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  What’s already known about this topic?

 Pain is a prominent symptom in hereditary palmoplantar keratodermas (PPKs)

 Pain in patients with PPK can be difficult to treat

 Pain mechanisms in PPKs are poorly understood

What does this study add?

 Defines multiple potential sources of pain in PPK, including both structural lesions 

(fissures, blisters) and specific cell types

 Highlights the variability of pain among several forms of hereditary PPK

 Provides mechanistic insights into how neuropathic and inflammatory mechanisms 

might contribute to pain in some forms of PPK

Abstract:

Palmoplantar Keratodermas (PPKs) are a heterogeneous group of skin disorders whose common 

feature is thickening of the epidermis in the palms of the hands and soles of the feet. Individuals 

with PPKs report varying degrees of palmoplantar pain that can severely affect quality of life. 

Due in part to the rarity of these conditions, PPK-associated pain remains poorly understood and 

inadequately treated. The heterogeneity of pain prevalence and presentations across the many 
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forms of PPK suggests that there may exist corresponding heterogeneity in the cellular and 

molecular mechanisms that drive and shape PPK-associated pain. In this review we discuss 

candidate mechanisms for this pain, including alterations in skin architecture, involvement of 

multiple cell types, and neuropathic changes to the sensory nervous system. Greater 

understanding of these mechanisms might provide a rational basis for the development of 

improved approaches to prevention and treatment of pain in individuals with PPK.

Introduction

Palmoplantar keratodermas (PPKs) are rare skin disorders characterized by profound thickening 

of the skin, particularly on the palms of the hands and the soles of the feet, due to hyperkeratosis. 

PPKs can be acquired, through malnutrition, inflammatory disease, paraneoplastic effects, or 

chemical exposure, but are most commonly inherited1-4.  Gain- or loss-of-function mutations in  

at least 25 genes have been implicated in hereditary PPK5, though the total may be substantially 

higher (https://panelapp.genomicsengland.co.uk/WebServices/list_panels/). Examples include 

genes encoding ion channels, secreted proteins, adhesion molecules, and keratins5. Pain can be a 

prominent symptom of PPK, and can significantly impact quality of life. Despite similar 

histological presentations, some forms of PPK are more consistently associated with pain than 

others. Yet, the rarity of PPK makes gathering data on pain prevalence difficult, and pain is not 

always addressed in case reports.  This review focuses on candidate mechanisms underlying pain 

in PPK (summarized in Figure 1) and describes a few PPKs that exemplify the spectrum of pain 

phenotypes seen in these conditions.  

Multiple Candidate Structural and Cellular Contributors to Pain in PPK

Blisters and Fissures One “structural” disruption that might contribute to pain in PPK is 

subepidermal blistering, which is observed in some, but not all individuals with PPK.  These 

blisters have been attributed to excessive sweating near PPK lesions6,7.  A second likely 

structural contributor to PPK-associated pain is fissure formation in the callused skin with 

attendant wound-related symptoms 3,8.  While these two types of skin disruption undoubtedly 

contribute to pain in PPK, multiple findings, described in greater detail below, suggest that 

additional factors likely influence the incidence or severity of pain in PPK. 
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Keratinocytes A defining pathologic feature of PPK is over-proliferation and abnormal 

differentiation of epidermal keratinocytes. Although keratinocytes are best recognized as 

constituents of the epidermal barrier9, they also play roles in immune and sensory functions. 

With respect to pain sensation, the outer membranes of keratinocytes and of the sensory neurons 

that mediate pain are closely associated within the epidermis10,11. Keratinocytes also express 

numerous receptors and ion channels capable of activating signaling pathways in response to 

painful chemical, thermal, and mechanical stimuli12,13. They also release soluble molecules 

capable of directly or indirectly stimulating or modulating pain, including small molecules (e.g., 

ATP14,15, PGE2
16,17 nitric oxide18,19 and acetylcholine20), neurotrophins21, bioactive 

peptides22,23,24, and a variety of chemokines, cytokines and other immunomodulatory proteins 

(e.g, TSLP25, IL-126, IL-127, Il-628, and TNF28).  Indeed, transgenic mouse studies have 

provided evidence that epidermal cell stimulation is sufficient to activate sensory neurons and 

produce pain-related behaviors in healthy mice, and is required for full responses to mechanical 

or thermal stimulation29,30,15. 

Based on these findings, it is plausible that PPK pain stems in part from signals emerging from 

pathologically altered keratinocytes.  However, pain is not universal among individuals with 

PPK, and calluses that form on healthy feet due to prolonged exercise are more likely to suppress 

pain than cause it31,32. Therefore, whereas the specific phenotypic characteristics of keratinocytes 

in different forms of PPK may influence the predilection towards pain, the existence of 

keratoderma alone is not sufficient to create pain.  

Immune/Inflammatory Cells PPK lesions frequently contain monocytic, granulocytic, and/or 

lymphocytic infiltrates33,34,35,36,37. Skin fissures also trigger inflammatory cell recruitment. 

Immune cells represent a driving force behind inflammatory pain38. This is in part because 

cytokines and other molecules released by these immune cells can enhance sensitivity to painful 

stimuli39, it is also conceivable that mutations causing PPK might directly influence immune cell 

functions (40).

Microorganisms Disruptions of epidermal homeostasis and barrier function, both common in 

PPK, alter skin commensal organism composition and make skin susceptible to superinfection 
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with microbial pathogens41. Bacteria produce molecules that activate or sensitize nociceptive 

neurons42,43, while fungal products can interact with immune cells to produce inflammatory 

pain44,45. The interplay between immune cells, invading microorganisms, and sensory neurons 

might therefore shape pain in PPK. 

Sensory Neurons and Associated Cells  In healthy skin, the perception of pain is triggered by 

the activation of nociceptors, sensory neurons that are tuned to stimuli that signal or pose a threat 

of tissue damage. Most nociceptors terminate as free nerve endings in the epidermis46 or within 

the walls of dermal blood vessels47. Chronic pain is often characterized as inflammatory or 

neuropathic in origin.  Inflammatory pain results from damage to or inflammation within the 

tissues innervated by nociceptors, whereas neuropathic pain results from injury to the nervous 

system itself. In both situations, the presence of numerous pro-nociceptive molecules renders 

nociceptors hypersensitive48,39. Inflammatory and neuropathic pain can be associated with either 

increased49 or, paradoxically, decreased epidermal nerve fiber density50-52. Nerve injury and 

inflammation also alter the processing of incoming sensory information by spinal cord and brain 

pain circuits, so that even input from low-threshold mechanoreceptive neurons (LTMRs) that 

normally convey the perception of nonpainful touch is “inappropriately” perceived as painful 

(i.e., allodynia)53. 

Diverse Pain Phenotypes in Hereditary PPKs

Pain in Pachyonychia Congenita

One PPK with an especially high prevalence of pain is Pachyonychia Congenita (PC), an 

autosomal dominant disorder caused by mutations in genes encoding keratin proteins 6a, 6b, 6c, 

16, or 1754-60. The hallmark symptoms of PC include plantar hyperkeratosis, oral leukokeratosis, 

and thickened nails. The majority of individuals with PC also report pain, most notably at the 

sites of palmoplantar calluses. A survey conducted using the International Pachyonychia 

Congenita Research Registry revealed that 89% of individuals with PC and 97% of those over 

the age of 10 experience plantar pain61. This pain has been described as sharp, burning, throbbing, 

or tingling sensations in the affected areas of the feet, often exacerbated by mechanical force, 

such as walking or standing62,63. The pain seems to be independent of severity of hyperkeratosis. 

It can be so severe that many individuals will crawl or use a wheelchair to minimize 
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discomfort64,59. The specific keratin gene mutation an individual harbors may determine the 

severity of their pain65-67. 

Structural skin lesions are important candidate contributors to pain in PC. High-resolution 

ultrasound studies of individuals with PC revealed what appeared to be subepidermal blisters that 

were not seen in individuals, with other PPKs, who did not experience pain in their lesions7.    It 

is possible that pressure applied to blisters through thickened calluses in affected PC skin 

activates sensory nerve fibers to produce pain. If these blisters are linked to sweating, this may 

also explain why pain in some individuals with PC is worse in summertime68.

There is also growing evidence supporting a neuropathic pain component in PC.  In a 

quantitative cross-sectional survey of 35 individuals with PC using two validated pain 

questionairres, 62% had results consistent with neuropathic pain, while 20% were found to have 

mechanical detection threshold abnormalities in quantitative sensory testing67. In a subsequent 

study, 62 individuals with PC completed neuropathic pain questionnaires and were subjected to 

quantitative sensory testing. Of these, 86% reported pain in the feet, 62% had higher than normal 

neuropathic pain questionnaire scores, and 55% reported allodynia in the affected region63. 

During quantitative sensory testing, individuals with PC exhibited a higher threshold for 

detection of both innocuous warm and cool stimuli and mechanical stimuli, and lower thresholds 

for mechanically evoked pain. A lower threshold for mechanically evoked pain was also 

observed in a smaller study of 10 patients with PC (69). These findings provide evidence for a 

complex sensory phenotype in PC that may have elements of both inflammatory and neuropathic 

pain, that includes altered function of nociceptive and non-nociceptive neurons and that might 

involve perturbations in local and systemic pain processing.

Further evidence for a neuropathic component of PC-associated pain comes from a histological 

study in which affected PC skin was found to exhibit decreased sweat gland innervation, 

alterations in the morphology of epidermal nerve fibers, and a trend towards decreased 

intraepidermal nerve fiber density (IENFD), phenomena characteristic of neuropathic pain 

conditions69. Affected PC skin also exhibited increased blood vessel density within dermal 

papillae and increased Merkel cell density in the basal epidermis, even compared to skin from 
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individuals with PPK due to an aquaporin mutation or from subjects with plantar calluses due to 

frequent running69.  Merkel cells are epidermal cells derived from keratinocytes that form 

synaptic contacts with a subset of slow-adapting (SA1) LTMRs. Merkel cells are themselves 

mechanically sensitive, and help shape the kinetics of SAI responses70,71,13. Genetic ablation of 

Merkel cells decreases mechanical sensitivity and texture discrimination72,73. Recent studies 

reported increased Merkel cell density in rat skin following peripheral nerve injury or repetitive 

shaving74,75. This might explain the increased Merkel cell density in affected PC skin, since PC 

lesions exhibit many features of injury responses, and since individuals with PC sometimes 

shave their calluses. One hypothetical sequence of events suggested by these findings is that the 

neuropathic changes in cutaneous sensory neurons innervating PC lesions lead to abnormal 

sensitivity of these neurons and consequent spinal sensitization. Mechanically evoked input from 

the increased number of Merkel cells onto sensitized spinal circuits then produces touch-evoked 

pain.  

Gene expression and proteomics analyses in affected skin of PC individuals and KRT16 null 

mice, which exhibit many histological features of PC, have revealed changes in the expression of 

numerous genes, including some that could be ontologically classified as “nociceptive and 

neuropathy related36,76-78. Another recent study identified exaggerated oxidative stress in PPK 

lesions in both KRT16 null mice and individuals with PC due to lower activity of the 

transcription factor, nuclear-factor erythroid-derived 2 related factor 2 (Nrf2)79,80, which 

regulates the expression of antioxidants and anti-inflammatory proteins and has been implicated 

in pain81,82. PC lesions also exhibit reduced keratinocyte expression of Nociceptin/orphanin FQ 

opioid peptide receptor (NOP-R)83, a receptor that produces analgesia in multiple animal models 

of inflammatory and neuropathic pain84, 83.  All of these changes represent potential mechanistic 

contributors to PC pain.

Therapeutic approaches to pain in PC. 

Avoidance of mechanical stress on palmoplantar surface, topical retinoids, vitamin D treatment, 

NSAIDs, gabapentin, and opioids are all used to manage pain in individuals with PC,  but often 

do not provide complete relief 85,63,86. Many individuals shave their calluses to curb their pain, 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

though this treatment is short-lasting or ineffective and can exacerbate pain if overshaving 

occurs85. 

Some small studies have reported pain relief and improvement of quality of life in individuals 

treated off-label with rapamycin or statins87,88,89. Consequently, the FDA recently granted fast-

track designation for a trial of high-strength topical rapamycin to treat PC. RNA interference to 

inhibit expression of mutant keratins represents another potential means of treating PC that 

showed promise in animal studies and in one patient90,91,92. In this study the individual exhibited 

both a reduction in callus size and a reduction in mechanical hypersensitivity at the drug treated 

site. The apparent coincident reversal of anatomical and sensory symptoms suggest both that PC-

associated pain hypersensitivity is reversible and that disease modifying approaches might be 

effective to treat this pain. Case studies have also reported anecdotal success at alleviating pain 

by injecting botulinum toxin into the feet of individuals with PC, either alone or in combination 

with gabapentin. These studies reported a reduction in pain and blistering within a week of 

treatment and a cessation of symptoms for 6 months68,93,94,59. Together with the pain phenotyping 

results described above, the possible contribution of gabapentin to pain reduction in PC further 

supports a neuropathic etiology and suggests that other neuropathic pain-oriented therapies may 

be worth consideration. 

Pain in Olmsted Syndrome 

Olmsted Syndrome (OS) is another characteristically painful, but rare, hereditary PPK. OS can 

be caused by a gain of function mutation in the gene encoding the nonselective cation channel 

Transient Receptor Potential Vanilloid 3 (TRPV3) or a loss of function mutation in the 

Membrane-Bound Transcription Factor Protease, Site-2 (MBTPS2) gene95-98. Symptoms of OS 

include diffuse and often mutilating palmoplantar hyperkeratosis, periorificial keratotic plaques, 

leukokeratosis, alopecia, and corneal abnormalities96,99,100. In a survey of 50 OS case reports, 21 

mentioned pain99. This pain results in sleep disturbances, mobility difficulties, and interference 

with grasping95,101,102. Some individuals with OS also experience erythromelalgia, a condition in 

which the skin becomes intensely red and painful, often in response to warming34,103. 

Home remedies, wet soaks, salicylic acid, urea, tar, shale oil, antibacterial treatment, retinoids, 
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and corticosteroids have been utilized to treat OS pain104,105,101. More extreme measures such as 

complete removal of the affected skin and subsequent skin graft have also been used106. Though 

some individuals have reported initial relief from this procedure, keratoderma often returns in the 

grafted tissue99,107.

One candidate contributor to OS pain is the increased activity of the protein product of the 

mutated TRPV3 gene. TRPV3 is a member of the transient receptor potential (TRP) channel 

family of non-selective cation channels. Many TRP channels are expressed in peripheral sensory 

neurons, and several have been implicated as initiators or amplifiers of pain108-111. TRPV3 is 

most prominently expressed in skin keratinocytes, but has been detected in other cell types, 

including nociceptive sensory neurons and immune dendritic cells such as Langerhans cells112, 113.  

Absence of TRPV3 in knockout mice leads to impaired epidermal maturation, a compromised 

epidermal barrier, and a wavy hair phenotype114,115. TRPV3 knockout mice have also been 

reported to exhibit modest defects in heat evoked pain sensation, though this phenotype is 

strongly dependent on genetic strain109,116,117,118. Two mutant rodent lines, characterized by 

alopecia, bear autosomal dominant mutations in TRPV3 at the codon encoding Gly573, which is 

also mutated in some human OS pedigrees37. The resulting mutant TRPV3 proteins exhibit 

constitutive activity and  hyperresponsiveness to agonist stimulation119. Pain studies have not 

been reported in the mice bearing OS-alike TRPV3 mutations.  However, a similar pattern of 

constitutive activity has been observed in multiple mutant human TRPV3 proteins encoded by 

OS alleles105.  It remains to be determined whether TRPV3 gain of function leads to OS pain 

solely by virtue of its effects on keratinocyte biology or whether it also reflects TRPV3 

hyperfunction in neurons or other cell types. Additional candidate contributors to pain in OS 

include Candida and bacterial infections, which are common in the hands and feet of individuals 

with this disorder95,120, as well as immunological/inflammatory cell changes101,121,105,120 

Another gene linked to OS, MBTPS2, encodes a zinc metalloprotease involved in the ER stress 

response and in the activation of the SREBP transcription factor, which in turn regulates 

expression of the enzymes involved in cholesterol biosynthesis95,98. A defect in the ER stress 

response in patients with MBTPS mutation might alter cellular responses to injury. Alternatively, 

disruptions in sterol biosynthesis might impair barrier function122 and pave the way for 
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superinfection, lesion formation, and consequent pain.  

Additional PPKs with Variable Prevalence of Pain

Many other forms of PPK have been associated with pain, albeit with a frequency that varies 

among conditions. One example is Mal de Meleda (MDM), an autosomal recessive PPK 

attributable to loss of function mutations in the gene encoding secreted lymphocyte antigen 

6/urokinase-type plasminogen activator receptor related protein-1 (SLURP-1)123, whose 

diagnostic hallmarks include diffuse palmoplantar hyperkeratosis as well as nail anomalies, 

perioral erythema, odor, and malignant melanoma124. The case reports that describe pain as a 

symptom of MDM predominately attribute it to secondary fungal or microbial infection or to 

skin lesions that result from the hyperkeratosis125,126,35. However, SLURP1 is also expressed in 

nociceptive neurons127, inhibits TNF- release from macrophages and keratinocytes128,129, and is 

necessary for normal T cell activation and function40. Pain in MDM might thus arise through 

both keratinocyte-dependent and -independent mechanisms.  Pain has also been reported in some 

individuals with Vorner disease, a common diffuse epidermolytic PPK caused by a mutation in 

KRT9130, but has been described predominantly in the context of fissures or blisters in affected 

skin3,131,132. A few additional PPKs in which pain has sometimes been described include Richner-

Hanhart syndrome133, and Papillon–Lefèvre syndrome (PLS)8 and punctate PPK134.  However, 

inconsistencies in reporting pain in PPK make it likely that this list is far from complete.

Summary and Future Directions

Pain severely diminishes quality of life for many individuals with hereditary PPK. Disease 

modifying therapies aimed at preventing the formation of PPK lesions represent some of the 

most exciting candidate means of treating PPK-associated pain.  However, there is no guarantee 

that lesion prevention or reversal will be achievable in all forms of PPK or that the drugs used 

will be tolerated by all patients. Therefore, the field should seek approaches targeted more 

specifically at the mechanisms that drive pain in a given form of PPK.  The development of such 

approaches would be facilitated by careful phenotypic analysis of pain (presence or absence, 

quality and quantity) in individuals with PPK along with detailed assessment of relevant 

immunological, neuroanatomical, and molecular alterations in affected skin and, in parallel, the 

establishment and mechanistic analysis of animal models that recapitulate PPK-associated pain.  
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Regardless of how candidate therapies for PPK pain are identified, careful study design, coupled 

with effective subject engagement, will be important to overcome the inevitably small sizes of 

clinical trials used to evaluate their safety and efficacy.  Finally, the finding of a neuropathic 

contribution to pain in Recessive Dystrophic Epidermolysis Bullosa 135 another hereditary skin 

disease, raises questions regarding the prevalence and potential etiology of nerve injury across 

dermatological conditions and suggests that therapies developed to treat a given condition may 

benefit individuals suffering from others. 
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Figure 1. Potential sources of pain in PPK skin.  A. Structural lesions seen in some patients 

with painful PPK. Black fibers represent nociceptors in basal state. Red fibers represent 

nociceptors sensitized by the injury associated with fissures or blisters.  Epi, epidermis. Derm, 

dermis.  B. Cell types that might contribute to either the development of pain or touch-evoked 

allodynia in PPK skin.  Arrows represent soluble factors released by the indicated cell types that 

could sensitize nociceptive neurons.  Nociceptive neurons can be sensitized (to augment pain 

sensation) or injured (i.e. rendered neuropathic) by either extrinsic factors emanating from the 

indicated cell types or by intrinsic factors such as PPK-associated gene mutations.  Sensitized or 

neuropathic nociceptors in turn sensitize spinal cord and brain circuits, which make inputs from 

low-threshold mechanoreceptors feel painful.
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