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Supporting Information for “Building Generalized Linear Models

with Ultrahigh Dimensional Features: A Sequentially Conditional

Approach” by Qi Zheng, Hyokyoung G. Hong, and Yi Li

A: Proofs of main theorems

The proofs of the main theorems and corollaries are contained in this section.

Proof of Theorem 3.1: Given an index set S and r ∈ Sc, let B0
S(d1) = {βS : ‖βS −β∗S‖ 6

d1/(K
√
s)} and B1

r,S(d2) = {βr : |βr − β∗r|S| 6 d2/K}, where d1 = A4

√
ρ3 log p/n and

d2 = A6

√
ρ3 log p/n with A4 and A6 defined as in Lemma 6.

We first define an event

Ω3 :=
{

sup
|S|6ρ,βS∈B

0
S(d1)

∣∣Gn

{
l
(
βT
SXS, Y

)
− l
(
β∗TS XS, Y

)}∣∣ 6 2A3d1
√
ρ log p,

sup
|S|<ρ,r∈Sc,βS∈B

0
S(d1),βr∈B

1
r,S(d2)

∣∣Gn

{
l
(
βT
SXS + βrXr

)
−l
(
β∗TS XS + β∗r|SXr

)}∣∣ 6 2A3(d1 + d2)
√
ρ log p,

max
|S|6ρ
|Gn

{
l(β∗TS XS, Y )

}
| 6 7(A2KL+ bmax)

√
ρ log p,

max
|S|<ρ,r∈Sc

|Gn

{
l(β∗TS XS + β∗r|SXr, Y )

}
| > 7(2A2KL+ bmax)

√
ρ log p

}
,

where A2 and A3 are defined as in Lemma 4. By Lemma 4, P (Ω3) > 1− 24 exp(−6ρ log p).

In the rest of the proof, we consider the sample points in Ω3.

In the proof of Lemma 6, we show that max|S|6ρ ‖β̂S − β∗S‖ 6 A4K
−1(ρ2 log p/n)1/2

almost surely given Ω3. Given an index set S and βS such that |S| < ρ, ‖βS − β∗S‖ 6
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A4K
−1(ρ2 log p/n)1/2, and for any j ∈ Sc,

`S∪{j}(β
∗
j|S|βS)− `S(βS)

= n−1/2Gn

{
l(βT

SXS + β∗j|SXj, Y )− l(β∗TS XS + β∗j|SXj, Y )
}

+ n−1/2Gn

{
l(β∗TS XS + β∗j|SXj, Y )

}
+ E

{
l(βT

SXS + β∗j|SXj, Y )
}
− E

{
l(βT

SXS, Y )
}

− n−1/2Gn

{
l(βT

SXS, Y )− l(β∗TS XS, Y )
}
− n−1/2Gn

{
l(β∗TS XS, Y )

}
> −2A3A4ρ

2 log p/n− 7(2A2KL+ bmax)
√
ρ log p/n+ E

[
`S∪{j}(β

∗
j|S|βS)

]
− E {`S(βS)}

− 7(A2KL+ bmax)
√
ρ log p/n− 2A3(A4 + A6)ρ

2 log p/n

> −σmaxλmaxA4K
−1(ρ2 log p/n)1/2|β∗j|S|+ σminβ

∗2
j|S/2

− 7(3A2KL+ 2bmax)
√
ρ log p/n− 2A3(2A4 + A6)ρ

2 log p/n,

where the first inequality follows from the definition of Ω3 and the last inequality follows

from part (iii) of Lemma 5. Thus,

`S∪{j}(β
∗
j|S|β̂S)− `S(β̂S) > inf

‖βS−β
∗
S‖6A4K−1(ρ2 log p/n)1/2

`S∪{j}(β
∗
j|S|βS)− `S(βS)

> −σmaxλmaxA4K
−1(ρ2 log p/n)1/2|β∗j|S|+ σminβ

∗2
j|S/2

− 7(3A2KL+ 2bmax)
√
ρ log p/n− 2A3(2A4 + A6)ρ

2 log p/n.

By Lemma 1, ifM 6⊆ S, ∃r ∈ Sc∩M, such that |β∗r|S| > Cσ−1maxn
−α. Thus, there exists some

constant C1 that does not depend on n such that

max
j∈Sc

`S∪{j}(β
∗
j|S|β̂S)− `S(β̂S)

> C2σminσ
−2
maxn

−2α/2− σmaxλmaxA4K
−1(ρ2 log p/n)1/2Cσ−1maxn

−α

− 7(3A2KL+ 2bmax)
√
ρ log p/n− 2A3(2A4 + A6)ρ

2 log p/n > C1n
−2α

provided ρn−1+4α log p→ 0. Moreover, we obtain that

min
|S|<ρ,M6⊆S

max
j∈Sc

`S∪{j}{(β̂
T

S , β̂r|S(β̂S))T} − `S(β̂S) = min
|S|<ρ,M6⊆S

max
j∈Sc

`S∪{j}{β̂j|S(β̂S)|β̂S} − `S(β̂S)

> min
|S|<ρ,M6⊆S

max
j∈Sc

`S∪{j}(β
∗
j|S|β̂S)− `S(β̂S) > C1n

−2α,
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where the inequality follows from β̂j|S(β̂S) being the maximizer of `S∪{j}(βj|β̂S).

Withdrawing the restriction to Ω3, we obtain that

P

[
min

|S|<ρ,M6⊆S
max
j∈Sc

`S∪{j}{β̂j|S(β̂S)|β̂S} − `S(β̂S) > C1n
−2α
]
> 1− 24 exp(−6ρ log p).

This completes the proof of Theorem 3.1. �

Proof of Corollary 3.1: Define

Ω4 :=

{
min

|S|<ρ,M6⊆S
max
j∈Sc

`S∪{j}{β̂j|S(β̂S)|β̂S} − `S(β̂S) > C1n
−2α
}
,

Ω5 :=

{
sup
β∈B

∣∣En {l(βTX, Y )
}∣∣ 6 (

√
2M + 2µmax)τKL+ bmax

}
.

By Theorem 3.1 and Lemma 3, the event Ω4 ∩ Ω5 holds with probability at least 1 −

26 exp(−6ρ log p). We thus restrict our attention to the event Ω4 ∩ Ω5.

Given any S such that |S| < ρ,M 6⊆ S, let r be the index selected by SC. Then given

Ω4∩Ω5, `S∪{r}(β̂S∪{r})−`S(β̂S) > C1n
1−2α. If ρn−1+4α log p→ 0, then n−1(log n+2η log p) =

o(n−2α) and thus,

EBIC(S ∪ {r})− EBIC(S)

= −2`S∪{r}(β̂S∪{r}) + (|S|+ 1)(log n+ 2η log p)/n− {−2`S(β̂S) + |S|(log n+ 2η log p)/n}

6 −2C1n
−2α + (log n+ 2η log p)/n < 0,

when n is sufficiently large. Therefore, our proposed SC does not stop when M 6⊆ Sk and |Sk| <

ρ. Noting that

2(
√

2M + 2µmax)τKL+ 2bmax > sup
β∈B

En
{
l(βTX, Y )

}
− inf
β∈B

En
{
l(βTX, Y )

}
> `Sk

(β̂Sk
)− `S0(β̂S0

) >
∑
16t6k

{`St(β̂St
)− `St−1(β̂St−1

)} > kC1n
−2α,

we have thatM 6⊆ SN implies 2C−11

{
(
√

2M+2µmax)τKL+bmax

}
n2α > N, which contradicts

the definition of N . Hence, we have some k 6 N such thatM⊂ Sk with probability at least

1− 26 exp(−6ρ log p). This completes the proof of Corollary 3.1. �
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Proof of Theorem 3.2: In the proof of Corollary 3.1, we have shown that, with probability

going to 1, SC will not stop when M 6⊆ S and |S| < ρ.

For any r ∈ Sc∩Mc, β∗r|S is the maximizer of E{`S∪{r}(βr|β∗S)}. Hence, by the concavity of

E
[
`S∪{r}(βr|β∗S)

]
, β∗r|S is the unique solution to the equation E

[{
Y − µ

(
β∗TS XS + βrXr

)}
Xr

]
= 0. By the mean value theorem,

E
[{
Y − µ

(
β∗TS XS

)}
Xr

]
= E

[{
µ
(
βT
∗X
)
− µ

(
β∗TS XS

)}
Xr

]
= E

[{
µ
(
βT
∗X
)
− µ

(
β∗TS XS

)}
Xr

]
− E

[{
µ
(
βT
∗X
)
− µ

(
β∗TS XS + β∗r|SXr

)}
Xr

]
= β∗r|SE

{
σ
(
β∗TS XS + β̃rXr

)
X2
r

}
,

where β̃r is some point between 0 and β∗r|S.

By Conditions (A) and (B),
∣∣∣β∗TS XS + β̃rXr

∣∣∣ 6 ‖β∗S‖1‖XS‖∞ + |β̃r||Xr| 6 2KL. Thus,

|σ(β∗TS XS + β̃rXr)| > σmin and

o(n−α) =
∣∣∣E [{Y − µ(β∗TS XS

)}
Xr

]∣∣∣ =
∣∣∣β∗r|SE {σ(β∗TS XS + β̃rXr

)
X2
r

}∣∣∣ > σmin

∣∣β∗r|S∣∣ .
Therefore, |β∗r|S| = o(n−α) and consequently maxS:|S|6ρ,r∈Sc∩Mc |β∗r|S| = o(n−α).

Under Ω3 that is defined in Theorem 3.1, max|S|6ρ ‖β̂S − β∗S‖ 6 A4K
−1(ρ2 log p/n)1/2

almost surely. For any r ∈ Sc,

`S∪{r}(β
∗
r|S|βS)− `S(βS)

= n−1/2Gn

{
l(βT

SXS + β∗r|SXr, Y )− l(β∗TS XS + β∗r|SXr, Y )
}

+ n−1/2Gn

{
l(β∗TS XS + β∗r|SXr, Y )

}
+ E

{
l(βT

SXS + β∗r|SXr, Y )
}
− E

{
l(βT

SXS, Y )
}

− n−1/2Gn

{
l(βT

SXS, Y )− l(β∗TS XS, Y )
}
− n−1/2Gn

{
l(β∗TS XS, Y )

}
6 2A3A4ρ

2 log p/n+ 7(2A2KL+ bmax)
√
ρ log p/n+ E

[
`S∪{r}(β

∗
r|S|βS)

]
− E {`S(βS)}

+ 7(A2KL+ bmax)
√
ρ log p/n+ 2A3(A4 + A6)ρ

2 log p/n

6 σmaxλmaxA4K
−1(ρ2 log p/n)1/2|β∗r|S|+ σminβ

∗2
r|S/2

+ 7(3A2KL+ 2bmax)
√
ρ log p/n+ 2A3(2A4 + A6)ρ

2 log p/n,

where the first inequality follows from the definition of Ω3 and the second inequality follows
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from part (iii) of Lemma 5. Thus,

`S∪{r}(β
∗
r|S|β̂S)− `S(β̂S) 6 sup

‖βS−β
∗
S‖6A4K−1(ρ2 log p/n)1/2

`S∪{j}(β
∗
j|S|βS)− `S(βS)

6 σmaxλmaxA4K
−1(ρ2 log p/n)1/2|β∗r|S|+ σminβ

∗2
r|S/2

+ 7(3A2KL+ 2bmax)
√
ρ log p/n+ 2A3(2A4 + A6)ρ

2 log p/n.

Since maxS:|S|<ρ,r∈Sc∩Mc |β∗r|S| = o(n−α) and ρn−1+4α log p→ 0,

max
r∈Sc∩Mc

`S∪{r}(β
∗
r|S|β̂S)− `S(β̂S)

6 σmaxλmaxA4K
−1(ρ2 log p/n)1/2o(n−α) + σmino(n

−2α)/2

+ 7(3A2KL+ 2bmax)
√
ρ log p/n+ 2A3(2A4 + A6)ρ

2 log p/n 6 C1n
−2α/3.

By Part (ii) of Lemma 6, with probability at least 1− 12 exp (−6ρ log p),

max
|S|<ρ,r∈Sc∩Mc

`S∪{r}

{
β̂r|S(β̂S)|β̂S

}
− `S

(
β̂S

)
6 max
|S|<ρ,r∈Sc∩Mc

∣∣∣`S∪{r}{β̂r|S(β̂S)|β̂S
}
− `S∪{r}

(
β∗r|S|β̂S

)∣∣∣
+ max
|S|<ρ,r∈Sc∩Mc

`S∪{r}(β
∗
r|S|β̂S)− `S(β̂S)

6 A7ρ
2 log p/n+ C1n

−2α/3 6 C1n
−2α/2.

Withdrawing the restriction on Ω3, we obtain that with probability at least 1−36 exp(−6ρ log p),

max
|S|<ρ,r∈Sc∩Mc

`S∪{r}{β̂r|S(β̂S)|β̂S} − `S(β̂S) 6 C1n
−2α/2.

Therefore, ifM 6⊆ S, SC would select a noise variable with probability less than 36 exp(−4ρ log p).

For k > |M|,M 6⊆ Sk implies that at least k− |M| noise variables are selected within the

k steps. Then for k = C2|M| with C2 > 1,

P (M 6⊆ Sk) 6
k∑

j=k−|M|

(
k

j

){
36 exp(−4ρ log p)

}j
6 |M|k|M|

{
36 exp(−4ρ log p)

}k−|M|
6 36 exp(−4ρ log p+ log |M|+ |M| log k) 6 36 exp(−3ρ log p).

Therefore, M ⊂ SC2|M| with probability at least 1 − 36 exp(−3ρ log p). This completes the

proof of Theorem 3.2. �
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Proof of Theorem 3.3: As shown in Corollary 3.1, SC will not stop whenM 6⊆ S and |S| <

ρ with probability converging to 1. Also, by Corollary 3.1 or Theorem 3.2,M will be included

in Sk for some k < ρ with probability going to 1. Therefore, SC stops at the kth step if

EBIC(Sk+1) > EBIC(Sk).

On the other hand, it is easy to see that EBIC(Sk+1) > EBIC(Sk) if and only if 2`Sk+1
(β̂Sk+1

)−

2`Sk
(β̂Sk

) 6 (log n+ 2η log p)/n. By Lemma 7, conditions (A5) and (A6) in Chen and Chen

(2012) are satisfied with probability tending to 1. Thus, following the proof of Equation (3.2)

in Chen and Chen (2012) with |Sk+1| − |Sk| = 1, we can show that with probability tending

to 1,

2`Sk+1
(β̂Sk+1

)− 2`Sk
(β̂Sk

) < (log n+ 2η log p)/n,

for all η > 0. Thus, with probability tending to 1, the procedure stops at the kth step. This

completes the proof of Theorem 3.3. �

B: Additional lemmas and proofs

We state and prove several needed lemmas.

Lemma 1: Given a model S such that |S| < ρ,M 6⊆ S, under Condition (E),

(i) ∃r ∈ Sc ∩M, such that β∗r|S 6= 0.

(ii) in addition, if Conditions (A) and (B) hold, then ∃r ∈ Sc ∩ M, such that |β∗r|S| >

Cσ−1maxn
−α.

Proof: As β∗j|S is the maximizer of E{`S∪{j}(βj|β∗S)}, by the concavity of E
[
`S∪{j}(βj|β∗S)

]
,

β∗j|S is the solution to the equation E
[{
Y − µ

(
β∗TS XS + βjXj

)}
Xj

]
= 0.

(i): Suppose that β∗j|S = 0,∀j ∈ Sc ∩M. Then,

0 = E
[{
Y − µ

(
β∗TS XS + β∗j|SXj

)}
Xj

]
= E

[{
µ
(
βT
∗X
)
− µ

(
β∗TS XS

)}
Xj

]
⇒ max

j∈Sc∩M

∣∣∣E [{µ(βT
∗X
)
− µ

(
β∗TS XS

)}
Xj

]∣∣∣ = 0,
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which contradicts Condition (E). Thus, ∃r ∈ Sc ∩M, such that β∗r|S 6= 0.

(ii): By the mean value theorem,

E
[{
Y − µ

(
β∗TS XS

)}
Xr

]
= E

[{
µ
(
βT
∗X
)
− µ

(
β∗TS XS

)}
Xr

]
= E

[{
µ
(
βT
∗X
)
− µ

(
β∗TS XS

)}
Xr

]
− E

[{
µ
(
βT
∗X
)
− µ

(
β∗TS XS + β∗r|SXr

)}
Xr

]
= β∗r|SE

{
σ
(
β∗TS XS + β̃rXr

)
X2
r

}
,

where β̃r is some point between 0 and β∗r|S.

By Conditions (A) and (B),
∣∣∣β∗TS XS + β̃rXr

∣∣∣ 6 ‖β∗S‖1‖XS‖∞ + |β̃r||Xr| 6 2KL. Thus,

|σ(β∗TS XS + β̃rXr)| 6 σmax and

Cn−α 6
∣∣∣E [{µ(βT

∗X
)
− µ

(
β∗TS XS

)}
Xr

]∣∣∣ =
∣∣∣β∗r|SE {σ(β∗TS XS + β̃rXr

)
X2
r

}∣∣∣ 6 σmax

∣∣β∗r|S∣∣ .
Therefore, |β∗r|S| > Cσ−1maxn

−α. This completes the proof of Lemma 1. �

Lemma 2: Let ξi, i = 1, . . . , n be n i.i.d random variables such that |ξi| 6 B for a

constant B > 0. Under Conditions (A), (B), and (C), we have E (|Yiξi − E [Yiξi] |m) 6

m!(2B(
√

2M + µmax))
m, for every m > 1.

Proof: By Conditions (A) and (B), |βT
∗Xi| 6 KL, ∀i > 1. Thus,

∣∣µ(βT
∗Xi)

∣∣ 6 µmax and

consequently, E (|Yi|) 6 E
{
|Yi − µ(βT

∗Xi)|+
∣∣µ(βT

∗Xi)
∣∣} 6 E [|εi|] + µmax 6 E (ε2i )

1/2
+

µmax 6
√

2M + µmax, where the last inequality follows from Condition (C). Then

E(|Yi|m) = E{|εi + µ(βT
∗Xi)|m} 6 E

{
m∑
t=0

(
m

t

)
|εi|t

∣∣µ(βT
∗Xi)

∣∣m−t}

6
m∑
t=0

(
m

t

)
E
(
|εi|t
)
µm−tmax 6

1∑
t=0

(
m

t

)
E
(
|εi|t
)
µm−tmax +

m∑
t=2

(
m

t

)
E
(
|εi|t
)
µm−tmax

6 µmmax +mE (|εi|)µm−1max +
m∑
t=2

t!

(
m

t

)
M tµm−tmax

6 m!

{
µmmax +

√
2Mµm−1max +

m∑
t=2

(
m

t

)
M tµm−tmax

}
6 m!(

√
2M + µmax)

m,
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for every m > 1. By the same arguments, it can be shown that, for every m > 1,

E {|Yiξi − E [Yiξi] |m} 6 E {(|Yiξi|+ |E [Yiξi] |)m} 6 E

{
m∑
t=0

(
m

t

)
|Yiξi|t|E [Yiξi] |m−t

}

6
m∑
t=0

(
m

t

)
E
(
|Yi|t

)
BtE (|Yi|)m−tBm−t 6 m!{2B(

√
2M + µmax)}m.

This completes the proof of Lemma 2. �

Lemma 3: Under Conditions (A) – (C), when n is sufficiently large such that 28
√
ρ log p/n <

1, we have supβ∈B
∣∣En {l(βTX, Y )

}∣∣ 6 (
√

2M + 2µmax)τKL + bmax, with probability 1 −

2 exp(−8ρ log p).

Proof: By Conditions (B), supβ∈B
∣∣βTX

∣∣ 6 τKL. Thus,

sup
β∈B

∣∣En {l(βTX, Y )
}∣∣ 6 sup

β∈B

∣∣En (∣∣Y βTX
∣∣)∣∣+ sup

β∈B
En
{∣∣b(βTX)

∣∣}
6 En (|Y |) τKL+ bmax 6

[∣∣∣En {|Y | − E (|Y |)}
∣∣∣+ E (|Y |)

]
τKL+ bmax

6
[∣∣∣En {|Y | − E (|Y |)}

∣∣∣] τKL+ (
√

2M + µmax)τKL+ bmax,

where the last inequality follows from Lemma 2.

Taking ξi = 1{Yi > 0} − 1{Yi < 0} in Lemma 2, we have E
[∣∣|Yi| − E [|Yi|]

∣∣m] 6
m!(2(

√
2M + µmax))

m. Let A1 = 2(
√

2M + µmax). Applying Bernstein’s inequality (Lemma

2.2.11 in van der Vaart and Wellner (1996)) yields that

P

[∣∣∣∣∣
n∑
i=1

{|Yi| − E(|Yi|)}

∣∣∣∣∣ > 7A1

√
nρ log p

]
6 2 exp

(
− 49A2

1nρ log p

4nA2
1 + 14A2

1

√
nρ log p

)
(1)

6 2 exp(−8ρ log p),

when n is sufficiently large such that 28
√
ρ log p/n < 1. Thus,

P

[
sup
β∈B

∣∣En{l(βTX, Y )}
∣∣ > 2(

√
2M + µmax)τKL+ bmax

]

6 P

[
sup
β∈B

∣∣En{l(βTX, Y )}
∣∣ > (7A1

√
ρ log p/n+

√
2M + µmax)τKL+ bmax

]

6 2 exp(−8ρ log p).

This completes the proof of Lemma 3. �
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Lemma 4: Given an index set S and r ∈ Sc, let B0
S(d1) = {βS : ‖βS−β∗S‖ 6 d1/(K

√
s)}

and B1
r,S(d2) = {βr : |βr − β∗r|S| 6 d2/K}, where d1, d2 < KL and s = |S|. Under Conditions

(A) – (C), when n is sufficiently large such that 28
√
ρ log p/n < 1, we have

(i) |Gn

[
l
(
βT
SXS, Y

)
− l
(
β∗TS XS, Y

)]
| 6 2A3d1

√
ρ log p, uniformly over βS ∈ B0

S(d1) and

|S| 6 ρ, with probability at least 1− 6 exp(−6ρ log p), where A3 := 7(2
√

2M + 3µmax).

(ii) |Gn

[
l
(
βT
SXS + βrXr

)
− l
(
β∗TS XS + β∗r|SXr

)]
| 6 2A3(d1+d2)

√
ρ log p, uniformly over

βS ∈ B0
S(d1), βr ∈ B1

r,S(d2), r ∈ Sc and |S| < ρ, with probability at least 1−6 exp(−6ρ log p),

(iii) |Gn

[
l(β∗TS XS, Y )

]
| 6 7(A2KL+bmax)

√
ρ log p, uniformly over |S| 6 ρ, with probability

at least 1− 6 exp(−6ρ log p), where A2 := 2(
√

2M + µmax).

(iv) |Gn

[
l(β∗TS XS + β∗r|SXr, Y )

∣∣∣ 6 7(2A2KL + bmax)
√
ρ log p, uniformly over r ∈ Sc and

|S| < ρ, with probability at least 1− 6 exp(−6ρ log p).

Proof: (i): Let Rs(d1) denote a ball with dimensionality s and radius d1/(K
√
s). Then

B0
S(d1) = Rs(d1) +β∗S. Let Cs := {C(ξk)} be a collection of cubes that cover the ball Rs(d1),

where C(ξk) is a cube containing ξk with sides of length d1/(K
√
sn2), and ξk is some point

in Rs(d1). Since the volume of C(ξk) is {d1/(K
√
sn2)}s and the volume of Rs(d1) is less

than {2d1/(K
√
s)}s, we need no more than (4n2)s cubes to cover Rs(d1). Thus, we can

assume |Cs| 6 (4n2)s without loss of generality. For any ξ ∈ C(ξk), ‖ξ − ξk‖ 6 d1/(Kn
2).

In addition, let T1S(ξ) := En[Y ξTXS], T2S(ξ) := En
[
b{(β∗S + ξ)TXS} − b(β∗TS XS)

]
, and

TS(ξ) := T1S(ξ)− T2S(ξ).

Given any ξ ∈ Rs(d1), we can find some C(ξk) ∈ Cs containing ξ. It is easy to see that

|TS(ξ)− E {TS(ξ)}| 6 |TS(ξ)− TS(ξk)|+ |TS(ξk)− E [TS(ξk)]|+ |E [TS(ξ)]− E [TS(ξk)]|

=: I + II + III.
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We deal with III first. By the mean value theorem,

E {TS(ξk)} − E {TS(ξ)} = E
[
Y (ξk − ξ)TXS + b

{
(β∗S + ξk)

TXS

}
− b
{

(β∗S + ξ)TXS

}]
= E

{
Y (ξk − ξ)TXS

}
+ E

[
µ
{(

β∗S + ξ̃
)T

XS

}
(ξk − ξ)TXS

]
,

where ξ̃ is some point between ξ and ξk. We bound the two items separately.

∣∣E {Y (ξk − ξ)TXS

}∣∣ 6 E (|Y |) d1/(Kn2)
√
sK 6 (

√
2M + µmax)d1

√
s/n2, (2)

where the first inequality follows from the fact ξ ∈ C(ξk) and Condition (B), and the second

inequality follows from Lemma 2. On the other hand,
∣∣∣E [µ{(β∗S + ξ̃

)T
XS

}
(ξk − ξ)TXS

]∣∣∣ 6
µmaxd1

√
s/n2. This, coupled with (2), yields that

|E {TS(ξk)} − E {TS(ξ)}| 6 (
√

2M + 2µmax)d1
√
s/n2. (3)

Next, we evaluate II. Since |XT
iSξ| 6 d1 for all ξ ∈ Rs(d1), by Lemma 2,

E
{∣∣Y ξTkXS − E

(
Y ξTkXS

)∣∣m} 6 m!{2(
√

2M + µmax)d1}m = m!(A2d1)
m.

By Bernstein’s inequality,

P

[
max

16k6(4n2)s
n |T1S(ξk)− E {T1S(ξk)}| > 7A2d1

√
nρ log p

]
6
(
4n2
)s

2 exp

(
−1

2

49(A2d1)
2ρ log p

2(A2d1)2 + 7(A2d1)2
√
ρ log p/n

)
6 2 exp(−8ρ log p), (4)

when n is sufficiently large such that 28
√
ρ log p/n 6 1.

As |b{(β∗S + ξk)
T XS} − b(β∗TS XS)| 6 µmaxd1, applying Bernstein’s inequality again yields

that

P

[
max

16k6(4n2)s
n |T2S(ξk)− E {T2S(ξk)}| > 7µmaxd1

√
nρ log p

]
6 2 exp(−8ρ log p). (5)

Combining (4) and (5) together

P

[
max

16k6(4n2)s
n |TS(ξk)− E {TS(ξk)}| > A3d1

√
nρ log p

]
6 4 exp(−8ρ log p), (6)

where A3 := 7(2
√

2M + 3µmax).
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We now assess I. Following the same arguments as used for Lemma 3,

P

{
sup

ξ∈C(ξk)
|TS(ξ)− TS(ξk)| > (2

√
2M + 3µmax)d1

√
s/n2

}
6 2 exp(−8ρ log p). (7)

Combining (3), (6), and (7) together yields that

P

[
sup

ξ∈Rs(d1)

|TS(ξ)− E {TS(ξ)}| > 2A3d1
√
ρ log p/n

]

6 P

[
sup

ξ∈Rs(d1)

|TS(ξ)− E {TS(ξ)}| > A3d1
√
ρ log p/n+ (2

√
2M + 3µmax)d1

√
s/n2

]

6 6 exp(−8ρ log p).

By the combinatoric inequality
(
p
s

)
6 (ep/s)s, we obtain that

P

[
sup

|S|6ρ,βS∈B
0
S(d1)

∣∣Gn

{
l
(
βT
SXS, Y

)
− l
(
β∗TS XS, Y

)}∣∣ > 2A3d1
√
ρ log p

]

6
ρ∑
s=1

(ep/s)s6 exp(−8ρ log p) 6 6 exp(−6ρ log p).

(ii): Let I(d2) denote the interval [−d2/K, d2/K]. Then B1
r,S(d2) = β∗r|S + I(d2). Let D :=

{D(νt)} be a collection of intervals that cover I(d2), where D(νt) is an interval containing

νt with length d2/(Kn
2), and νt is some point in I(d2). Then |D| 6 4n2 and |νt| 6 d/K.

Since the length of D(νt) is d2/(Kn
2) and the length of I(d2) is less than 2d2/K, we need

no more than (4n2)s cubes to cover Rs(d1). Thus, we can assume |Cs| 6 (4n2)s without loss

of generality. For any ν ∈ D(νt), |ν − νt| 6 d2/(Kn
2).

Let T1Sr(ξ, ν) := En
{
Y
(
ξTXS + νXr

)}
, T2Sr(ξ, ν) := En

[
b
{

(β∗S+ξ)TXS +(β∗r|S+ν)Xr

}
−

b
(
β∗TS XS +β∗r|SXr

)]
, and TSr(ξ, ν) := T1Sr(ξ, ν)−T2Sr(ξ, ν). Given any (ξT, ν)T ∈ Rs(d1)×

I(d2), we can find a C(ξk) in Cs containing ξ and a D(νt) in D containing ν. Then,

|TSr(ξ, ν)− E {TSr(ξ, ν)}| 6 |TSr(ξ, ν)− TSr(ξk, νt)|+ |TSr(ξk, νt)− E {TSr(ξk, νt)}|

+ |E {TSr(ξ, ν)} − E {TSr(ξk, νt)}| =: IV + V + V I,

The items IV, V, and V I can be evaluated by the same arguments as used for I, II, and III,

respectively. Thus, we omit the details here. Combining the bounds of the items IV, V, V I
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yields that

P

[
sup

|S|<ρ,r∈Sc,βS∈B
0
S(d),βr∈B

1
r,S(d)

∣∣Gn

{
l
(
βT
SXS + βrXr

)
− l
(
β∗TS XS + β∗r|SXr

)}∣∣
> 2A3(d1 + d2)

√
ρ log p

]
6 6 exp(−6ρ log p).

(iii) and (iv): The two parts can be easily proved following the arguments used for Lemma

3. We thus omit the details here. This completes the proof of Lemma 4. �

Lemma 5: Given a model S and r ∈ Sc, under Conditions (A), (B), and (D), for any

‖βS − β∗S‖ 6 L/
√
s and βr ∈ [−L,L],

(i) σminλmin‖βS − β∗S‖2/2 6 E {`S(β∗S)} − E {`S(βS)} 6 σmaxλmax‖βS − β∗S‖2/2.

(ii) σmin(βr − β∗r|S)2/2 6 E
{
`S∪{r}(β

∗
r|S|β

∗
S)
}
− E

{
`S∪{r}(βr|β∗S)

}
6 σmax(βr − β∗r|S)2/2.

(iii)

− σmaxλmax‖βS − β∗S‖|βr − β∗r|S|+ σmin|βr − β∗r|S|2/2

6 E
{
`S∪{r}(β

∗
r|S|βS)

}
− E

{
`S∪{r}(βr|βS)

}
6 σmaxλmax‖βS − β∗S‖|βr − β∗r|S|+ σmax|βr − β∗r|S|2/2.

Proof: (i): For any ‖βS − β∗S‖ 6 L/
√
s, ‖βS − β∗S‖1 6 L. Then by Taylor’s Expansion,

E {`S(βS)} − E {`S(β∗S)}

= E
{
YXT

S − µ(β∗TS XS)XT
S

}
(βS − β∗S) +

1

2
(βS − β∗S)TE

{
−σ(β̃

T

SXS)X⊗2S

}
(βS − β∗S)

= −1

2
(βS − β∗S)TE

{
σ
(
β̃

T

SXS

)
X⊗2S

}
(βS − β∗S),

where β̃S is between βS and β∗S. By Condition (D),

σminλmin‖βS − β∗S‖2/2 6 E {`S(β∗S)} − E {`S(βS)} 6 σmaxλmax‖βS − β∗S‖2/2.

(ii): Similarly, for any βr ∈ [−L,L], it can be shown that

σmin(βr − β∗r|S)2/2 6 E
{
`S∪{r}(β

∗
r|S|β∗S)

}
− E

{
`S∪{r}(βr|β∗S)

}
6 σmax(βr − β∗r|S)2/2.
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(iii): Noting that E
[{
Y − µ

(
β∗TS XS + β∗r|SXr

)}
Xr

]
= 0, it can be shown that

E
{
`S∪{r}(βr|βS)

}
− E

{
`S∪{r}(β

∗
r|S|βS)

}
= E

[{
Y − µ

(
βT
SXS + β∗r|SXr

)}
Xr

]
(βr − β∗r|S)− 1

2
E
{
σ
(
βT
SXS + β̃rXr

)
X2
r

}
(βr − β∗r|S)2

= −(βr − β∗r|S)E
{
σ
(
β̃

T

SXS + β∗r|SXr

)
XrX

T
S

}
(βS − β∗S)

− E
{
σ
(
βT
SXS + β̃r,SXr

)
X2
r

}
(βr − β∗r|S)2/2,

where β̃S is some point between βS and β∗S and β̃r,S is some point between βr and β∗r|S.

By Conditions (A) and (B) and the facts that βS ∈ B and βr ∈ [−L,L], simple algebra

shows |β̃
T

SXS + β∗r|SXr| 6 2KL and |βT
SXS + β̃r,SXr| 6 2KL. By Condition (D) and the

Cauchy-Schwartz inequality, we obtain that

− σmaxλmax‖βS − β∗S‖|βr − β∗r|S| − σmax|βr − β∗r|S|2/2

6 −(βr − β∗r|S)E
{
σ
(
β̃

T

SXS + βrXr

)
XrX

T
S

}
(βS − β∗S)

− E
{
σ
(
βT
SXS + β̃r,SXr

)
X2
r

}
(βr − β∗r|S)2/2

6 σmaxλmax‖βS − β∗S‖|βr − β∗r|S| − σmin|βr − β∗r|S|2/2.

This completes the proof of Lemma 5. �

Lemma 6: Under Conditions (A) – (E),

(i) There exist some constants A4 and A5 that do not depend on n, such that ‖β̂S −

β∗S‖ 6 A4K
−1
√
ρ2 log p/n and |`S(β̂S) − `S(β∗S)| 6 A5ρ

2 log p/n hold uniformly over

S : |S| 6 ρ, with probability at least 1− 6 exp(−6ρ log p).

(ii) There exist some constants A6 and A7 that do not depend on n, such that |β̂r|S(β̂S)−

β∗r|S| 6 A6K
−1
√
ρ2 log p/n and |`S∪{r}{β̂r|S(β̂S)|β̂S} − `S∪{r}(β∗r|S|β̂S)| 6 A7ρ

2 log p/n

holds, uniformly over S : |S| < ρ and r ∈ Sc, with probability at least 1−12 exp(−6ρ log p).

Proof: Define

Ω1(d1) :=
{

sup
|S|6ρ,βS∈B

0
S(d1)

∣∣Gn

{
l
(
βT
SXS, Y

)
− l
(
β∗TS XS, Y

)}∣∣ < 2A3d1
√
ρ log p

}
.
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By Lemma 4, the event Ω1(d1) holds with probability at least 1 − 6 exp(−6ρ log p). In the

rest of the proof of Lemma 6, we restrict our attention on Ω1(d1) with d1 = A4

√
ρ3 log p/n

for some A4 > 2(σminλmin)−1K2A3.

(i): If ‖βS − β∗S‖ = A4K
−1
√
ρ2 log p/n, then ‖βS − β∗S‖ 6 A4

√
ρ3 log p/n/(K

√
s) and

consequently, βS ∈ B0
S(d1). By Lemma 5 (i),

`S(β∗S)− `S(βS)

=
(
`S(β∗S)− E {`S(β∗S)} − [`S(βS)− E {`S(βS)}]

)
+ [E {`S(β∗S)} − E {`S(βS)})

> σminλmin‖βS − β∗S‖2/2− 2A3d1
√
ρ log p/n

= σminλminA
2
4ρ

2 log p/(K2n)− 2A3A4ρ
2 log p/n > 0.

Thus,

inf
|S|6ρ,‖βS−β

∗
S‖=A4K−1

√
ρ2 log p/n

`S(β∗S)− `S(βS) > 0.

By the concavity of `S(·), max|S|6ρ

∥∥∥β̂S − β∗S

∥∥∥ 6 A4K
−1
√
ρ2 log p/n.

On the other hand, for any ‖βS − β∗S‖ 6 A4K
−1
√
ρ2 log p/n,

|`S(β∗S)− `S(βS)|

6
∣∣∣`S(β∗S)− E {`S(β∗S)} − [`S(βS)− E {`S(βS)}]

∣∣∣+ |E {`S(β∗S)} − E {`S(βS)}|

6 σmaxλmax‖βS − β∗S‖2/2 + 2A3d1
√
ρ log p/n 6 A5ρ

2 log p/n,

where A5 := 4σmaxλmaxA
2
4K
−2 + 2A3A4. As max|S|6ρ ‖β̂S − β∗S‖ 6 A4K

−1
√
ρ2 log p/n, we

obtain that max|S|6ρ |`S(β̂S)−`S(β∗S)| 6 A5ρ
2 log p/n. Withdrawing the restriction to Ω1(d1),

we complete the proof of part (i).

(ii): Define

Ω2(d1, d2) :=

{
sup

|S|<ρ,r∈Sc,βS∈B
0
S(d),βr∈B

1
r,S(d)

∣∣Gn

{
l
(
βT
SXS + βrXr

)
−l
(
β∗TS XS + β∗r|SXr

)}∣∣ < 2A3(d1 + d2)
√
ρ log p

}
,
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where d1 = A4

√
ρ3 log p/n and d2 = A6(ρ

3 log p/n)1/2 for someA6 > 0 satisfying σminA
2
6K
−2−

σmaxλmaxA4A6K
−2 − 2A3(A4 + A6) > 0.

By Lemma 4, the event Ω1(d1)∩Ω2(d1, d2) holds with probability at least 1−12 exp(−6ρ log p).

Thus we restrict our attention to Ω1(d1) ∩ Ω2(d1, d2).

For any βr satisfying |βr − β∗r|S| = A6K
−1(ρ2 log p/n)1/2, βr ∈ B1

r,S(d) and given any βS

such that ‖βS − β∗S‖ 6 A4K
−1
√
ρ2 log p/n, by part (iii) in Lemma 5,

`S∪{r}(β
∗
r|S|βS)− `S∪{r}(βr|βS)

=
(
`S∪{r}(β

∗
r|S|βS)− E

{
`S∪{r}(β

∗
r|S|βS)

}
−
[
`S∪{r}(βr|βS)− E

{
`S∪{r}(βr,S|βS)

} ])
+ E

{
`S∪{r}(β

∗
r|S|βS)

}
− E

{
`S∪{r}(βr|βS)

}
> −σmaxλmax‖βS − β∗S‖|βr − β∗r|S|+ σmin|βr − β∗r|S|2/2− 2A3(d1 + d2)

√
ρ log p/n

> −σmaxλmaxA4A6K
−2ρ2 log p/n+ σminA

2
6K
−2ρ2 log p/n

− 2A3(A4

√
ρ3 log p/n+ A6

√
ρ3 log p/n)

√
ρ log p/n > 0.

Therefore,

inf
|S|<ρ,r∈Sc,|βr,S−β∗r|S |=A6K−1(ρ2 log p/n)1/2

‖βS−β
∗
S‖6A4K−1(ρ2 log p/n)1/2

`S∪{r}(β
∗
r|S|βS)− `S∪{r}(βr|βS) > 0.

By the concavity of `S∪{r}(βr|βS),

sup
|S|<ρ,r∈Sc,

‖βS−β
∗
S‖6A4K−1(ρ2 log p/n)1/2

|β̂r|S(βS)− β∗r|S| 6 A6K
−1(ρ2 log p/n)1/2.

Under Ω1(d1), max|S|6ρ ‖β̂S−β∗S‖ 6 A4K
−1(ρ2 log p/n)1/2. Therefore, max|S|<ρ,r∈Sc |β̂r|S(β̂S)−

β∗r|S| 6 A6K
−1(ρ2 log p/n)1/2.

Analogous to part (i), it can be shown that

max
|S|<ρ,r∈Sc

|`S∪{r}
{
β̂r|S(β̂S)|β̂S

}
− `S∪{r}

(
β∗r|S|β̂S

)
| 6 A7ρ

2 log p/n.

Withdrawing the restriction to Ω1(d1) ∩ Ω2(d1, d2) completes the proof of Lemma 6. �

Lemma 7: Suppose Conditions (A) – (D) hold and b′′′max = sup|t|6τKL |b′′′(t)| <∞.
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(i) The conditions (A4) and (A5) in Chen and Chen (2012) are satisfied for all S such

that M⊆ S and |S| 6 ρ, with probability at least 1− 2 exp(−3ρ log p).

(ii) There exists some constant A11 such that |En
[
{Y − µ(β∗TS XS)}Xr

]
| < A11

√
log p/n,

uniformly over S :M⊆ S, |S| 6 ρ, r ∈ S, with probability at least 1− exp(−3 log p).

Proof: Given any index S such that M ⊆ S and |S| 6 ρ, then βT∗SXS = βT∗MXM, where

β∗S is the subvector of β∗ corresponding to S. Thus,

E
[
{Y − µ(βT

∗SXS)}XS

]
= E

(
E
[
{Y − µ(βT∗MXM)}|XS

]
XS

)
= 0,

which implies β∗S = β∗S.

(i): Given any π ∈ R|S|, let h(π,βS) = (σmaxK
2|S|)−1σ

(
βT
SXS

) (
πTXS

)2
. By Conditions

(A) and (B), h(π) is bounded between −1 and 1 uniformly over ‖π‖ = 1 and βS ∈ B0
S(d1).

Define the function class HS := {h(π,βS) : ‖π‖ = 1,βS ∈ B0
S(d1)} . By the arguments used

for Lemma 11 in Belloni and Chernozhukov (2011) and Lemmas 2.6.15 and 2.6.17 in van

der Vaart and Wellner (1996), there exists some universal constant A8 such that the class

of functions HS has a VC index bounded by A8s (for the definition of the VC index, we

refer to page 85 in van der Vaart and Wellner (1996)). By Theorem 2.6.7 in van der Vaart

and Wellner (1996), for any probability measure Q, there exists some universal constant A9,

such that the covering number supQN
(
ε‖HS‖Q,2,HS, L2(Q)

)
is bounded by (A9/ε)

2A8s for

any ε > 0 (for the definition of covering numbers, we refer to page 83 in van der Vaart and

Wellner (1996)).

Thus, by Theorem 1.1 in Talagrand (1994), there exists some constant A10 that de-

pends on A8 and A9 only, such that P
[
sup‖π‖=1,βS∈B

0
S(d1)
|Gn {h(π,βS)}| > A10

√
ρ log p

]
6

exp (−5ρ log p) and consequently,

P
[

sup
|S|=s,‖π‖=1,βS∈B

0
S(d1)

∣∣∣En {σ (XT
SβS

) (
πTXS

)2}− E {σ (XT
SβS

) (
πTXS

)2}∣∣∣
> A10K

2
√
ρ3 log p/n

]
6

ρ∑
s=|M|

(ep
s

)s
exp (−5ρ log p) 6 exp(−3ρ log p). (8)
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By Condition (D), σminκmin 6 λmin

[
E
{
σ
(
XT
SβS

)
X⊗2S

}]
6 λmin

[
E
{
σ
(
XT
SβS

)
X⊗2S

}]
6

σmaxκmax, for all βS ∈ B0
S(d1) and S :M⊆ S, |S| < ρ. This, coupled with (8) implies that,

σminκmin/2 6 λmin

[
En
{
σ
(
XT
Sβ∗S

)
X⊗2S

}]
6 λmax

[
En
{
σ
(
XT
Sβ∗S

)
X⊗2S

}]
6 2σmaxκmax,

uniformly over all S satisfyingM⊆ S and |S| 6 ρ, with probability at least 1−exp(−3ρ log p).

Therefore, the condition (A4) in Chen and Chen (2012) is satisfied with probability at least

1− exp(−3ρ log p).

Noting that ∀βS ∈ B0
S(d1),∣∣∣En {σ (XT
SβS

) (
πTXS

)2}− En
{
σ
(
XT
Sβ∗S

) (
πTXS

)2}∣∣∣
6
∣∣∣En {σ (XT

SβS
) (

πTXS

)2}− E {σ (XT
SβS

) (
πTXS

)2}∣∣∣
+
∣∣∣E {σ (XT

SβS
) (

πTXS

)2}− E {σ (XT
Sβ∗S

) (
πTXS

)2}∣∣∣
+
∣∣∣En {σ (XT

Sβ∗S
) (

πTXS

)2}− E {σ (XT
Sβ∗S

) (
πTXS

)2}∣∣∣
6 2A10K

2
√
ρ3 log p/n+ µmax‖βS − β∗S‖

√
sKλmax.

Then the condition (A5) in Chen and Chen (2012) is satisfied uniformly over all S such that

M⊆ S and |S| 6 ρ, with probability at least 1− exp(−3ρ log p).

(ii): Part (ii) can be proved by slightly modifying the arguments used for (8). We thus omit

the details. �
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