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Summary

Background Palmoplantar keratodermas (PPKs) are a heterogeneous group of skin
disorders characterized by thickening of the epidermis on the palms of the hands
and soles of the feet. Individuals with PPKs report varying degrees of palmoplan-
tar pain that can severely affect quality of life.
Objectives To provide an overview of the scope of pain in hereditary PPKs and
highlight candidate mechanisms underlying this pain.
Methods In this review, we discuss several forms of hereditary PPKs, with a focus
on the incidence, nature, candidate underlying mechanisms and treatment of pain
in these conditions. We also synthesize this information with current understand-
ing of the mechanisms contributing to pathological pain in other conditions.
Results Pain is a major problem for many, but not all individuals with hereditary
PPK. This pain remains poorly understood, inconsistently reported and inade-
quately treated. The heterogeneity of pain prevalence and presentations across the
many forms of PPK suggests that there may exist corresponding heterogeneity in
the cellular and molecular mechanisms that drive and shape PPK-associated pain.
Some candidate mechanisms include structural (e.g. fissures and blisters), infec-
tious and immune/inflammatory processes. However, a growing body of evi-
dence also supports the occurrence of localized neuropathic alterations in the
affected skin of individuals with PPK, which might contribute to their pain.
Conclusions Greater understanding of these diverse mechanisms may provide a
rational basis for the development of improved and targeted approaches to pre-
vention and treatment of pain in individuals with PPK.

What’s already known about this topic?

• Pain is a prominent symptom in hereditary palmoplantar keratodermas (PPKs).

• Pain in patients with PPK can be difficult to treat.

• Pain mechanisms in PPKs are poorly understood.

What does this study add?

• This study defines multiple potential sources of pain in PPK, including both struc-

tural lesions (fissures, blisters) and specific cell types.

• This review highlights the variability of pain among several forms of hereditary PPK.

• This study provides mechanistic insights into how neuropathic and inflammatory

mechanisms might contribute to pain in some forms of PPK.

Palmoplantar keratodermas (PPKs) are rare skin disorders char-

acterized by profound thickening of the skin, particularly on

the palms of the hands and the soles of the feet, as a result of

hyperkeratosis. PPKs can be acquired through malnutrition,

inflammatory disease, paraneoplastic effects or chemical expo-

sure, but are most commonly inherited.1–4 Gain- or loss-of-
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function mutations in at least 25 genes have been implicated

in hereditary PPK,5 although the total may be substantially

higher (https://panelapp.genomicsengland.co.uk/WebService

s/list_panels/). Examples include genes encoding ion chan-

nels, secreted proteins, adhesion molecules and keratins.5 Pain

can be a prominent symptom of PPK and can significantly

impact quality of life. Despite similar histological presenta-

tions, some forms of PPK are more consistently associated

with pain than others. However, the rarity of PPK makes gath-

ering data on pain prevalence difficult, and pain is not always

addressed in case reports. This review focuses on candidate

mechanisms underlying pain in PPK (Fig. 1) and describes a

few PPKs that exemplify the spectrum of pain phenotypes seen

in these conditions.

Multiple candidate structural and cellular
contributors to pain in palmoplantar
keratodermas

Blisters and fissures

One ‘structural’ disruption that might contribute to pain in

PPK is subepidermal blistering, which is observed in some,

but not all individuals with PPK. These blisters have been

attributed to excessive sweating near PPK lesions.6,7 A second

likely structural contributor to PPK-associated pain is fissure

formation in the callused skin with attendant wound-related

symptoms.3,8 While these two types of skin disruption

undoubtedly contribute to pain in PPK, multiple findings,

described in greater detail below, suggest that additional fac-

tors likely influence the incidence or severity of pain in PPK.

Keratinocytes

A defining pathological feature of PPK is overproliferation and

abnormal differentiation of epidermal keratinocytes. Although

keratinocytes are best recognized as constituents of the epider-

mal barrier,9 they also play roles in immune and sensory

functions. With respect to pain sensation, the outer mem-

branes of keratinocytes and of the sensory neurons that medi-

ate pain are closely associated within the epidermis.10,11

Keratinocytes also express numerous receptors and ion chan-

nels capable of activating signalling pathways in response to

painful chemical, thermal and mechanical stimuli.12,13 They

also release soluble molecules capable of directly or indirectly

stimulating or modulating pain, including small molecules

(e.g. ATP,14,15 prostaglandin E2,
16,17 nitric oxide18,19 and

acetylcholine20), neurotrophins21, bioactive peptides22–24 and
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Fig 1. Potential sources of pain in palmoplantar keratoderma (PPK) skin. (a) Structural lesions seen in some patients with painful PPK. Black fibres

represent nociceptors in basal state. Red fibres represent nociceptors sensitized by the injury associated with fissures or blisters. (b) Cell types that

might contribute to either the development of pain or touch-evoked allodynia in PPK skin. Arrows represent soluble factors released by the

indicated cell types that could sensitize nociceptive neurons. Nociceptive neurons can be sensitized (to augment pain sensation) or injured (i.e.

rendered neuropathic) by either extrinsic factors emanating from the indicated cell types or by intrinsic factors such as PPK-associated gene

mutations. Sensitized or neuropathic nociceptors in turn sensitize spinal cord and brain circuits, which make inputs from low-threshold

mechanoreceptors feel painful. Epi, epidermis; Derm, dermis.
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a variety of chemokines, cytokines and other immunomodula-

tory proteins [e.g thymic stromal lymphopoietin,25 interleukin

(IL)-1a,26 IL-1b,27 IL-628 and tumour necrosis factor

(TNF)28]. Indeed, transgenic mouse studies have provided evi-

dence that epidermal cell stimulation is sufficient to activate

sensory neurons and produce pain-related behaviours in

healthy mice, and is required for full responses to mechanical

or thermal stimulation.15,29,30

Based on these findings, it is plausible that PPK pain stems

in part from signals emerging from pathologically altered ker-

atinocytes. However, pain is not universal among individuals

with PPK, and calluses that form on healthy feet as a result of

prolonged exercise are more likely to suppress pain than cause

it.31,32 Therefore, while the specific phenotypic characteristics

of keratinocytes in different forms of PPK may influence the

predilection towards pain, the existence of keratoderma alone

is not sufficient to create pain.

Immune/inflammatory cells

PPK lesions frequently contain monocytic, granulocytic and/or

lymphocytic infiltrates.33–37 Skin fissures also trigger inflam-

matory cell recruitment. Immune cells represent a driving

force behind inflammatory pain.38 This is, in part, because

cytokines and other molecules released by these immune cells

can enhance sensitivity to painful stimuli.39 It is also conceiv-

able that mutations causing PPK might directly influence

immune cell functions.40

Microorganisms

Disruptions of epidermal homeostasis and barrier function,

both common in PPK, alter skin commensal organism compo-

sition and make skin susceptible to superinfection with micro-

bial pathogens.41 Bacteria produce molecules that activate or

sensitize nociceptive neurons,42,43 while fungal products can

interact with immune cells to produce inflammatory pain.44,45

The interplay between immune cells, invading microorganisms

and sensory neurons might therefore shape pain in PPK.

Sensory neurons and associated cells

In healthy skin, the perception of pain is triggered by the acti-

vation of nociceptors, i.e. sensory neurons that are tuned to

stimuli that signal or pose a threat of tissue damage. Most

nociceptors terminate as free nerve endings in the epidermis46

or within the walls of dermal blood vessels.47 Chronic pain is

often characterized as inflammatory or neuropathic in origin.

Inflammatory pain results from damage to or inflammation

within the tissues innervated by nociceptors, whereas neuro-

pathic pain results from injury to the nervous system itself. In

both situations, the presence of numerous pronociceptive

molecules renders nociceptors hypersensitive.39,48 Inflamma-

tory and neuropathic pain can be associated with either

increased49 or, paradoxically, decreased epidermal nerve fibre

density.50–52 Nerve injury and inflammation also alter the

processing of incoming sensory information by spinal cord

and brain pain circuits, so that even input from low-threshold

mechanoreceptive neurons (LTMRs) that normally convey the

perception of nonpainful touch is ‘inappropriately’ perceived

as painful (i.e. allodynia).53

Diverse pain phenotypes in hereditary
palmoplantar keratodermas

Pain in pachyonychia congenita

One PPK with an especially high prevalence of pain is pachy-

onychia congenita (PC), an autosomal dominant disorder

caused by mutations in genes encoding keratin proteins 6a,

6b, 6c, 16 or 17.54–60 The hallmark symptoms of PC include

plantar hyperkeratosis, oral leucokeratosis and thickened nails.

The majority of individuals with PC also report pain, most

notably at the sites of palmoplantar calluses. A survey con-

ducted using the International Pachyonychia Congenita

Research Registry revealed that 89% of individuals with PC

experience plantar pain and this figure was 97% for those over

the age of 10 years who had PC.61 This pain has been

described as sharp, burning, throbbing, or tingling sensations

in the affected areas of the feet, which is often exacerbated by

mechanical force, such as walking or standing.62,63 The pain

seems to be independent of severity of hyperkeratosis. It can

be so severe that many individuals will crawl or use a wheel-

chair to minimize discomfort.59,64 The specific keratin gene

mutation an individual harbours may determine the severity

of their pain.65–67

Structural skin lesions are important candidate contributors

to pain in PC. High-resolution ultrasound studies of individu-

als with PC revealed what appeared to be subepidermal blisters

that were not seen in individuals with other PPKs who did

not experience pain in their lesions.7 It is possible that pres-

sure applied to blisters through thickened calluses in affected

PC skin activates sensory nerve fibres to produce pain. If these

blisters are linked to sweating, this may also explain why pain

in some individuals with PC is worse in summertime.68

There is also growing evidence supporting a neuropathic

pain component in PC. In a quantitative cross-sectional survey

of 35 individuals with PC using two validated pain question-

naires, 62% had results consistent with neuropathic pain,

while 20% were found to have mechanical detection threshold

abnormalities in quantitative sensory testing.67 In a subsequent

study, 62 individuals with PC completed neuropathic pain

questionnaires and underwent quantitative sensory testing. Of

these, 86% reported pain in the feet, 62% had higher than

normal neuropathic pain questionnaire scores and 55%

reported allodynia in the affected region.63 During quantitative

sensory testing, individuals with PC exhibited a higher thresh-

old for detection of both innocuous warm and cool stimuli

and mechanical stimuli, and lower thresholds for mechanically

evoked pain. A lower threshold for mechanically evoked pain

was also observed in a smaller study of 10 patients with PC.69

These findings provide evidence for a complex sensory

© 2019 British Association of Dermatologists British Journal of Dermatology (2020) 182, pp543–551

Pain in palmoplantar keratoderma, R.L. Weinberg et al. 545



phenotype in PC that may have elements of both inflammatory

and neuropathic pain, that includes altered function of noci-

ceptive and non-nociceptive neurons, and that might involve

perturbations in local and systemic pain processing.

Further evidence for a neuropathic component of PC-asso-

ciated pain comes from a histological study in which affected

PC skin was found to exhibit decreased sweat gland innerva-

tion, alterations in the morphology of epidermal nerve fibres

and a trend towards decreased intraepidermal nerve fibre den-

sity, which are phenomena characteristic of neuropathic pain

conditions.69 Affected PC skin also exhibited increased blood

vessel density within dermal papillae and increased Merkel cell

density in the basal epidermis, even compared with skin from

individuals with PPK owing to an aquaporin mutation or from

individuals with plantar calluses resulting from frequent run-

ning.69 Merkel cells are epidermal cells derived from ker-

atinocytes that form synaptic contacts with a subset of slow-

adapting (SA)I-LTMRs. Merkel cells are themselves mechani-

cally sensitive, and help shape the kinetics of SAI

responses.13,70,71 Genetic ablation of Merkel cells decreases

mechanical sensitivity and texture discrimination.72,73 Recent

studies reported increased Merkel cell density in rat skin fol-

lowing peripheral nerve injury or repetitive shaving.74,75 This

might explain the increased Merkel cell density in affected PC

skin, as PC lesions exhibit many features of injury responses

and because individuals with PC sometimes shave their cal-

luses. One hypothetical sequence of events suggested by these

findings is that the neuropathic changes in cutaneous sensory

neurons innervating PC lesions lead to abnormal sensitivity of

these neurons and consequent spinal sensitization. Mechani-

cally evoked input from the increased number of Merkel cells

onto sensitized spinal circuits then produces touch-evoked

pain.

Gene expression and proteomics analyses in affected skin of

individuals with PC and KRT16 null mice, which exhibit many

histological features of PC, have revealed changes in the

expression of numerous genes, including some that could be

ontologically classified as nociceptive and neuropathy

related.36,76–78 Another recent study identified exaggerated

oxidative stress in PPK lesions in both KRT16 null mice and

individuals with PC owing to lower activity of the transcrip-

tion factor, nuclear factor erythroid-derived 2-related factor

2,79,80 which regulates the expression of antioxidants and

anti-inflammatory proteins and has been implicated in

pain.81,82 PC lesions also exhibit reduced keratinocyte expres-

sion of nociceptin/orphanin FQ opioid peptide receptor,83 a

receptor that produces analgesia in multiple animal models of

inflammatory and neuropathic pain.83,84 All these changes rep-

resent potential mechanistic contributors to PC pain.

Therapeutic approaches to pain in
pachyonychia congenita

The avoidance of mechanical stress on palmoplantar surfaces,

topical retinoids, vitamin D treatment, nonsteroidal anti-

inflammatory drugs, gabapentin and opioids are all used to

manage pain in individuals with PC, but often do not provide

complete relief.63,85,86 Many individuals shave their calluses to

curb their pain, although this treatment has a short-lasting

effect (or is ineffective) and can exacerbate pain if overshaving

occurs.85

Some small studies have reported pain relief and improve-

ment in quality of life in individuals who received off-label

treatment with rapamycin or statins.87–89 Consequently, the

Food and Drug Administration recently granted fast-track des-

ignation for a trial of high-strength topical rapamycin to treat

PC. RNA interference to inhibit expression of mutant keratins

represents another potential means of treating PC that showed

promise in animal studies and in one patient.90–92 In this

study the individual exhibited both a reduction in callus size

and a reduction in mechanical hypersensitivity at the drug-

treated site. The apparent coincident reversal of anatomical

and sensory symptoms suggests both that PC-associated pain

hypersensitivity is reversible and that disease-modifying

approaches might be effective to treat this pain. Case studies

have also reported anecdotal success at alleviating pain by

injecting botulinum toxin into the feet of individuals with PC,

either alone or in combination with gabapentin. These studies

reported a reduction in pain and blistering within a week of

treatment and a cessation of symptoms for 6 months.59,68,93,94

Together with the pain phenotyping results described above,

the possible contribution of gabapentin to pain reduction in

PC further supports a neuropathic ethology and suggests that

other neuropathic pain-oriented therapies may be worth con-

sideration.

Pain in Olmsted syndrome

Olmsted syndrome (OS) is another characteristically painful,

but rare, hereditary PPK. OS can be caused by a gain-of-func-

tion mutation in the gene encoding the nonselective cation

channel transient receptor potential vanilloid (TRPV)3 or a

loss-of-function mutation in the membrane-bound transcription factor

protease, site-2 (MBTPS2) gene.95–98 Symptoms of OS include dif-

fuse and often mutilating palmoplantar hyperkeratosis, periori-

ficial keratotic plaques, leucokeratosis, alopecia and corneal

abnormalities.96,99,100 In a survey of 50 OS case reports, 21

mentioned pain.99 This pain results in sleep disturbances,

mobility difficulties and interference with grasping.95,101,102

Some individuals with OS also experience erythromelalgia, a

condition in which the skin becomes intensely red and pain-

ful, often in response to warming.34,103

Home remedies, wet soaks, salicylic acid, urea, tar, shale

oil, antibacterial treatment, retinoids and corticosteroids have

been utilized to treat OS pain.101,104,105 More extreme mea-

sures such as complete removal of the affected skin and subse-

quent skin graft have also been used.106 Though some

individuals have reported initial relief from this procedure,

keratoderma often returns in the grafted tissue.99,107

One candidate contributor to OS pain is the increased activ-

ity of the protein product of the mutated TRPV3 gene. TRPV3

is a member of the transient receptor potential (TRP) channel
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family of nonselective cation channels. Many TRP channels are

expressed in peripheral sensory neurons, and several have

been implicated as initiators or amplifiers of pain.108–111

TRPV3 is most prominently expressed in skin keratinocytes,

but has been detected in other cell types, including nocicep-

tive sensory neurons and immune dendritic cells such as

Langerhans cells.112,113 Absence of TRPV3 in knockout mice

leads to impaired epidermal maturation, a compromised epi-

dermal barrier and a wavy hair phenotype.114,115 Trpv3 knock-

out mice have also been reported to exhibit modest defects in

heat-evoked pain sensation, though this phenotype is strongly

dependent on genetic strain.109,116–118 Two mutant rodent

lines, characterized by alopecia, bear autosomal dominant

mutations in Trpv3 at the codon encoding Gly573, which is

also mutated in some human OS pedigrees.37 The resulting

mutant TRPV3 proteins exhibit constitutive activity and hyper-

responsiveness to agonist stimulation.119 Pain studies have not

been reported in relation to the mice bearing OS-alike Trpv3

mutations. However, a similar pattern of constitutive activity

has been observed in multiple mutant human TRPV3 proteins

encoded by OS alleles.105 It remains to be determined whether

TRPV3 gain of function leads to OS pain solely by virtue of its

effects on keratinocyte biology or whether it also reflects

TRPV3 hyperfunction in neurons or other cell types. Addi-

tional candidate contributors to pain in OS include Candida and

bacterial infections, which are common in the hands and feet

of individuals with this disorder,95,120 and immunological/in-

flammatory cell changes.101,105,120,121

Another gene linked to OS, MBTPS2, encodes a zinc metallo-

protease involved in the endoplasmic reticulum (ER) stress

response and in the activation of the sterol regulatory ele-

ment-binding protein transcription factor, which in turn regu-

lates expression of the enzymes involved in cholesterol

biosynthesis.95,98 A defect in the ER stress response in patients

with MBTPS mutation might alter cellular responses to injury.

Alternatively, disruptions in sterol biosynthesis might impair

barrier function122 and pave the way for superinfection, lesion

formation and consequent pain.

Additional palmoplantar keratodermas with
variable prevalence of pain

Many other forms of PPK have been associated with pain,

albeit with a frequency that varies among conditions. One

example is Mal de Meleda (MDM), an autosomal recessive

PPK attributable to loss-of-function mutations in the gene

encoding secreted lymphocyte antigen 6/urokinase-type plas-

minogen activator receptor-related protein (SLURP)-1,123 the

diagnostic hallmarks of which include diffuse palmoplantar

hyperkeratosis, nail anomalies, perioral erythema, odour and

malignant melanoma.124 The case reports that describe pain as

a symptom of MDM predominately attribute it to secondary

fungal or microbial infection or to skin lesions that result

from the hyperkeratosis.35,125,126 However, SLURP-1 is also

expressed in nociceptive neurons,127 inhibits TNF-a release

from macrophages and keratinocytes,128,129 and is necessary

for normal T-cell activation and function.40 Pain in MDM

might thus arise through both keratinocyte-dependent and

keratinocyte-independent mechanisms. Pain has also been

reported in some individuals with Vorner disease, a common

diffuse epidermolytic PPK caused by a mutation in KRT9,130

but has been described predominantly in the context of fis-

sures or blisters in affected skin.3,131,132 A few additional PPKs

in which pain has sometimes been described include Richner-

Hanhart syndrome,133 and Papillon–Lef�evre syndrome8 and

punctate PPK.134 However, inconsistencies in reporting pain

in PPK make it likely that this list is far from complete.

Summary and future directions

Pain severely diminishes quality of life for many individuals

with hereditary PPK. Disease-modifying therapies aimed at

preventing the formation of PPK lesions represent some of

the most exciting candidate means of treating PPK-associated

pain. However, there is no guarantee that lesion prevention

or reversal will be achievable in all forms of PPK or that the

drugs used will be tolerated by all patients. Therefore,

the field should seek approaches targeted more specifically at

the mechanisms that drive pain in a given form of PPK. The

development of such approaches would be facilitated by

careful phenotypic analysis of pain (presence or absence,

quality and quantity) in individuals with PPK along with

detailed assessment of relevant immunological, neuroanatom-

ical and molecular alterations in affected skin and, in paral-

lel, the establishment and mechanistic analysis of animal

models that recapitulate PPK-associated pain. Regardless of

how candidate therapies for PPK pain are identified, careful

study design, coupled with effective participant engagement,

will be important to overcome the inevitably small sizes of

clinical trials used to evaluate their safety and efficacy.

Finally, the finding of a neuropathic contribution to pain in

recessive dystrophic epidermolysis bullosa135 another heredi-

tary skin disease, raises questions regarding the prevalence

and potential aetiology of nerve injury across dermatological

conditions and suggests that therapies developed to treat a

given condition may benefit individuals affected by other

conditions.
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