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Stem-cell Based Therapies to Enhance Peripheral Nerve Regeneration 
 
Abstract  

Peripheral nerve injury remains an important cause of morbidity in trauma patients. Despite advances 

in microsurgical techniques and improved understanding of nerve regeneration, obtaining satisfactory 

outcomes following peripheral nerve injury remains a tough clinical problem. There is a growing body 

of evidence in preclinical animal studies demonstrating the supportive role of stem cells in peripheral 

nerve regeneration following injury. The characteristics of both mesoderm-derived and ectoderm-

derived stem cell types and their role in peripheral nerve regeneration will be discussed, specifically 

focusing on the presentation of both foundational laboratory studies and translational applications.  The 

current state of clinical translation is presented, with an emphasis on both ethical considerations of 

using stems cells in humans, and current governmental regulatory policies. Current advancements in 

cell-based therapies represent an optimistic future with regards to supporting nerve regeneration and 

achieving significant functional recovery following debilitating nerve injuries. 
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Introduction 
 
 Peripheral nerve injury remains an important cause of morbidity in trauma patients1.  Despite 

advances in microsurgical techniques and improved understanding of nerve regeneration, obtaining 

satisfactory outcomes following peripheral nerve injury remains a serious clinical problem2-4.  

Unfortunately, a large proportion of patients with severe peripheral nerve injuries fail to recover normal 

function 5,6.  Even following the most optimal surgical situation of direct nerve repair, return of motor 

and sensory function is slow and often incomplete7-9. 

 The regeneration of damaged peripheral nerves occurs though a complex process in which 

Schwann cells (SC) play a crucial role10.  Following axonal injury, SCs proliferate, phagocytose debris, 

and recruit macrophages11 to help establish the optimal regenerative milieu12.  These cells further aid 

in axonal regrowth by synthesizing neurotrophic factors13-15, producing both extracellular matrix and 

cell adhesion molecules16, and providing physical guidance to regenerating axons17,18.  SC based 

therapies have been successfully utilized in preclinical animal models to enhance nerve regeneration19-
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22.  However, due to the invasive nature of SC harvest23 and the difficulty of cell expansion in vitro24, 

there remain significant barriers to clinical use.25 

 In light of the practical limitations associated with SCs, there has been growing enthusiasm for 

the use of both precursor and stem cell-based therapies (we use the term “stem cell” throughout the 

review to maintain consistency while recognizing that few of the cell sources mentioned are true stem 

cells) for peripheral nerve regeneration26-29.  We are also cognizant of the fact that embryonic stem 

cells generally have a higher regenerative capacity and are less lineage committed than adult precursor 

and/or stem cells30,31.  There is a growing body of evidence in preclinical animal studies that show stem 

cells play a positive role in the regeneration of peripheral nerves after injury32-37.  These effects are 

thought to be based on the ability of transplanted stem cells to promote regeneration by cell 

differentiation into tissue-specific cell types38-40, signaling through cell-to-cell contact, and/or sustained 

release of neurotrophic factors27,41,42.  A number of stem cell types with varying phenotypic and gene 

expression profiles have been investigated.  This review will summarize the literature supporting the 

utilization of various stem cell types that have been employed to enhance peripheral nerve 

regeneration.  A detailed list of stem cell types discussed is presented in Table 1.  We will review the 

foundational laboratory studies for each type and then subsequently focus on translational works using 

human-derived cells in animals.  If available, the current use of these cells in humans for the treatment 

of peripheral nerve conditions will also be highlighted. 

1. Bone Marrow Stromal Stem Cells (BMSCs) 

 One of the most comprehensively studied cell types with respect to peripheral nerve 

regenerative potential is the bone marrow stromal stem cell (BMSC).  These multipotent cells may 
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differentiate into mesenchymal lineages but can also be persuaded to adopt a SC phenotype in vitro26.  

However, their eventual fate in vivo may not robustly retain this differentiation43,44.   

 BMSCs effectively produce and secrete numerous neurotrophins [e.g, nerve growth factor 

(NGF), brain-derived neurotrophic factor (BDNF), glial-cell line derived neurotrophic factor (GDNF), 

ciliary neurotrophic factor (CNTF)] in peripheral nerve repair and have been previously shown to 

enhance regeneration45,46.  Chen et al, convincingly showed improved walking track scores, wet muscle 

weights, and increased axonal counts in a 15 mm gap sciatic transection model45 using BMSC therapy.  

These cells have also been tested (and found efficacious) as supplements to nerve scaffolds using 

inside-out arterial grafts47, decellularized nerve grafts48-51, and veins52.  One study found a relative 

inferiority of BMSCs when directly compared against SCs for electrophysiological recovery of a sciatic 

transection/silicone tube model, though functionally the groups performed at equivalent levels53.  

BMSCs have also been studied in larger animal models of long-gap nerve regeneration, including 

rabbits54, and non-human primates55, and in the latter demonstrated efficacy on par with both SCs and 

allografts. 

 A further interesting observation is the ability of BMSCs to “home in’ to injured targets, where 

they have demonstrated this ability in CNS animal injury models when administered intravenously56.  

Although BMSCs are yet to be used in humans, the practicality of an effective systemic stem cell 

therapy makes these cells a prime candidate for translational study. 

2. Adipose-derived Stem Cells (ADSCs) 

 Originally described by Zuk et al., adipose-derived stem cells (ADSCs) present a potential 

adjunct to improve nerve repair and are derived from adipose tissue, which in turn is derived from 

embryonic mesoderm57,58.  However, they can be effectively differentiated along ectodermal lines, with 
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SC-like ADSCs first described in 2007 by Kingham38.  Numerous published studies have focused on 

neuroregenerative effects of adipose tissue using purified, cultured, differentiated, or dedifferentiated 

adipose-derived tissues59-61.  ADSCs have also been extensively investigated for use in peripheral 

nerve regeneration, with promising results.  They produce mRNA for the growth factors BDNF, glial-

growth like factor (GGF), neurogulin-1 (NRG-1), vascular endothelial growth factor (VEGF), hepatocyte 

growth factor (HGF), and insulin-like growth factor (IGF) on par or greater than SCs in culture41.  ADSCs 

support a robust neurite response38 and myelinate DRG neurites in vitro62.  When used in animal 

models, they may be superior to both SCs and mesenchymal cells for regeneration through a fibrin 

conduit63.  They have also demonstrated efficacy in improving recovery in both acute and chronic sciatic 

denervation injury paradigms in rodents62,64. 

 One benefit of ADSCs for clinical translation is the relative abundance of adipose tissue for 

harvest.  In this regard, human adipose-derived mesenchymal cells obtained from abdominal fat 

improve recovery metrics when injected into a murine sciatic crush model, including the Sciatic 

Functional Index (SFI), and walking track analysis.  Remarkably, these cells were injected systemically 

(IV) in this study, and were found to localize at the area of injury65.  As a counter point, it would seem 

that mesenchymal cells derived from human adipose tissue may not maintain their SC-like phenotype 

for long when withdrawn from the permissive in vitro cocktail of mitogens and growth factors, as recently 

demonstrated in a study by Faroni et al66.  Adult adipose mesenchymal cells also have known limitations 

in terms of senescence and donor-age dependent efficacy, making their specific clinical indications the 

subject of future research. 

3. Amniotic Mesenchymal Stromal Cells (AMSCs) 
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 Amniotic mesenchymal stromal cells (AMSCs) are derived from the avascular amniotic 

mesoderm, and are relatively non-immunogenic cells67-70.  Because of this, their membrane has been 

investigated as a cellular scaffold both in vivo71 and ex vivo67.  Recently, the in toto amniotic membrane 

has been differentiated towards a SC phenotype and proposed as a scaffold alternative to autograft 

repair72.  AMSCs have been compared against ADSCs in a sciatic nerve crush model, and were found 

to be better at improving electrophysiologic and functional recovery at 4 weeks post-injury73.  

Interestingly, the AMSCs markedly improved the overall perfusion vascularity of the injured sciatic 

nerve distal to the crush (Figure 1), in keeping with their known angiogenic profile74. 

 AMSCs are an interesting candidate for human transplantation experiments, with their 

demonstrated ability to graft effectively into non-autologous environments75,76.  Such bio-compatibility 

may enable allograft cell banks to be developed for immediate human use, without the need for post-

transplantation immunosuppression. 

4. Umbilical Cord Mesenchymal Cells 

 The umbilical cord is a potent source for mesenchymal stem cells, both from the Wharton’s 

jelly77,78 and umbilical cord blood79-83.  These are multipotent cells that are likely of two distinct 

populations; one with a propensity to differentiate into neuronal ectodermal phenotypes, and another 

with a mesodermal lineage production79.  These cells have been previously shown to express 

pluripotent stem cell markers such as Oct4, Nanog, Sox2, ABCG2, and the neuro-ectodermal marker 

nestin79.  There are several potential advantages to the use of these cells which include: (1) the ease 

of accessibility; (2) the fact that they are immunologically inert; (3) their use bears no ethical 

considerations; and (4) they possess a low probability of resulting in graft versus host disease83,84. 
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 As peripheral nerve regeneration support cells, the therapeutic potential of human umbilical cord 

blood-derived stem cells (hUCBDSCs) has been investigated in studies of cavernous nerve injury, 

recurrent laryngeal nerve injury, optic nerve injury, and sciatic nerve injury85-89, all with varying degrees 

of success. hUCBDSCs were shown to improve recovery from a rat sciatic nerve crush injury, with 

improved SFI over non-injured controls as well as increased expression of both BDNF and TrkB 

receptor mRNA.  Wharton’s jelly derived umbilical mesenchymal cells also seem to improve recovery 

from rodent sciatic nerve crush, showing improvements in SFI, myelin histology, and sensory hindlimb 

function78. 

5. Dental Pulp Stem Cells (DPSCs) 

 Thought to be an embryological derivative of the cranial neural crest39,90, human dental pulp 

houses a progenitor mesenchymal population that easily differentiates into both a neural and a SC 

phenotype in vitro91-93.  First described by Gronthos in 2000, DPSCs are self-renewing, and express 

numerous stem cell markers such as CD29, CD90, CD271, nestin, glial fibrillary acidic protein (GFAP), 

and do not express hematopoietic markers94-97.  These cells have been shown to be able to differentiate 

into numerous tissue types, including neurons98, myoctes99, hair follicle cells100, and hepatocytes101.  

However, previous research has shown that these cells are susceptible to cellular senescence, and 

that they secrete toxic factors to adjacent tissues when they develop this phenotype102.  

DPSCs have been used in experimental models of optic nerve injury, where they have been 

shown to promote neurotrophin mediated retinal ganglion cell (RGC) survival, and axonal regeneration 

following optic nerve injury103.  When co-cultured in vitro with DRG cells, DPSCs displayed increased 

survival, neuritogenesis, and myelination when compared to undifferentiated DPSC cultures104,92.  

These cells also demonstrate myelinating capacity and improve functional recovery from rodent sciatic 
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nerve transection105.  They have been shown to counterbalance peripheral nerve injury-induced 

oxidative stress and neuro-inflammation106.  Interestingly, these cells may have their regenerative 

effects seen in crush injury enhanced by application of an external pulsed electromagnetic field107.  

Clinically, wisdom teeth may one day be a potential source of autologous donor for this particular type 

of stem cell to be used in treatment of peripheral nerve injuries. 

6. Skeletal Muscle-Derived Stem Cells (Sk-SCs) 

 Isolated skeletal muscle-derived stem cells (Sk-SCs) obtained from skeletal muscle satellite cells 

are able to differentiate into multiple lineages including myogenic, adipogenic, osteoblastic, neuronal, 

and glial42,108-110.  These cells therefore display a clonal productivity somewhere on the spectrum 

between ectodermal and mesodemeral111. 

 In a murine model of a long nerve gap injury using an acellular scaffold, Sk-SC seeded grafts 

demonstrated improved histomorphological metrics of recovery versus control grafts.  These cells 

formed SCs as well as cells of both the endo and perineurial architecture, suggesting that Sk-SCs may 

help in forming co-ordinated regeneration by being able to reconstitute the muscle-nerve-blood vessel 

unit112.  Interestingly, the same research group also used human derived Sk-SCs in a murine sciatic 

graft model with similar positive results in both histological parameters as well as metrics of tibial muscle 

health113. 

7. Olfactory Ensheathing Cells (OECs) 

 This cell class originates as the myelinating cell of the olfactory bulb in fetal development114.  

These cells have demonstrated an ability to respond to injury by secretion of an extensive array of 

neurotrophins115, and also act as the primary phagocytic cell of the olfactory bulb116, clearing debris 

and bacteria alike117. 
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 Olfactory ensheathing cells (OECs) have shown great promise in restoring function and 

improving histological injury parameters in animal models of spinal cord injury118-122, and they remain 

one of the few cell types to be utilized experimentally in clinical human spinal cord injury123,124.  

However, their utility in peripheral nerve injury remains less clear; although they integrate and may 

improve function after rat sciatic nerve injury125, their efficacy in doing so may not be on par with 

transplanted SCs126.  

8. Hair Follicle-Associated Pluripotent Cells (HAPs) 

 Hair follicle-associated pluripotent cells (HAPs) are nestin expressing cells which reside in the 

hair follicle and are thought to be intimately involved in the formation of the hair follicle sensory nerve127.  

They are pluripotent and can differentiate into cells of both glial and neuronal lineage128, as well as 

smooth muscle myocytes, keratinocytes, and melanocytes129-131.  One challenge is that HAP cells 

remain pluripotent in regenerative models, transforming into both neurons and glia in vivo132.  This 

presents a significant problem for the translatable utility of these cells clinically.  It is speculated that 

the skin-derived precursor cell (SKP) may be one of the early fates of the HAP133. 

 Newly regenerated axons from explanted hair follicles are highly enriched in HAP cells in vitro, 

with their primary in vivo function thought to be the caretaking of the hair follicle sensory nerve127.  One 

study showed that HAP cells appear to incorporate into the regenerating microenvironment of a sciatic 

nerve transection injury, though robust quantitative evidence of improved regeneration was not 

present134.  Further investigation into seeding HAP cells in polyvinylidene fluoride membranes for a 

sciatic gap injury also demonstrated good incorporation at the injury site.  However, there was no 

additional evidence of functional benefit in walking track analysis over controls132.  

9. Neural Crest Stem Cells (NCCs) 
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 Neural crest stem cells (NCCs) originate in embryological development as migratory progenitors 

that initially appear between the neural and surface ectoderm at approximately embryologic day 

eight112,135.  These cells maintain their multi-potency during and after migration.136 NCCs have been 

identified in both embryonic and postnatal adult tissues, including bone marrow, dorsal root ganglion 

(DRG), carotid body, cornea, gut, heart, sciatic nerve, and skin137. Neural crest cells present a 

promising strategical intervention for nerve repair given that they are the parent population to several 

peripheral nervous system lineages, including immature SC-like cells138. 

 NCCs that were differentiated from human embryonic derived support cells (hESC) were shown 

to incorporate well into a murine model of sciatic nerve repair and convincingly demonstrate histological 

benefit over non-treated nerves, with more robust nerve diameter and myelination demonstrated in cell 

treatment groups139.  Interestingly, medium from differentiated NSCs enhances outgrowth of dorsal root 

ganglion (DRG) neurites in vitro, while at the same time convincingly demonstrating improved 

regeneration of NCC/scaffold assisted sciatic nerve repair on par with a SC assisted cohort (Figure 

2)138.  Of note, these cells were derived from human embryonic stem cells, suggesting their efficacy in 

rodent models of peripheral nerve regeneration. 

10. Skin-derived Precursor Cells (SKPs) 

 First isolated and characterized by Toma et al.140, skin-derived precursor cells (SKPs) originate 

in dermal papilla and readily differentiate into neurons and glia, as well as smooth muscle cells40.  Early 

work demonstrated the efficacy of the SKP in assuming a SC lineage (SKP-SC) when exposed to the 

proper mitogens40, and extensive work has followed to investigate the role of the SKP-SC in peripheral 

nerve repair141,142,27,143.  SKP-SCs have proved beneficial in sciatic nerve repair with acellular nerve 

grafts142, and a delayed cross re-innervation paradigm also demonstrated an ability to improve 
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regeneration after chronic denervation27.  We have previously injected lentiviral enhanced blue 

fluorescent protein (BFP) SCs into Thy-1 green fluorescent protein (GFP) rats who underwent 

doxorubicin-induced focal myelination144. Our group has shown that these cells may aid regeneration 

through growth factor production27, debris clearance145, and myelination146,144,147 (Figure 3). 

 In one experiment, SKP-SCs were impressively shown to improve behavioral recovery even 

from acute transection repair145.  Skilled locomotor assessments such as ladder rung and tapered beam 

were seen to be improved in animals administered SKP-SCs after acute, chronic, and nerve graft 

repair145 In addition, it has recently been shown that SKP-SC action may in part involve their local 

immunomodulatory effect on both neurites and macrophages, which appears to be mediated by an IL-

6 dependent mechanism148.  As a cell for translational therapy, SKP-SCs seem quite promising.  Human 

SKP-SCs are able to be produced by differentiation of human induced pluripotent stem cells149, while 

the practical expansion of clinically relevant numbers of SKP-SCs has been shown to be possible 

through the use of bioreactors143. 

Current State of Clinical Translation 

 Recent years have seen tremendous progress in precursor and stem cell biology and its 

application in the treatment of various neurological disorders.  Clinical trials in the United States have 

evaluated the regenerative benefits of stem cells in the context of multiple sclerosis (MS), amyotrophic 

lateral sclerosis (ALS), Alzheimer’s disease (AD), Duchene muscular dystrophy (DMD), traumatic 

spinal cord injury, and other disorders of the nervous system150,35,124.  Unfortunately, there are very few 

clinical trials examining the use of stem cells in the clinical treatment of peripheral nerve pathologies151, 

and none specifically investigating the neuroregenerative benefits of stem cells following traumatic 

peripheral nerve injury35. 
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 While the neuroprotective and regenerative potential of stem cells in the repair of peripheral 

nerves has been demonstrated in both a number of in vitro and in vivo animal models, it is currently 

unclear when widespread clinical implementation of stem cell therapies will become a reality.  Of note, 

none of the cell based approaches has shown clear superiority to another, and few pre-clinical studies 

have attempted to compare one cell type with another152.  The literature is also limited by the lack of 

data on the clinical safety and efficacy of stem cell-derived therapies, with no long-term reports currently 

available.  The clinical use and early promise of autologous SC therapies in clinical nerve repair153,154 

suggest that cell types that can be readily pre-differentiated in vitro to SCs (such as SKPs) or 

demonstrate transdifferentiation to SCs in vivo (such as BMSCs and ADSCs) may have the highest 

potential for clinical success.  Levi and colleagues from the University of Miami have recently published 

two papers detailing the first in human use of autologous SCs to supplement sciatic nerve repair153,154.  

In these groundbreaking studies, two patients were enrolled in an FDA-approved trial to assess both 

the safety and ability of autologous cultured SCs to enhance regeneration through sural nerve 

autografts.  Long-term follow up in both patients demonstrated nerve graft patency, absence of tumor 

formation, and significant improvements in both sensory and motor impairments compared to pre-

operative values154.  

Although these initial clinical studies are encouraging, more rigorous studies examining stem 

cell stability, differentiation, and migration patterns are required before clinical safety is definitively 

established155.  Metrics that accurately characterize the clinical efficacy of stem cell-based therapies 

must also be identified.  Current peripheral nerve stem cell literature exhibits wide variability in animal 

models, nerve injury type, stem cell source, differentiation protocols, cell delivery methods, and 

assessment of nerve regeneration.  In particular, variations in the timing of diverse outcome measures 
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between different stem cell treatment modalities make specific treatments difficult to assess35,37.  These 

inconsistencies make it extremely difficult to establish clear conclusions about efficacy or safety in a 

clinical population.  In addition, ethical considerations are a necessity when translating research from 

the bench to bedside.  Furthermore, governmental restrictions and regulations may negatively affect 

the speed of translation of stem cell therapy into clinical practice156-158.  Strategies to manipulate cells 

using genetic and viral transduction approaches in vitro to potentially enhance their effect in vivo (as 

recently reviewed159), raise additional regulatory considerations. Nevertheless, the evidence presented 

in this review suggests an optimistic future for stem cell-based approaches to traumatic peripheral nerve 

damage, though continued high quality research is essential for bench to bedside translation.  Our 

opinion is that approaches that use stem and precursor cells akin to a SC phenotype have the greatest 

potential for clinical translation. 

Conclusion 

Peripheral nerve injuries remain a common problem with unsatisfactory functional outcomes following 

standard therapeutic interventions.  Several stem cell-based therapies have been investigated in both 

in vitro and in vivo experiments to positively modulate the regenerative milieu following nerve injury.  

These advancements represent an optimistic future for stem cell-based approaches in enhancing 

regeneration and functional recovery following nerve injury. 
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Abbreviations 
 

Adipose-derived Stem Cell    -  ADSC 
Alzheimer’s Disease    -  AD 
Amniotic Mesenchymal Stromal Cell  -  AMSC 
Amyotrophic Lateral Sclerosis   -  ALS 
Blue Fluorescent Protein    -  BFP 
Bone Marrow Stromal Cell    -  BMSC 
Brain-derived Neurotrophic Factor  -  BDNF 
Ciliary Neurotrophic Factor    -  CNTF 
Dental Pulp Stem Cell    -  DPSC 
Dorsal Root Ganglion    -  DRG 
Duchene Muscular Dystrophy   -  DMD 
Glial-cell Line Derived Neurotrophic Factor -  GDNF 
Glial-growth Like Factor    -  GGF 
Green Fluorescent Protein    -  GFP 
Hair Follicle-Associated Pluripotent Cell  -  HAP 
Hepatocyte Growth Factor    -  HGF 
Human Embryonic-derived Support Cell  -  hESC 
Human Umbilical Cord Blood-derived Stem cell -  hUCBDSC 
Insulin-like Growth Factor    -  IGF 
Interleukin-6      -  IL-6 
Multiple Sclerosis     -  MS 
Nerve Growth Factor    -  Nerve Growth Factor 
Neural Crest Stem Cell    -  NCC 
Neuroregulin-1     -  Neuroregulin-1 
Olfactory Ensheathing Cell    -  OEC 
Retinal Ganglion Cell    -  RGC 
Schwann cell      -  Schwann cell 
Sciatic Functional Index    -  SFI 
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Skeletal Muscle-derived Stem Cell  -  Sk-SC 
Skin-derived Precursor Cell   -  SKP 
Tyrosine Kinase B     -  TrkB 
Vascular Endothelial Growth Factor  -  VEGF 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Legend 
 

Figure 1.  Amniotic membrane-derived mesenchymal stem cells (AMMs) transplantation augments 

blood perfusion. A. Representative pictures of blood perfusion in the sciatic nerve. Blood perfusion was 

performed at 4 weeks following the initial operation using Laser Doppler perfusion imaging (LDPI) B. 

Quantitative analysis by using LDP perfusion imaging. AMMs significantly improved blood perfusion 

compared to adipose-derived mesenchymal stem cells (ADM) and phosphate-buffered saline (PBS). 

**P < 0.01, *P < 0.05; n = 9 per group. (excerpted from Li et. Al, 201473). 

Laser Doppler perfusion imaging (LDPI) Blood perfusion was measured at 4 weeks after the operation as 

previously described [14]. Briefly, the mice were anaesthetized and placed on a heating blanket to maintain a 
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constant temperature. The nerves were exposed by using blunt dissection and scalpel incision. The blood flow in 

the sciatic nerve was examined by using LDPI (Moor Instrument, Wilmington, Delaware). 

Figure 2.  Differentiated neural crest cells (NCCs) enhance in vivo sciatic nerve regeneration. A-P. 

Immunohistochemical and histological analyses of longitudinal sections through transplanted 

biodegradable conduits seeded with control rat (a–d) Schwann cells, (e–h) human embryonic stem 

cells (hESCs), or (i–p) differentiated NCCs. Dashed lines mark the walls of the conduits. Asterisks 

represent the site of nerve transection and the beginning of the regeneration front. Q. Axon profile 

numbers beginning 1 mm distal to the proximal stump. The data represent the mean ± SD of five 

independent measurements from each animal and condition. Scale bars: (a, e, i, and m) 500 μm, (b, f, 

and j) 200 μm, (c, g, k, and n) 200 μm; (d, h, and l) 50 μm, and (o–p) 20 μm. The p values are denoted 

as follows: ns = not significant; **p ≤ .01, ***p ≤ .001, ****p ≤ .0001. HNA = human nuclear antigen; SC 

= Schwann cells (adapted from Jones et al., 2018138). 

Figure 3.  Lentiviral enhanced blue fluorescent protein (BFP) SCs injected into Thy-1 GFP rats who 

underwent doxorubicin-induced focal de-myelination of the tibial nerve.  Presented are high-

magnification intra-vital images of BFP-positive SKP-SC myelination, including a 3-channel unmixed 

spectral image demonstrating live in-vivo myelination by SKP-SCs 27 days post-doxorubicin tibial nerve 

injury, 19 days after cell injection. A. GFP axons. B. Nile red myelin. C. BFP Schwann cells. D. Merge 

image; the arrow indicates a probable node of Ranvier, as evidenced by BFP-positive cytoplasm 

crossing the axon, likely in loosely packed paranodal myelin (adapted from Grochmal et al.2018144). 
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Hi Corrie, 
 
    My understanding is that it does give permission.  Gilian Shasby is the Director of 
Publications, and her statement, "Non-exclusive permission is granted at no charge for the use 
you describe, provided proper credit is given as determined by style guidelines of the publisher 
of the new work, or by some accepted style such as AP or Chicago. Please save this 
communication as proof of permission grant." provides permission to re-use the figure in our 
current manuscript.  If you have any questions, I'm sure that Gilian will be able to answer them 
regarding the figure.  Thanks so much Corrie for all the help on this, and I'll talk to you soon. 
     Cheers, 
 
     Steve 
 
On Tue, Nov 5, 2019 at 6:34 AM Muscle and Nerve <museditorialoffice@gmail.com> wrote: 
Hi Dr. Kemp, 
Does this give permission - It is unclear to me. Since Dr. Grochmal is an author of the 
published paper, does he have certain re-use rights?  
-- 
Corrie Williams 
Muscle and Nerve Editorial Office 
MUSeditorialoffice@gmail.com 
 
 
 

 
 
On Thu, Oct 31, 2019 at 10:48 AM Stephen Kemp <stevekemp.phd@gmail.com> wrote: 
   Hi Corrie, 
 
     See below the string of emails re: JNS approval for letting us use the previous image.  Just let 
me know if you have any questions, or if you guys require any additional information.  Thanks 
Corrie! 
     Cheers, 
 
     Steve 

---------- Forwarded message --------- 
From: Gillian Shasby <gillianshasby@thejns.org> 
Date: Thu, Oct 31, 2019 at 8:27 AM 
Subject: Fwd: Permission for article reuse 
To: joeygrochmal@gmail.com <joeygrochmal@gmail.com> 
Cc: Rajiv.Midha@albertahealthservices.ca <Rajiv.Midha@albertahealthservices.ca>, stevekemp.
phd@gmail.com <stevekemp.phd@gmail.com>, Margie Shreve <margieshreve@thejns.org>, 
Sam Geouge <samanthageouge@thejns.org> 
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Dr. Grochmal, 
 
My apologies, I did not receive a permissions request through our system from you on or around 
that date!  If you have a moment and can remember your process, that might help me narrow 
down what caused the transmission error,. Regardless, I will be trying to research what occurred. 
 
"Non-exclusive permission is granted at no charge for the use you describe, provided proper 
credit is given as determined by style guidelines of the publisher of the new work, or by some 
accepted style such as AP or Chicago. Please save this communication as proof of permission 
grant." 
 
Thank you and if you have any future delays with permission requests, please reach out to me 
directly. 
 
Sincerely, 
 
Gillian 
 
 
 
Gillian Shasby | Director of Publications 
Journal of Neurosurgery Publishing Group 
gshasby@thejns.org | 434-924-5555 
 
 
> 
> 
> Begin forwarded message: 
>  
> From: Rajiv Midha <Rajiv.Midha@albertahealthservices.ca> 
> Subject: RE: Permission for article reuse 
> Date: October 31, 2019 at 12:06:16 AM EDT 
> To: Stephen Kemp <stevekemp.phd@gmail.com>, Joey Grochmal 
<joeygrochmal@gmail.com> 
> Cc: "Margie Shreve (mshreve@thejns.org)" <mshreve@thejns.org> 
>  
> Dear Margie, can you assist Joey Grochmal with the request for permission below. 
> Thanks, 
> Raj 
> 
> 
> Rajiv Midha, MSc, MD, FRCSC, FAANS, FCAHS 
> Professor and Head, Department of Clinical Neurosciences 
> Calgary Zone, Alberta Health Services 
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> Scientist, Hotchkiss Brain Institute 
> Cumming School of Medicine, University of Calgary 
> 
> 1403 29th St NW Room 1195 
> Calgary, AB, Canada 
> T2N 2T9 
> 
> Ph 403 944-1260 
> Fax 403 270-7878 
> rajiv.midha@ahs.ca 
> www.dcns.ca 
> ________________________________________ 
> From: Stephen Kemp [stevekemp.phd@gmail.com] 
> Sent: October 30, 2019 11:03 AM 
> To: Joey Grochmal; Rajiv Midha 
> Subject: Re: Permission for article reuse 
> 
> Caution - This email came from an external address and may contain unsafe content. Ensure 
you trust this sender before opening attachments or clicking any links in this message. 
> ________________________________ 
> 
>   Hi Guys, 
> 
>     Joey, I just wanted to circle around with you again to see if JNS got back to you about 
obtaining permission to reuse the figure.  We were supposed to upload this to Muscle and Nerve 
by Oct.23.  Raj, if they haven't, would you be able to contact any friends you have in the journal 
who can potentially speed this process up.  It's been awhile since they responded, and it's the last 
thing holding up our review from being accepted into Muscle and Nerve.  Thanks guys, and let 
me know if you need me to do anything on my end. 
>     Cheers, 
> 
>     Steve 
> 
> On Thu, Oct 3, 2019 at 4:01 PM Joey Grochmal 
<joeygrochmal@gmail.com<mailto:joeygrochmal@gmail.com>> wrote: 
> 
> 
> Sent from my iPhone 
> 
> Begin forwarded message: 
> 
> From: Joey <joeygrochmal@gmail.com<mailto:joeygrochmal@gmail.com>> 
> Date: October 3, 2019 at 7:23:04 AM MDT 
> To: jns@msubmit.net<mailto:jns@msubmit.net> 
> Subject: Permission for article reuse 
> 
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> Dear JNS, last week I have requested permissions to reuse a figure from our article 
> 
> A novel approach to 32-channel peripheral nervous system 
> myelin imaging in vivo, with single axon resolution 
> 
> We are still waiting to hear back, if you can please forward this to the permission office for 
them to expedite our request. 
> 
> Warm regards, 
> Joey Grochmal 
> 
> 
> -- 
> Stephen W.P. Kemp, Ph.D 
> 
> Director, Neuromuscular Lab 
> Assistant Research Professor 
> University of Michigan 
> Section of Plastic Surgery 
> Department of Surgery 
> Department of Biomedical Engineering 
> 1150 W Medical Center Drive 
> MSRB II, A570 
> Ann Arbor, MI, 48109-5456 
> P: (734) 764-8750 
> F: (734) 615-3292 
> swpkemp@med.umich.edu<mailto:swpkemp@med.umich.edu> 
> www.neuromuscularlab.com<http://www.neuromuscularlab.com> 
> 
> 
> This message and any attached documents are only for the use of the intended recipient(s), are 
confidential and may contain privileged information. Any unauthorized review, use, 
retransmission, or other disclosure is strictly prohibited. If you have received this message in 
error, please notify the sender immediately, and then delete the original message. Thank you. 
 
 
 

 
 
 
-- 
Stephen W.P. Kemp, Ph.D 
 
Director, Neuromuscular Lab 
Assistant Research Professor 
University of Michigan 
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Section of Plastic Surgery 
Department of Surgery 
Department of Biomedical Engineering 
1150 W Medical Center Drive 
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Ann Arbor, MI, 48109-5456 
P: (734) 764-8750 
F: (734) 615-3292 
swpkemp@med.umich.edu 
www.neuromuscularlab.com 
 
 
 
 
-- 
Stephen W.P. Kemp, Ph.D 
 
Director, Neuromuscular Lab 
Assistant Research Professor 
University of Michigan 
Section of Plastic Surgery 
Department of Surgery 
Department of Biomedical Engineering 
1150 W Medical Center Drive 
MSRB II, A570 
Ann Arbor, MI, 48109-5456 
P: (734) 764-8750 
F: (734) 615-3292 
swpkemp@med.umich.edu 
www.neuromuscularlab.com 
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Table 1 
 

Stem Cell 
Type 

Cell 
Description Mechanism Observed Outcomes Notes Animal Models 

Bone Marrow 
Stromal Stem 
Cells (BMSCs) 

Mesenchymal, 
multipotent 

• Adopt Schwann cell 
phenotype24 

• Secrete 
neurotrophins41-42  

• Improved walking track 
scores, wet muscle 
weights and increased 
axonal counts41 

• Require an invasive 
procedure for 
autologous 
harvesting 

• Rodent41,43-44,48 
• Rabbits50 
• Primate45,51 

Adipose-
Derived Stem 
Cells (ADSCs) 

Mesenchymal 

• Adopt Schwann cell 
phenotype34 

• Produce mRNA for 
growth factors37 

 

• Improved myelination57 
• Promote neurite 

outgrowth in vitro34  
• Improved talking track 

scores60 

• Available via 
minimally invasive 
harvesting with high 
cellular yield  

• Donor-age 
dependent efficacy 

• Rodent57,59 

Amniotic 
Mesenchymal 
Stromal Cells 

(AMSCs) 
Mesenchymal 

• Adopt Schwann cell 
phenotype67 

 

• Improved functional 
recovery compared to 
ADSCs68 

• Exhibit strong 
angiogenic potential69 

 

• Low 
immunogenicity62-65 

• Graft effectively in 
non-autologous 
environments70-71 

• Easily obtained 
without need for 
invasive procedure 

• Rat66 
• Mouse68-69 

Umbilical Cord 
Mesenchymal 

Cells  

Mesenchymal, 
multipotent 

 

• Adopts Schwann cell 
phenotype 

• Secretes 
neurotrophins  

• Increased expression of 
neurotrophin receptor 
mRNA 

• Improved sciatic 
functional index scores, 
improved myelination, 
and sensory hind limb 
function72 

• Likely of two distinct 
cell populations 

• Rabbit84 
• Rat81-83 
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Dental Pulp 
Stem Cells 

(DPSCs) 
Mesenchymal 

• Adopts both neuronal 
and Schwann cell 
phenotypes87-88 

• Improved myelination 
• Improved functional 

recovery88 
 

• Wisdom teeth are 
potential source90-

91 

• Rat89,98 
• Mice90,94 

Skeletal Muscle 
Derived Stem 
Cells (Sk-SCs) 

Mesenchymal 
• Capable of 

differentiating into 
multiple cell 
lineages38,103-105 

• Improved histomorphic 
metrics of recovery 

• Derived from 
satellite cells in 
skeletal muscle 

• Rodent107 

Olfactory 
Ensheathing 
Cells (OECs) 

Neural Crest 
Derived 

• Secretes 
neurotrophins110 

• Phagocytic111-112  

• Improved histological 
parameters in spinal 
cord injury113-117 

• Myelinating cell of 
the olfactory bulb 
in fetal 
development 

• Rodent113-117,120 
• Canine118 
• Human119 

Hair-Follice-
Associated 
Pluripotent 
(HAP) Cells 

Pluripotent 
• Capable of 

differentiating into 
multiple cell 
lineages122-126 

• Incorporation of cell at 
nerve injury site129 

• Quantitative evidence of 
improved regeneration 
NOT present129 

• Cells reside in hair 
follicle 

• Thought to be 
involved in the 
formation of hair 
follicle sensory 
nerve  

• Mice127 

Neural Crest 
Stem Cells 

(NCCs) 
Pluripotent 

•  Capable of          
differentiating into 
multiple cell lineages  

• More robust nerve 
diameter131 

• Improved myelination137 
• Promote neurite 

outgrowth in vitro34 

• Originate in 
embryological 
development 
between the neural 
and surface 
ectoderm107,130 

• Rodent108 

Skin-Derived 
Precursor Cells 

(SKPs) 
Neural Crest 

Derived 

• Capable of 
differentiating into 
multiple cell 
lineages36 

• Adopts Schwann cell 
phenotype36 

• Produces growth 
factors27 

• Phagocytic141 

• Improved behavioral 
recovery137 

• Improved myelination138-

140 
• Immunomodulatory 

effects141 

• Originate in dermal 
papilla • Rats27,33,137,140 
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