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ABSTRACT

Cyber attacks on financial and government institutions, critical infrastructure, vot-

ing systems, businesses, modern vehicles, etc., are on the rise. Fully connected au-

tonomous vehicles are more vulnerable than ever to hacking and data theft. This is

due to the fact that the protocols used for in-vehicle communication i.e. controller

area network (CAN), FlexRay, local interconnect network (LIN), etc., lack basic se-

curity features such as message authentication, which makes it vulnerable to a wide

range of attacks including spoofing attacks. This research presents methods to pro-

tect the vehicle against spoofing attacks. The proposed methods exploit uniqueness

in the electronic control unit electronic control unit (ECU) and the physical chan-

nel between transmitting and destination nodes for linking the received packet to the

source. Impurities in the digital device, physical channel, imperfections in design, ma-

terial, and length of the channel contribute to the uniqueness of artifacts. I propose

novel techniques for electronic control unit (ECU) identification in this research to

address security vulnerabilities of the in-vehicle communication. The reliable ECU-

identification has the potential to prevent spoofing attacks launched over the CAN due

to the inconsideration of the message authentication. In this regard, my techniques

models the ECU-specific random distortion caused by the imperfections in digital-to-

analog converter digital to analog converter (DAC), and semiconductor impurities in

the transmitting ECU for fingerprinting. I also model the channel-specific random

distortion, impurities in the physical channel, imperfections in design, material, and

length of the channel are contributing factors behind physically unclonable artifacts.

The lumped element model is used to characterize channel-specific distortions. This

xiii



research exploits the distortion of the device (ECU) and distortion due to the channel

to identify the transmitter and hence authenticate the transmitter.
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CHAPTER I

Introduction

The main objective of this chapter is to provide the introduction of the disserta-

tion. Section 1.1 provides the motivation to implement security in modern electric

vehicle, which is followed by the research objectives in section 1.2. Original contribu-

tions of this research are reported in section 1.3. Threat model is presented in section

1.4. Finally the complete outline of dissertation is provided in section 1.5.

1.1 Motivation

The modern vehicle is a cyber-physical system (CPS) equipped with many wire-

less and wired communication interfaces and a large number of microcontrollers and

electronic control units (ECUs) networked via various in-vehicle networks (IVNs)

(1; 2; 3; 4; 5; 6; 7; 8), such as CAN (8), LIN (1), media oriented system trans-

port (MOST) (2), FlexRay (3), etc., that connect safety-critical components of the

vehicle, including brakes, airbags, engine control, and active safety devices, e.g., elec-

tronic stability program, adaptive cruise control, and so on. Integration of wireless

interfaces, e.g., Bluetooth, Wi-Fi, etc., with IVNs and use of the legacy CAN pro-

tocol for in-vehicle control communication pose serious security threats to connected

autonomous vehicles (AVs) (9).

Advances in-vehicle technologies are unable to keep pace with the growing attack

1



surfaces and vectors, leaving millions of vehicles vulnerable to a wide range of attacks

e.g. man-in-the-middle, and packet spoofing (10; 11; 12; 13). This is due to the fact

that the automotive industry is still relying on the legacy controller area network

(CAN) protocol for in-vehicle communication among ECUs. Whereas, CAN protocol

lacks basic security features such as message authentication, confidentiality, and in-

tegrity, thus cause the CAN as an easy victim of attack through ECUs (14; 15; 16).

The ECUs on the in-vehcile network therefore are vulnerable to various attacks, in-

cluding packet spoofing attacks, data injection attacks, denial of service (DoS) attacks

etc., that can defect the vehicle. Recently, researchers have successfully hijacked ve-

hicles from a remote location, and killed the vehicle engine in middle of a highway

(16).

Researchers have proposed various solutions to detect and prevent attacks on the

CAN protocol for in-vehicle control networks. These methods can be classified into

two categories: (i) message authentication code (MAC)-based approaches (17; 18; 19;

20; 21; 22; 23; 24), and (ii) intrusion detection-based approaches (25; 26; 27; 28; 29;

30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46).

The MAC-based methods, achieve security and privacy by encrypting the payload

of the CAN-packet before transmission. For instance, in (17), Wang et. al. demon-

strated a MAC-based framework VeCure for CAN security. In VeCure, 64-bit MAC

for every 64-bit message was transmitted between the ECUs. Intuitively, the method

exhibited high computational cost, 50% additional transmission overhead, and also

required a higher data rate. In (21), Hiroshi et. al. designed an authentication mech-

anism for the CAN protocol against spoofing attacks. The monitoring node provided

the authentication code for all ECUs and verified the code for all CAN messages. In

(19), Hazem et. al. proposed a lightweight CAN authentication protocol (LCAP).

The LCAP required to append a “magic number” that was generated by a one-way

hash function employed on TESLA prototype (47). The protocol required 16-bits of

2



the data field to append the authentication code, which still creates 25% overhead.

The MAC-based approaches have the intrinsic overhead that lowers the transmission

performance, hence makes them unreliable for the CAN security (17; 46; 23).

To address the limitations of MAC-based solutions, researchers have proposed

intrusion detection-based approaches for CAN network traffic analysis (26; 27; 21;

19; 48). The intrusion detection-based approaches have lower data rate requirements

because no additional bits are transmitted during the message transmission; hence,

it does not add additional network overhead. In (26), Cho and Shin demonstrated a

clock-based intrusion detection system (CIDS) that used ECU fingerprinting. Each

ECU contained a crystal oscillator known as a clock; the ECU fingerprinting measured

the clock skewness against the received packets and detect the attack. However, Sang

et. al. (28) and Tayyab et. al. (49) demonstrated that CIDS can be bypassed by esti-

mating the clock parameters. In (46), message authentication was performed through

ECU detection by applying higher-order moments of the CAN signal in both times-

and frequency-domains. However, the approach was intolerant against the transmit-

ter induction and the performance of the system seriously decays if the number of

transmitters is increased. Therefore, I need an IDS-based approach that extracts

unique fingerprints from the signal, works for a higher number of transmitters, and

also exhibits low computational complexity.

To address the aforementioned limitations of existing in-vehicle security tech-

niques, novel IDS-based message authentication approaches are presented in this re-

search. My approach exploits the two types of distortions.

• Device-specific distortion

• Channel-specific distortion

3



1.1.1 Device-specific Distortion

In the first part of this research, my approach exploits the uniqueness in device-

specific distortions e.g., semiconductor impurities, DC offset, aliasing error, the mis-

match between the nominal and measured values of electric components in DAC, etc.,

for message fingerprint generation. I hypothesize that distortions due to digital-to-

analog conversion operation at the ECU output are device-dependent that can be

used to link the received packet to the transmitting ECU. Therefore, I associate the

received packet through a specific ECU, and the ECU-pin responsible for message

transmission.

1.1.2 Channel-specific Distortion

In the second part of this research, my approach exploits the uniqueness in

channel-specific distortions. I also hypothesize that the distortion in the signal be-

haves like a unique signature, which can be used to link the signal to the channel and

hence the transmitter. The proposed research exploits uniqueness in the channel-

specific distortion for linking the received CAN packet to the transmitting source.

The impurities in the physical channel, imperfections in design, material, and length

of the channel contribute to the uniqueness. The lumped element model (LEM) for

transmission lines is used to characterize channel artifacts.

1.2 Research Objectives

There are 2 main objectives of this research:

1.2.1 ECU and Pin Level Uniqueness

The first objective of this research is: (i) to investigate ECU-level uniqueness for a

given network and (ii) to investigate pin-level uniqueness for a given ECU to authen-

4



ticate the message. The proposed method relies on distinctive physical artifacts of

the DAC of the transmitting ECU for device-level fingerprinting. The imperfections

in material, design, fabrication of DAC are contributing factors that create distortion

in the ECU signal. I perform the statistical modeling of this distortion and use it as

a feature vector for transmitter identification (i.e. transmitting ECU, and ECU-pin)

through neural network architecture.

1.2.2 Channel Level Uniqueness

The second objective of this research is to investigate channel-level uniqueness

for a given network. The proposed method relies on distinctive physical artifacts

of the channel, for channel fingerprinting. Material and design imperfections in the

physical channel and length of channel are the main contributing factors behind the

channel-specific unique artifacts, are leveraged to link the received electrical signal

to the transmitter. I performed the statistical modeling of this distortion, then there

are two approaches used for channel identification.

• Non-parametric approach (Neural network based approach)

• Parametric approach (Maximum Likelihood Ratio Test)

1.3 Contributions

Thus, the main contributions of this dissertation are:

• I provide a mathematical model of the distortion sources i.e. imperfections in

the material, design, fabrication of DAC.

• I propose a statistical model of the device (ECU)-level distortion for transmitter

identification.
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• I also propose that different transmitting pins in a single device have unique

distortion and can be used for ECU-pin identification.

• I provide a mathematical model of the distortion sources i.e. manufacturing

imperfections, design imperfections of channel

• Model the channel-specific distortion for CAN channel.

• Channel-specific distortion extraction and its uniqueness analysis

• Propose a reliable framework neural network based approach for linking received

CAN packet to the true transmitting source.

• Propose a parametric approach which estimates multiple density functions of

distortion, and adopt the best fit density function to identify the source trans-

mitter. In my case, the gamma distribution function is the best fit density

function that is used to compute the α and β parameters of the gamma distri-

bution. Through empirical analysis, I observed that the parameters α and β

have random nature thus can also be represented through the gamma function,

which in this case is the Gaussian function. Afterward, for a test signal, α and

β are computed, that are then used to identify the channel for message authen-

tication and attack prevention through a novel modified likelihood approach.

1.4 Threat Model

In the threat model, I have two types of threats. The first threat is from physical

access, and the second threat is from wireless access as shown in Fig. 1.1. The physical

access threat means that the adversary physically removes one of the ECUs from the

vehicle and connects it’s own ECU for injecting malicious messages. The second threat

is from wireless access in which the adversary injects a message in the CAN using a

wireless interface like radio, Wifi, vehicle to vehicle (V2V) communication etc. This
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Figure 1.1: Threat model for in-vehicle communication

research is robust against ECU impersonation attacks that are launched through the

physical access of the car e.g. the adversary attacks the CAN through physical access

by deploying a new ECU. Since the distortion in the signal is dependent on DAC

and material imperfections, the feature vector estimated will be different as well,

the message will not be authenticated and attack will be identified. Moreover, my

approach is also effective for attacks launched through wireless interface e.g. attack

launched on the infotainment system to access CAN as done by Miller et. al. (50).

Given a vehicle network as shown in Fig. 1.2, suppose that an adversary tries

to penetrate the vehicle network through the wireless interface of the infotainment

system with the help of a CAN message, which is for the braking system. In CAN mes-

sage, the information about the sender is missing, as the messages are functionality-

based. However, the fingerprinting ECU will correctly recognize the ECU, it will not

authenticate this message as it is coming from the wrong sender, and it will send a

warning signal to braking unit ECU. Now, the ECU braking unit knows not to apply

the brakes since the CAN message for applying brakes is not supposed to come from
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Figure 1.2: Attack detection for in-vehicle communication

the infotainment system.

1.5 Dissertation Outline

The rest of this dissertation is organized into nine chapters. The brief summary

of each of these chapters is as follows:

For in-vehicle communication, different protocols i.e. CAN, LIN, Flexray et. are

used. The security systems proposed in this research are protocol independent, as

physical signal is used for fingerprinting ECUs. In Chapter-II, an overview and com-

parison of CAN, Flexray and LIN protocols is presented.

Intrusion detection based approaches are further subdivided into: (a) parameter

monitoring based approaches (b) information theory based approaches (c) machine

learning based approaches and (d) fingerprinting based approaches. Chapter-III out-

lines the related work to my research.

Chapter-IV provides a novel technique for electronic control unit (ECU) iden-

tification based on ECU distortion address security vulnerabilities of the controller

area network (CAN) protocol. In this regard, my technique models the ECU-specific

random distortion caused by the imperfections in digital-to-analog converter, and

semiconductor impurities in the transmitting ECU for fingerprinting.
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Chapter-V is about using a the lumped element model to characterize the channel-

specific step response. ECU and channel imperfections lead to a unique transfer

function for each transmitter. Due to the unique transfer function, the step response

for each transmitter is unique. In this section, control system parameters are used as

a feature-set, afterward, a neural network is used transmitting node identification for

message authentication.

Chapter-VI proposes a method exploits physical unclonable attributes in the phys-

ical channel between transmitting and destination nodes and uses them for linking the

received packet to the source. Non-parametric modeling is used to estimate distortion

distribution, which is used for transmitting node identification. A neural network is

trained to identify the channel and hence transmitter.

Chapter-VII also exploits channel distortion for message authentication, a novel,

computationally efficient parametric approach is developed to quantify the distortion

in form of probability density function (PDF). The best fit PDF over histogram of

distortion, is gamma distribution function. Afterwards, the α and β parameters of

gamma distribution function are computed for multiple records in each channel to

obtain the joint density function. Finally, the likelihood ratio test is applied on joint

density function to identify the channel and transmitter.

Chapter-VIII concludes this dissertation and describe the future perspectives of

the research.
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CHAPTER II

Overview of CAN, FlexRay and LIN Protocol

CAN, FlexRay and LIN protocols are commonly used for modern in-vehicle com-

munication. A modern vehicle contains 70 to 100 ECUs. This chapter presents

a literature review of these protocols. The communication cycle, process, message

structure, and hardware elements are discussed for all three protocols. Performance

is measured in terms of reliability and latency. In addition, a comparison between

the CAN, FlexRay, and LIN protocols is made. Study shows that CAN protocol

has advantages when it comes to real-time priority-based communication. However,

if all the events have equal priority, then FlexRay works well. The LIN protocol is

budget-friendly and has the lowest cost in all 3 protocols but at the same time, it is

unreliable.

The rapid advancement in the automotive industry increases the demand for de-

veloping remarkably efficient communication techniques in order to provide higher

bandwidth for better data rates. To examine this issue, the most recent interfac-

ing systems for in-vehicle networking are introduced in this comparative study. The

discussed methods are represented in CAN, FlexRay, and LIN protocols. Each pro-

tocol is suitable for a set of specific applications that perform a certain group of

purposes and combined will form a complete communication network that connects

the intra-vehicle control units in one fully functional system.
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The distinctive and quick development in digital and computer hardware technol-

ogy inspired the automotive world to advance in communication and networking for

the in-vehicle network area. As a result of the technological advancement in com-

munication systems, electronic systems in vehicles are becoming more diverse and

complex structurally and functionally to cope with the new innovations, providing

further convenient and efficient services for drivers to confidently monitor the in-

ternal and the external performances of the system. Ultrasonic sensors, radar, and

cameras are utilized to control the internal performance of the vehicle (51; 52; 53). To

maintain a high level of safety to drivers, passengers, and pedestrians, the systems are

particularly constructed to monitor the surrounding environment of the vehicle (51).

Furthermore, the infotainment system is being added due to its importance in con-

nectivity such as Bluetooth, navigation, smartphones, and audio system (51; 52; 53).

Data traffic, latency, and jitter in the network may cause a delay in services. How-

ever, this issue can be controlled, and the bandwidth can also be maximized through

the Quality of Service (QoS) measurements. This can vary with different functions of

the in-vehicle communication, which can be mainly classified into time-dependent and

independent functions, or real-time and non-real time functions for controlling mes-

sage transmission between ECUs (51; 54). Examples of real-time applications, which

are represented by using CAN, LIN, and FlexRay protocols, are the braking, steering,

engine control, transmission, multimedia, human machine interface (HMI), telematics

audio, and seating systems (51; 52; 53; 55; 54). One the other hand, FlexRay protocol

is also considered more of a hybrid system technology that can be a time-triggered

or an event-triggered protocol (51; 55; 54). All automotive networking methods are

dedicated to communicating signals effectively among the control units to improve

message transmission safety, lowering the cost of cabling, maximizing bandwidth, and

saving package space (51; 56; 57).

The overview and a comparative study are discussed in detail. This chapter is
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organized in the following fashion: Section 2.1 is an overview of CAN. Section 2.2 is

an overview of FlexRay. Section 2.3 is an overview of LIN. Section 2.4 is a comparison

study between CAN vs. FlexRay, LIN vs. CAN, and LIN vs. FlexRay.

2.1 CAN- an Overview

In the 1980s, the CAN bus protocol was proposed by Robert Bosch GmbH (58).

This robust system has been broadly applicable in communication and networking ar-

eas such as automotive networking systems, medical appliances, entertainment realm,

and domestic apparatus (58). In the pre-CAN bus era, the message exchange for

point-to-point communication systems was mainly based on source and destination

addresses. After the CAN bus system was introduced, broadcast communication was

utilized, where every node via the bus can transmit and receive message. Unlike

the traditional method, the CAN bus system added more flexibility to the network-

ing technology. This makes adding further nodes to the network more possible and

convenient, and it will not affect the main structure of the network system and the

existing nodes as well. CAN bus uses a multi-master configuration (23) which allows

the transmission or reception of the messages via any node when the bus is free. This

also guarantees a fixed delay duration. CAN bus is an event-triggered protocol (23)

in which the message is initiated as a response to a triggered event or request in the

network (23; 46).

As a real-time system, for every message on CAN bus there is a unique pri-

ority depending on the message identifier (ID) that exists in each message frame

(23; 42; 59; 49). If the message has the lowest ID, it will have the highest priority to

pass through the bus and vice versa (46). Furthermore, via the message arbitration

technique, the bus collision is avoided due to a message prioritization feature, where

nodes on the CAN bus send messages consecutively and the message with the lowest

identification value will have the priority to transmit on the bus (42; 46). CAN bus
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utilizes broadcasting communication topology for sending messages by using differen-

tial signaling mode at the physical layer, which is represented by two communication

twisted pair wires, CAN High (CANH) and CAN Low (CANL) (42; 46). The signal

transmission methodology of CAN bus is represented by 1s, recessive bits, and 0s,

dominant bits. In idle mode, where the recessive bit (1s) is transmitted, CANH and

CANL are set to 2.5 volts, causing the voltage between the wires to be zero (42; 46).

When the dominant bits (0s) is transmitted, CANH rises to 3.5 volts and CANL

goes to 1.5 volts, where the voltage difference between the two wires is becoming 2

volts (42; 46; 60). CAN bus topology is illustrated in Fig. 2.1 (46). For example,

three nodes in binary (23) (Node 1: 11001011111, Node 2:110011111111, and Node 3:

110010110010) attempt to transmit messages simultaneously. However, the message

which is assigned the lowest identity (third node) will broadcast the information first.

Hence, the bus collision is prevented. The scenario above is illustrated in Fig. 2.2,

(23).

Figure 2.1: CAN signalling mode

There are two common CAN-bus formats which are the Standard format, where

an 11-bit Identifier frame is used, and the Extended format, which implements a 29-

bit Identifier frame (61; 49; 46). Other major frames include Data Frame, Remote

Frame, Overload Frame, and Error Frame.
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Figure 2.2: Arbitration field operation in CAN

1. Data Frame: The purpose of the data frame is to convey messages from sender

to receiver. As illustrated in Fig. 2.3 (23) this frame comprises a 1-bit start frame,

12-bit Arbitration Field, 6-bit Control Field, a Data Field ranging from 0-64 bits,

16-bit CRC Field, 2-bit ACK field, and a 7-bit End of frame field, respectively. In

the arbitration field, the message priority is defined and a single bit decides whether

a data frame or a remote frame will be transmitted. The control field decides the size

of the data frame. The CRC Field contains 15 bits for a Cyclic Redundant Checksum

algorithm is implemented to detect errors, and uses one recessive bit delimiter (23).

In ACK field acknowledgement occurs as part of the communication protocol; the

message from the CRC field is being received and detected in ACK field for any

possibility of error occurrence. If there is no error detected and the data matches the

original message, then it will be reported to the transmitter that the sent message

is being validated and received accurately. This process happens by replacing the

recessive bit with a dominant bit in the ACK field (23; 60).

Figure 2.3: Data frame of CAN
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2. Remote Frame: The remote frame in general is made of five fields which are

a 13-bit Arbitration Field, 6-bit Control Field, 16-bit CRC Field, 2-bit ACK field,

and 7-bit End of Frame Field. Fig. 2.4 (23) shows the full depiction of the Remote

Frame structure, which closely resembles the Data Frame. The primary difference is

that the Remote Frame does not transmit data; instead, the Remote Frame creates

a sender response to the requested data from the receiver (with the same identifier)

(23; 60) and a recessive RTR bit in the Arbitration Field identifies the message to be

a remote frame (23; 60).

3. Error Frame: The error frame involves two parts which are a 6-bit Error Flag

and an 8-bit Error Delimiter. When a node receives an error message, the Error Flag

and Error Delimiter are sent. In case of any inaccuracy, the error flag will be raised.

The Error Frame is shown in Fig. 2.5 (23).

4. Overload Frame: The Overload Frame is transmitted whenever the receiving

node is extremely busy and cannot receive the message and a delay between the

sent messages is activated. There are two conditions upon which an Overload flag is

transmitted. The first condition is the internal condition of the receiver, which causes

further latency in transmitting the next or remote frame or data frame (62). The

second condition for transmitting the Overload frame is the detection of a dominant

bit during the intermission. In addition, the Overload Frame contains a 6-bit Overload

flag and an 8-bit Overload Delimiter. Fig. 2.6 (23) shows the layout of the Overload

Frame.

5. Bit Stuffing Method: The bit stuffing rule is violated when six identical bits

are sent consecutively via CAN bus, which indicates an error (62). Therefore, a

complementary bit is added after transmitting five identical bits consecutively to

some fields in CAN bus to avoid bit stuffing such as Arbitration Field, Control Field,

and CRC Field (23). If bit stuffing occurs during transmission, then every node will

transmit the error frame as an indication of violation of bit stuffing law. Fig. 2.7 (23)

15



shows how the bit stuffing is added to fields.

Figure 2.4: Remote frame of CAN

Figure 2.5: Error frame of CAN

Figure 2.6: Overload frame of CAN

Figure 2.7: Frame bit stuffing of CAN

2.2 FlexRay- an Overview

In 2000, FlexRay Consortium introduced the FlexRay protocol especially for safety

purposes in the automotive production, which requires a higher data rate. Therefore,
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FlexRay technology can be considered safer and more advanced than CAN and LIN

technologies. The most significant feature of FlexRay, that CAN and LIN busses lack,

is network versatility by which FlexRay protocol adopts various topologies such as

star, bus, and Hybrid topology (63). Like the functionality of HUB topology in the

Ethernet network, the star topology is described as a central node that is connected

to other nodes to expand the network and cover longer distances. The other benefit

of the star topology is that a partial breakdown of the network will not affect the

functionality of the entire network (23; 64). Star topology might be exposed to the

ambient noise that could be caused by long distance wiring. To eliminate most of the

noise and to increase the purity of the network, the star topology adopts the multiple

legs concept instead of the one leg star topology (23). On the other hand, FlexRay

can combine both the bus and the star topologies together as a hybrid system. Using

the bus and the star topologies in parallel sounds more promising in the future of

intra-vehicle networks due to high fault-tolerance and reliability of the star topology,

despite the affordability and simplicity of use for the bus topology (23). In Fig. 2.8

(23), a basic diagram illustrates the hybrid topology of FlexRay. FlexRay supports

event-triggered and time-triggered tactics for the in-vehicle communication network.

The deterministic data reaches its destination in an expected time frame with the

support of time-triggered protocol, making this type of network is suitable for hard

real-time embedded systems (23).

FlexRay handles data collision by the mechanism of Time Division Multiple

Access TDMA (23). The nodes in the FlexRay network connect to the network-

synchronization clock, and by using TDMA the deterministic conditions are met and

the consistency of the data is ensured. In other words, each node will write to the

bus in periodic order due to the clock synchronization network that is supported by

FlexRay protocol (23; 63). FlexRay offers robustness with its two-wire or four-wire

differential signalling, the latter of which contains two separate twisted pairs tasked
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with transmitting the same information. Comparison of the signals received from each

twisted pair aids in determining the level of fidelity in the received data. The com-

munication cycle is comprised of four frames which are the Static Segment, Dynamic

Segment, Symbol Windows, and Network Idle Time.

1. Static Segment: The Static Segment of transmission supports deterministic

data, ensuring that certain data reaches its destination in a set period of time.

2. Dynamic Segment: The Dynamic Segment acts as the data frame in the CAN

network for messages that necessitate an event-triggered protocol, in which data de-

terminism approach is not required.

3. Symbol Windows: The Symbol Windows section is used for network mainte-

nance (23).

4. Network Idle Time: The Network Time Idle, known as “silent time”, preserves

clock synchronization in the network (23). The ECUs use this frame to regulate any

drift that might affect the network timing from the previous cycle. The FlexRay

hybrid topology is depicted in Fig. 2.8 (23).

Figure 2.8: FlexRay hybrid topology
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2.3 LIN- an Overview

One common protocol in modern vehicles is the Local Interconnect Network, oth-

erwise referred to as LIN. A LIN bus generally connects non-critical systems that do

not require direct connection to the CAN (Controller Area Network) bus, which helps

to offload bus traffic from the CAN bus or reduce the total number of CAN buses

required in a vehicle (65). Typical non-critical vehicle systems which use LIN include

seating systems, the windshield wiper system, lighting systems on the interior of the

vehicle, temperature control systems, and door modules (66). None of these applica-

tions require high reliability or robustness, so these systems do not require the high

reliability and performance provided by CAN. The LIN protocol uses a master-slave

configuration, with only one master and up to 16 slaves on each LIN bus (61; 66). The

master is responsible for controlling the data transfer cycle among all devices on the

LIN bus. LIN is schedule-based, or deterministic, and thus requests are made by the

master in a predetermined order. This schedule of requests makes it possible to know

exactly when a specific request will be sent. The master sends a request for specific

data by sending what is called a header, which is broadcast to the LIN bus. Each

slave is designated to respond only to a specific set of protected identifiers, which are

part of each header transmitted by the master (65; 66). When responding to a pro-

tected identifier, a device will publish data to the LIN bus. Note that only one node

is assigned to respond to any given message, so no two slaves should ever simultane-

ously send a response. Although only one node may respond by transmitting to the

LIN bus, other nodes may listen to the response and read the data being transmitted

(65). This scheduling system mandates that systems wait their turn to share data,

and no single system’s transmission is valued more highly than another. Another

consequence of scheduling is that the maximum latency between a slave becoming

ready to transmit data and its actual turn to broadcast data can be determined using

the schedule (66). The LIN bus is comprised of a single wire, and the master and
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slave devices can be daisy-chained along this bus. The bus is pulled up to a logical

high level, and when a LIN transmitter wants to send a dominant bit, it drives the

bus to zero volts by providing a connection to ground. A low bit is considered to

be dominant because only one node has to provide a connection to ground for the

bus to become low. Generally, the high voltage level will be equivalent to that of the

car battery in vehicles, or roughly twelve volts, for recessive bits. Again, zero volts

are measured for dominant bits. Note that these are ideal values; in reality, these

voltages can shift up or down by as much as ten percent of the battery voltage (66).

In LIN communication, there are two main components of a single communication

cycle: a header, also called a token or a request, and data. Only the master may send

a header.

1. Header: The first part of a transmission sequence is the header. This be-

gins with a break, which contains 13 consecutive dominant bits and ends with one

delimiting bit, which is recessive. In LIN, dominant bits have 0 volts, while reces-

sive bits typically assume a value between 9 and 18 volts (65), although there are

some exceptions. This break field indicates to the slaves that transmission is going

to begin. Next, there is a sync period. In LIN’s master-slave configuration, only

the master is required to possess a crystal oscillator, whereas slave nodes may use

much less accurate oscillators such as low-cost RC circuits. Because slave devices use

these cheaper, less accurate oscillators, the sync period is necessary so slave devices

can determine the baud rate of the master and match that rate. The sync period

consists of a dominant start bit, then 8 consecutive alternating bits (0x55) and lastly

a recessive stop bit. In essence, this signal is equivalent to transmitting the master’s

clock signal. Lastly, the protected identifier is sent. This consists of one dominant

start bit, a six-bit identification number for the specific task requested by the master,

two parity bits, and one stop bit (65). It should be noted that in LIN 2.0 the two

most significant bits of the protected ID, or bits four and five of the header byte, are
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used to indicate the length of the expected data transmitted in response, which can

be two, four, or eight bytes long (61).

2. Data: The data sent in response to a specific protected identifier may contain

either two, four, or eight frames. Each frame begins with a dominant start bit, then

contains one byte of data, and terminates with a stop bit. Between each start and

stop bit, each byte of data begins with the least-significant bit and concludes with the

most-significant bit (66). After the data bytes are sent, a one-byte checksum is sent,

also beginning with a start bit and ending with a stop bit. A checksum is calculated

by the slave and then transmitted. This transmitted checksum should match the

checksum calculated by the master. If checksums do not match, this indicates an

erroneous data transmission (61).

3. Parity: One check for message fidelity occurs during the transmission of a

header. Each header frame sends a dominant start bit, the six-bit protected identifier,

two parity bits, and a stop bit (65). The parity bits are computed by perform a

specified operation on the protected identifier in the header. The identifier bits and

the parity bits as a whole should follow an accepted rule when transmitted. If this

rule is violated in the received message then it is known that the transmitted message

was altered and corrupted. For LIN 2.0, the first bit is calculated by taking the

logical XOR operation of bits 0, 1, 2, and 4 of the protected identifier. The resulting

parity bit, P0, will be equal to one if the number of ones in these four bits is an

odd number, and zero otherwise. The second parity bit, P1, is the result of the

logical XOR operation with bits 1, 3, 4, and 5 of the protected identifier. P1 will be

one if the number of ones in these four bits is an odd number, and P1 will be zero

otherwise. If one of the protected identifier bits is corrupted during transmission, the

reproduction of these parity bits will yield different results than those transmitted,

indicating transmission failure (67).

4. Checksum: Another fidelity check occurs after all data frames are transmitted
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in a response, ensuring valid transmission of data. A checksum is transmitted, which

is the output of an algorithm that produces a one-byte result in this case. The

checksum is calculated by the transmitting device and is broadcast on the LIN bus

after transmitting all of its data. The recipient of the data then runs the same

checksum algorithm on all received data bytes, and compares its own output to the

checksum transmitted on the bus to determine if the data sent was truly error-free.

Older LIN protocols calculated a checksum by summing only the data bytes that were

transmitted, but LIN 2.0 also incorporates the protected identifier sent by the master

in the header into this computation (68).

2.4 Comparison of CAN, FlexRay and LIN Protocol

2.4.1 CAN vs. FlexRay

The CAN bus offers a robust, simple and affordable solution for the in-vehicle

network where the ECUs are all connected with each other and with a bus. This

architecture avoids complicated bi-directional communication, and the number of

wires required is just two. On the other hand, FlexRay is another well-structured basic

in-vehicle network system that promises a higher speed of transmission than the CAN

bus can support. One of the most significant features of the FlexRay that services

the automotive industry is providing higher rate data (10 Mbps) than CAN and LIN

communication (1 Mbps) (23), which expands the bandwidth for data transmission.

As a multi-master network, the CAN bus broadcast communication mechanism allows

transmission of the messages with higher priority first, which makes it suitable for

hard real-time systems (62). However, FlexRay is suitable for deterministic data

communication that prevents prioritization of messages in all situations (23). This

deterministic communication is given to vehicle dynamic controls and chassis (51).

Regarding reliability, the CAN system supports error detection techniques in-
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cluding Cyclic Redundancy Code (CRC) which allows all nodes in the bus to detect

and avoid messages that carry errors (23). Meanwhile, FlexRay offers redundant

communication capability (dual-channel communication) (23), which makes FlexRay

technology more secure than LIN and CAN networks, which totally lack this feature.

Another significant feature of FlexRay is network versatility: FlexRay supports star,

bus, and hybrid topologies, which are not supported by the CAN protocol (23; 64).

The maximum bus length for 1Mbit/s CAN protocol is 40-meters, while FlexRay al-

lows at most 24-meter bus length. CAN bus cable is made of two wires, while FlexRay

requests two to four wires. Fault-tolerance in FlexRay is ideal in-vehicle applications

like braking and steering control systems (51). The CAN bus is an event-triggered

protocol (23), whereas FlexRay is both a time-trigger and an event-trigger protocol

and it has the tolerance to event-triggered and time-triggered data in the same cycle

(51). Furthermore, the message transmitted via FlexRay can be both synchronous

and asynchronous, which satisfies the requirements for vehicle components that de-

pend on hard real-time systems such as an anti-lock braking system, or ABS, brake

control, and engine control (23). In the CAN protocol, the transmitted messages are

only asynchronous.

Both methods have several disadvantages. Although the broadcasting nature of

transmitting messages via CAN bus offers simplicity, the standard CAN bus sys-

tem commonly used in the automotive industry today lacks a message authentication

technique for both the source and the destination. This might increase the chance of

hackers to break through the system, send malicious messages and then fully attack

the system, where the receiver cannot realize if it is the original or a spoof message

(23). In the CAN protocol, data collision and collapse would be very possible when-

ever two nodes try to transmit data via the same bus at the same instance, so an

arbitration method is used to avoid the data collision since it is relatively easy to

apply and implement. However, this method is not practical for high rate data trans-
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Table 2.1: CAN vs. FlexRay

Comparison Criteria CAN FlexRay
Applications Safety-Critical Systems Safety-Critical Systems
Configuration Multiple-Master Multiple-Master
Cost and Complexity Relatively High Very High
Transmission Speed 1 Mbit/s 10 Mbit/s
Signalling Method 2-Wire Twisted Pair Differen-

tial Signalling
2-Wire/Four-Wire Twisted
Pair Differential Signalling

Number of ID Bits 11 or 29 11
Failure Management If Node Fails, That Node

Stops Transmitting
Topology Dependent; In Star
Topology, Failing Node is
Suppressed

Transmission Process Priority-Based and Event-
Driven

Time/Schedule-Based and
Priority Based/Event Driven

Topology Two-Wire Bus Two-Wire Bus or Star
Error-Checking 15-Bit CRC, Acknowledge-

ment Bit
24-Bit CRC and 16-Bit
Header CRC(68)

mission (23). However, FlexRay has disadvantages as well, such as implementation

cost, and difficulty of the protocol relative to the CAN protocol. Also, transmitting

time-triggered and event-triggered data can impact the efficiency of data transmission

(51). Table 2.1 summarizes the comparison of these protocols.

2.4.2 LIN vs. CAN

Because of the master-slave configuration, LIN slaves are not required to have

their own crystal oscillators, but rather can have cheaper RC oscillator circuits with

a tolerance of 15%. This is the most important factor in what makes LIN a low-cost

communication protocol in comparison to other protocols like CAN (66). Further-

more, the LIN bus only requires a single wire as opposed to the shielded twisted pair

wire required for CAN, which makes LIN more cost effective (61). The single-master

configuration of LIN is considered to be relatively simple to implement compared to

CAN, which uses a multiple-master architecture (65).

Due to the transmit-by-schedule nature of LIN, it does not support priority-based
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transmission, whereas CAN communication will serve nodes with high priority first

as they become ready to broadcast data. However, this means that LIN allows for

deterministic communication through scheduling, allowing one to know precisely when

a specific message will be sent. This is unlike CAN, in which one can approximately

predict when a node will transmit data based on its frequency of transmissions, but

this cycle will be irregular due to bus arbitration (68).

LIN has low transmission speed in the range of 1 to approximately 20 kbit/s,

which is slower than typical CAN transmission rates, which reach up to 1 Mbit/s.

Due to LIN’s scheduling nature, when a transmission error is detected, the schedule

continues as planned. However, in CAN, if an error is detected in a transmission, the

same message will be re-transmitted the next time the bus is available (68).

Both LIN and CAN combat electromagnetic interference (EMI) in different ways.

LIN has reasonable immunity to EMI due to its low transmission speeds, whereas

CAN uses a much higher transmission speed. Low speeds also prevent excessive

EMI radiation from the LIN bus. Unlike LIN, however, CAN combat EMI by using

differential signaling, which works well because both CAN line likely receive the same

disturbances from EMI, so the potential difference between the two lines theoretically

remains unaffected. CAN also use a twisted pair and shielding to increase immunity

and decrease radiation of EMI (61). Another reliability issue with LIN is that when

the master fails all systems connected to the bus fail, due to the master orchestrating

all communication (65). In CAN, this is not a problem because it uses a multiple-

master topology. When one CAN node has generated too many transmission errors,

the node will shut itself down (69).

Lastly, CAN is able to accommodate more systems and/or more unique messages

on a single bus. LIN’s protected identifiers are only six bits long, providing a total of

64 different identifiers that can be transmitted by the master. CAN networks either

use 11 bits or 29 bits, enabling a much larger variety of unique IDs to be transmitted
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Table 2.2: LIN vs.CAN

Comparison Criteria LIN CAN
Applications Lower-Performance Systems Safety-Critical Systems
Configuration Single-Master, Slaves Multiple-Master
Cost and Complexity Low Relatively High
Transmission Speed 20 kbit/s 1 Mbit/s
Signalling Method Single Line Signalling 2-Wire Twisted Pair Differen-

tial Signalling
Number of ID Bits 6 11 or 29
Failure Management If Master Fails, Whole LIN

Bus Fails
If Node Fails, That Node
Stops Transmitting

Transmission Process Time/Schedule-Based Priority-Based and Event-
Driven

Topology Single-Wire Bus Two-Wire Bus
Error-Checking 1-Byte Checksum 15-Bit CRC, Acknowledge-

ment Bit(68)

(61; 49). The main differences between LIN and CAN are summarized in Table 2.2.

2.4.3 LIN vs. FlexRay

Again, LIN’s single-master configuration demands that only the master has a

highly-accurate crystal oscillator, which makes this configuration relatively cheap,

as opposed to FlexRay, which does not use a single master-slave configuration and

requires high accuracy in all nodes’ oscillators. LIN communication is all schedule-

based, whereas FlexRay allows for both schedule-based and event-driven communi-

cation by allocating time slots for both static and dynamic frames (70).

The bandwidth of LIN is much lower than that of FlexRay; LIN’s 20 kbit/s

bandwidth is much smaller than FlexRay’s 10 Mbit/s bandwidth (68). Furthermore,

data transmission sizes are very different. A LIN message can transmit two, four,

or eight bytes onto the LIN bus in response to a request from the master, while a

FlexRay node may transmit up to 254 bytes of data in one data frame (70).

The FlexRay star topology allows for higher reliability than LIN communication in
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Table 2.3: LIN vs. FlexRay

Comparison Criteria LIN FlexRay
Applications Lower-Performance Systems Safety-Critical Systems
Configuration Single-Master, Slaves Multiple-Master
Cost and Complexity Low Very High
Transmission Speed 20 kbit/s 10 Mbit/s
Signalling Method Single Line Signalling Two-Wire/Four-Wire

Twisted Pair Differential
Signalling

Number of ID Bits 6 11
Failure Management If Master Fails, Whole LIN

Bus Fails
Topology-Dependent; In Star
Topology, Failing Node is
Suppressed

Transmission Process Time/Schedule-Based Time/Schedule-Based and
Priority-Based/Event-Driven

Topology Single-Wire Bus Two-Wire Bus or Star
Error-Checking 1-Byte Checksum 24-Bit CRC and 16-Bit

Header CRC(70)

the sense that it gives the ability to disconnect nodes experiencing failure, preventing

these faulty messages from transmitting to all other nodes (71). LIN uses only a

single wireline while FlexRay generally uses two-wire differential signaling. FlexRay

also offers a redundant four-wire protocol, where one transmitted message is sent over

two buses. The received messages from each bus can then be compared to ensure that

they are identical and no corruption has occurred. This kind of security feature is

used only for systems that are safety-critical (70). Also, because in FlexRay up to

254 bytes of data can be transmitted by one node, compared to a maximum of 8

data bytes in LIN, FlexRay uses three 8-bit CRCs (a common type of checksum) as

opposed to LIN’s single byte checksum (70). The main comparisons between LIN and

FlexRay are shown in Table 2.3.

In this chapter, CAN, FlexRay, and LIN technologies are discussed and com-

pared to each other to provide an idea of how the combined interconnected systems

of automobiles work together proficiently to prevent critical issues with transmitting
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messages. A comparison is made to demonstrate the differences, topologies and spec-

ifications of each protocol and as a complete interconnected communication system

in each vehicle. In general, the number of ID bits for CAN is 11 or 29, which gives it

more flexibility in data transmission with different IDs (61; 49). FlexRay is 11 bits,

and LIN is 6 bits. The comparison of CAN, FlexRay and LIN shows that the systems

are well structured and suitable for signal transmission in a real-time driven fashion.

However, FlexRay has a higher speed in transmitting signals due to its hybrid nature

of time-triggered and event-triggered approaches, which gives it higher bandwidth

than CAN and LIN. FlexRay is considered safer than CAN and LIN due to higher

data rate requirements. Error detection methods differ among discussed protocols.

FlexRay offers redundant communication capability while CAN and LIN offer cyclic

redundancy code (CRC). Unlike FlexRay and LIN, CAN priorities signal transmis-

sion due to the bus arbitration mechanism. However, FlexRay and LIN do not allow

message arbitration due to the deterministic nature of their data communication. LIN

is more cost-effective compared to CAN and FlexRay because it does not require a

high-accuracy crystal oscillator. Instead, it only needs low-cost RC oscillator circuits

in slave devices for performance. In terms of applications, CAN and FlexRay are used

for safety-critical systems while LIN is more suitable for low-performance applications

that are not time-critical such as window lift, wipers and mirrors.

CAN and FlexRay are multiple-Master communication models, yet LIN is a Single-

Master Multi-Slave model. This configuration makes LIN cheaper than CAN and

FlexRay, which are more expensive due to higher accuracy needed in all node os-

cillators. However, the entire LIN bus fails if the Master fails. In CAN bus, the

failure mode is restrained by node failure where the transmission stops. On the other

hand, FlexRay failure management is topology dependent. Moreover, the transmis-

sion speed of FlexRay is the fastest, which is 20 Mbit/s, CAN is 1 Mbit/s, and lastly,

the transmission speed of LIN is 20 Kbit/s. The signaling method of CAN is based
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on two twisted-pair wiring, FlexRay is based on two or four twisted-pair wiring. Nev-

ertheless, LIN is based on single-line signaling. This makes LIN more available to

be used in a wide range of vehicles for a low price. Eventually, a comparative study

was carefully implemented on three essential and contemporary communication meth-

ods for in-vehicle networking. It shows the importance and specialty of each system

individually, and then in one whole system collectively.

29



CHAPTER III

Related Work

In 2015, Miller et. al. (50) hijacked a jeep in the middle of the highway, which led

to a recall of 1.4 million vehicles. They were able to control the main functions of the

vehicle like engine and brakes etc., hence making a case to improve security in modern

electric vehicles for the safety of passengers. The existing state Of-the-art (SOA) on

countermeasure against spoofing and impersonation attacks on in-vehicle networks

can be divided into (i) message authentication based approaches (19; 18; 20; 21; 22;

23; 24), (ii) intrusion detection based approaches (29; 30; 31; 32; 33; 34; 35; 36; 37;

38; 39; 40; 41; 44; 25; 59; 45; 43; 26; 46; 27; 42) as shown in Fig. 3.1.

Figure 3.1: Existing SOA approaches for IVN attacks
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Most of the work done for in-vehicle network security relies on the message au-

thentication code (MAC) - a traditional computer network security framework. In

(17), Wang et. al. proposed a framework for security in-vehicle systems (VeCure)

which relies on the message authentication code (MAC) for secure communication.

In VeCure, the transmitting node sends a 64-bits of MAC for every 64-bit message.

This method has high computational cost considering the computational capacity of

the ECU and 50% additional transmission overhead. Hiroshi et. al. designed an

authentication mechanism for the CAN protocol against spoofing attacks. The moni-

toring node provided the authentication code for all ECUs and verified the code for all

CAN messages. Hazem et. al. proposed a lightweight CAN authentication protocol

(LCAP). The LCAP required to append a “magic number” that was generated by a

one-way hash function employed on TESLA prototype (47). The protocol required

16-bits of the data field to append the authentication code, which still creates 25%

overhead. MAC-based approaches work well, however, they have 4 major limitations.

First, the MAC-based approaches typically add extra overhead in the network because

more bits are required for encryption. The second limitation is that the MAC-based

approach typically needs a higher data rate. The third limitation is that if the en-

cryption key is estimated by the adversary, it can easily make an attack. The fourth

limitation is that additional hardware is required for the MAC-based approach; this

adds extra cost to the system. Moreover, due to the centralized monitoring node, the

whole network will become compromised if this node is eliminated/compromised.

To overcome the shortcomings of MAC based approaches, the intrusion detection

system (IDS) based approaches are used. Intrusion detection based approaches are

further subdivided into: (a) parameter monitoring based approaches (29; 30; 31),

(b) information theory based approaches (32; 33; 34), (c) machine learning based

approaches (35; 36; 37; 38; 39; 40; 41), and (d) fingerprinting based approaches

(44; 25; 45; 43; 26; 46; 27; 42) as shown in Fig. 3.2. The intrusion detection sys-
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tems (IDSs) are being used persistently in computer network for many years (72).

Cybersecurity professionals for automotive security have also started using IDSs for

protecting connected vehicles against cyberattacks (27).

Figure 3.2: Intrusion detection based approaches

3.1 Parametric Monitoring based IDS

The 1st type of IDS is based on parameter monitoring. Parametric monitoring

based approaches can be subdivided into (a1) frequency-based technique and (a2)

remote frame-based technique (73). In frequency-based technique, the frequency/pe-

riodicity of message frames is monitored (30). In this technique, transmission intervals

of CAN messages can be detected and compared against the established baseline (74).

Researchers have shown that during spoofing attacks and denial of service (DoS) at-

tacks, the frequency of the message frames is changed (31; 50; 73). There are-two

limitations of the frequency-based technique, the first limitation is that it works only

for periodic messages, the second limitation is that if the adversary has knowledge of

the period, it can launch a spoofing attack. The second type of parametric monitor-

ing based approach is the remote frame-based technique. Whenever a node in CAN
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receives a remote frame, it responds to the sender with a message within a certain

amount of time. Offset in this response time can reflect a suspicious activity (29).

There are-two limitations of this technique, the first limitation is that it requires an

additional node, the second limitation is that if the adversary has knowledge of the

response time, it can launch a spoofing attack.

3.2 Information Theory-based IDS

The 2nd type of IDS is information theory-based. The internal communication of

an ECU is in order (73). The set of sequences in which different subroutines/functions

are called during a certain task are stored and if the sequence is violated during a task,

it indicates the occurrence of an attack. For instance, Wang et. al. collected 6.673

million CAN packets for different vehicles (75), their experimental results showed

that CAN message have low entropy of an average of 11.915 bits (75). The idea of

entropy-based attack detection was first introduced by Muter et. al., the issue with

this type of approach is that if an adversary injects a small number of malicious

messages, the attack is difficult to be recognized (76). In another study, Marchetti

et. al. showed that if an attacker launches an attack in the vehicular network, an

entropy-based attack detector is able to detect the attack only if the attack is made

in a high volume of forged CAN messages (32).

3.3 Machine Learning-based IDS

The 3rd type of IDS is the machine learning (ML) and artificial intelligence (AI)

based approach. ML and AI-based classification, regression and clustering are used

to provide to implement security in vehicular networks at different levels (73). For

instance, Taylor et. al. proposed a Long ShortTerm Memory (LSTM) neural network

to detect CAN bus attacks (35). Typically nodes in CAN protocol do not produce a
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variety of data. In this method, the recurrent neural network (RNN) for CAN bus

anomaly detection were used. Further, it required the neural network to be trained

for each node. Another ML-based algorithm for in-vehicle security Ternary Content

Addressable Memory (TCAM) was introduced by Markowitz et. al. (37), TCAM is

a special type of high-speed memory usually used by modern switches and routers

for fast look-up tables and packet classification. In its training phase, this system

used the classifier to characterize the fields and build a model for the messages, based

on their field types. In the testing phase, the system detected deviations from the

model (37). Kang et. al. proposed a deep learning-based ML technique (36). Deep

learning is a machine learning technique that used a number of hierarchical layers of

non-linear processing stages. The 64-bit data field of valid CAN messages was used

as an input in the deep neural network. In the validation phase, the output of the

deep learning-based model is ’1’ or ’0’. Here, ’1’ refers to a normal CAN packet and

’0’ refers to an anomaly/attack. ML-based approaches are typically used to prevent

attacks at the application layer. ML-based models work well, however, they require

considerable computing and storage resources.

3.4 Fingerprinting-based IDS

The 4th type of IDS is the fingerprint-based approach. The idea of fingerprinting

the source from physical signal is not only used for fingerprinting ECUs, but is also

used for fingerprinting other electronic devices such as microphones (77; 78). This

approach is used to avoid attacks at the physical layer. In this type, the inimitable

characteristics in physical signal are used to identify the legitimate transmitter. In

(26), Cho and Shin proposed a clock based intrusion detection system (CIDS) which

used an approach of ECU fingerprinting. This system used deviation from the basic

characteristics of the clock based digital systems, that is, “the tiny timing error known

as clock skew.” For identification of an ECU, the clock skew and clock offset are
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primarily used. Thus, the proposed system identification deviates from the basic

clock-based ECU. Cho and Shin (26) conjointly made a paradigm of planned IDS

and showed the incontestable efficiency of planned CIDS in real automobiles. CIDS

leveraged the fact that the clock skew is a physical property of each ECU that cannot

be changed by the adversary (26). However, Tayyab et. al. (49) and Sang et. al.

(28) demonstrated that CIDS can be bypassed by estimating the clock parameters.

In (46), higher-order moments of CAN signal both in time- and frequency-domain

are used for transmitter identification. It has been demonstrated that the method

demonstrated in (46) achieved detection accuracy of 98.3%. Another prominent work

in IDS is done by Sang et. al. (28) in which the authors demonstrated “cloaking

attack”, in which an adversary modified the timing of transmitted messages in order

to match the clock skew of a targeted ECU, hence bypassing the security of the

system. They (28) showed a new IDS that is developed based on the widely-used

Network Time Protocol (NTP). This IDS used two parameters, clock skewness and

cumulative sum, to identify the transmitting ECU for message authentication.

3.4.1 Scission

Kneib and Huth proposed a method ’Scission’ to implement security in CAN.

Scission uses a sampling rate of 20Msamples/sec. After sampling the signal from

each ECU, the statistical features of the signal from each transmitter are calculated

in addition to energy of the signal. These features proved to be unique for each

transmitter because of variations in supply voltages, variations in grounding, varia-

tions in resistors, termination and cables, and imperfections in bus topology causing

reflections. This feature-set is used to link the message to the source ECU to authen-

ticate the message (45). Scission detected the valid message with a 99.85% accuracy

(45). The feature-set is shown in Table 3.1. Viden uses only acknowledgement bits

to identify the transmitter. The advantage of Scission is that it can prevent attacks
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using any part of the frame. The strength of a signal is determined by energy, which

is expressed by eq. (3.1).

Energy =
1

N

N∑
i=1

x(i)2 (3.1)

Table 3.1: Time domain feature-set

Feature
Name

Equation

Maximum mij = (Min(yij(i))|i = 1....N)
Minimum Mij = (Max(yij(i))|i = 1....N)

Mean µij = 1/N
∑N

i=1 yij(i)

Variance σ2
ij =

√
(1/N − 1)(

∑N
i=1 yij(i)− µij)

Skewness ρij = (1/N)
∑N

i=1((yij(i)− µij)/ρij)
3

Kurtosis kij = (1/N)
∑N

i=1((yij(i)− µij)/ρij)
4 − 3

3.4.2 Using Inimitable Characteristics of Signals

In (26), Choi et al. used inimitable characteristics of signals using unique signa-

tures from each ECU fingerprinting (26). This method adds a monitoring unit to

the CAN-protocol, in which messages are functionality-based. This monitoring unit

supervised the messages transmitted by ECU and ensured that it sent only the au-

thentic messages (26). If an ECU is supposed to control the sensors of the car, it

should not send messages to the engine. If the ECU does send messages to the engine,

then the system alarms of an attack (26). The monitoring unit used a sampling rate

of 2.5Gsamples/sec. After sampling the signal from each ECU, this method used

moment generating functions of signals in time domain as well as frequency domain

as a feature-set. Further, transmitters are classified for message authentication by
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Table 3.2: Frequency domain feature-set

Feature
Name

Equation

Spectral
Std-Dev

σs =
√

(
∑N

i=1(yf (i))
2 ∗ (ym(i)))/

∑N
i=1(ym(i))

Spectral
Skewness

ρs =
∑N

i=1 yf (i)ym(i)/σ3
s

Kurtosis
Std-Dev

ks = (
∑N

i=1(ym(i)− Cs)
4 ∗ ym(i))/σ4

s − 3

Spectral
Centroid

Cs = (
∑N

i=1 yf (i)ym(i))/(
∑N

i=1 ym(i))

Irregularity
K

IKs =
∑N−1

i=2 |ym(i)− (ym(i− 1) + ym(i) + ym(i+ 1))/3|

“supervised learning”. The feature-set used was the same as in Scission as seen in

Table 3.1. In addition, the method used frequency domain features as shown in Table

3.2. This method detected the ECU with 96.48% accuracy (26). Table 3.3 shows the

differences between each method.

3.4.3 VoltageIDS

Choi et al. used VoltageIDS (44) for security measures against masquerade

attacks from an outside source. The signal was acquired at a sampling rate of

2.5Gsamples/sec at the monitoring unit. After acquiring the signal. some addi-

tional features in addition to the features used in (26) were used both in time domain

as well as in frequency domain. This technique is done by “supervised learning”

(44). Supervised learning is done in two steps: a training step and testing step. The

training step creates a multi-class classifier, which has the classes and ECUs equal in

number (44). This step uses the sets created in the multi-class classifier and labels

them with CAN IDs (44). During the testing step, the VoltageIDS detects a mas-

querade attack if the multi-class classifier has predictions of probable classes that do

not match the CAN ID (44). Since this method used frequent learning, the system
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is an easy target for injection attacks, meaning it can adapt to the attacking mes-

sages (44). Fig. 3.3 shows the multiple steps VoltageIDS uses to make sure there

are no irregularities/invaders in the system. This method has a transmitter detection

accuracy of 93.54% on real vehicle.

Figure 3.3: VoltageIDS steps
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Table 3.3: Comparison of fingerprinting methods

Research
Work

Method Contribution Accuracy Advantages Disadvantages

Kneib
et. al.
(45)

Scission

It allows the
localization

of the
transmitter

which is
ECU.

99.85%
Localizes the
location of
the attack.

Addition of
an extra ECU

is needed.
Adds cost.

Choi et.
al. (43)

Using
Inim-
itable

Charac-
teristics

of Signals

Identifies
inimitable

ECUs
96.48%

No change in
the ECU
system is
needed.

Requires
installing an
extra unit.

Choi et.
al. (44)

Voltage
IDS

Distinguishes
between

errors and
the bus-off

attacks.

93.54%
Addresses the

attack
properly.

Extra unit
needed.

Cho et.
al. (26)

CIDS

The ECU
identification

is
independent
of voltage

characteris-
tics.

99.95%
Cannot be

bypassed by
burning chip.

Does not
identify the
location of

the attacker.

Cho et.
al. (25)

Viden

Fingerprinting
of ECUs

based upon
voltage-based

signatures.

99.8%
Identities the

ECU.

Burning out
the signature

detection
ECU by high
voltage will
allow the

attacker to
invade the

system.
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3.4.4 Clock based Intrusion Detection System (CIDS)

The CIDS (26) exploits uniqueness in the clock parameters, such as clock offset

and clock skew for CAN node fingerprinting. Previously, various researchers have used

this concept for wireless access point fingerprinting (79; 80) and wired Ethernet device

fingerprinting (81). These researchers (79; 80; 81) rely on the presence of time-stamp

in the packet headers. The absence of time-stamp field in the CAN protocol makes

it unfit for direct extension of clock-based intrusion detection systems (79; 80; 81).

Cho and Shin (26) proposed the methodology to extract the sender node’s clock

characteristics in CAN network to design an intrusion detection, which is discussed

in the subsequent sections.

Clock parameters: The clock parameters used for modelling the clock physical

attributes are defined below (26):

• Clock offset: The difference between the time reported by the clock Ci and

the true clock is called clock offset. The difference between the reported times

of non-true clocks is known as the relative offset.

• Clock frequency: The rate at which the clock Ci advances.

• Skew: It is the difference between the frequencies of the true clock and the

local clock Ci. The difference between the frequencies of two non-true clocks is

known as the relative skew.

The clock offset and clock skew of each node in an asynchronous network depends

solely upon the local clocks of the nodes. Estimates of these clock parameters can be

used for node fingerprinting. As discussed earlier, the estimation of these parameters

is easy to achieve in the presence of time-stamps inside the message packets, but the

absence of time-stamp information in embedded networks (e.g., CAN protocol) makes

it difficult to achieve it. The CIDS framework (26) estimates these parameters for

periodic messages. Before outlining the CIDS method to estimate the parameters,
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Table 3.4: Message IDs and the period

ID Period (ms) DLC
0xAA 50 3
0xBB 100 3
0xCC 150 3
0xDD 500 3

brief overview of my experimental setup and CAN network configuration is provided

next.

Experimental setup and implementation: To validate and implement the

CIDS, a CAN network is realized with four nodes. Shown in Fig. 3.4 is the snapshot

of my realization of CAN network. Each node here consists of an Arduino UNO board

as ECU and CAN Shield as the CAN transceiver. The node M (Monitoring Node)

in the network is used for monitoring the traffic and is running the CIDS. It listens

to the network traffic and computes clock parameters. These parameters are then

sent via serial link to the MATLAB for plotting the graphs and visually analyzing

the clock behaviors of the sender nodes. The remaining three nodes are labelled as

E3, E5 and E6.

The speed of the CAN bus is set to 500 Kbps. The CAN traffic consists of messages

of four different IDs at different time periods. The details of the contents of the CAN

network traffic are listed in Table 3.4. To analyze the behavior of clock parameters for

each node, each node (E3, E5 and E6) is used to transmit messages with four different

IDs in such a way that each node is sending unique messages from a particular ID at

any given time. This resulted in the following configurations {E3: 0xAA, E5: 0xBB,

E6:0xCC}, {E3: 0xBB, E5: 0xCC, E6:0xDD} or {E3: 0xCC, E5: 0xDD, E6:0xAA}.

Experimental data is collected for each configuration. The architecture of the CIDS

which is running on node M is explained below:

Parameter estimation and clock behavior modelling: In in-vehicle CAN,

most of the messages are periodic, and each node transmits messages with a specific
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Figure 3.4: Block diagram of the CAN realization used for experiments

ID. These properties are exploited to estimate the clock parameters (e.g. clock offset

and clock skew) of the message sender node.

Periodicity estimation: To estimate parameters of a node with a particular

message ID, the period of the message is estimated first (49). The estimated period

of a given message at node M node is a function of the sender node’s clock crystal.

Changing the message sender is expected to result in a slightly different value. This is

due to the fact that the CAN protocol is asynchronous. Thus, the timing calculations

at each node depends on the local clocks only.

Estimation of offset: Calculated time period is T from the previous step while

t is the continuous time at the receiver side (node M) measured by the local clock

of the receiver. Let the first message receives at t=t1 and the predicted arrival time

(with no offset) of the succeeding i messages ti=t1+iT. In case of two asynchronous

clocks, the expected arrival time with clock offset (Oi), subsequent messages’ arrival

time-stamps can be expressed as ti=t1+Oi+iT. To measure clock offset, predicted

arrival time-stamp is subtracted from the actual time-stamp. The change in clock

offset between two consecutive messages is negligible and expected to be close to zero.

Clock skew estimation: The average value of the clock offset is non-zero, but

the change of offset value between consecutive messages will be negligible. Therefore,
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to estimate the change in clock offset, the absolute average clock offset, computed for

N messages are added and tracked. The resulting cumulative clock offset, called the

CUMSUM, Oacc, is tracked for anomaly detection. The CUMSUM value is expected

to grow linearly. The slope of the CUMSUM represents the clock skew of the message

sender. The clock skew is unique and used for ECU fingerprinting.

Clock behavior modelling and intrusion detection: The linear behavior of

the CUMSUM is approximated using Recursive Least Square (RLS) algorithm (26).

The accumulative clock offset Oacc can be expressed as:

Oacc[k] = S[k] ∗ t[k] + e[k] (3.2)

where S[k] denotes the regression parameter and represents the clock skew, t[k] de-

notes the elapsed time and e[k] represents the identification error. The identification

error is also known as the residual error.

The Oacc, S and e are calculated for every N messages. Therefore, a total of k*N

messages are needed for parameter estimation at kth step. The value of S is computed

using RLS algorithm, while residual, e, is computed as:

e[k] = Oacc[k]− S[k − 1] ∗ t[k] (3.3)

As long as the messages are being sent by the original ECU, the S[k] is expected to

remain unchanged, resulting in residual e ≈ 0. This intrusion system is designed to

solve the problem of sender authentication absence in the CAN protocol and, hence,

is expected to detect the spoofing attacks. Whenever the source of a message is

changed, the clock behavior associated with that ID also changes, resulting in the

large value of the residual error that is tracked continuously.
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3.4.5 Viden

Cho et al. introduced a technique, ”voltage based attacker identification (Viden)”

(25), which used voltage outputs of the ECUs to fingerprint the system. Viden

is based on voltage profiles from different ECU outputs (25). It characterizes the

voltage profile in acknowledgement bits and uses voltage signatures coming from

each ECU at relative lower sampling rate of 50Ksamples/sec as compared to other

methods. If the voltage differs from the signatures of authentic ECU, it triggers an

alarm to report an attacker is in the system (25). Viden also localized the location of

adversary device from which the attack was launched, which most methods cannot do

(25). The results from Viden showed that it safeguarded vehicles from attackers with

a 99.8% accuracy rate. The voltage profile of ECU also changes with environmental

conditions like temperature, humidity, etc. The voltage profile also changes with other

conditions, including noise, electromagnetic interference. Viden uses adaptive signal

processing to adapt to different inside and outside conditions. The voltage profile was

characterized in each condition and then used to identify transmitting ECU with a

very high accuracy of 99.8%.

3.4.6 Implementing In-Vehicle Security Using Higher Order Statistics

Researchers have proposed various methods to link a CAN packet to its source by

using physical characteristics of signal. For instance Cho and Shin have proposed a

method clock intrusion detection system (CIDS) which uses clock skewness to iden-

tify the transmitter. CIDS works well, however it can be bypassed if the attacker has

knowledge of clock characteristics of sender and receiver. This research (46) proposed

a method to bypass CIDS, then it presents a new method by developing a framework

to link a CAN packet to its source. Physical signal attributes of the received packet

consisting of channel and node (or device) contains specific unique artifacts are used

to achieve this goal. Material and design imperfections in the physical channel and
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digital device are the main contributing factors behind the device and channel spe-

cific unique artifacts. Uniqueness of the channel-device specific attributes are also

investigated for time- and frequency-domain. Feature vector is made up of both time

and frequency domain physical attributes and then employed to train an artificial

neural network (ANN)-based classifier. Performance of the proposed fingerprinting

method was evaluated by using a dataset collected from six different channels and

four identical ECUs transmitting same message.

The contribution of this research was to propose a method to bypass clock in-

trusion detection system (CIDS), to present a novel non-crypto-based approach for

message authentication for the CAN protocol that exploits uniqueness in the channel

and device-specific distortions to link the received CAN packets to ‘the’ transmitting

ECU. The robustness of the proposed method in terms of channel-level as well as

device-level variability is evaluated using bench-testing. The transmitter identifica-

tion model that depends on the proved claim that any electronic device that has

various components like the micro-controller, DAC, clock etc.. like the ECU and the

impulse response of the CAN channel are unique in nature and thus these unique

artifacts and distinguishable statistical features can be extracted from the received

signal and were used to link them to its source ECU and identify the sender. The

variations from different channels were used for various feature extraction tools. The

uniqueness was evaluated both in time and frequency domain. The effectiveness of

method was validated using the feature extraction method proposed in (82). A 40-

Dimensional Scalar features in both time and spectral domain are extrapolated using

LibXtract. LibXtract is a library for feature extraction (83). It uses a FEAST tool-

box that works on the joint mutual information criterion to rank the feature. Using

this feature extraction 11-D feature vector for ECU and channel identification was

used for transmitter identification.

The main reason for the channel specific artifacts or ECU specific artifacts is
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because of the material and design imperfections that are embedded into them at

various stages of its development. In the first part of this research, data was recorded

data for the 3 types of cable family with 6 different lengths each using same ECU.

The input message used was same for all the channel types and the ECU used to

generate this message is also same. The only variable for this experiment was channel

class and the length. As the neural network is first trained (training phase), in this

phase it is classified for three different cable families and six corresponding lengths

(e.g., GXL: 0.5 meter, GXL: 1 meter, GXL: 2 meter, GXL: 3 meter, GXL: 4 meter,

and GXL: 5 meter and so on). First the neural network is trained with multi-layer

”scaled conjugate gradient back propagation” training algorithm. In this 11 input

variables (both in frequency and time domain), 6 outputs to represent 6 different

channel lengths of GXL cable. The stopping criteria of Epochs=2000, gradient =

10−7, and 3 hidden layers with 50, 40, and 40 hidden nodes respectively. In the

second part of this research, channel was kept same and data was transmitted using 4

ECUs, 11 input variables (both in frequency and time domain), 4 outputs to represent

4 different ECUs. The stopping criteria of Epochs=2000, gradient = 10−7, and 3

hidden layers with 50, 40, and 40 hidden nodes respectively. With this set-up and

idea that was proposed, a correction rate of 95.2% and 98.3% for both CAN-Bus

channel identification and ECU identification was achieved respectively. The CAN-

Bus and the ECU are from the same manufacturer and are identical, it leaves an

inimitable artifacts in the output of the signal at the physical layer and the channel

output. These characteristic artifacts are different for varying channel lengths and

ECUs. Thus, this uniqueness was used to link the received physical signal to the

actual transmitter.
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CHAPTER IV

Study of ECU Specific Distortion and ECU

Identification by Using Neural Networks

4.1 Introduction

A novel technique for electronic control unit (ECU) identification is proposed in

this chapter to address security vulnerabilities of the controller area network (CAN)

protocol. The reliable ECU-identification has the potential to prevent spoofing at-

tacks launched over the CAN due to the inconsideration of the message authentica-

tion. In this regard, my technique models the ECU-specific random distortion caused

by the imperfections in digital-to-analog converter, and semiconductor impurities in

the transmitting ECU for fingerprinting. Afterwards, a 4-layered double Neural net-

work architecture is trained on the feature-set to identify the transmitting ECU and

the corresponding ECU-pin. The ECU-pin identification is also a novel contribution

of this work, and can be used to avoid the voltage-based attacks. I have evaluated

my method over a dataset generated through 7 ECUs with 6 pins having 185 records

for each ECU and 40 records for each pin. The performance evaluation against state-

of-the-art methods revealed that the proposed method achieved 99.4% accuracy for

ECU-identification and 96.7% accuracy for pin-identification that signifies the relia-

bility of the proposed approach.
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Figure 4.1: Generalized architecture of CAN

This approach exploits the uniqueness in device-specific distortions e.g., semicon-

ductor impurities, DC offset, aliasing error, the mismatch between the nominal and

measured values of electric components in digital to analog converter (DAC), etc.,

for message fingerprint generation. This research hypothesizes that distortions due

to digital-to-analog conversion operation at the ECU output are device-dependent

that can be used to link the received packet to the transmitting ECU. Therefore, I

associate the received packet through a specific ECU, and the ECU-pin responsible

for message transmission through a double neural network approach.

4.1.1 Research Objectives

The main objective of this research is: (i) to investigate ECU-level uniqueness for

a given network and (ii) to investigate pin-level uniqueness for a given ECU to authen-

ticate the message. The proposed method relies on distinctive physical artifacts of

the DAC of the transmitting ECU for device-level fingerprinting. The imperfections

in material, design, fabrication of DAC are contributing factors that create distortion

in the ECU signal. I perform the statistical modeling of this distortion and use it as

a feature vector for transmitter identification (i.e. transmitting ECU, and ECU-Pin)

through neural network architecture. Thus, the main contributions of the chapter

are:

• I provide a mathematical model of the distortion sources i.e. imperfections in
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the material, design, fabrication of DAC.

• I propose a statistical model of the device (ECU)-level distortion for transmitter

identification.

• I also propose that different transmitting pins in a single device have unique

distortion and can be used for ECU-pin identification.

This chapter is organized as follows: Section 4.2 describes the system model, and

outlines sources of device-specific distortion in the CAN signal. Experimental setup,

dataset, performance measures, results, and analysis are provided in section 4.3, this

section also provides the comparison of my method with the current state of the art

research.

4.2 System Model

Fig. 4.1 shows a subnet in CAN that contains γ = {1, 2, . . . , n} ECUs represented

as E(i), with a fingerprinting unit E(s) that sniffs the transmission of analog signal

y
(a)
(i) (t) by the ECU E(i), where i ∈ γ. The E(s) converts the signal y

(a)
(i) (t) to a digital

signal y
(a)
(i) (n) with a sampling rate of 20Msa/sec. Afterwards, the E(s) computes the

expected signal y
(e)
(i) (n) that is used for distortion computation i.e. d(i)(n) for E(i),

such that {d(i)(n) ∈ n(i) | n(i) : [L→ U ]}, where L = −0.10 and U = 0.10 represent

the lower and upper distortion values respectively. The d(i)(n) is then used for feature

extraction to generate the feature vector x(r) = {x(1), x(2), . . . , x(m)} for E(i), where

m represents the number of features, r ∈ R and R is the total number of records.

The feature vector is then passed to a double neural network architecture, which is

pre-trained on R records for message authentication. Fig. 4.2 shows the architecture

of the proposed method and is described in detail in following subsections.
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Figure 4.2: Block diagram of transmitter identification system

4.2.1 Signal Acquisition

The E(s) acquires the analog signal y
(a)
(i) (t) generated by E(i) and converts this

signal into digital signal y
(a)
(i) (n) as represented in eq. (4.1).

y
(a)
(i) (n) = y

(a)
(i) (t)|t=nTs , Ts = 50× 10−9 (4.1)

The Ts = 50 × 10−9 represents sampling time of 50nsec and sampling rate of

20MSa/sec for the signal. The reason to generate y
(a)
(i) (n) is that the y

(a)
(i) (t) occurs

at infinite instants of time, thus demands large memory to get stored. However, as

the E(s) has limited memory, therefore, the analog-to-digital conversion is performed.

The number of bits required to store each sample are n, in my case, n = 8 bits. In

order to extract distortion, I compute the expected signal y
(e)
(i) (n) from y

(a)
(i) (n) using
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eq. (4.2):

y
(e)
(i) (n) =

 3.5v : 3.3 < y
(e)
(i) (n) < 3.7

2.5v : Otherwise
(4.2)

The signal y
(e)
(i) (n) is mapped to 3.5 v if y

(a)
(i) (n) is between 3.3 v and 3.7 v else will

be 2.5 v. The signal y
(e)
(i) (n) represents the ideal signal from E(i); however, it has been

observed through extensive analysis of CAN communication signals, that the actual

signal levels differ from the expected signal levels. As shown in Fig. 4.3, the waveform

of the CAN signal captured using a DS1012A oscilloscope for the y
(a)
(i) (n), significantly

differs from the expected signal y
(e)
(i) (n) due to the distortion mainly attributed to

semiconductor impurities, mismatch between nominal values and measured values

of electric components, aliasing error of finite impulse response (FIR) filter and DC

offset of DAC. Moreover, these imperfections are device-specific, hence, they can be

used for fingerprinting of the ECUs.

4.2.2 Distortion Extraction

The imperfections observed in the signal acquisition stage are used for finger-

printing the ECUs. The fingerprinting is quantified in the form of distortion modeling

which is acquired in Density Estimation stage. Before distortion modeling, I acquire

distortion as shown in Fig. 4.4, which is represented in eq. (4.3).

d(i)(n) = y
(a)
(i) (n)− y(e)(i) (n). (4.3)

There are four main reasons for distortions which are discussed as follows:

Mismatch of nominal and measured values of electric components:

Imperfections in the electric components are one of the sources of d(i)(n). These

imperfections can be described as a deviation of the measured values of electric com-

ponents from their nominal values. Let Ro(i) be the value of the feedback resistor of
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the E(i) and δR(i)
represents the deviation from the nominal value, commonly known

as the tolerance level. The actual resistance Ra(i) can then be expressed as eq. (4.4)

which is as follows:

Ra(i) = Ro(i) + δR(i)
. (4.4)

Let d
(R)
(i) (n) represent the distortion due to δR(i)

, which is the first cause of dis-

tortion at the DAC output. The purpose of DAC in ECU is to convert bits into

a physical signal, which is in the form of voltage as shown in Fig. 4.5. The reason

for this conversion is that the signal propagates through a channel in the form of the

physical signal.
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Figure 4.3: Screenshots of the actual and expected waveforms

Semiconductor impurities:

During the manufacturing process, the amount of impurities in the semiconductors

cannot be completely removed. The imperfections in the device material and fabrica-

tion process are the other contributing factors to the observed distortion. Impurities

in the semiconductor cause flicker distortion (also known as 1/f noise) at the DAC

output (84). I represent the distortion due to semiconductor impurities as d
(f)
(i) (n),

which is another cause of distortion at the DAC output.

52



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 4.4: Distortion in the ECU signal

Non-ideal behavior of low pass filter:

Another contributing factor in distortion is aliasing error that occurs due to non-

ideal behavior of low pass filter used in digital to analog conversion. The digital

signal, which is acquired through the sampling operation on a continuous signal in-

troduces the periodic repetition of its spectra. Let Y
(e)
(i)D

(f) represent the Fourier

transform of y
(e)
(i) (n), which is input in DAC and Y

(e)
(i) (f) represent the Fourier trans-

form in form of continuous signal. Low pass filtering is used to filter out Y
(e)
(i) (f) from

Y
(e)
(i)D

(f) to avoid unwanted copies, which is commonly implemented using a finite im-

pulse response (FIR) filter realization. Eq. (4.5) represents the relationship between

input and output of DAC,

Y
(e)
(i)D

(f) =
∞∑

n=−∞

Y
(e)
(i) (f − nfs) (4.5)

Let H(f) represent the transfer function of the FIR filter, the output of the FIR

filter can be expressed through eq. (4.6).

Y(i)FIR(f) = Y
(e)
(i)D

(f).H(f) (4.6)

Ideally Y(i)FIR(f) should be same as Y
(e)
(i) (f), but due to aliasing error these values
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differs. The non-ideal behavior of FIR realization introduces aliasing at the DAC

output. Let d
(a)
(i) (n) denote distortion due to the non-ideal behavior of the low-pass

filter realization for the E(i). This is the third cause of distortion at the output of

DAC.

DC offset error:

The DC offset error in the DAC is another source of distortion (85). Ideally, the

dominant bit level = 3.5V and ideal recessive bit level = 2.5V as shown in Fig. 4.5,

but, DC offset d
(o)
(i) (n) is added to the ideal voltage value due to grounding issues in

DAC. The total distortion d(i)(n) due to DAC for the E(i) can be expressed as eq.

(4.7),

d(i)(n) = d
(R)
(i) (n) + d

(f)
(i) (n) + d

(a)
(i) (n) + d

(o)
(i) (n). (4.7)

Similarly, we can derive from eq. (4.3) that:

y
(a)
(i) (n) = y

(e)
(i) (n) + d(i)(n). (4.8)

Therefore, eq. (4.8) validates my hypothesis that distortion added in the received

signal is dynamic, hence it can be an effective measure for fingerprinting the ECUs.

The device-specific distortion is also unique for each pin within the E(i) that can

be represented as E(i,l); where { l ∈ ζ | ζ = 1, 2, . . . , λ } are total No. of pins

within E(i). This also elaborates that for attack modeling I need to determine the

affected ECU and the relevant pin. Additionally, pin-level artifacts are effective to

detect spoofing attacks launched from a different pin of the same ECU. Recently,

Sang et. al. (86) demonstrated voltage-based attack to permanently damage a pin of

the target ECU. A voltage-based attack is launched by an adversary, which sends a

high voltage through a pin (which has the maximum capacity of 5V ) to damage the

pin permanently. However, by fingerprinting the E(i,l) we can avoid these attacks.
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Figure 4.5: Ideal voltage levels for CAN
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Figure 4.6: Histograms of d(i)(n) for ECU E(1)-E(7)

4.2.3 Density Estimation

After distortion modeling, I use d(i)(n) for histogram generation. The histogram

will then be used as fingerprints for E(i) and E(i,l). In order to make histogram I need
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to group the distortion values in m histogram bins with step size β, which can be

computed as in eq. (4.9).

β =

(
U − L
m

)
(4.9)

Where U, and L represents the lower and upper values for distortion, and m

represents the number of bins. In my case m = 200, thus, step size β becomes 10−3.

The histogram h(i)(k) for N = 1500 samples of d(i)(n) is computed using eq. (4.10).

Here, k = {0, 1, 2, . . . ,m}.

h(i)(k) =
N∑
n=1

[
δ

(
d(i)(n)

β
+ 100

)
+ h(i)(k)

]
(4.10)

Where δ(.) denotes Kronecker delta function (87), that can be computed through

eq. (4.11).

δ(n−k) =

 1 : n = k

0 : Otherwise
(4.11)

Fig. 4.6 shows the histogram h(i)(k) of E(1)–E(7). Afterwards h(i)(k) is used as

feature set X(i) = {x(1), x(2), . . . , x(m)}.

4.2.4 ANN based Model Learning

A double artificial neural network (ANN)-based model is used to identify the

source ECU and the corresponding pin. For this the ANN getsX(r) = {x(1),x(2), . . . ,x(R)}

as input-set, and corresponding ECU-, and pin-labels Y(r,e) = {y(1,e), y(2,e), . . . , y(R,e)}

Y(r,p) = {y(1,p), y(2,p), . . . , y(R,p)} respectively; and it predicts the ECU-labels and corre-

sponding pin-labels as Ŷ (r,e) = {ŷ(1,e), ŷ(2,e), . . . , ŷ(R,e)} and Ŷ (r,p) = {ŷ(1,p), ŷ(2,p), . . . , ŷ(R,p)}

respectively, where e ∈ γ, p ∈ ζ, and r ∈ R. The classifier is trained on the dataset

with three hidden layers having v neurons (in my case v = 10) and ”scaled conjugate
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gradient back propagation” method for weight optimization. In the training phase,

this model learns the weight vector represented by: ωe = {w(1), w(2), . . . , w(m)} for all

E(i) and ωp = {w(1), w(2), . . . , w(m)} for all E(i,l). The output of both networks are

then merged as final output in the testing phase (Fig. 4.7). The ANN-architecture for

ECU recognition is presented in Table 4.1, and same architecture is used for ECU-pin

recognition as well.

Figure 4.7: Merged neural network structure
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Table 4.1: Summary of neural network structure

INPUT

Input: −→x(r) = (x(1), x(2), . . . , x(m)) dim(−→x ) = 1×m (I.1)

MIDDLE (HIDDEN) LAYERS (1–3)

Input:
−→
b = U

−→
X dim(

−→
b ) =1 × v (I.2)

Output: −→c = f(b) dim(−→c ) =1 × v (I.3)
U: m × v weight matrix
f: 1

1+ e−b

OUTPUT LAYER

Input:
−→
d = we

−→c dim(
−→
d ) =1 × v (I.4)

Output: −→e = g(d) dim(−→e ) =1 × v (I.5)
we : v × m weight matrix
g: 1

1+ e−d

ERROR CORRECTION

Cost: E = −
∑n

i=1[y(r,e)log(c)] (I.6)
∆Wij = −α∂E/∂Wvm = αδicj (I.7)
∆Umv = −β∂E/∂Umv (I.8)

4.3 Experiments and Results

4.3.1 Experimental Setup

The proposed approach evaluates inter-class- (amongst ECUs), and intra-class-

(amongst ECU-pins) variability, for message authentication. For inter-class variabil-

ity, seven ECUs (transmitters) of the same make and model was used in this study

and data was recorded through the CANH pin. For intra-class variability, six DAC

pins of the same ECU were analyzed to determine the pin-level characteristics.

The hardware comprised of seven Arduino UNO-R2 micro-controller kits; 7 CAN-

Bus shield boards withMCP 2515 CAN-bus controllers, MPC 2551 CAN transceivers;

and a DS O1012A oscilloscope to record the voltage samples with a sampling rate of

20Msa/s, with 100MHz bandwidth. MatlabR 2018a software was used for statistical

data analysis of the sampled signals. A computer simulation was written that con-
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tinuously transmitted the messages from different ECUs and pins. Afterward, these

messages were then used as the dataset for model training and evaluation.

4.3.2 Dataset Description

The ECU identification dataset comprised of 1295 (7 × 185) records with 1500

samples in each record. Whereas, for pin-level identification, a dataset was collected

for six different pins of each transmitting ECU with 40 records for each pin. The

dataset used here was collected in the same environment, i.e., under the same tem-

perature and using an identical message to observe the unique variations of the digital

signals. For performance evaluation, 70% of a randomly selected dataset was used

for training and the 30% of the data for testing purposes.

4.3.3 Performance Evaluation Measures

For performance evaluation, I used true positive (TP), true negative (TN), false

positive (FP), false negative (FN), precision, recall, F1 score, accuracy, and error rate

as performance evaluation measures. To evaluate the effectiveness of the proposed

method, I determined how many ECUs were correctly identified in the response to

messages sniffed by E(s). Let TP represents true positive rate, FP represents false

positive rate, TN represents true negative rate, and FN represents false-negative

rate, then precision can be defined as follows:

Precision =

(
TP

TP + FP

)
(4.12)

Precision was used to measure the ratio of the true instances against the retrieved

instances for a particular class. To measure the sensitivity I used the recall rates that

can be computed as follows:
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Recall =

(
TP

TP + FN

)
(4.13)
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Figure 4.8: Density approximation of distortion

The recall was computed to measure the total number of relevant instances that

were actually retrieved. In order to combine both measures i.e. precision, and recall

I used F1 Score that was computed as:

F1 score = 2×
(
Precision × Recall

Precision + Recall

)
(4.14)

The higher F1 Score signifies the robustness of the classification approach. In order to

evaluate the overall performance by considering all the classes together, I computed

the accuracy of the method as follows:

Accuracy =

(
TP + TN

TP + TN + FP + FN

)
(4.15)

Accuracy was computed to measure all instances that were correctly classified,

despite the fact, whatever class they belong to. Moreover, by using accuracy value I

also computed the overall error rate of the method as follows:

Error–rate = 1− Accuracy (4.16)
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Figure 4.9: Effectiveness of feature-set

4.3.4 Feature Stability

The purpose of this experiment is to validate that different ECUs, even of the same

make and model, introduce different artifacts while transmitting an identical message;

and this uniqueness can be exploited to counter the spoofing attacks. To achieve this

goal, all ECUs transmitted the same messages over the same channel with constant

settings regarding temperature, and environment. To validate the claim of ECU-

specific distortion, data were recorded for each ECU with identical channel inputs

and transmission parameters. To verify uniqueness, I estimated distortion density

function by applying Spline function (88) over histogram h(i)(k) to get fni(n) as shown

in Fig. 4.8. Estimated distortion distribution represents the physical characteristics

of each ECU. In order to find the stability, I generated fni(n) of each ECU for 100

times and computed mean and standard deviation (STD). From Fig. 4.9, it can be

observed that the difference between the mean and mean ± STD is negligible, which

shows that the feature-set remains constant over time for each ECU. Hence, it is

proved that the proposed feature extraction approach induces the unique attributes

for ECU representation that makes it effective for ECU identification.

To further validate the unique attribute of the proposed method I plotted fni(n)
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Figure 4.10: Estimated distortion distributions for all 7 ECUs

for seven ECUs as shown in Fig. 4.10, which clearly shows that each ECU has a

unique representation. The benefit of the uniqueness is that the attacker cannot

replicate an ECU’s profile, thus signifies that my approach is robust against spoofing

attacks.

4.3.5 ECU-Level Identification

In this experiment, I have evaluated the performance of the proposed method in

terms of ECU identification. From Table 4.2 it can be observed that the proposed

method achieves very high accuracy for ECU classification. The high accuracy sig-

nifies that the distortion introduced in each ECU due to DAC imperfections and

semiconductor impurities is unique thus results in high accuracy for ECU identifi-

cation. Moreover, it also justifies my hypothesis that the distortion due to DAC

and semi-conductor impurities has the potential for ECU fingerprinting for attack

detection. It can be observed from the Table 4.2 that E(1), E(4) and E(7) have 100%

detection rates, that is mainly associated with the high distortion values appeared in

form of high peaks as shown in Fig. 4.6. Moreover, by analyzing Table 4.2 in the

perspective of Fig. 4.6, it can also be observed that if distortion is concentrated in

a certain region, it increases the inter-class variability, which is one of the targets of
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this research.

Table 4.2: Confusion matrix for ECU classifier

Target Class
- - E(1) E(2) E(3) E(4) E(5) E(6) E(7) Total%

P
re
d
ic
te
d
C
la
ss

E(1) 185 0 0 0 0 0 0 100
E(2) 0 184 2 0 0 4 0 98.9
E(3) 0 1 183 0 0 0 0 99.5
E(4) 0 0 0 185 0 0 0 100
E(5) 0 0 0 0 183 3 0 98.4
E(6) 0 0 0 0 2 182 0 98.9
E(7) 0 0 0 0 0 0 185 100

Total% 100 99.5 98.9 100 98.9 98.4 100 99.4

Similarly, performance matrix (PM) Table 4.3 shows that E(1), E(4) and E(7) has

100% precision, recall, accuracy and F1 Score rates. Furthermore, E(2) has 99.5%

recall, but as it has only one false negative record, therefore, other performance

evaluation rate slightly drops. On the other hand, E(3) has 99.5% precision, it has

only one false positive, therefore slightly affects the precision.

Table 4.3: Performance matrix of ECU classifier

- Precision Recall Accuracy F1 Score ERR
E(1) 100% 100% 100% 100% 0%
E(2) 98.9% 99.5% 99.8% 99.2% 0.2%
E(3) 99.5% 98.9% 99.8% 99.2% 0.2%
E(4) 100% 100% 100% 100% 0%
E(5) 98.4% 98.9% 99.6% 98.6% 0.4%
E(6) 98.9% 98.4% 99.6% 98.6% 0.4%
E(7) 100% 100% 100% 100% 0%

Fig. 4.11 shows the graphical representation of the ECU identification results. The

high correlation amongst the performance evaluation measures for all ECUs clearly

signifies the reliability of the proposed method. Furthermore, the area under the curve

analysis of the receiver operating characteristic (ROC) plots as shown in Fig. 4.12
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Figure 4.11: Bar graph of PM for ECU classifier

also confirms my claim that distortion is an effective measure for ECU fingerprinting,

hence attack detection.
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Figure 4.12: ROC of E(i)

4.3.6 Pin-Level Identification

The purpose of this experiment is to validate that different pins, even from the

same transmitter, introduce different artifacts into the transmitted signal, and the

pin-level fingerprinting can be utilized for a reliable attack profile generation. To

achieve this objective, 6 pins of the same transmitter were used to transmit the same
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message over the same channel with constant settings e.g. temperature, environment,

etc. Table 4.4 shows the classification performance of the proposed method in terms

of a number of samples per class.

Table 4.4: Confusion matrix for pin classification

Target Class
- - Pin(1) Pin(2) Pin(3) Pin(4) Pin(5) Pin(6) Total%

P
re
d
ic
te
d
C
la
ss

P in(1) 38 2 0 0 0 1 92.7
Pin(2) 2 37 0 0 0 0 94.9
Pin(3) 0 0 40 0 0 0 100
Pin(4) 0 0 0 40 0 0 100
Pin(5) 0 0 0 0 39 1 97.5
Pin(6) 0 1 0 0 1 38 95
Total% 95 92.5 100 100 97.5 95 96.7

Table 4.5: Performance matrix of pin classification

- Precision Recall Accuracy F1 Score ERR
Pin(1) 92.7% 95% 97.9% 93.8% 2.1%
Pin(2) 94.9% 92.5% 97.9% 93.7% 2.1%
Pin(3) 100% 100% 100% 100% 0%
Pin(4) 100% 100% 100% 100% 0%
Pin(5) 97.5% 97.5% 99.1% 97.5% 0.9%
Pin(6) 95% 95% 98.3% 95% 1.7%

Table 4.5 shows the performance in terms of different performance evaluation

measures. The performance of the pin-classifier is quantified in terms of precision,

recall, F1 score, accuracy, and error rate. In 2 out of 6 cases, my method achieved 100

% precision, recall rate, accuracy and F1 score. whereas, overall 96.7% pin detection

rate. Although, the pin detection rates are slightly lower than ECU detection rates,

as the pin-detection is a novel concept, so the research efforts can be done in this

area to further generate more interesting findings. The same results are graphically

presented in Fig. 4.13. The area under the curve results as presented in Fig. 4.14

shows that still the pin level detection of the proposed approach is satisfactory.
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Figure 4.13: Bar graph of PM for pin classifier
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Figure 4.14: ROC of pin classifier

4.3.7 Comparison Against State-of-the-art

In this section proposed method is compared against state-of-the-art methods

that are also doing the ECU identification. The performance is compared against

ECU detection using Viden (25), Inimitable characteristics of CAN signal (43) and

VoltageIDS (44).

In (25), Cho et. al. proposed a method named V iden that used voltage profile of

acknowledgment (Ack) bits for transmitter identification. In the first phase, ACK bit

was used to measure the message was originated from the genuine transmitter or not.
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Afterward, voltage measurements were used to generate ECU fingerprints. Based on

these fingerprints, the attacker ECU was identified. In (43), a monitoring unit was

installed in the vehicle that analyzes the electrical CAN signals and computes the

statistical features. These features were then classified to identify the ECU. In (44),

ECU detection based on inimitable voltage characteristics technique was proposed.

The feature vectors proposed in (43) were extended both in time- and frequency

domains, and were classified for ECU identification in (44).

Table 4.6: Comparison with other methods

Research Work Method Accuracy

Cho et. al. (25) V iden 99.57%

Choi et. al. (43) Inimitable Char. of CAN Signal 96.48%

Choi et. al. (44) V oltageIDS 95.54%

This method Distortion based IDS 99.4%

Table 4.6 shows the performance comparison of my method against (44; 43; 25).

From the results, it can be observed that my method is giving higher accuracy as

compared to (44; 43) whereas, it is giving almost the same performance as (25).

However, the main advantage of my method is that feature extraction and message

authentication can be done in any part of the signal without the latency. Whereas

in case of Viden, voltage profile is estimated for message authentication during the

reception of the ACK bit but it also introduces the latency. Hence, from the aspect

of latency, my method is more robust than the Viden.
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CHAPTER V

Control System Parameters Based Transmitter

Identification

5.1 Introduction

Fully connected autonomous vehicles are more vulnerable than ever to hacking and

data theft. The controller area network (CAN) protocol is used for communication

between in-vehicle control networks (IVN). The absence of basic security features

of this protocol, like message authentication, makes it quite vulnerable to a wide

range of attacks including spoofing attacks. As traditional cybersecurity methods

impose limitations in ensuring confidentiality and integrity of transmitted messages

via CAN, a new technique has emerged among others to approve its reliability in

fully authenticating the CAN messages. At the physical layer of the communication

system, the method of fingerprinting the messages is implemented to link the received

signal to the transmitting electronic control unit (ECU). This chapter introduces a

new method to implement the security of modern electric vehicles. The lumped

element model is used to characterize the channel-specific step response. ECU and

channel imperfections lead to a unique transfer function for each transmitter. Due

to the unique transfer function, the step response for each transmitter is unique.

In this chapter, control system parameters are used as a feature-set, afterward, a
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neural network is used transmitting node identification for message authentication.

A dataset collected from a CAN network with eight-channel lengths and eight ECUs

to evaluate the performance of the suggested method. Detection results show that

the proposed method achieves an accuracy of 97.4% of transmitter detection.

In the modern electric vehicle, CAN is used as a reliable, robust, and simple net-

work protocol for in-vehicle communication. CAN is widely applicable in automotive

industry applications, and it makes the transmission of the messages between the

ECUs and the devices more organized and controllable. This protocol lacks message

authentication, because the sender information in the packet is missing, which makes

it vulnerable to spoofing attacks. In the past few years, security and safety are some

of the major concerns for the vehicle industry. In 2015, Miller et. al. (50) killed the

vehicle engine in the middle of the highway, and they were able to take control of the

vital functionalities of the vehicle like engine, braking unit, etc. The purpose of this

experiment (50) was to convey a message to the stakeholders that the implementation

of security in the electric car is a vital issue. With the advent of autonomous vehicles

(AVs), interest in the safety and security of vehicles is increasing. These autonomous

vehicles are considered a breakthrough in modern technology; however, they come

with cyber vulnerability risks.

Existing state-of-the-art countermeasures against spoofing and impersonation at-

tacks on in-vehicle CAN networks can be divided into (i) message authentication code

(MAC) based approaches (18; 89; 20; 21; 22; 23; 24; 90; 91; 92; 17), and (ii) intrusion

detection based approaches (25; 26; 44; 27; 28; 73; 74; 31; 30; 29; 32; 33; 34; 35; 36;

37; 38; 39; 40; 41; 42; 93; 43; 45; 46; 94). Intrusion detection based approaches can be

further subdivided into, (a) fingerprinting-based approach (26; 25; 44), (b) parameter

monitoring-based approach (73; 74; 31; 30; 29), (c) information theory-based approach

(32; 33; 34), and (d) machine learning-based approach (37; 36; 35; 40; 41; 38; 39).

Current solutions (17; 49) for CAN communication are limited in their ability and
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scope as they are unable to identify the transmitting ECU responsible for the received

packet. This chapter presents a novel approach to identify the source ECU of a CAN

signal to authenticate the message. The idea of fingerprinting the source is also used

for other electronic devices such as microphones(77; 78). In CAN communication,

when a transmitter sends a message, the expected signal at the receiver is a rectangu-

lar waveform. However, due to channel imperfections, it is not a perfect rectangular

waveform. The channel has a transfer function, and the input to this channel is a

rectangular wave, which can be modeled as a step function. Hence, the input to the

receiver can be quantified as the step response of the channel, through which the

signal propagates. Fig. 5.1 shows the step response of the channel to the CAN signal.

It can be observed that the received signal is not the same as the ideal signal. This

chapter proposes a new technique to address the limitations of the existing state of

the art CAN security methods by exploiting the channel based step response; and

then finding the transient, and steady-state parameters like overshoot, peak time,

settling time, peak value, steady-state value, damping ratio and natural frequency.

Furthermore, these parameters are used as inputs to a neural network classifier using

supervised learning to authenticate a message by identifying its transmitter.

Contributions: The main contributions of this chapter are:

• Modeling of channel-specific step response for CAN signals

• Channel-specific step response uniqueness analysis

• Propose a reliable framework for identifying the source ECU of any given CAN

message

The rest of this chapter is structured as follows: Section 5.2 provides mathematical

modeling of channel-specific distortion and its uniqueness analysis; it also provides

mathematical modeling of the system; section 5.3 outlines the experimental setup,

data collection, results, and analysis.
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Figure 5.1: Channel specific step response

Figure 5.2: Block diagram of transmitter identification system

5.2 System and Mathematical Modelling

Fig. 5.2 shows the architecture of the method presented for transmitter identifica-

tion for message authentication. This architecture is deployed at fingerprinting ECU

E(FP ) as shown in Fig. 5.3. In this architecture, the subnet has a total of N ECUs con-

nected to N channels, where any ECU can be represented as E(i), λ = {1, 2, . . . , N},

where i ∈ λ. The fingerprinting ECU E(FP ) sniffs the signal transmitted by all trans-
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mitters, and the response due to each channel at the E(FP ) is then used for feature

extraction to generate the feature vector X(r) = {x(1), x(2), . . . , x(M)} for E(i), where

M represents the number of features, r ∈ R and R is the total number of records. The

feature vector is then passed to a neural network architecture, which is pre-trained

on R records for message authentication.

5.2.1 Channel Modeling

The signal transmitted by E(i) represented by x(i)(t) propagates through the ith

channel (h(i)(t)), the channel behaves like a linear time-invariant system, the output

of the channel is represented as y
(a)
(i) (t). The relationship between x(i)(t) and y

(a)
(i) (t)

can be represented as eq. (5.1). Here, ’∗’ operator represents convolution.

y
(a)
(i) (t) = x(i)(t) ∗ h(i)(t). (5.1)

Shown in the right column of Fig. 5.4 is the equivalent circuit of an infinitesimally

small piece of a transmission line. According to the LEM, the transmission line is

represented as a series resistance (R’), series Inductance (L’), a parallel Conductance

(G’) and a parallel capacitance (C’). Shown in the left column of Fig. 5.4 is the

physical structure of the CAN channel. In this structure, D is the distance between

2 wires, d is the diameter of the wires. Let µ be the permeability, and σ be the

conductivity of the copper. The ideal line parameters R’, C’, L’ and G’ (95) can be

Figure 5.3: Message authentication by E(FP )
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expressed in the following equations:

R′ =
2Rs

πd
(5.2)

L′ =
µ

π
ln

{
D

d
+

√
(
D

d
)2 − 1

}
(5.3)

C ′ =
πε

ln
{
D
d

+
√

(D
d

)2 − 1
} (5.4)

G′ =
πσ

ln
{
D
d

+
√

(D
d

)2 − 1
} (5.5)

Figure 5.4: LEM for transmission line

I hypothesize that due to manufacturing imperfections, the length of the cable,

h(i)(t) is unique for every channel, so the step response of each channel is unique. In

this research, eight channels are used. Given the circuit is shown in Fig. 5.4, transfer

function can be found relating Vi to V in the Laplace domain. Let Hi(s) represent

the Laplace transform of h(i)(t), which is represented as eq. (5.6).

Hi(s) =
1

L′C ′

[
1

s2 + R′C′+L′G′

L′C′
s+ 1+G′R′

L′C′

]
(5.6)

5.2.2 Signal Acquisition

The E(FP ) acquires the analog signal y
(a)
(i) (t) generated by E(i) and transmitted

through h(i)(t) and converts this signal into digital signal y(i)(n) as represented in eq.
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(5.7).

y(i)(n) = y
(a)
(i) (t)|t=nTs , Ts = 0.5× 10−9 (5.7)

Where Ts represents sampling time of 0.5nsec and the sampling rate of 2GSa/sec

for the signal. The reason to generate y(i)(n) is that the y
(a)
(i) (t) occurs at infinite

instants of time, thus demands large memory to get stored. However, the E(FP ) has

limited memory, therefore, the analog-to-digital conversion is performed.

5.2.3 Step Response Acquisition

After the signal acquisition, the next step is to acquire a step response of the

system. The motivation behind finding the step response is to find control system

parameters that are used as a feature set.

After digitization, an algorithm is used to isolate individual dominant bits from the

CANH bus. This section will focus purely on the detection of the rising and falling

edges of each CANH pulse, such that these pulses can be extracted. Individual

pulses are needed to observe individual step response and model only that single

step response in terms of its control parameters. For the following, assume that a

single ECU’s signal which passes through channel i is being processed, y(i)(n), which

contains X samples in total and K pulses. A small subset of samples from the digital

pulse train y(i)(n) is shown in Fig. 5.5.

To isolate the individual pulses shown in Fig. 5.5 to extract their control param-

eters, an algorithm is designed to locate the edges of each dominant bit. For this

edge detection, first, y(i)(n) is filtered using a P-sample (P = 10) digital moving av-

erage filter to smooth oscillations, reducing the likelihood of false edge detection. By

suppressing high-amplitude oscillations with this filter, there is less chance to detect

oscillations as edges. The new moving average signal is shown in Fig. 5.6 and is

mathematically represented as a difference equation in eq. (5.8). Allow y
(MA)
(i) (n) to

represent the moving average filtered output of y(i)(n).
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Figure 5.5: ECU’s digitally sampled pulse train

y
(MA)
(i) (n) =

1

P

P∑
i=1

y(i)(n− i) (5.8)

Next, the signal is converted to an ideal digital signal by using a threshold of 3V

to classify individual samples as being part of either a dominant or a recessive bit as

shown in eq. (5.9).

y
(D)
(i) (n) =


0, y

(MA)
(i) (n) < 3

1, 3 ≤ y
(MA)
(i) (n)

(5.9)

Fig. 5.7 shows this digitally-threshold signal. Allow y
(D)
(i) (n) to be the digitally-

threshold signal of y
(MA)
(i) (n).
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Figure 5.6: Moving average pulse train
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Figure 5.7: Digitally threshold pulse train

The ideal digital signal contains no oscillations, the digital derivative of the digital

signal y
(D)
(i) (n) is found using the first difference, as shown in eq. (5.10), to find the

rising and falling edges.

dy

dn
y
(D)
(i) (n) = y

(D)
(i) (n)− y(D)

(i) (n− 1), n = 0, 1, ..., X − 1 (5.10)

All rising edges are now shown by a positive impulse with some delay, in samples,

while all falling edges are shown by a negative impulse, as shown in Fig. 5.8. All

non-edges assume a value of zero. The indices for rising edges and falling edges can

be extracted as shown in eq. (5.11). Allow nrise and nfall to represent the sample

indices of the detected rising and falling edges respectively.

nrise = n|dy
dn
y
(D)
(i) (n) > 0 nfall = n|dy

dn
y
(D)
(i) (n) < 0 (5.11)

In CAN, it is possible for an ECU to occasionally transmit erroneous pulses which

do not exhibit similar characteristics to a typical dominant bit from this ECU. It is

necessary to remove these anomalies because their signatures will be vastly different

from the typical signature of their respective ECU and channel combinations. One

possible anomaly scenario is when a single CANH dominant bit is significantly shorter

76



than the typical dominant bit, which may produce anomalous steady-state parameter

calculations, since the pulse may not have sufficient time to settle and reach its steady-

state. Another anomaly is when a single dominant bit is sent, followed by a second

dominant bit that comes too early. This often results in an abnormally long pulse and

strange transient behaviors. These short and long pulse behaviors are demonstrated

in Fig. 5.9 and Fig. 5.10 respectively.

Pulses similar to those shown in Fig. 5.9 and Fig. 5.10 can be treated as outliers,

and will not be considered at all for training or testing the classification model,

or for deployment. In effect, the fingerprinting ECU is blocked from making any

decisions about the authenticity of these outlier pulses. To remove these outliers, the

following algorithm is formulated. Allow E(T ) to represent the expected pulse length

of a typical CAN pulse, in seconds. Also, allow ∆t to represent some tolerance, in

seconds. Pulses of length T are selected such that the condition is shown in eq. (5.12)

is obeyed.

E(T )−∆t < T < E(T ) + ∆t (5.12)

Since, the current indices stored are nrise and nfall from eq. (5.11), where n
(k)
rise
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Figure 5.8: Rising and falling edges of pulse train
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Figure 5.9: Abnormally short pulse

and n
(k)
fall correspond to the rising and falling edge sample indices of pulse k, length

in T (k) in seconds is computed, and then decide to keep or discard the pulse as an

anomaly using the rule discussed in eq. (5.12):

for 1 ≤ k ≤ K do

T (k) = n
(k)
fall − n

(k)
rise

if E(T )−∆t < T (k) < E(T ) + ∆t then

Keep n
(k)
fall and n

(k)
rise

else

Discard n
(k)
fall and n

(k)
rise

end if

end for

After removing indices corresponding to the outliers, the kth individual pulse of
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Figure 5.10: Abnormally long pulse
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E(i) is extracted, denoted by y(i,k)(n), using the indices nrise and nfall which have not

been discarded. An example of a typical single pulse is shown in Fig. 5.11.
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Figure 5.11: Single pulse

5.2.4 Feature Extraction

After outlier removal, feature extraction is performed to represent each pulse

as a collection of control-theory-based parameters. This reduces a relatively high-

dimensional input into a very low-dimensional representation, which allows for a

lower-complexity model. This low model of complexity is computationally desirable.

The parameters used for this study include peak time, Tp, percent overshoot, %OS,

settling time, Ts, and steady-state value, Vss. Peak time and percent overshoot de-

scribe a second-order system’s transient response while settling time and steady-state

value describe the system’s steady-state behavior. These parameters are described

below:

• Peak Time: The time required for a step response to reach its peak value from

the time that it first begins to rise.

• Percent Overshoot: The percentage by which the step response’s peak value

exceeds the response’s value at steady-state.
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• Settling Time: The amount of time it takes to form the time that the step

response peaks until it has settled within some tolerance of its steady-state

value.

• Steady-State Value: The value that a step response assumes after all tran-

sient oscillation has diminished.

Note that the second-order system is described in the Laplace domain by the

standard equation shown in eq. (5.13).

H(s) =
Kω2

n

s2 + 2ζωn + ω2
n

(5.13)

The three main parameters in this standard form are known as the natural fre-

quency (ωn), the damping ratio (ζ), and the D.C. gain of the system, K. In this

application, K will not be varied among ECU and receiver combinations, K = 1

for analysis. ωn and ζ are computed using the following relationships, shown in eq.

(5.14), (5.15).

ζ =
| ln %OS

100
|√

π2 + (ln %OS
100

)2
(5.14)

ωn =
π

Tp
√

1− ζ2
(5.15)

From these equations, extracting Tp and %OS are theoretically enough to per-

fectly represent an ideal second-order system’s transient response, however, settling

time and steady-state value calculations are included to enhance the model’s predic-

tions since the pulse digitization can cause small errors in parameter calculation. In

addition, the ECUs may not behave exactly as ideal second-order systems, so these

additional parameters could provide the necessary information if the response does

not exactly follow the second-order behavior.
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The algorithm for calculating these parameters is non-trivial. an individual pulse

k from E(i) is analyzed, y(i,k)(n), with length T . First, the peak value is found and

its corresponding sample index, as shown in eq. (5.16) and eq. (5.17).

Vpeak = max(y(i,k)(n)) (5.16)

npeak =n y(i,k)(n) (5.17)

The peak time is computed by finding the number of samples from the sample

before the rising edge occurs to the sample corresponding to the peak value and

multiplying by the sampling period, as shown in eq. (5.18).

Tp = (npeak − nrise)Ts (5.18)

I can calculate the steady-state value, assuming that the pulse does eventually

settle, by selecting some number of samples Q of y(i,k)(n) to average just before the

falling edge occurs, as shown in eq. (5.19). For analysis, I use Q = 10.

Vss =
1

Q

nfall−1∑
n=nfall−Q

x(n) (5.19)

Afterwards, percentage overshoot is computed, represented as a decimal, as shown

in eq. (5.20).

%OS =
Vpeak − Vss

Vss
(5.20)

Lastly, settling time is computed by using a bit more complex of an algorithm.

The first step is to define a kernel window of length J . then the beginning of the

kernel window is aligned with the peak index, npeak, of y(i,k)(n), and it is checked

whether all values of y(i,k)(n) within the kernel window have magnitudes less than
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a threshold, ρ. If not, the kernel is shifted by one sample ahead until either this

condition is met, which means the settling index has been found, or until the end of

the kernel reaches the falling edge of the pulse, indicating the pulse does not settle.

To find the settling time of a single pulse, first, a parameter ρ is selected, which is

the percentage tolerance that a pulse voltage must remain from its steady-state value

to be considered settled. Now, a tolerance value β can be calculated as β = ρVss. A

pulse has settled at index nsettled when the following condition shown in eq. (5.21)

has been satisfied.

Vss − β ≤ y(i,k)(n) ≤ Vss + β, n ≥ nsettled (5.21)

I can re-write eq. (5.21) as shown in eq. (5.22):

|y(i,k)(n)− Vss| ≤ β, n ≥ nsettled (5.22)

The following shows a more mathematical formulation of this algorithm. Allow

n0 to denote the first sample index in which the kernel window overlaps. y
(0)
(i,k)(n) is

the same signal as y(i,k)(n) but with the D.C. steady-state offset removed.

n0 ← npeak

y
(0)
(i,k)(n)← y(i,k)(n)− Vss

while |y(0)(i,k)(n)| > β for all n ∈ {n0, ..., n0 + J − 1} do

n0 ← n0 + 1

if n0 + J − 1 == nfall then

break

end if

end while

nsettle ← n0

Now that the settling index has been found, settling time is calculated by eq.
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Figure 5.12: Artificial neural network architecture

(5.23).

Ts = (nsettle − npeak)Ts (5.23)

The calculated parameters now comprise a lower-dimensional representation of a

single-step response and can be used for pulse classification.

5.2.5 Training Neural Network

After finding the feature-set, any supervised machine learning method includ-

ing support vector machines, artificial neural networks, deep learning, etc. can be

used to achieve this goal. In this part of research, an artificial neural network is

used, implementing the batch gradient descent optimization algorithm to train us-

ing feature vectors from the database. An artificial neural network (ANN)-based

model (Fig. 5.12) is used to identify the source transmitter. For this the ANN gets

X(r) = {x(1),x(2), . . . ,x(R)} as input-set and the output of neural network is the chan-

nel through which the signal propagated, which is further used to identify transmitter

(ECU) for message authentication.

83



5.3 Experimental Setup, Dataset and Results

5.3.1 Experimental Setup

The proposed approach evaluates channel variability, to identify channel trans-

mitter (ECU) for message authentication. Eight channels were used in this study

and data was recorded through the CANH pin. The technical specifications of chan-

nels are given in Table 5.1. The hardware is comprised of eight Arduino UNO-

R2 micro-controller kits; eight CAN-Bus shield boards with MCP 2515 CAN-bus

controllers, MPC 2551 CAN transceivers; and a DS O1012A oscilloscope using a

2GSa/s sampling rate and 100MHz bandwidth to record the measured voltage sam-

ples. MatlabR 2018a software was used for the analysis of the recorded samples. A

computer simulation was written that continuously transmitted the messages from

different ECUs and pins. Afterward, these messages were then used as the dataset

for model training and evaluation.

Table 5.1: Technical specifications of channels

Label Length(m) Conductor Insulation Model
Class –1 2 Copper XLPO SAE J1939-15
Class –2 6 Copper XLPO SAE J1939-15
Class –3 10 Copper XLPO SAE J1939-15
Class –4 2 Copper XLPO SAE J1939-19
Class –5 6 Copper XLPO SAE J1939-19
Class –6 2 Copper XLPO SAE J1128
Class –7 6 Copper XLPO SAE J1128
Class –8 10 Copper XLPO SAE J1128

5.3.2 Dataset Description

A dataset consisting of CAN packets at the output of 8 channels is recorded using

an oscilloscope. There are 8 CAN channels, and 991 records in total comprising the
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Table 5.2: Confusion matrix for transmitter classifier

Target Class
- - Class –1 Class –2 Class –3 Class –4 Class –5 Class –6 Class –7 Class –8 Acc. %

P
re
d
ic
te
d
C
la
ss

Class –1 115 0 0 8 0 0 1 0 92.7
Class –2 0 116 0 0 2 0 0 0 98.3
Class –3 0 0 118 0 0 0 0 0 100
Class –4 9 0 0 114 0 0 0 0 92.7
Class –5 0 3 0 0 125 0 0 0 97.7
Class –6 1 0 0 0 0 122 2 0 97.6
Class –7 0 0 0 0 0 0 129 0 100
Class –8 0 0 0 0 0 0 0 126 100
Acc. % 92 97.5 100 93.4 98.4 99.2 98.5 100 97.4

dataset. For model evaluation, 70% of the dataset is randomly partitioned into a

training set and 30% into testing set respectively. All data used is collected under

the same controlled conditions i.e. under the same temperature and using identical

message patterns to observe the unique behaviors of the sampled signals.

5.3.3 Performance Evaluation Measures

I used precision, recall, F1Score, accuracy and error rate as performance evalua-

tion measures. The effectiveness of the method proposed is determined by the rate

at which transmitters were correctly identified in the response to messages sniffed

by E(FP ). Let TP represent the number of true positive predictions, FP represents

the number of false-positive predictions, TN represents the number of true negative

predictions, and FN represents the number of false-negative predictions. Precision,

recall, F1 –Score, accuracy and error rate are computed which are as follows:

Precision =

(
TP

TP + FP

)
(5.24)

Recall =

(
TP

TP + FN

)
(5.25)

F1–score = 2×
(
Precision × Recall

Precision + Recall

)
(5.26)
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Accuracy =

(
TP + TN

TP + TN + FP + FN

)
(5.27)

Error–rate = 1− Accuracy (5.28)

5.3.4 Experimental Results and Analysis

A series of experiments are performed for performance evaluation. For the per-

formance evaluation presented, a neural network classifier is trained on the feature

vectors of all different channels. It is important to highlight here that the selection

of neural networks for the classifier is just a matter of choice and not a limitation of

the proposed method. Classification accuracy is used as a performance measure here.

Table 5.2 shows that the method proposed achieves a correct detection rate of 97.4%.
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Figure 5.13: Bar graph of PM for channel classifier

Fig. 5.13 gives a visual representation of various useful metrics in the perfor-

mance measurement of the classifier. The ideal classifier will have a precision, recall,

accuracy, and F1 –Score of 100%, and an error of 0%. Table 5.3 shows the numerical

performance metrics per ECU-channel combination. A relatively good performance is

observed when looking at the accuracy and error scores, which only considers whether

each prediction was correct or not. Thus, the accuracy and error consider TN and
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TP both as correct predictions, and FN and FP predictions as incorrect. These

are useful metrics to get an idea for how the model performs, but they do not give

much insight into where the failures in the model exist. Precision and recall scores

are useful for this purpose. The F1 –Score combines the recall and precision into one

score, which gives another comprehensive summary of model performance.

Table 5.3: Performance matrix of ECU classifier

- Precision Recall Accuracy F1 –Score ERR
Class –1 92.7% 92.0% 98.1% 92.4% 1.9%
Class –2 98.3% 97.4% 99.5% 97.9% 0.5%
Class –3 100% 100% 100% 100% 0.0%
Class –4 92.7% 93.4% 98.3% 93.1% 1.7%
Class –5 97.7% 98.4% 99.5% 98.0% 0.5%
Class –6 97.6% 100% 99.7% 98.8% 0.3%
Class –7 100% 97.7% 99.7% 98.8% 0.3%
Class –8 100% 100% 100% 100% 0%

The receiver operating characteristic curve, shown in Fig. 5.14, depicts the true-

positive rate (TPR) and false-positive rate (FPR) plotted against each other. In the

ideal case, the TPR will be 100% and FPR will be 0%. This means that the area

under the ROC curve is 1 in the ideal case. With an imperfect classifier, this curve

will begin to bend such that the area under the curve is reduced. Comparing the area

under the ROC curve is one way to determine which classes were predicted best and

worst by the model. Using Fig. 5.14, it is observed that Class –1 is the least similar

to the ideal case. Note that this bend in the curve for Class –1 shows that initially

if there are no false positives, there will not be high true positive rate. The other

classes show that they can achieve very high TPR without much sacrifice in FPR.
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Figure 5.14: Receiver operating characteristic curve
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CHAPTER VI

Channel Specific Distortion Based Transmitter

Identification Using Neural Networks

6.1 Introduction

Cyberattacks on financial and government institutions, critical infrastructure, vot-

ing systems, businesses, modern vehicles, etc., are on the rise. Fully connected au-

tonomous vehicles are more vulnerable than ever to hacking and data theft. This

is due to the fact that the industry still relies on a controller area network (CAN)

protocol for in-vehicle control networks. The CAN protocol lacks basic security fea-

tures such as message authentication, which makes it vulnerable to a wide range of

attacks including spoofing attacks. This chapter presents a novel method to protect

CAN protocol against packet spoofing, replay and denial of service (DoS) attacks.

The proposed method exploits physical unclonable attributes in the physical channel

between transmitting and destination nodes and uses them for linking the received

packet to the source. Impurities in the physical channel, imperfections in design, ma-

terial, and length of the channel are contributing factors behind physically unclonable

artifacts. The lumped element model is used to characterize channel-specific distor-

tions. Non-parametric modeling is used to estimate distortion distribution, which is

used for transmitting node identification. The performance of the proposed method
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is evaluated on a dataset collected from a CAN network with channel lengths of 1

to 10 meters. Detection results show that the proposed method achieves the average

accuracy of 99.8% with a false positive rate of 0.2%.

This research proposes a novel technique to address the aforementioned limitations

in the existing state of the art CAN security by exploiting uniqueness in the channel-

specific artifacts. Fig. 6.1 shows the comparison between the ideal CAN waveform

and the actual waveform at the receiver. It can be observed that the channel-specific

distortions do exist in the received signal, and they depend on the underlying physical

channel.
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Figure 6.1: Channel-specific distortion in the CAN signal

This research hypothesizes that the distortion in the signal is physically inimitable,

which can be used to link the signal to the channel. The proposed method exploits

uniqueness in the channel-specific distortion for linking the received CAN packet to

the transmitting source. The impurities in the physical channel, imperfections in

design, material and length of the channel contribute to the uniqueness of received

signal. The lumped element model (for the transmission lines) is used to characterize

channel artifacts. Kernel density estimation, a non-parametric density estimation

approach, is used to estimate the distribution of the artifacts. Estimated distribution

is used for transmitting node identification. The performance of the proposed method

is evaluated on a dataset collected from a CAN network with channel lengths of 1 to

10 meters.
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Contribution: Main contributions of this chapter are:

• To model channel-specific distortion for CAN channel.

• Channel-specific distortion extraction and its uniqueness analysis

• To propose a reliable framework for linking received CAN packet to the true

transmitting source.

The rest of this chapter is organized as follows: Section 6.2 provides the system

model, mathematical modeling of the channel-specific distortion and its uniqueness

analysis; Details of the proposed method are outlined in section 6.3; Experimental

setup, data collection, and experimental results & analysis are discussed in section

6.4.

Figure 6.2: Block diagram of the proposed system
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6.2 Proposed System Model and Channel Distortion Model-

ing

It can be observed from Fig. 6.1 that the received signal differs from its ideal

level. Distortion in the received signal can be attributed to the physical channel

imperfections and the channel response. The physical CAN channel behaves like

a transmission line on which the signal propagates to carry information from the

transmitting ECU to another ECU. The transmission line can be represented by the

lumped element model (LEM) that breaks the transmission line into smaller segments

(95).

This research hypothesizes that channel-specific distortions, xj(t), are inimitable,

therefore it can be used to link a received network packet to the transmitter. Fig.

6.2 shows the block diagram of the proposed system. In a vehicle, different modules

communicate with each other with the help of electronic control units (ECUs). The

output of the ECU should be ideally a rectangular waveform, but practically it is

not an ideal rectangular waveform, due to distortion added by the digital to analog

converter (DAC). This signal then propagates through the channel which adds some

distortion as well in the signal. The distortion extraction block extracts distortion

from the signal, which is represented by xj(t). In the next stage, the density function

of the distortion estimated is fed into a neural network. The neural network uses a

gradient descent algorithm to find the feature vector which is stored in the database.

The green lines in Fig. 6.2 indicates the training phase and the red lines represent

the identification/testing phase. Once the model is trained, the transmitter cannot

only be identified but also it can be located by feeding the estimated density function

of the signal to the trained classifier. The trained classifier uses feature vectors and

estimated density function to identify the transmitter using the channel distortion as

a signature.
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Shown in the right column of Fig. 6.3 is the equivalent circuit of an infinitesimally

small piece of a transmission line. According to LEM, the transmission line is repre-

sented as a series resistance (R’), series Inductance (L’), a parallel Conductance (G’)

and a parallel capacitance (C’). Shown in the left column of Fig. 6.3 is the physical

structure of the CAN channel. In this structure, D is the distance between 2 wires,

d is the diameter of the wires.

Figure 6.3: Lumped element model for CAN

Let µ be the permeability, and σ be the conductivity of the copper. The ideal line

parameters R’,C’,L’ and G’ (95) can be expressed as follows:

R′ =
2Rs

πd
(6.1)

L′ =
µ

π
ln

{
D

d
+

√
(
D

d
)2 − 1

}
(6.2)

C ′ =
πε

ln
{
D
d

+
√

(D
d

)2 − 1
} (6.3)

G′ =
πσ

ln
{
D
d

+
√

(D
d

)2 − 1
} (6.4)

It is important to highlight that the material and the manufacturing imperfections

are expected to contribute a small change (say δ) in the expected line parameter

values. Therefore, true values of line parameters can be expressed as: R′n = R′ + δR,
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L′n = L′ + δL, C ′n = C ′ + δC, and G′n = G′ + δG. As imperfections are not uniform,

therefore, resulting changes in the line parameters, e.g., δR, δL, δG and δC, can be

treated as random variables which make resulting distortion in the signal traveling

over the channel a random variable.

Similarly, channel material imperfections (impurities) also contribute to trans-

mission distortion. For instance, propagation, up = c/
√
εr, depends on relativity

permittivity εr. Material impurities can cause εr to deviate, which further makes up

to deviate from its expected value. Likewise, these imperfections also cause line pa-

rameters to deviate from their expected values. Channel dispersion is another source

of channel-specific distortions. According to Fourier analysis, when a square wave

travels over a physical channel, it experiences spreading effect. Finally, the channel

length is another source of distortion. Specifically, channel length contributes to at-

tenuation that signal experiences while traveling over the channel. The attenuation

constant, α, is directly dependent on the channel length, which can be expressed as

eq. 6.5,

α = Re

{√
R′ + jωL′

G′ + jωC ′

}
. (6.5)

Uncertainty in line parameters also contributes to uncertainty in α, which can be

expressed as, αn = α + δα.

6.3 Non-parametric Density Estimation

Fig. 6.4 represents the network model of a modern electric vehicle which is a het-

erogeneous distributed real-time system consisting of multiple ECUs interconnected

with an in-vehicle network (73). In the proposed method, there are M sub-networks

connected to each other by the central gateway, and in each sub-network, there are

N electronic control units. The gateway is responsible for authentication of the sig-
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nal. In this model, N = 9 and M can be any positive integer. Hence, the model can

authenticate any number of transmitters based on channel characteristics.

Figure 6.4: Architecture of sub-networks with gateways

Let S(t) be the output of an ECU and xj(t) be the distortion induced in jth

channel due to environmental factors such as temperature, electromagnetic, etc. The

output of jth channel yj(t), can be expressed, yj(t) = S(t) + nj(t). If yj(t) is the

ideal channel output and y
(a)
j (t) is the actual measurement then the channel-specific

distortion, xj(t), can be computed as eq. 6.6,

xj(t) = y
(a)
j (t)− yj(t). (6.6)

Here, xj(t) is a random variable obeying underlying density, fxj(x). Shown in

Fig. 6.5 is the distribution of xj(t). The density of xj(t) can be used to localize

the source of the received CAN packet. The real challenge here is to estimate the

underlying density of xj(t). Both parametric and non-parametric density estimation

methods can be used to achieve this objective. Kernel density estimation (KDE) - a

non-parametric density estimation method - is used here.

This is a data reduction stage, in this processing stage large dataset, i.e. estimated

channel-specific distortion, xj(t), is processed to extract a feature vector that can be

used for channel identification. The KDE package available with MatlabR, which

supports all known kernels such as Gaussian, logistic, Laplacian, Epanechnikov, etc.
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is used for density estimation. The proposed scheme, however, uses the Gaussian

kernel, i.e. Kg(x) = 1√
2π
exp(−1

2
u2) for the results present in this research. The

motivation behind the Gaussian kernel is that for a given bandwidth, h, the Gaussian

kernel yields an optimally smooth density estimate (96). Shown in Fig. 6.5 is the

plot of the distribution of channel-specific distortion and estimated density, f̂xj(x),

using Gaussian Kernel.
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Figure 6.5: Distortion distribution and estimated density function

6.3.1 Channel Identification

Estimated channel distortion density is then used for channel identification. To

achieve this goal, both the parametric binary hypothesis testing and the non-parametric

hypothesis testing based on machine learning can be used. As estimated density is

non-parametric, machine learning-based testing is used. To this end, estimated den-

sity, f̂xj(x), is used to train a supervised classifier. Any supervised machine learning

method including support vector machines, artificial neural networks, deep learning,

etc. can be used to achieve this goal.

Shown in Fig. 6.6 is the block diagram of the training and test phases. During

the training phase, the acquired signal from each channel is processed to extract

channel-specific distortion, which is used to estimate the underlying density using
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KDE, f̂xj(x). The f̂xj(x) is used for training a classifier. During the testing phase,

channel-specific distortion is extracted from the test signal, ytest(t), which is used for

underlying density estimation, f̂xtest(x). The f̂xtest(x) is then applied at the input of

a trained classifier for class label assignment.

A neural network with a scaled conjugate gradient back-propagation algorithm is

used for channel classification. Let p1,p2......pk be a set of non-zero weight vectors in

<N (97). The set is said to be a conjugate system with respect to the non-singular

matrix A if the following holds,

pTi Apj = 0 (i 6= j, i = 1, 2, .....k). (6.7)

The set of points w in <N satisfying,

w = w1 + α1p1 + α2p2 + ...+ αkpk, αi ∈ <. (6.8)

where, w1 is a point in weight space and p1,p1......pk is a subset of conjugate system,

is called a k-plane (97). This algorithm adjusts the weights wi such that the error is

minimized. The iterations continue to find the set of wi till error is minimized and

the local minimum is reached. The main purpose of the scaled conjugate gradient

backpropagation algorithm is to find the weights wi in the training phase and then

weights wi for classification in the testing phase.

6.4 Experimental Setup, Results and Analysis

6.4.1 Experimental Setup

CAN channel specifications:

To realize CAN channel, CAN cables commonly used by the automotive industry

under the SAE J1939 standard from 2 manufacturers, are used. To this end, nine
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Figure 6.6: Training and test phases for intrusion detection system

(9) different CAN channels by either varying manufacturer or channel length are

realized. Technical specifications of CAN channels used for performance evaluation

of the proposed method are given in Table 6.1.

ECU and CAN communication:

For CAN communication, Arduino Uno R2 microcontroller kit with CAN bus

shield board with MCP2515 CAN bus controller and MPC2551 CAN transceiver

is used. To avoid device-specific distortions, the same ECU is used for CAN packet

transmission over each CAN channel. The same script is used for sending an identical

message continuously from the same ECU over all channels. For CAN bus data

Table 6.1: Technical specifications of channels

Label Length(m) Conductor Insulation Model
C-1 1 Copper XLPO SAE J1939-15
C-2 5 Copper XLPO SAE J1939-15
C-3 10 Copper XLPO SAE J1939-15
C-4 1 Copper XLPO SAE J1939-19
C-5 5 Copper XLPO SAE J1939-19
C-6 10 Copper XLPO SAE J1939-19
C-7 1 Copper XLPO SAE J1939-19
C-8 5 Copper XLPO SAE J1939-19
C-9 10 Copper XLPO SAE J1939-19
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Table 6.2: Confusion matrix for channel classifier

Target Class
- - C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 Acc. %

P
red

icted
C

lass

C-1 128 0 0 0 0 0 2 0 0 98.5
C-2 0 128 0 0 0 0 0 0 0 100
C-3 0 0 128 0 0 0 0 0 0 100
C-4 0 0 0 128 0 0 0 0 0 100
C-5 0 0 0 0 128 0 0 0 0 100
C-6 0 0 0 0 0 128 0 0 0 100
C-7 0 0 0 0 0 0 126 0 0 100
C-8 0 0 0 0 0 0 0 128 0 100
C-9 0 0 0 0 0 0 0 0 128 100

Acc. % 100 100 100 100 100 100 98.4 100 100 99.8

acquisition, Oscilloscope DSO1012A for the voltage samples recording with Sampling

Rate of 2GSa/s, 100MHz bandwidth, and 8-bit vertical resolution, is used.

6.4.2 Dataset Description

A dataset consisting of CAN packets at the output of 9 channels is recorded using

an oscilloscope. For each CAN channel realization, 460,800 (3600*128) samples are

collected. There are 9 CAN channel, so in total 4,147,200 (3600*128*9) samples are

collected. For performance evaluation, random partitioning is performed to divide

the dataset into the training and test sets. For Training set: 70% and for Test set:

30% of the data is used. The dataset used here is collected in the same environment

i.e. under the same temperature and using an identical message to observe the minute

and unique variation of the digital signals. It can be observed from Table 6.2 that

the proposed method achieves very high transmitter classification accuracy.

6.4.3 Experimental Results and Analysis

A series of experiments are performed to evaluate the performance of the proposed

method. For the performance evaluation presented, a neural network classifier is
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trained on estimated densities for different channels. It is important to highlight here

that the selection of neural networks for the classifier is just a matter of choice and not

a limitation of the proposed method. Classification accuracy is used as a performance

measure here. Table 6.2 shows that the proposed method achieves an overall correct

detection rate of 99.8%.

Experiment 1 - Channel-specific distortion discrimination:

The goal of this experiment is to investigate the characteristics of a channel-specific

distortion. To achieve this objective, the estimated density for each CAN-channel is

compared. Shown in Fig. 6.7 are the plots of estimated densities for all 9 CAN

channels. It can be observed from Fig. 6.7 that the estimated densities are different.

It is important to highlight that the estimated densities from C-4 and C-7 are hard

to differentiate. This is due to the fact that both channels are of the same length.
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Figure 6.7: Estimated distortion density comparison

Experiment 2 - Channel identification:

Validating the uniqueness of channel-specific features is the main purpose of this

experiment. This part of research hypothesize that channel-specific distortions are

unique due to the unique material and the design imperfections in the channel. To
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validate this claim, data is recorded for each cable family and each channel length

with an identical channel input, transmitted using the same ECU. Specifically, for

this experiment ‘cable type’ and ‘length’ are the only variables. For this experiment,

a feature vector consisting of 2001 points (which is the dimension of an estimated

density function) is considered. During the training phase, a neural network is trained

on estimated densities (shown in Fig. 6.7) for all CAN channels. The neural network

is trained with a “scaled conjugate gradient backpropagation” training algorithm,

with 2001 input nodes, 10 hidden nodes and 9 output nodes, stopping criteria of

Epochs = 2000 and gradient = 10−7.

Shown in Table 6.2 are the confusion matrices for the channel (CAN) classification.

It can be observed from Table 6.2 that the proposed method achieves an overall

correct detection rate of 99.8%. The proposed method achieves detection accuracy

comparable with existing state-of-the-art. For instance existing voltage-based IDSs

proposed in (44; 25) and (45) reported detection rates of 96.48%, 99.8% and 99.85%,

respectively. It can also be noticed from Table 6.2 that CAN channel C-1 and C-

7 are the only sources of error here, that is, these channels are of the same length

and model. If these 2 channels are ignored, then the proposed system achieves a

perfect detection rate of 100%. This method has advantage over other fingerprinting

IDS based approaches. Since this approach uses the distortion of the channel as a

signature, it is nearly impossible for any transmitter to inject the distortion based

signature. The proposed method in this research also faces a limitation, if a legitimate

ECU is removed from its location and an adversary ECU is connected to the same

place in the network, in that scenario, the proposed framework is unable to detect

the spoofing attack.
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CHAPTER VII

Statistical Parameters Based Transmitter

Identification

7.1 Introduction

Controller area network (CAN) is used as a legacy protocol for in-vehicle data

communication between electronic control units (ECUs). Moreover, this protocol is

also used to provide an interface between the vehicles and the external world via the

internet; thus, makes it vulnerable to spoofing attacks. The primary reason behind

vulnerability is that the sender’s information in CAN messages is missing; hence, the

receiving ECU is unable to authenticate an incoming CAN packet that may be in-

jected by an adversary. In order to overcome this vulnerability, this research proposes

a framework for message authentication through channel identification. The pro-

posed distortion based intrusion detection system (DIDS) exploits channel distortion

to create a unique fingerprint of the CAN signals and link the received packet to the

transmitter. For message authentication, a novel parametric approach is developed

to quantify the distortion in form of probability density function (PDF). The best

fit PDF over histogram of distortion, is gamma distribution function. Afterwards,

the α and β parameters of gamma distribution function are computed for multiple

records in each channel to obtain the joint density function. Finally, the likelihood

102



ratio test is applied on joint density function to identify the channel and transmitter.

Experimental results shows that my method is robust and computationally efficient

with less processing requirements for message authentication.

The modern electric vehicle is a cyber-physical system (CPS) equipped with many

wireless and wired communication interfaces to connect ECUs through various in-

vehicle networks (IVNs) (8; 1; 2; 3; 4; 5), such as the CAN (8), LIN (1), MOST (2),

FlexRay (3), etc. These networks connect safety-critical components of the vehicle

e.g. brakes, airbags, engine control, adaptive cruise control, and electronic stability

program, etc. through ECUs (14; 98). Integration of wireless interfaces, e.g., Blue-

tooth, Wi-Fi, etc., with IVNs pose serious security threats to electric vehicles (9),

because the CAN is prone to variety of internal as well as external attacks includ-

ing packet spoofing attacks, data injection attacks, denial of service (DoS) attacks,

etc. (16; 15; 14; 99; 17) as CAN does not take into account the sender’s information

for message authentication. Recently, researchers have successfully hijacked vehi-

cles from a remote location, and killed the vehicle engine in middle of a highway

(16; 10; 11; 12; 13; 100). In case of autonomous vehicles (AVs), it is highly likely

that concerted attackers might take a vehicle or its occupants hostage for a ransom,

or direct an AV to relocate it to an unintended destination, etc. Thus, automakers

and other stakeholders are focused on developing safeguards against growing attack

vectors before bringing AVs to the marketplace.

Researchers have proposed various solutions to detect and prevent attacks for in-

vehicle control networks. These methods can be classified into 2 types: (i) Message

authentication code (MAC) based methods (18; 19; 20; 21; 22; 23; 24), and (ii) In-

trusion detection systems (IDS) (29; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41; 44;

25; 45; 43; 26; 46; 27; 42). The MAC-based methods, achieve security and privacy

by encrypting the payload of the CAN-packet before transmission. For instance, in

(17), Wang et. al. demonstrated a MAC-based framework VeCure for CAN secu-
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rity. In VeCure, 64-bit MAC for every 64-bit message was transmitted between the

ECUs. Intuitively, the method exhibited high computational cost, 50% additional

transmission overhead, and also required a higher data rate. In (21), Hiroshi et. al.

presented a MAC-based message authentication mechanism for the CAN protocol

against spoofing attacks. The monitoring ECU provided the authentication code for

all ECUs and verified the code for all CAN messages. In (19), Hazem et. al. proposed

a lightweight CAN authentication protocol (LCAP). The LCAP required to append a

“magic number” that was generated by a one-way hash function employed on TESLA

prototype (47). The protocol required 16-bits of the data field to append the authen-

tication code, which still creates 25% overhead. The MAC-based approaches have

the intrinsic overhead that lowers the transmission performance, hence makes them

unreliable for the CAN security (17; 46; 23).

To address the limitations of MAC-based solutions, researchers have proposed

intrusion detection-based approaches for CAN network traffic analysis (26; 27; 21;

19; 48). The intrusion detection-based approaches have lower data rate requirements

because no additional bits are transmitted during the message transmission; hence,

it does not add additional network overhead. In (26), Cho and Shin demonstrated a

clock-based intrusion detection system (CIDS) that used ECU fingerprinting. Each

ECU contained a crystal oscillator known as a clock; the ECU fingerprinting measured

the clock skewness against the received packets and detect the attack. However, Sang

et. al. (28) and Tayyab et. al. (49) demonstrated that CIDS can be bypassed by esti-

mating the clock parameters. In (46), message authentication was performed through

ECU detection by applying higher-order moments of the CAN signal in both time

and frequency-domains. However, this approach was intolerant against the transmit-

ter induction and the performance of the system seriously decays if the number of

transmitters is increased. Therefore, we need an IDS-based approach that extracts

unique fingerprints from the signal, works for a higher number of transmitters, and
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also exhibits low computational complexity.

To address the aforementioned limitations of existing in-vehicle security tech-

niques, a novel IDS-based message authentication approach is presented in this re-

search. This approach exploits the uniqueness in channel-specific distortions e.g.,

channel imperfections, material impurities, length of the channel, etc., for channel

fingerprint generation to identify transmitter for message authentication. This re-

search hypothesizes that signal distortion is channel dependent; hence can be used to

link the received signal to the source transmitter. Moreover, as distortion is channel-

dependent, thus, it is not easy for the adversary to duplicate this information to attack

the CAN. Therefore, I associate the received packet through a specific channel, by

computing channel distortion using a parametric approach. The proposed paramet-

ric approach estimates multiple density functions of distortion, and adopt the best

fit density function to identify the source transmitter. In my case, the gamma distri-

bution function is the best fit density function that is used to compute the α and β

parameters of the gamma distribution. Through empirical analysis, I observed that

the parameters α and β have random nature thus can be represented through a joint

normal distribution function. Afterward, for a test signal, α and β are computed,

that are then used to identify the channel for message authentication and attack

prevention through a generalized likelihood ratio test approach.

Rest of the chapter is organized as follows: Section 7.2 provides detailed descrip-

tion of the proposed methodology. Section 7.3 covers the experimental results and

analysis.

7.2 System Model

For in-vehicle communication between the ECUs, the expected signal at the re-

ceiving ECU should have perfect rectangular waveform. However, as shown in Fig.

7.1, the expected waveform and the actual waveform received are not the same due
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Figure 7.1: Comparison of expected and actual signal

to channel distortion, and I have exploited this fact for model generation to identify

the CAN channel used to propagate the signal, and the source ECU. For this I have

considered a subnet in CAN that contains ψ = {1, 2, . . . , n} channels represented as

C(j), where j ∈ ψ, with a fingerprinting unit E(s) that sniffs the transmission of analog

signal y
(a)
(j) (t) which propagated through the channel C(j). The E(s) converts the signal

y
(a)
(j) (t) to a digital signal y

(a)
(j) (n) with a sampling rate of 20MSa/sec. Afterwards,

the E(s) computes the expected signal y
(e)
(j)(n) that is used for distortion computa-

tion x(j)(n) by representing the distortion in form of a histogram. The histogram

is then used to estimate the probability density function (PDF) that is gamma dis-

tribution function f̂(xj) with two parameters αj and βj. For each channel with M

records, the αj and βj are collected in form of vectors i.e. α̂j = [αj1, αj2 . . . αjM ] and

β̂j = [βj1, βj2 . . . βjM ], and due to their random nature, I further compute the PDF

of α̂j and β̂j. Afterwards, the mean µj and the square root of variance (101) which is

standard deviation σj values of α̂j and β̂j are utilized as the channel representation

model. For any test signal after obtaining the αj and βj, the channel and trans-

mitter identification is performed through likelihood test ratio using µj = µαj , µβj

and σj = σαj , σβj . Fig. 7.2 shows the architecture of the proposed method that is

described in detail in following subsections.
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Figure 7.2: Block diagram of the system model

7.2.1 Signal Acquisition

The fingerprinting unit E(s) acquires the analog signal y
(a)
(j) (t) generated by C(j)

and converts this signal into digital signal y
(a)
(j) (n) as represented in eq. (7.1).

y
(a)
(j) (n) = y

(a)
(j) (t)|t=nTs , Ts = 50× 10−9 (7.1)

The Ts = 50 × 10−9 represents sampling time of 50nsec and sampling rate of

20MSa/sec for the signal. The reason to generate y
(a)
(j) (n) is that the y

(a)
(j) (t) occurs at

infinite instants of time, thus demands large memory to get stored. However, as the

E(s) has limited memory, therefore, the analog-to-digital conversion is performed. I

compute expected signal y
(e)
(j)(n) by first using a p–sample digital moving average filter

to smooth high-amplitude oscillations. The new moving average signal, y
(MA)
(j) (n), is

mathematically represented as a difference equation as represented in eq. (7.2).
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y
(MA)
(j) (n) =

1

p

p∑
i=1

y
(a)
(j) (n− i) (7.2)

Where, p = 7 represents the length of moving average filter. The y
(MA)
(j) (n) is

converted to an ideal (expected) digital signal by using a threshold of 3V to classify

individual samples of signal as either dominant bit (logic 0) or recessive bit (logic 1)

as described in eq. (7.3).

y
(e)
(j)(n) =


2.5, y

(MA)
(j) (n) < 3

3.5, y
(MA)
(j) (n) ≥ 3

(7.3)

For the dominant bit, the voltage level is 3.5V and an ideal recessive bit has a

voltage level of 2.5V . In my case, the channel distortion is extracted in the dominant

bits.

7.2.2 Distortion Extraction

After signal acquisition, I acquire the distortion for channel fingerprinting. The

actual signal deviates from expected signal as shown in Fig. 7.3, and quantified as

distortion x(j)(n), which can be captured using eq. (7.4).

x(j)(n) = y
(a)
(j) (n)− y(e)(j)(n). (7.4)

The distortion x(j)(n) as shown in Fig. 7.3 is a random variable, such that

{x(j)(n) ∈ n(j) | n(j) : [L → U ]}, where L = −1.00 and U = 1.00 represent the

lower and upper distortion values respectively. The x(j)(n) is then used for his-

togram computation. The mathematical model of channel distortion is presented as

follows.

The physical CAN bus behaves like a transmission line on which the signal prop-

agates to carry information from one ECU to another ECU. Hence, the CAN channel
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Figure 7.3: Distortion in the signal

can be represented by the lumped element model (LEM) (95) as shown in Fig. 7.4.

According to LEM, the transmission line with the diameter D of outer cable shield

and, with the diameter d of the inner copper wire can be modeled by circuit elements

i.e. resistance (R′), inductance (L′), conductance (G′) and capacitance (C ′).

Figure 7.4: Lumped element model

The ideal line parameters R′, C ′, L′ and G′ (95) can be expressed in the form of

eq.(7.5)-(7.8).

R′ =
2Rs

πd
. (7.5)
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L′ =
µ

π
ln

Dd +

√(
D

d

)2

− 1

 . (7.6)

C ′ =
πε

ln

D
d

+

√(
D
d

)2

− 1


(7.7)

G′ =
πσ

ln

D
d

+

√(
D
d

)2

− 1


(7.8)

Rs =

√
πfµ

σ
. (7.9)

In the equations above, µ is the permeability, ε is the permitivity of the dielectric

separating the 2 copper wires; and σ is the conductivity of the copper. It is important

to highlight that material and manufacturing imperfections (small variation in D and

d) are expected to contribute a small change i.e. δ in the expected line parameter

values. Therefore, true values of line parameters can be expressed as: R′n = R′ + δR,

L′n = L′ + δL, C ′n = C ′ + δC , and G′n = G′ + δG. As imperfections are not uniform,

therefore, resulting changes in the line parameters, e.g., δR, δL, δG and δC , are random

variables that makes resulting distortion in the signal random in nature. Let x
(R)
(j) (n)

represent the distortion due to δR(j)
, x

(L)
(j) (n) represent the distortion due to δL(j)

,

x
(C)
(j) (n) represent the distortion due to δC(j)

, and x
(G)
(j) (n) represent the distortion due

to δG(j)
for jth channel. Similarly, channel material imperfections (impurities) also

contribute to transmission distortion. The velocity of signal propagation, up = c/
√
εr

depends on relative permittivity εr. Therefore, material imperfections can cause up

to deviate from its expected value. Likewise, these imperfections also cause line

parameters to deviate from their expected values. Channel dispersion is another

source of channel-specific distortions. Let x
(D)
(j) (n) be the distortion due to dispersion
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Figure 7.5: Histogram of x(j)(n) for C(j)

which is attributed towards channel impurities. When a square wave travels over a

physical channel it experiences spreading effect (95). The total distortion xj(n) (due

to channel imperfections) for jth channel (Cj), can be expressed as eq. (7.10).

xj(n) = x
(R)
(j) (n) + x

(L)
(j) (n) + x

(C)
(j) (n) + x

(G)
(j) (n) + x

(D)
(j) (n). (7.10)

Similarly, using eq. (7.4), y
(a)
(j) (n) can be expressed as follows:

y
(a)
(j) (n) = y

(e)
(j)(n) + x(j)(n). (7.11)

As x(j)(n) is unique for all the signals propagated over the same channel thus

makes y
(a)
(j) (n) dynamic, hence becomes an effective measure for channel fingerprinting

for message authentication.

7.2.3 Histogram Computation

After distortion modeling, I use x(j)(n) for histogram generation, n = {0, 1, 2, . . . , N−

1}.. The histogram will then be used for density estimation of C(j). Using m bins
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with bin index k, and N = 1500 samples, the histogram is generated as follows:

h(j)(k) =
N∑
n=1

[
δ

(
x(j)(n)

∆
+ 100

)
+ h(j)(k)

]
(7.12)

and

∆ =

(
U − L
m

)
(7.13)

Where ∆ is the step size, L, and U represents the lower and upper values for distortion.

In my case m = 200, L = −1, U = +1. The δ(.) denotes Kronecker delta function

(102), that can be computed through eq. (7.14).

δ(n− k) =

 1 : n = k

0 : Otherwise
(7.14)

Fig. 7.5 shows a sample histogram h(j)(k) for jth channel C(j).
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Figure 7.6: Approximation of various PDFs from histogram
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Figure 7.7: Estimating density function

7.2.4 Density Estimation

The purpose of this stage is to find best fit density function f̂(xj) from h(j)(k).

The real challenge here is how to estimate the underlying density of the distortion

xj(n). Both parametric and non-parametric density estimation methods can be used

to achieve this objective. For density estimation different options are available e.g.
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0.5
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1.5

Figure 7.8: P-P plot
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normal, exponential, rayleigh, gamma, etc. After extensive experimentation, the pro-

posed scheme, however, uses the gamma distribution. The motivation behind gamma

distribution is that for a given histograms, the gamma distribution yields optimally

smooth density estimate (96) as confirmed in (Fig. 7.6). From Fig. 7.6, it can be

observed that the normal distribution also fits the histogram, but as normal distri-

bution is symmetric in nature, and histogram of xj(n) is non-symmetric in nature,

hence, normal fit is not optimal choice. In order to compute the gamma distribution,

I compute the mean µxj and standard deviation σxj of the histogram using eq. 7.15,

and eq. 7.16 and then compute the gamma distribution parameters αj and βj using

eq. 7.17, and eq. 7.18.

µxj =

(∑200
k=0(k × hj(k))

)
(∑200

k=0 hj(k)

) (7.15)

σxj =

√√√√√√√
[(∑200

k=0(k
2 × hj(k))

)
(∑200

k=0 hj(k)

) − µ2
xj

]
(7.16)

and

αj =

[
µxj
σxj

]2
. (7.17)

βj =

[
σ2
xj

µxj

]
. (7.18)

Afterwards, the gamma distribution function is computed as follows:

f̂(xj) =
1

β
−αj
j τ(αj)

xαj−1e−βjxj . (7.19)

Here, τ(αj) is gamma function. Fig. 7.7 shows that the density function maps
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Figure 7.9: Scatter plot of α vs β for C(j)

over histogram of xj(n) which signifies that the distortion can be represented through

αj and βj. Fig. 7.8 show the goodness of fit test test. It can be observed that the

theoretical cumulative distribution function which is obtained from histogram of dis-

tortion is very close to the CDF of estimated gamma PDF represented by parameters

αj and βj. By using αj and βj my feature space significantly reduces as well, which

shows that even the simple classification approaches can utilize this information effec-

tively. I repeated this distribution approximation for all channels, and I observed that

the distribution function of all the channels follow gamma density function. There-

fore, if I plot αj against βj for all channels Cj, where each channel has M records

as α̂j = [αj1, αj2 . . . αjM ] and β̂j = [βj1, βj2 . . . βjM ], as shown in Fig. 7.9, we can

observe that the data points corresponding to each channel observe lower intra-class

distance, however, there inter-class distance is high; thus, the benefit of my scheme

is that the data points for each channel Cj becomes linearly separable and can be

captured through data clustering approaches. For capturing data points, I can apply

any data clustering approach i.e. k-means (103), fuzzy c-mean clustering (104) etc.
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Figure 7.10: Distribution functions of α and β

to identify the channel. However, as these methods explicitly required the number of

channels to compute the cluster centeroids, therefore, cannot be used in the situation

where this information is not predetermined. Therefore, in this research I have used

likelihood ratio test (96) as data clustering approach.

116



7.2.5 Adaptive Channel Specific Clustering Approach

As it can be observed from Fig. 7.9 that although data points corresponding to

α̂j and β̂j for Cj have lower intra-class distance, but still there is small variation

amongst the data points in α and β planes that highlights their symmetric random

nature. Therefore, in order to capture this symmetric randomness in both planes, I

approximate the PDF of α̂j and β̂j by normal distribution function as described in

eq. (7.20) and eq. (7.21) respectively. The density functions, f(α̂j) and f(β̂j) for Cj

are shown in Fig. 7.10.

f(α̂j) =
1√

2πσ2
αj

exp(−1

2
(αj − µαj)2). (7.20)

f(β̂j) =
1√

2πσ2
βj

exp(−1

2
(βj − µβj)2). (7.21)

I assume that f(α̂j, β̂j) are independent of each other. By using eq. (7.20) and

eq. (7.21), I compute the joint density function, f(α̂j, β̂j), as described in eq. (7.22).

The joint density function, f(α̂j, β̂j) for Cj is shown in Fig. 7.11.

f(α̂j, β̂j) = f(α̂j).f(β̂j) (7.22)

or,

f(α̂j, β̂j) =

exp

{
−1

2

[(
α̂j−µαj
σαj

)2
+

(
β̂j−µβj
σβj

)2
]}

2πσαjσβj
(7.23)

where, µαj , µβj , σαj and σβj can be expressed by eq. (7.24)-(7.27) respectively.

µαj =

∑M
i=1(αji)

M
(7.24)
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Figure 7.11: 3-D plot of joint density function for single channel

µβj =

∑M
i=1(βji)

M
(7.25)

σ2
αj

=

∑M
i=1(αji − µαj)2

M
(7.26)

σ2
βj

=

∑M
i=1(βji − µβj)2

M
(7.27)

f(α̂j, β̂j) is used to apply likelihood ratio test to identify the transmitting channel

using the following hypothesis:

Hr : xtest = xr (7.28)

Hq : xtest = xq
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Here, r 6= q, r ∈ ψ, q ∈ ψ, test ∈ ψ, and ψ = {1, 2, . . . , n} and n represents the

unique channel index.

Λ(x) =
f(xtest; θr, Hr)

f(xtest; θr, Hq)
=

Hq
Hr

≶ 1 (7.29)

In eq. (7.29), θr and θq can be expressed as eq. (7.30) and eq. (7.31) respectively.

θr = {µ̂αr , µ̂βr , σ̂αr , σ̂βr} (7.30)

and

θq = {µ̂αq , µ̂βq , σ̂αq , σ̂βq} (7.31)

Where, µ̂αr , µ̂βr , µ̂αq and µ̂βq are show in eq. (7.32) - (7.35).

µ̂αr =

∑M
i=1(αri)

M
(7.32)

µ̂βr =

∑M
i=1(βri)

M
(7.33)

µ̂αq =

∑M
i=1(αqi)

M
(7.34)

µ̂βq =

∑M
i=1(βqi)

M
(7.35)

and, σ̂αr , σ̂βr , σ̂αq and σ̂βq are show in eq. (7.36) - (7.39).

σ̂αr =

√√√√[∑M
i=1(αri − µαr)2

M

]
(7.36)
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σ̂βr =

√√√√[∑M
i=1(βri − µβr)2

M

]
(7.37)

σ̂αq =

√√√√[∑M
i=1(αqi − µαq)2

M

]
(7.38)

σ̂βq =

√√√√[∑M
i=1(βqi − µβq)2

M

]
(7.39)

The decision function considers xtest(n) belongs to rth transmitter if the eq. (7.29)

is true for all values of q.

Table 7.1: Technical specifications of channels

Label Length(m) Conductor Insulation Model
C(1) 2 Copper XLPO SAE J1939-15
C(2) 6 Copper XLPO SAE J1939-15
C(3) 10 Copper XLPO SAE J1939-15
C(4) 2 Copper XLPO SAE J1939-19
C(5) 6 Copper XLPO SAE J1939-19
C(6) 10 Copper XLPO SAE J1939-19
C(7) 2 Copper XLPO SAE J1128
C(8) 6 Copper XLPO SAE J1128
C(9) 10 Copper XLPO SAE J1128

7.3 Experimental Results and Analysis

7.3.1 Experimental Setup

CAN channel specifications:

To realize CAN channel, CAN cables commonly used by the automotive industry

under the SAE J1939 standard from two manufacturers are used. To this end, nine
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Figure 7.12: Comparison of estimated distortion density for C(j)

different CAN channels by either varying manufacturer or channel length are used.

Technical specifications of the CAN channel used for performance evaluation of the

proposed method are given in Table 7.1.

ECU and CAN communication:

For CAN communication, Arduino Uno R2 micro-controller kit; CAN-Bus shield

board with MCP2515 CAN-bus controller and the MPC2551 CAN transceiver are

used. The same script is used for sending an identical message continuously over 9

channels. For CAN bus data acquisition, oscilloscope DSO1012A for the voltage sam-

ples recording with sampling sate of 20MSa/sec is used. The technical specifications

of channels are provided in Table 7.1.
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Figure 7.13: Comparison of joint density functions

7.3.2 Dataset Description

The channel identification dataset comprised of 1080 (120× 9) records with 1500

samples in each record. For performance evaluation, partitioning is performed to

divide the dataset into the training and test sets. For this 50% of the set is used for

training and 50% of the set is used for testing. The data is collected in the same

environment (i.e. under the same temperature and using an identical message) to

observe the minute and unique variation of the digital signals.

7.3.3 Performance Evaluation Measures

For performance evaluation, I used precision, recall, F1 –score, accuracy, and error

rate as performance evaluation measures. To evaluate the effectiveness of the proposed
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method, I determined how many channels were correctly identified in the response to

messages sniffed by E(s). Let TP represents true positive rate, FP represents false

positive rate, TN represents true negative rate, and FN represents false-negative

rate, then precision can be defined as follows:

Precision =

(
TP

TP + FP

)
(7.40)

Precision was used to measure the ratio of the true instances against the retrieved

instances for a particular class. To measure the sensitivity I used the recall rates that

can be computed as follows:

Recall =

(
TP

TP + FN

)
(7.41)

The recall was computed to measure the total number of relevant instances that

were actually retrieved. In order to combine both measures i.e. precision, and recall

I used F1 Score that was computed as:

F1 score = 2×
(
Precision × Recall

Precision + Recall

)
(7.42)

The higher F1 Score signifies the robustness of the classification approach. In order to

evaluate the overall performance by considering all the classes together, I computed

the accuracy of the method as follows:

Accuracy =

(
TP + TN

TP + TN + FP + FN

)
(7.43)

Accuracy was computed to measure all instances that were correctly classified,

despite the fact, whatever class they belong to. Moreover, by using accuracy value I

also computed the overall error rate of the method as follows:
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Table 7.2: Confusion matrix for channel classifier

Target Class
- - C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) Acc. %

P
re
d
ic
te
d
C
la
ss

C(1) 60 0 0 4 0 0 4 0 0 88.2
C(2) 0 57 0 0 1 0 0 1 0 96.6
C(3) 0 0 59 0 0 2 0 0 0 96.7
C(4) 0 0 0 56 0 0 0 0 0 100
C(5) 0 0 0 0 59 0 0 0 7 89.4
C(6) 0 0 1 0 0 58 0 0 0 98.3
C(7) 0 0 0 0 0 0 56 0 0 100
C(8) 0 3 0 0 0 0 0 59 0 95.2
C(9) 0 0 0 0 0 0 0 0 53 100

Acc. % 100 95 98.3 93.3 98.3 96.7 93.3 98.3 88.3 95.74

Error–rate = 1− Accuracy (7.44)

7.3.4 Performance Analysis

This section provides channel detection performance of the proposed method in

terms of evaluation measures. A series of experiments were performed to evaluate the

performance of the proposed method.

Experiment 1 - Channel-specific parametric analysis of distortion:

The goal of this experiment is to validate that the distortion is a channel spe-

cific entity thus has the ability to link the signal to the transmitting channel. The

transmitted signal between ECUs using the transmitting channel does not by default

contains the sender ID, thus is prone to the spoofing attack. However, my approach

extracts the sender information through the signal analysis in terms of channel specific

distortion profile. To achieve this objective, it is necessary that the distortion profile

should be unique for each channel in the CAN network. Therefore, in this experiment

I find the distortion profile for each channel in terms of gamma density function; and

from Fig. 7.12 it can be observed that the estimated distortion densities for all the
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9 channels are unique, which consequently generates unique αj and βj parameters of

gamma distribution for all channels that can be verified from Fig. 7.9. Further, it

can be observed that channels with larger lengths (as listed in Table 7.1) have more

spread in the density functions. This spread on x–axis is due to an increase in the

variance of the density function. Gamma densities of some channels are correlated as

they overlap with each other. If we find probability density functions of α̂j and β̂j for

each channel Cj and their joint density function f(α̂, β̂), it can be observed that they

are uncorrelated as they do not overlap each other as shown in Fig. 7.13, the joint

density function of α̂j and β̂j is an ideal candidate for channel identification. Hence,

as the density function of each channel is unique, so it can be used to link the signal

to the source transmitter for message authentication.

Experiment 2 - Transmitter identification based upon channel distor-

tion:

The main purpose of this experiment is to test the accuracy of the channel iden-

tification method proposed in this research. Estimated channel distortion density is

then used for transmitter identification. To achieve this goal, both parametric binary

hypothesis testing or non-parametric hypothesis testing based on machine learning

can be used. As estimated density is a parametric approach, therefore, likelihood is

used. During training phase, the acquired signal from each channel is processed to

extract channel-specific distortion, which is used to estimate the underlying density,

f̂(xj) and its parameters . Further, f̂(xj) is computed M times,to generate αj and

βj and find joint density function f(α̂, β̂). The f(α̂, β̂) is then used to classify chan-

nel. During testing phase, channel-specific distortion (xtest(t)) is extracted from the

test signal (ytest(t)), xtest(t), which is used for underlying density estimation, f̂(xtest).

Parameters α and β are acquired from f̂xtest(x). Finally, maximum likelihood is ap-

plied for channel label assignment. The experimental results show that the proposed

algorithm achieves a satisfactory performance with a false positive rate of 4.26% and
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identification accuracy of 95.74% as shown in Table 7.2. It can also be noticed from

Table 7.2 that the false positive which appear for CAN channel C(1) are the signals

which belong to C(4) and C(7), these channels are of the same length. The same

pattern can be observed for all the other classes as well, i.e. sources of errors/false

positives are those classes that have the same cable length.

Table 7.3: Performance matrix of channel classifier

- Precision Recall Accuracy F1 –score ERR
C(1) 88.2% 100% 98.5% 93.8% 1.5%
C(2) 96.6% 95% 99.1% 95.8% 0.9%
C(3) 96.7% 98.3% 99.4% 97.5% 0.6%
C(4) 100% 93.3% 99.2% 96.6% 0.8%
C(5) 89.4% 98.3% 98.5% 93.7% 1.5%
C(6) 98.3% 96.7% 99.4% 97.5% 0.6%
C(7) 100% 93.3% 99.2% 96.6% 0.8%
C(8) 95.2% 98.3% 99.2% 96.7% 0.8%
C(9) 100% 88.3% 98.7% 93.8% 1.3%

Table 7.3 shows the performance in terms of different performance evaluation

measures. The performance of channel-classifier is quantified in terms of precision,

recall, F1 –score, accuracy, and error rate. In 3 out of 9 cases, my method achieved

100% precision, as observed from Table 7.3, C(4), C(7) and C(9) have 100% precision.

It can also be observed that C(1) has a recall of 100%. Further, C(3) and C(6) stand out

in terms of F1 –score, they both have an F1 –score of 97.5%. The overall detection

rate of channel identification is 95.74%. The same results are graphically presented

in Fig. 7.14.

7.3.5 Comparison Against State-of-the-art

In this section proposed method is compared against state-of-the-art methods that

are also doing the transmitter identification. The performance is compared against

transmitter detection using Viden (25), Inimitable characteristics of CAN signal (43)

and VoltageIDS (44).
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Figure 7.14: Bar graph of PM for classifier

In (25), Cho et. al. proposed a method named V iden that used voltage profile

of acknowledgment (Ack) bits for transmitter identification. In the first phase, ACK

bit was used to measure the message was originated from the genuine transmitter or

not. Afterward, voltage measurements were used to generate transmitter fingerprints.

Based on these fingerprints, the attacker transmitter was identified. In (43), a moni-

toring unit was installed in the vehicle that analyzes the electrical CAN signals and

computes the statistical features. These features were then classified to identify the

transmitter. In (44), transmitter detection based on inimitable voltage characteristics

technique was proposed. The feature vectors proposed in (43) were extended both

in time- and frequency domains, and were classified for transmitter identification in

(44).

Table 7.4 shows the performance comparison of my method against (44; 43; 25).

From the results, it can be observed that my method is giving accuracy as very close to

(44; 43). However, the main advantage of my method is that feature extraction and

message authentication can be done in any part of the signal without the latency.

Whereas in case of Viden, voltage profile is estimated for message authentication
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Table 7.4: Comparison with other methods

ResearchWork Method Accuracy

Cho et. al. (25) V iden 99.57%

Choi et. al. (43) Inimitable Char. of CAN Signal 96.48%

Choi et. al. (44) V oltageIDS 95.54%

This method Channel Distortion based IDS 95.74%

during the reception of the ACK bit but it also introduces the latency. Hence, from

the aspect of latency, my method is more robust than the Viden. Although, the

channel detection rates are slightly lower than Viden, as the channel-detection using

parametric estimation is a novel concept, so the research efforts can be done in this

area to further generate more interesting findings. In (43), message authentication is

done based on using inimitable characteristics of signal. The feature vector consists

of 40 features both in time domain and frequency domain, further a multilayered

neural network is trained based on this feature-set. This approach is computationally

expensive, hence, it adds a lot of overhead to the system, which makes this approach

impractical to be implemented. Whereas, in my case, there are 2 advantages of

my approach as compared to approach inimitable characteristics of signal which was

proposed in (43). The first approach is that my model is trained only on 2 features

α and β, whereas 40 features were used for training in (43). The second advantage is

that likelihood ratio test is used for channel identification which is computationally

less expensive as compared to neural networks.
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CHAPTER VIII

Conclusion and Future Work

In this research, a novel approach for ECU identification is presented for mes-

sage authentication. The main motivation behind ECU identification is that in CAN

messages, as the sender (ECU) information is missing, therefore, they are prone to

spoofing attacks; however, with the ECU identification, spoofing attacks can eas-

ily be prevented. In this research, the ECU specific distortion is utilized for ECU-

fingerprinting, and ECUs are identified through a 4-layered double Neural network

architecture. The uniqueness of my approach is that it is utilizing DAC imperfections

and semi-conductor impurities that are hard to replicate. The ECU imperfections are

unique for all ECUs even from the same make, model, and manufacturer. Thus, this

information has the potential to prevent spoofing attacks. Another novel contribution

in this research is that the same fingerprinting technique can be used for ECU-pin

identification, which can then be used to avoid pin-level attacks e.g. voltage-based

attacks.

Another contribution of this research is that, it has been demonstrated that the

channel-specific step response in the received signal is unique; hence, it can be utilized

to associate CAN packets with their source transmitter. The proposed system uses

the transient response parameters of the channel to capture uniqueness in the received

signal, which is used as inputs to a multi-layer neural network classifier. The clas-
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sification method’s performance is evaluated on eight different CAN channels. The

experimental results indicate that each channels’ set of feature vectors is significantly

different from all other channels. The proposed method achieves channel detection

with an accuracy of 97.4%.

Another contribution of this research is that it uses a distribution profile of the

channel-specific distortion to capture uniqueness in the received signal, which is used

to train a neural network classifier. The performance of the classification method is

evaluated on nine different CAN channels. The experimental results indicate that

the estimated densities are significantly different even for the same length and man-

ufacturer. This method achieves an accuracy of 99.4% using a single layer neural

network.

The main contribution of this research is using parametric analysis in the received

signal and then identify the transmitter. This method is computationally inexpensive

as compared to other methods. This method achieves transmitter detection with an

accuracy of 95.74%. This method is superior to encryption-based techniques since

it does not adds additional overhead in the system. Hence, it makes the system

robust. It is also superior to machine learning IDS techniques implemented at the

physical layer since it is computationally less expensive as compared to other machine

learning-based techniques at the physical layer. For future work, I will localize the

transmitter based on channel distortion. In case when an attack is detected, the at-

tacker transmitter will be isolated from the CAN, and will not be allowed to transmit

any message. I also plan to test my method at different environmental conditions

i.e. temperature, humidity, and electromagnetic interference, etc. in real-time sce-

narios. In this regard, fuzzy logic-based decision modeling will be employed to adapt

channel-identification corresponding to different environmental conditions.
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