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Methods 

Materials synthesis. All the reagents—unless otherwise noted—were purchased from 

Sinopharm Chemical Reagent Co., Ltd. The garnet pellets used in this study was 

synthesized via conventional solid-state reaction reported previously.
[1]

 Briefly, 

proper amount of Li2CO3 (99.99 %, with 10% excess to compensate the sintering 

loss), La2O3 (99.95 %), ZrO2 (99.97 %), Ta2O5 (99.99 %) were ground in a mortar to 

obtain stoichiometry of Li6.4La3Zr1.4Ta0.6O12 (designated as LLZT). The mixture was 

calcined at 900 °C for 6 h, then the obtained mother powders were reground and 

pressed into pellets with a diameter of 10 mm before sintering at 1140 °C for 16 h. 

The resulting LLZT pellets are 1 mm thick with a surface area of 1.13 cm
2
. The 

pellets were polished with P2000 sand paper and stored in an Ar-filled glovebox (<0.1 

ppm O2, <0.1 ppm H2O) to prevent reactions with air. Some LLZT pellets were 
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intentionally stored in humid air for 1 week to form a thin-layer Li2CO3 on the surface 

as previously reported.
[15b]

  

 

Computational methods and models. All calculations were carried out by using the 

projector augmented wave method in the framework of the density functional 

theory,
[3]

 as implemented in the Vienna ab-initio Simulation Package (VASP). The 

generalized gradient approximation (GGA) and Perdew–Burke–Ernzerhof (PBE) 

exchange functional
[3]

 was used. Structural relaxation calculations were performed by 

using the spin-polarized GGA method.
[4]

 The plane-wave energy cutoff was set to 500 

eV. The Monkhorst–Pack method
[5]

 with 1×1×1, 1×1×1, 7×7×7, 5×5×5 and 3×3×2 

k-meshes were employed for the Brillouin zone sampling of 

Li7La3Zr2O12,Li6.4La3Zr1.4Ta0.6O12, Li, Li2O and Li2CO3 bulks, respectively. For the 

interface calculations with large supercells, we just need to use the 1×1×1 k-mesh. 

The convergence criterions of energy and force calculations were set to 10
-5

 eV/atom 

and 0.01 eV Å
-1

, respectively. The Li7La3Zr2O12 (001)/Li (001), Li6.4La3Zr1.4Ta0.6O12 

(001)/Li (001), Li2CO3 (001) /Li (001) and Li2O (001) /Li (001) interface models 

were constructed by Li7La3Zr2O12 (001) slab, Li6.4La3Zr1.4Ta0.6O12 (001) slab, Li2CO3 

(001) slab, Li2O (001) slab and Li(001) slab, which are the low-energy surfaces.
[6]

 

The coherent interface approximation was applied, in which the soft Li(001) 4×4 

surface slabs are less strained to match the dimensions of the pristine and Ta 

doped-Li7La3Zr2O12 (001)1×1,and Li2O (001)3×3 surface slabs. The Li(001) 3×2 

surface slab is less strained to match the Li2CO3 (001) 2×2 surface slab.  
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To evaluate the wettability of Li metal on the Li7La3Zr2O12, Li6.4La3Zr1.4Ta0.6O12, 

Li2O and Li2CO3 surfaces, we calculated the interface formation energies of 

Li7La3Zr2O12 (001)/Li (001), Li6.4La3Zr1.4Ta0.6O12 (001)/Li (001), Li2CO3 (001) /Li 

(001) and Li2O (001)/Li (001) systems, which can be evaluated by energy difference 

between an interface system and the bulk energy of the two materials that comprise it, 

Ef= (Eab– Na*Ea– Nb*Eb)/2S,
[7]

 here, Eab denotes the total energy of the complete 

system containing the interface, and it depends on how many formula units of 

materials a and b comprise the interface (Na and Nb, respectively). Ea and Eb denote 

the bulk energy per formula unit for materials a and b, respectively, and S refers to the 

interfacial area, 2 means two interfaces in the interface models. 

Physicochemical Characterization. Scanning electron microscopy (SEM) images 

were taken on a TESCAN Mira3 field emission scanning electron microscope 

(FESEM). Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and 

TOF-SEM were carried out on a TESCAN Gaia3 FESEM. ATOF-SIMS 5-100 

instrument (ION TOF) was attached to the TESCAN GAIA3 FESEM. The samples 

were pre-beamed to wipe off the influence of air exposure. Raman spectra were 

recorded on a DXR Raman microscope (Senterra R200-L) with an excitation length of 

532 nm. The structural characterization was performed by X-ray diffraction (XRD, 

D/MAX255ovl/84, Rigaku, Japan) with 2θ in the range of 10 ~ 60
o 
with a step size of 

0.02
o
. The ionic conductivity was calculated from data collected by an impedance 

analyzer (Solartron 1260) in the frequency range from 10 MHz to 1 Hz with a 10 mV 

amplitude.  
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Battery assembly and electrochemical tests. A symmetric cell was assembled in an 

Ar-filled glovebox by two methods: 1) stacking lithium garnets between two Li foils 

(Aladdin, 200 μm thick, designated as Lis/LLZT/Lis) and heating up to 300 
o
C to 

improve the Li/LLZT contact; and 2) rubbing lithium garnets on molten Li till the Li 

wets the garnet surface (designated as Lir/LLZT/Lir, as shown in Video S1), followed 

by cooling down and coin-cell making. The resistance values of garnet/Li interface 

were calculated based on dividing experimental resistance by two, and then 

normalizing to the contact interface area. The lithium plating/stripping test was 

carried out by galvanostatic cycling with a LAND CT2001A cell test system at 

various current densities at room temperature and 60 °C. In cylic voltammetry tests, 

an LLZT pellet was sandwiched between stainless steel sheet as the working electrode, 

and Li foil as the reference and counter electrode with a scan rates of 1 mVs
-1

 from 

-0.1 V to 6 V in a coin cell. Morphology study was performed before and after cycling 

tests using a scanning electron microscopy (SEM, TM 3000 tabletop microscope, 

Hitachi) equipped with Energy-dispersive X-ray spectra (EDS). 
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Fig. S1 SEM image of the LLZT pellets. 
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Fig. S2 XRD patterns of the LLZT pellets with and without the Li2CO3 surface layer. 
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Fig. S3 (a) EIS of the LLZT pellets with blocking Ag electrodes at different 

temperatures. (b) Arrhenius plot of the LLZT ionic conductivity. 

  

a 

b 
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Fig. S4 A comparison of the Li/garnet interface resistances from representative works 

and ours.
[6a, 8]
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Fig. S5 CV curve of LLZT with stainless steel (SS) as working electrode and Lir as 

reference electrode. The voltage scan rate is 1 mV s
-1

.  

 

  

 

 

Fig. S6 A comparison of the critical current densities at room temperature from 

representative works and ours.
[9]
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Fig. S7 Nyquist plots of the Lir/LLZT/Lir cells before and after cycling tests at a 

current density of ±13.3 mA cm
-2

 with a capacity of 0.4 mAh cm
-2

 at room 

temperature for 500 cycles.  
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Fig. S8 Galvanostatic cycling of Lir/LLZT/Lir at ±0.1 mA cm
-2

 with a capacity of 

0.06 mAh cm
-2

 for 950 hours. 
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Fig. S9. Galvanostatic cycling of Lis/LLZT/Lis at room temperature and at ±0.1 mA 

cm
-2

 with a capacity of 0.05 mAh cm
-2

 for 75 hours.  
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Fig. S10 TOF-SIMS characterization of Li metal. High-resolution maps (100 × 100 

μm
2
) of the O and Li secondary ion (SI) signals after shallow (100 s) and heavy (3500 

s) sputtering. 
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Fig. S11 SEM photograph (a) and EDS line scan (b) of the Li/LLZT (with Li2CO3) 

interface. 

 

 

Fig. S12 Digital photos of the melted Li metal on top of the pure Li2CO3 pellets after 

rub-coating molten Li.  
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Fig. S13 SEM images of the Li/LLZT (with Li2CO3) interface after rub-coating 

molten Li. 
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Fig. S14 Nyquist plots of the Lir/LLZO/Lir symmetric cells at room temperature. 
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Supplementary Table 1 | The interface formation energies (in J/m
2
) of Li7La3Zr2O12 

(001)/Li (001), Li6.4La3Zr1.4Ta0.6O12 (001)/Li (001), Li2CO3 (001) /Li (001) and Li2O 

(001)/Li (001) systems.  

 

 Li7La3Zr2O12 

(001)/Li (001) 

Li6.4La3Zr1.4Ta0.6O12 

(001)/Li (001) 

Li2CO3 (001) 

/Li (001) 

Li2O (001)/Li 

(001) 

Ef (in J/m
2
) -2.52 -6.14 -0.63 0.23 
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