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ABSTRACT: Microbial communities have potential evidential utility for forensic applications. 

However, bioinformatic analysis of high-throughput sequencing data varies widely among 

laboratories. These differences can potentially affect microbial community composition 

determination and downstream analyses. To illustrate the importance of standardizing 

methodology, we compared analyses of postmortem microbiome samples using several 

bioinformatic pipelines, varying minimum library size or minimum number of sequences per 

sample, and sample size. Using the same input sequence data, we found three open-source 

bioinformatic pipelines, MG-RAST, mothur, and QIIME2, had significant differences in relative 

abundance, alpha-diversity, and beta-diversity, despite the same input data. Increasing minimum 

library size and sample size increased the number of low abundant and infrequent taxa detected. 

Our results show that bioinformatic pipeline and parameter choice affect results in important 

ways. Given the growing potential application of forensic microbiology to the criminal justice 

system, continued research on standardizing computational methodology will be important for 

downstream applications.

KEYWORDS: forensic science, bioinformatic pipelines, forensic microbiology, postmortem 

microbiome, microbial communities, next-generation sequencing  
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Before the widespread use of next-generation sequencing (NGS), forensic microbiology 

was limited to identifying pathogens of bio-crimes with culture-based methods, such as the 2001 

anthrax letter attacks (1). Now with the advent of NGS technology, amplicon sequencing can 

describe entire microbial communities from evidence rather than just targeting a single microbe 

of interest. Microbes are an important forensic resource as they are ubiquitous organisms, with 

community compositions specific to different environments or hosts (i.e., the location of a body 

or body part) and that vary over time, such as during decomposition (2,3). 

NGS has expanded microbial forensics to many potential applications including: body 

fluid identification, human identification, and postmortem interval estimation (4). Targeted 

amplicon sequencing of 16S rRNA identified potential microbial biomarkers for sensitive body 

fluid identification (5), and a clade based, single nucleotide polymorphism approach identified 

human individuals using their skin microbiome (6). Postmortem microbiome studies have 

included a diverse set of investigative circumstances to better understand how microbial 

communities after death can inform forensic investigation.  Studies have used human-surrogates, 

such as swine (7), humans (2), and grave soil (3), as well as experiments in anthropologic 

facilities (8) and during routine autopsy for death investigation (2). Researchers have developed 

models for forensic applications (i.e., postmortem interval estimation), and described microbial 

community function and succession during decomposition (2,3,7). While recent research 

suggests excellent potential for microbial community use in forensics (9,10,11,12), additional 

foundational work is needed before forensic microbiology using postmortem microbial 

community assemblages can be applied in the criminal justice system. Needed foundational work 

includes standardizing parameters for transforming raw microbial sequences into a usable data 

format for downstream analyses.    

For bioinformatic analysis of microbial data, raw sequence data files generated from 

NGS undergo a series of transformations using executable command line software known as 

pipelines (13). Forensic microbiological data created by high-throughput sequencing platforms 
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are processed using complex analyses that require users to make processing decisions along 

these pipelines (e.g., Should samples be normalized? Which taxonomic database should be 

used?). It is hypothesized that different decisions could have downstream effects on results and 

their interpretation (14,15). For any downstream application of forensic microbiology in the 

criminal justice system, there is a need for streamlined standard operating procedures (SOPs) 

(11).  

There are self-contained pipelines for processing sequence data for characterizing 

microbial communities. Three of the most often used self-contained pipelines are: QIIME2 (16), 

mothur (17), and MG-RAST (18). QIIME2 and mothur require some command line experience, 

whereas MG-RAST has a web-based graphical user interface (GUI) (19). Several studies 

determined that the microbial communities generated from different pipelines were comparable; 

however, these studies used simulated data (15,20,21,22,23,24), small sample sizes (n < 40) 

(19,23,24,25) or were composed of the same sample type (i.e., human gut microbial data) 

(19,25), which does not readily apply to many forensic datasets that can include highly variable 

sampling locations or contextual circumstances (2,3,7).  

In addition to choosing the pipeline, microbial sequence data analyses can be confounded 

by different library sizes, or the number of sequence reads per sample (23). The common library 

size normalization procedure for microbial analysis is referred to as rarefying (23). To rarefy 

data, a minimum library size is chosen, samples with too few reads are discarded, and the 

remaining sample reads are subsampled without replacement to the minimum library size (23). 

Minimum library size is often chosen by selecting the smallest library size of a non-defective 

sample, which is a subjective assessment that can add uncertainty to microbial community 

analysis (23). Minimum library size can also be chosen based on rarefaction curves: taxon-based 

re-sampling curves that indicate species richness and coverage analysis to justify a certain library 

size. Potentially useful data are omitted during rarefying, which can decrease the power and 

specificity of analyses as samples are discarded, and the samples that remain may not be 

distinguishable using a fraction of the original reads (23). While rarefying can decrease power, 

sample size is an additional factor to consider for downstream analysis of microbial data. 

Most postmortem microbiome studies have small sample sizes (2). Often, this is due to 

space, time or resource limitations of using human donated bodies or surrogate carcasses, such as 
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swine. Prior to 2018, when Pechal et al. (2018) characterized and modeled postmortem 

microbiomes using 188 autopsies, sample sizes for postmortem microbiome studies range from 2 

to 48 (6,26). Small samples sizes can decrease statistical power and inflate effect sizes, which 

can lead to unreliable conclusions that may not be generalizable to other data sets (27), which 

can have important consequences in forensics (28). Given this, it is important to evaluate data 

analysis parameters with large, spatially and temporally heterogenous datasets with multiple 

sample areas (i.e., body locations) in order to improve the reliability of postmortem microbiome 

data.  

Downstream analytical methods for forensic microbiology studies are still being 

evaluated. Recently, machine learning algorithms and parameterization were comprehensively 

tested for potential direct forensic applications to postmortem interval estimation, manner of 

death determination, and location of death (i.e. inside, outside, hospital death) for this particular 

dataset (29). Therefore, we focus on preceding steps of microbial analysis before modeling 

applications for comparing forensic predictions. The overall goal was to provide an initial 

assessment of how pipeline choice and data processing parameter differences affect data 

outcomes that are used as inputs for downstream modeling and prediction, with the intention that 

forensic researchers and examiners could make informed decisions about study design, data 

analysis methods, and applications relevant to their forensics needs. 

A better understanding of performance among bioinformatic pipelines and parameters is 

needed to reveal potentially significant differences in downstream analysis and data 

interpretation, especially for future use in the forensic sciences. To determine how different 

microbiome data processing parameters affect downstream analytical outcomes, we determined 

how pipeline software, library size normalization by rarefying, and sample size affect common 

microbiome community metrics and machine learning model results using a large postmortem 

microbiome dataset (n=188). We have emphasized using standardized, recognizable, and user-

friendly methods encountered in open-access microbiome analyses tools for forensic 

applications. 

Materials and Methods
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Sample Collection, DNA Extraction, and Sequencing 

Postmortem microbiome data were obtained from our previously published study that 

characterized the microbial communities from multiple body sites in 188 routine autopsy cases 

(2). The postmortem microbiome data for this study represented the microbial communities from 

the mouth and rectum, with cases that spanned all four seasons (Spring, Summer, Fall, and 

Winter), manners of death (accident, homicide, suicide, natural), postmortem intervals (< 24h - > 

73+ h), and ages (18-55+ years) (Table S1). Detailed methods for sample collection, DNA 

extraction, and sequencing are available in Pechal et al (2). In short, trained personnel at Wayne 

County Medical Examiner’s Office in Detroit, Michigan took swab samples during routine 

autopsy using DNA-Free sterile cotton-tipped applicators (25–806 1WC FDNA, Puritan®, 

Guilford, MA, USA). Each swab was rotated for 3-5 seconds on the body location to sample the 

microbial community. Samples were placed in sterile microfuge tubes and 200 μl of 100% 

molecular grade ethanol (BP2818-4, Fisher Scientific, Waltham, MA, USA) and stored at -20℃. 

Metadata were collected for each case including: sampling date (season), anatomic region 

sampled, sex, ethnicity, estimated age (years), postmortem interval (PMI), body mass index 

(BMI; kg/m2)  event location (indoors, outdoors, hospital, vehicle), and manner of death (Table 

S1). Manner of death and PMI estimates were determined by a board-certified forensic 

pathologist at the time of autopsy. 

To determine the microbial communities, total DNA was extracted in a biological safety 

cabinet with aseptic conditions using PureLink® Genomic DNA Mini Kit (Thermo Fisher 

Scientific, Waltham, MA, USA) following manufacture instructions except an additional 5 ng/μl 

of lysozyme was added during the lysis step for each sample reaction (30). The samples were 

quantified by Qubit 2.0 and the Quant-iT dsDNA HS Assay kit (Thermo Fisher Scientific, 

Waltham, MA, USA). Microbial DNA was sequenced at the MSU Genomics Core Facility (East 

Lansing, MI, USA) using an Illumina MiSeq. The MSU Genomics Core Facility prepared the 

16S rRNA gene amplicon library and sequenced the samples using a modified version of the 

protocol adapted for the Illumina HiSeq2000 and MiSeq. The V4 region 16S gene amplicon 2 x 

250 bp paired-end reads were generated with region specific primers [515 f (5′ 

GTGCCAGCMGCCGCGGTAA) and 806 r (5′ GGACTACHVGGGTWTCTAAT)] that 

included Illumina flowcell adapters (31). PCR products were normalized and pooled with 

Invitrogen SequalPrep DNA Normalization Plates. A combination of Qubit dsDNA HS, Caliper 
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LabChipGX HS DNA, and Kapa Illumina Library Quantification qPCR assays were used to 

quantify the pooled library. Amplicons were sequenced with custom primers complementing 

amplification primers to avoid primer sequencing after cluster formation as described by Kozich 

et al (32). Pooled sequences were loaded on an Illumina MiSeq standard flow cell (v2) and 

sequenced using a 500 cycle reagent cartridge. Filtering parameters were optimized for detecting 

low abundance phylogenetic diversity (33,34). Bases were called by the Illumina Real Time 

Analysis (RTA) v1.18.54, and the output was demultiplexed and converted to FastQ format by 

Illumina Bcl2fastq v1.8.4.

Pipeline Comparison

Sequence reads from postmortem microbiome samples were analyzed with mothur 

v1.39.5 (17), QIIME2 v2018.11 (16), and MG-RAST v4.0.3 (19) to determine how the microbial 

community composition and diversity metrics (alpha- and beta-diversity) varied among 

pipelines. The SOP for mothur (32), the QIIME 2 moving pictures tutorial (35), and the MG-

RAST manual (36) were used for reference to analyze the samples. For mothur and QIIME2, the 

SILVA small subunit database v132 (37) was used at a 99% similarity cutoff for taxonomic 

classification. The database version of SILVA used by MG-RAST is unknown, as it is not 

reported by the authors or on the website, even after multiple inquires. An overview of each 

pipeline workflow, including commands used to run the mothur and QIIME2, are represented in 

Figure 1. Some steps were conserved among pipelines (i.e., quality control and classify 

sequences/assign taxonomy) but the number and order of steps occurred in different succession 

among pipelines depending on how the pipeline developers created the software (Figure 1). For 

QIIME2, DADA2 v1.8.0 (38) corrected Illumina amplicon sequencing data, including removing 

phiX reads. Sequence were aligned using MAFFT v7.397 (39) and FastTree v2.1 (40) created the 

phylogenetic tree. Biom tables were created using biom-format package v2.1 (41) and exported. 

For mothur, OTUs (Operational Taxonomic Units) and taxonomy tables were exported as 

column separated values (csv) files. For MG-RAST, identified sequences were clustered using 

UCLUST v6 (42). OTUs and taxonomy tables were exported as tab separated values (tsv) files. 

As many parameters were standardized as possible, but analysis methods among pipelines 

differed (Table 1). For example, all pipelines used the SILVA database for taxonomic 

classification, and VSEARCH v2.8.0 (43) for chimera detection and removal, while the 

taxonomic classification algorithms and alignment methods differed (Table 1). 
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To calculate error rate for each pipeline, in silico sequences were taken from 

“mockrobiota” (44), an online repository of sequences used to assess pipeline error rate. The 

mock-3 16S rRNA dataset contained sequence data, corresponding taxonomy, and relative 

abundance of the OTUs. Using pipeline workflows, four samples were run through each of the 

pipelines: two samples representative of an “even” (all taxa have the same relative abundance) 

community composition and two “staggered” (taxa have varied relative abundances) community 

composition samples. 

Data Analysis and Bioinformatics  

Pipeline outputs were quantitatively compared using Biom files from QIIME2, and OTUs 

and taxonomy files from mothur and MG-RAST were combined with metadata as phyloseq 

v1.24.0 (45) objects in R v3.5.1 (46) and rarefied to 1,000 sequences to account for the 

variability of library size among pipelines. 

Taxonomic names were corrected so that outputs could be properly merged with 

comparable taxa names (Table S2). Two methods were used to compare pipelines: statistical 

analyses of pipeline outputs from postmortem autopsy case microbiome data and pipeline error 

analysis using in silico data. These comparison methods were chosen based on previous pipeline 

comparison research, which either compared pipeline output or in silico data (14,19). Relative 

abundance was determined by combining all samples analyzed within each pipeline and sample 

area, removing taxa that were less than 1% abundance, and determining the proportional 

contribution of each taxa to the total community. Differentially abundant taxa among pipelines 

were determined from relative abundance at the phylum and family level using ANCOM (47). 

Alpha-diversity metrics (observed richness, Chao1, Shannon diversity (1-D), Inverse Simpson 

diversity (1/D)) were calculated using phyloseq. Alpha-diversity metrics were compared using 

Kruskal-Wallis (48) and Nemenyi (49) post hoc tests with the R stats and PMCMR packages 

(50). Beta-diversity metrics, evaluated using Principal Coordinates Analysis (PCoA) of Jaccard 

distances, were plotted using phyloseq. Jaccard was chosen as a presence/absence method to 

buffer against relative abundance differences found among parameters. PERMANOVA 

(permutational multivariate analysis of variance) from the vegan v2.5-2 (51) package confirmed 

beta-diversity and dispersion differences among pipelines. In addition to diversity metrics, a 

measure of divergence was assessed (Kullback-Leibler Divergence) (52) and found to be 
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generally consistent with trends of diversity metrics (Table S3). Classifications were made of 

sample area and manner of death using random forest (randomForest package v4.6-14) (53) 

among pipelines. Out-of-bag (OOB) error rates were reported. However, test-set validation (70% 

training sets, 30% test sets) was also tested and the error rates were within 2% of the OOB error 

rates. For a more extensive comparison of random forest methods on the larger dataset of these 

postmortem microbiome data, please see Zhang et al. (29). 

We also used “mockrobiota” (44) reference samples to compare the accuracy of the 

pipeline outputs. For the in silico data analysis, three metrics were assessed: correct taxa, false 

positives, and false negatives. Taxa that were present in both mockrobiota taxonomic reference 

dataset and the pipeline output was labeled ‘correct taxa’. Taxa present in only the mockrobiota 

taxonomic reference dataset were considered false negatives, while taxa present only in the 

pipeline outputs were considered false positives. Concordance with the mockrobiota dataset was 

assessed based on pipeline outputs of abundance (sequence number) regressed with the expected 

abundances on mockrobiota as the R2 value. False negative taxa were indicated by negative 

abundance values, while false positive taxa fell along the X- axis with no expected abundance 

value.

Based on the results of comparisons (see Pipeline Comparison in Results), the QIIME2 

pipeline was chosen for conducting sample size and library size comparisons. Subsamples of the 

original 188 cases were chosen at random [R; sample()] without replacement for 60 and 120 

cases (see A priori power analysis below). Rarefaction levels used for comparison were 1,000 

sequences, 7,000 sequences, and no rarefaction. Rarefying to 7,000 sequences was based on the 

alpha-rarefaction curve generated in QIIME2, while rarefying to 1,000 sequences was based on a 

subjectively chosen minimum library size. Outputs among subsamples and rarefaction levels 

using statistical analyses were compared using methods described above, including relative 

abundance, ANCOM, alpha-diversity, and beta-diversity. Changes in core microbiome 

characterization and random forest accuracy were also evaluated. In this case, the core 

microbiome was defined as shared OTUs among defined groups (i.e., sample areas, minimum 

library sizes, and sample sizes) (54) and determined using log abundance vs. occupancy plots. 

Classifications were made of sample area and manner of death using random forest 

(randomForest package v4.6-14) (53), and the model error rate was compared among subsamples 

and normalization methods.   
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A Priori Power Analysis

To determine statistically significant sample size, an a priori power analysis was 

completed using G*Power 3 v3.0.5 (55). Body locations (mouth and rectum) were compared 

using the mean and standard deviation of Faith’s phylogenetic diversity from previous 

bioinformatic analysis (2) calculated using R. An independent mean two tail t-test was used to 

determine sample size needed for significant power. For each body location (mouth and rectum), 

27 samples were required for significant power (α = 0.05; 1-β = 0.80). Three random subsample 

sizes were chosen based on the number of cases to include that all have significant power: 60, 

120, 188. Random subsamples were generated using R, sampling without replacement. 

Data Availability

Postmortem microbiome samples collected, extracted, and targeted amplicon 16S 

sequenced from 188 cases in Pechal et al. (2) were used as a large dataset for comparing 

pipelines, sample size, and minimum library size for downstream analyses. Sequence data are 

archived through the European Bioinformatics Institute European Nucleotide Archive 

(www.ebi.ac.uk/ena) under accession number: PRJEB22642. The microbial community analysis 

is available as R code on GitHub (https://github.com/sierrakasz/postmortem-analysis).

Results 

Pipeline Comparison

Despite having an easy to implement web-based GUI, MG-RAST was not an appropriate 

tool for this forensic dataset. Although the concordance of MG-RAST (R2 = 0.24) was 

comparable to QIIME2 (R2 = 0.27) for the in silico dataset (Figure 2), the in silico dataset 

represented very low diversity (< 20 taxa present) and simplistic community structure (even and 

staggered), with a low sample size (n = 4) and was not an accurate approximation of forensic 

data. For postmortem data, MG-RAST had a much smaller effect size than mothur and QIIME2 

due to the twofold reduction in samples (Table S4). MG-RAST had an average library size ~ 20x 

smaller than QIIME2 and mothur, tenfold reduction in sequences after filtering, and the highest 

numbers of unclassified sequences at the family and phylum level (Table 2, Table S5); 

representing a loss of valuable and forensically relevant data. MG-RAST also had the highest 

error rates for the random forest modeling in all cases (Table 3; Table S6). 
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Compared to mothur and QIIME2, MG-RAST had more differentially abundant taxa and 

significantly reduced alpha- and beta-diversity metrics indicative of a very different microbial 

community structure, despite the input of the same data. Although the top five most abundant 

phyla were consistent among pipelines, MG-RAST’s mean relative abundances at the phylum 

and family taxonomic level were reduced for both mouth and rectum sample areas (Figure 3A, 

Figure 3B, Table S7-S8). MG-RAST had the most differentially abundant taxa (taxa for which 

relative abundances significantly differ from each other based on statistical tests) at both the 

phylum (9) and family level (39), which were represented by about 20x more sequences than 

mothur and QIIME (ANCOM; Table S9-S11). When considering all samples, MG-RAST 

produced around 50% lower alpha-diversity for all three metrics compared to mothur and 

QIIME2 (Kruskal-Wallis P value < 0.05; post hoc Nemenyi P < 0.05; Table S12B; Table S13A-

13B). MG-RAST samples clustered closely together (Figure 3D), reflective of MG-RAST’s 

significantly lower dissimilarity (0.850 ± 0.139) than QIIME2 and mothur (PERMANOVA, P < 

0.05, Table S14). The loss of sequences and samples during the filtering process was also 

reflected in the reduced microbial community metrics downstream for MG-RAST. 

QIIME2 and mothur had more comparable results but key differences among the pipeline 

outputs made QIIME2 the most appropriate pipeline to use for downstream analysis. Richness 

and diversity (evenness and richness) metrics from mothur and QIIME2 quantified similar levels 

of diversity (Figure 3C, Table S12A-12B). However, QIIME2 had around 20% lower observed 

richness than mothur (Table S12B, Table S13B) in contrast to previous studies (15). While 

QIIME2 had slightly higher levels of unclassified sequences (Table 2), mothur had a higher 

number of unclassified taxa at the phylum (3) and family level (4) (ANCOM, Table S9-S10), 

which artificially inflated richness measured by mothur. For random forest classification, mothur 

had slightly lower error rates than QIIME2 (Table 3), indicator taxa differed among mothur and 

QIIME2 possibly due to the inflated richness from mothur (Table S15). Despite mothur and 

QIIME2 samples’ admixture (Figure 3D) and comparable dissimilarity (QIIME2: 0.874 ± 0.146; 

mothur: 0.872 ± 0.144), microbial community structure was distinguishable (PERMANOVA, P 

< 0.05, Table S14). However the effect size was small (R2 < 0.1, Table S14).

Despite the similar microbial communities, mothur and QIIME2 diverged when testing 

the in silico dataset. QIIME2 had no false positives, while mothur had the most false positives 

(range: 10-20) of all pipelines (Figure 2A, Table S16). Many of mothur’s false positives were 
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unclassified taxa at multiple taxonomic levels, which disrupted the relative abundances of the 

whole microbial community reflected in concordance. QIIME2 had the highest concordance to 

the mockrobiota taxonomy reference dataset (R2 = 0.27), while mothur had the lowest (R2 = 

0.08) (Figure 2C-2D). 

Based on the pipeline comparison results above, QIIME2 was chosen as the best pipeline 

to examine the effect of rarefying and sample sizes on modeling results due to the lowest error 

rate and reduced unclassified taxa compared to mothur, and therefore more accurate microbial 

community structure.

Minimum Library Size  

Key differences in microbial community metrics were among minimum library sizes, 

indicating the importance of considering minimum library size during forensic microbiome 

analysis. The number of unclassified sequences at phylum and family level decreased 

proportionally as the minimum library size decreased from no rarefaction, 7,000 sequences, to 

1,000 sequences for each sample area (Table 4). Relative abundances of the top five phyla 

changed among minimum library size, as smaller minimum library sizes (1,000 vs. 7,000) 

showed low abundance taxa (not the top five) phyla as a larger component of the relative 

abundances due to the random subsampling to a specified library size (Figure 4A, Table S17). 

The differences in microbial community structure among minimum library sizes were evident in 

the very distinct clustering of minimum library sizes (Figure 4F). Minimum library size had large 

effects beta-diversity (PERMANOVA, P < 0.05, R2 = 0.297-0.426, Table S18). Due to the 

effects of minimum library size on microbial community structure, including beta-diversity and 

relative abundance, minimum library size should be considered for downstream analyses. 

However, a large majority of taxa were captured within each minimum library size, as 

indicated by alpha-diversity and core microbiome analysis. Only the minimum library size of 

1,000 had around 25% reduced richness compared to 7,000 and no rarefaction library sizes. 

(Kruskal-Wallis, post hoc Nemenyi; P value < 0.05, Figure 4C, Table S19-S20) When 

comparing core microbiome taxa among rarefaction levels, most OTUs (695) were shared among 

all minimum library sizes and were represented in higher log abundance (greater than the mean 

log abundance) compared to non-core taxa (Figure 5B, Table S21). Some taxa only occurred in 

non-rarefied samples (62) and amounted to about 10% of the core taxa among all minimum 
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library sizes (Figure 5B, Table S21). Despite changing minimum library sizes, a majority of taxa 

were still represented. However, the low abundant and infrequent taxa still have downstream 

effects for forensic analysis. 

Random forest modeling was affected by low abundant and infrequent taxa. While 

sample area classification error (14% for phylum and 4% for family) was lower than manner of 

death classification error (phylum and family error rates were nearly 56%), among all minimum 

library sizes, sample area classification error and manner of death classification error were 

relatively similar (Table 5, Table S22). Although the error rates among library sizes were overall 

similar, some of the important indicator taxa for classifications were unique to certain groups. 

For example, Bifidobacteriaceae was an important (one of the highest mean Gini decrease) 

indicator of manner of death for subsamples 60 and 120 and at rarefaction levels 0 and 1,000, 

while Spirochaetales was an indicator for sample area using subsamples 120 and 188 (Table 

S23). For downstream applications in forensic microbiology, changing indicator taxa among 

minimum library sizes indicated that lack of standardization among studies can lead to 

differentiation among results interpretation. 

Sample Size Analysis 

Overall, sample size did not affect overall microbial community metrics in a significant 

way. Sample size remained relatively constant among minimum library sizes (standard 

deviations- no rarefaction: 47.4; 7,000: 45.1; 1,000: 46.0) (Table S24). The total number of 

sequences, as well as the number of unclassified sequences at phylum and family level, increased 

1.5-2x with increasing sample number from 60, 120, to 188 (Table S24), but there were no 

differentially abundant taxa among subsamples (Figure 4B). Alpha-diversity metrics did not 

significantly differ among sample sizes (Kruskal-Wallis; P value > 0.05; Figure 4D, Table S19-

S20), but observed richness did increase with increasing sample size, as larger sample sizes 

captured more infrequent taxa. For subsamples within each sample area and minimum library 

size, there were no significant differences (PERMANOVA; P > 0.05) among beta-diversity and 

beta-dispersion and no clear clustering by subsample (Figure 4E; Table S18). 

However, increasing sample size changed the number of low abundant and infrequent taxa. 

Comparing the core microbiome, most OTUs (569) were shared among all sample sizes, and 

were represented in higher log abundance (greater than the mean log abundance) compared to 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

non-core taxa (Figure 5A, Table S25). Although, there were a few OTUs shared among 

subsamples and unique to the subsample 188 (Figure 5A, Table S25). Much like minimum 

library size, error rates for predicting sample area among sample sizes were around 14% for 

phylum and 4% for family, and around 56% for manner of death classifications (Table 5). Again, 

there were indicator taxa unique to certain subsamples (Table S23). The increase of infrequent 

and low abundant taxa among the sample sizes are indicative that sample size should be taken 

into consideration for downstream application for forensic microbiology studies, and 

comparisons across studies. 

Discussion 

Our bioinformatic parameter comparison using a large postmortem microbiome dataset 

shows that parameters can affect downstream analyses, including microbial community structure 

results. We also show that sample size and minimum library size affect the resulting number of 

low and infrequent taxa and potential indicator taxa for model building. While the results here 

are specific to this postmortem dataset of targeted amplicon (16S rRNA) sequencing on the 

Illumina platform, similar considerations should be made for other pipelines and platforms that 

may be used in downstream applications of forensic microbiology in the criminal justice system. 

Pipeline Comparison  

Pipelines differed in many ways, including the development, parameters, and usability 

(19). To accurately compare pipelines, we standardized as many steps as possible; i.e. using 

SILVA as a reference database. The steps that could not be standardized among pipelines, 

including different taxonomic assignment and alignment algorithms, were likely responsible for 

the differences in microbial community characterizations (20).

Overall, we show that MG-RAST finds a different microbial community structure 

compared to mothur and QIIME2, due to reduced diversity metrics and increased unclassified 

and differentially abundant taxa. These results are similar to previous work comparing MG-

RAST to other pipelines (25). However, there are few studies that did not find the same 

reduction in diversity metrics and increased unclassified reads (15,19). Although, both studies 

focused on a smaller sample size of similar microbial communities (35 infant gut microbiome 

samples) or in silico generated data that does not approximate forensic data. Due to the results 
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from this postmortem dataset, the reduction in microbial information (samples, classified 

sequences),the varied community structure (differentially abundant taxa, reduced alpha- and 

beta-diversity), and the higher random forest classification error, MG-RAST is not the 

appropriate tool for this type of forensic dataset moving forward. 

The overall microbial community structure had minimal differences among QIIME2 and 

mothur, which was a similar result to previous studies (15,19). It is important to note that we 

rarefied samples to 1,000 sequences, to account for the sequence reduction in MG-RAST, but 

this could be limiting the differences among mothur and QIIME2. This study was comparison of 

bioinformatic pipelines using machine learning outcomes. Rather than an exhaustive search of 

machine learning algorithms (29), we used a standardized user-friendly methodology of random 

forest classification (out-of-bag error) after comparison to the test-set validations were within 2% 

error rate as OOB error rate. QIIME2 had a higher overall classification error than mothur, but 

resulted in less than 1% difference from mothur at the family taxonomic level. Overall, the 

increased unclassified taxa and in silico data error for mothur made QIIME2 the more 

appropriate choice for downstream analyses in this study. 

Minimum Library Size

Rarefying, as a method of normalizing varying library sizes, should be of interest for 

forensic applications in the future as standardizing methodology among labs will be important 

for actual casework. Many of the current postmortem microbiome studies have a variety of 

minimum library sizes chosen based on alpha-rarefaction curves (2,3) or based on minimum 

library size of the samples (56). We chose three levels of rarefying for the postmortem data, 

based on these different approaches: no rarefaction, 7,000 (based on alpha-rarefaction curves), 

and 1,000 (minimum library size). Previous research determined that in large enough datasets of 

very different microbial communities (postmortem data across body site) (2), rarefying should 

not negatively impact downstream analysis (24). However, we found differences among the 

normalization strategies, indicating that rarefying should be taken into consideration for forensic 

microbiome analysis. While we showed that more low abundance and infrequent taxa among 

cases are captured without rarefying, downstream statistical analyses commonly used in forensic 

microbiology studies (i.e. ANCOM, PERMANOVA) assume similar library sizes (24). 

Demonstrated by the PCoA plot (Figure 4F) a large majority of the postmortem samples in this 
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study clustered by minimum library size, a result that was found in previous normalization 

research (24). This clustering, and indication of distinct microbial communities, could possibly 

limit the ability for laboratories to compare data across studies if normalization was not 

standardized. 

For standardization in forensic analyses, normalization of library size should be taken 

into consideration due to the effect on downstream statistical analyses. Random forest 

classification has potential forensic applications for many analyses including manner of death 

determination. Error rates of classifications (both of sample area and manner of death) were 

generally stable among minimum library size but decreased with larger library sizes, perhaps as 

more of the infrequent taxa become important for classification. While classification of sample 

area is generally consistent with other studies (2), the classifications of manner of death in this 

study are generally lower than previously reported studies with the same dataset (9). However, a 

previous study provided a comprehensive evaluation of machine learning algorithms, which was 

not the major focus of this study (29). Rather, by using a standardized, user-friendly open-access 

methodology of random forest classification, we illustrated the importance to future researchers 

to consider parameters, such as library size, even if they are not a primary focus of the study. 

Indicator taxa that are important for classifications changed among minimum library sizes, which 

has implications for forensic cases, as indicator taxa among classifications will be potentially 

very important for downstream applications in casework. 

Sample Size 

There is a tradeoff for researchers to consider when including more samples in analyses. 

Sample sizes for studies are mostly limited by resource availability, including funding. It is not 

realistic for all studies to have very large sample sizes. However, to improve forensic 

microbiology for future use in the criminal justice system, more robust tools that capture low 

abundant and infrequent taxa encountered in real cases are needed. 

Our postmortem microbiome dataset is the largest analyzed to date for postmortem 

microbiome studies (2). For downstream forensic applications, including more samples in 

predictive models makes those models more robust to the variability present in real forensic 

cases. We found patterns of relative abundance did not change as more samples were included in 

the analysis, but observed richness did increase with increasing sample size, as larger sample 

sizes captured more infrequent taxa. As expected, increasing subsample size increased error rate 
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for the random forest classifications (sample area and manner of death). However, those random 

forest models are arguably more robust for downstream forensic applications (29), therefore 

including as many sample as possible in forensic microbiology studies is best practice moving 

forward. 

Conclusions

This work was the first to compare pipeline and parameters for a forensically relevant, 

large, and heterogenous dataset. Based on the results of this study, we make the following 

recommendations for future forensic microbiology studies: 1. The QIIME2 pipeline is the most 

suitable pipeline for this type of postmortem microbiome dataset; 2. Rarefying data is the best 

normalization practice for downstream statistical analyses (24). However, an appropriate 

minimum library size should be chosen based on richness captured (alpha-rarefaction plots), 

instead of the smallest library size among samples; and 3. Sample size should be maximized to 

captures lower abundant and infrequent taxa among the data for more robust model building. 

However, sample size must be weighed with other practical considerations, such as financial 

constraints. 

Considering the potential application of forensic microbiology to the criminal justice 

system, continued research to optimize computational methodology will be important for 

downstream applications. While model building was not the focus of this study, the preliminary 

results show how parameter choice can potentially affect downstream applications, which is 

important for future research and casework.  Applying bioinformatic workflows necessary for 

microbial data in forensic casework will be challenging as command line software and microbial 

data analysis is not already part of the examiner workflow. The constant influx of pipelines 

available, changing parameter options, and updates will be a barrier to creating an SOP for 

forensic casework. However, this study is an important part of laying the groundwork for 

standardizing computational methodology for forensic microbiology research, and will help set 

the precedent for forensic casework in the future. 
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TABLE 1—Summary of parameter differences among pipelines compared in this study. Adapted 

from Plummer et al. (19). Bolded text were parameters chosen for running the pipelines.

 QIIME2 mothur MG-RAST

License Open-Source Open-Source Open-Source

Language Python C++ Perl

Current 

Version

2019.1 1.39.5 4.0.3

Cited (Google 

Scholar)

18,800 14,300 4,620

Web Based 

Interface

GUI, API, CLI API, CLI GUI, API

Quality 

Control

YES YES YES

16S rRNA 

Database

SILVA, Greengenes, 

UNITE

SILVA, Greengenes, RDP SILVA, Greengenes, RDP, 

ITS

Alignment 

Method

mafft Needleman-Wunsch BLAT

Taxonomic 

Assignment

Naive Bayes classifier Wang BLAT
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Chimera 

Detection

VSEARCH VSEARCH VSEARCH

User Support Forum, tutorials, FAQs Forum, SOPs, FAQs, user 

manual

Video tutorials, FAQs, user 

manual, ‘How to’ section 

on website

TABLE 2—Summary of sample number and sequence read differences among pipelines. The 

total number of samples among pipeline differed, as some samples are removed for not having 

the minimum required sequences (1,000), or in the case of MG-RAST, for not having the 

minimum 1,000,000 base pairs before filtering.

Pipeline

Total Number 

of Samples

Number 

of 

Mouth 

Samples

Number 

of 

Rectum 

Samples

Total 

number of 

reads after 

filtering

Number of 

Unclassified 

Phylum 

Reads

Number of 

Unclassified Family 

Reads

QIIME2 324 169 155 11,375,659 2,399 2,832

mothur 324 169 155 12,861,356 594 2,419

MG-

RAST 150 97 53
2,167,164 40,530 43,576

TABLE 3—Random Forest classification error among pipelines. Random forest classifications 

were made with 1,000 trees, and out-of-bag (OOB) error was reported. Classifications of sample 

area (mouth and rectum) and manner of death (suicide, homicide, accident, natural) were made 

for phylum and family taxonomic level. Percentages and number of misclassifications from the 

total number of samples were included.

Manner of Death 

Taxonomic 

Level
Pipeline

Sample Area Error Rate 

(Misclassifications/ Total) 

Error Rate 

(Misclassifications/ 

Total)
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Phylum QIIME2 16.05% (52/324) 58.64% (190/324)

Phylum mothur 12.65% (41/324) 56.79% (184/324)

Phylum MG-RAST 16.67% (25/150) 72% (108/150)

Family QIIME2 4.94% (16/324) 57.72% (187/324)

Family mothur 4.01% (13/324) 57.41% (186/324)

Family MG-RAST 5.33% (8/150) 60% (90/150)

TABLE. 4—Total number of sequences that remained after filtering, and unclassified sequences 

(phylum and family taxonomic level) among sample area, sample size, and minimum library size.

Pipelin

e

Sample 

Area

Sample 

Size

Minimum 

Library 

Size

Total Number of 

Sequences

Unclassified 

Phylum

Unclassified 

Family

QIIME

2
Mouth 60

No 

Rarefaction
2,115,130 4,988 7,660

QIIME

2
Mouth 60 7,000 405,998 1,059 1,481

QIIME

2
Mouth 60 1,000 60,000 157 207

QIIME

2
Rectum 60

No 

Rarefaction
2,349,815 27,026 30,707

QIIME

2
Rectum 60 7,000 405,981 5,200 5,438

QIIME

2
Rectum 60 1,000 59,996 733 772

QIIME

2
Mouth 120

No 

Rarefaction
4,182,126 7,721 12,999

QIIME

2
Mouth 120 7,000 811,998 1,935 2,703
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QIIME

2
Mouth 120 1,000 119,000 265 381

QIIME

2
Rectum 120

No 

Rarefaction
3,834,632 35,019 36,583

QIIME

2
Rectum 120 7,000 734,993 6,154 6,762

QIIME

2
Rectum 120 1,000 106,999 862 958

QIIME

2
Mouth 188

No 

Rarefaction
5,874,406 14,099 22,323

QIIME

2
Mouth 188 7,000 1,154,999 4,044 5,424

QIIME

2
Mouth 188 1,000 168,999 612 819

QIIME

2
Rectum 188

No 

Rarefaction
5,463,539 63,667 70,089

QIIME

2
Rectum 188 7,000 1,056,993 12,498 13,963

QIIME

2
Rectum 188 1,000 155,000 1,798 2,017

TABLE 5—Random Forest classification error among sample sizes and minimum library sizes. 

Random forest classifications were made with 1,000 trees, and out-of-bag (OOB) error was 

reported. Classifications of sample area (mouth and rectum) and manner of death (suicide, 

homicide, accident, natural) were made for each taxonomic level, rarefaction level, and 

subsample. Percentages and number of misclassifications from the total number of samples were 

included.

Taxonomic 

Level

Minimum 

Library Size

Sample 

Size

Sample Area Error 

Rate 

(Misclassifications/ 

Manner of Death 

Error Rate 

(Misclassifications/ 
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Total) Total)

Phylum 1,000 60 14.17% (17/120) 55.83% (67/120)

Phylum 1,000 120 15.49% (35/226) 58.41% (132/226)

Phylum 1,000 188 17.59% (57/324) 57.41% (186/324)

Phylum 7,000 60 14.66% (17/116) 57.76% (67/116)

Phylum 7,000 120 14.03% (31/221) 57.47% (127/221)

Phylum 7,000 188 14.24% (45/316) 56.33% (178/316)

Phylum No Rarefaction 60 12.50% (15/120) 54.17% (65/120)

Phylum No Rarefaction 120 14.29% (33/231) 58.44% (135/231)

Phylum No Rarefaction 188 14.50% (48/331) 58.61% (194/331)

Family 1,000 60 5.83% (7/120) 54.17% (65/120)

Family 1,000 120 3.10% (7/226) 56.64% (128/226)

Family 1,000 188 4.63% (15/324) 56.17% (182/324)

Family 7,000 60 5.17% (6/116) 55.17% (64/116)

Family 7,000 120 4.07% (9/221) 59.28% (131/221)

Family 7,000 188 5.06% (16/316) 58.54% (185/316)

Family No Rarefaction 60 4.17% (5/120) 54.17% (65/120)

Family No Rarefaction 120 4.76% (11/231) 57.58% (133/231)

Family No Rarefaction 188 3.93% (13/331) 58.31% (193/331)

Figure Legends

FIG. 1—Workflow for bioinformatic analysis. Several of the steps were shared among pipelines 

including quality control and aligning sequences. Commands from the code are in square 

brackets, while parameters are in parentheses. OTU: Operational taxonomic unit. 

FIG. 2—In silico data error among pipelines. In silico raw sequence data were obtained from 

mockrobiota (44) and processed through each pipeline using the same methods as the 

postmortem microbiome dataset. Four samples were processed: two ‘even’ and two ‘staggered’ 
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samples representing different microbial community compositions. (A) Taxa output from each 

pipeline were compared to the taxonomic reference dataset available on mockrobiota. Taxa that 

were present in both the mockrobiota taxonomic reference dataset and the pipeline output was 

labeled ‘correct taxa.’ Taxa present in only the mockrobiota taxonomic reference dataset were 

considered false negatives, while taxa present only in the pipeline outputs were considered false 

positives. Samples within each pipeline are ordered along the x-axis as: even, even, staggered, 

staggered. (B-D) Abundance of taxa (based on sequence number) from pipeline output versus 

expected abundance of taxa based on the mockrobiota abundance reference dataset for each 

sample. Negative abundances were assigned to samples that were considered false negatives. 

The R2 line represented the actual concordance. (B) MG-RAST  (C) mothur (D) QIIME2. Please 

see S16 for summary of plot A.   

FIG. 3—Microbial community composition among pipelines. (A) Relative abundances of the five 

most predominate phyla for mouth samples among pipelines (MG: MG-RAST, M: mothur, Q: 

QIIME2). (B) Relative abundances of the five most predominate phyla for rectum samples among 

pipelines (MG: MG-RAST, M: mothur, Q: QIIME2). (C) Alpha-diversity metrics for each sample 

area (mouth and rectum) and pipeline including: observed richness, Chao1, Shannon diversity, 

and Inverse Simpson diversity (InvSimpson). Kruskal-Wallis and post-hoc Nemenyi tests for 

alpha-diversity metrics detected significant differences (P < 0.05) among pipelines and sample 

areas. (D) The principal coordinate analysis (PCoA) of Jaccard distances among sample area 

and pipeline. Ellipses indicated sample area, for a 95% confidence interval. Permutational 

multivariate analysis of variance (PERMANOVA) detected significant differences (P < 0.05) 

among pipelines for each sample area, and all pairwise differences were statistically significant 

(P < 0.05). Please see S7-S14 for complete summary of relative abundance, Analysis of 

composition of microbiomes (ANCOM), alpha-diversity, and beta-diversity results.  

 

FIG. 4—Microbial community composition among sample sizes and minimum library sizes. (A) 

Relative abundances of the five most predominate phyla among subsamples with no rarefaction. 

(B) Relative abundances of the five most predominate phyla among minimum library sizes of 

subsample 188. (C) Alpha-diversity metrics for each sample size with no rarefaction including: 
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observed richness, Chao1, Shannon diversity, and Inverse Simpson diversity (InvSimpson). 

Kruskal-Wallis and post hoc Nemenyi tests for alpha-diversity metrics did not detect significant 

differences (P < 0.05) among subsamples. (D) Alpha-diversity metrics for each minimum library 

size of subsample 188 including: observed richness, Chao1, Shannon diversity, and Inverse 

Simpson diversity. Kruskal-Wallis and post hoc Nemenyi tests for alpha-diversity metrics 

detected significant differences (P < 0.05) among pairwise comparisons including the 1,000 

sequence minimum library size for observed richness. (E) The principal coordinate analysis 

(PCoA) of Jaccard distances among subsamples with no rarefaction. Permutational multivariate 

analysis of variance (PERMANOVA) did not detect significant differences (P < 0.05) among 

sample sizes. (F) The principal coordinate analysis (PCoA) of Jaccard distances among 

minimum library sizes of subsample 188. PERMANOVA detected significant differences (P < 

0.05) among rarefaction levels and all pairwise differences were statistically significant (P < 

0.05). Please see S17-S20 for complete summary of relative abundance, alpha-diversity, and 

beta-diversity results.  

FIG. 5—Core microbiome among sample sizes and minimum library sizes. In this case, core 

microbiome is considered by OTU (operational taxonomic unit) membership among defined 

groups (sample size or minimum library size). (A) Occupancy vs. log abundance of shared OTUs 

among sample sizes at no rarefaction. The horizontal line indicated mean log abundance. (B) 

Occupancy vs. log abundance of shared OTUs among minimum library sizes for 188 subsample. 

The horizontal line indicated mean log abundance.  Please see S21 and S25 for complete 

summary of core microbiome results.    
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