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Abstra
Prospecti onmental assessment of emerging technology is necessary in order to inform
designers cial changes early in a technology’s development, and policy makers looking

to fund préjects and nudge manufacturers towards the most sustainable application of a
technology. Existing analyses often have shortcomings such as failing to consider the

environm acts in all stages of a product’s lifecycle; implicitly assuming that the
emerging teght y will be cost effective wherever it is technically viable; and assuming
optimisti ication scenarios that discontinue long established trends in human behavior. In

ropose a new approach, complementary to the prospective and anticipatory
Life Cycle As ent (LCA) literature, addressing the above concerns and attempting to make
ncertainties inherent in such analyses by using distributions to model all the
inputs. The paper focuses on emerging manufacturing technologies, such as incremental sheet
forming (ISF), but the issues examined are also applicable to new end-use products, such as
autonomohes. This paper makes use of approaches (such as Bass modeling and product

cannibalizatigmsconsiderations) familiar to those in the business community who anticipate
market dif @ a new technology and the effect on existing technology sales.

The propos odology is demonstrated by estimating the potential environmental impacts
in the US d@r industry by 2030 of an emerging double-sided ISF process. Energy and cost models
of ISF are used to estimate potential mean savings of around 100 T]primary and 60

million Wr by 2030.
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<heading level 1> Introduction

There is"amii asing focus in government, academia and business on the potential
environm acts of new technologies. “How much energy will this save?” and “By how
much will reenhouse gas emissions?” are questions now routinely asked of researchers

by fundi-ni bodies. “This” typically refers to a new product, such as autonomous vehicles, or a

new manugacturing process, such as additive manufacturing (AM). Subsequently, analyses
attemptin er these questions are becoming common in government reports and
academic erSpln the DOE Quadrennial Technology Review there is now a chapter dedicated to
“Innovating CleapfTechnologies in Advanced Manufacturing” that highlights such work (US
Department nergy 2015); for example, Huang et al.'s (2015) study on future energy and
emissionsmerived from the use of AM to make aircraft components. Such studies not

()

only infor erm funding decisions but guide legislation; for example, the potential for
energy effiei ighting to save energy at the national level forms a central thesis in the US
Energy Independelice and Security Act of 2007 (US Congress 2007) and the American Recovery
and Reiny Act of 2009 (US Congress 2010). Given the potential influence of prospective

assessmerc is a need for scrutiny of existing methodologies.

In recent years, there has been a proliferation of publications on the anticipated
environenefits of emerging technologies. Table S1 of the supporting
information available on the Journal’s website presents a representative sample.
Some ana onsider the impacts in a single phase of the product’s life cycle
(usua se); see, for example, Brodrick's (2010) predictions of US energy
savings from the use of energy-efficient solid state lighting, or Levy et al.'s (2016)

analysis @n US energy savings and emissions reductions from increased

2

insulatio@w homes. Typically, however, the studies follow an extended life

cycle ass t (LCA) methodology: the relative impacts of a new technology
are calc y comparing the cradle-to-grave LCA of an emerging technology
toab enario. These relative impacts are then translated into national

level s“ scaling according to the national market size for the service

being pr This approach assumes that sufficient incentives exist for
consume anufacturers to buy and use the technology. Few studies produce
cost m at allow the new and existing technology to be compared in
different ications (a notable exception is the above analysis by Brodrick).

Without such models, researchers run the risk of implicitly assuming that a

technology will be used wherever it is technically viable.
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Previous work centered at the Technical University in Denmark (Bhander et al. 2003) and
Arizona State University (Wender and Seager 2011; Wender et al. 2014a; Wender et al. 2014b;
Wender et al. 2017) has seen concepts developed around anticipatory/prospective LCAs of
individ s or technologies that include parameter uncertainty in the technology model,
allowing feg to the technology developers. Uncertainties are high in these assessments. As
highlighte @ der etal. (2014), current LCA practices often rely on point-value estimates

e pact intensities (e.g., COz¢q per kg of material produced); whereas, often
only th&8 F@#e@&fagnitude is known with confidence (Ashby 2012). In anticipatory LCA, these

distributi ponding to the likely impacts caused by the baseline and alternative
technologi o-Lopez et al. 2016). Anticipatory LCAs allow for one-to-one comparisons
between a ing and existing technology; however, the net industry level impacts of a new
technolog en@ on the scale at which it is used, what it is used for, and whether or not it

displaces the existing technology.

Existing studies imlplicitly assume that new technology displaces existing technology one-for-
one; however, this assumption contradicts findings elsewhere in the literature. For example,
Thomas (1:53 E models the rebound effect for reuse, finding that the only scenario in which

reuse can ace new product sales is when the second-hand price is zero and the value
customers the newness of the product is low; mutually exclusive conditions in most
cases. Fremist 17) offers an alternative analysis, finding that Craigslist likely does reduce
waste disp0Sa alifornia and Florida. Elsewhere, there has been significant work in recent
years o cement of primary material production because of recycling. Vadenbo et al.
(2016) devi orting framework to allow transparent accounting of displacement
potentia evaluating resource recovery. Geyer et al. (2015) brand the assumption of a
one-to ment in recycling a “common misconception,” and Zink et al. (2016) use

partial equilibrium modeling to argue that one-to-one displacement is unlikely in commodity

markets. lae above studies are from the industrial ecology literature but there are analogous
eting literature (e.g., Mason and Milne 1994; Srinivasan et al. 2005) often

banner of ‘product cannibalization.” The marketing literature implicitly

ased consumption because much of it is dedicated to how companies can avoid

pdlization.

studies in
written ungd@

encourag
product canrt

The impr#d performance (e.g. increased efficiency and lower price) of a new technology may
lead to atebound effect (Jevons 1866; Hertwich 2005), opening up new markets and increasing
overall Hample, Tsao et al. (2010) demonstrate that improvements in lighting
efficiency rmance have so far led to ever greater demands for lighting services, from

electrification andinear continuous lighting of homes and offices to megawatt LED screens in
sports sta historical trend highlighted by Tsao et al. does not invalidate the predictions

ers, that assume one-to-one displacement of LED lighting for other

.g., fluorescent or incandescent lighting). However, it does suggest that
researchers s consider that a long established socio-economic consumption trend could
continue. The rebound effect is not limited to the consumption of direct energy. For example,
Zink and Geyer (2017) describe how circular economy activities (reuse and recycling) can
increase overall material production, offsetting any environmental benefits.
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Even a successful, cost-effective technology will not achieve 100% market share
instantaneously. It takes time for a technology to “diffuse,” for the innovation to

spreadHarkets over time (Chandrasekarn and Tellis 2007). Technology
diffusiopicted as an S-curve: first, innovators use the technology;
then, as # proBresses the majority picks it up; and then finally laggards buy
the tec% mat which point it has saturated the market (Rogers 2003). A

popular ion is the Bass (1969) model (equation 1) which, with tuned

coefficient valus, has been found to fit data for most product introductions.

S(t)=(p@j><(m—F (t=1) )

Where S(t:redicted number of sales in year t, F(t) is the cumulative number of sales, p is

the coeffici innovation, q is the coefficient of imitation, m is the potential market size, and t
is time meg@sured in years. Few papers examining the environmental benefits of emerging
technolog r technology diffusion. Notable exceptions include Das et al. (2016) who use
an adopti io based on previous vehicle technology adoption rates in order to predict
future ene gs from vehicle lightweighting.

<headin pe of current work

The analysi ted in this article focuses on energy demand, which is typically a good
indicat nvironmental impacts (Ashby 2012); however, stakeholders will often be

concerned with multiple, potentially conflicting, criteria (e.g. energy efficiency and NOx
emissions )y Elsewhere, a host of literature is dedicated to evaluating tradeoffs and developing
strategieshng optimal decisions when faced with conflicting objectives. Strategies
include intyigimegranking plus documentation/review of the options defined in the Pareto set;
reformulajective as a constraint; using penalty functions or weight factors in order to
evaluate traé and find optimal solutions. Useful references for the reader include Keeney

and Raiffa book on preferences and value tradeoffs, and Michael Ashby’s work on
multi-obje€tive optimization in material design and selection (Ashby 2000, 2011).

The ProModology is demonstrated in Potential impacts of a new manufacturing process

by consid w double-sided incremental sheet forming (ISF) process (Figure 1). ISFis a
dieless forming picess: the sheet metal blank is clamped around the periphery, and CNC

indenters a tool path, progressively indenting the sheet and making a three

dimens&ut of the flat blank (Hirt and Bambach 2012).
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Figure 1: ISF process and machine

Double si incremental sheet Specification

forming te

Forming ar sizes) Rectangular blanks with side lengths in 0.5 m
increments up to 2.0x1.5 m

Forming de 0.475m

Tolerance Bilateral profile tolerance of +1 mm

Surface Ra <30 um

Maximum to 5 m per minute

Maximum w 90 degrees

Produc 0.1-1 parts hour! for sheet metal parts made by

car companies
Tool lead time 0 days, with successfully formed parts produced

first time
Table 1: Sp iens for a new ISF process

dustry prototyping has used hydraulic stamping presses and part-specific
zinc drawing die-sets. ISF presents the opportunity to avoid the die-making

the 1990s, ISF has seen limited industrial adoption because of slow forming times
004) and the poor dimensional accuracy of the formed part (Allwood et al.
Department of Energy funded project has seen extensive research into

environmental impacts of a new technology depend on: (1) Technology level
ts of the emerging technology compared to conventional technology (for

cesses these would be calculated for a relevant functional unit, such as per
part produced); (2) The effect on aggregate consumption due to the scale at which the emerging
technology is used (e.g., annual production of parts).

manufacturil

Practitioners can use Figure 2 (which presents a flow chart of tasks and alternative tools for
completing the tasks) in order to complete the proposed methodology. Multiple options are
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included in Figure 2 because the appropriate tool will depend on the technology, data
availability, and the resources available to the researcher. The following sub-section is
dedicated to handling the many uncertainties. Subsequently, each stage of the methodology is
discuss

—

/

A. Technology level impacts (now and in the future)

~

(1975); 5. Nad

Aims

Potential tools and procedures

Modeling today’s
emerging and
incumbent technology
(energy requirements
& costs)

Modeling future
versions of the
technology (energy
reguirements & costs)

-

Where possible, include the uncertainties as probability distributions
+ Models derived from aggregated data, correlating technology
parameters with energy requirements and costs using
regression analyses! (EHigh empirical data requirements)
+ Models derived using physical reasoning coupled with LCA
and unit cost data? (In-depth knowledge of the physical process
and sub-unit cozts required)

+ ILearning curves from analogous technologys (Defining
analogous technology can be difficult and subjective)

+ Employ Delphi methods* (Extensive stakeholder engagement
needed)

* Physical reasoning® E g. current and potential future
thermodynamic efficiency. (In-depth knowledge of the physical
process and sub-unit costs required)

J

¥

Aims

B. Effect on consumption

Potential tools and procedures

Determine the
addressable market of
the new technology
through displacement
of incumbents
(applications saving
energy and reducing
costs)

Determine the
potential for
additional
consumption and
rebound effects

1. Initial market segmentation® (applications where the
technology could be used to provide a service): Brainstorming?®
Literature reviews, Interviews’ with a range of stakeholders.

2. Determine which incumbent technology is currently used to
meet the demand in each market segment. Conduct interviews
and literature reviews as necessary. Produce new technology
level impact models as neceszary (see part A).

3. Compare emerging & incumbent technology level impacts in
each market segment. Reject applications of emerging tech.
that would increase costs. If interested in the potential to save
energy, reject applications that also increase energy req.
Determine remaining addressable market size (e.g. parts/year).

4 Consider growth of addressable market in the future? by
examining industry reports and/or historical trends

Consider the following when accounting for potential rebound effects:

¢ New applications: It may be possible to estimate the size of
these new markets: e.g.. by engaging with the stakeholders who
intend to pursue new opportunities.

e Historical studies on rebound effects in the given industrys10
may specify the cost elasticity of demand

e Consider the saturation of the market!! (more saturated
markets are less likely to experience rebound effects)

ed methodology. Numbering: recommended procedure. Bullet points:

Notes: 1. Montgomery (2009); 2. Cooper et al. (2016); 3. Nagy et al. (2013) ; 4. Linstone
eau et al. (2010); 6. Aulet (2013); 7. Rossie (2015); 8. Huang et al. (2015); 9. Gillingham et al.

ahmus (2014); 11. Greening et al. (2000); 12. Van den Bulte (2002); 13. Morgan et al. (1998).
eferences provide guidance on using the suggested tools

< headH > Dealing with uncertainty

Uncertainties aretigh when performing a LCA, and these uncertainties are exacerbated when
plications of, and potential improvements to, the technology in the future.
he selection of probability distributions when modeling inputs from

consideri
Here, we foc

<heading level 3> Fréquentist and Bayesian approaches

Many authors discuss the frequentist and Bayesian approaches to uncertainty, with Morgan et
al. (1998) providing a good overview in the context of risk analysis in policy making. The
frequentist approach defines the probability of an event as equal to the frequency with which it

6
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occurs in empirical data. The Bayesian approach accounts not only for the empirical data but for
a prior belief regarding the probability (e.g., that a quantity can only take on positive values less
than ten). The Baiesian approach takes advantage of all relevant knowledge known to a

researc introduce subjectivity. A researcher should specify the prior
distributio ledge when implementing a Bayesian approach.
<heading le igning distributions

The chcgcg! proBability distribution can have a significant impact on the calculated likelihood

of event. F resents some popular distributions, with example applications and key
Normal Log Normal Exponential | Poisson Weibuli | Uniform | Triangular Beta ‘
Example L il - L
shape §os| g §om gou ]
B i i) : (2
Example |Heightof male aduits [Poliution concentration, accidents over time The number of discrete  (wind speed Location of aleak along @ |Finite range specified by | Over the 0-1 range, can be
applica- stream fiows, explosion events that ocour ina pipe. Wind direction two parameters. The used to represent
! Many applications due to the [isteqsity Storm event durations | fixed time period, Distribution of failura tima sharp comers of this uncertzinty in the
tions central lmit theoram ) il sl sizes distance, area etc. in ralizbility modsls . bea dlity of pocurrence
Appiicable when the " convenient method of |of an event.
quantivy of interest must be E.¢. number of Geiger comeying the message to
positive. counter clicks per second the reader that the actual |Flexibility means itis
or the number of flaws distribution is not widely used.
per 1000 feet of video precissly known and that
tape the resuts [particuiarly
- - subtle aspects] —
Para- s the mean. 7 is the 12 is the mean. 7 is the (One parameter, & One parameter, & k0 s the shape Parameters, 3 and b, should not be over @ and B are two positive
standard deviation. standard deviation. rameter. -0 is the 5 thelimits ofthe |, |shay rameters
meters & zero to positive infinity  |Zero to positive infinity z;‘e parameter ﬁp::_y interpratad. Pee
range Negative 1o positive infinity  |Zero to positive infinity . . . ) ; continuous distribution  |TINILE FANEE. The twa
{unless truncated) Discrete zero to positive infinity | Finite range but can be parameters canbe
Continuous distrbution pasitive and/or negative. |extended to four in order
Continuous distribution | Continuous distribution o 'to vary range endpoints
Continuous distribution
Key notes | Possibility of negative (Often found tobe agood  (when events (perhaps The parameter, A, is both |Can exhibit both a slight | Appropriate when we are |llowes variability to be
numbers especially when  [representation for physical [such as accidentsjare  |the mean and the variance [pasitive and negative wiilling to specify a range |expressed across a finite
mean is dose to zero. Invalid |quantities that are [purely random, the time | of the distribution. skew depending onthe | of possible values, but range.
for some physical quantities inedtobenon-  |between successive alues. unable to decide which o
(2. length, weight]. Usinga |negative and are positively [events is described by an | The parameer of the values within this range |Curves are uniqua in that
truncated distribution skewed jal distributi A isequal 1o are more fikely to occur they are nonzero oniy on
{truncate at zaro) eliminates The parameter of the the average number of than others the interval (0 1]
this problem , A, is equal to |® expected aver the
one divided by the interval, AT
Fraquent usa in lassical average time between
statistics events.

Figure 3: ular probability distributions. Informed predominantly by Morgan et al. (1998)
and Montgomery (2009)

eorem establishes that, when independent random variables are added, their
a normal distribution even if the original variables themselves are not

ed. This is why the normal distribution is commonly used. For example, in the
d later, a normal distribution is used to model the number of concept cars

e US each year (equaling the sum of distributions from individual car

atively, technology inputs (e.g., die masses and electricity requirements) are

The centr
sum tends towar
normally
case study pr
develo
companies]:

assigned uniform distributions because a range of values is known but there is no evidence to
suggest that a particular value is more likely to occur than any other (see Table S3 of the

supporting information on the Web).
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If sufficient empirical data has been collected it is possible to use statistical methods to select a
distribution and estimate its parameters. Potential distribution shapes can first be evaluated by
plotting the data as histograms. Subsequently, the kurtosis of the data, which is a measure of
how ou a distribution is, may be calculated. Quantile-quantile plots of the data may

also be used isually inspect the correspondence of the data to a chosen distribution.
Montgome @ D) provides detailed instructions on kurtosis calculations.
<headinggievelamheghnology level impacts (now and in the future)

The energht impacts of a new technology will likely vary across the range of possible
applicationgs Foiljggxample, it may be cheaper and require less energy to use a plastic AM process
to produceia one-8ff component (e.g., personalized insoles), but injection molding may be

cheaper an energy intensive for mass produced parts (e.g., plastic lunch-boxes). Lifecycle
energy an dels should be constructed for each relevant technology as functions of key
technolog rgfteristics (e.g., regarding AM, the chamber temperature for extruding different
plastics) a t characteristics (e.g., the number of lunch-boxes and the type of plastic
needed). The models can be used to compare the technologies in different market segments
rather tha g on extrapolation from lone case studies. It may be necessary to model
multiple c nal technologies if potential applications of the new technology span existing

markets ( autonomous vehicles might be used to undertake some journeys currently
completed using passenger cars and trains).

rning curves and future technology costs

The co echnology may decrease over time. Multiple laws have been proposed to
predict tec improvement. For example, Moore’s law predicts the exponential growth in
the num ansistors on a dense integrated circuit (Moore 1965) and is widely interpreted
as mea cost of a technology decreases exponentially with time. Wright's law,

originally regarding aeroplane production, predicts that production cost decreases as a function
of cumulase production (Wright 1936). Nagy et al. (2013) review the ability of six such
postulate predict the cost of production across 62 technologies. They find that Moore’s
law and Wy aw are, in the absence of other knowledge, the best methods at predicting
progress a hey are typically equivalent because an exponential decrease in cost is often

accompanied™ By an exponential increase in production. Elsewhere, Nadeau et al. (2010)
emphasiz learning process is not guaranteed, with major cost elements not necessarily
alignedawi jor opportunities for cost reduction. They advocate the use of process-based
cost mode.’nﬁ, re'Jiring a detailed knowledge of the cost structure but allowing intelligent
predictionS of future cost without having to rely on learning curve laws.

<heading level 2> E;;ct on consumption

The effect of
which i
incumben

erging technology on aggregate consumption will depend on the scale at
, and the degree to which the final applications represent displacement of
logy versus new, additional, consumption.

<heading level 3> Displacement of incumbent technology
The scale of use depends on both endogenous factors (properties of the emerging technology)

and exogenous factors (properties of the marketplace and customer/manufacturer behavior).
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Initial estimates of the addressable market will come from brainstorming, see Aulet's (2013)
guide to brainstorming market segmentation for new technologies, and searching the literature
for where others have speculated that the technology could be useful. Researchers can then
conduc with industry experts and get their perspectives. A range of stakeholders
should be eagaged otherwise opportunities might be missed and/or infeasible applications
included. @ ate of the addressable market should likely be a distribution given the

The techn@logy level models can be applied to the addressable market in order to determine the
sweet spohations where the new technology is both environmentally beneficial and cost
effective. re gyowth of these sweet spot applications can then be calculated from industry

reports (s ima€’s these include corresponding uncertainty) or historical trends. A technology

diffusion analysis,.can then consider how quickly the emerging technology displaces incumbents
in these ams, determining a “scale of use” for any future year.

Figure 4 s results of implementing the methodology in order to find the
environmentally ;neficial scale of use for an emerging technology in 2030 (see the later case
study). As

shrinks as idered through multiple filters. First, the technical market size: can the

technologyqprovide the service, or for a manufacturing technology, feasibly make the part?

ogram plots progress from left to right, the size of the addressable market

Second, the energy demand associated with the new technology is compared to conventional
technologi the energy models derived as part of Technology level impacts (now and in
the future new technology save energy across the technical market? Third, cost
compagi ade with conventional technologies using the cost models derived as part of
Technolo impacts: can the new technology save money across the energy-saving market?
Fourth, ara echnology diffusion scenarios (see Technology Diffusion) allow the size of the
marke icted by any given date.
Market Technical Energy-saving Cost-saving Scale of use: 2030
Filters: market in 2030 market in 2030 market in 2030 (diffusion analysis)
Eodogsnous fctors - Fhyses st poreneal e T e ey e e
PrA—
ORISR samesrqudnmatia e .o s e o eatng " ecitmancsof sxbn
‘technlogy

«10° «10* «10* «10*

12 10
— - -
= 420,000 parts ...in 20-unit batches --in 20-unit batches

-..in 20-unit batches

u = 30,000 parts

30,000 parts in 20-unit 1 = 30,000 parts

— 9700 -
batches p = 27,000 parts

=

350,000 parts in 250-unit
barches

@

x10°
...in 250-umt batches

...1n 250-unit batches

»

p = 235,000 parts

%]

Potential market (parts formed per year)

o

0 500 1000 0 500 1000
QOccurrences over 10,000 simulations

=3

500 1000

This article is protected by copyright. All rights reserved.



Figure 4: The effect of “filters” on the addressable market. Distribution from 10,000 Monte Carlo
simulations

<headingMiitional consumption

More worl; % ired to understand the complex dynamics between new innovations, prices,
and overal\demadd for materials and energy. However, summarizing the lessons learned from

existin%work those engaged in prospective analysis should consider the following:

. Newations. A researcher is likely to have discovered (while performing a
literatune review and conducting stakeholder interviews) any intentions to use the
ew@chnology in new applications. For example, cheap 3d printing might be used
to rsonalized products for consumers and prototypes for manufacturers that

ot ould not have been made. These items are not replacing, and are only

adWrrent consumption. It may be possible to estimate the size of these new

m : for example, by engaging with the stakeholders who intend to pursue these

neﬁunities. It may be necessary expand the system boundaries of the analysis in

or e into account any broader environmental benefits associated with the
adConsumption.
o Gr sumption in the same market. It may be possible to predict the effect of lower

prig pnsumption by calculating the cost elasticity of demand using historical
cofisu @ pn and price data. For example, Tsao et al. (2010) found that mankind has
historicalty spent around 0.7% of GDP on lighting. Elsewhere, the cost elasticities of

reviewed for various energy products across developed and developing
coun illingham et al. 2016) and for space heating and transport applications in
ho

mas and Azevedo 2013). The rebound effect associated with new hybrid
d train systems has been examined by Haan et al. (2007) and Spielmann et al.
(2008) respectively, and Fouquet and Pearson (2012) also examine the lighting
regund. Dahmus (2014) considers historical rebound effects across multiple material
pr and transportation technologies. Historical precedents do not make rebound
efoitable, but they should be considered.
o Sat markets may temper rebound effects. A lower cost technology may not prompt
ad onsumption if the market is nearing saturation. For example, previous
res@archers have found that the aggregated energy rebound in developed countries is

lowg (Greeming et al. 2000) compared to developing countries with lower material wealth
HAntal and Van den Bergh 2014).

<heading level 3> T;hnology diffusion

s should be considered in order to anticipate how quickly the technology is
stomers. The diffusion scenarios may be informed by: (1) semi-structured
industry experts, employing the Delphi method as described by Linstone
(1975); (2) sales 0f the new technology if they exist; (3) historical analyses of analogous
technologies. Analogs may be chosen because they belong in the same industry. Pae and
Lehmann (2003) and Van den Bulte (2002) present many aggregated diffusion curves for
different industries. Alternatively, Thomas (1985) argues that analogs can be chosen by defining
broader similarities; for example, the degree of social interaction (word-of-mouth, social media
10
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etc.) between potential users, the costs of the technology and the relative affluence of potential
users, and network effects such as the degree to which a surrounding infrastructure is needed in
order to support the innovation (e.g., lengthy and costly certification procedures are required
for new/#parts) (Peres et al. 2010). Considering a range of adoption scenarios is
necessary he e, as highlighted by Massiani and Gohs (2015), a pitfall in anticipatory
diffusion @ is the large range of historical precedents a researcher could use to select
parametervatues. recommended that researchers either assign a probability distribution to
the difflsiA"EEE¥E (see the later case study) or explore high, medium and low adoption
scenarios,s demonstrated by Huang et al. (2015).

<heading levéF2> spective impacts and feedback to technology developers

Prospective 1ffipacts for a year of interest can be calculated by applying the technology level
impact mofelgitothe results of the diffusion analysis (see the “scale of use” distribution in
Figure 4). ct will be the net effect of a switch from old to new technologies in those
applicatio present displacement of incumbent technology. The impact will be the gross
effect only of appEing the emerging technology to those new applications that represent

additional ption and rebound effects.

In order tcgccount for the compounded uncertainty it is recommended that a Monte Carlo
analysis is hich a value is drawn at random from the distribution for each input
(Morgan e ). This set of random values defines a set, or Monte Carlo simulation, and the

correspon@in ut value is calculated. Repetitions of this procedure produces an output
distribution, illustrative of the uncertainty in the final results. In order to provide valuable

parameter variations are of interest.
<heading Ie\s 1> Potential impacts of a new manufacturing process

The proposgdmmethodology is used here in order to estimate the potential energy and cost
savings in @ ar industry by 2030 from the development of a new ISF process for making
prototype etal parts. Car companies produce large sheet metal parts (e.g., hoods, doors

Car pr ynonymous with mass production; however, during prototyping small

batchesw parts are produced. In mass production, forming tools are made from steel

and iron; volume part production, low melting resins and metals, such as zinc, are cast
and machined to the final shape (ASM 1995; Bernard et al. 2001). These tools take several
weeks to ure, whereas ISF production can begin as soon as the part design and forming

tool path has beg#finalized. ISF is, however, a slow process (0.1-1 parts per hour, including
d removal time) compared to drawing.

During early part'design, up to 20 units may be produced using zinc (or resin) dies. Engineers
use these parts to examine the aesthetic appearance of the components, try various fastening
methods, and experiment with stone peck (impact) tests on parts and fatigue tests on small
assemblies. During full vehicle prototyping, around 250 more units are made of each part using
new, updated zinc die-sets. For each part design, therefore, 270 copies are produced during
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prototyping using two different sets of dies (20 copies on one die-set and 250 copies on the
other). Figures S1-S3 in the supporting information on the Web show the total lead time to
produce different numbers of parts using alternative sheet metal forming (SMF) technologies. It
would t ear to make even a moderate number of parts (2,000 units) using ISF,
compared
productio s in the car industry; however, it should be noted that in lower volume
industries erospace and HVAC this is not necessarily the case. In light of these lead time
considd¥a tiGHSMEREs analysis focuses on the use of ISF to make 20-unit and 250-unit batches of

sthan 3 months using conventional drawing. ISF is unable to compete at

oling costs. Looking to the future, it is important to understand the potential
energy andgéo vings of using ISF compared to these alternative forming methods, as well as
compared adifional zinc die drawing; see Guiding technology development later in this
paper.

<heading |ethnology level impacts - energy and cost models

Physically models for ISF, drawing, and FCF are presented in Cooper et al. (2017) and
Cooper and\Gutowski (2016) respectively. The boundaries of the analyses are shown in Figure

5. The energy requirements and costs of using the formed parts are assumed irrelevant because
t and geometry are likely to be similar irrespective of forming method. The
ed in full in Section 3 of the supporting information on the Web and are used
primary energy requirements and costs (mean and standard deviation)

time number of parts produced on the die-set. The impacts and costs of a die-
allocated equally) over the total number of parts produced using that die
(20-unit or 250-unit batches). For ISF, it is also necessary to know the speed with which the tool
traverses ie sheet, and the incremental step size with which the tool progresses into the sheet

after each orbital. The following realistic default values (measured values already
being used j arch and development) have been used: 0.5 mm step size and 5 m/min tool
speed.

T, |
| Labor (e13400) I

‘ Equipment depreciation (Cqepreciation)

| Press Electricity (iciectricity: Celectricity) | FORMING

Finish die-
set (Cgie)

Blanking Trimming

Sheet Metal (iee1) Sheet metal

i
. m
M 5 : r s (Caneer)
Galvanizing (ig,,) if applicable —
Lubricants ————
\ I

| Formed part

Scrap metal
(Cocrap)

Figure 5: Boundaries of analyses. i=environmental impacts (primary energy), c=costs, see Table
S2 of supporting information on the Web. The ‘recycled content’ method is used for all analyses.
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<heading level 2> Consumption in 2030

By 2030, it 1s estimated that ISF could be used to form a mean of about 260,000
sheet M‘cs per year. For these parts, ISF production will be cheaper and
less enee than conventional zinc die drawing. There are many
uncertainties, mcluding: (1) the number of part geometries (within a new vehicle)
that c;n mned using ISF; (2) the number of new cars that will be developed
in the U 30; (3) the number of part geometries (in 20-unit or 250-unit
batches) wliich ISF production will reduce energy consumption and costs; and
(4) the e n of ISF across industry from a current position of low or trivial
use. Disms were defined for each of these uncertainties as described in the
sub-sectmow. Figure 4 summarizes the uncertainty in each consideration
(technic gy, cost, technology diffusion). Section 4 of the supporting

information on the Web presents the raw data, and the mean, standard

deviation, and kurtosis of each distribution.

<heading levell3 > hnical market size by 2030

tory of sheet metal parts (and blank sizes) in an American passenger car is
presented in (2011). The material is assumed to be low carbon galvanized cold rolled
steel b ite the use of some aluminum, steel remains the predominant material used
in car sheet metal parts. The parts from Omar were compared to the ISF specification (Table 1)
in order to, determine if ISF can form the geometry. Side body panels, for example, are too large
to be formwn the largest ISF machines. It is assumed that ISF can form parts where blank
dimensions akg,smaller than 1.5 m. It is unclear whether or not ISF can form larger parts where
all blank s are smaller than 2 m (the largest ISF frame size), as some excess material
may be necessamf’as part of an addendum design. Referring to Table 2, the number of parts in a
passenger may be made using ISF is therefore likely to range between 34 and 40,
modeled a!a normal distribution, N(37,9), truncated below zero parts.

Historiwew vehicle production (provided by a leading consultancy) shows that
between 1995 and 2014 Ford introduced a mean of 5.4 car models per year (standard

deviation: EEE ai that Ford accounted for a fifth of US domestic production. These numbers

A typica

correlate personal communications the authors had with the Ford team responsible

products. Combined with current US car production growth rates (3.2% per
umbers suggest that by 2030 a mean of 41 new cars will be developed each year
ndard deviation of 20), modeled as a normal distribution, N(41,400),
truncated below zero parts. The distribution of new parts that ISF could technically make by
2030 (Xcechnical potential) iS therefore given by equation 2, resulting in a mean of approximately
420,000 parts as shown in the “Technical market in 2030” column of Figure 4.
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<heading level 3> Eﬁirgy and cost saving market size

The energy rements and costs of ISF and zinc die drawing were compared using the
models de parlier in this case study. The results are shown in Table 2 as mean savings

hnical potential [partS/ year] ~ 270 X N(3799) X N(415400) (2)

(standard guivalent to 30% of the mean for energy savings and 20% of the mean for
cost savin gs)
Production number: 20 parts Production number: 250 parts
Cost savings Energy savings Cost savings Energy savings
(USD/part) (MJprimary/part) (USD/part) (M]primary/part)
ual to offess than 1500mm
36634 56573 7691 -32295
Rear Door outer - 2 car 36923 59141 11865 9277
Front Fender [ 38531 86800 14712 61133
Trunk outer - @ipef@ar 38651 99822 5094 34302
Rear Wheel W p&Pcar 36787 58819 10170 5256
Front door inner - r 35553 28328 17556 12806
Rear door inn€r- 35554 26021 19233 12416
A Pillar - 2 per car 34772 9763 18912 -29646
B Pillar - 2 pe 34973 17164 16423 -22453
C Pillar - 2 per car 35679 26531 19685 -167
Roof Cross Me r car 34915 14931 16249 -40883
Trunk - 1 per 39364 104163 14008 88565
jthin 2000 mm x 1500 mm
Hood outer - 1 per car 42537 176474 -865 63382
Roof outer -1 p 41871 165024 833 90910
Firewall (Das 39058 106940 5721 47429
Hood inner - 1 43559 186850 11920 193081
Rockers - 2 per 35228 25119 12376 -46260
Savings a single vehicle development:
Part prototyping (20-unit batches) Car development: 250-unit batches)
ISF application s Cost . Cost Energy
(USD/vehicle)  Enersy (TI/vehicle) | yop rvehicle) (T} /vehicle)
ally 1.46 million )
viable USD 1.98 TJprimary 587,198 USD 527,365 M]
ISF used to maximize cost savings 1.46 million ) 0.59 million
USD 1.98 TJprimary UsD 463,983 M]
ISF used to mM’ gy 1.46 million ) _
savings USD 1.98 T]primary 404,523 USD 0.87 TJprimary
ISF used only wh and 1.46 million ) 0.41 million )
money can be USD 1.98 TJprimary UsSD 0.81 TJprimary

Table 2: Ené

development SF is used instead of zinc die drawing to form parts. All part depths are conservatively
assumed to
Producti nit batches results in energy and cost savings across all the parts considered.

However, for 250gunit batches, some parts save energy but not cost (or vice versa). In this
analysis, 1s assumed that companies will only use ISF if they can save money compared to
conventio ng techniques. Subsequently, there are only 27 parts per vehicle for which
250-unit duction using ISF would save energy and money. As shown in Figure 4, the
-unit market drops from 390,000 parts (technical potential) to 270,000
production of these parts is technically feasible, requires less energy and lowers
to conventional forming, see “Cost-saving market” column in Figure 4).

mean potential
parts p
costs co

<heading level 3> Diffusion of ISF technology: market in 2030

Bass model diffusion coefficients were modeled as normal distributions: p ~

N(0.017,0.0066), ¢ ~ N(0.47,0.09) as derived for industrial innovations by Van
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den Bulte (2002). His meta-analysis is the most comprehensive found in the

literature; he aggregates over 1,500 diffusion coefficient values and provides

confid vals on the mean values. It was assumed that ISF was not used

to make cessful parts in 2016: S(2016)=F(2016)=0. The final results are

{

P

shown 1 of use: 2030” column of Figure 4: a mean of 262,000 parts.

[l

<heading le regate savings, technology displacement and the potential for rebound

effects

C

The aggre nual energy and cost savings in 2030 are calculated by multiplying per part
savings (t s distributions) by the “Likely 2030 market” distribution. In the baseline
analysis it umed that ISF displaces, one-to-one, zinc die-set drawing, and does not cause a
rebound effect. The subsequent energy and cost savings are presented in Figure 6. Section 5 in
the supporting iMformation on the Web presents details of this calculation.

400
300 -
200
100
0
0 0.5 1 1.5 2

25 3

s

s
=}
o

300

=
5]

o

Occurances aver 10,000 simulations
Occurances over 10,000 simulations
=
=

0 2 4 6 8 10 12

Energy savings over 20-unit batches (GJ/year) <10% Energy savings over 250-unit batches (GJ/year) «10%

) @

c (=)

2 400 T 2 300
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g 2 250

9 300 a

§ § 200
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§ 100 8

g o g o

o] 0 2 4 (] 8 10 12 14 16 18 (o] 0 1 2 3 4 5 6
Cost savings over 20-unit batches (USD/year) <107 Cost savings over 250-unit batches (USD/year) <107

Figure 6: TWavings (from 10,000 simulations) across part prototyping (left column) and car
developm right column) assuming ISF displaces zinc die drawing one-to-one

To evaluatg if the baseline analysis reflects a realistic scenario, a series of interviews were
conduc ustry experts: zinc die manufacturers, prototype part makers, design

engineers, agers at prototyping facilities. A list of the interviewees and questions that
guided the discusglons are provided in Section 6 of the supporting information on the Web.

A consensus cag@Pged from the interviews that ISF could supersede matched die drawing for

g because the potential cost savings are large. However, it was deemed unlikely
that ISF wi apletely supersede zinc die drawing for car development in the foreseeable
future. This is partly because car companies use the experience of drawing the 250-unit batches
to inform the final design of both the part and the steel/iron drawing dies that will be used in
mass production. ISF would be a poor indicator of material behavior during mass production

because the forming mechanics differ from those in drawing. Improved finite element
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simulations may reduce the need for this learning step in the future (Hung 2016). Even if ISF
production of 250-unit batches is currently unrealistic, Figure 6 shows that the main energy and

cost savings will be derived from displacement of drawing dies in part prototyping (20-unit
batchesp

Could the from using ISF prompt an increase in car sales (a rebound effect)? In a

historical sting motor vehicle travel, Dahmus (2014) found low rebound effects in this
sector. BoGusiaggeRn new car sales, US Department of Transport data shows that over the last 45
years, desate rising prosperity and population, US new car sales have fallen, with 2014 annual
sales 8% 1 nin 1970 (DOT 2016). Domestic new car sales were 21% lower. We
therefore g@utiot8ly hypothesize that increased US cost competitiveness may help shift the
origin of es, but that the effect on overall sales will be minimal.

C

<heading leyél 2 ding technology development

S

In order to guide technology development, sensitivity analyses considered the mean potential
savings from using ISF by 2030 under the following circumstances:

Ui

(1 increased ISF step size from 0.5 mm to 2 mm (process parameter

i

e), reducing the forming time.

eased ISF forming tool speed from 5 m/min to 4 m/min (process

4

arameter), increasing the forming time.

(3) ernative baseline scenario where the future alternative to ISF is

ith a single (half) zinc die.

E

(4®An alternative baseline scenario where the future alternative to ISF is

ith a single (half) resin die (modeled as RenShape 5166) for part
ping (20-unit batches). Resin dies cannot be used to form 250-

Eatches because they wear too quickly.

The resurs of ﬁlis sensitivity analysis are shown in Figure 7. As shown, changes
to the forgaaa peed via step size and tool speed have a marginal effect on part
prototypﬁgy savings, suggesting that technical efforts should focus on

achieving cessary part quality for this beachhead market. Growing use of

lve savings in part prototyping and eliminate them in car
development; the growth of FCF should be closely monitored by those espousing

the use of ISF. The cost savings equivalent to Figure 7 displays similar trends.
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Paxt prototyping (20-uxit batches) M Car development (250-unit basches

= 800

G
]

e
b

z =
= Defsult  ISF-Zmm ISF.4m/min Baseline  Baseline
analysis*  stepsize toolspesd chamgedto changed o
FCF(dnc FCF [mesin

dies) dies 20-unit

basches ozly)

Figure 7: Savings from using ISF in 2030 (*ISF: 0.5 mm step size; 5 m/min tool speed. Baseline:
drawing mies)
<heading lev iscussion

ibed in this article explores the potential industry level impacts of an

The approgchl@

emerging techitetogy. It extends the explorative analyses of anticipatory LCA by including the
size of gy’s addressable market both now and in the future and considers
technology diffisien, technology displacement and rebound effects. When testing different
techno igurations (e.g., process speeds of a manufacturing technology), the energy and
costm and the analysis recalculates the addressable market, revealing the industry

level effect of design changes. Diffusion analyses are useful as they indicate when significant
impacts mﬁht be expected to occur; for example, by acknowledging that not all a technology’s

benefits lized straight away, a government can choose a suite of CO, mitigation
strategies j to achieve a given roadmap towards lower emissions.
In a given a ion, it is possible that one technology is cheaper but requires more energy

than anot ology. This dynamic can then reverse in a different application; there is a

danger tha@ sustainable’ technology, if used blindly, could result in an increase in overall energy

requirements. Constructing energy and cost models as functions of different market segments,

as demcM)S this analysis, could help avoid this pitfall. For example, see Table 2 where it

is demonsaat ISF production of 250-unit batches of A pillars is cost effective but requires
tha

more ener onventional production. This is because bespoke die-set manufacturing

requires extensive manual labor and engineering time, and thus, the costs are high compared to
the energyd ed. Subsequently, ISF can still be cheaper than drawing even when ISF is more
energy e.

Future application of a technology is dependent on some technical and commercial success. For
example, the ability of developers to achieve the technical specifications defined in Table 1. The
diffusion modeling employed in this work is informed by the diffusion of successful innovations
in the past. There is therefore, as Rogers (2003) put it, an inherent pro-innovation bias with
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such modeling which policy makers should recognize. There is also a limit to the resources that
can be spent modeling the potential market for a new technology. As described by Aulet (2013)
it is important to realize that calculating potential new technology markets is an iterative
process g” toward the optimal answer. High uncertainties exist in prospective

analyses; hg el, by considering the methodology presented in this paper, researchers will be
able to prd 6@ dre robust and transparent explorations of future impacts.
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