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Introduction    

    When treating multiple complex diseases such as cancer, polytherapy may demonstrate 

efficiency than monotherapy. However, due to the multiplicative relationship between the 

number of drugs and cell lines versus the number of combinations, it is impractical to test all 

drug combinations using high-throughput preclinical approaches. An alternative to 

experimental tests is predicting drug synergy through computational models. Here, we 

summarize recent computational approaches for predicting drug synergy, discuss current 

limitations, and propose future directions. 

Background 

Polytherapy, the combination of two or more drugs, often achieves better clinical outcomes 

than monotherapy through reducing drug toxicity and improving therapeutic efficacy. The 

degree to which multiple drugs synergize or antagonize is quantified by the drug synergy score. 

Traditionally, the synergy score is measured through in vitro or in vivo drug screening 

experiments and calculated by comparing it with the additive effect of individual drug 

treatments. However, since the number of drug combinations grows exponentially with the 

number of drugs, it is infeasible to experimentally test the synergistic effects of all possible 

drug combinations in multiple cell lines under consideration. Recently, there is a growing trend 

in leveraging computational techniques to extract relevant biological signals from available 

drug combination datasets, build predictive machine learning models, and provide guidance 

for experimental design across diverse diseases and studies.  

    Artificial Intelligence (AI) is a field of computer science that aims to bring human-like 

intelligence to the world of computing. Machine Learning (ML) can be recognized as a type of 

AI, which aims to let machine to learn and extract signals from data. There are two major types 

of ML algorithms: (i) supervised learning that builds predictive models based on existing 
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training data with desired supervisory labels and predicts labels for new data, and (ii) 

unsupervised learning that infers characteristic patterns from data without predefined labels. 

For supervised learning, the predictive performance is evaluated by comparing predicted labels 

with experimentally measured labels on the held-out testing data, using scoring metrics such 

as Pearson’s correlation coefficient. Currently, ML algorithms have been successfully applied 

to solve various biological and biomedical problems. In this paper, we will first introduce 

several ML approaches for predicting drug combination synergy.  

Current Methods 

    In the AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge, a large 

dataset1 was used to systematically evaluate the predictive performance of computational 

models. The winning algorithm introduced a novel network propagation method to simulate 

the post-treatment genomic profile from the pre-treatment profile of a cancer cell line based on 

drug target information and the gene-gene interaction network2. Together with the simulated 

genomic profiles, the monotherapy data were used to build tree-based conventional ML models 

for predicting drug synergy (Figure 1A). When tested on a sizeable held-out dataset, this 

method ranked first among 160 teams in the challenge and established a new state-of-the-field 

algorithm in the pharmacogenomics research community. Of note, this method is approaching 

the accuracy of experimental replicates and potentially guide experimental design for future 

candidate drug pairs.  

Recently, a new class of ML algorithm, Deep Learning (DL), has shown great promise to 

address many biomedical problems. DL utilizes multiple, or “deep”, nonlinear layers to 

progressively extract high-level features from the input. DeepSynergy is an example of how 

DL can be used for predicting drug combination synergy3 (Figure 1B). DeepSynergy accepts 

both cell line-specific genomic profiles and compound-specific chemoinformatic features as 
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inputs - the latter input was not provided in the previous DREAM challenge. This model was 

trained on the O’Neil’s dataset4 and surpassed other traditional machine learning algorithms.  

Furthermore, Regan-Fendt et al. presented SynGeNet5, an innovative network that predicts 

drug combination effects by integrating transcriptomics-based connectivity mapping and 

network centrality analysis with clustering algorithms. They demonstrated that SynGeNet 

outperformed several other tools that used disease- and drug-associated gene expression data 

to predict drug combination synergy (Figure 1C). 

Besides, Cheng et al. proposed a network-based approach to identify drug combinations6 

(Figure 1D). They used the bootstrapping algorithm, z-score and separation measurement to 

analyze the distance between drug targets and disease proteins. They demonstrated that the 

network-based approach outperformed traditional approaches, and the network proximity 

offered an effective strategy to identify new drug combinations. 

Limitations 

Although pioneering efforts have been made to develop ML models for predicting drug 

combination synergy as we mentioned above, there are still some limitations. 

Firstly, owing to the lack of sufficient data size, current models may not have a comparable 

prediction when applied to external datasets. This is because most public datasets contain a 

relatively small portion of all possible drug combinations. When trained on a small dataset, ML 

models may overfit to the training data, resulting in higher errors during testing. Menden et al.1 

also reported that when applying the top-performing models in the DREAM challenge to the 

O’Neil’s dataset4, the results became worse than those on their original dataset. This is 

especially true when two datasets only have few common drugs or cancer cell lines. The cohort 

and batch effects further introduce noise and differences among datasets. Therefore, a model 

may perform well on one dataset, but poorly on other datasets. 
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    Secondly, it is also vital to improve the biological interpretation of ML models. Hidden prior 

knowledge is often crucial for developing a powerful prediction model and a better 

understanding of the mechanism underlying drug synergism. For instance, Li et al.2 leveraged 

prior information of the gene-gene interaction network and drug target genes to improve 

prediction accuracy, and in DeepSynergy3, both genomic profiles and chemical compounds were 

considered. However, it remains unknown to what extent the hidden biological information is 

needed to perfectly predict drug synergy. Gilvary et al.7 mentioned that AI approaches made 

significant contributions to several research fields in medicine, but predictive performance can 

be further improved by developments of biological understanding. In recent years, a surging 

number of papers was published, which aimed to improve the representation of hidden 

biological information. For instance, Wang et al.8 proposed a gene set embedding method, 

GRep, to learn the representation of biological information. They described that the GRep 

framework could also be applied to other biological analyses like drug networks. If we can 

exploit hidden biological information and integrate it into ML models, we will achieve better 

predictive performance in the future. 

    Lastly, different evaluation metrics have been used in different studies. Without a common 

evaluation metric, it is difficult to compare different models objectively. Data science 

challenges such as DREAM are examples of unbiasedly comparing computational methods 

using the same scoring metric on the same held-out testing datasets. We recommend that a set 

of standard and official evaluation metrics should be used for the research community.  

Future Directions 

Despite those limitations discussed in the previous section, the development of 

computational models may benefit from the development of current research. Here we propose 

the Graph Convolutional Network (GCN)9 and Reinforcement Learning (RL)10, which are 
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rapidly-evolving research approaches recently in the AI field, with the overall aim of better-

predicting drug synergy. 

While DL methods show a great success on Euclidean data, those non-Euclidean data, like 

chemical data represented as graphs, need to be effectively analyzed. Inspired by the ideas of 

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) from DL 

methods, AI researchers have developed the architecture of GCN to analyze and solve the 

complexity of graph data (Figure 2A). GCN has already had great applications on medical 

predicting tasks since it aims to learn a representation of each node with respect to its neighbors. 

Torng and Altman also use GCN to predict drug-target interactions9. We believe that this 

approach may have a significant effect when predicting synergy scores of drug combinations 

if we can adequately define the "graph" for drug combinations.  

    Besides, before introducing the RL approach, we would like to introduce the basic idea of 

the Markov decision process (MDP). Different from Hidden Markov Model (HMM), in which 

the next state is only affected by the current state, MDP takes the actions of the agent into 

consideration (i.e., the next state is affected by the current state and the current action). An 

MDP consists of 4 parts: States (S), Actions (A), Transition Probability (), and Reward 

function (R). The transition probability means the probability distribution from the current state 

to the next state, and the reward function means the reward that the agent will gain if it takes 

action from the current state (i.e.,  × → ). The solution of the Markov decision process 

is a policy (π) that describes the series of best actions that the agent takes in each state, as well 

as the real values (V) for it. 

    Under the basic definitions of the Markov decision process, if the transition probabilities and 

rewards are unknown, then the Markov decision process problem will become a Reinforcement 

Learning problem. Reinforcement Learning is an area of machine learning and it describes an 

agent that optimally makes decisions from trials in a fixed environment with reward functions. 
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In figure 2B, we present the flowchart of the Deep Reinforcement Learning (DRL) algorithm, 

which is derived from RL and add the idea of Deep Neural Network when estimating the Q-

value. Then, the agent will select the next action by maximizing the Q-value of each action. In 

recently published papers, Popova et al. have used the DRL algorithms on drug discovery 10. If 

we properly define the state space and the actions, DRL may also be applied to predict drug 

synergy. Also, other reinforcement learning approaches, like State-action-reward-state-action 

(SARSA) or Q-learning (Figure 2C), may provide contributions to this field in the future as 

well. 

To sum up, this paper summarizes current machine learning models for predicting synergy 

scores of drug combinations. How to improve the predictive performance remains to be 

explored because of 1) insufficient data 2) non-deep biological understanding 3) a missing 

standard metric or benchmark. Although these limitations may not be solved in a short time, 

we believe that the performance could be enhanced using current datasets through proper novel 

AI  algorithms, like GCN and DRL. 
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Figure Legends 

Figure 1 Schematic illustrations of the machine learning approach for predicting drug 

synergy. (A) The machine learning model for predicting drug synergy by combining the 

simulated genomic profiles of cancer cell lines and the monotherapy data, which ranked first 

in the drug combination prediction DREAM challenge. (B) the DeepSynergy model using drug 

and cell line information to predict synergy. (C) the SynGeNet model for predicting drug 

synergy by using the co-mutated genes and disease-associated gene expression signature. (D) 

the network-based model to predict drug synergy. 

Figure 2 Schematic illustrations of the Graph Convolutional Network and Reinforcement 

Learning approach. (A) The flowcharts of the Graph Convolutional Network, where the 

convolution operation is done on paths that connects the atoms of the chemicals. (B) the 

overview of the Deep Reinforcement Learning approach. (C) the resulting path generated by 

two classic Reinforcement Learning algorithms. 
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