether or not ISF can form larger parts where 

all blank dimensions are smaller than 2 m (the largest ISF frame size), as some excess material 

may be necessary as part of an addendum design. Referring to Table 2, the number of parts in a 

passenger car that may be made using ISF is therefore likely to range between 34 and 40, 

modeled as a normal distribution, N(37,9), truncated below zero parts. 

Historical data on new vehicle production (provided by a leading consultancy) shows that 

between 1995 and 2014 Ford introduced a mean of 5.4 car models per year (standard 

deviation: 2.6) and that Ford accounted for a fifth of US domestic production. These numbers 

correlate well with personal communications the authors had with the Ford team responsible 

for developing new products. Combined with current US car production growth rates (3.2% per 

annum), these numbers suggest that by 2030 a mean of 41 new cars will be developed each year 

across the US (standard deviation of 20), modeled as a normal distribution, N(41,400), 

truncated below zero parts. The distribution of new parts that ISF could technically make by 

2030 (Xtechnical potential) is therefore given by equation 2, resulting in a mean of approximately 

420,000 parts as shown in the “Technical market in 2030” column of Figure 4. 
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)400,41()9,37(270~]/[
potentialTechnical

NNyearpartsX  (2) 

<heading level 3> Energy and cost saving market size 

The energy requirements and costs of ISF and zinc die drawing were compared using the 

models described earlier in this case study. The results are shown in Table 2 as mean savings 

(standard deviation equivalent to 30% of the mean for energy savings and 20% of the mean for 

cost savings).  

Car part 
Production number: 20 parts Production number: 250 parts 

Cost savings 
(USD/part) 

Energy savings 
(MJprimary/part) 

Cost savings 
(USD/part) 

Energy savings 
(MJprimary/part) 

All dimensions equal to or less than 1500mm  
Front door outer - 2 per car 36634 56573 7691 -32295 
Rear Door outer - 2 per car 36923 59141 11865 9277 
Front Fender - 2 per car 38531 86800 14712 61133 
Trunk outer - 1 per car 38651 99822 5094 34302 
Rear Wheel Well - 2 per car 36787 58819 10170 5256 
Front door inner - 8 per car 35553 28328 17556 12806 
Rear door inner - 8 per car 35554 26021 19233 12416 
A Pillar - 2 per car 34772 9763 18912 -29646 
B Pillar - 2 per car 34973 17164 16423 -22453 
C Pillar - 2 per car 35679 26531 19685 -167 
Roof Cross Members - 2 per car 34915 14931 16249 -40883 
Trunk - 1 per car 39364 104163 14008 88565 
All blank dimensions fit within 2000 mm x 1500 mm  
Hood outer - 1 per car 42537 176474 -865 63382 
Roof outer - 1 per car 41871 165024 833 90910 
Firewall (Dash) - 1 per car 39058 106940 5721 47429 
Hood inner - 1 per car 43559 186850 11920 193081 
Rockers - 2 per car 35228 25119 12376 -46260 
     
Savings across a single vehicle development: 
 Part prototyping (20-unit batches) Car development: 250-unit batches) 
ISF application scenario Cost 

(USD/vehicle) 
Energy (TJ/vehicle) 

Cost 
(USD/vehicle) 

Energy 
(TJ/vehicle) 

ISF used wherever technically 
viable 

1.46 million 
USD 

1.98 TJprimary 587,198 USD 527,365 MJ 

ISF used to maximize cost savings 1.46 million 
USD 

1.98 TJprimary 
0.59 million 

USD 
463,983 MJ 

ISF used to maximize energy 
savings 

1.46 million 
USD 

1.98 TJprimary 404,523 USD 0.87 TJprimary 

ISF used only when energy and 
money can be saved 

1.46 million 
USD 

1.98 TJprimary 
0.41 million 

USD 
0.81 TJprimary 

Table 2: Energy and cost savings across parts in a single vehicle development (part prototyping and car 
development) if ISF is used instead of zinc die drawing to form parts. All part depths are conservatively 
assumed to be 0.3 m  

Production of 20-unit batches results in energy and cost savings across all the parts considered. 

However, for 250-unit batches, some parts save energy but not cost (or vice versa). In this 

analysis, it is assumed that companies will only use ISF if they can save money compared to 

conventional forming techniques. Subsequently, there are only 27 parts per vehicle for which 

250-unit batch production using ISF would save energy and money. As shown in Figure 4, the 

mean potential 250-unit market drops from 390,000 parts (technical potential) to 270,000 

parts per year (production of these parts is technically feasible, requires less energy and lowers 

costs compared to conventional forming, see “Cost-saving market” column in Figure 4). 

<heading level 3> Diffusion of ISF technology: market in 2030 

Bass model diffusion coefficients were modeled as normal distributions: p ~ 

N(0.017,0.0066); q ~ N(0.47,0.09) as derived for industrial innovations by Van 
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den Bulte (2002). His meta-analysis is the most comprehensive found in the 

literature; he aggregates over 1,500 diffusion coefficient values and provides 

confidence intervals on the mean values. It was assumed that ISF was not used 

to make any successful parts in 2016: S(2016)=F(2016)=0. The final results are 

shown in the “scale of use: 2030” column of Figure 4: a mean of 262,000 parts. 

<heading level 2> Aggregate savings, technology displacement and the potential for rebound 

effects 

The aggregated annual energy and cost savings in 2030 are calculated by multiplying per part 

savings (themselves distributions) by the “Likely 2030 market” distribution. In the baseline 

analysis it is assumed that ISF displaces, one-to-one, zinc die-set drawing, and does not cause a 

rebound effect. The subsequent energy and cost savings are presented in Figure 6. Section 5 in 

the supporting information on the Web presents details of this calculation. 

 

Figure 6: Total savings (from 10,000 simulations) across part prototyping (left column) and car 

development (right column) assuming ISF displaces zinc die drawing one-to-one 

To evaluate if the baseline analysis reflects a realistic scenario, a series of interviews were 

conducted with industry experts: zinc die manufacturers, prototype part makers, design 

engineers, and managers at prototyping facilities. A list of the interviewees and questions that 

guided the discussions are provided in Section 6 of the supporting information on the Web.  

A consensus emerged from the interviews that ISF could supersede matched die drawing for 

part prototyping because the potential cost savings are large. However, it was deemed unlikely 

that ISF will completely supersede zinc die drawing for car development in the foreseeable 

future. This is partly because car companies use the experience of drawing the 250-unit batches 

to inform the final design of both the part and the steel/iron drawing dies that will be used in 

mass production. ISF would be a poor indicator of material behavior during mass production 

because the forming mechanics differ from those in drawing. Improved finite element 
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simulations may reduce the need for this learning step in the future (Hung 2016). Even if ISF 

production of 250-unit batches is currently unrealistic, Figure 6 shows that the main energy and 

cost savings will be derived from displacement of drawing dies in part prototyping (20-unit 

batches). 

Could the cost savings from using ISF prompt an increase in car sales (a rebound effect)? In a 

historical study on US motor vehicle travel, Dahmus (2014) found low rebound effects in this 

sector. Focusing on new car sales, US Department of Transport data shows that over the last 45 

years, despite rising prosperity and population, US new car sales have fallen, with 2014 annual 

sales 8% lower than in 1970 (DOT 2016). Domestic new car sales were 21% lower. We 

therefore cautiously hypothesize that increased US cost competitiveness may help shift the 

origin of US car sales, but that the effect on overall sales will be minimal.  

<heading level 2> Guiding technology development  

In order to guide technology development, sensitivity analyses considered the mean potential 

savings from using ISF by 2030 under the following circumstances:  

(1) An increased ISF step size from 0.5 mm to 2 mm (process parameter 

change), reducing the forming time. 

(2)  A decreased ISF forming tool speed from 5 m/min to 4 m/min (process 

parameter), increasing the forming time. 

(3) An alternative baseline scenario where the future alternative to ISF is 

FCF with a single (half) zinc die. 

(4) An alternative baseline scenario where the future alternative to ISF is 

FCF with a single (half) resin die (modeled as RenShape 5166) for part 

prototyping (20-unit batches). Resin dies cannot be used to form 250-

unit batches because they wear too quickly.  

The results of this sensitivity analysis are shown in Figure 7. As shown, changes 

to the forming speed via step size and tool speed have a marginal effect on part 

prototyping energy savings, suggesting that technical efforts should focus on 

achieving the necessary part quality for this beachhead market. Growing use of 

FCF could halve savings in part prototyping and eliminate them in car 

development; the growth of FCF should be closely monitored by those espousing 

the use of ISF. The cost savings equivalent to Figure 7 displays similar trends. 
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Figure 7: Savings from using ISF in 2030 (*ISF: 0.5 mm step size; 5 m/min tool speed. Baseline: 

drawing with zinc dies) 

<heading level 1> Discussion 

The approach described in this article explores the potential industry level impacts of an 

emerging technology. It extends the explorative analyses of anticipatory LCA by including the 

size of the technology’s addressable market both now and in the future and considers 

technology diffusion, technology displacement and rebound effects. When testing different 

technology configurations (e.g., process speeds of a manufacturing technology), the energy and 

cost models change and the analysis recalculates the addressable market, revealing the industry 

level effect of design changes. Diffusion analyses are useful as they indicate when significant 

impacts might be expected to occur; for example, by acknowledging that not all a technology’s 

benefits will be realized straight away, a government can choose a suite of CO2 mitigation 

strategies in order to achieve a given roadmap towards lower emissions.  

In a given application, it is possible that one technology is cheaper but requires more energy 

than another technology. This dynamic can then reverse in a different application; there is a 

danger that ‘sustainable’ technology, if used blindly, could result in an increase in overall energy 

requirements. Constructing energy and cost models as functions of different market segments, 

as demonstrated in this analysis, could help avoid this pitfall. For example, see Table 2 where it 

is demonstrated that ISF production of 250-unit batches of A pillars is cost effective but requires 

more energy than conventional production. This is because bespoke die-set manufacturing 

requires extensive manual labor and engineering time, and thus, the costs are high compared to 

the energy invested. Subsequently, ISF can still be cheaper than drawing even when ISF is more 

energy intensive.  

Future application of a technology is dependent on some technical and commercial success. For 

example, the ability of developers to achieve the technical specifications defined in Table 1. The 

diffusion modeling employed in this work is informed by the diffusion of successful innovations 

in the past. There is therefore, as Rogers (2003) put it, an inherent pro-innovation bias with 
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such modeling which policy makers should recognize. There is also a limit to the resources that 

can be spent modeling the potential market for a new technology. As described by Aulet (2013) 

it is important to realize that calculating potential new technology markets is an iterative 

process of “spiraling” toward the optimal answer. High uncertainties exist in prospective 

analyses; however, by considering the methodology presented in this paper, researchers will be 

able to produce more robust and transparent explorations of future impacts. 
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