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ABSTRACT: Microbial communities have potential evidential utility for forensic applications. However, bioinformatic analysis of high-
throughput sequencing data varies widely among laboratories. These differences can potentially affect microbial community composition and
downstream analyses. To illustrate the importance of standardizing methodology, we compared analyses of postmortem microbiome samples
using several bioinformatic pipelines, varying minimum library size or minimum number of sequences per sample, and sample size. Using the
same input sequence data, we found that three open-source bioinformatic pipelines, MG-RAST, mothur, and QIIME2, had significant differ-
ences in relative abundance, alpha-diversity, and beta-diversity, despite the same input data. Increasing minimum library size and sample size
increased the number of low-abundant and infrequent taxa detected. Our results show that bioinformatic pipeline and parameter choice affect
results in important ways. Given the growing potential application of forensic microbiology to the criminal justice system, continued research
on standardizing computational methodology will be important for downstream applications.
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Before the widespread use of next-generation sequencing
(NGS), forensic microbiology was limited to identifying patho-
gens of bio-crimes with culture-based methods, such as the 2001
anthrax letter attacks (1). Now with the advent of NGS technol-
ogy, amplicon sequencing can describe entire microbial commu-
nities from evidence rather than just targeting a single microbe
of interest. Microbes are an important forensic resource as they

are ubiquitous organisms, with community compositions specific
to different environments or hosts (i.e., the location of a body or
body part) that vary over time, such as during decomposition
(2,3).
Next-generation sequencing has expanded microbial forensics

to many potential applications including body fluid identifica-
tion, human identification, and postmortem interval estimation
(4). Targeted amplicon sequencing of 16S rRNA identified
potential microbial biomarkers for sensitive body fluid identifica-
tion (5), and a clade-based, single nucleotide polymorphism
approach identified human individuals using their skin micro-
biome (6). Postmortem microbiome studies have included a
diverse set of investigative circumstances to better understand
how microbial communities after death can inform forensic
investigation. Studies have used human-surrogates, such as
swine (7), humans (2), and grave soil (3), as well as experiments
in anthropologic facilities (8) and during routine autopsy for
death investigation (2). Researchers developed models for foren-
sic applications (i.e., postmortem interval estimation) and
described microbial community function and succession during
decomposition (2,3,7). While recent research suggests excellent
potential for microbial community use in forensics (9–12), addi-
tional foundational work is needed before forensic microbiology
using postmortem microbial community assemblages can be
applied in the criminal justice system. Needed foundational work
includes standardizing parameters for transforming raw microbial
sequences into a usable data format for downstream analyses.
For bioinformatic analysis of microbial data, raw sequence

data files generated from NGS undergo a series of transforma-
tions using executable command line software known as pipeli-
nes (13). Forensic microbiological data created by high-
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throughput sequencing platforms are processed using complex
analyses that require users to make processing decisions along
these pipelines (e.g., Should samples be normalized? Which tax-
onomic database should be used?). It is hypothesized that differ-
ent decisions could have downstream effects on results and their
interpretation (14,15). For any downstream application of foren-
sic microbiology in the criminal justice system, there is a need
for streamlined standard operating procedures (SOPs) (11).
There are self-contained pipelines for processing sequence

data and characterizing microbial communities. Three of the
most often used self-contained pipelines are QIIME2 (16),
mothur (17), and MG-RAST (18). QIIME2 and mothur require
some command line experience, whereas MG-RAST has a Web-
based graphical user interface (GUI) (19). Several studies deter-
mined that the microbial communities generated from different
pipelines were comparable; however, these studies used simu-
lated data (15,20–24) or small sample sizes (n < 40) (19,23–25)
or were composed of the same sample type (i.e., human gut
microbial data) (19,25), which does not readily apply to many
forensic datasets that can include highly variable sampling loca-
tions or contextual circumstances (2,3,7).
In addition to choosing the pipeline, microbial sequence data

analyses can be confounded by different library sizes, or the
number of sequence reads per sample (23). The common library
size normalization procedure for microbial analysis is referred to
as rarefying (23). To rarefy data, a minimum library size is cho-
sen, samples with too few reads are discarded, and the remaining
sample reads are subsampled without replacement to the mini-
mum library size (23). Minimum library size is often chosen by
selecting the smallest library size of a nondefective sample,
which is a subjective assessment that can add uncertainty to
microbial community analysis (23). Minimum library size can
also be chosen based on rarefaction curves: taxon-based resam-
pling curves that indicate species richness and coverage analysis
to justify a certain library size. Potentially useful data are omit-
ted during rarefying, which can decrease the power and speci-
ficity of analyses as samples are discarded, and the samples that
remain may not be distinguishable using a fraction of the origi-
nal reads (23). While rarefying can decrease power, sample size
is an additional factor to consider for downstream analysis of
microbial data.
Most postmortem microbiome studies have small sample sizes

(2). Often, this is due to space, time, or resource limitations of
using human donated bodies or surrogate carcasses, such as
swine. Prior to 2018, when Pechal et al. (2) characterized and
modeled postmortem microbiomes using 188 autopsies, sample
sizes for postmortem microbiome studies ranged from 2 to
48 (3,26). Small samples sizes decrease statistical power and
inflate effect sizes, which can lead to unreliable conclusions that
may not be generalizable to other datasets (27), and have conse-
quences for forensics (28). Given this, it is important to evaluate
data analysis parameters with large, spatially and temporally
heterogenous datasets with multiple sample areas (i.e., body
locations) in order to improve the reliability of postmortem
microbiome data.
Downstream analytical methods for forensic microbiology

studies are still being evaluated. Recently, machine learning
algorithms and parameterization were comprehensively tested for
potential direct forensic applications to postmortem interval esti-
mation, manner of death determination, and location of death
(i.e., inside, outside, hospital death) for this particular dataset
(29). Therefore, we focus on preceding steps of microbial analy-
sis before modeling applications for comparing forensic

predictions. The overall goal was to provide an initial assessment
of how pipeline choice and data processing parameter differences
affect data outcomes that are used as inputs for downstream
modeling and prediction, with the intention that forensic
researchers and examiners could make informed decisions about
study design, data analysis methods, and applications relevant to
their forensics needs.
A better understanding of performance among bioinformatic

pipelines and parameters is needed to reveal potentially signifi-
cant differences in downstream analysis and data interpretation,
especially for future use in the forensic sciences. To determine
how different microbiome data processing parameters affect
downstream analytical outcomes, we determined how pipeline
software, library size normalization by rarefying, and sample size
affect common microbiome community metrics and machine
learning model results using a large postmortem microbiome
dataset (n = 188). We have emphasized using standardized, rec-
ognizable, and user-friendly methods encountered in open-access
microbiome analysis tools for forensic applications.

Materials and Methods

Sample Collection, DNA Extraction, and Sequencing

Postmortem microbiome data were obtained from our previ-
ously published study that characterized the microbial communi-
ties from multiple body sites in 188 routine autopsy cases (2).
The postmortem microbiome data for this study represented the
microbial communities from the mouth and rectum, with cases
that spanned all four seasons (spring, summer, fall, and winter),
manners of death (accident, homicide, suicide, natural), post-
mortem intervals (<24 h–>73+ h), and ages (18–55+ years)
(Table S1). Detailed methods for sample collection, DNA
extraction, and sequencing are available in Pechal et al. (2). In
short, trained personnel at Wayne County Medical Examiner’s
Office in Detroit, Michigan, took swab samples during routine
autopsy using DNA-Free sterile cotton-tipped applicators (25–
806 1WC FDNA; Puritan�, Guilford, MA). Each swab was
rotated for 3–5 sec on the body location to sample the microbial
community. Samples were placed in sterile microfuge tubes and
200 lL of 100% molecular-grade ethanol (BP2818-4; Fisher
Scientific, Waltham, MA) and stored at �20°C. Metadata were
collected for each case including sampling date (season), ana-
tomic region sampled, sex, ethnicity, estimated age (years), post-
mortem interval (PMI), body mass index (BMI; kg/m2), event
location (indoors, outdoors, hospital, vehicle), and manner of
death (Table S1). Manner of death and PMI estimates were
determined by a board-certified forensic pathologist at the time
of autopsy.
To determine the microbial communities, total DNA was

extracted in a biological safety cabinet with aseptic conditions
using PureLink� Genomic DNA Mini Kit (Thermo Fisher Scien-
tific, Waltham, MA) following the manufacturer’s instructions
except an additional 5 ng/lL of lysozyme was added during the
lysis step for each sample reaction (30). The samples were quan-
tified by Qubit 2.0 and the Quant-iT dsDNA HS Assay Kit
(Thermo Fisher Scientific). Microbial DNA was sequenced at
the Michigan State University (MSU) Genomics Core Facility
(East Lansing, MI) using an Illumina MiSeq. The MSU Geno-
mics Core Facility prepared the 16S rRNA gene amplicon
library and sequenced the samples using a modified version of
the protocol adapted for the Illumina HiSeq 2000 and MiSeq.
The V4 region 16S gene amplicon 2 9 250 bp paired-end reads
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were generated with region specific primers (515 f [50

GTGCCAGCMGCCGCGGTAA) and 806 r (50 GGAC-
TACHVGGGTWTCTAAT]) that included Illumina flowcell
adapters (31). PCR products were normalized and pooled with
Invitrogen SequalPrep DNA Normalization Plates. A combina-
tion of Qubit dsDNA HS, Caliper LabChip GX HS DNA, and
Kapa Illumina Library Quantification qPCR assays was used to
quantify the pooled library. Amplicons were sequenced with cus-
tom primers complementing amplification primers to avoid pri-
mer sequencing after cluster formation as described by Kozich
et al. (32). Pooled sequences were loaded on an Illumina MiSeq
standard flowcell (v2) and sequenced using a 500-cycle reagent
cartridge. Filtering parameters were optimized for detecting low-
abundance phylogenetic diversity (33,34). Bases were called by
the Illumina Real Time Analysis (RTA) v1.18.54, and the output
was demultiplexed and converted to FastQ format by Illumina
Bcl2fastq v1.8.4.

Pipeline Comparison

Sequence reads from postmortem microbiome samples were
analyzed with mothur v1.39.5 (17), QIIME2 v2018.11 (16), and
MG-RAST v4.0.3 (19) to determine how the microbial commu-
nity composition and diversity metrics (alpha- and beta-diversity)
varied among pipelines. The SOP for mothur (32), the QIIME2
moving pictures tutorial (35), and the MG-RAST manual (36)
were used for reference to analyze the samples. For mothur and
QIIME2, the SILVA small subunit database v132 (37) was used
at a 99% similarity cutoff for taxonomic classification. The data-
base version of SILVA used by MG-RAST is unknown, as it is
not reported by the authors or on the website, even after multiple
inquires. An overview of each pipeline workflow, including
commands used to run the mothur and QIIME2, is represented
in Fig. 1. Some steps were conserved among pipelines (i.e.,
quality control and classify sequences/assign taxonomy), but the
number and order of steps occurred in different succession
among pipelines depending on how the pipeline developers cre-
ated the software (Fig. 1). For QIIME2, DADA2 v1.8.0 (38) cor-
rected Illumina amplicon sequencing data, including removing
phiX reads. Sequences were aligned using MAFFT v7.397 (39),
and FastTree v2.1 (40) constructed the phylogenetic tree. BIOM
tables were created using biomformat package v2.1 (41) and
exported. For mothur, OTUs (operational taxonomic units) and
taxonomy tables were exported as column-separated values (csv)
files. For MG-RAST, identified sequences were clustered using
UCLUST v6 (42). OTUs and taxonomy tables were exported as
tab-separated values (tsv) files. As many parameters were stan-
dardized as possible, but analysis methods among pipelines dif-
fered (Table 1). For example, all pipelines used the SILVA
database for taxonomic classification, and VSEARCH v2.8.0
(43) for chimera detection and removal, while the taxonomic
classification algorithms and alignment methods differed
(Table 1).
To calculate error rate for each pipeline, in silico sequences

were taken from “mockrobiota” (44), an online repository of
sequences used to assess pipeline error rate. The mock-3 16S
rRNA dataset contained sequence data, corresponding taxon-
omy, and relative abundance of the OTUs. Using pipeline
workflows, four samples were run through each of the pipeli-
nes: two samples representative of an “even” (all taxa have the
same relative abundance) community composition and two
“staggered” (taxa have varied relative abundances) community
composition samples.

Data Analysis and Bioinformatics

Pipeline outputs were quantitatively compared using BIOM
files from QIIME2, and OTUs and taxonomy files from mothur
and MG-RAST which were combined with metadata as phyloseq
v1.24.0 (45) objects in R v3.5.1 (46) and rarefied to 1,000
sequences to account for the variability of library size among
pipelines.
Taxonomic names were corrected so that outputs could be prop-

erly merged with comparable taxon names (Table S2). Two meth-
ods were used to compare pipelines: statistical analyses of pipeline
outputs from postmortem autopsy case microbiome data and pipe-
line error analysis using in silico data. These comparison methods
were chosen based on previous pipeline comparison research,
which compared either pipeline output or in silico data (14,19).
Relative abundance was determined by combining all samples
analyzed within each pipeline and sample area, removing taxa that
were <1% abundance, and determining the proportional contribu-
tion of each taxon to the total community. Differentially abundant
taxa among pipelines were determined from relative abundances at
the phylum and family taxonomic level using analysis of compo-
sition of microbiomes (ANCOM) (47). Alpha-diversity metrics
(observed richness, Chao1, Shannon diversity [1�D], inverse
Simpson diversity [1/D]) were calculated using phyloseq. Alpha-
diversity metrics were compared using Kruskal–Wallis (48) and
Nemenyi (49) post hoc tests with the R stats and PMCMR pack-
ages (50). Beta-diversity metrics, evaluated using principal coordi-
nate analysis (PCoA) of Jaccard distances, were plotted using
phyloseq. Jaccard was chosen as a presence/absence method to
buffer against relative abundance differences found among param-
eters. PERMANOVA (permutational multivariate analysis of vari-
ance) from the vegan v2.5-2 (51) package confirmed beta-
diversity and dispersion differences among pipelines. In addition
to diversity metrics, a measure of divergence was assessed (Kull-
back–Leibler divergence) (52) and found to be generally consis-
tent with trends of diversity metrics (Table S3). Classifications
were made of sample area and manner of death using random for-
est (randomForest package v4.6-14) (53) among pipelines. Out-of-
bag (OOB) error rates were reported. However, test-set validation
(70% training sets, 30% test sets) was also tested and the error
rates were within 2% of the OOB error rates. For a more extensive
comparison of random forest methods on the larger dataset of
these postmortem microbiome data, please see Zhang et al. (29).
We also used “mockrobiota” (44) reference samples to com-

pare the accuracy of the pipeline outputs. For the in silico data
analysis, three metrics were assessed: correct taxa, false posi-
tives, and false negatives. Taxa that were present in both mock-
robiota taxonomic reference dataset and the pipeline output were
labeled “correct taxa.” Taxa present in only the mockrobiota tax-
onomic reference dataset were considered false negatives, while
taxa present only in the pipeline outputs were considered false
positives. Concordance with the mockrobiota dataset was
assessed based on pipeline outputs of abundance (sequence num-
ber) regressed with the expected abundances of mockrobiota as
the R2 value. False negative taxa were indicated by negative
abundance values, while false positive taxa fell along the X-axis
with no expected abundance value.
Based on the pipeline comparison results (see Pipeline Com-

parison in Results), QIIME2 was chosen for conducting sample
size and library size comparisons. Subsamples of the original
188 cases were chosen at random [R; sample()] without replace-
ment for 60 and 120 cases (see A priori power analysis below).
Minimum library sizes used for comparison were 1,000
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sequences, 7,000 sequences, and no rarefaction. Rarefying to
7,000 sequences was based on the alpha-rarefaction curve gener-
ated in QIIME2, while rarefying to 1,000 sequences was based
on a subjectively chosen minimum library size. Outputs among
sample sizes and minimum library sizes were compared using
methods described above, including relative abundance,
ANCOM, alpha-diversity, and beta-diversity. Changes in core
microbiome characterization and random forest accuracy were
also evaluated. In this case, the core microbiome was defined as
shared OTUs among defined groups (i.e., sample areas, mini-
mum library sizes, and sample sizes) (54) and determined using
log abundance vs. occupancy plots. Classifications were made of
sample area and manner of death using random forest (ran-
domForest package v4.6-14) (53), and the model error rate was
compared among sample sizes and minimum library sizes.

A Priori Power Analysis

To determine statistically significant sample size, an a priori
power analysis was completed using G*Power 3 v3.0.5 (55).
Body locations (mouth and rectum) were compared using the

mean and standard deviation of Faith’s phylogenetic diversity
from previous bioinformatic analysis (2) calculated using R. An
independent mean two-tailed t-test was used to determine sample
size needed for significant power. For each sample area (mouth
and rectum), 27 samples were required for significant power
(a = 0.05; 1�b = 0.80). Three random sample sizes were cho-
sen that all have significant power: 60, 120, and 188. Random
subsamples were generated using R, sampling without replace-
ment.

Data Availability

Postmortem microbiome samples collected, extracted, and tar-
geted amplicon 16S sequenced from 188 cases in Pechal et al.
(2) were used as a large dataset for comparing pipelines, sample
size, and minimum library size for downstream analyses.
Sequence data are archived through the European Bioinformatics
Institute European Nucleotide Archive (www.ebi.ac.uk/ena)
under accession number: PRJEB22642. Pipeline parameters and
microbial community analyses are available on GitHub (https://
github.com/sierrakasz/postmortem-analysis).

FIG. 1––Workflow for bioinformatic analysis. Several of the steps were shared among pipelines including quality control and aligning sequences. Commands
from the code are in square brackets, while parameters are in parentheses. ASV, amplicon sequence variant; OTU, operational taxonomic unit. [Color figure
can be viewed at wileyonlinelibrary.com]
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Results

Pipeline Comparison

Despite having an easy-to-implement Web-based GUI, MG-
RAST was not an appropriate tool for this forensic dataset.
Although the concordance of MG-RAST (R2 = 0.24) was com-
parable to QIIME2 (R2 = 0.27) for the in silico dataset (Fig. 2),
the in silico dataset represented very low diversity (<20 taxa pre-
sent) and simplistic community structure (even and staggered),
with a low sample size (n = 4), and was not an accurate approx-
imation of forensic data. For postmortem data, MG-RAST had a
much smaller effect size than mothur and QIIME2 due to the
twofold reduction in samples (Table S4). MG-RAST had an
average library size ~209 smaller than QIIME2 and mothur, ten-
fold reduction in sequences after filtering, and the highest num-
bers of unclassified sequences at the family and phylum levels
(Table 2, Table S5), representing a loss of valuable and forensi-
cally relevant data. MG-RAST also had the highest error rates
for the random forest modeling in all cases (Table 3; Table S6).
Compared to mothur and QIIME2, MG-RAST had more dif-

ferentially abundant taxa and significantly reduced alpha- and
beta-diversity metrics indicative of a different microbial commu-
nity structure, despite the input of the same data. Although the
top five most abundant phyla were consistent among pipelines,
MG-RAST’s mean relative abundances at the phylum and family
taxonomic levels were reduced for both mouth and rectum sam-
ple areas (Fig. 3A,B, Tables S7–S8). MG-RAST had the most
differentially abundant taxa (taxa for which relative abundances
significantly differed from each other based on statistical tests)
at both the phylum (9) and family levels (39), which were repre-
sented by about 209 more sequences than mothur and QIIME2
(ANCOM; Tables S9–S11). When considering all samples, MG-
RAST produced around 50% lower alpha-diversity for all
four metrics compared to mothur and QIIME2 (Kruskal–Wallis
p < 0.05; post hoc Nemenyi p < 0.05; Tables S12B and S13A,
B). MG-RAST samples clustered closely together (Fig. 3D),
reflective of MG-RAST’s significantly lower dissimilarity
(0.850 � 0.139) than QIIME2 and mothur (PERMANOVA,
p < 0.05; Table S14). The loss of sequences and samples during
the filtering process was also reflected in the reduced microbial
community metrics downstream for MG-RAST.
QIIME2 and mothur had more comparable results, but key

differences among the pipeline outputs made QIIME2 the most
appropriate pipeline to use for downstream analyses. Richness
and diversity (evenness and richness) metrics from mothur and
QIIME2 quantified similar levels of diversity (Fig. 3C,

Table S12A,B). However, QIIME2 had around 20% lower
observed richness than mothur (Tables S12B and S13B) in con-
trast to previous studies (15). While QIIME2 had slightly higher
levels of unclassified sequences (Table 2), mothur had a higher
number of unclassified taxa at the phylum (3) and family
level (4) (ANCOM, Tables S9–S10), which artificially inflated
richness measured by mothur. For random forest classification,
mothur had slightly lower error rates than QIIME2 (Table 3),
and indicator taxa differed among mothur and QIIME2 possibly
due to the inflated richness from mothur (Table S15). Despite
mothur and QIIME2 samples’ admixture (Fig. 3D) and compara-
ble dissimilarity (QIIME2: 0.874 � 0.146; mothur:
0.872 � 0.144), microbial community structure was distinguish-
able (PERMANOVA, p < 0.05; Table S14). However, the effect
size was small (R2 < 0.1; Table S14).
Despite the similar microbial communities, mothur and

QIIME2 diverged when testing the in silico dataset. QIIME2 had
no false positives, while mothur had the most false positives
(range: 10–20) of all pipelines (Fig. 2A, Table S16). Many of
mothur’s false positives were unclassified taxa at multiple taxo-
nomic levels, which disrupted the relative abundances of the
whole microbial community reflected in concordance. QIIME2
had the highest concordance to the mockrobiota (44) taxonomy
reference dataset (R2 = 0.27), while mothur had the lowest
(R2 = 0.08) (Fig. 2C,D).
Based on the pipeline comparison results above, QIIME2 was

chosen as the best pipeline to examine the effect of minimum
library sizes and sample sizes on microbial communities due to
the lowest error rate and reduced unclassified taxa compared to
mothur, and therefore more accurate microbial community struc-
ture.

Minimum Library Size

Key differences in microbial community metrics among mini-
mum library sizes indicated the importance of considering mini-
mum library size during forensic microbiome analysis. The
number of unclassified sequences at phylum and family levels
decreased proportionally as the minimum library size decreased
from no rarefaction, 7,000 sequences, to 1,000 sequences for
each sample area (Table 4). Relative abundances of the top five
phyla changed among minimum library size, as smaller mini-
mum library sizes (1,000 and 7,000) showed low-abundant taxa
(not the top five) phyla as a larger component of the relative
abundances due to the random subsampling to a specified library
size (Fig. 4A, Table S17). The differences in microbial

TABLE 1––Summary of parameter differences among pipelines compared in this study. Adapted from Plummer et al. (19).

QIIME2 mothur MG-RAST

License Open-Source Open-Source Open-Source
Language Python C++ Perl
Current version 2019.7 1.43.0 4.0.3
Cited (Google Scholar) ~1,190 ~17,800 ~5,720
Web-based interface GUI, API, CLI API, CLI GUI, API
Quality control YES YES YES
16S rRNA database SILVA, Greengenes, UNITE SILVA, Greengenes, RDP SILVA, Greengenes, RDP, ITS
Alignment method MAFFT Needleman–Wunsch BLAT
Taxonomic assignment Naive Bayes classifier Wang BLAT
Chimera detection VSEARCH VSEARCH VSEARCH
User support Forum, tutorials, FAQs Forum, SOPs, FAQs, user manual Video tutorials, FAQs, user manual,

“How to” section on website

Bolded text indicates parameters chosen for running the pipelines.
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FIG. 2––In silico data error among pipelines. In silico raw sequence data were obtained from mockrobiota (44) and processed through each pipeline using
the same methods as the postmortem microbiome dataset. Four samples were processed: two “even” and two “staggered” samples representing different
microbial community compositions. (A) Taxon output from each pipeline was compared to the taxonomic reference dataset available on mockrobiota. Taxa that
were present in both the mockrobiota taxonomic reference dataset and the pipeline output were labeled “correct taxa.” Taxa present in only the mockrobiota
taxonomic reference dataset were considered false negatives, while taxa present only in the pipeline outputs were considered false positives. Samples within
each pipeline are ordered along the x-axis as even, even, staggered, and staggered. (B–D) Abundance of taxa (based on sequence number) from pipeline output
versus expected abundance of taxa based on the mockrobiota abundance reference dataset for each sample. Negative abundances were assigned to samples
that were considered false negatives. The R2 line represents the actual concordance. (B) MG-RAST, (C) mothur, and (D) QIIME2. Please see Table S16 for a
summary of plot A. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2––Summary of sample number and sequence read differences among pipelines.

Pipeline
Total Number
of Samples

Number of
Mouth Samples

Number of
Rectum Samples

Total Number of Sequence
Reads after Filtering

Number of Unclassified
Phylum Sequence Reads

Number of Unclassified
Family Sequence Reads

QIIME2 324 169 155 11,375,659 2,399 2,832
mothur 324 169 155 12,861,356 594 2,419
MG-RAST 150 97 53 2,167,164 40,530 43,576

The total number of samples among pipeline differed, as some samples were removed for not having the minimum required sequences (1,000), or in the case
of MG-RAST, for not having the minimum 1,000,000 base pairs before filtering.
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community structure among minimum library sizes were evident
in the very distinct clustering of minimum library sizes
(Fig. 4F). Minimum library size had a large effect on beta-diver-
sity (PERMANOVA, p < 0.05, R2 = 0.297–0.426; Table S18).
Due to the effects of minimum library size on microbial commu-
nity structure, including beta-diversity and relative abundance,
minimum library size should be considered for downstream anal-
yses.
However, a large majority of taxa were captured within each

minimum library size, as indicated by alpha-diversity and core
microbiome analysis. Only the minimum library size of 1,000
had around 25% reduced richness compared to 7,000 and no rar-
efaction library sizes (Kruskal–Wallis, post hoc Nemenyi; p
< 0.05; Fig. 4C, Tables S19–S20). When comparing core micro-
biome taxa among minimum library sizes, most OTUs (695)
were shared among all minimum library sizes and were repre-
sented in higher log abundance (greater than the mean log abun-
dance) compared to non-core taxa (Fig. 5B, Table S21). Some
taxa only occurred in non-rarefied samples (62) and amounted to
about 10% of the core taxa among all minimum library sizes
(Fig. 5B, Table S21). A majority of taxa were still repre-
sented across minimum library sizes. However, the low-abundant
and infrequent taxa still have downstream effects for forensic
analysis.
Random forest modeling was affected by low-abundant and

infrequent taxa. While sample-area classification error (14% for
phylum and 4% for family) was lower than manner of death
classification error (phylum and family error rates were
around 56%), among all minimum library sizes, sample-area
classification error and manner of death classification error were
relatively similar (Table 5, Table S22). Although the error rates
among library sizes were overall similar, some of the important
indicator taxa for classifications were unique to certain groups.
For example, Bifidobacteriaceae was an important (one of the
highest mean Gini decrease) indicator of manner of death for
subsamples 60 and 120 and at minimum library sizes of no rar-
efaction and 1,000, while Spirochaetales was an indicator for
sample area using subsamples 120 and 188 (Table S23). For
downstream applications in forensic microbiology, changing
indicator taxa among minimum library sizes indicated that lack
of standardization among studies can lead to differentiation
among results interpretation.

Sample Size

Overall, sample size did not affect microbial community met-
rics in a significant way. The total number of sequences, as well

as the number of unclassified sequences at phylum and family
taxonomic level, increased 1.5–29 with increasing sample size
from 60, 120, to 188 (Table S24), but there were no differen-
tially abundant taxa among subsamples (Fig. 4B). Alpha-diver-
sity metrics did not significantly differ among sample sizes
(Kruskal–Wallis; p > 0.05; Fig. 4D, Tables S19–S20), but
observed richness did increase with increasing sample size, as
larger sample sizes captured more low-abundant and infrequent
taxa. For subsamples within each sample area and minimum
library size, there were no significant differences (PERMA-
NOVA; p > 0.05) among beta-diversity and beta-dispersion and
no clear clustering by subsample (Fig. 4E; Table S18).
However, increasing sample size changed the number of low-

abundant and infrequent taxa. Comparing the core microbiome,
most OTUs (569) were shared among all sample sizes and were
represented in higher log abundance (greater than the mean log
abundance) compared to non-core taxa (Fig. 5A, Table S25),
although there were a few OTUs shared among subsamples and
unique to the subsample 188 (Fig. 5A, Table S25). Much like
minimum library size, error rates for predicting sample area
among sample sizes were around 14% for phylum and 4% for
family, and around 56% for manner of death classifications
(Table 5). Again, there were indicator taxa unique to certain sub-
samples (Table S23). The increase in low-abundant and infre-
quent taxa among the sample sizes is indicative that sample size
should be taken into consideration for downstream application
for forensic microbiology studies, and comparisons across stud-
ies.

Discussion

Our bioinformatic parameter comparison using a large post-
mortem microbiome dataset shows that parameters can affect
downstream analyses, including microbial community structure
results. We also show that sample size and minimum library size
affect the resulting number of low-abundant and infrequent taxa
and potential indicator taxa for model building. While the results
here are specific to this postmortem dataset of targeted amplicon
(16S rRNA) sequencing on the Illumina platform, similar consid-
erations should be made for other pipelines and platforms that
may be used in downstream applications of forensic microbiol-
ogy in the criminal justice system.

Pipeline Comparison

Pipelines differed in many ways, including the development,
parameters, and usability (19). To accurately compare pipelines,
we standardized as many steps as possible, such as using SILVA
as a reference database. The steps that could not be standardized
among pipelines, including different taxonomic assignment and
alignment algorithms, were likely responsible for the differences
in microbial community characterizations (20).
Overall, we show that MG-RAST produced a different micro-

bial community structure compared to mothur and QIIME2, due
to reduced diversity metrics and increased unclassified and dif-
ferentially abundant taxa. These results are similar to previous
work comparing MG-RAST to other pipelines (25). However,
there are few studies that did not find the same reduction in
diversity metrics and increased unclassified reads (15,19),
although those studies focused on a smaller sample size of simi-
lar microbial communities (35 infant gut microbiome samples)
or in silico generated data that do not approximate forensic data.
Due to the results from this postmortem dataset, the reduction in

TABLE 3––Random forest classification error among pipelines.

Taxonomic
Level Pipeline

Sample Area Error
Rate (Misclassifications/

Total)

Manner of Death Error
Rate (Misclassifications/

Total)

Phylum QIIME2 16.05% (52/324) 58.64% (190/324)
Phylum mothur 12.65% (41/324) 56.79% (184/324)
Phylum MG-RAST 16.67% (25/150) 72% (108/150)
Family QIIME2 4.94% (16/324) 57.72% (187/324)
Family mothur 4.01% (13/324) 57.41% (186/324)
Family MG-RAST 5.33% (8/150) 60% (90/150)

Random forest classifications were made with 1,000 trees, and out-of-bag
(OOB) error was reported. Classifications of sample area (mouth and rectum)
and manner of death (suicide, homicide, accident, natural) were made for
phylum and family taxonomic levels. Error rate percentages and number of
misclassifications from the total number of samples were included.
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microbial information (samples, classified sequences), the varied
community structure (differentially abundant taxa, reduced alpha-
and beta-diversity), and the higher random forest classification
error, MG-RAST is not the appropriate tool for this type of
forensic dataset moving forward.

The overall microbial community structure had minimal differ-
ences among QIIME2 and mothur, which was a similar result to
previous studies (15,19). It is important to note that we rarefied
samples to 1,000 sequences, to account for the sequence reduc-
tion in MG-RAST, but this could be limiting the differences

FIG. 3––Microbial community composition among pipelines. (A) Relative abundances of the five most predominate phyla for mouth samples among pipelines
(MG: MG-RAST; M: mothur; Q: QIIME2). (B) Relative abundances of the five most predominate phyla for rectum samples among pipelines (MG: MG-RAST;
M: mothur; Q: QIIME2). (C) Alpha-diversity metrics for each sample area (mouth and rectum) and pipeline including observed richness, Chao1, Shannon
diversity, and inverse Simpson diversity (InvSimpson). Kruskal–Wallis and post hoc Nemenyi tests for alpha-diversity metrics detected significant differences
(p < 0.05) among pipelines and sample areas. (D) The principal coordinate analysis (PCoA) of Jaccard distances among sample area and pipeline. Ellipses
indicated sample area, for a 95% confidence interval. Permutational multivariate analysis of variance (PERMANOVA) detected significant differences
(p < 0.05) among pipelines for each sample area, and all pairwise differences were statistically significant (p < 0.05). Please see Tables S7–S14 for a com-
plete summary of relative abundance, analysis of composition of microbiomes (ANCOM), alpha-diversity, and beta-diversity results. [Color figure can be
viewed at wileyonlinelibrary.com]

520 JOURNAL OF FORENSIC SCIENCES

www.wileyonlinelibrary.com


among mothur and QIIME2. This study included comparison of
bioinformatic pipelines using machine learning outcomes. Rather
than an exhaustive search of machine learning algorithms (29),
we used a standardized user-friendly methodology of random
forest classification (out-of-bag error) after comparison to the
test-set validations were within 2% error rate as OOB error rate.
QIIME2 had a higher overall classification error than mothur,
but resulted in <1% difference from mothur at the family taxo-
nomic level. Overall, the increased unclassified taxa and in silico
data error for mothur made QIIME2 the more appropriate choice
for downstream analyses in this study.

Minimum Library Size

Rarefying, as a method of normalizing varying library sizes,
should be of interest for forensic applications in the future as
standardizing methodology among laboratories will be important
for actual casework. Many of the current postmortem micro-
biome studies have a variety of minimum library sizes chosen
based on alpha-rarefaction curves (2,3) or based on minimum
library size of the samples (56). We chose three levels of rarefy-
ing for the postmortem data, based on these different
approaches: no rarefaction, 7,000 sequences (based on alpha-rar-
efaction curves), and 1,000 sequences (minimum library size of
nondefective samples). Previous research determined that in
large enough datasets of very different microbial communities
(such as postmortem communities across body site) (2), rarefy-
ing should not negatively impact downstream analysis (24).
However, we found differences among the normalization strate-
gies, indicating that selecting an appropriate minimum library
size should be taken into consideration for forensic microbiome
analysis. While we showed that more low-abundant and infre-
quent taxa among cases are captured without rarefying, down-
stream statistical analyses commonly used in forensic
microbiology studies (i.e., ANCOM, PERMANOVA) assume
similar library sizes (24). Demonstrated by the PCoA plot
(Fig. 4F), a large majority of the postmortem samples in this
study clustered by minimum library size, a result that was found
in previous normalization research (24). This clustering, and
indication of distinct microbial communities, could possibly limit

the ability for laboratories to compare data across studies if nor-
malization was not standardized.
For standardization in forensic analyses, normalization of

library size should be taken into consideration due to the effect
on downstream statistical analyses. Random forest classification
has potential forensic applications for many analyses including
manner of death determination. Error rates of classifications (of
both sample area and manner of death) were generally stable
among minimum library size but decreased with larger library
sizes, perhaps as more of the infrequent taxa become important
for classification. While classification of sample area is generally
consistent with other studies (2), the classifications of manner of
death in this study are generally lower than those of previously
reported studies with the same dataset (29). However, a previous
study provided a comprehensive evaluation of machine learning
algorithms, which was not the major focus of this study (29).
Rather, by using a standardized, user-friendly open-access
methodology of random forest classification, we illustrated the
importance to future researchers to consider parameters, such as
library size, even if they are not a primary focus of the study.
Indicator taxa that are important for random forest classifications
changed among minimum library sizes, which has implications
for forensic cases, as indicator taxa among classifications have
potential downstream applications in casework.

Sample Size

There is a trade-off for researchers to consider when including
more samples in analyses. Sample sizes for studies are mostly
limited by resource availability, including funding. It is not real-
istic for all studies to have very large sample sizes. However, to
improve forensic microbiology for future use in the criminal jus-
tice system, more robust tools that capture low-abundant and
infrequent taxa encountered in real cases are needed.
Our postmortem microbiome dataset is the largest analyzed to

date for postmortem microbiome studies (2). For downstream
forensic applications, including more samples in predictive mod-
els makes those models more robust to the variability present in
real forensic cases. We found patterns of relative abundance did
not change as more samples were included in the analysis, but

TABLE 4––Total number of sequences that remained after filtering, and unclassified sequences (phylum and family taxonomic levels) among sample area, sam-
ple size, and minimum library size.

Pipeline Sample Area Sample Size Minimum Library Size
Total Number of

Sequence Reads after Filtering

Number of
Unclassified Phylum

Sequence Reads
Number of Unclassified
Family Sequence Reads

QIIME2 Mouth 60 No rarefaction 2,115,130 4,988 7,660
QIIME2 Mouth 60 7,000 405,998 1,059 1,481
QIIME2 Mouth 60 1,000 60,000 157 207
QIIME2 Rectum 60 No rarefaction 2,349,815 27,026 30,707
QIIME2 Rectum 60 7,000 405,981 5,200 5,438
QIIME2 Rectum 60 1,000 59,996 733 772
QIIME2 Mouth 120 No rarefaction 4,182,126 7,721 12,999
QIIME2 Mouth 120 7,000 811,998 1,935 2,703
QIIME2 Mouth 120 1,000 119,000 265 381
QIIME2 Rectum 120 No rarefaction 3,834,632 35,019 36,583
QIIME2 Rectum 120 7,000 734,993 6,154 6,762
QIIME2 Rectum 120 1,000 106,999 862 958
QIIME2 Mouth 188 No rarefaction 5,874,406 14,099 22,323
QIIME2 Mouth 188 7,000 1,154,999 4,044 5,424
QIIME2 Mouth 188 1,000 168,999 612 819
QIIME2 Rectum 188 No rarefaction 5,463,539 63,667 70,089
QIIME2 Rectum 188 7,000 1,056,993 12,498 13,963
QIIME2 Rectum 188 1,000 155,000 1,798 2,017
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FIG. 4––Microbial community composition among sample sizes and minimum library sizes. (A) Relative abundances of the five most predominate phyla
among subsamples with no rarefaction. (B) Relative abundances of the five most predominate phyla among minimum library sizes of subsample 188. (C)
Alpha-diversity metrics for each sample size with no rarefaction including observed richness, Chao1, Shannon diversity, and inverse Simpson diversity
(InvSimpson). Kruskal–Wallis and post hoc Nemenyi tests for alpha-diversity metrics did not detect significant differences (p < 0.05) among subsamples. (D)
Alpha-diversity metrics for each minimum library size of subsample 188 including observed richness, Chao1, Shannon diversity, and inverse Simpson diversity.
Kruskal–Wallis and post hoc Nemenyi tests for alpha-diversity metrics detected significant differences (p < 0.05) among pairwise comparisons including the
1,000 sequence minimum library size for observed richness. (E) The principal coordinate analysis (PCoA) of Jaccard distances among subsamples with no rar-
efaction. Permutational multivariate analysis of variance (PERMANOVA) did not detect significant differences (p < 0.05) among sample sizes. (F) The princi-
pal coordinate analysis (PCoA) of Jaccard distances among minimum library sizes of subsample 188. PERMANOVA detected significant differences (p < 0.05)
among rarefaction levels, and all pairwise differences were statistically significant (p < 0.05). Please see Tables S17–S20 for a complete summary of relative
abundance, alpha-diversity, and beta-diversity results. [Color figure can be viewed at wileyonlinelibrary.com]
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observed richness did increase with increasing sample size, as
larger sample sizes captured more low-abundant and infrequent
taxa. As expected, increasing subsample size increased error rate
for random forest classifications (sample area and manner of
death). However, those random forest models are arguably more
robust for downstream forensic applications (29); therefore,
including as many samples as possible in forensic microbiology
studies is best practice moving forward.

Conclusions

This work was the first to compare pipeline and associated pa-
rameters for a forensically relevant, large, and heterogenous
dataset. Based on the results of this study, we make the follow-
ing recommendations for future forensic microbiology studies:
(i) The QIIME2 pipeline is the most suitable pipeline for this
type of postmortem microbiome dataset; (ii) rarefying data is the

FIG. 5––Core microbiome among sample sizes and minimum library sizes. In this case, core microbiome was considered as OTU (operational taxonomic
unit) membership among defined groups (sample size or minimum library size). (A) Occupancy vs. log abundance of shared OTUs among sample sizes at no
rarefaction. The horizontal line indicates mean log abundance. (B) Occupancy vs. log abundance of shared OTUs among minimum library sizes for subsample
188. The horizontal line indicates mean log abundance. Please see Tables S21 and S25 for a complete summary of core microbiome results. [Color figure can
be viewed at wileyonlinelibrary.com]

TABLE 5––Random forest classification error among sample sizes and minimum library sizes.

Taxonomic Level
Minimum Library

Size
Sample
Size

Sample Area Error Rate
(Misclassifications/Total)

Manner of Death Error Rate
(Misclassifications/Total)

Phylum 1,000 60 14.17% (17/120) 55.83% (67/120)
Phylum 1,000 120 15.49% (35/226) 58.41% (132/226)
Phylum 1,000 188 17.59% (57/324) 57.41% (186/324)
Phylum 7,000 60 14.66% (17/116) 57.76% (67/116)
Phylum 7,000 120 14.03% (31/221) 57.47% (127/221)
Phylum 7,000 188 14.24% (45/316) 56.33% (178/316)
Phylum No rarefaction 60 12.50% (15/120) 54.17% (65/120)
Phylum No rarefaction 120 14.29% (33/231) 58.44% (135/231)
Phylum No rarefaction 188 14.50% (48/331) 58.61% (194/331)
Family 1,000 60 5.83% (7/120) 54.17% (65/120)
Family 1,000 120 3.10% (7/226) 56.64% (128/226)
Family 1,000 188 4.63% (15/324) 56.17% (182/324)
Family 7,000 60 5.17% (6/116) 55.17% (64/116)
Family 7,000 120 4.07% (9/221) 59.28% (131/221)
Family 7,000 188 5.06% (16/316) 58.54% (185/316)
Family No rarefaction 60 4.17% (5/120) 54.17% (65/120)
Family No rarefaction 120 4.76% (11/231) 57.58% (133/231)
Family No rarefaction 188 3.93% (13/331) 58.31% (193/331)

Random forest classifications were made with 1,000 trees, and out-of-bag (OOB) error was reported. Classifications of sample area (mouth and rectum) and
manner of death (suicide, homicide, accident, natural) were made for each taxonomic level, minimum library size, and subsample. Error rate percentages and
number of misclassifications from the total number of samples were included.
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best normalization practice for downstream statistical analyses
(24). However, an appropriate minimum library size should be
chosen based on richness captured (alpha-rarefaction plots),
instead of the smallest library size among samples; and (iii) sam-
ple size should be maximized to captures low-abundant and
infrequent taxa among the data for more robust model building.
However, sample size must be weighed with other practical con-
siderations, such as financial constraints.
Considering the potential application of forensic microbiology

to the criminal justice system, continued research to optimize
computational methodology is essential. While model building
was not the focus of this study, the preliminary results show
how parameter choice can potentially affect downstream applica-
tions, which is important for future research and casework.
Applying bioinformatic workflows necessary for microbial data
in forensic casework will be challenging as command line soft-
ware and microbial data analysis is not already part of the exam-
iner workflow. The constant influx of pipelines available,
changing parameter options, and updates will be a barrier to cre-
ating an SOP for forensic casework. However, this study is an
important part of laying the groundwork for standardizing com-
putational methodology for forensic microbiology research and
will help set the precedent for forensic casework in the future.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:
Table S1. Summary of case metadata among autopsy cases

reported in Pechal et al. (2), stratified by metadata category. All
information was provided by autopsy reports.
Table S2. Summary of taxonomic name changes after pooling

pipeline outputs.
Table S3. Kullback-Leibler Divergence matrices among

pipelines, library sizes, and sample sizes.
Table S4. List of sample names that remained after filtering

for both sample areas.
Table S5. Summary of library sizes among pipelines.
Table S6. Confusion matrices of random forest classification

of 1,000 decision trees. Classification out-of-box error rate of
sample area and manner of death were determined among pipeli-
nes and taxonomic levels.

Table S7. Mean relative abundances of phyla greater than 1%
relative abundance among pipelines and sample areas.
Table S8. Mean relative abundances of families greater than

1% relative abundance among pipelines and sample areas.
Table S9. Analysis of the composition of microbiomes

(ANCOM) result for differentially abundant phyla among pipeli-
nes and sample areas.
Table S10. Analysis of the composition of microbiomes

(ANCOM) results for differentially abundant familes among
pipelines and sample areas.
Table S11. Average number of samples and sequences repre-

sentative of differentially abundant families identified by Analy-
sis of the composition of microbiomes (ANCOM) among
pipelines.
Table S12. Alpha-diversity metrics for each sample among

pipeline and sample area including: observed richness, Chao1,
Shannon diversity (1-D), and Inverse Simpson diversity (1/D).
Table S13. Results of A) Kruskal-Wallis and B) pairwise post

hoc Nemenyi tests of alpha-diversity metrics among pipeline and
sample area.
Table S14. Results from permutational multivariate analysis

of variance (PERMANOVA) tests on weighted Jaccard distance
matrix including A) beta-diversity and B) beta-dispersion for
999 permutations.
Table S15. Top twenty predictor taxa based on mean decrease

in Gini for random forest classification of manner of death and
sample area.
Table S16. The number of correct taxa, false negatives, and

false positives for in silico data among pipelines and community
types (even and staggered).
Table S17. Mean relative abundances of phyla greater than

1% relative abundance among sample sizes, minimum library
sizes, and sample areas.
Table S18. Results from permutational multivariate analysis

of variance (PERMANOVA) tests on weighted Jaccard distance
matrix including A) beta-diversity and B) beta-dispersion for
999 permutations
Table S19. Alpha-diversity metrics for each sample among

sample size and minimum library size including: observed rich-
ness, Chao1, Shannon diversity (1-D), and Inverse Simpson
diversity (1/D).
Table S20. Results of A) Kruskal-Wallis and B) pairwise post

hoc Nemenyi tests of alpha-diversity metrics among sample size
and minimum library size.
Table S21. Core microbiome among minimum library size.

The core microbiome in this case was considered shared OTUs
among minimum library size.
Table S22. Confusion matrices of random forest classification

with 1,000 decision trees.
Table S23. Top twenty predictor taxa based on mean decrease

in Gini for random forest classification manner of death and
sample area. The top twenty predictor taxa among minimum
library size, sample size, and taxonomic levels were all included.
Table S24. Number of samples that remained after filtering

(including chimera detection and rarefaction) among sample
area, sample size and minimum library size.
Table S25. Core microbiome among sample size. The core

microbiome in this case was considered shared OTUs among
subsamples.
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