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What’s already known about this topic?

 The diagnosis of BCC is labor-intensive due to the large number of images to be 

examine, especially when a consecutive slide reading is needed in Mohs surgery.

 Deep learning approaches have demonstrated promising results on pathological image-

related diagnostic tasks.

 Previous studies have focused on whole slide images (WSI) and leveraged classification 

on image patches for detecting and localizing breast cancer metastases.

What does this study add?

 Instead of WSIs, microscopic ocular images (MOI) photographed from microscope 

eyepieces using smartphone cameras were used to develop neural network models for 

recognizing BCC automatically.

 The MOI- and WSI-based models achieved comparable AUCs around 0.95.

 Two deep learning frameworks for recognizing BCC pathologically were developed with 

high sensitivity and specificity.

 Recognizing BCC through smartphone could be considered as a future clinical choice.
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Abstract

Background Pioneering effort has been made to facilitate the pathology recognition in 

malignancies based on whole slide images(WSI) through deep learning approaches. It 

remains unclear whether we can accurately detect and locate BCC using smartphone-captured 

images.

Objectives To develop deep neural network frameworks for accurate BCC recognition and 

segmentation based on smartphone-captured microscopic ocular images (MOI).

Methods We collected a total of 8046 MOIs, 6610 of which had binary classification labels 

and the other 1436 had pixel-wise annotations. Meanwhile, 128 WSIs were collected for 

comparison. Two deep learning frameworks were created. “Cascade” framework had a 

classification model for identifying hard cases (images with low prediction confidence), and a 

segmentation model for further in-depth analysis of the hard cases. “Segmentation” 

framework directly segmented and classified all images. Sensitivity, specificity, and AUC 

were used to evaluate the overall performance of BCC recognition.

Results The MOI- and WSI-based models achieved comparable AUCs around 0.95. The 

“cascade” framework achieved 0.93 sensitivity and 0.91 specificity. The “segmentation” 

framework was more accurate but required more computational resources, achieving 0.97 

sensitivity, 0.94 specificity, and 0.987 AUC. The runtime of the “segmentation” framework 

was 15.3 ± 3.9second (s) per image, whereas the “cascade” framework was  4.1 ± 1.4s. 

Additionally the “segmentation” framework achieved 0.863 mean intersection over union  

(mIoU)_.

Conclusions Based on the accessible microscopic ocular images via smartphone photography, 

we developed two deep learning frameworks for recognizing BCC pathologically with high 

sensitivity and specificity. This work opens a new avenue for automatic BCC diagnosis in 

different clinic scenarios.

 

Key words: deep convolutional neural network, basal cell carcinoma, digital histopathology 

images, disease diagnosis and localization
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Basal cell carcinoma (BCC) is the most common skin cancer with a rapidly rising incidence 1. 

The diagnosis of BCC is straightforward for experienced pathologists but labor-intensive due 

to the large number of cases, especially when a consecutive slide reading is needed in Mohs 

surgery 2. Furthermore, the diagnosis is challenging when BCC areas vary in architecture and 

size, or become obscured due to inflammation. Therefore, a fast and rigorous computational 

method for automatic BBC diagnosis is needed.

Computer-aided diagnosis of diseases has been developed for decades to assist the analysis of 

microscopic images in pathology3-4. Most previous work focused on “feature engineering”, 

which required hand-craft features specified by domain experts 5-6. Recent progress in deep 

convolutional neural network (CNN), has shown significantly improved performance on a 

wide range of computer vision tasks, including image recognition, face recognition, object 

detection and semantic segmentation 7-11. Deep learning based solutions have also 

demonstrated promising results on pathological image-related tasks. CAMELYON challenge 

is an academic competition of recognizing and localizing breast cancer metastases in whole 

slide images (WSIs) 12. Wang et al first demonstrated the power of deep learning in breast 

cancer pathological diagnoses 13. Norouzi M, who ranked first in the challenge leaderboard in 

2018, pointed out that cancer metastases could be detected from whole slide pathology 

images through some careful designed networks 14. These previous studies focused on whole 

slide images and leveraged classification on image patches for detecting and localizing 

metastases. 

In this study, microscopic ocular images (MOIs) photographed from microscope eyepieces 

using smartphone cameras were used to develop neural network models for recognizing BCC 

automatically. We first investigated a CNN classification model, which did not perform well 

in detecting BCC in hard cases (see details in Methods). We further found the hard cases 

could be well recognized by pixel-wise segmentation methods. Hence, a cascade framework 

was created, with an initial CNN classification model and a subsequent semantic 

segmentation model. Alternatively, we created another framework of the semantic 

segmentation model only. This segementation framework achieved better performance on 

BCC recognition, yet required more computational resources. Further analysis demonstrated 

that the performances in recognizing BCC were comparable based on whole slide images or 

microscope ocular images. This indicates that recognizing BCC through smartphone could be 

considered as a future clinical choice, especially in some screening cases.
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Methods

General Datasets Introduction

Three histopathology image datasets with different types of annotations were collected. A 

total of 8046 microscopic ocular images were gathered, within which 6610 images were 

labeled with BCC/non-BCC binary classification tag (positive or negative), regarded as the 

microscopic ocular image classification (MOIC) dataset. Images of BCC areas or normal 

tissues without BCC were considered as positive or negative samples, respectively. Other 

skin diseases were not considered or involved in our dataset. The other 1436 images with 

pixel-wise 

annotations were regarded as microscopic ocular image segmentation (MOIS) dataset.  For 

comparison, we also collected 128 whole slide images with pixel-wise annotations, which 

would be cut into patches to train and evaluate models. In these segmentation datasets, BCC 

tissue was pixel-wise annotated. Pathologists outlined the BCC tissue with closed contour 

segmentation which contained further detailed information, including the shape, area and 

location of the BCC tissues. The segmentation model trained on these datasets was able to 

accurately dissect BCC tissue from the normal tissue by predicting a pixel-level binary 

classification in a given test image. The annotation area and prediction area were further 

compared and used to calculate the confidence score for BCC classification at the image level.

MOIC and MOIS images were photographed from microscope eyepieces using smartphone 

cameras at 10 resolution as referred 15, resulting in rounded images of size 32002500 

pixels. WSI data were obtained for 128 patients at 40 resolution. As the obtained tissue size 

varies among patients, the size of WSI varies from 6348853248 to 2278419840. Examples 

of MOIC/MOIS and WSI are shown in Figure 1. Some test images had an extremely small 

area of BCC, or were not well focused, or obscured due to inflammation. These images were 

regarded as “hard” cases, and others were considered as “standard” cases. The reason to 

identify the hard cases is that these cases degraded the performance, and an example is given 

in supplementary material to illustrate this phenomenon (eTable 1). In this work, the cases 

with low prediction confidence were considered as hard cases. 

All cases were diagnosed at the Institute of Dermatology, Peking Union Medical College & 

Chinese Academy of Medical Sciences, from January 2013 to June 2018. All images were 
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manually labeled by pathologists at the Institute of Dermatology. All methods and procedures 

were performed in accordance with relevant guidelines and regulations. Written informed 

consent was obtained from all participants, and the study was carried out with the approval of 

the Institutional Review Board of Institute of Dermatology, PUMC & CAMS (No. 2013-

LC/KY-033).

BCC Classification and Segmentation Framework

Figure 2 shows the flowchart of CNN classification and semantic segmentation systems.  The 

three systems accept whole slide images or microscope ocular image as the inputs and return 

recognition results.

Cascade Framework

The cascade framework consists of a general screening stage and an in-depth analysis stage, 

as shown in Figure 2. In the first stage of general screening, an image classification network 

was trained and a confidence filter strategy was used to determine the existence of BCC with 

high confidence. The images with lower confidence (classification predicted confidence 

between 0.1 and 0.9) were regarded as hard cases and sent to the in-depth analysis stage. 

At the in-depth analysis stage, a semantic segmentation model was built, which segmented 

the BCC regions in hard cases. The segmentation results were further used to decide the 

existence of BCC. Only when the area of BCC was higher than the threshold, the image was 

classified as positive.

General Screening

GoogleNet inception v3 architecture with input size of 961 and a global average pooling was 

used to build the classification network 16-17. The network weights were pre-trained on the 

ImageNet dataset and fine-tuned on the MOIC and WSI data 18. 

The 6610 MOIC images were partitioned into three subsets to train (796; 12.0%), validate 

(88; 1.3%), and test (5726; 86.6%) our model. Since the effective area of the MOIC images is 

a circular area, and to balance the numbers of positive and negative samples, we augmented 

the 553 positive samples by rotating an image with 60 degrees internal, as well as the 243 

negative samples with 30 degrees internal, resulting in a total of 3318 positive samples and 
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2916 negative samples as the training set. The model was trained on Caffe platform and input 

mirror was also involved during training 19.

To compare the BCC recognition performance of models trained on smartphone-captured 

images or clinical whole slide images, we further developed a classification model using the 

WSI dataset. Since WSIs were huge and contained large invalid areas (e.g. non-tissue 

regions), we employed a FOV (field of valid) picking algorithm to extract valid tissue areas. 

Then we cut the valid area into small patches of size 1000x1000. In total, 7084 patches were 

obtained (2789 BCC patches and 4285 normal tissue patches), 70% of which were used for 

model training (4604 patches) and validation (355 patches), and the other 30% (2125 patches) 

were used for model testing. Similar to the data augmentation in MOIs, the WSI patches were 

also randomly mirrored and rotated, and the positive and negative samples were balanced via 

random sampling. The final training set consisted of 16860 positive and 16241 negative 

samples. 

In-depth analysis

To accurately detect and locate BCC in hard cases, we employed a semantic segmentation 

model at the in-depth analysis stage. The model was built on DeeplabV3 network structure 20 

with Resnet 101 7 as backbone. The model backbone was pre-trained on ImageNet and 

finetuned with the MOIS dataset.

To build the semantic segmentation model, 1436 MOIS images with 10241024 resolution 

were pixel-wise labeled by histopathologists. Each MOSI image was split into four 512512 

patches and 5744 patches were obtained. We used 4030 patches as the training set and 

augmented them by rotating the patch with 30-degree internal and mirroring the patch, 

resulting in a total of 28140 training and 2008 validation patches. The rest 1714 patches were 

used for testing. We used a threshold to determine the existence of BCC and only images 

with BCC segmentation areas larger than the threshold were considered as positive.

The runtimes of the models mentioned above were tested. For the semantic segmentation 

model, we used Tensorflow 1.10.1 21. For the classification model, we used the Caffe 

framework. Both classification and segmentation models were trained and 

tested on NVIDIA Titan-X GPU 2 with CUDA version 9.0 cuDNN 7.0. The employed deep 
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learning networks of DeepLab Resnet V3 and GoogleNet Inception V3 are publicly available 

at https://github.com/rishizek/tensorflow-deeplab-v3 and

https://github.com/smichalowski/google_inception_v3_for_caffe, respectively.

Performance Evaluation

Sensitivity, specificity, and AUC were used to evaluate the overall performance of BCC 

recognition. The ROC curve represents a dynamic tradeoff between sensitivity and specificity, 

which can be controlled by adjusting the threshold of binary classification. An algorithm with 

an AUC of 1 represents a perfect prediction performance. The baseline AUC of random 

prediction is 0.5. The mean intersection over union was used to evaluate the performance of 

segmentation and localization. 

Statistical Comparison Test

We performed statistical analysis to compare the WSI, MOI classification, and MOI 

segmentation models. For each model, we randomly sampled 80% of the test images and 

used this subset to calculate the AUC. We repeated this for a total of 20 times and obtained 

20 AUC values for each model. Then we performed the pairwise Wilcoxon signed-rank test 

based on the 20 AUC values of different models, which does not require stringent 

assumptions.

Results

Performance comparison of models trained on the MOI or WSI dateset

To our knowledge, previous studies of recognizing specific tissues in pathological images 

mainly focused on whole slide images. In order to demonstrate the efficiency of CNN based 

method in recognizing BCC on microscopic ocular images, we trained models on WSI and 

MOI images separately, using the same neural network architecture. 

As shown in Table 1, the performances of models trained on MOI and WSI images are 

comparable.  The AUCs of the WSI (40x), WSI (10x) and MOI models are all above 0.95. 

The pairwise Wilcoxon signed-rank test revealed a significant difference for both the MOI 

segmentation model (AUC=0.987) and the MOI classification model (AUC=0.976) when 

compared with the WSI (10x) model (AUC=0.955) (p-value = 1.451e-11 and 2.902e-11, 

respectively). The MOI models outperformed the WSI (10x) model. Therefore, the deep 
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learning model trained on microscope ocular images could be an alternative and an efficient 

way of diagnosing BCC in pathological images.

Semantic segmentation improves BCC recognition in hard cases

As we mentioned in Methods, the classification model filtered out hard cases with low 

confidence at the first stage.  Subsequently, the semantic segmentation model further 

analyzed these hard cases at the in-depth analysis stage. The generalization ability of a model 

was evaluated by cross-dataset AUCs in Table 1. Of note,  the segmentation model not only 

had the best generalization ability (0.945 across dataset), but also accurately classified hard 

cases within dataset with the AUC of 0.933. In contrast, the classification model at the first 

stage did not detect BCC very well in hard cases, with the AUC of only 0.701. Since the sizes 

of BCC in the hard cases were relatively small,  the classification model missed some small 

BCC regions. The segmentation model captured the information of annotations at the pixel 

level, which allowed the neural network to learn about the context among pixels, resulting in 

higher performance in hard cases. 

The ROC curves of these models are shown in Figure 3. As we mentioned above, the ROC 

curve demonstrates a trade-off between the sensitivity and specificity. We select three 

operation points on ROC curve to demonstrate the model performance. The first operation 

point on the right emphasizes on sensitivity and sacrifices specificity. The second operation 

point in the middle makes the best trade-off between the overall sensitivity and specificity. 

The third operation point on the left emphasizes on specificity, on the contrary. The high 

sensitivity and specificity indicate that the semantic segmentation model is able to accurately 

recognize BCC based on smartphone-captured MOI pathological images. 

The runtimes of the classification, cascade and segmentation frameworks

To evaluate the runtimes, the classification and segmentation models were 

tested on NVIDIA Titan X GPU. A total of 100 MOI images were used to calculate the 

prediction runtimes. The average runtime of the MOI segmentation model is 500.2  163.2 

millisecond (ms) per image (n=100), whereas the MOI classification model requires only 

89.3  23.9 ms (n=100) and the cascade framework needs 127.5  43 ms per image on 

average (n=100). When tested on CPU (Intel Xeon E5 2620), the runtime of the segmentation 

model is 15.3 3.9second (s) (n=100) per image, but the classification model and cascade 
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model are much faster, with the runtime of  2.7  0.7s and 4.1  1.4s respectively (n=100). 

These results show that the semantic segmentation model requires more time to make 

predictions. 

Locating BCC regions with semantic segmentation

We also demonstrate the performance of locating BCC area through semantic segmentation. 

The training data were labeled with BCC as foreground and all other tissues as background. 

The mIoU reaches 0.863 on the 431 testing images. Examples of gold standard images and 

predictions are shown in Figure 4.

Discussion

Deep learning algorithms have shown promising results in digital pathology 22. The deep 

neural network extracts semantic features from the supervision of large-scale data sets. It 

recognizes and segments mitotic figures or small foci of metastatic cancers, which can be 

missed even by experienced pathologists. Reading pathology images also requires 

considerable time and effort 14,23-24. In contrast, automatic recognition of cancerous regions of 

digital pathology frees histopathologists from laborious labeling and allows them to 

concentrate on difficult cases, and work as supervisors for straightforward cases with higher 

efficiency 22. 

The digital whole slide image is a fundamental data resource for novel automatic recognition 

techniques. Previous deep learning approaches for pathological image analysis have focused 

on metastatic foci in breast cancer, sentinel lymph node, and prostate cancer 14,25-26. 

Researchers integrated image patch classification from WSI and post-process to recognize 

specific metastasis in high resolution images, such as 40 resolution. Liu et al 14 reported a 

sensitivity of 92.4% and image-level AUC scores above 97% on both the Camelyon16 test 

set and an independent set of 110 slides. They found that a combination of multi scale image 

patches in 10, 20 and 40 did not bring significant improvement in classification 

performance. The network trained on image patches, either in 40 or in multi scale resolution, 

concentrates on the local details or the cellular level to distinguish the cancer metastatic area. 

During the practice of cutaneous pathologist in diagnosis of BCC, it is the architecture rather 

than the cellular structure that is more important in making diagnostic decision. Based upon 
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this observation, we designed our deep neural network to identify BCC on 10 resolution 

instead of 20 or 40 magnification because higher magnification cannot distinct BCC from 

normal follicular structures, where the pleomorphism or atypia may be subtle in BCC. To 

obtain multiple 10 digital pathology images, we used smartphone camera to take pictures 

through microscope eyepieces instead of slide scanning machine, which was fast and 

convenient. To evaluate the effectiveness of smartphone-captured digital pathology images in 

detecting BCC, we built models using either smartphone-captured  microscopic ocular 

images or regular whole slide images. Notably, the results manifest that the smartphone 

image-based model achieves comparably good performance in detecting BCC. The AUC of 

the MOIC model reaches 0.976, while the AUCs of the WSI (10) and WSI (40) models are 

0.955 and 0.982, respectively. In addition, the smartphone image-based model can be 

generalized to whole slide images, indicating the robustness of our method.

The classification model trained on MOIC data is able to detect “standard” BCC cases, yet it 

mis-classifies the “hard” cases which are small BCC areas or obscured due to inflammation. 

We introduced the cascade framework to distinguish the “standard” cases from the “hard” 

ones based on the prediction confidence, then applied the segmentation model to the “hard” 

cases to improve the final prediction performance. It is speculated that the improved 

performance after using segmentation is attributed to the pixel-wised annotation, since the 

annotation confidence related information, such as the area and shape of BCC,  is given in  

segmentation. The hard cases should be annotated with low annotation confidence. 

Segmentation presents the area and the shape of the tissue, which indicates how confident the 

labeling can be. 

We further developed an end-to-end segmentation model to directly predict BCC. This model 

achieves the best prediction performance, with the mean IoU of 0.863 and classification AUC 

of 0.987, comparable to previous studies. The mean IoU of the DeepLab V3 model on Pascal 

VOC 2012 validation dataset is 0.764 20. A similar study that employs DeepLab V3 on skin 

lesion segmentation achieves mean IoU of 0.816, 0.885 and 0.774 on three open datasets 27. 

In the case of classification accuracy, Cruz-Roa et al. proposed a deep learning architecture 

that has 0.927 specificity and 0.869 sensitivity 28. In comparison, our segmentation model 

achieves 0.969 specificity and 0.939 sensitivity. Compared with the cascade framework, this 

end-to-end model achieves higher prediction performance, yet it requires more computational 
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time and resources. Regarding the runtime of these different framework, the “segmentation” 

framework requires 15.3 ± 3.9second (s) to predict one image, whereas the classification 

framework only needs 2.7  0.7s, and the “cascade” framework needs 4.1 ± 1.4s. For devices 

which have limited computational resource (e.g. mobile devices), the classification model is 

far more time efficient. When the computational resources are sufficient, the MOI 

segmentation model is a better alternative to achieve higher prediction performance.  These 

two approaches can be adopted under different circumstances.

Of note, limited by the cost of the system, digital slide storage, inability to handle high-

throughput routine work, the adoption of WSI in disease diagnosis by pathologists has been 

slow worldwide 29.  So remarkably differed from the previous WSI based dataset, the 

resources of dataset we used to train the CNN algorithm were creatively designed and the 

digital pathology images were obtained from microscope eyepieces using smartphone 

cameras at 10 resolution. The images presented efficient characteristic pattern features 

rather than cytological features which are more practical in BCC diagnosis for 

histopathologists. The experiment showed the effectiveness and efficiency of this architecture. 

It would generate a novel computer aided diagnosis method to extend the diagnosis capability 

for hospitals without WSI scanning facilities. The advantages of using MOI images includes 

low cost, easily smartphone storage and capability on handling high-throughputs routine 

work. All these advantage of MOI images will benefit pathologists and patients in practice. 

To our best knowledge, this is the first attempt to use deep neural network to recognize 

histopathology images photographed from microscope eyepieces. The faster classification 

and cascade models also provide feasible alternatives for diagnosing BCC when the 

computations resources are limited. 

Conclusion

In this study, we developed deep neural network models for BCC recognition, based on 

smartphone-captured images of digital pathology through the ocular of a microscope. 

Compared with the model trained on WSI, we showed that the MOI-based model achieves 

better performance on detecting hard BCC cases and this model is generalizable across MOI 

and WSI image types. The accurate prediction performance of the MOI-based model and the 

feasibility of collecting MOI images will benefit the diagnosis of BCC in practice.
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Figure Legends

Figure 1. Examples of MOIC and MOIS images and WSI. (a,b,c) Pathology image 

examples photographed from the microscope eyepiece using smartphones. In hard examples, 

red arrows point at the small foci of BCC. (d) Whole slide image.

Figure 2. Schematic diagrams of BCC recognition Systems.  (a) Segmentation based BCC 

recognition system. (b) Classification based BCC recognition system. (c) Cascade BCC 

recognition system. Both the classification and segmentation models can classify BCC 

images, and the segmentation model could further locate the BCC region. The cascade 

system returns the recognition result for standard case (the high confidence) or transfers the 

hard case (the low confidence image) to a segmentation model for further analysis.

Figure 3. Receiver operating characteristic curves of the classification and segmentation 

model. The AUC of the classification system (red) on both standard and hard cases is 0.976. 

The segmentation system (blue) on all cases achieves the highest AUC of 0.987.  The green 

symbols show the performance of cascade framework. The blue diamond, square and triangle 

highlight the high-specificity operating point, the high-accuracy operating point and the high-

sensitivity operating point, respectively.

Figure 4. Segmentation of BCC with MOIS images. The first column is the original 

microscope ocular image. The second column is the manual labels (BCC tissue in grey and 

normal tissue in black). The last column is the prediction of the microscope ocular 

segmentation model (BCC tissue in red).
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Table

Table 1. AUC  (95% Confidence Interval)  of deep learning models and test datasets. WSI 

(10X images) classification model, WSI (40X images) classification model and MOI 

classification model are presented. Each model is tested within dataset (the same dataset on 

which the model is trained), across dataset and its own hard-case. The hard cases processed 

by MOI segmentation model is same with that of MOI classification model. Further 

information is given in supplementary materials (eFigure 1).

              Test Dataset

Model

Across Dataset Within Dataset
Within Dataset Hard 

Cases

WSI (40X)
0.531

(0.516, 0.542)

0.982 

(0.969, 0.993)

0.871

(0.736, 0.980)

WSI (10X)
0.783

(0.771, 0.795)

0.955

(0.945,  0.964)

0.552

(0.405, 0.648)

MOI Classification
0.885

(0.871，0.899)

0.976

(0.968, 0.986)

0.701

(0.608, 0.784)

MOI

Segmentation

0.945

(0.935, 0.954)

0.987

(0.984, 0.990)

0.933

(0.906, 0.959)

*95% CIs were calculated using 2,000 bootstrap samples.
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