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ABSTRACT: A prolonged increase in proinflammatory cytokines is associated with osteoporotic and autoimmune
bone loss and, conversely, anti-inflammatory pathways are associated with protection against bone loss. Milk fat
globule-epidermal growth factor (MFG-E)-8 is a glycoprotein that is proresolving, regulates apoptotic cell clearance,
and has been linked to autoimmune disease and skeletal homeostasis. The role of MFG-E8 in the young vs. adult
skeletonwasdetermined inmice deficient inMFG-E8 (KO). Invivo, trabecular bonewas similar inMFG-E8KOand
wild-type (WT) mice at 6 and 16 wk, whereas 22 wk adult MFG-E8KO mice displayed significantly reduced
trabecularBV/TV.Thenumberofosteoclastsperbonesurfacewas increased in22-wkMFG-E8KOvs.WTmice, and
recombinant murine MFG-E8 decreased the number and size of osteoclasts in vitro. Adult MFG-E8KO spleen
weight:bodyweightwas increased comparedwithWT, and flowcytometric analysis showedsignificantly increased
myeloid-derived suppressor cells (CD11bhiGR-1+) and neutrophils (CD11bhiLy6G+) in MFG-E8KO bone marrow,
suggesting an inflammatory phenotype. PTH-treatedMFG-E8KOmice showed a greater anabolic response (+124%
BV/TV) than observed in PTH-treatedWTmice (+64% BV/TV). These data give insight into the role of MFG-E8 in
the adult skeleton and suggest that anabolic PTH may be a valuable therapeutic approach for autoimmune-
associated skeletal disease.—Michalski,M.N., Seydel, A. L., Siismets, E.M., Zweifler, L. E., Koh, A. J., Sinder, B. P.,
Aguirre, J. I., Atabai, K., Roca, H., McCauley, L. K. Inflammatory bone loss associated with MFG-E8 deficiency is
rescued by teriparatide. FASEB J. 32, 3730–3741 (2018). www.fasebj.org
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Milk fat globule epidermal growth factor (MFG-E)-8 is a
secreted glycoprotein that was first identified in the
mammary gland and subsequently studied in many other

tissues (1–4).Oneof themost prominent functions ofMFG-
E8 is to act as a bridge between apoptotic and phagocytic
cells, thus coordinating the engulfment of apoptotic cells, a
process termed efferocytosis (5–8). MFG-E8 has also been
linked to other functions in the body, including collagen
clearance by lung alveolar macrophages (2), angiogenesis
in cutaneouswound healing (9), phagocytosis in the retina
(4), and polarization of tumor-associated macrophages
(10).MFG-E8 isan important regulatorof the inflammatory
response, and mice deficient in MFG-E8 have inflamma-
tory phenotypes, including intestinal colitis and systemic
lupus erythematosus (SLE)–like symptoms (6, 11, 12). In
humans, a genetic polymorphism of MFG-E8 correlated
significantly with human SLE (13).

A role of MFG-E8 has recently emerged in bone as a
positive regulator of bone turnover (14) and a protective
factor against rheumatoid arthritis (15).MFG-E8–deficient
mice had reduced bone mass and accelerated bone loss in
a ligature-induced periodontitis model (16), yet the
exact functional role of MFG-E8 in bone turnover is still
unclear. MFG-E8 expression in many tissues leads to an
anti-inflammatory response, resulting in the reduction of
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proinflammatory factors such as TNF-a, IL-1b, and IL-6
(17). MFG-E8 has been shown to decrease inflammation
and improvesurvival inamodelof rat sepsis (18)andMFG-
E8 enhances wound healing in diabeticmice by decreasing
inflammation and increasing proresolving factors (19).
Although contributions of inflammatory cytokines to os-
teoporosis have been well characterized, the roles of anti-
inflammatory or resolving cytokines are studied less.
Because of the resolving nature of MFG-E8, it has been
hypothesized that itplaysa role in inflammatorybone loss.

Teriparatide [human parathyroid hormone; (h)
PTH(1–34)] is a U.S. Food and Drug Administration
(FDA)-approved injectable anabolic therapeutic used to
treat osteoporosis. It is well established that intermittent
PTH increases bone mass, bone formation, and bone turn-
over, but the exact mechanisms regulating these effects are
unknown. Direct treatment of osteoblasts in vitrowith PTH
does not stimulate an anabolic response, suggesting that
other cell types in the bone marrow microenvironment are
critical to in vivoPTHanabolic actions (20, 21). PTHhasbeen
shown to alter marrow inflammatory cells, including neu-
trophils and macrophages (22, 23), the latter of which
strongly regulates bone mass (24). Although PTH has been
used to increase bone, the focus of therapeutic potential in
rescuing inflammation-induced bone loss is less un-
derstood. In addition, therapeutic interventions to res-
cue MFG-E8-associated bone loss have not been
investigated. It is hypothesized thatMFG-E8 deficiency
increases inflammation leading to bone loss rescued by
PTH treatment. The purpose of the present studywas to
assess the role of inflammation in MFG-E8–associated
bone loss and to investigate an anabolic therapeutic
intervention in MFG-E8–deficient mice.

MATERIALS AND METHODS

Animals

Allmiceweremaintained inaccordancewith institutional animal
care and use guidelines, and experimental protocols were ap-
proved by the Institutional Animal Care and Use Committee of
the University of Michigan. MFG-E8–deficient knockout (KO)
mice were originally created by using a gene trap vector and
backcrossed onto a C57BL/6 background [wild-type (WT) con-
trols] (1, 2).Micewere housed at a density of 3–5mice per cage in
specific pathogen-free conditions and fed a standard diet of
Purina 5001 chow (Purina, Indianapolis, IN, USA). For in vivo
experiments,micewere given IDs for blinded assessment during
treatment andsubsequent analyses. Femalemicewereused for in
vitro or in vivo experiments at ages 6wk (WT, n = 13; KO, n = 11),
16wk (WT, n = 9; KO, n = 8), and 22wk (WT, n = 10; KO, n = 10),
andmalemicewere analyzed at 22wk (WT, n = 6; KO, n = 5). To
test the anabolic effect of intermittent PTH, 16-wk-old female and
male KO andWTmice were randomized into treatment groups
and treated daily with recombinant human PTH(1–34) (50 mg/
kg, s.c.; Bachem,Torrance, CA,USA) or vehicle (Veh; 0.9% saline,
s.c.) for 6 wk (female: WT Veh, n = 10; WT PTH, n = 11; KO Veh,
n = 10; and KO PTH, n = 10; and male: WT Veh, n = 6; WT PTH,
n= 5; KOveh, n= 7; andKOPTH, n= 6), according to previously
published dosage regimens (20, 21). MFG-E8 KO mice were
crossed with Mertk KO mice (The Jackson Laboratory, Bar
Harbor, ME, USA) to create double MFG-E8/Mertk KO mice
(dKO).Mertk is an efferocytic receptor onmacrophages. Skeletal

phenotypes were assessed in female mice at 6 (WT, n = 10; dKO,
n=11), 16 (WT,n=9;KO,n=7), and22wk (WT,n=6;KO,n=6),
andmicewere treated in the samemanner as KOmicewith PTH
(WTVeh,n=6;WTPTH,n=9;KOVeh,n=6; andKOPTHn=9).
No adverse events were noted in the experimental groups.

Complete blood counts

Blood was collected at the time of euthanasia via intracardiac
puncture frommiceat ages 6, 16, and22wk, inMicrotainerTubes
withK2E (K2EDTA; BD, Franklin Lakes,NJ, USA), and analyzed
for complete blood count with differential.

Serum ELISA

Mice underwent food and water restriction for 6 h before serum
collection. Blood was harvested as above, and placed in non-
EDTA–containing microcentrifuge tubes, allowed to coagulate
for at least 1 h at room temperature, and spun down at 8000 rpm
for 10 min, and liquid serum was collected into new micro-
centrifuge tubes. Samples were stored at 220°C until use.
Enzyme immunoassays were used to measure the serum con-
centrationsof tartrate-resistantacidphosphatase form5b (TRAcP
5b), propeptide of type I procollagen (P1NP), and C-telopeptide
of type I collagen (CTX-I), according to the manufacturer’s in-
structions (ImmunoDiagnostic Systems, Tyne andWear,United
Kingdom) and measured on an EZ Read 400 Microplate Reader
(Biochrom, Holliston, MA, USA).

Fluorescence-activated cell sorting analysis

Bone marrow was isolated from the femur by flushing into
fluorescence-activated cell sorting (FACS) buffer [13 PBS with
2% fetal bovine serum (FBS) and 0.5 mM EDTA], and 106 cells
were stained with anti-mouse F4/80 [allophycocyanin (APC),
CloneA3-1;Abcam,Cambridge,UnitedKingdom]andanti-mouse
CD68 [fluorescein isothiocyanate (FITC), Clone FA-11], anti-mouse
CD11b (APC,M1/70), anti-mouse Gr-1 (FITC, RB6-8C5), and anti-
mouseLy6G(FITC, 1A8; all fromBioLegend, SanDiego,CA,USA).
Isotype controls were used to confirm antibody specificity. FACS
analysis was performed with a FACS Aria III (BD).

Microcomputed tomography

Tibiaewereharvested from6-, 16-, and 22-wk-oldmice and fixed
in 10% neutral buffered formalin (NBF) for 24–48 h at 4°C, and
stored in 70% ethanol. The bones were scanned by micro-
computed tomography (mCT) at a 12-mm voxel size (mCT-100;
Scanco, Wayne, PA, USA) (22), according to established guide-
lines (25). Trabecular bone was measured starting 360 mm distal
to the top of the proximal tibial growth plate and extending
600mmdistallywith a thresholdof 180mg/cm3.Trabecular bone
morphometric values analyzed included bone volume/total
volume (BV/TV), trabecular number (Tb.N), trabecular thickness
(Tb.Th), trabecular spacing (Tb.Sp), and trabecular bone mineral
density (Tb.BMD). Cortical bone was measured starting 3 mm
proximal to the tibia–fibula junction and extended 360 mm, with a
threshold of 280 mg/cm3. Cortical bone morphometric values an-
alyzed included Tt.V, Ct.V, Ct.V/Tt.V, Ct.Th., and BMD.

TUNEL staining

Spleens and tibiae were fixed in 10% NBF for 24–48 h at 4°C.
Tibiae were decalcified in 14% EDTA for 10–14 d. Spleens and

MFG-E8 DEFICIENCY AND INFLAMMATORY BONE LOSS 3731



tibiae were processed, embedded in paraffin, and sectioned at
5mm. Sections were stained for TUNEL+ cells (In SituCell Death
Detection Kit, TMR red; Roche, Mannheim, Germany). TUNEL+

cells were quantified in the white pulp of the spleen and in the
bone marrow of 22-wk-old WT and KOmice.

Static histomorphometry

Tibiae were fixed in 10% NBF for 24–48 h at 4°C, decalcified in
14% EDTA for 10–14 d, embedded in paraffin, and sectioned at
5 mm. A central slice of the proximal tibiae was stained with
hematoxylin and eosin (H&E) or tartrate-resistant acid phos-
phatase (TRAP kit 387A; MilliporeSigma, St. Louis, MO, USA),
and bone morphometry (bone area:total area) and osteoclast
quantification were performed as described in Sinder et al. (26),
according to standards set by the American Society of Bone
Mineral Research (27). The region of interest was manually de-
fined, beginning 200 mm distal to the most distal aspect of the
proximal growth plate and extending 1200 mm distally.

Dynamic histomorphometry

Five and 2 d before euthanasia, the fluorochrome calcein was
administered (30 mg/kg, i.p.; MilliporeSigma), which is in-
corporated into actively forming bone. Tibiae were harvested
and fixed in 10% NBF for 24–48 h and stored in 70% ethanol.
Undecalcified tibiae were embedded in methylmethacrylate,
sectioned (8 mm), and dual-labeled surfaces quantified (28). The
bone formation rate (BFR/BS) and mineral apposition rate
(MAR) were analyzed.

In vitro osteoclast assays

Bone marrow from 6-wk-old KO or WT mice was extracted
into 100mmdishes in complete a-MEM [10% FBS, penicillin/
streptomycin (pen/strep), and glutamine]. The following
day, nonattached cells were replated on Petri dishes and
treated with murine M-CSF (30 ng/ml; Thermo Fisher Sci-
entific, Waltham, MA, USA) for 4–5 d. Cells were then split
with 10 mMEDTA in ice-cold PBS and replated at 60,000/cm2

in 48- or 96-well plates with M-CSF (30 ng/ml) and murine
receptor activator of NF-k B-ligand (RANKL; 50 ng/ml;
PeproTech, Rocky Hill, NJ, USA). Osteoclastic cells were
identified via TRAP staining (387A Kit; MilliporeSigma) or
seeded onto Corning Osteoassay plates (MilliporeSigma) to
measure resorptive functional activity. Osteoclast assays
were performed as above with bone marrow from 22-wk-old
WT mice. At the time of osteoclast differentiation induction
with RANKL, cell cultures were treated with rmMFG-E8
(500 ng/ml; R&D Systems,Minneapolis, MN, USA) or bovine
serum albumin (BSA) control (500 ng/ml; MilliporeSigma),
according to published methods (14). Cultures were stained
for TRAP and quantified.

Efferocytosis

Bone marrow macrophages were assessed for efferocytic ca-
pacity of apoptotic bone marrow stromal cells (BMSCs) or
apoptotic thymocytes. Bonemarrow from6- or 22-wk-oldWT
or KO mice was harvested and cultured in macrophage dif-
ferentiation medium (a-MEM, 10% FBS, pen/strep, gluta-
mine, and 30 ng/ml M-CSF) for 7 d and replated in 6-well
plates at a density of 1.5 3 106/well. BMSCs were harvested
from 6- to 8-wk-old KO and WT mice via bone marrow flush
and cultured in a-MEM (20% FBS, pen/strep, and glutamine)

containing 10 nM dexamethasone (MilliporeSigma). BMSCs
were grown to confluence, dissociated from tissue culture
plateswith 0.25% trypsin-EDTA, and resuspended in 13 PBS.
BMSCs were stained with the Invitrogen CellTrace CFSE Cell
Proliferation Kit (2 mM; Thermo Fisher Scientific). Apoptosis
was induced by exposure to UV light for 30 min, and cells
were allowed to recover at 37°C for 2 h. The thymus was
dissected from 6- to 10-wk-old KO or WT mice in ice-cold 13
PBS and pressed though a 70 mm cell strainer. Red blood cells
were lysed with 13 ammonium chloride potassium (ACK),
and resuspended in complete a-MEM plus 0.1 mM dexa-
methasone. Thymocytes were incubated at 37°C for 16 h to
induce apoptosis, then stained with succinimidyl ester (SE)
(20 ng/ml; pHrodo Red; Thermo Fisher Scientific) (29). Ap-
optotic BMSCs and thymocytes were counted via trypan blue
exclusion and resulted in 80–95% apoptosis. Apoptotic cells
(BMSCs or thymocytes) were cultured with macrophages at a
1:1 ratio in plain a-MEM for 2 h, fixed in 1% PFA, and stained
for F4/80-APC (A3-1; Abcam). Efferocytosis was measured
via flow cytometric analysis for double labeling APC-
carbofluorescein SE (engulfed apoptotic BMSCs) or APC-
pHrodo-SE (engulfed thymocytes). Phagocytosis by bone
marrow macrophages was measured using pHrodo Green
E. coli BioParticles (Thermo Fisher Scientific) and imaged
using IncuCyte Live-Cell Analysis (Sartorius, Ann Arbor, MI).

Statistical analysis

All statistical analyses were performed with Prism 7 software
(GraphPad, La Jolla, CA, USA). Statistical analyses were per-
formed by unpaired Student’s t test to compare 2 groups or
ANOVA with the least-significant difference post hoc test, to
compare 3 or more groups (PTH and vehicle treatments) with a
significance of P, 0.05. Data are means6 SEM.

RESULTS

MFG-E8 deficiency leads to reduced bone
mass in adult mice

The skeletal phenotypes of female MFG-E8–deficient
mice were assessed at 6, 16, and 22 wk and compared
with those of age-matchedWT controls. At 6 wk of age,
MFG-E8 and WT mice had similar trabecular BV/TV
(Fig. 1A, B) and Ct.V/Tt.V (Fig. 1C). With age, MFG-
E8–deficient mice had lower bone mass relative to WT,
with significantly decreased trabecular BV/TVat 22wk
and significantly reduced cortical bone at 16 and 22wk.
Serum ELISAs for bone formation (Fig. 1D) and re-
sorptive markers (Fig. 1E, F) showed similar trends in
KO and WT mice with age. Serum TRAcP 5b, a marker
reflecting the number of osteoclasts, was decreased in
MFG-E8KOmice at 22wk of age comparedwithWT. In
contrast, CTX-I, a marker of osteoclast resorptive ac-
tivity was increased in MFG-E8 KO mice at 22 wk vs.
WT controls.

Further trabecular bone analysis of the tibiae confirmed
that 22-wk-old KO mice had significantly decreased tra-
becular BV/TV (223%; Fig. 2A), unchangedTb.Th. (24%;
Fig. 2B), unchanged Tb.N (28%; Fig. 2C), unchanged Tb.
Sp (+8%; Fig. 2D), and decreased trabecular BMD (222%;
Fig. 2E) comparedwithWT control mice. Cortical volume
fraction andCt.Th.were significantly decreased 4 and 9%,
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respectively, in KO vs. WT mice (Fig. 2F, G). Dynamic
histomorphometrywasperformed inmice at 22wkof age,
with no significant changes observed in BFR/BS or MAR
between KO andWTmice (Fig. 2 H, I).

MFG-E8 deficiency is associated with
increased osteoclasts

Thenumberofosteoclastsperbone surface (N.Oc/BS)was
increased in 22-wk-oldKO vs.WTmice (Fig. 3A). To better
understand the cellular contributions to the skeletal phe-
notype seen in the MFG-E8–deficient mice, a series of in
vitroassayswereperformed. Invitroosteoclast assays from
6-wk-old mice revealed no significant alterations in oste-
oclast differentiation or resorptive capacity between WT
and KO mice (Fig. 3B). Osteoclasts from 22-wk-old WT
mice were cultured with recombinant murine (rm)MFG-
E8 or vehicle (BSA), stained for TRAP, and quantified.
Treatment with rmMFG-E8 significantly reduced the
number and size of osteoclasts (282%, Fig. 3C).

Loss of MFG-E8 results in altered immunologic
profile in spleen and bone marrow

To evaluate the immunologic impact of MFG-E8, spleens
were harvested andweighed from 22-wk-old KO andWT
mice. KO mice had significantly increased spleen weight

per body weight compared toWTmice (Fig. 4A). Spleens
and tibiae were fixed, embedded in paraffin, sectioned,
andstained forTUNEL+cells reflecting cell death.TUNEL+

cells were increased in the white pulp of spleens from 22-
wk-oldKOmicecompared toWT(Fig. 4B),which impliesa
site-specific efferocytic function of MFG-E8, because
TUNEL+ cells were unchanged in the bone marrow of 16-
and 22-wk-old KO and WT mice (Fig. 4C). This finding
suggests that apoptotic cell clearance in themarrowmaybe
facilitated via other efferocytic pathways. In vitro effer-
ocytosis studies were performed to assess the effect of
MFG-E8 deficiency on bone marrow macrophage engulf-
ment of apoptotic cells. No significant alterations in en-
gulfment of apoptotic BMSCs or thymocytes were seen in
vitro (data not shown). Phagocytosis was measured with
the bioparticle pHrodo, which fluoresces when engulfed.
Uptake of pHrodo was decreased by KO bone marrow
macrophages compared to WT (Fig. 4D). This result sug-
gests that, although the KO bone marrow macrophages
may not have an efferocytic phenotype, phagocytosis of
particleswas compromised, reflecting alteredmacrophage
function. FACS analysis of bone marrow populations
revealed that KO mice had significantly increased neutro-
phils (CD11bhiLy6G+; Fig. 4E) and myeloid-derived sup-
pressor cells (MDSCs, CD11bhiGr-1+; Fig. 4F) vs.WTmice.
F4/80+ (murine macrophages) and CD68+ (macrophage
and dendritic cells) populations were not changed in KO
mice vs.WT (data not shown).
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MFG-E8 KO mice have greater increases in BV/
TV in response to intermittent PTH treatment

Female MFG-E8 KO and WT mice (16 wk) were treated
daily with PTH or vehicle for 6 wk (until 22 wk of age) to
evaluate the therapeutic potential of a known anabolic
bone agent (Fig. 5A). All data are presented as treatment
(PTH) over control (Veh). PTH increased spleen weight
similarly in both WT and KO mice (treated:control .1.0;
Fig. 5B). PTHdid not alter the CD11bhiLy6G+ populations
in WT or KO mice, whereas PTH increased marrow
CD11bhiGr-1+ cells in WT, but not in KO, mice (Fig. 5C).
Complete blood counts from WT and KO mice treated
with vehicle or PTH showed that PTH treatment de-
creased the percentage of neutrophils in the peripheral
blood of both WT and KO-treated mice (Table 1). Red
blood cell mean corpuscular volume and hemoglobin
were significantly increased in KO vs.WTmice, and PTH
further increased these parameters in KO mice.

Adult mice treated with vehicle or PTH were assessed
for skeletal phenotypes. Trabecular bone analysis of the
tibia via mCT showed that both WT and KO mice
responded to PTH treatment (treated:control, .1.0; Fig.
5D–G). KO mice showed a significantly greater anabolic
response to PTH inBV/TV, Tb.N, andTb.BMD thanPTH-
treated WT mice. KO and WT had similar cortical bone
anabolic responses to PTH (Fig. 5H, I). Supplemental Ta-
ble 1 provides the rawvalues for thesemCT findings. Static

histomorphometry of tibiae showed an increased bone
mass in both WT and KO mice in the proximal tibia (Fig.
5J). Although vehicle-treated (control) KO male mice
(22 wk) did not display a statistically significant bone
phenotype compared to vehicle-treated (control) WT
(210% BV/TV; P = 0.26), their response to PTH was
augmentedwhen compared toPTH-treatedWTmice (WT
+19% BV/TV, P = 0.07, vs. KO+49% BV/TV, P, 0.05).

In addition to the role of MFG-E8 in efferocytosis,
Mertk is another key efferocytic receptor on macro-
phages. Therefore, MFG-E8/Mertk dKO mice were
generated to assess the effect of the absence of another
efferocytic pathway. The resulting skeletal phenotype
of the dKO mice was similar to the MFG-E8KO phe-
notype (Supplemental Fig. 2A, B). dKO mice had a
trend of decreasing bone with age and responded to
PTH treatment to a greater extent than WT controls
(Supplemental Fig. 2C). These data suggest Mertk de-
ficiency does not alter the skeletal phenotype further vs.
MFG-E8 deficiency alone.

MFG-E8 KO mice display increased osteoclast
surface, rescued by PTH treatment

The serum formation marker P1NP and serum resorptive
markers TRAcP 5b and CTX-I were all increased with
PTH treatment in both KO andWTmice (Fig. 6A–C). The
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Ct.V/Tt.V (F) and Ct.Th. (G) compared to WT control mice. H, I) Calcein was administered (30 mg/g, i.p.) 5 and 2 d before
euthanasia to measure active bone formation. Dynamic histomorphometric analyses were performed in the cancellous bone of
the proximal tibia. Sections were analyzed for BFR/BS (H) and MAR (I). No significant differences were seen between WT
and KO mice. Data are mean 6 SEM (n = 6–11/group). *P , 0.05. Scale bars, 100 mm.
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PTH-mediated increase in serum P1NP was significantly
higher in KO vs. WT mice. BFR/BS and MAR were in-
creased in with PTH treatment in both WT and KO mice
(Fig. 6D, E). The increase in N.Oc/BS in KO mice com-
pared with WT was reduced with PTH treatment in KO
mice (Fig. 6F).

DISCUSSION

It is well accepted that chronic inflammation increases
during the aging process, leading to the upregulation of
proinflammatory mediators. Chronic increases in in-
flammatory cytokines are seen in postmenopausal osteo-
porosis, a disease with a pathology related to increased
osteoclast differentiation and activity (30). The current
study describes the contributions ofMFG-E8 in the young
and adult murine skeleton. MFG-E8 is a known anti-
inflammatory mediator. MFG-E8–deficient mice de-
veloped a skeletal phenotype that became apparentwith
age.At 16wkof age,MFG-E8KOmice showed a trend of
decreased trabecular bone and significantly decreased
cortical bone compared to WT and then displayed sig-
nificantly decreased trabecular and cortical bone at
22 wk of age. These data suggest that MFG-E8 is a con-
tributor to bone turnover in adult bone. A previous re-
port ofMFG-E8 contributions to bone showed decreased
vertebral trabecular bone volume fraction in MFG-E8–

deficient mice as early as 6 wk of age (14) and may de-
scribe a location-specific effect. The difference in age at
onset of an osteopenic phenotype between these 2 models
may also represent differences in the development of the
genetic models. The genetic model presented here was
developed by inserting the pGT1-pfs gene trap vector in
intron 7 of Mfge8, leading to protein degradation (1),
whereas Sinningen et al. (14) used a KO model that was
generated by replacing exons 2–6 of Mfge8 with a neo-
mycin resistance cassette (31). This finding suggests that
disrupting the proper transcription of the genemay result
in a more dramatic phenotype present at an earlier age,
whereas the prevention of protein secretion results in a
phenotype that becomes apparent with time.

Male KOmice did not have a significant reduction in
trabecular BV/TV at 22wk of age, whereas femalemice
displayed a significant reduction in bone. Sinningen
et al. (14) also saw a reduced bone phenotype in female
mice, suggesting a possible sex-specific phenotype;
however, data describing the male phenotype were not
presented. Given that MFG-E8 is highly expressed in
mammary gland tissue and is important in mammary
gland development and involution (1), it may be asso-
ciated with hormonal controls related to sex steroids
that in turn have a gender-specific effect on the skele-
ton.MFG-E8 deficiency is associatedwith autoimmune
disease, and autoimmune disorders are more common
in females than in males.
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Given the relationship between inflammation and os-
teoclast activation, we sought to identify whether the re-
duced bone phenotype in MFG-E8–deficient mice would
correlate with an enhanced inflammatory environment.
The reduced bone phenotype in MFG-E8 KO mice has
been attributed to an increased in osteoclasts, via mecha-
nisms that are not clearly delineated (16). In concert with
an osteoclastic phenotype, administration of rmMFG-E8
protein to inflammation-inducedperiodontal bonedefects
decreased bone loss (16). An inflammatory phenotype has
not beendescribed in the bones ofMFG-E8–deficientmice.

Adult MFG-E8 KO mouse spleen weights, bone marrow
neutrophils, and MDSCs increased. These findings are
consistent with an increased inflammatory phenotype.
Increased spleenweightwas seen inMFG-E8KO at 40wk
of age (6) and MFG-E8 KO mice display signs of in-
flammation in other tissues (12). In the present study,
MFG-E8 KO mice showed an increased in N.Oc/BS
and increased serum CTX-I levels, consistent with an
inflammation-induced osteoclastogenesis. This resultmay
seem contrary to the serum ELISA studies that showed a
decrease in serum TRAcP 5b but may be explained by the
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overall decrease in the amount of bone that can be occu-
pied by osteoclasts in the KO mice. Hence, less bone sur-
face withmore osteoclasts could translate into a reduction
in serum TRAcP 5b. These data suggest that the reduced
bone phenotype in 22-wk-old KOmice is in part related to
an increase in osteoclasts on the bone surface. Proin-
flammatory cytokines increase osteoclastic differentiation
and activity via upregulation of RANKL (32). Increased
proinflammatory cytokineproductionhas beenassociated
with systemic and local bone loss in patients with in-
flammatory diseases (33, 34), including SLE (35), rheu-
matoid arthritis (36–38), inflammatory bowel disease (39,
40), and periodontal disease (41). Recombinant MFG-E8
protein decreased osteoclast differentiation, suggesting
that MFG-E8 signaling directly affects pathways that
participate in osteoclast differentiation and may be a

targeted treatment for inflammatory bone loss. These
findings are similar to recently published articles detailing
the contributions of MFG-E8 to osteoclast differentiation
and function (14–16) and extend these findings into the
inflammatory phenotype of an adult mouse model.

Macrophages have recently emerged as key regulators
of bone homeostasis, yet the mechanisms by which they
exert their effects are unclear (42, 43). Macrophages are
phagocytic cells, andadistinct functionofMFG-E8 is to act
as a bridge between apoptotic cells and phagocytes to fa-
cilitate engulfment of dead cells (5). Accumulation of ap-
optotic cells leads to increased proinflammatory cytokine
production. Polymorphisms of MFG-E8 have been found
in cases of SLE, which is characterized by decreased apo-
ptotic cell clearance, as well as decreased bone mass (44).
The efferocytic capacity of splenic macrophages was
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suggested to be compromised by the increase in TUNEL+

cells; however, the efferocytic capacity of bone marrow
macrophageswasunchanged in vitro inMFG-E8–deficient
mice. TUNEL+ cell populations trended downward in
the bone marrow whereas TUNEL staining of spleens,
revealed increased apoptotic bodies in the white pulp of
the spleen. This phenotype, consistent with previous lit-
erature (6), suggests that, in vivo, there is an alteration in
apoptotic cell clearance in MFG-E8–deficient mice. The
increase inTUNEL+cells inMFG-E8–deficient spleens, but
not the bone marrow, suggests compensatory efferocytic
mechanisms are more operative and critical in the bone
marrow environment. Alternatively, the data presented
here that phagocytic functions of MFG-E8–deficient mac-
rophages are compromised may suggest that MFG-E8 is
important for macrophage clearance of debris or collagen
fragments in bone vs. efferocytic clearance of apoptotic
cells. Further, the increase in marrow neutrophils and
MDSCs could reflect an altered phagocytic or efferocytic
environment in themarrow. Ineffective efferocytosis leads
to increased inflammatory cytokines that support the in-
crease in these cells (45). Further understanding of the
pathways that are most important in the marrow space
will help delineate whether and how the process of apo-
ptotic cell clearance regulates bone turnover.

The slow acquisition of the osteopenic phenotype in
MFG-E8–deficientmicemay be the product of age-related
changes. Physiologic processes typically occur efficiently
in young mice, whereas with age, the body has re-
duced efficiency of many physiologic processes that
are associated with chronic elevation of proinflammatory
cytokines. Age-associated inflammation has been termed
“inflammaging” (46). Chronic inflammatory states

support osteoclast differentiation and activity. The aging
skeleton presents with increased osteoclast bone re-
sorption relative to osteoblast formation, leading to a net
reduction in bone (47, 48). The contributions of many
inflammatory cytokines to age-associated osteoporosis
have been studied and well characterized; however, the
role of proresolution or anti-inflammatory cytokines are
less well characterized. Given that MFG-E8 is a known
anti-inflammatory mediator, its loss may lead to accelera-
ted aging or inflammaging. Young mice may have the
ability to compensate for the changes seen with MFG-E8
deficiency (i.e., increased inflammatory milieu) whereas,
adult mice may lose their ability to compensate for these
changes and hence the effects of increased inflammation
take hold.

MFG-E8 deficiency resulted in increased osteoclasts in
association with an enhanced inflammatory environment
in the murine skeleton (Fig. 7). Currently, therapeutic
interventions for patients with inflammatory bone loss
include antiresorptives, such as bisphosphonates, and
anti-inflammatory targeted therapies. Intermittent PTH
administration has been extensively studied for its ana-
bolic effects in bone. Teriparatide [PTH(1-34)] is approved
by the FDA, as mentioned earlier, but its use is limited
to cases of severe osteoporosis. Recently, abaloparatide,
which interacts with the same receptor as PTH, has re-
ceived FDA approval (49). A better understanding of
phenotypes inwhichPTH is a beneficial therapeutic could
lead to more targeted use of anabolic agents.

In adult MFG-E8 KO mice, PTH was an effective ther-
apeutic and resulted ina larger anabolic response inKOvs.
WT mice. In addition, PTH treatment decreased the
number of osteoclasts per bone surface in the adult KO

TABLE 1. Complete blood counts

Component Unit WT Veh (n = 10) WT PTH (n = 11) KO Veh (n = 10) KO PTH (n = 10)

WBCs 103 cells/ml 4.7 6 0.5 5.9 6 0.6 4.7 6 0.3 6.1 6 0.6
NE 103 cells/ml 0.85 6 0.10 0.91 6 0.13 0.98 6 0.11 0.96 6 0.12
LY 103 cells/ml 3.7 6 0.4 4.8 6 0.4 3.6 6 0.3 5.0 6 0.5‡

MO 103 cells/ml 0.09 6 0.01 0.11 6 0.01 0.10 6 0.02 0.10 6 0.02
EO 103 cells/ml 0.03 6 0.01 0.07 6 0.02 0.05 6 0.04 0.04 6 0.01
BA 103 cells/ml 0.01 6 0.004 0.03 6 0.008 0.02 6 0.01 0.01 6 0.003
NE % 18.1 6 1.1 15.0 6 0.9* 20.4 6 1.4 15.5 6 1.0‡

LY % 79.0 6 1.3 81.7 6 1.1 76.3 6 2.1 82.1 6 1.0‡

MO % 1.9 6 0.3 2.0 6 0.2 1.9 6 0.2 1.7 6 0.04
EO % 0.65 6 0.20 0.95 6 0.29 0.95 6 0.59 0.58 6 0.18
BA % 0.27 6 0.06 0.38 6 0.12 0.37 6 0.20 0.14 6 0.04
RBC 106 cells/ml 8.8 6 0.1 8.5 6 0.2 8.7 6 0.1 7.8 6 0.3‡

HB g/dl 13.1 6 0.2 12.7 6 0.2 13.3 6 0.1 12.3 6 0.5
HCT % 44.8 6 0.9 43.9 6 0.9 46.9 6 0.7 43.0 6 1.8
MCV fl 50.8 6 0.7 51.5 6 0.5 53.9 6 0.2† 55.2 6 0.3§

MCH pg 14.8 6 0.2 15.0 6 0.2 15.3 6 0.1* 15.8 6 0.1‡

MCHC g/dl 29.2 6 0.3 29.1 6 0.3 28.4 6 0.3 28.5 6 0.2
RDW % 17.1 6 0.7 18.2 6 0.1 16.0 6 0.1 17.2 6 0.1{

PLT 103 cells/ml 747 6 16 746 6 22 744 6 27 752 6 14
MPV fl 4.1 6 0.06 4.1 6 0.06 4.0 6 0.03 4.0 6 0.03

BA, basophil; EO, eosinophil; HB, hemoglobin; HCT, hematocrit; LY, lymphocyte; MCH, mean corpuscular
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MO,
monocyte; MPV, mean platelet volume; NE, neutrophil; PLT, platelet; RBC, red blood cell; RDW, red cell distri-
bution width; WBCs, white blood cells. Data are expressed as means6 SEM. *P, 0.05 vs.WT Veh, †P, 0.01 vs.WT
Veh, ‡P , 0.05 vs. KO Veh, §P , 0.01 vs. KO Veh, and {P , 0.001 vs. KO Veh.
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mice and brought the number of osteoclasts to the level of
those in WT vehicle-treated mice. Treatment of mice with
PTH has been shown to decrease peripheral neutrophils
(22) and polymorphonuclear leukocyte infiltration in
healing oral tissue (50). In our mouse model, PTH treat-
ment similarly decreased the number of peripheral neu-
trophils. These data suggest that PTH therapy alters the

inflammatoryphenotype and is beneficial in the treatment
of bone loss related to inflammation. PTH increases
specialized proresolving factors in the bone marrow
including resolvin D1 and D2 and lipoxins, suggesting
that PTH therapy aids in the resolution of inflammation
(51). A study of the application of PTH in a murine
model of rheumatoid arthritis showed that PTH

A B

Figure 7. A) In WT mice, MFG-E8 is present
and functional. Aberrant inflammation is min-
imal and osteoclastogenesis, osteoclast activity,
and bone mass are at baseline levels. B) With
MFG-E8 deficiency, inflammation increases,
causing an increase in neutrophils and MDSCs,
a subset of myeloid cells that can differentiate
into osteoclasts. Increased inflammatory cyto-
kines lead to increased osteoclastogenesis and
osteoclast activity, resulting in decreased bone
mass. When PTH is administered to MFG-
E8–deficient mice, inflammation is reduced
and osteoclastogenesis is decreased, leading to
an increase in bone mass.
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Figure 6. Bone formation and resorption analyses in PTH- and vehicle-treated KO and WT mice. A–C) Serum was collected at the
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BS vs. vehicle-treated KO mice. Data are means 6 SEM (n = 8–11/group). *P , 0.05, **P , 0.01, ***P , 0.001.
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repaired local erosions (52). In addition, a human clinical
trial showed that the teriparatide increased bonemass in
patientswith rheumatoid arthritis (53), anda clinical trial
of local PTH application to periodontal defects showed
enhanced bone regeneration in PTH-treated lesions (54).
Collectively, these data suggest that PTH is an effective
therapeutic in certain types of inflammatory bone dis-
ease, yet future studies are necessary to confirm the
breadth of its therapeutic benefit.

These findings are of interest to the bone and immu-
nology fields, but our study is not without its limitations.
Mouse models are not perfect tools to study human dis-
ease, and future studies are needed to enhance the trans-
lational elements of these findings. Isolation of tissue
samples from patients with autoimmune diseases should
be tested for MFG-E8 activity. In addition, clinical trials
using the FDA-approved teriparatide in autoimmune pa-
tients who are susceptible to decreased bone mass may
shed light on future expanded uses of teriparatide and the
more newly approved abaloparatide.

In summary, our data show that MFG-E8 deficiency
leads to analtered immunologic profile in themurine bone
marrow, is associated with bone loss with age, and is
highly responsive to intermittent PTH therapy.
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