SUPPORTING INFORMATION

The UDP-GalNacA biosynthesis genes *gna-gne2* are required to maintain cell envelope integrity and *in vivo* fitness in multi-drug resistant *Acinetobacter baumannii*

Short title: Contribution of UDP-GalNacA to pathogenesis of A. baumannii

Sébastien Crépin, Elizabeth N. Ottosen, Courtney E. Chandler, Anna Sintsova, Robert K. Ernst and Harry L.T. Mobley

CONTENTS

Fig. S1. Colonization of the bloodstream by the Δgna and $\Delta gne2$ mutants.

Fig. S2. Growth curves in LB and M9 minimal media.

Fig. S3. Resistance to normal human serum.

Fig. S4. Capsule production depends on the gna-gne2 (a/e2) locus.

Fig. S5. The gna-gne2 (a/e2) locus is important for twitching motility.

Fig. S6. The gna-gne2 (a/e2) locus is important maintain the cell envelope integrity.

Fig. S7. Lipooligosaccharide biosynthesis is influence by the gna-gne2 (a/e2) locus.

Fig. S8. Cell envelope hydrophobicity and the envelope stress response (ESR) are controlled by the *gna-gne2* (*a/e2*) locus.

Fig. S9. Resistance to antibiotics is influenced by the gna.

Fig. S10. Resistance to antibiotics is influenced by the gne2.

 Table S1. A. baumannii strain AB0057 Gna and Gne2 closest homologs.

Table. S2. Genes belonging to the KL4 locus and their associated.

Table S3. Strains and plasmids used in this study.

 Table S4. Primers and oligonucleotides.

SUPPLEMENTAL FIGURE LEGENDS

Fig. S1. Colonization of the bloodstream by the $\triangle gna$ and $\triangle gne2$ mutants.

Colonization of the spleen, liver and kidneys was determined by inoculating CBA/J mice via tail vein injection with 10⁷ CFU of either the WT strain (57), the Δgna mutant **(A)** or the $\Delta gne2$ mutant **(B)**. At 24 hpi, mice were sacrificed, organs were harvested, and the bacterial burden was determined by CFU enumeration on LB agar (57, Δgna and $\Delta gne2$) and LB-Km agar (57 eV, Δgna eV, Δgna compl., $\Delta gne2$ eV and $\Delta gne2$ compl.). Bacterial numbers are presented as the Log₁₀ CFU g⁻¹ of tissue. Each data point represents a sample from an individual mouse, and horizontal bars indicate the median values. Statistical significance was calculated by the Mann-Whitney test (*, *P*<0.05; ****, *P*<0.0001; NS, not significant). Abbreviations: 57: WT; eV: empty vector (pABBR_Km); compl.: complemented (pABBR_Km-gna and pABBR_Km-gne2).

Fig. S2. Growth curves in LB and M9 minimal media.

(A) Growth of the WT (57) and its derivative strains in LB broth. (B) Growth of the strains in M9 minimal medium supplemented with 0.4% glucose and 0.2% casamino acids. All results are the mean values and standard deviations of three independent experiments. For ease of reading, standard deviations were removed from graphs. The quantification of growth, or growth potential, and comparison between strains was performed by calculating the area under the curve of each

growth curve. Abbreviation: 57: WT; compl.: complemented (pABBR_Km-*gna*, pABBR_Km-*gne2* and pABBR_Km-*a/e2*).

Fig. S3. Resistance to normal human serum.

Survival in 90% normal human serum (NHS) and growth in 90% heat-inactivated human serum (HI). A total of 10^7 CFU ml⁻¹ of the WT (57) and either the Δgna (A) or the $\Delta gne2$ (B) strains was incubated in either 90% NHS and HI, and the number of CFUs was quantified by CFU enumeration on LB agar every hour. Since no CFUs were recovered from strains Δgna , Δgna eV, $\Delta gne2$ and $\Delta gne2$ eV incubated with 90% NHS, no statistical tests were performed for these groups. The dashed line corresponds to the limit of detection. All results are the mean values and standard deviations of three independent experiments. Statistical significance was calculated by the Student's *t*-test (B-C, HI) (NS, not significant). Abbreviations: 57: WT; eV: empty vector (pABBR_Km); compl.: complemented (pABBR_Km-gna and pABBR_Km-gne2).

Fig. S4. Capsule production depends on the gna-gne2 (a/e2) locus

(A) Microscopic analysis of capsule production. Maneval's staining of bacteria cultured for 24 h on LB agar plates. Images are representative of three independen experiments. (B) Analysis of the polysaccharides from lysates of bacteria cultured for 24 h on LB agar plates by SDS-PAGE and stained with 0.1% Alcian blue (section of the gel corresponding to the capsular polysaccharides). The strain AB5075 Δwzc was used as a negative control. (C) Pellet of the strains following centrifugation of the overnight cultures normalized to an OD₆₀₀ of 1.0. The 57, AB5075 and the complemented strains present a thick and loose pellet, suggesting capsule production, while all the mutant strains show a tight and sticky pellet, which is indicative of non-capsulated strains. (D) Colony morphology of the strains cultured on BHI Congo red plates for 48 h at 37°C. (E-F) Autoaggregation assay. Cultures of WT (57) and *gna* (E) and *gne2* (F) were standardized in 10 ml of LB to an OD₆₀₀ of 2.0 in a culture tube and incubated statically at 37°C for 4 h. A 200-µl sample was taken 1 cm below the surface at time 0 and 4 h post-inoculation for

 OD_{600} measurement. The percent autoaggregation was determined by dividing the OD_{600} value of the aggregated cells by the OD_{600} value of a control growth tube. The MDR strain AB5075 and its isogenic *wzc* mutant were used as controls (B-D). All results are the mean values and standard deviations of three independent experiments. Images are representative of three independent experiments (A-D). Statistical significance was calculated by the one-way ANOVA with Tukey's multiple comparisons test (D and E) (**, *P* <0.01; ***, *P* <0.005; NS, Not significant). Abbreviations: 57: WT; eV: empty vector (pABBR_Km); compl.: complemented (pABBR_Km-gna, pABBR_Km-gne2).

Fig. S5. The gna-gne2 (a/e2) locus is important for twitching motility

(A) Twitching motility of the bacterial strains cultured to an OD₆₀₀ 2.0 and an aliquot was stabbed to the bottom of a 1% EIKEN agar plate, then incubated at 37°C for 18 h. Twitching motility images are representative of three independent experiments. The red bars mark the twitching motility diameter. The AB5075 $\Delta pilT$ mutant was used as negative control. Images are representative of three independent experiments. (B, C, D) Quantification of the twitching diameter (in mm) from three independent experiments. The MDR strain AB5075 and its isogenic *wzc* and *pilT* mutants were used as controls (A-D). All results are the mean values and standard deviations of three independent experiments. Statistical significance was calculated by the one-way ANOVA with Tukey's multiple comparisons test (B, C, D) (*, *P* <0.05; ****, *P* <0.005; ****, *P* <0.001; NS, Not significant). Abbreviations: 57: WT; eV: empty vector (pABBR_Km); compl.: complemented (pABBR_Km-gna and pABBR_Km-gne2).

Fig. S6. The gna-gne2 (a/e2) locus is important maintain the cell envelope integrity

(**A**, **B**) Minimal inhibitory concentration (MIC) of vancomycin on the WT (57) and its derivative strains. MIC values were determined by E-test. (**C**) Growth of the strains on MacConkey plates. Strains were cultured to an OD₆₀₀ of 0.6 and normalized to 10⁷ CFU ml⁻¹ and serial dilutions were spotted on MacConkey plates. Images are representative of three independent experiments. (**D**) Colony morphology of the strains cultured on LB agar supplemented with BCIP-Toluidine (XP), a substrate of the periplasmic alkaline phosphatase PhoA. Images are representative of three

independent experiments. **(E, F)** Survival in the presence of polymyxin B (1 μ g ml⁻¹). The number of surviving CFUs was quantified by CFU enumeration of LB agar at 15-, 30- and 60 mins p.i. The MDR strain AB5075 and its isogenic *wzc* mutant were used as controls (C,D). All results are the mean values and standard deviations of three independent experiments. Statistical significance was calculated by the one-way ANOVA with Tukey's multiple comparisons test (A) (*, *P* <0.05; **, *P* <0.01; ***, *P* <0.005; NS, Not significant). Abbreviations: 57: WT; eV: empty vector (pABBR_Km); compl.: complemented (pABBR_Km-gna and pABBR_Km-gne2).

Fig. S7. Lipooligosaccharide biosynthesis is influence by the gna-gne2 (a/e2) locus.

Analysis of LOS extracted from of bacterial cultures cultured to mid-log phase and separated by SDS-PAGE, and stained with Pro-Q emerald 300 Lipopolysaccharide gel stain kit. The *E. coli* MG1655 (rough LPS) was used as a positive control. Images are representative of three independent experiments. Abbreviations: 57: WT; compl.: complemented (pABBR_Km-a/e2).

Fig. S8. Cell envelope hydrophobicity and the envelope stress response (ESR) are controlled by the *gna-gne2* (*a/e2*) locus.

(A-C) Bacterial adherence to hydrocarbons. Approximately 10^7 CFU ml⁻¹ were incubated with either 25% *n*-octane (A; $\Delta a/e2$ mutant) or hexadecane (B; Δgna and C; $\Delta gne2$) and the number of CFUs from the aqueous phase were recovered at 15 mins post-inoculation. An increase in the cell envelope hydrophobicity is represented by a lower number of CFUs recovered from the aqueous phase. (D-E) Expression of genes involved in the envelope stress response (ESR, *dsbA*, *degP*, *baeR* and *rstA*) between WT, Δgna (F), $\Delta gne2$ (G), and their respective complemented strain. Gene expression was evaluated by qRT-PCR and compared between the WT, the mutants and the complemented strain. The dashed line corresponds to the cutoff for a significant difference in expression. All results are the mean values and standard deviations of three independent experiments. Statistical significance was calculated by the one-way ANOVA with Tukey's multiple comparisons test (A-C) and by the Student's *t*-test (D,E) (*, *P*<0.05; **, *P*<0.01; ****, *P*<0.0001; NS, not significant). Abbreviations: 57, WT; eV, empty vector (pABBR_Km); compl.: complemented (pABBR_Km-a/e2, pABBR_Km-gna and pABBR_Km-gne2).

Fig. S9. Resistance to antibiotics is influenced by the gna.

(A) Minimal inhibitory concentration (MIC) of amoxicillin, gentamicin and imipenem, on WT (57) and its derivative strains. MIC values were determined by the E-test method. (B) Percent survival in the presence of a defined concentration of antibiotic. A total of 10^7 CFU ml⁻¹ were incubated in the presence of different antibiotics and the percent survival was determined by dividing the number of CFUs recovered from the antibiotic challenge by the number of CFUs recovered from the antibiotic are the mean values and standard deviations of three independent experiments. Statistical significance was calculated by the one-way ANOVA with Tukey's multiple comparisons test (*, *P*<0.05; **, *P*<0.01; ***, *P*<0.005; ****, *P*<0.0001; NS, not significant). Abbreviations: 57, WT; eV: empty vector (pABBR_Km); compl.: complemented (pABBR_Km-gna).

Fig. S10. Resistance to antibiotics is influenced by the *gne2*.

(A) Minimal inhibitory concentration (MIC) of amoxicillin, gentamicin and imipenem, on WT (57) and its derivative strains. MIC values were determined by the E-test method. (B) Percent survival in the presence of a defined concentration of antibiotic. A total of 10^7 CFU ml⁻¹ were incubated in the presence of different antibiotics and the percent survival was determined by dividing the number of CFUs recovered from the antibiotic challenge by the number of CFUs recovered from the antibiotic challenge by the number of CFUs recovered from the corresponding untreated sample. All results are the mean values and standard deviations of three independent experiments. Statistical significance was calculated by the one-way ANOVA with Tukey's multiple comparisons test (*, *P*<0.05; **, *P*<0.01; ***, *P*<0.005; ****, *P*<0.0001; NS, not significant). Abbreviations: 57, WT; eV: empty vector (pABBR_Km); compl.: complemented (pABBR_Km-gne2).

Fig. S1.

Fig. S2.

ş

Fig. S4.

0

51 Agna

Fig. S5.

В

Fig. S6.

Fig. S7.

Fig. S8.

Fig. S9.

Α

Fig. S10.

Proteins	Predicted function	Domain	Homolog (species)	% coverage / identity / positive
Gna (TviB)	UDP- <i>N</i> - acetylglucosamine C-6 dehydrogenase	Dehydrogenase superfamily, UDP- glucose/GDP-mannose dehydrogenase family	WpbP (<i>P. aeruginosa)</i>	99 / 75 / 87
			T∨iB (S. Typhi)	99 / 69 / 84
Gne2 (TviC)	UDP- <i>N</i> - acetylglucosaminuronic acid C-4 epimerase	Epimerase superfamily, NAD dependent epimerase/dehydratase family	WpbO (P. aeruginosa)	98 / 73 / 86
			TviC (S. Typhi)	99 / 66 / 81

S1 Table. A. baumannii strain AB0057 Gna and Gne2 closest homologs.

Gene	Function	Fitness defect ^a Log ₂	P value
WZC	Protein tyrosine kinase; involved in capsule export	-6.2	0.002
wzb	Low molecular weight protein tyrosine phosphatase; involved in capsule export	-8.3	0.06
wza	Outer membrane protein; involved in capsule export	-8.2	0.04
gna (tviB)	UDP- <i>N</i> -acetylglucosamine C-6 dehydrogenase	-6.9	0.053
gne2 (tviC)	UDP- <i>N</i> -acetylglucosaminuronic acid C-4 epimerase	-8.8	0.002
WZX	Putative oligosaccharide-unit translocase	NA ^b	
ptr1	Predicted pyruvyltransferase	NA	
gtr10	Predicted glycosyltransferase	-1.7	0.007
wzy	Predicted oligosaccharide-unit polymerase	-8.2	0.1
gtr11	Predicted glycosyltransferase	-1.2	0.45
gtr12	Predicted glycosyltransferase	-7.3	0.009
qnr	UDP-N-acetyl-D-quinovosamine biosynthesis protein	-4.1	6.8e-5
itrB1	Predicted initiating transferase for oligosaccharide synthesis	-6.7	0.04
atr3	Predicted acetyl- or acyl- transferase	-7.3	0.005
gdr	UDP-N-acetyl-glucosamine 4,6-dehydratase	-5.0	3.6e-6
gne3	Predicted UDP-glucosamine-4-epimerase	-3.9	0.0004
atr4	Predicted acetyl- or acyl- transferase	-3.5	0.06
atr5	Predicted acetyl- or acyl- transferase	-6.9	0.004
galU	UTP-glucose-1-phosphate uridylyltransferase	-5.3	0.0006
ugd	UDP-glucose 6-dehydrogenase	-3.8	0.005
gpi	Glucose-6-phosphate isomerase	-5.0	7.3e-5
gne1	Predicted UDP-glucosamine-4-epimerase	-5.8	0.005
pgm	Phosphoglucomutase/phosphomannomutase	-1.6	0.0008

S2 Table. Genes belonging to the KL4 locus and their associated.

^a Calculated fitness defect in the spleen according to Crepin *et al.* 2018 (Crépin *et al.*, 2018) ^b Genes were not recovered from the output pools, Crepin *et al.* 2018 (Crépin *et al.*, 2018)

Strains	Characteristic(s) ^a	Source or reference
_		
E. coli		
MGN-617	<i>hi thr leu tonA lacY glnV supE ∆asdA4 recA</i> ::RP4 2-Tc::Mu [pir]; Km ^r	(Dozois <i>et al.</i> , 2000)
MG1655	F⁻ lambda⁻ <i>ilvG rfb-50 rph-1</i>	(Blattner, 1997)
DH5 α λ pir	sup E44, ΔlacU169 (ΦlacZΔM15), recA1, endA1, hsdR17, thi-1, gyrA96, relA1, λpir phage lysogen	Laboratory collection
S17-1	λ <i>pir</i> lysogen of S17.1 (Tp ^r Sm ^r thi pro hsdR ⁻ M ⁺ recA RP4::2-Tc::Mu-km::Tn7)	(Simon <i>et al.</i> , 1983)
A. baumannii		
57; WT; AB0057 ^{Km} ;	AB0057 <i>∆km</i> ::FRT; Km susceptible	(Crépin <i>et al.</i> , 2018)
57 eV	AB0057 ^{Km} + pABBR_Km; Km ^R	(Crépin <i>et al.</i> , 2018)
∆gna	AB0057 ^{Km} ∆gna	This study
∆gna eV	AB0057 ^{Km} ∆ <i>gna</i> + pABBR_Km; Km ^R	This study
∆ <i>gna</i> compl.	AB0057 ^{Km} ∆ <i>gna</i> + pABBR_Km- <i>gna</i> ; Km ^R	This study
∆gne2	AB0057 ^{Km} ∆gne2	This study
∆gne2 eV	AB0057 ^{Km} ∆ <i>gne2</i> + pABBR_Km; Km ^R	This study
$\Delta gne2$ compl.	AB0057 ^{Km} ∆ <i>gne2</i> + pABBR_Km- <i>gne2</i> ; Km ^R	This study
∆gna-gne2 (∆a/e2)	AB0057 ^{Km} ∆gna-gne2 (∆a/e2)	(Crépin <i>et al.</i> , 2018)
∆gna-gne2 (∆a/e2) eV	AB0057 ^{Km} Δ gna-gne2 (Δ a/e2) + pABBR_Km; Km ^R	This study
Δgna -gne2 ($\Delta a/e2$) compl.	AB0057 ^{Km} Δ gna-gne2 (Δ a/e2) + pABBR_Km-gna- gne2 (a/e2); Km ^R	This study
AB5075	MDR Tibia/osteomyelitis isolate	(Jacobs <i>et al.</i> , 2014)
AB5075 <i>∆wzc</i>	AB5075 ∆wzc	(Tipton <i>et al.</i> , 2018)
AB5075 ∆pilT	ABUW ∆3031::T26	(Gallagher <i>et al.</i> ,
	tnab1_kr121205p08q137	2015)
Plasmids		
pCVD442_MCS	pCVD442 + MCS; The IS <i>1</i> element was swapped by a MCS; Ap ^r , R6K, <i>sacB</i>	(Crépin <i>et al</i> ., 2018)
pCVD_Km	pCVD442_MCS_Amk; Amk ^r , R6K, sacB	This study

S3 Table. Strains and plasm	ids used in this study.
-----------------------------	-------------------------

pCVD_AmK_∆gna-gne2 (a/e2)	Δgna -gne2 ($\Delta a/e2$) in pCVD_AmK; Amk ^r , R6K, sacB	(Crépin <i>et al.</i> , 2018)
pCVD_Km_∆ <i>gna</i>	∆ <i>gna</i> in pCVD_Km; Kmk ^r , R6K, sacB	This study
pCVD_Km_∆ <i>gne</i> 2	∆ <i>gne2</i> in pCVD_Km; Kmk ^r , R6K, <i>sacB</i>	This study
pABBR_Km	pABBR_MCS_Km; Km ^r	(Crépin <i>et al.</i> , 2018)
pABBR_Km- <i>gna-gne2</i> (a/e2)	Genes gna-gne2 cloned into pABBR_Km; Km ^r	This study
pABBR_Km- <i>gna</i>	Gene gna cloned into pABBR_Km; Km ^r	This study
pABBR_Km-gne2	Gene gne2 cloned into pABBR_Km; Km ^r	This study

Name	Sequence 5' \rightarrow 3'	Purpose	
Mutant			
GA_pCVD_Km_F	GGCAGGTATATGTGATGGGTTAAAAA GGA	Inverted PCR of pCVD_Km to	
GA_pCVD_Km_R	GGCAACTTTATGCCCATGCAACA	gene of interest (<i>goi</i>)	
GA_gna_5'frag_F	TAGTTTC TGTTGCATGGGCATAAAGTT <u>GCC</u> GCCTAAAGCATCCGTTAAAGTCAT	Amplification of ~ 1 Kb upstream of <i>gna</i>	
GA_gna_5'frag_R	GTCGAATATCTGACTCTGCTTGAGAA CCTATAATCGCTATTCTTAAATCG GCA AGTTG		
GA_gna_3'frag_F	CGATTTAAGAATAGCGATTATAGGTT CTCAAGCAGAGTCAGATATTCGACTA TAAATC	Amplification of ~ 1 Kb	
GA_gna_3'frag_R	CCTTTTTAACCCATCACATATACCTGC CGCCTGTGAATGCCTTACATCTCC	dowstream of gna	
delta_gna_screen	ATAAGCTTACTGTCCCAAACGGTCTA	Screening to confirm the <i>gna</i> mutation; used with GA_ <i>gna</i> _3'frag_R	
GA_gne2_5'frag_F	TCTGTTGCATGGGCATAAAGTTGCCG CCATTGGCAGTTGAGTTTGGA	Amplification of ~ 1 Kb upstream of <i>gne2</i>	
GA_gne2_5'frag_R	TTTTAGTACTATACCAGTTGATTGCTT GCTCACATATTGTTTGATATTGGCTCA TTTT		
GA_gne2_3'frag_F	CCAATATCAAACAATATGTGAGCAAGC AATCAACTGGTATAGTACTAAAATTTA GTCTTTG	Amplification of ~ 1 Kb upstream of <i>gne2</i>	
GA_gne2_3'frag_R	CCTTTTTAACCCATCACATATACCTGC CGCCTGTGAATGCCTTACATCTCC		
delta_gne2_screen	TTTACTGGAGGCGTAATTTCAGGGTAT G	Screening to confirm the <i>gne2</i> mutation; used with GA_gne2_3'frag_R	
pCVD Screen F	GATTTGCAGACTACGGGCCTAAAG	Screening to confirm the cloning of the <i>∆goi</i> into pCVD Km	
pCVD_Screen_R	CGAACTAAACCCTCATGGCTAACG		
Complementation			
AB0057_ <i>gna-</i> gne2_F_Nrul	ACAAGT TCGCGA TAAACGCAGGCTGA ACAGATTCTAGC	Cloning of the <i>gna-gne2</i> locus into pABBR_Km	
AB0057_ <i>gna-</i> gne2_R_Sall	AAATC GTCGAC GCAACCCCAACTCTAT TGAGAGGTATTTTCA		

S4 Table. Primers and oligonucleotides.

GA_pABBR_Km_R GCCTTCCCCATTATGATTCTTCTCG		Inverted PCR of pABBR_Km to	
GA_pABBR_Km_F	ACGATTCCGAAGCCCAACCTTT	goi	
GA_AB0057_gna_F_pAB BR	CGAGAAGAATCATAATGGGGAAGGC TAAACGCAGGCTGAACAGATTCTAG	Cloning, by Gibson assembly, of <i>gna</i> , with its native promoter, into pABBR_Km	
GA_AB0057_gna_R_pAB BR	ATGAAAGGTTGGGCTTCGGAATCGT ATCAGCAATGGAACGAGGTACT		
GA_AB0057_gne2prom_ F_pABBR	TCATAATGGGGAAGGC ATTTATCTTTAATTTGATATTGTCCAC	Cloning, by Gibson assembly, of <i>gne2</i> , with the native promoter found upstream of <i>gna</i> , into pABBR_Km	
GA_AB0057_gne2prom_ R_gne2	TTTGATATTGGCTCATAAAAGTTAGCC TTGTTCCTTACAAATTGTAT		
GA_AB0057_gne2_F_gn e2prom	AACAAGGCTAACTTTTATGAGCCAATA TCAAACAATATGTGAGCA		
GA_AB0057_gne2_R_pA BBR	TGGGCTTCGGAATCGTGCAACCCCAA CTCTATTGAGAGGTATTTTCA		
pABBR_Km_Km_Screen	TGATATTGCTGAAGAGCTTGGCG	Screening to confirm the cloning of the <i>goi</i> into pABBR_Km	
qRT-PCR			
ESR			
degP_F_qPCR	GTAATCAGAGCACCTTCCGGTTTAG	Amplification of a portion of <i>degP</i>	
degP_R_qPCR	TGACTCGTTCATACCTAGGCGTTAT		
baeR_F_qPCR	TGTTCACGTACCTTACGGCAAATC	Amplification of a portion of baeR	
baeR_R_qPCR	GGTCAGGATGCTTACACGAACTTT		
rstA_F_qPCR	CGCCCACACTATCATCAACCAA	- Amplification of a portion of <i>rstA</i>	
rstA_R_qPCR	GCACCCATTTCCAGACCAAGTA		
dsbA_F_qPCR GGGTAGTGTAATGGCAGCAGAT		Amplification of a portion of	
dsbA_R_qPCR	GGTACTTCCACTTTGCCTGGATTG	dsbA	

Bolded nucleotides denote restriction site. Bolded and underlined nucleotides denote the region of homology for the Gibson assembly.

REFERENCES

- Blattner, F.R. (1997) The complete genome sequence of *Escherichia coli* K-12. *Science* **277**: 1453-1462.
- Crépin, S., Ottosen, E.N., Peters, K., Smith, S.N., Himpsl, S.D., Vollmer, W., and Mobley, H.L.T. (2018) The lytic transglycosylase MltB connects membrane homeostasis and *in vivo* fitness of *Acinetobacter baumannii*. *Mol Microbiol* **109**(6):745-762
- Dozois, C.M., Dho-Moulin, M., Bree, A., Fairbrother, J.M., Desautels, C., and Curtiss, R. (2000) Relationship between the Tsh autotransporter and pathogenicity of avian *Escherichia coli* and localization and analysis of the *tsh* genetic region. *Infect Immun* **68**: 4145-4154.
- Gallagher, L.A., Ramage, E., Weiss, E.J., Radey, M., Hayden, H.S., Held, K.G., Huse, H.K., Zurawski, D.V., Brittnacher, M.J., and Manoil, C. (2015) Resources for genetic and genomic analysis of emerging pathogen *Acinetobacter baumannii*. *J Bacteriol* **197**: 2027-2035.
- Jacobs, A.C., Thompson, M.G., Black, C.C., Kessler, J.L., Clark, L.P., McQueary, *et al.* (2014) AB5075, a highly virulent isolate of *Acinetobacter baumannii*, as a Model Strain for the evaluation of pathogenesis and antimicrobial treatments. *MBio* **5**: e01076-01014.
- Simon, R., Priefer, U., and Pühler, A. (1983) A broad host range mbilization system for *in vivo* genetic engineering: Transposon mutagenesis in Gram negative bacteria. *Bio/Technology* **1**: 784-791.
- Tipton, K.A., Chin, C.-Y., Farokhyfar, M., Weiss, D.S., and Rather, P.N. (2018) Role of capsule in resistance to disinfectants, host antimicrobials, and desiccation in *Acinetobacter baumannii*. *Antimicrob Agents and Chemother* **62**(12):e01188-18.