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Abstract

Conditional screening approaches have emerged as a powerful alternative to the

commonly used marginal screening, as they can identify marginally weak but

conditionally important variables. However, most existing conditional screening

methods need to fix the initial conditioning set, which may determine the

ultimately selected variables. If the conditioning set is not properly chosen, the

methods may produce false negatives and positives. Moreover, screening

approaches typically need to involve tuning parameters and extra modeling

steps in order to reach a final model. We propose a sequential conditioning

approach by dynamically updating the conditioning set with an iterative

selection process. We provide its theoretical properties under the framework of

generalized linear models. Powered by an extended Bayesian information

criterion as the stopping rule, the method will lead to a final model without the

need to choose tuning parameters or threshold parameters. The practical utility

of the proposed method is examined via extensive simulations and analysis of a

real clinical study on predicting multiple myeloma patients’ response to

treatment based on their genomic profiles.
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1 | INTRODUCTION

With the advent of treatment options in cancer, gene
expression profiles have emerged as an important tool in
predicting therapeutic responses (Amin et al., 2014). In
a multiple myeloma study that motivates this work
(Mulligan et al., 2007), the prediction of the binary
response status (1 = complete response and 0 = other-
wise) based on massive genetic biomarkers requires the
development of a parsimonious logistic regression
model, or more broadly, a generalized linear model
(GLM) (Paul et al., 2008). As the dimension of predictors
defies any existing modeling approaches, feature screen-
ing has been commonly used for dimension reduction.
The most popular screening approach is marginal

screening (Fan and Lv, 2008), which selects variables
based on their marginal associations with the response.
However, marginal screening may miss signals that are
marginally unimportant but conditionally important
(Barut et al., 2016), resulting in biased predictive results
(Li et al., 2019).

To resolve this issue, a number of authors have
proposed conditional screening approaches under the
GLM framework: Fan and Lv (2008) suggested an iterative
procedure by repeatedly using the residuals from the
previous iterations; Xu and Chen (2014) proposed a
sparsity‐restricted maximum likelihood estimation meth-
od, which retains the virtues of the iterative procedure but
is conceptually simpler and computationally more efficient
than iterative procedures; Barut et al. (2016) proposed a
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conditional screening approach, given some important
variables known a priori; and Hong et al. (2016) further
introduced a data‐driven conditional screening approach
in the absence of prior knowledge about the conditioning
set.

These aforementioned methods have various draw-
backs. First, most of the conditional screening ap-
proaches need to fix the initial choice of the conditioning
set and the selected variables may depend on the
conditioning set. In the absence of reliable information
about the conditioning set, the methods may produce
false negatives and positives. Second, the theoretical
properties for the data‐driven approaches are still
elusive, making it difficult to evaluate their general-
izability. Third, most of these methods require the
selection of tuning parameters, which is often computa-
tionally clumsy.

We propose a sequential conditioning (SC) ap-
proach, wherein variables sequentially enter the
conditioning set according to the increment of like-
lihood. The procedure updates the conditioning set at
each iteration based on the extended Bayesian in-
formation criterion (EBIC) (Chen and Chen, 2008),
and constructs an offset term based on the variables in
this set. In essence, this offset summarizes the
information contained in the updated conditioning
set, and we search for a new variable that maximizes
the likelihood given the offset term. We emphasize
that the proposed SC approach deviates fundamentally
from the variable screening or selection approaches as
it naturally leads to a final model when the procedure
terminates.

In addition, our approach is innovative in several
aspects. First, compared to the other conditional
approaches, it is computationally efficient as it max-
imizes the likelihood with respect to only one covariate
at each step given the offset. Second, the use of the EBIC
accommodates natural selection of the final model
without requiring tuning parameters or threshold
parameters. Third, in contrast with marginal screening,
the proposed method does not require restrictive
faithfulness assumptions which stipulate that marginal
models must reflect the original model. Fourth, we have
established rigorous selection consistency results with
the EBIC and showed that, if the dimension of the true
model is finite, the proposed approach can discover all
relevant predictors within a finite number of steps. The
derived theoretical framework can accommodate a wide
range of data types, such as binary, categorical, and
count data. Finally, the proposed approach starts with
an empty model or some important variables identified a
priori and then sequentially recruits more variables into
the conditioning set, and our method is valid even in the

absence of the prior information about which variables
to condition on.

The rest of the paper is organized as follows. In
Section 2, we introduce the proposed SC procedure.
In Section 3, we establish the sure screening property.
Section 4 details the assessment of the finite sample
performance of the proposed method and Section 5
illustrates our method by predicting treatment re-
sponse based on myeloma patients’ genomic profiles
using the aforementioned data example. We conclude
the paper with a brief discussion in Section 6 and
relegate all the technical details, including lemmas,
conditions, and proofs, to the Online Supporting
Information.

2 | SEQUENTIALLY
CONDITIONAL MODELING

Suppose that there are n independent samples
Y i nX( , ), = 1, …,i i , where Yi is an outcome,
X X XX = ( , , …, )i i i ip

T
0 1 is a collection of p + 1 predictors

for the ith sample, and X = 1i0 corresponds to the
intercept. Assume without loss of generality that all the
covariates have been standardized so that E X( ) = 0ij and
E X( ) = 1ij

2 for all j 1⩾ . We focus on a class of GLMs by
assuming that the conditional density of Yi given Xi
belongs to the linear exponential family:

β βπ Y Y b A YX X X( ) = exp{ − ( ) + ( )},i i i i
T

i
T

i∣ (1)

where A ( )⋅ and b ( )⋅ are some known functions,
β β β β= ( , , …, )p T

0 1 represents the coefficients of
predictors, and β0 is the intercept. Compared to the
usual exponential family (McCullagh and Nelder, 1989),
(1) adopts a canonical link function and a unit dispersion
parameter for simplicity of presentation. We assume that
function b ( )⋅ is twice continuously differentiable
with a nonnegative second derivative b″( )⋅ , and use
μ ( )⋅ and σ ( )⋅ to denote b′( )⋅ and b″( )⋅ , respectively.
For a nonrandom function f ( )⋅ and a sequence of
independent random variables ξi i n( = 1, …, ), let

f ξ n f ξ{ ( )} = ( )n i
n

i
−1

=1 ∑ be the mean of f ξ{ ( )}i i
n
=1,

which are independent replicates of f ξ( ). We also denote
the empirical process by f ξ n{ ( )} =n i

n−1 2
=1 ∑∕

f ξ E f ξ( ( ) − [ ( )])i i . Further, assume that X YX{ , , }ij i i
are independently and identically distributed copies
of X YX{ , , }j . We let X = 10 , corresponding to the
intercept. When p n⩾ , regularization estimation is often
carried out under a sparsity assumption on the pre-
dictors. When p is on the exponential order of n, a
popular approach for reducing the dimensionality is
screening.

2 | ZHENG ET AL.
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The log‐likelihood function, apart from an additive
constant, is

β β
n

l Y l YX X1 ( , ) = { ( , )},
i

n

i
T

i n
T

=1
∑ (2)

where l θ y yθ b θ( , ) = − ( ). For example, for logistic
regression, b θ θ( ) = log{1 + exp( )} and the log‐likelihood
is equal to β βn Y X X[ − log{1 + exp( )}]i

n
i i

T
i
T−1

=1∑ . We
denote by β β β β= ( , , …, )* * * *p

T
0 1 the true values of β, and

the true model as j β j= { : 0, 1} {0}*j ≠ ⩾ ∪ . We

denote its estimate by .
More notation is introduced. For an index set

S p{0, 1, …, }⊂ and a p‐dimensional vector A, we use
A j SA = { : }S j ∈ to denote the subvector of A corre-

sponding to S. For example, XiS denotes the collection of
covariates for the ith individual corresponding to S. We
use |S| to denote the cardinality of S and Sc to denote the
complement of S. We use β βl YX( ) { ( , )}S S n S

T
Sℓ ≔ to

denote the average log‐likelihood of the regression model
of Y on XS for a given S p{0, 1, …, }⊂ , and use βS to
denote the maximizer of β( )S Sℓ .

We elaborate on the idea of building model (1) with
the proposed SC approach. The key is to include an offset
term which summarizes the information acquired from
the previous selection steps and to search for a new
candidate variable that maximizes the likelihood with
such an offset.

Specifically, we denote by Ok the offset evaluated at the
kth step and S p{0, 1, …, }k ⊂ the set of indices of the
covariates selected up to the kth step. Initializing S = {0}0 ,
we set O β= S0 0

 , where βS0 maximizes β( )S S0 0
ℓ and is the

estimated intercept without any other covariates. That is,
we start from the null model with only an intercept term. We
can also start with a set of given variables according to some
a priori knowledge, which is in the same spirit as conditional
screening (Barut et al., 2016). However, in contrast with
Barut et al. (2016), our procedure dynamically updates the
conditioning set with a sequential selection process, which is
detailed as follows.

First, with such an O0, for j p{1, …, }∈ , we compute

β β= argmax ( )j β O j
(1)

,0
 ℓ , where β l O βX Y( ) = { ( + , )}O j n j, ℓ .

Then j β= argmax ( )j p O j j1 {1,…, } ,
(1)

0
ℓ∈ . Now set S j= {0, }1 1

and regressY on XS1 to obtain βS1 . Set βO X= S
T

S1 1 1
 , which is

embedded with the information for the variable selected
previously.

An iterative procedure follows naturally. For k 1⩾ ,

given Ok and Sk, we compute β β= argmax ( )j
k

β O j
( +1)

,k
 ℓ

for j Skc∈ . Then j β= argmax ( )k j S O j j
k

+1 ,
( +1)

k
c

k
ℓ∈ . Now set

S S j= { }k k k+1 +1∪ and regress Y on XSk+1 to obtain βSk+1

and let βO X=k S
T

S+1 k k+1 +1
 .

The procedure sequentially generates a series of covariate
index sets: S S S Sk k0 1 +1⊂ ⊂ ⋯ ⊂ ⊂ . To decide whether
to end the procedure at the kth step or to recruit another
variable jk+1 and proceed to the next step, we compute the
following EBIC on set Sk+1 with a tuning parameter η:

β

β

S S n η p n

k n η p n

EBIC( ) =− 2 ( ) + (log + 2 log )

=− 2 ( ) + ( + 1)(log + 2 log ) .
k S S k

S S

+1 +1k k

k k

+1 +1

+1 +1




ℓ ∣ ∣ ∕
ℓ ∕

(3)

We terminate the algorithm if S SEBIC( ) > EBIC( )k k+1
and declare M S= k , the final model; otherwise, the
procedure will proceed to search a new variable. For
more clarity, the following pseudocode captures the main
thrust of the algorithm.

A sequential conditioning algorithm

(1) (Initialization) Start with a set of a priori known S0.
Otherwise, initialize with S = {0}0 .

Set O β= S0 0
 , where βS0 maximizes l β( )S S0 0

.

Compute β β= argmax ( )j β O j
(1)

,0
 ℓ ,

where β l O βX Y( ) = { ( + , )}O j n j, ℓ .

Let ( )j β= argmaxj p O j j1 {1,…, } ,
(1)

0
ℓ∈ .

(2) (Repeat) For k 1⩾ , given βO X=k S S
T
k k
 and

S S j= { }k k k∪ ,

compute β β= argmax ( )j
k

β O j
( +1)

,k
 ℓ for j Skc∈ .

Set j β= argmax ( )k j S O j j
k

+1 ,
( +1)

k
c

k
ℓ∈ .

(3) (Stop) If S SEBIC( ) > EBIC( )k k+1 and declare

S= k ,
where

βS k n η p nEBIC( ) = −2 ( ) + (log + 2 log )k S Sk k
ℓ ∕ .

The proposed SC approach simultaneously performs
variable selection and model selection via EBIC, halting
the procedure after including k n(< ) variables if the
criterion of EBIC < EBICk k+1 is met. In contrast, the
typical screening approaches that do not internally
incorporate the model selection procedure need to employ
arbitrary cutoffs for termination, which may inflate the FP
or false negatives. We also treated the tuning parameter η
as a fixed constant which may not vary by datasets. This is
analogous to the constant “a” parameter in the SCAD
penalty function (Fan and Li, 2001), and distinguishes our
work from the screening approaches that typically require
data‐driven tuning parameters and may incur much
computational burden for finding them. To investigate
the idea of fixing η, in Section 4, we numerically examined
the results with different choices of η values.

ZHENG ET AL. | 3
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3 | THEORETICAL PROPERTIES

Let p→ and d→ denote convergence in probability and
distribution, respectively. For a column vector v, let
v vv= T2⊗ . For q 1⩾ , denote its lq‐norm by ν q, and, in
particular, denote its l2‐norm by v∥ ∥. For any symmetric
matrix A, let λ A( )min and λ A( )max represent its smallest
and largest eigenvalues. We impose the following
regularity conditions.

(A) For a positive integer ρ satisfying ρ| | ⩽ and

ρ p o nlog = ( )1 3∕ , there exists a constant L > 0 such
that β Lsup *S ρ S 1∥ ∥ ⩽∣ ∣⩽ , where β = argmax* βS S

βE { ( )}S Sℓ denotes the least false value of model S.
(B) KX∥ ⩽∞ , where K > 0 is a constant.

(C) Let βϵ Y μ X= − ( )*i i
T

i . There exists a positive con-

stant M such that the Cramer condition holds for all
ϵi, that is, E ϵ m M[ ] !i

m m∣ ∣ ⩽ for all i and m 2⩾ .
(D) There exist two positive constants κ κ0 < < <min max ∞,

such that κ λ E X< { ( )}Smin min
2⊗ and λ E X{ ( )}Smax

2⊗

κ< max , uniformly in S p{0, 1, …, }⊂ satisfying
S ρ| | ⩽ .

(E) Let βD E Y μ XXmax [{ − ( )} ]*S j S
T

S jc≔ ∣ ∣∈ ∩ . There

exist some constants C > 0 and α > 0 such that
D Cnmin >S S ρ S S

α
: ,

−∣ ∣⩽ ⊈ and ρn plog 0α−1+4 → .

Condition (A) differs from the Lipschitz assumption in
van de Geer (2008), Fan and Song (2010), and Barut et al.
(2016). A similar condition is assumed in Bühlmann
(2006). The condition ρ p o nlog = ( )1 3∕ is needed to
ensure the consistency of EBIC, as required in Chen
and Chen (2012). The parameter ρ is an upper bound of
the model size, which is often required in joint‐model‐
based selection or screening methods with various
notation, such as “M” in Cheng et al. (2016), and “K”
in Zhang and Huang (2008), Chen and Chen (2008), and
Fan and Tang (2013). This condition is weaker than
Assumption D in Cheng et al. (2016), which requires
ρ p O n nlog = ( log )1 5∕ . Condition (B) has been com-
monly assumed in the literature for variable selection
and screening (Zhao and Li, 2012; Kwemou, 2016;
Li et al., 2016). The uniform boundedness of X is adopted
to simplify our theoretical development and can be
relaxed to Conditions (B) and (D) in Fan and Song (2010).
In practice, data are often standardized at the preproces-
sing stage, which may warrant the reasonableness of this
condition. Condition (C) is justified by Jiang and Zhang
(2013) and Jiang et al. (2016) and is similar to condition 3
in Bradic et al. (2011). The condition ensures the light tail
of the response variable Y and is satisfied by a wide range
of outcome data, including Gaussian and discrete data

(such as binary and count data). Condition (D) has been
commonly assumed in literature (Wang, 2009; Zheng
et al., 2015; Cheng et al., 2016) and represents the Sparse
Riesz Condition (Zhang and Huang, 2008). Compared to
those required by joint‐model‐based sequential screening
methods in the literature, the signal condition (E) is not
directly imposed on the regression coefficient. Instead, it
is imposed on the conditional covariance between a
covariate and the response, as in Barut et al. (2016). The
condition can also be reviewed as an “strong irrepresen-
table” condition (Zhao and Yu, 2006) for model
identifiability, stipulating that the true model cannot
be represented by a different set of variables that do not
include the true model. It implies that the Kullback‐
Leibler divergence from a misspecified model to the true
model is large enough for misspecified models to be
detected (see Leroux, 1992). The signal rate is comparable
to those conditions required by other sequential methods
in the literature, such as the rate n−1 12∕ in Wang (2009)
and the rate n−1 5∕ in Cheng et al. (2016). Conditions (A)
and (E) together indicate that the range of ρ depends on
the true model size | |, the minimum signal strength,
n α− , and the total number of covariates, p. The lower
bound of ρ is | |, and the upper bound of ρ is
o n p n p(( log ) ( log ))α1−4 1 3∕ ∧ ∕∕ . For example, if α = 0
and | | is finite, ρ can be chosen as O n p( log )1 4∕∕ . If
α = 1 6∕ and o n p| | = ( log )1 4∕∕ , ρ can be chosen as
O n p( log )δ1 4+ ∕∕ , for any δ0 < < 1 12∕ .

For any model S with cardinality S ρ| | ⩽ , Condition
(A) implies that the parameter space under consideration
can be restricted to β β τL{ : }p+1

1 ≔ ∈ ∥ ∥ ⩽ for
some large constant τ . As b ( )⋅ is twice continuously
differentiable, with a nonnegative second derivative b″( )⋅ ,
b b tmax ( )t τKLmax ≔ ∣ ∣∣ ∣⩽ , μ b tmax ′( )t τKLmax ≔ ∣ ∣∣ ∣⩽ , and
σ b tsup ″( )t τKLmax ≔ ∣ ∣∣ ∣⩽ are assumed to be bounded
above, where L and K are defined in Conditions (A)
and (B), respectively. In addition, σ b tinf ″( )t τKLmin ≔ ∣ ∣∣ ∣⩽
is bounded below.

Given any βS, when a variable X r S,r c∈ is added into
the model S, we define the augmented log‐likelihood as

β ββ l β X YX( ) { ( + , )}.S r r S n S
T

S r r{ } ℓ ∣ ≔∪ (4)

In other words, β ββ β β( ) = (( , ) ) = ( )S r r S S r S
T

r
T

O r{ } { } ,ℓ ∣ ℓ ℓ∪ ∪
with βO X= S

T
S, where β( )O r,ℓ is defined as in Section 2.2.

We use ββ ( )r S S
 ∣ to denote the maximizer of ββ( )S r r S{ }ℓ ∣∪ ,

which solves βY μ β X XX[{ − ( + )} ] = 0n i S
T

iS r ir ir . In ad-
dition, denote the maximizer of βE β{ ( )}*S r r S{ }ℓ ∣∪ by β*r S∣ .
Due to the concavity of the log‐likelihood in GLMs with
the canonical link, β*rS is unique and is an interior point
over L L[− , ] (Fan and Song, 2010).

The following theorem establishes the lower bound of
the increment of the log‐likelihood provided by SC when

4 | ZHENG ET AL.
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the true model is included in the selected model. Thus,
it provides the feasibility foundation of the proposed SC.

Theorem 1. Under Conditions (A) to (E), there exists
some constant C1, which does not depend on n, such that
with probability at least ρ p1 − 24 exp(−6 log ),

β β ββ C nmax[ { ( ) } − ( )] ,
j S

S j j S S S S S
α

{ } 1
−2

c
   ℓ ∣ ℓ ⩾

∈ ∪ ∣

uniformly in S satisfying S ρ| | < and S⊈ .

Given a model S such that S⊈ and S ρ| | < , let r
be the index of the variable selected by SC.
As β ββ( , ( ))S

T
r S S

T ∣ is suboptimal to βS r{ }
 ∪ in terms of

maximizing β( )S r S r{ } { }ℓ ∪ ∪ , we obtain β( )S r S r{ } { }
ℓ ∪ ∪

β β β ββ β{( , ( )) } = { ( ) }S r S
T

r S S
T

S r r S S S{ } { }    ⩾ ℓ ℓ ∣∪ ∣ ∪ ∣ . Thus, The-
orem 1 implies that that the increment of the log‐
likelihood provided by SC is at least C n α

1
−2 with

probability tending to 1, if S⊈ .
In fact, the lower bound of increment from Theorem 1

also guarantees that the proposed SC will stop in steps of
polynomial size and thus provides the validity of SC.
Since the maximum increment is bounded by

M μ τKL b( 2 + 2 ) +max max with probability tending to
1 (Lemma 3), we naturally obtain an upper bound on the
number of steps for SC, which is stated in the next
corollary.

Corollary 1. Under Conditions (A) to (E), if
N C M μ τKL b n ρ2 {( 2 + 2 ) + } <α1

−1
max max

2≔ and 0 ≤
α < 1/6, then Sk⊂ , for some Sk selected by SC with
k N⩽ , with probability at least ρ p1 − 26 exp(−6 log ).

Corollary 1 establishes the screening consistency of
SC. It follows a similar idea in Fan and Song (2010) and
Cheng et al. (2016). The condition N ρ< is sufficient but
not necessary, as the upper bound N is obtained based on
the lower bound on the increment of the log‐likelihood
and is not tight. With certain additional conditions, the
bound can be improved significantly. The following
theorem establishes an upper bound of the number of
steps by assessing how likely a signal variable will be
selected at each step.

Theorem 2. Under Conditions (A) to (E), ifmaxj c c∈ ∩
βE Y μ X o nX[{ − ( )} ] = ( )*S

T
S j

α−∣ ∣ uniformly over S with
S ρ| | ⩽ , then there exists some constant C > 22 such that

Sk⊂ , for some Sk selected by SC and k C | |2⩽ , with
probability at least ρ p1 − 36 exp(−3 log ).

The “max” condition in the theorem is similar to a
condition in section 5.3 of Fan and Song (2010). It is

a generalization of the partial orthogonality assump-
tion that X c are independent of X . This condition
ensures that a signal variable brings more increment
in log‐likelihood than a noise variable, with probability
tending to 1 uniformly over all model S S ρ: < ,∣ ∣

S⊈ . Therefore, the proposed procedures have a
large probability to select a signal variable at each
step.

Since EBIC is a consistent model selection criterion
(Luo and Chen, 2014; Luo et al., 2015), we expect the
proposed SC to stop early with Sk⊂ for some finite k
as shown in the following theorem. Thus, the final model
 provided by SC may not include too many noise
variables.

Theorem 3. Suppose the conditions in Corollary 1
or Theorem 2 hold. If Sk−1⊄ and Sk⊂ , then
the procedure stops at the kth step with probability
going to 1.

4 | NUMERICAL STUDIES

We conducted simulation studies to compare the
proposed SC approach with some competing methods,
including sure independence screening (SIS) of Fan and
Lv (2008), and conditional SIS (CSIS) of Barut et al.
(2016).

The competing screening approaches typically rely on
some arbitrary cutoffs when determining the number of
selected variables, which may inflate the FP. Therefore,
to make fair comparisons, we first applied these methods
to select the top n n[ log ]∕ variables as suggested by Fan
and Lv (2008) and then applied Lasso (Tibshirani, 1996),
SCAD (Fan and Li, 2001), and MCP (Zhang, 2010)
penalties to arrive at the final models. In tables, we used
method + penalty to denote the corresponding proce-
dure.

Example 1. We set β c ι= × (1, −1, 1, −1, 1, − +
ι ι ι ι− + −2 3 4 5, 0 )p

T
−6 , where ι = 0.5. X were

generated under a multivariate normal distribution with
mean 0, variance 1, and X Xcor( , ) = 0. 5j j

j j
′

− ′∣ ∣ , for
j j p1 ′ .⩽ ≠ ⩽ Here c (and hereafter) is a positive

constant, which will be chosen to maintain a
prespecified signal‐to‐noise ratio (SNR).

Example 2. We set β c 0= × (1, 1, 1, 1, 1, −2.5, )p
T

−6 .
X were generated under a multivariate normal distribution
with mean 0, variance 1, and X Xcor( , ) = 0.5j j′ , for

j j p1 ′⩽ ≠ ⩽ .

Example 3. We set β c 1 0= × ( , )p
T

15 −15 and generated
X from the independent standard normal distribution.

ZHENG ET AL. | 5
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Example 4. We set β c 1 0= × ( , )p
T

15 −15 . A total of 15
active variables were generated by a zero‐mean
multivariate normal distribution, where the covariance
matrix had a block‐diagonal structure with three equal‐
sized blocks. The inverses of this covariance matrix
corresponds to three independent star‐shaped graphs.
Within each graph, four nodes are connected to a hub
node with no other connections. Specifically, the
covariance matrix S for each block can be formulated
as Σ = 1, Σ = 0.3ii ij if i j( , ) is an edge and Σ = 0.3ij

2

otherwise. The other p − 15 variables were
independently generated from the standard normal
distribution.

For each example, we considered linear regression,
logistic regression, and Poisson regression models. For
the linear regression model, we generated βY ϵX= +T ,
where the random error ϵ follows N σ(0, )2 ; for binary

outcomes, Y were generated as independent Bernoulli
variables with the probability of success

β βX Xexp( ) {1 + exp( )}T T∕ , and for Poisson regression
model, we generated Y as independent Poisson variables
with mean βXexp( )T .

We set the magnitude of the coefficients in various
GLMs according to a prespecified SNR, the ratio of the
variance of a signal to the variance of the noise
(Czanner et al., 2008). Specifically, we set c to produce
an SNR of 2.

We considered p = 1000 and varied sample sizes
n = 200 and 400. For each parameter configuration, we
simulated 200 independent datasets. We evaluated the
performance of the methods by the criteria of true
positives (TP) and false positives (FP). Tables 1 to 3,
which report the results for the logistic and Poisson
regression models, respectively, present several interest-
ing observations.

TABLE 1 Comparisons of competing methods with linear regression models

Example Method

n p( , ) = (200, 1000) n p( , ) = (400, 1000)

TP FP TP FP

1A SCη1 5.61 (0.49) 1.25 (0.64) 5.96 (0.19) 1.10 (0.37)

SCη2 5.55 (0.50) 0.89 (0.52) 5.95 (0.21) 0.95 (0.33)

SCη3 5.53 (0.50) 0.67 (0.55) 5.93 (0.26) 0.60 (0.49)

SIS 3.46 (0.64) 33.54 (0.64) 4.15 (0.77) 61.85 (0.77)

SIS + Lasso 3.10 (1.02) 13.49 (13.85) 4.08 (0.86) 6.48 (9.08)

SIS +MCP 3.13 (0.95) 11.00 (9.27) 4.00 (1.00) 0.66 (2.26)

SIS + SCAD 3.20 (0.92) 12.27 (11.43) 4.06 (0.89) 0.77 (2.52)

CSIS 4.42 (0.58) 32.58 (0.58) 5.00 (0.36) 61.00 (0.36)

CSIS + Lasso 4.38 (0.67) 27.76 (6.90) 5.00 (0.35) 14.80 (14.60)

CSIS +MCP 4.41 (0.58) 7.83 (8.39) 5.00 (0.36) 0.63 (1.77)

CSIS + SCAD 4.41 (0.58) 10.38 (10.84) 5.00 (0.35) 0.25 (0.76)

CSIS 3.47 (0.62) 33.53 (0.62) 4.16 (0.76) 61.84 (0.76)

CSIS + Lasso 3.12 (0.99) 13.52 (14.09) 4.08 (0.86) 6.68 (9.35)

CSIS +MCP 3.15 (0.94) 11.08 (9.40) 4.01 (0.99) 0.68 (2.53)

CSIS + SCAD 3.21 (0.91) 12.54 (11.54) 4.07 (0.88) 0.75 (2.40)

2A SCη1 6.00 (0.00) 1.14 (0.41) 6.00 (0.00) 1.12 (0.37)

SCη2 6.00 (0.00) 1.01 (0.08) 6.00 (0.00) 1.01 (0.13)

SCη3 6.00 (0.00) 1.00 (0.06) 6.00 (0.00) 1.00 (0.00)

SIS 4.87 (0.38) 32.13 (0.38) 5.00 (0.00) 61.00 (0.00)

SIS + Lasso 4.78 (0.46) 3.63 (2.80) 5.00 (0.00) 0.76 (1.10)

SIS +MCP 4.07 (0.77) 0.25 (0.57) 4.79 (0.43) 0.46 (1.60)

SIS + SCAD 4.49 (0.65) 0.96 (1.42) 4.89 (0.34) 0.10 (0.49)

CSIS 5.87 (0.36) 31.13 (0.36) 6.00 (0.04) 60.00 (0.04)

CSIS + Lasso 5.86 (0.42) 10.89 (3.46) 6.00 (0.04) 12.63 (3.82)

(Continues)
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First, Examples 1 and 2 were designed in such a way
that X6, though active, has a 0 marginal correlation with
the outcome and, therefore, is not detectable by marginal
screening methods, such as unconditional SIS. Indeed, SIS
was found to produce fewer TP, whereas by conditioning
on an active variable X1, CSIS increased TP but at the price

of increasing FP. In contrast, because SC selects variables
sequentially and is able to detect such a “hidden” variable,
the proposed SC recruited almost all the active variables
with the average TP close to the true model size.

Second, even with Lasso, SCAD, and MCP to further
reduce FP, the competing screening methods still

TABLE 1 (Continued)

Example Method

n p( , ) = (200, 1000) n p( , ) = (400, 1000)

TP FP TP FP

CSIS +MCP 5.81 (0.57) 0.97 (1.33) 6.00 (0.04) 0.70 (1.08)

CSIS + SCAD 5.83 (0.51) 0.42 (1.22) 6.00 (0.04) 0.14 (0.59)

CSIS 4.99 (0.51) 32.01 (0.51) 5.17 (0.38) 60.83 (0.38)

CSIS + Lasso 4.91 (0.58) 4.85 (3.93) 5.17 (0.38) 2.87 (4.60)

CSIS +MCP 4.35 (0.94) 0.65 (0.96) 5.03 (0.57) 0.96 (3.09)

CSIS + SCAD 4.67 (0.76) 1.26 (1.62) 5.09 (0.52) 0.46 (0.78)

3A SCη1 14.97 (0.21) 0.91 (1.01) 15.00 (0.00) 0.68 (0.66)

SCη2 14.90 (0.48) 0.36 (0.71) 15.00 (0.00) 0.20 (0.42)

SCη3 14.79 (0.65) 0.25 (0.61) 15.00 (0.00) 0.02 (0.13)

SIS 12.73 (1.16) 24.27 (1.16) 14.96 (0.20) 51.04 (0.20)

SIS + Lasso 12.73 (1.16) 20.77 (2.54) 14.96 (0.20) 21.00 (9.91)

SIS +MCP 12.73 (1.17) 6.72 (4.30) 14.96 (0.20) 0.79 (1.64)

SIS + SCAD 12.73 (1.16) 10.78 (4.80) 14.96 (0.20) 1.91 (1.86)

CSIS 13.14 (1.07) 23.86 (1.07) 14.98 (0.13) 51.02 (0.13)

CSIS + Lasso 13.14 (1.07) 20.44 (2.42) 14.98 (0.13) 21.75 (10.39)

CSIS +MCP 13.14 (1.07) 6.38 (4.39) 14.98 (0.13) 0.83 (1.72)

CSIS + SCAD 13.14(1.07) 10.52 (4.94) 14.98 (0.13) 1.82 (1.73)

CSIS 12.65 (1.21) 24.35 (1.21) 14.96 (0.20) 51.04 (0.20)

CSIS + Lasso 12.65 (1.21) 20.40 (2.72) 14.96 (0.20) 20.63 (9.66)

CSIS +MCP 12.65 (1.22) 6.63 (4.37) 14.96 (0.20) 0.76 (1.58)

CSIS + SCAD 12.65 (1.21) 10.65 (4.84) 14.96 (0.20) 1.85 (1.85)

4A SCη1 12.87 (1.93) 2.16 (1.75) 14.99 (0.09) 0.93 (0.43)

SCη2 11.94 (2.06) 1.25 (1.31) 14.99 (0.13) 0.47 (0.50)

SCη3 10.83 (2.22) 0.71 (0.94) 14.97 (0.19) 0.10 (0.30)

SIS 14.49 (0.69) 22.51 (0.69) 15.00 (0.04) 51.00 (0.04)

SIS + Lasso 14.49 (0.69) 16.11 (3.66) 15.00 (0.04) 9.24 (6.37)

SIS +MCP 14.36 (0.80) 5.26 (3.27) 14.99 (0.08) 1.99 (2.37)

SIS + SCAD 14.43 (0.75) 8.56 (3.78) 15.00 (0.06) 4.48 (2.81)

CSIS 13.54 (0.99) 23.46 (0.99) 14.87 (0.34) 51.13 (0.34)

CSIS + Lasso 13.53 (1.01) 17.23 (4.34) 14.87 (0.34) 9.61 (7.24)

CSIS +MCP 13.36 (1.15) 6.96 (3.91) 14.87 (0.36) 2.32 (2.59)

CSIS + SCAD 13.49 (1.04) 11.17 (4.41) 14.87 (0.35) 5.21 (3.23)

CSIS 14.45 (0.70) 22.55 (0.70) 15.00 (0.04) 51.00 (0.04)

CSIS + Lasso 14.45 (0.70) 15.70 (3.74) 15.00 (0.04) 9.63 (6.48)

CSIS +MCP 14.32 (0.82) 5.05 (3.16) 14.99 (0.09) 1.96 (2.37)

CSIS + SCAD 14.40 (0.75) 8.36 (3.76) 15.00 (0.06) 4.56 (2.93)

Abbreviation: MCP, The minimax concavepenalty; SCAD, The smoothly clipped absolute deviation; SIS, sure independence screening.
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TABLE 2 Comparisons of competing methods with logistic regression models

Example Method

n p( , ) = (200, 1000) n p( , ) = (400, 1000)

TP FP TP FP

1B SCη1 5.52 (0.62) 5.81 (2.44) 5.96 (0.19) 2.58 (3.53)

SCη2 5.47 (0.71) 3.31 (2.63) 5.96 (0.21) 1.15 (1.09)

SCη3 5.42 (0.74) 1.56 (1.81) 5.94 (0.24) 0.76 (0.44)

SIS 3.35 (0.63) 33.65 (0.63) 4.18 (0.82) 61.82 (0.82)

SIS + Lasso 2.85 (1.12) 14.87 (14.85) 4.07 (0.91) 12.62 (20.18)

SIS +MCP 2.96 (0.97) 16.51 (7.31) 4.01 (1.05) 4.50 (8.98)

SIS + SCAD 3.03 (0.95) 19.00 (8.38) 4.09 (0.90) 5.07 (9.05)

CSIS 4.27 (0.60) 32.73 (0.60) 4.99 (0.39) 61.01 (0.39)

CSIS + Lasso 4.17 (0.82) 28.05 (7.91) 4.99 (0.38) 35.37 (24.07)

CSIS +MCP 4.23 (0.66) 14.95 (5.73) 4.99 (0.38) 10.04 (11.79)

CSIS + SCAD 4.24 (0.63) 16.98 (6.23) 4.98 (0.39) 12.15 (12.78)

CSIS 3.35 (0.62) 33.65 (0.62) 4.16 (0.81) 61.84 (0.81)

CSIS + Lasso 2.80 (1.13) 14.24 (15.26) 4.05 (0.90) 11.43 (19.28)

CSIS +MCP 2.97 (0.94) 16.94 (7.45) 4.00 (1.03) 4.47 (9.17)

CSIS + SCAD 3.03 (0.94) 19.21 (8.76) 4.08 (0.90) 5.13 (9.44)

2B SCη1 4.92 (1.12) 7.45 (4.12) 5.99 (0.10) 2.17 (3.43)

SCη2 4.54 (1.24) 2.90 (3.32) 5.99 (0.12) 0.88 (0.62)

SCη3 4.14 (1.19) 1.17 (1.62) 5.98 (0.13) 0.42 (0.51)

SIS 4.20 (0.80) 32.80 (0.80) 4.96 (0.19) 61.04 (0.19)

SIS + Lasso 3.12 (1.27) 5.22 (3.93) 4.79 (0.46) 3.83 (2.91)

SIS +MCP 2.82 (1.02) 2.88 (2.24) 4.40 (0.69) 0.69 (1.11)

SIS + SCAD 3.36 (1.12) 6.65 (3.61) 4.79 (0.44) 3.15 (2.87)

CSIS 5.22 (0.80) 31.78 (0.80) 5.92 (0.27) 60.08 (0.27)

CSIS + Lasso 4.89 (1.28) 13.81 (5.89) 5.90 (0.39) 17.29 (5.19)

CSIS +MCP 4.63 (1.34) 4.39 (2.96) 5.87 (0.47) 1.44 (1.77)

CSIS + SCAD 4.80 (1.22) 8.19 (3.93) 5.90 (0.38) 4.35 (3.73)

CSIS 4.34 (0.89) 32.66 (0.89) 5.14 (0.43) 60.86 (0.43)

CSIS + Lasso 3.50 (1.41) 7.10 (5.71) 5.01 (0.61) 6.46 (6.31)

CSIS +MCP 3.23 (1.28) 3.37 (2.59) 4.70 (0.85) 1.07 (1.43)

CSIS + SCAD 3.64 (1.29) 7.44 (4.05) 5.01 (0.60) 3.76 (3.00)

3B SCη1 9.62 (3.23) 6.01 (3.55) 15.00 (0.00) 6.53 (2.64)

SCη2 4.78 (3.33) 0.84 (1.76) 15.00 (0.00) 4.08 (3.02)

SCη3 1.86 (1.47) 0.07 (0.27) 15.00 (0.04) 2.07 (2.51)

SIS 11.22 (1.29) 25.78 (1.29) 14.73 (0.51) 51.27 (0.51)

SIS + Lasso 11.15 (1.38) 23.62 (2.61) 14.73 (0.51) 43.84 (5.01)

SIS +MCP 10.54 (1.53) 12.05 (3.64) 14.73 (0.51) 12.57 (5.54)

SIS + SCAD 10.59 (1.48) 12.99 (4.08) 14.73 (0.51) 13.61 (5.99)

CSIS 11.70 (1.27) 25.30 (1.27) 14.78 (0.46) 51.22 (0.46)

CSIS + Lasso 11.62 (1.34) 23.14 (2.42) 14.78 (0.46) 43.83 (4.58)

CSIS +MCP 11.05 (1.48) 11.17 (3.80) 14.78 (0.47) 11.98 (5.10)

CSIS + SCAD 11.01 (1.49) 11.79 (4.09) 14.78 (0.47) 12.75 (5.69)

CSIS 11.11 (1.30) 25.89 (1.30) 14.72 (0.51) 51.28 (0.51)

(Continues)
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TABLE 2 (Continued)

Example Method

n p( , ) = (200, 1000) n p( , ) = (400, 1000)

TP FP TP FP

CSIS + Lasso 11.04 (1.38) 23.87 (2.34) 14.72 (0.51) 44.07 (5.04)

CSIS +MCP 10.44 (1.50) 12.32 (3.78) 14.72 (0.52) 12.56 (5.62)

CSIS + SCAD 10.47 (1.46) 13.31 (4.18) 14.72 (0.51) 13.61 (5.95)

4B SCη1 7.25 (2.02) 6.03 (3.72) 14.60 (0.88) 6.77 (3.70)

SCη2 5.01 (1.73) 0.81 (1.92) 14.10 (1.57) 2.74 (3.32)

SCη3 3.59 (1.11) 0.04 (0.33) 11.09 (3.63) 0.48 (1.38)

SIS 13.72 (0.97) 23.28 (0.97) 14.98 (0.13) 51.02 (0.13)

SIS + Lasso 13.56 (1.01) 19.94 (2.12) 14.95 (0.25) 35.87 (14.65)

SIS +MCP 11.35 (1.58) 7.04 (2.84) 14.85 (0.44) 12.89 (4.14)

SIS + SCAD 11.23 (1.61) 7.28 (3.06) 14.84 (0.42) 13.41 (4.50)

CSIS 12.64 (1.10) 24.36 (1.10) 14.56 (0.63) 51.44 (0.63)

CSIS + Lasso 12.42 (1.20) 21.26 (2.21) 14.53 (0.70) 35.97 (15.63)

CSIS +MCP 10.29 (1.63) 8.76 (3.11) 14.38 (0.86) 14.13 (4.65)

CSIS + SCAD 10.22 (1.67) 8.87 (3.22) 14.36 (0.90) 14.44 (4.96)

CSIS 13.71 (0.97) 23.29 (0.97) 14.98 (0.13) 51.02 (0.13)

CSIS + Lasso 13.54 (1.04) 20.07 (2.16) 14.96 (0.22) 36.22 (14.14)

CSIS +MCP 11.35 (1.59) 7.04 (2.73) 14.85 (0.42) 12.89 (4.12)

CSIS + SCAD 11.27 (1.62) 7.27 (3.06) 14.84 (0.44) 13.21 (4.33)

Abbreviation: SIS, sure independence screening.

TABLE 3 Comparisons of competing methods with Poisson regression models

Example Method

n p( , ) = (200, 1000) n p( , ) = (400, 1000)

TP FP TP FP

1C SCη1 5.12 (0.89) 2.14 (1.86) 5.90 (0.30) 1.12 (0.51)

SCη2 5.06 (0.93) 1.77 (1.57) 5.87 (0.34) 0.88 (0.42)

SCη3 5.02 (0.99) 1.52 (1.32) 5.85 (0.36) 0.51 (0.52)

SIS 3.13 (0.58) 33.87 (0.58) 3.95 (0.76) 62.05 (0.76)

SIS + Lasso 3.00 (0.70) 26.19 (4.90) 3.90 (0.80) 35.26 (15.54)

SIS +MCP 2.69 (0.83) 14.76 (4.37) 3.84 (0.90) 17.25 (12.80)

SIS + SCAD 2.80 (0.80) 18.99 (5.14) 3.87 (0.85) 18.86 (17.25)

CSIS 3.97 (0.62) 33.03 (0.62) 4.82 (0.51) 61.18 (0.51)

CSIS + Lasso 3.95 (0.63) 25.91 (3.51) 4.80 (0.50) 31.11 (12.39)

CSIS +MCP 3.89 (0.69) 10.79 (5.83) 4.81 (0.50) 4.48 (8.29)

CSIS + SCAD 3.91 (0.68) 14.74 (7.35) 4.80 (0.50) 3.74 (8.83)

CSIS 3.14 (0.59) 33.86 (0.59) 3.93 (0.77) 62.07 (0.77)

CSIS + Lasso 3.01 (0.69) 26.39 (5.07) 3.89 (0.81) 35.24 (15.93)

CSIS +MCP 2.70 (0.84) 14.71 (4.54) 3.82 (0.91) 17.51 (12.71)

CSIS + SCAD 2.84 (0.79) 19.02 (5.36) 3.85 (0.86) 19.19 (17.39)

2C SCη1 4.30 (1.29) 2.40 (1.57) 5.97 (0.19) 1.20 (0.60)

SCη2 4.06 (1.33) 1.84 (1.34) 5.96 (0.21) 0.97 (0.48)

SCη3 3.82 (1.32) 1.55 (1.25) 5.93 (0.28) 0.63 (0.57)

(Continues)
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TABLE 3 (Continued)

Example Method

n p( , ) = (200, 1000) n p( , ) = (400, 1000)

TP FP TP FP

SIS 3.47 (1.12) 33.53 (1.12) 4.80 (0.45) 61.20 (0.45)

SIS + Lasso 2.92 (1.10) 8.57 (3.51) 4.58 (0.63) 7.00 (3.51)

SIS +MCP 2.08 (1.02) 2.49 (1.60) 3.92 (0.83) 1.57 (1.67)

SIS + SCAD 2.24 (1.07) 3.42 (2.42) 3.99 (0.84) 1.82 (2.26)

CSIS 4.84 (0.95) 32.16 (0.95) 5.84 (0.40) 60.16 (0.40)

CSIS + Lasso 4.51 (1.34) 12.88 (3.93) 5.79 (0.54) 15.14 (4.38)

CSIS +MCP 3.99 (1.63) 2.38 (1.53) 5.72 (0.74) 1.16 (1.08)

CSIS + SCAD 4.08 (1.58) 3.32 (2.45) 5.73 (0.68) 1.05 (1.73)

CSIS 3.88 (1.03) 33.12 (1.03) 5.03 (0.51) 60.97 (0.51)

CSIS + Lasso 3.40 (1.18) 10.42 (4.13) 4.82 (0.71) 9.28 (4.73)

CSIS +MCP 2.59 (1.35) 3.09 (1.76) 4.34 (0.99) 1.85 (1.56)

CSIS + SCAD 2.71 (1.32) 4.07 (2.71) 4.39 (0.98) 2.29 (2.32)

3C SCη1 8.47 (2.90) 5.38 (2.63) 15.00 (0.04) 0.83 (0.63)

SCη2 7.59 (2.74) 3.85 (2.21) 14.99 (0.08) 0.42 (0.56)

SCη3 6.75 (2.54) 2.90 (1.90) 14.98 (0.15) 0.16 (0.42)

SIS 9.05 (1.69) 27.95 (1.69) 14.02 (1.08) 51.98 (1.08)

SIS + Lasso 9.00 (1.71) 20.70 (3.22) 14.02 (1.08) 29.76 (5.88)

SIS +MCP 8.61 (1.84) 9.33 (3.44) 14.02 (1.08) 3.25 (3.52)

SIS + SCAD 8.81 (1.79) 12.96 (3.70) 14.02 (1.08) 6.50 (4.95)

CSIS 9.63 (1.60) 27.37 (1.60) 14.10 (1.07) 51.90 (1.07)

CSIS + Lasso 9.58 (1.61) 20.21 (3.20) 14.10 (1.07) 29.38 (6.10)

CSIS +MCP 9.19 (1.73) 8.95 (3.31) 14.10 (1.07) 3.09 (3.32)

CSIS + SCAD 9.39 (1.69) 12.51 (3.67) 14.10 (1.07) 6.36 (4.99)

CSIS 8.94 (1.68) 28.06 (1.68) 13.97 (1.09) 52.03 (1.09)

CSIS + Lasso 8.91 (1.70) 20.60 (3.33) 13.97 (1.09) 29.61 (6.00)

CSIS +MCP 8.49 (1.84) 9.47 (3.35) 13.97 (1.09) 3.43 (3.60)

CSIS + SCAD 8.72 (1.74) 13.11 (3.70) 13.97 (1.09) 6.47 (4.75)

4C SCη1 8.68 (2.56) 6.62 (2.98) 15.00 (0.00) 1.53 (0.89)

SCη2 8.16 (2.43) 5.06 (2.51) 15.00 (0.09) 1.42 (0.89)

SCη3 7.70 (2.33) 4.02 (2.14) 15.00 (0.09) 1.25 (0.96)

SIS 10.94 (2.02) 26.06 (2.02) 14.46 (0.88) 51.54 (0.88)

SIS + Lasso 10.90 (2.05) 14.89 (3.47) 14.46 (0.88) 18.63 (4.66)

SIS +MCP 10.40 (2.16) 5.22 (2.70) 14.46 (0.88) 1.48 (2.60)

SIS + SCAD 10.51 (2.19) 7.21 (3.36) 14.46 (0.88) 2.01 (3.18)

CSIS 10.27 (1.74) 26.73 (1.74) 13.46 (1.14) 52.54 (1.14)

CSIS + Lasso 10.24 (1.76) 15.67 (3.51) 13.46 (1.14) 20.57 (5.29)

CSIS +MCP 9.72 (1.91) 6.02 (2.77) 13.45 (1.15) 4.28 (4.18)

CSIS + SCAD 9.86 (1.89) 7.97 (3.34) 13.45 (1.15) 5.35 (5.17)

CSIS 11.10 (1.89) 25.90 (1.89) 14.43 (0.92) 51.57 (0.92)

CSIS + Lasso 11.07 (1.92) 14.61 (3.38) 14.43 (0.92) 18.65 (4.67)

CSIS +MCP 10.51 (2.07) 5.11 (2.73) 14.43 (0.92) 1.56 (2.58)

CSIS + SCAD 10.68 (2.07) 6.87 (3.25) 14.43 (0.92) 1.97 (3.07)

Abbreviation: SIS, sure independence screening.

10 | ZHENG ET AL.



ZHENG et al. 57

resulted in many FP. In contrast, the proposed SC with
the EBIC‐based stopping rule had fewer FP.

Third, although the covariates generated from multi-
variate normal distributions which were unbounded, our
proposed methods worked well, hinting at the robustness
of the methods toward the boundness assumption on
covariates.

Fourth, as shown in the results of Examples 1 and 2,
the performance of CSIS tends to depend on the
conditioning set. Even compared to the case in which
CSIS used the known prior information, SC works
competently well without any prior information.

Fifth, when the number of active variables was
relatively large, as in Examples 3 and 4, the performance
of the proposed method deteriorated, especially for a
smaller n. This might be due to poor fitting of models
with larger model sizes and smaller sample sizes.
However, as the sample size increased, the performance
improved and was fairly robust toward the choice of η
values.

Lastly, we observed that EBIC with larger values of η
tended to select fewer variables, especially for the binary
and count data. We also noted that the choice of
η n p= 1 − {log (3 log )}∕ well balanced the TP and FP
among all the scenarios examined.

5 | ANALYSIS OF A MULTIPLE
MYELOMA TRIAL

We demonstrate the utility of the proposed method by
predicting the responses to treatment among a group of
multiple myeloma patients. Multiple myeloma is an
incurable malignancy that originates in the antibody‐
secreting bone marrow plasma cells, and genomics has
important prognostic values for this disease. The
practicality and utility of using genomic research to
predict the outcome for a specific therapy remain
unclear. We apply the proposed approach to identify
genes that are relevant to clinical response in a trial
conducted by Mulligan et al. (2007). In the study, patients
were classified as achieving complete response (CR),
partial response (PR), minimal response (MR), no change
(NC), or progressive disease (PD), using the European
Group for Bone Marrow Transplantation criteria. In brief,
CR, PR, and MR require at least 100%, 50%, and 25%
decrease in paraprotein respectively, whereas PD requires
at least 25% increase. We applied the proposed methods
to the binary response (CR vs PR/MR/NC/PD). A total of
76 patients achieved CR among a total of 264 patients.
Amin et al. (2014) gave clinical justifications on and the
importance of identifying relevant genomic profiles to
predict CR, among many other possible choices of

endpoints. Our analysis was to identify a set of important
genes that could predict CR among a total of 44,928 gene
probes.

Equipped with the EBIC stopping rule, our method
sequentially selected probe sets, which formed the final
model for predicting treatment response. To evaluate the
impact of the different choices of η on variable selection,
we applied the SC approach with various values of
η η η n p= 0.5, = 1, = 1 − {log (3 log )}1 2 3 ∕ . The results
were fairly robust, though as expected SC with smaller
η tends to impose less penalty and include more
variables. Specifically, genes such as TNFRSF11A (TNF
receptor superfamily member 11a), FAM127A (family
with sequence similarity 127, member A), and STRBP
(spermatid perinuclear RNA binding protein), were
selected for all η values, while additionally Crabp1
(cellular retinoic acid binding protein I) and PPFIBP1
(PPFIA binding protein 1) were selected only for η = 0.5.
Our findings have biological interpretations. For exam-
ple, the gene TNFRSF11A was one of the oncogenes
selected by the recursive feature addition and gradient
based leave‐one‐out gene selection based on the MAQC‐
II breast cancer data (Liu et al., 2009). Gene FAM127A
was identified as one of the genes significantly different
among HCV cirrhotic tissue compared to normal liver
tissue (Mas et al., 2010). Gene STRBP was found to be a
transcriptional signature for mutations in chromatin‐
modifying genes (Green et al., 2015).

For comparisons, we also applied the different
methods introduced in Section 4 to screen out irrelevant
genes and reached the final predictive models through
various penalties. Table 4 presents the selected genes by
different methods. For brevity, among a total of 31
unique genes chosen from various methods, we elected to
display the genes that were selected by more than five
methods. Our SC algorithm did identify genes that were
not identified by the multiple myeloma literature, though
external validation is needed to further confirm the
findings.

Finally, we reported the leave‐one‐out prediction
error for different η in Table 5 for each subject, which
is the average of the squared difference between the
response and the predicted probability. For a fair
comparison, we assumed the prior of CSIS is unknown
and used 10 different randomly selected conditioning
sets. Table 5 indicates that, although our proposed
method yielded the smallest model size, the associated
prediction error was very comparable to that with a
larger model size. The average prediction error of CSIS
from 10 such random prior was 0.19 with a range
between 0.17 and 0.20, indicating that the choice of
conditioning set did influence the performance of the
conditional screening.
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6 | CONCLUDING REMARKS

Marginal screening approaches, though widely used,
have often been challenged for restrictive faithfulness
assumptions and lack of clear rules for the final model
selection. This article fills the gap by investigating a SC
approach, which utilizes an offset term to aggregate
information obtained from the previous steps. The
approach is promising with computationally and theore-
tically useful results. We have demonstrated that if the
dimension of the true model is finite, our approach can
discover the true model within a finite number of steps.
As our method is likelihood based, we envision the
theoretical framework will facilitate a wide range of
outcome data.

There are several directions for future research. We
employed an EBIC (with an added penalty term,
quantified by η, to the usual BIC) to select the final
models. Although it worked well under our simulations,
it tends to be conservative in real data analysis and
recruits too few variables. It would be interesting to
investigate the optimal η in the EBIC penalty term to
strike a balance between FP and negatives.

In addition, drawing inferences on top of a variable
selection procedure remains challenging, though our
asymptotic results could be a very first step. There are
some other approaches, such as debiased Lasso estima-
tors (van de Geer, 2008), for drawing inferences for high‐
dimensional linear regression models and GLMs. Exten-
sions of these approaches to accommodate the proposed
SC approach are of substantial interest and, perhaps,
require the development of new theory and algorithms.
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SUPPORTING INFORMATION

All the technical details, including lemmas, conditions
and proofs, in Section 3 are available with this paper at
the Biometrics website on Wiley Online Library. The
code, example data, and README file are also available.
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