
 

Improving the wind-induced human comfort of the Beijing Olympic Tower by a 1 

double-stage pendulum tuned mass damper 2 

Xin Chen1; Aiqun Li2, Zhiqiang Zhang3; Liang Hu4; Peng Sun5; Zhong Fan6; Xianming Liu7 3 

Abstract: With five sub towers and a maximum height of 246.8 m, the Beijing Olympic Tower 4 

(BOT) is a landmark of Beijing. The complex structural properties and slenderness of the BOT 5 

render it prone to wind loading. As far as the wind-induced performance of this structure is 6 

concerned, this paper thus aims at a tuned mass damper-based mitigation system for controlling the 7 

wind-induced acceleration response of the BOT. To this end, the three-dimensional wind loading of 8 

various wind directions are simulated based on the fluctuating wind force obtained by the wind 9 

tunnel test, by which the wind-induced vibration is evaluated in the time domain by using the finite 10 

element model (FEM). A double-stage pendulum tuned mass pamper (DPTMD), which is capable of 11 

controlling the long period dynamic response and requires only a limited space of installation, is 12 

optimally designed at the upper part of the tower. Finally, the wind-induced response of the structure 13 

with and without DPTMD is compared with respect to various wind directions and in both the time 14 
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and frequency domain. The comparative results show that the wind-induced accelerations atop the 15 

tower with the wind directions of 45°, 135°, 225°, and 315° are larger than those with the other 16 

directions. The DPTMD significantly reduces the wind-induced response by the maximum 17 

acceleration reduction ratio of 30.05%. Moreover, it is revealed that the control effect varies 18 

noticeably for the five sub towers, depending on the connection rigidity between Tower1 and each 19 

sub tower.  20 

Keyword: Multi-tower structure; Wind-induced responses; Human comfort; Double-stage pendulum 21 

tuned mass damper; Vibration mitigation; High-rise building 22 

 23 

1. Introduction 24 

With the increasing use of high-strength materials, light-weight floors, and curtain wall systems, 25 

the mass and stiffness of modern high-rise buildings and towers are decreasing (Ghorbani-Tanha et 26 

al. 2009; Kim et al. 2008). Thus, they suffer from excessive wind-induced oscillations (Chen et al. 27 

2018; Li et al. 2011). The undesirably excessive vibration may cause not only the structural damage 28 

or failure but also the discomfort of occupants. Hence, very often those structures may need specific 29 

measures to mitigate the wind-induced responses (Kareem et al. 1999). Generally, increasing the 30 

structural stiffness is effective in reducing dynamic response, but it is often economically inefficient. 31 

Structural control technology, which aims to enhance structural safety and serviceability against 32 

dynamic excitations, is now a widely-used alternative (Basu et al. 2014; Spencer&Nagarajaiah 2003; 33 

Housner et al. 1997; Soong&Spencer 2002; Ikeda 2009). 34 

Tuned mass damper (TMD) is one of the simplest and practical control devices and especially 35 

useful in mitigating dynamic response within the narrow frequency range. Generally, a typical TMD 36 
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can be modeled as a device consisting of a mass element, a stiffness element, and a damping element. 37 

The frequency of the TMD is tuned to a particular vibration frequency so that when the structural 38 

vibration at that frequency is excited, the damper will resonate out of phase and mitigate the induced 39 

vibration. A portion of vibration energy input to the structure may be imparted to the TMD and 40 

dissipated by the damping element. Due to the convenient implementation procedure, low cost and 41 

no requirement of external energy, TMD has attracted many researches, most of which are focused 42 

on the configuration, design, and application of the TMD. A proper configuration is essential to 43 

realize the TMD in engineering practice. Options of the effective stiffness may include the springs  44 

(Ohtake et al. 1992; Chen et al. 2012), the suspended pendulum (Roffel et al. 2013; 45 

Nagase&Hisatoku 1992), and the laminated rubber bearings (Saito et al. 2001). Although the oil 46 

dampers are typical, there are still others such as the friction (Chung et al. 2013), the eddy current 47 

(Lu et al. 2018), the sub tuned absorbers (Sarkar&Gudmestad 2013), and the pounding  (Song et al. 48 

2016; Zhang et al. 2013). Moreover, the analysis and design methods of TMD are under active 49 

investigation, including the design formulas of the TMD’s parameters. These researches may date 50 

back to (Den Hartog 1956), such as simplified expressions for optimum TMD parameters of 51 

undamped/damped systems considering various combinations of responses (e.g., displacement, 52 

velocity, acceleration and force) and excitations (e.g., harmonic and white noise random excitations) 53 

(Chang&Qu 1998; Sadek et al. 1997; Warburton 1982; Chung et al. 2013; Hoang et al. 2008; 54 

Fujino&Abe 1993). On the other hand, the metaheuristic optimization methods have been utilized in 55 

the design of TMD (Farshidianfar&Soheili 2013; Leung et al. 2008; Bekdaş&Nigdeli 2011; Bekdaş 56 

et al. 2018; Carlo Marano et al. 2010; Jin et al. 2018). 57 

With the development in the past four decades, the TMD has been successfully installed on 58 
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practical buildings to mitigate dynamic responses including pedestrian-induced vibration (An et al. 59 

2015; Chen et al. 2012), wind-induced vibration (Ghorbani-Tanha et al. 2009; Nagase&Hisatoku 60 

1992) and earthquake-induced vibration (Chen et al. 2018; Hoang et al. 2008). Researches and 61 

applications show that the TMD in the high-rise tower can suppress the wind-induced vibration 62 

significantly, such as John Hancock Tower in Boston (1975), Taipei 101 Tower  (Kao et al. 2011), 63 

Shanghai Tower  (Zhou et al. 2018), and many others (Ghorbani-Tanha et al. 2009; Ohtake et al. 64 

1992; Kang et al. 2012; Li et al. 2011; McNamara 1977; Nagase&Hisatoku 1992). Most of these 65 

cases are a TMD on a single-tower building, but most recently some complicated buildings with two 66 

or more towers have been constructed out of their architecture benefits. However, the researches of 67 

TMD on these irregular buildings are rare. Hence, further investigations on the wind-induced 68 

vibration and mitigation are still needed for multi-tower buildings. 69 

With a height of 246.8m, Beijing Olympic Tower (BOT) in the northern of Beijing, China, is a 70 

new landmark. The BOT consists of five towers, each of which has an atop large mass. Preliminary 71 

studies demonstrate that the upper part of the tower suffers from excessive wind-induced acceleration 72 

beyond the human comfortability limit. This paper presents a study on the TMD installed on the BOT. 73 

The remainder of this paper is organized as follows. Section 2 introduces the structural system of the 74 

BOT. Section 3 presents the finite element model (FEM) of the structure and discusses its dynamic 75 

characteristics. The following section introduces the results of the wind tunnel test for this structure 76 

and the simulation of the wind loading in the time domain. Section 5 designs a double-stage 77 

pendulum tuned mass damper (DPTMD) for this tower and assesses the mitigation effect of the 78 

tower by comparing the acceleration response with and without the DPTMD. Finally, the main 79 

conclusions of the numerical study are summarized in Section 6. 80 
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2. Description of the Beijing Olympic Tower 81 

Beijing Olympic Tower (BOT), shown in Fig.1, is adjacent to the landscape avenue on the axis 82 

line of the Beijing Olympic Forest Park. It boasts one of the two buildings around the world 83 

officially with Olympic rings permanently on the top (BeijingInternational 2016; OlympicNews 84 

2016). This tower consists of five sub towers with different heights: one central tower (Tower1) 85 

locates in the middle and four lower towers (Tower2, Tower3, Tower4, and Tower5) stands around 86 

the Tower1. The geometry of these sub towers is shown in Table.1. Towers 2-5 are connected to 87 

Tower1 by the corridors which are spatial steel girders with a height of 3.0m and a width of 2.7m. 88 

The sections of these sub towers are regular hexagon or circular, the dimension of which increases 89 

with the height. The structure of Tower1 is a tube-in-tube system; its outer tube is composed of 16 90 

concrete-filled steel tube (CFST) circular columns stiffened by I-shape steel beams and H-shape steel 91 

braces. Towers 2-5 has the structure of tube systems composed of 6 CFST circular columns 92 

connected by steel beams and braces. 93 

3. Dynamic characteristics of the structure 94 

3.1 Finite element model 95 

As shown in Fig.2, a three-dimensional (3D) finite element model (FEM) of the BOT was 96 

established by using CSI SAP2000 based on the structural design drawings. Two kinds of elements 97 

were employed in the FEM: the beam elements for the beams, columns, and braces, and the shell 98 

elements for the floors and walls. The nonstructural components were modeled as the dead loads, 99 

while the mass was transformed from the dead loads and live loads. The connections between the 100 

braces and other components were hinged constraints, and the connections between the beams and 101 

columns and between the structure and its foundation were fixed constraints. 102 
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3.2 Natural frequencies and modal shapes 103 

The structural dynamic characteristics of the BOT were analyzed and shown in Table.2 and 104 

Fig.3. Here, 45° and 135° denotes the angles between the vibration directions and the x-axis in the 105 

x-y plane. It can be observed that the first natural period can be as long as 5.687s and the 106 

torsional-translation period ratio is 0.775. The first two modes of the tower are overall bending in the 107 

direction of 45° and 135°, respectively, where the third mode is torsional. The first six modes are 108 

overall vibration modes, indicating that the corridors in this tower are stiff enough to combine the 109 

five sub towers. The modes from the sixth to ninth are all 2nd order torsional modes with different 110 

vibration shapes of the sub towers with dense-distributed frequencies, which may influence the 111 

vibration of the tower. 112 

4. Wind loads simulation 113 

4.1 Introduction of the wind tunnel test 114 

Wind tunnel testing is an effective tool to evaluate the wind effects on buildings, especially 115 

those with complex silhouettes. In this study, wind tunnel tests of wind pressure on the BOT were 116 

carried out in the atmospheric boundary layer wind tunnel TJ-2 at the Tongji University using a 117 

synchronous multi-pressure sensing system (Ming et al. 2010). The dimension of the working section 118 

of the wind tunnel is 3.0m wide ×2.5m high. In order to reproduce the building shape more detailed, 119 

the rigid sectional models are used. The whole building is divided into four sections vertically. The 120 

sectional models are made of plexiglass and ABS. These four scaled segments are shown in Fig.4(a), 121 

and the tower bodies and the tower crowns are 1:70 and 1:100 scaled, respectively. The wind 122 

direction is defined as an angle from the tower south along a clockwise direction (see Fig.4(b)), and 123 

the measurements were made with the wind direction varying from 0◦ to 360◦ with the increment of 124 
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15◦. 1944 pressure taps were installed on these four sectional models. Due to the lack of instruments, 125 

the scaled are divided into eight synchronous pressure measuring segments, and not all of them use 126 

the same sampling rate. Hence, the pressure data were acquired at five sampling rates with a 127 

sampling length of 6000 steps. The sectional model testing was conducted in a turbulent wind field 128 

with the turbulence intensity in Table.3, but the mean wind speed was 12.0 m/s and constant along 129 

the height. In this experiment, significant mutual aerodynamic interference effects among the sub 130 

towers existed, and complicated wind pressure and force distributions were found. Therefore, the 131 

wind loads for the BOT is undoubtedly different from the conventional high-rise towers.  132 

4.2 Simulation of the three-dimensional wind loads 133 

In this paper, because of the nonlinearity of the damping devices, the time-domain method is 134 

introduced to compute the wind-induced vibration of the BOT. To this end, one should simulate a 135 

three-dimensional wind loading field that is applicable to the FEM of the BOT firstly. In this study, 136 

the fluctuating wind pressure coefficients given by the wind tunnel tests are used to model the 137 

three-dimensional wind field. However, there are some difficulties to utilize these data directly: (1) 138 

As mentioned above, the data were acquired at five different sampling rates, including 6.0391Hz, 139 

8.1145 Hz, 7.3379 Hz, 6.8065 Hz, and 6.2723 Hz. (2) The directions of the tested wind pressure 140 

coefficients are perpendicular to the model surfaces. (3) There are 1944 pressure taps and 6000 steps 141 

per testing wind direction, and locations of the pressure taps do not strictly one-to-one coincide with 142 

the structural nodes in the FEM. These difficulties may lead to unsynchronized time steps, difficulty 143 

in the loads' assignment and extensive computing time in the FEM time history analysis. Therefore, a 144 

method for the three-dimensional wind loading field simulation is proposed as depicted by Fig.5 145 

including four steps: 146 
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 (1) In order to unify the sampling rates of all data into 6.0391Hz, the nearest interpolation 147 

method is used. Fig.6 shows the comparison of the data from a pressure tap with and without 148 

interpolation and illustrates a good agreement not only in the time domain but also in the frequency 149 

domain. 150 

(2) The wind pressure coefficients are decomposed into three orthogonal directions based on the 151 

global coordinate system of the FEM. Hence, the wind pressure coefficients in the x, y, and 152 

z-direction of global coordinate can be obtained as follows: 153 

   , cos sinsi x sit t                                      (1) 154 

   , cos cossi y sit t                                      (2) 155 

   , sinsi z sit t                                        (3) 156 

where 
si  is the wind pressure coefficient of the ith pressure tap; 

,si x , 
,ysi and

,zsi  are the 157 

decomposed wind pressure coefficients in the x, y, and z-direction of the ith pressure tap; φ and θ, 158 

shown in Fig.5, are the angles between the normal direction of the surface and the horizontal and 159 

vertical axis direction respectively. 160 

(3) The surface of the tower is divided into 1367 sub-areas in which the values of the wind 161 

pressure coefficients of the embodied pressure taps are regarded as the same. In each subarea, the 162 

nominal wind pressure coefficients can be calculated as: 163 
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where 
sk  is the wind pressure coefficient of the kth subarea, Ai is the influence area of ith pressure 165 

tap, n is the total number of the pressure taps included in the kth area. Then the wind pressure of the 166 

kth subarea can be written as: 167 

0)()( wttw zkskk                               (5) 168 
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where 
kw  is the wind pressure of the kth subarea, μzk is the height coefficients of the wind pressure, 169 

w0 is the basic wind pressure, in this study w0=0.30 kPa according to 10-year return period (2012). 170 

Both the Eqs. (4) and (5) applies to x, y, and z-direction. 171 

(4) Lastly, the loading nodes in the FEM are selected for the subareas in Step (3), and the wind 172 

loading time histories can be calculated as: 173 

mkm
AtwtF )()(                                    (6) 174 

where Fm is the mth loading nodes, Am is the influence area of the mth loading nodes. Finally, 4101 175 

time histories in FEM global coordinate system are obtained. 176 

5. Vibration control using DPTMD 177 

5.1 Design of the Double-stage Pendulum Tuned Mass Damper 178 

A TMD system is installed in the BOT in order to mitigate the excessive wind-induced vibration. 179 

Constrained by the architectural requirements, the space available for the mitigation service in this 180 

building is quite limited: only a room of 4.80m×4.20m×5.80m can be utilized. In order to take full 181 

advantage of the space without a significant increase in the total weight, the fire water tank is utilized 182 

as the mass element of the absorber, because the volume of the tank excludes the possibility as a 183 

sloshing-based mitigation. In consideration of all these factors, a Double-stage Pendulum Tuned 184 

Mass Damper (DPTMD) was designed and installed on the floor of the Tower1 at the height of 185 

232.5m(Fig.7). 186 

There are some requirements, including long period, limit space and all motion directions, for 187 

the TMD used in this tower. If a conventional pendulum TMD scheme was used in this project, at 188 

least a space with more than 7.90m in height should be needed. However, the height of the available 189 

space for the TMD is only 5.80m. Therefore, this DPTMD system utilizes the fire water tank as the 190 
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mass element and hangs the tank by a double-stage suspension system. As shown in Fig.8, this 191 

system is composed of the fire water tank, outer cables, inner cables, suspension frame, tank support, 192 

viscous dampers, limiters, structure connections, and support connections. The tank support supports 193 

the fire water tank, which has a total mass of 50t. They together are hung by the double-stage 194 

suspension system consisting of the outer cables, inner cables, and suspension frame. Four viscous 195 

dampers are installed between the floor and the tank support to suppress the motion between the tank 196 

and its support. Moreover, four limiters are used to restrict the maximum displacement of the tank. 197 

The parameters of the DPTMD are shown in Table.4, determined by the limitations of the total mass, 198 

maximum stroke and installation space of the DPTMD. The mass ratio of the DPTMD to the 199 

structure is only 0.058%. The frequency ratio of the DPTMD in the directions of the first two modes 200 

are 1.055 and 1.025, while the corresponding damping ratios are 0.120 and 0.116 respectively. 201 

Considering the uncertainty in the construction, one can adjust the length of the cables after the field 202 

testing. 203 

5.2 Numerical simulation of the wind-induced vibration 204 

5.2.1 Spatial distribution 205 

The wind-induced vibrations of the BOT with and without TMD are analyzed by inputting the 206 

three-dimensional wind field simulated in Section 4.2 to the FEM model. Fig.9 shows the spatial 207 

distribution of the maximum node acceleration over time under the wind directions of 45° and 135°. 208 

The combination of the horizontal accelerations and of all the three acceleration components are 209 

2 2

x ya a  and 2 2 2

x y za a a  , in which ax, ay, and az are the maximum node accelerations over time in 210 

the directions of X, Y and Z. It can be observed that: (1) The acceleration distributions of the BOT 211 

with and without TMD are similar. After the installation of the TMD, the total horizontal 212 
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accelerations are all reduced. However, the TMD does not affect the vertical acceleration responses. 213 

(2) In general, the acceleration increases from the bottom to the top and from the inner part to the 214 

outer part. The accelerations of the tower crown are larger than those of the body, especially in the 215 

vertical direction. The maximum accelerations the main bodies of the Tower 2 and 4 are larger than 216 

those of the other sub towers, while those of the crowns of the Tower 3 and 5 are larger than the other 217 

towers.  218 

5.2.2 Response variation with wind directions 219 

There are two main public scenic sites in each sub tower: one is the viewing platform at the top 220 

of each tower, and the other is the viewing hall, which is the floor immediately below the platform. 221 

As there will be many people on these sites to watch the scenery of Beijing city, the issue of human 222 

comfort is of concern. Therefore, by considering eight typical wind directions, the mean and 223 

maximum horizontal accelerations of the viewing platform and hall are assessed and shown in Fig.10 224 

and Fig.11. It can be concluded from the Fig.10 that: (1) In general, the maximum acceleration 225 

occurs at the edge nodes of the viewing platform. The structural constraint on these nodes is much 226 

weaker than those at the middle. Thus the reduction effect of the TMD on the mean accelerations is 227 

better than on the maximum accelerations. (2) The wind-induced accelerations of the tower subjected 228 

to the wind loads with the directions of 45°, 135°, 225°, and 315° are larger than those subjected to 229 

the wind loads with the other directions. This phenomenon is mainly due to the first two modal 230 

shapes of the BOT. (3) The best reduction effect is with the wind direction of 270°, when the 231 

reduction ratio of Tower1, Tower2, and Tower3 are 16.44%, 30.05%, and 22.63%, respectively. (4) 232 

Because the DPTMD was installed only on Tower1, it has a slight effect on some of the sub towers, 233 

among which reduction effect on Tower5 is limited. The reduction effect in the viewing hall as 234 
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shown in Fig.11 is similar to the effect in the viewing platform. Moreover, the maximum reduction 235 

ratio of the viewing hall is 24.56%, which also occurs in the wind direction of 270°. As the 236 

connections between Tower1 and Tower5 are weaker than those between Tower1 and the other sub 237 

towers, the acceleration reduction effect, both in the viewing platform and in the viewing hall of 238 

Tower5, is the weakest among these sub towers. Moreover, the reduction effect in the viewing hall is 239 

much better than in the viewing platform. 240 

5.2.3 Response time history and PSD 241 

The time history responses and the corresponding power spectral densities of two nodes on the 242 

viewing platform of the Tower1 and Tower5 in the x-direction are shown in Fig.12 and Fig.13 with 243 

the wind direction of 45°. Meanwhile, these responses in the y-direction are shown in Fig.14 and 244 

Fig.15. In the time domain, the reduction of the displacements is better than the accelerations at both 245 

x and y directions. In the frequency domain, the DPTMD has a considerable reduction effect on both 246 

the accelerations and displacements at the first bending mode but does not affect the higher modes. 247 

However, the higher modes do have some influences on the wind-induced responses, and the 248 

accelerations are affected much more than the displacements. Comparing with the node in Tower 5, 249 

the reduction effect of the node in Tower1 is much better, and this confirms the conclusions from the 250 

analysis in the section above.  251 

6. Concluding remarks 252 

The wind-induced response of the BOT and the performance of its vibration control are 253 

presented in this paper. The three-dimensional wind loading for the FEM analysis of the BOT is 254 

established based on the wind tunnel test results. Moreover, based on the dynamic characteristics and 255 

responses of the BOT, a DPTMD was designed and installed on the tower. Then, the wind-induced 256 
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responses of the tower with and without DPTMD are compared with respect to various wind 257 

directions and both in the time and frequency domain. Based on the results and discussions presented, 258 

the following remarks can be obtained: 259 

(1) Mostly, the wind-induced accelerations of the tower subjected to the wind loads with the 260 

directions of 45°, 135°, 225°, and 315° are larger than those with the other directions. 261 

(2) The DPTMD design utilizes a shorter pendulum length to achieve a long period, thus a lot of 262 

spatial space can be saved given the excellent control performance on the BOT can be ensured. 263 

The design serves as a reference for other slender high-rise towers. 264 

(3) Only with 0.058% structural mass does the DPTMD mitigate the wind-induced vibration of the 265 

tower effectively. The maximum acceleration reduction ratio for the mean accelerations of each 266 

floor, which occurs in Tower2 with the wind direction of 270°, reaches 30.05%. Because of the 267 

relatively weak connections between sub towers, the reduction effect of the Tower5 is lower than 268 

the other sub towers. 269 

(4) Because of the limitation of the physical space, only one TMD with a small mass can be installed 270 

in this tower. Only the response induced by the first two modes can be suppressed, although 271 

higher modes can affect the towers' wind-induced accelerations as well. 272 
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Table.1 Structural geometry of the BOT 369 

 370 

Tower Tower1 Tower 2 Tower 3 Tower 4 Tower 5 

Architectural diameter/ m 16.20 9.60 9.60 8.30 8.30 

Structural diameter/ m 14.00 7.30 7.30 6.00 6.00 

Structural height/ m 244.35 228.00 210.00 198.00 186.00 

Slenderness ratio 17.45 31.23 28.77 33.00 31.00 

Diameter of the top/ m 51.20 33.60 32.40 30.00 26.40 

Distance to Tower1/ m - 19.17 15.75 15.10 16.90 

 371 
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 372 

Table.2 Natural frequencies of the tower 373 

 374 

Modes 
Frequency/ 

Hz 
Description 

1 0.176 1st overall bending (45°) 

2 0.181 1st overall bending (135°) 

3 0.227 
1st overall torsional (anti-symmetric bending of the Tower2 and 4 (45°) + 

anti-symmetric bending of the Tower3 and 5 (135°)) 

4 0.512 2nd overall bending (45°) 

5 0.559 2nd overall bending (135°) 

6 0.598 
2nd overall torsional (symmetric bending of the Tower2 and 4 (45°) + 

anti-symmetric bending of the Tower3 and 5 (135°)) 

7 0.703 
2nd overall torsional (symmetric bending of the Tower2 and 4 (45°) + symmetric 

bending of the Tower3 and 5 (135°)) 

8 0.721 
2nd overall torsional (anti-symmetric bending of the Tower2 and 4 (45°) + 

symmetric bending of the Tower3 and 5 (135°)) 

9 0.790 
2nd overall torsional (local vibration of the Tower4 crown + anti-symmetric 

bending of the Tower3 and 5 (135°)) 

10 1.019 3rd overall bending (45°) 

11 1.088 3rd overall bending (135°) 
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 376 

Table.3 Simulated turbulence intensity in the model tests 377 

 378 

Segment 

model 
Elevation/ m 

Reference height/ 

m 

Reference turbulence 

intensity/ % 

Simulated turbulence 

intensity/ % 

1 0-49.2 30-40 18-20 18 

2 49.2-109.2 70-90 15-16 15 

3 109.2-169.2 130-150 13-14 14 

4 145.8-244.35 180-200 12 11.5 
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 380 

Table 4. Parameters of the DPTMD system 381 

 382 

Direction x y 

Effective length of cable/ m 7.90 7.90 

Mass/ t 50 50 

Damping exponent of the damper 1 1 

Damping coefficient of the damper/ N·s/m 6997 6788 

 383 
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