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Abstract

Unmeasured confounding is a threat to causal inference in observational studies. In recent
years, use of negative controls to mitigate unmeasured confounding has gained increasing recog-
nition and popularity. Negative controls have a longstanding tradition in laboratory sciences
and epidemiology to rule out non-causal explanations, although they have been used primarily
for bias detection. Recently, Miao et al. (2018) have described sufficient conditions under which
a pair of negative control exposure and outcome variables can be used to nonparametrically
identify the average treatment effect (ATE) from observational data subject to uncontrolled
confounding. In this paper, we establish nonparametric identification of the ATE under weaker
conditions in the case of categorical unmeasured confounding and negative control variables. We
also provide a general semiparametric framework for obtaining inferences about the ATE while
leveraging information about a possibly large number of measured covariates. In particular, we
derive the semiparametric efficiency bound in the nonparametric model, and we propose multi-
ply robust and locally efficient estimators when nonparametric estimation may not be feasible.
We assess the finite sample performance of our methods in extensive simulation studies. Finally,
we illustrate our methods with an application to the postlicensure surveillance of vaccine safety
among children.

Keywords: causal inference, negative control, semiparametric inference, unmeasured con-
founding.

1 Introduction

Causal inference in observational studies often relies on the assumption of no unmeasured con-

founding. However, as often the case in practice, when this assumption is violated, uncontrolled

confounding can lead to biased estimates and invalid conclusions. Various methods have been pro-

posed to detect and control for unmeasured confounding, among which use of negative controls

has recently gained increasing recognition and popularity. Negative controls have a longstanding

tradition in laboratory sciences and epidemiology to rule out non-causal explanation of empirical

findings (Rosenbaum, 1989; Weiss, 2002; Lipsitch et al., 2010; Glass, 2014). Specifically, a negative
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control outcome is an outcome known not to be causally affected by the treatment of interest.

Likewise, a negative control exposure is an exposure that does not causally affect the outcome

of interest. To the extent possible, both negative control exposure and outcome variables should

be selected such that they share a common confounding mechanism as the exposure and outcome

variables of primary interest. For example, in a study about the effect of influenza vaccination

on influenza hospitalization, injury/trauma hospitalization was considered as a negative control

outcome as it is not causally affected by influenza vaccination, but may be subject to the same

confounding mechanism mainly driven by health-seeking behavior (Jackson et al., 2005). In this

case, a non-null effect of the influenza vaccination against the negative control outcome amounts

to compelling evidence of potential bias due to uncontrolled confounding. Another prominent ex-

ample is the use of paternal exposure as a negative control exposure when determining the effect

of maternal exposure during pregnancy on offspring health outcomes. Paternal exposure may have

a similar association with the outcome as that of maternal exposure if there is hidden genetic or

household-level confounding (Davey Smith, 2008, 2012; Lipsitch et al., 2012).

There is a growing literature on use of negative controls to mitigate confounding bias. Rosen-

baum (1992) considered testing and sensitivity analysis for unmeasured confounding by comparing

matched treatment and control groups with respect to an unaffected outcome. Tchetgen Tchet-

gen (2013) developed an outcome calibration approach based on the idea that the counterfactual

primary outcomes can stand as a proxy for unmeasured confounders and suffice to account for con-

founding of the exposure–negative control outcome association. Schuemie et al. (2014) proposed a

p-value calibration approach by deriving an empirical null distribution of treatment effect using a

collection of negative controls. Sofer et al. (2016) generalized the difference-in-difference approach

to the broader context of negative control outcome by allowing different scales for primary and

negative control outcomes under a monotonicity assumption. In genetic studies, Gagnon-Bartsch

and Speed (2012) and Wang et al. (2017) considered removing unwanted variation or batch effects

using negative control genes, which are assumed to be independent of the treatment of interest. In

time-series studies of air pollution, Flanders et al. (2011) and Flanders et al. (2017) considered par-

tial correction of residual confounding using a future exposure to air pollution as a negative control

exposure. Miao and Tchetgen Tchetgen (2017) extended their method by incorporating both past

and future exposures as multiple negative control exposures to further attenuate confounding bias.

The aforementioned methods rely on fairly restrictive assumptions such as rank preservation

(Tchetgen Tchetgen, 2013), monotonicity (Sofer et al., 2016), or linear models for the outcome and
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the unmeasured confounder (Gagnon-Bartsch and Speed, 2012; Wang et al., 2017; Flanders et al.,

2011, 2017). In a recent paper, Miao et al. (2018) proposed nonparametric identification of causal

effects using a pair of negative control exposure and outcome variables under certain completeness

conditions. Their work focused primarily on providing sufficient identification conditions and less

so on inference. Ideally, one would in principle aim to obtain inferences in the nonparametric

model under which causal effects are identifiable. However, in practice, because one may wish to

account for a moderate to large number of observed confounders, nonparametric inference may not

be feasible due to the curse of dimensionality.

In this paper, we propose to resolve this difficulty by developing a general semiparametric

framework for inferences about the average treatment effect (ATE) in the context of categorical

unmeasured confounding adjustment using a pair of negative control exposure and outcome vari-

ables while accounting for a possibly large number of observed confounders. In particular, we first

extend the identification result of Miao et al. (2018) to a allow for a weaker set of conditions, and

provide an alternative representation of the identifying functional for the ATE. The representation

is a difference between the standard g-formula of Robins (1986) that fails to account for unmeasured

confounding, and an explicit bias correction term that adjusts for unmeasured confounding bias

leveraging a pair of negative controls. We then characterize three semiparametric estimators of

the ATE that are consistent under three different semiparametric models. Each of the estimators

operates on a subset of components of the likelihood for the observed data, and therefore may be

severely biased if the corresponding model is misspecified. We carefully combine these strategies

into a multiply robust estimator that produces valid inference provided one out of three models is

correct, without necessarily knowing which one is indeed correct (Robins et al., 1994; Vansteelandt

et al., 2008; Tchetgen Tchetgen and Shpitser, 2012; Rotnitzky et al., 2017). The multiply robust

estimator operates on the union of the three semiparametric models and thus offers protection

against model misspecification. Furthermore, our proposed multiply robust estimator is locally

efficient in the sense that when all working models are correctly specified, our estimator achieves

the semiparametric efficiency bound for estimating the ATE under the union model.

The paper is organized as follows. In Section 2 we extend the nonparametric identification re-

sults of Miao et al. (2018), and provide an alternative representation of their identifying functional

for the ATE, which opens up an opportunity for multiply robust estimation. For ease of exposition,

we describe our results in the simple case of binary negative controls and unmeasured confounder

in Section 3, where we propose a variety of semiparametric estimators including a multiply robust
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estimator. We extend our results to the more general setting of polytomous unmeasured confound-

ing and negative controls in Section C of the supplementary material. In Section 4 we assess finite

sample performance of our proposed estimators via extensive simulations. We illustrate our meth-

ods with an application to the postlicensure surveillance of vaccine safety in Section 5. We close

with a brief discussion in Section 6.

2 Identification and reparameterization

We consider estimating the effect of a treatment A on an outcome Y subject to confounding by

both observed covariates X and unobserved categorical variables U . Let Y (a), a = 0, 1 denote

the counterfactual outcome that would be observed if the treatment were a. We are interested in

the ATE defined as E[Y (1) − Y (0)]. Suppose that we also observe an auxiliary exposure variable

Z and an auxiliary outcome variable W , and let Y (a, z) and W (a, z) denote the corresponding

counterfactual values that would be observed had the primary treatment and auxiliary exposure

taken value (a, z). Then Z and W are negative control exposure and negative control outcome

respectively if they satisfy the following assumptions.

Assumption 1. Negative control exposure: Y (a, z) = Y (a), for all z almost surely; Negative

control outcome: W (a, z) = W for all a, z almost surely.

A a

U,X

WY (a)Z

Figure 1: Single world intervention graph with unmeasured confounding U and double negative
control Z and W (Richardson and Robins, 2013). The bi-directed arrow between Z and A (Y and
W ) indicates potential unmeasured common causes of Z and A (Y and W ).

Figure 1 presents a single world intervention graph (SWIG, Richardson and Robins (2013))

illustrating an instance of the causal model under consideration. A key assumption satisfied by this

graph is the conditional independence assumption stated below, which is required for identification

of the causal effect.

Assumption 2. Latent ignorability: (Z,A) ⊥⊥ (Y (a),W ) | (U,X).
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Assumption 2 states that U and X suffice to account for confounding of the relationship between

(Z,A) and (Y (a),W ), whereas X alone may not. Moreover, U includes all unmeasured common

causes of Z, A, Y , and W except for that of the Z-A association and Y -W association. It is

important to emphasize that Figure 1 is not the only SWIG that satisfies the negative control

assumptions. Figure 2 presents examples of alternative graphs all of which encode Assumption 2.

For example, a special case is when Z is an instrumental variable with the additional assumption

that Z ⊥⊥ U , as shown in Figure 2a (Miao et al., 2019). Alternatively Z can be a post-treatment

variable that serves as a proxy of U , as shown in Figure 2b. Furthermore, Figure 2c presents

a scenario where Z and W can be surrogates of U that satisfy the additional assumption that

(Z,W ) ⊥⊥ (A, Y ) | (U,X), which is the nondifferential error assumption (Kuroki and Pearl, 2014).

In this scenario, the roles of Z and W can be switched.

A a

U,X

WY (a)Z

(a) Z is an instrumental variable
(Miao et al., 2019).

A a

U,X

WY (a)Z

(b) Z is a post-treatment variable
that serves as a proxy of U .

A a

U,X

WY (a)Z

(c) Z and W are surrogates of U .
Their roles can be switched.

Figure 2: Examples of alternative single world intervention graphs. We suppressed the bi-directed
arrow between Z and A (Y and W ) because the common causes of Z and A (Y and W ) do not
confound the Y -A relationship.

Remark 1. In practice, specification of the unmeasured confounder is helpful for justifying the

validity of negative controls. In certain scenarios, however, we do not need to know what U is.

For example, an underappreciated causal tenet is that the future does not affect the past. As such,

with time series or longitudinal data, future exposure and past outcome may serve as negative

control exposure and outcome, respectively, assuming no feedback effect from past outcome to future

exposure. In this case, we can control for unmeasured confounders shared over time without singling

out a specific U (Miao and Tchetgen Tchetgen, 2017).

Assumption 3. Consistency: Y (a) = Y almost surely when A = a; Positivity: 0 < P (A = a, Z =

z | X) < 1 for all a, z almost surely.
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The consistency assumption ensures that the exposure is defined with enough specificity such

that among people with A = a, the observed outcome Y is a realization of the potential outcome

value Y (a). The positivity assumption states that in all observed covariate strata there are always

some individuals with treatment and negative control exposure values (A = a, Z = z), for all a, z.

2.1 Identification with categorical negative control variables

In this paper, we consider the scenario where W , Z, and U are categorical. Suppose W , Z, and

U take on |W |, |Z|, and |U | possible values denoted as wi, zj , and us, for i = 0, . . . , |W | − 1,

j = 0, . . . , |Z| − 1, and s = 0, . . . , |U | − 1 respectively, where | · | denotes the cardinality of a

categorical variable. Let P (W | Z, a, x) denote a |W | × |Z| matrix with P (W | Z, a, x)i,j =

P (W = wi−1 | Z = zj−1, A = a,X = x), P (W | U, x) a |W | × |U | matrix with P (W | U, x)i,s =

P (W = wi−1 | U = us−1, X = x), and P (U | Z, a, x) a |U | × |Z| matrix with P (U | Z, a, x)s,j =

P (U = us−1 | Z = zj−1, A = a,X = x). Similarly, let E[Y | Z, a, x] denote a 1 × |Z| vector
with E[Y | Z, a, x]j = E[Y | Z = zj−1, A = a,X = x], E[Y | U, a, x] a 1 × |U | vector with

E[Y | U, a, x]s = E[Y | U = us−1, A = a,X = x], and P (W | x) a |W | × 1 vector with P (W |
x)i = P (W = wi−1 | X = x). The following describes a sufficient condition under which the ATE

is nonparametrically identified.

Assumption 4. Both Z and W have at least as many categories as U , i.e., |Z| ≥ |U | and |W | ≥
|U |. Both P (W | U, x) and P (U | Z, a, x) are full rank with rank |U | at all values of a and x.

Remark 2. Under Assumption 4, P (W | Z, a, x) has rank |U |, which is proved in Section A of the

supplementary material. Therefore, one can infer |U | from the rank of P (W | Z, a, x) (Choi et al.,
2017).

Assumption 4 imposes requirements on candidate negative controls for identification. Intu-

itively, both Z and W serve as proxies of U . Therefore, they should have at least as many possible

values as U . They should also be strongly associated with U such that variation in U can be

recovered from variation in Z and W . This is reflected by the requirement that the columns of

P (W | U, x) and the rows of P (U | Z, a, x) must be linearly independent vectors. In practice,

it is recommended to collect a negative control variable with a rich set of possible levels, or mul-

tiple negative control variables that can be combined into a composite negative control with as

many categories as possible. However, selection of valid negative control variable must be based on

reliable subject matter knowledge because Assumptions 1-4 must be met.
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The following lemma demonstrates identification of E[Y (a)], which is proved in Section A of

the supplementary material.

Lemma 1. Under Assumptions 1 – 4, there exist a 1× |W | vector h(a, x) such that

E[Y | Z, a, x] = h(a, x)P (W | Z, a, x), (1)

and E[Y (a)] is nonparametrically identified by E[Y (a)] =
∫

X h(a, x)P (W | x)f(x)dx, where f(x)

denotes the density function of X. Therefore, the ATE, denoted as ∆, is uniquely identified by

∆ =

∫

X
[h(1, x)− h(0, x)]P (W | x)f(x)dx. (2)

As stated in Remark 2, P (W | Z, a, x) has rank |U | under Assumption 4. When |Z| = |W | = |U |,
P (W | Z, a, x) is full rank and the linear system (1) has a unique solution

h(a, x) = E[Y | Z, a, x]P (W | Z, a, x)−1. (3)

Therefore, Lemma 1 implies the identification result of Miao et al. (2018) under a stronger assump-

tion that |Z| = |W | = |U |, which is stated in the following corollary.

Assumption 4′. Completeness: P (W | Z, a, x) is invertible with |Z| = |W | = |U | = k + 1, k ≥ 0.

Corollary 1. Under Assumptions 1 – 3 and 4′, E[Y (a)] is nonparametrically identified by

E[Y (a)] =

∫

X
E[Y | Z, a, x]P (W | Z, a, x)−1P (W | x)f(x)dx.

Therefore, the ATE is given by

∆ =

∫

X
E[Y | Z, A = 1, X = x]P (W | Z, A = 1, X = x)−1P (W | X = x)f(x)dx

−
∫

X
E[Y | Z, A = 0, X = x]P (W | Z, A = 0, X = x)−1P (W | X = x)f(x)dx.

(4)

When |Z| > |U | or |W | > |U |, P (W | Z, a, x) is rank deficient with linearly dependent rows or

columns. In this case, there are infinite solutions to the linear system (1). Nevertheless, E[Y (a)]

remains uniquely identified. Note that there always exists an invertible |U | × |U | submatrix of

P (W | Z, a, x) formed by deleting |W | − |U | rows or |Z| − |U | columns of P (W | Z, a, x) (Gómez

et al., 2008). The |W | − |U | rows or |Z| − |U | columns correspond to free levels in W or Z that are
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redundant for identification but may improve efficiency.

We propose two strategies for estimation of ∆ when |Z| > |U | or |W | > |U |. One is to

obtain a maximum likelihood estimator of P (W | Z, a, x) and its Moore-Penrose inverse denoted

as P (W | Z, a, x)+. A particular solution to (1) is given by h(a, x) = E[Y | Z, a, x]P (W | Z, a, x)+.
In fact, by Theorem 2 of James (1978), the complete set of solutions to (1) is given by h(a, x) =

E[Y | Z, a, x]P (W | Z, a, x)+ + τ(a, x)
T

[I − P (W | Z, a, x)P (W | Z, a, x)+], as τ(a, x), a vector

function, varies over all possible values in {f : (a, x) → R|W |}. The second is to coarsen levels in

Z and W until the coarsened variables satisfy Assumption 4′ (Kuroki and Pearl, 2014; Miao et al.,

2018). Suppose there are m possible sets of coarsened negative control variables, then an estimator

can be obtained by the generalized method of moments, i.e., ∆̂ = argmin∆[Pnĝ(∆)]TŴ [Pnĝ(∆)],

where ĝ(∆) is an m-vector with each entry an estimating equation based on an estimated influence

function of ∆ under a given parametric, semiparametric, or nonparametric model for a given set

of coarsened negative control variables, and Ŵ = Pn[ĝ(∆)ĝ(∆)T]−1. Such influence functions are

derived in Section 3.

2.2 Reparameterization of ∆ for multiply robust estimation

In this section, we provide an alternative parameterization of ∆ which opens up an opportunity

for multiply robust estimation in the case where |Z| = |W | = |U | = k + 1. When |Z| > |U | or
|W | > |U |, in order to leverage the reparameterization, we use the second strategy described above

in Section 2.1, with g(∆) being the efficient influence function detailed in Theorem 1 of Section 3.2.

2.2.1 Motivation for multiply robust estimation

As discussed in Section 1, nonparametric estimation of ∆ may not be feasible when X is high

dimensional or when Z and W have many levels, in which case one may need to resort to estimation

under dimension-reducing working models E[Y | Z, A,X; θ1], P (W | Z, A,X; θ2), and P (W | X; θ3)

where θ1, θ2, and θ3 are finite dimensional, resolving the curse of dimensionality. Under such

specification of a model for the conditional distribution P (Y,W,Z,A | X; θ1, θ2, θ3), one could in

principle estimate ∆ using the plug-in estimator, which entails estimating θ1, θ2, and θ3 by standard

maximum likelihood estimation (MLE) and substituting estimated parameters in Eq. (2) or (4),

with the cumulative distribution function of X estimated by the empirical distribution. This is

essentially the approach suggested by Miao et al. (2018). However, these working models are not in

themselves of scientific interest and may be prone to model misspecification. The plug-in estimator
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may be severely biased if any of the three models is incorrect.

To resolve this difficulty, we develop a robust inferential approach grounded in semiparametric

theory (Bickel et al., 1993; Newey, 1990; Van der Vaart, 1998), detailed in Section 3. Specifically, we

consider the task of estimating the functional ∆ without any restriction on the observed data dis-

tribution, that is estimation in the nonparametric model denoted as Mnonpar. We characterize the

efficient influence function (EIF) for ∆ in Mnonpar. We then take the EIF as an estimating equation

to obtain an estimator of ∆. Similar to the plug-in estimator, the EIF-based estimation entails

estimating the distribution of the observed data under a parametric (or semiparametric) working

model and then evaluating the EIF under such working model. However, unlike the plug-in estima-

tor, we establish that our EIF-based estimator of ∆ remains consistent and asymptotically normal

(CAN) even when the observed data likelihood is partially misspecified. In fact, we establish the

multiply robust property of our proposed estimator: it remains CAN under the union of three large

semiparametric models, each of which restricts a subset of components of the likelihood, allowing

the remaining likelihood components to be unrestricted and hence robust to misspecification.

2.2.2 Reparameterization and intuition for identification

An essential step towards constructing our multiply robust estimator involves a careful reparame-

terization of the functional ∆ in terms of variation independent components of the likelihood, such

that (mis)specification of one particular component does not impose any restriction on the other

components. To this end, we define the following contrasts measuring the observed effects of Z on

Y and W at any value (a, x) as

ξwi
zj
(a, x) = P (W = wi | A = a, Z = zj , X = x)− P (W = wi | A = a, Z = z0, X = x), i, j = 1, . . . , k;

ξYzj (a, x) = E[Y | A = a, Z = zj , X = x]− E[Y | A = a, Z = z0, X = x], j = 1, . . . , k,

respectively, where z0 is a user-specified reference level for Z. Likewise, the observed effects of A

on Y and W at any values (z, x) are

δwi

A (z, x) = P (W = wi | A = 1, Z = z,X = x)− P (W = wi | A = 0, Z = z,X = x), i = 1, . . . , k;

δYA (z, x) = E[Y | A = 1, Z = z,X = x]− E[Y | A = 0, Z = z,X = x],

respectively. In addition, we let

δW
A

(z, x) = {δw1

A (z, x), δw2

A (z, x), . . . , δwk

A (z, x)}T denote a k × 1 vector;
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ξY
Z
(a, x) = {ξYz1(a, x), ξYz2(a, x), . . . , ξYzk(a, x)}T denote a k × 1 vector;

ξW
Z

(a, x) denote a k × k matrix with ξW
Z

(a, x)i,j = ξwi
zj
(a, x), i, j = 1, . . . , k.

To avoid over-parameterization, we omitted w0 and z0 in the contrasts, which are user-specified

reference levels forW and Z, respectively. The following lemma gives our alternative representation,

which we prove in Section B of the supplementary material.

Lemma 2. Under Assumptions 1 – 3 and 4′, ξW
Z

(a, x) is invertible and ∆ in Eq. (4) admits the

alternative representation

∆ =∆confounded −∆bias,

∆confounded = E[δYA (Z,X)], ∆bias = E[R(1−A,X)δWA (Z,X)],
(5)

where R(a, x) = ξY
Z
(a, x)TξW

Z
(a, x)−1 is a 1× k vector. In addition, ∆bias=0 if there is no unmea-

sured confounding.

The alternative representation illustrates the intuition behind identification of ∆. In Eq. (5),

∆confounded is the standard g-formula which fails to adjust for unmeasured confounding, and ∆bias

is a bias correction term which accounts for unmeasured confounding. We note that ∆bias is a

scaled version of the observed association between A and W . In fact, by Assumptions 1 and 2,

δW
A

(Z,X) should be zero if there is no unmeasured confounding, and thus a nonzero δW
A

(Z,X)

captures confounding bias. The scaling factor R(1− A,X) accounts for the fact that the effect of

U on Y may not be on the same scale as the effect of U on W , and therefore the bias captured

by δW
A

(Z,X) needs to be carefully rescaled. To identify the ratio of the effects of U on Y and

U on W , we note that conditional on A and X, any association between Z and Y (Z and W ) is

governed by the effect of U on Y (U on W ). Therefore the ratio of the observed Z effects, i.e.,

R(1 − A,X), recovers the ratio of the unobserved U effects. We further illustrate the intuition

behind identification and reparameterization with an example in Section B.1 of the supplementary

material.

Decomposition of the causal effect estimand into the standard g-formula and an explicit bias

correction term simplifies our inferential task, because semiparametric estimation of ∆confounded has

been extensively studied (Robins et al., 1994; Robins, 2000; Scharfstein et al., 1999; Van der Laan

and Robins, 2003; Bang and Robins, 2005; Tan, 2006; Tsiatis, 2007). Therefore we mainly study

robust estimation of ∆bias, which together with ∆confounded provides robust estimation of the ATE.
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For ease of exposition, in the following sections we develop our semiparametric approach in the

setting where W , Z, and U are binary variables. We extend our results to general settings with

polytomous W , Z, and U in Section C of the supplementary material.

3 Semiparametric estimation in the binary case

When Z,W,U are binary, i.e., k = 1, δW
A

(z, x), ξY
Z
(a, x), ξW

Z
(a, x), and R(a, x) simplify to the

following scalar functions

δWA (z, x) =E[W | A = 1, Z = z,X = x]− E[W | A = 0, Z = z,X = x],

ξYZ (a, x) =E[Y | A = a, Z = 1, X = x]− E[Y | A = a, Z = 0, X = x],

ξWZ (a, x) =E[W | A = a, Z = 1, X = x]− E[W | A = a, Z = 0, X = x],

R(a, x) =
ξYZ (a, x)

ξWZ (a, x)
,

(6)

and representation of ∆ in Eq. (5) is accordingly simplified. Note that careful specification of

R(A,X), ξWZ (A,X), and ξYZ (A,X) is critical as they are in general not variation independent; that

is, model specification for R(A,X) and ξWZ (A,X) would imply a model for ξYZ (A,X).

3.1 Working models and three classes of semiparametric estimators

We now formally introduce variation independent components of the observed data likelihood for

estimation of ∆ to facilitate robust estimation. First, we note that the mean of W given A, Z, and

X can be written as

E[W | A,Z,X] = E[W | A = 0, Z = 0, X] + ξWZ (A = 0, X)Z + δWA (Z = 0, X)A+ ηWAZ(X)AZ, (7)

where ηWAZ(·) is the additive interaction of A and Z given X with

ηWAZ(X)AZ = [ξWZ (A,X)− ξWZ (A = 0, X)]Z = [δWA (Z,X)− δWA (Z = 0, X)]A. (8)

Furthermore, it is straightforward to verify that

E[Y | Z,A,X] = E[Y | Z = 0, A,X] +R(A,X)ξWZ (A,X)Z, (9)
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which implies that

δYA (Z,X) =
[

E[Y | Z = 0, A = 1, X] +R(A = 1, X)ξWZ (A = 1, X)Z
]

−
[

E[Y | Z = 0, A = 0, X] +R(A = 0, X)ξWZ (A = 0, X)Z
]

.
(10)

Multiply robust estimation requires positing working models for the following quantities: E[Y |
Z = 0, A,X], E[W | A = 0, Z = 0, X], ξWZ (A = 0, X), δWA (Z = 0, X), ηWAZ(X), R(A,X), and

f(A,Z | X), where f(A,Z | X) is the joint density of A and Z conditional on X. As X may be

high-dimensional and Z and W may have many levels, dimension-reducing parametric (or semi-

parametric) working models are used to avoid the curse of dimensionality in practice. Clearly, these

working models are not in themselves of scientific interest. Estimators relying on a subset of these

models may be biased when the corresponding models are misspecified.

In order to motivate and clarify our doubly robust estimator, we introduce three classes of

semiparametric estimators of ∆, which are CAN under the following working models respectively

with finite-dimensional indexing parameters:

M1: Working models f(A,Z | X;αA,Z) and R(A,X;βR) are correctly specified.

M2 Working models f(A,Z | X;αA,Z), and ξWZ (A,X;βWZ) and δWA (Z,X;βWA) satisfying restric-

tion (8) are correctly specified. The interaction model ηWAZ(X;βWAZ) is indexed by βWAZ ,

which is a sub-vector shared by βWZ and βWA.

M3: Working models R(A,X;βR), and E[Y | Z = 0, A,X;βY ] and E[W | A,Z,X;βW ] with

βW = (βW0, βWZ , βWA) are correctly specified, where E[W | A,Z,X;βW ] is parameterized

by Eq. (7) and βW0 denotes the sub-vector of βW that indexes the baseline E[W | A = 0, Z =

0, X].

Compared to the full list of variation independent components, we can see that in M1, E[Y | Z =

0, A,X], E[W | A = 0, Z = 0, X], ξWZ (A = 0, X), δWA (Z = 0, X), and ηWAZ(X) are unrestricted; in

M2, R(A,X), E[Y | Z = 0, A,X], and E[W | A = 0, Z = 0, X] are unrestricted; while in model

M3, f(A,Z | X) is unrestricted.

We now describe three semiparametric estimators which are CAN under M1, M2, and M3,

respectively. Let γi, i = 1, . . . , 3 denote the collection of indexing parameters in the corresponding

semiparametric working model Mi, which can be estimated under Mi as detailed in Appendix A.1
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of the main manuscript. Let γ̂i denote the estimated parameters, we have

∆̂1 = Pn

{

(2A− 1)Y

f(A | Z,X; γ̂1)

}

− Pn

{

E[R(1−A,X) | Z,X; γ̂1]
(2A− 1)W

f(A | Z,X; γ̂1)

}

∆̂2 = Pn

{

(2A− 1)Y

f(A | Z,X; γ̂2)

}

− Pn

{

(2Z − 1)Y

f(Z | A,X; γ̂2)

E[δWA (Z,X) | 1−A,X; γ̂2]

ξWZ (A,X; γ̂2)

f(1−A | X; γ̂2)

f(A | X; γ̂2)

}

∆̂3 = Pn {E[Y | A = 1, Z,X; γ̂3]− E[Y | A = 0, Z,X; γ̂3]} − Pn

{

R(1−A,X; γ̂3)δ
W
A (Z,X; γ̂3)

}

,

where Pn is the empirical average operator, i.e., Pn(V ) = 1
n

∑n
i=1 Vi.

Each of the three estimators above may be severely biased if their corresponding modelM1, M2,

or M3 is misspecified. For example, ∆̂1 and ∆̂2 will generally fail to be consistent if f(A | Z,X) is

misspecified, even if the rest of the components of the likelihood is correctly specified. Therefore,

it is critical to develop a multiply robust estimator that remains CAN provided that one, but

not necessarily more than one of models M1, M2, M3 is correctly specified, without necessarily

knowing which one is indeed correct.

3.2 Efficient influence function in the nonparametric model

We aim to construct an estimator that is CAN under the union model Munion = M1 ∪M2 ∪M3.

To this end, we first characterize the EIF for ∆ in the nonparametric model Mnonpar which does

not impose any restriction on the observed data distribution. We then use the EIF as an estimating

equation and evaluate it under a working model to obtain an estimator of ∆. We establish multiple

robustness and asymptotic normality of this estimator. We also provide a consistent estimator of

the asymptotic variance for the proposed estimators.

It is well know that the efficient influence function of ∆confounded in Mnonpar (Robins et al.,

1994) is

EIF∆confounded
=

2A− 1

f(A | Z,X)

(

Y−E[Y | A,Z,X]
)

+
(

E[Y | A = 1, Z,X]−E[Y | A = 0, Z,X]
)

−∆confounded.

(11)

In the theorem below, we derive the efficient influence function of ∆bias in Mnonpar, which is

combined with EIF∆confounded
to obtain the efficient influence function of ∆. Theorem 1 is proved

in Section D of the supplementary material.

Theorem 1. Under Assumptions 1 – 3 and 4′, the efficient influence function of the bias correction

13This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



term ∆bias in the nonparametric model Mnonpar is

EIF∆bias
=E[R(1−A,X) | Z,X]

2A− 1

f(A | Z,X)

(

W − E[W | A,Z,X]
)

+
2Z − 1

f(Z | A,X)

(

Y − E[Y | Z,A,X]
)E[δWA (Z,X) | 1−A,X]

ξWZ (A,X)

f(1−A | X)

f(A | X)

+R(1−A,X)δWA (Z,X)−∆bias.

The efficient influence function of ∆ is given by

EIF∆(O) = EIF∆confounded
− EIF∆bias

,

where O = (Y,A, Z,W,Z) denotes the observed data. The semiparametric efficiency bound for

estimating the ATE in Mnonpar is E[EIF∆(O)2]−1.

Remark 3. Theorem 1 implies that in Mnonpar, all regular and asymptotically linear estimators ∆̂

are asymptotically equivalent and efficient with
√
n(∆̂ −∆) = 1√

n

∑n
i=1EIF∆(Oi) + op(1) (Bickel

et al., 1993).

3.3 Multiply robust estimation of ∆

In this section, we consider the scenario where estimation under Mnonpar is not feasible due to

potentially large number of measured covariates, and proceed to estimation under Munion. Specifi-

cally, we construct a multiply robust and locally efficient estimator of ∆ by taking EIF∆(O) as an

estimating equation and evaluating it under a working model for the observed data distribution to

solve for ∆. Let

θ = {(αA,Z)T, (βY )T, (βW0)T, (β̂WA)T, (β̂WZ)T, (β̂R)T}T

denote the nuisance parameters of the working models in Munion. We estimate θ as the solution of

the following collection of estimating equations.

First, we define the following score functions for maximum likelihood estimation of f(A,Z |
X;αA,Z), E[Y | A,Z = 0, X;βY ], and E[W | A = 0, Z = 0, X;βW0]

UαA,Z =
∂

∂αA,Z
log f(A,Z | X;αA,Z);

UβY =
∂

∂βY
✶(Z = 0) log f(Y | A,Z = 0, X;βY );

UβW0 =
∂

∂βW0
✶(A = 0, Z = 0) log f(W | A = 0, Z = 0, X;βW0),
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where f(A,Z | X;αA,Z) is the conditional likelihood of (A,Z), f(Y | A,Z = 0, X;βY ) is the

conditional likelihood of Y restricted to the subsample with Z = 0, and f(W | A = 0, Z =

0, X;βW0) is the conditional likelihood of W restricted to the subsample with A = 0, Z = 0.

Second, because δWA (Z,X;βWA), ξWZ (A,X;βWZ), and R(A,X;βR) do not by themselves give

rise to a likelihood function, we estimate them by constructing the following doubly robust g-

estimation equations constructed under the union model Munion

UβWA,βWZ =
(

g0(A,Z,X)− E[g0(A,Z,X) | X;αA,Z ]
)(

W − E[W | A,Z,X;βW0, βWZ , βWA]
)

UβR;βY ,βW0,βWA =
(

g1(A,Z,X)− E[g1(A,Z,X) | A,X;αA,Z ]
)(

Y − E[Y | Z,A,X;βR, βY , βW0, βWA]
)

,

where g0(A,Z,X) and g1(A,Z,X) are user-specified vector functions; E[g0(A,Z,X) | X;αA,Z ] and

E[g1(A,Z,X) | X;αA,Z ] are evaluated under f(A,Z | X;αA,Z); E[W | A,Z,X;βW0, βWZ , βWA]

and E[Y | Z,A,X;βR, βY , βW0, βWA] are parameterized as in (7)-(10). Let dim(v) denote the

length of a vector v. We require that g0(A,Z,X) is of dimension dim(βWA) + dim(βWZ) −
dim(βWAZ), and g1(A,Z,X) is of dimension dim(βR) to generate adequate number of estimat-

ing equations.

In summary, let

Uθ(O; θ) = (UT

αA,Z , U
T

βY , U
T

βW0 , U
T

βWA,βWZ , U
T

βR)
T

denote the collection of the above defined estimating equations. We estimate θ by solving Pn

{

Uθ(θ)
}

=

0, and we denoted the estimator as

θ̂ = {(α̂A,Z
mle )

T, (β̂Y
mle)

T, (β̂W0
mle )

T, (β̂WA
dr )T, (β̂WZ

dr )T, (β̂R
dr)

T}T.

In particular, β̂WA
dr and β̂WZ

dr are CAN under the union model M2∪M3, and β̂R
dr is CAN under the

union model M1 ∪M3 (Robins and Rotnitzky, 2001; Wang and Tchetgen Tchetgen, 2018), which

is proved in Section E of the supplementary material. We obtain the estimated working models by

plugging in θ̂ to equations (7)-(10), which is detailed in Appendix A.2.

The proposed multiply robust estimator solves Pn

{

EIF∆(O; ∆, θ̂)
}

= 0, where EIF∆(O; ∆, θ̂)

is equal to EIF∆(O) evaluated at (∆, θ̂). That is, the multiply robust estimator is

∆̂mr = ∆̂confounded,mr − ∆̂bias,mr
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where

∆̂confounded,mr = Pn

{ 2A− 1

f(A | Z,X; θ̂)

(

Y − E[Y | A,Z,X; θ̂]
)

+
(

E[Y | A = 1, Z,X; θ̂]− E[Y | A = 0, Z,X; θ̂]
)

}

∆̂bias,mr = Pn

{

E[R(1−A,X) | Z,X; θ̂]
2A− 1

f(A | Z,X; θ̂)

(

W − E[W | A,Z,X; θ̂]
)

+
2Z − 1

f(Z | A,X; θ̂)

(

Y − E[Y | A,Z,X; θ̂]
)E[δWA (Z,X) | 1−A,X; θ̂]

ξWZ (A,X; θ̂)

f(1−A | X; θ̂)

f(A | X; θ̂)

+R(1−A,X; θ̂)δWA (Z,X; θ̂)
}

.

The multiply robust estimator combines three semiparametric estimation strategies to produce

robust inference provided one out of three working models is correct, without necessarily knowing

which one is indeed correct. This can be seen by the fact that each of the three semiparametric

estimators ∆̂i can be obtained by setting the components unrestricted in Mi to zero in the above

multiply robust estimator. Specifically, ∆̂1 can be obtained by setting E[Y | Z = 0, A,X], E[W |
A = 0, Z = 0, X], ξWZ (A = 0, X), δWA (Z = 0, X), and ηWAZ(X) to zero, ∆̂2 can be obtained by

setting E[Y | Z = 0, A,X], E[W | A = 0, Z = 0, X], and R(A,X) to zero, and ∆̂3 can be obtained

by setting 1/f(A | Z,X) and 1/f(Z | A,X) to zero. In particular, the multiply robust estimator

of ∆bias = E[R(1 − A,X)δWA (Z,X)] does not require correct specification of both R(1 − A,X)

and δWA (Z,X). In fact, we improve robustness by incorporating the propensity of both exposures

such that when f(A,Z | X) is correctly specified, ∆̂bias,mr is consistent if either R(1 − A,X) or

δWA (Z,X) is correctly specified. Our proposed estimator is also locally efficient in the sense that

when all working models are correctly specified, ∆̂mr achieves the semiparametric efficiency bound

for estimating ∆ in Munion. Theorem 2 below summarizes the multiply robust and locally efficient

property of ∆̂mr.

Theorem 2. Under Assumptions 1 – 3 and 4′ and standard regularity conditions stated in Section E

of the supplementary material,
√
n(∆̂mr −∆) is regular and asymptotic linear under Munion with

influence function

IFunion(O; ∆, θ∗) = EIF∆(O; ∆, θ∗)− ∂EIF∆(O; ∆, θ)

∂θT

∣

∣

∣

θ∗
E
{∂Uθ(O; θ)

∂θT

∣

∣

∣

θ∗

}−1
Uθ(O; θ∗),

and thus
√
n(∆̂mr − ∆) →d N(0, σ2

∆), where σ2
∆(∆, θ∗) = E[IFunion(O; ∆, θ∗)2] and θ∗ denotes

the probability limit of θ̂. Furthermore, ∆̂mr is locally semiparametric efficient in the sense that

it achieves the semiparametric efficiency bound for ∆ in Munion at the intersection submodel
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Mintersect = M1 ∩M2 ∩M3 where M1, M2, and M3 are all correctly specified.

We prove Theorem 2 in Section E of the supplementary material. The rationale behind multiple

robustness is based on the following key observation. A multiply robust estimator is bound to exist

if one can describe an unbiased estimating equation in each of the submodels that form the union

model. It then suffices to show that the multiply robust estimating equation (i.e. the efficient

influence function) reduces to each estimating equation under the corresponding submodel of the

union model, by setting components which are left unrestricted in the submodel to a singleton value.

For inference on ∆, a consistent standard error estimator follows from standard M-estimation

theory, which is detailed in Section E.3 of the supplementary material. We implemented the

standard error estimator in both simulation and application studies. Alternatively, nonparametric

bootstrap may be used in practice, which is justified by the asymptotic linearity of the estimator

(Cheng et al., 2010).

4 Simulation study

We investigate the finite sample performance of the various estimators of ATE described in Sec-

tion 3. We simulate 4000 samples of size n = 2000 under the following data generating mechanism

• X = (X1, . . . , X8, X7X8) where Xj
iid∼ N(0, 1), j = 1, . . . , 8;

• A is Bernoulli with P (A = 1 | X) = expit(−0.01 + αTX);

• Z is Bernoulli with P (Z = 1 | A,X) = expit(−0.01− 0.2A+ αTX);

• U is Bernoulli with E[U | Z,A,X] = 0.4Z + 0.4AZ;

• W is Bernoulli with E[W | U = 0, X] = expit(−1 + βTX), E[W | U = 1, X] − E[W | U =

0, X] = 0.5;

• Y is Bernoulli with E[Y | A = 0, U = 0, X] = expit(−1 + βTX), E[Y | A,U = 1, X] − E[Y |
A,U = 0, X] = 0.25A, and E[Y | A = 1, U,X]− E[Y | A = 0, U,X] = 0.25U ,

where α = −10−2 × (1, 1, 1, 1, 1, 1, 1, 1,−20) and β = −10−1 × (1, 1, 1, 1, 1, 1, 1, 1, 1). These param-

eters are chosen to ensure that Pr(U = 1 | Z,A,X), Pr(W = 1 | U,X), and Pr(Y = 1 | U,X) are

between 0 and 1. The above models imply

• ξWZ (A,X) = 0.2 + 0.2A, δWA (Z,X) = 0.2Z, E[W | Z = 0, A = 0, X] = expit(−1 + βTX);

• ξYZ (A,X) = 0.2A, δYA (Z,X) = 0.2Z, E[Y | Z = 0, A = 0, X] = expit(−1 + βTX);
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• R(A,X) = 0.5A.

We evaluate the performance of the following five estimators of the ATE: three semiparametric

estimators ∆̂1, ∆̂2, and ∆̂3, the plug-in estimator discussed in Section 2.2.1 which we refer to as the

MLE estimator hereafter, and the multiply robust (MR) estimator ∆̂mr. The true ATE is 0.07 on

the risk difference scale. We consider the following scenarios to investigate the impact of modeling

error:

• All models are correctly specified;

• M2 and M3 are wrong: E[W | A,Z,X] is misspecified by assuming that both ξWZ (A,X) and

δWA (Z,X) are constant;

• M1 and M3 are wrong: R(A,X) is misspecified by assuming that R(A,X) is a constant;

• M1 and M2 are wrong: f(Z | A,X) is misspecified by omitting the interaction term X7X8;

• All models are wrong: f(Z | A,X) and E[Y | A,Z,X] are misspecified by omitting the

interaction term X7X8.

Table 1: Operating characteristics of estimators under different model misspecification scenarios.

Scenario Method
Bias Var Proportion MSE 95% CI
(×103) (×103) Bias (% ATE) (×103) Coverage

∆1 -0.46 0.45 -0.65 0.45 0.95
All ∆2 -0.37 0.62 -0.53 0.62 0.95

models are ∆3 -0.06 0.14 -0.08 0.14 0.95
correct MLE -0.49 0.10 -0.70 0.10 0.95

MR -0.39 0.73 -0.55 0.73 0.95

M1 correct ∆2 -7.10 0.48 -10.08 0.53 0.94
M2,M3 ∆3 -7.10 0.14 -10.08 0.19 0.91

misspecified MLE -24.05 6.47 -34.15 7.04 0.91
MR 2.54 0.49 3.61 0.49 0.95

M2 correct ∆1 -0.51 0.50 -0.73 0.50 0.94
M1,M3 ∆3 -5.04 0.60 -7.22 0.63 0.95

misspecified MR 0.27 0.56 0.39 0.56 0.95

M3 correct ∆1 -0.25 0.45 -0.36 0.45 0.95
M1,M2 ∆2 -1.22 0.61 -1.75 0.61 0.95

misspecified MR -0.05 1.14 -0.08 1.14 0.95

∆1 -0.25 0.45 -0.36 0.45 0.95
All ∆2 -1.22 0.61 -1.75 0.61 0.95

models are ∆3 -2.80 0.14 -4.01 0.15 0.94
misspecified MLE -2.15 0.10 -3.08 0.10 0.94

MR 0.60 1.10 0.86 1.10 0.95
Note: we trimmed 5% tail of the second scenario due to extreme value of the MLE estimates.
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Table 1 summarizes the operating characteristics of ∆̂1, ∆̂2, ∆̂3, the MLE estimator, and the

MR estimator ∆̂mr under the above model misspecification scenarios. We evaluated these estimators

in terms of mean bias (scaled by 103), variance (scaled by 103), bias calculated as the proportion of

the true ATE, mean squared error (MSE, scaled by 103), and coverage of 95% confidence intervals

based on direct standard error estimates. The performance of the MLE estimator is not shown

when R(A,X) or f(Z | A,X) are misspecified because it does not require specification of R(A,X)

or f(Z | A,X) and thus remains unchanged under such misspecifications. Our proposed multiply

robust estimator remained stable with relatively small bias across all scenarios, although as expected

it had slightly larger variability. The multiply robust estimator performs better when all models

are misspecified than if M2 and M3 are misspecified, which may not be the general case in practice

as the theory does not necessarily justify it. In contrast, the MLE estimator and the other three

semiparametric estimators that rely on M1, M2, and M3 can be substantially biased when their

corresponding model was misspecified. The 95% CI coverages were close to the nominal level with

correctly specified model which indicated that our proposed standard error estimation provided

valid inference. These results confirmed our theoretical results in finite sample and demonstrated

the advantages of the proposed multiply robust estimator.

5 Observational postlicensure vaccine safety surveillance

We apply our method to an observational vaccine safety study comparing risk of medically attended

fever, a common adverse event following vaccination, among children who received a combina-

tion DTaP-IPV-Hib (diphtheria and tetanus toxoids and acellular pertussis adsorbed, inactivated

poliovirus, and Haemophilus influenzae type b) vaccine with children who received other DTaP-

containing comparator vaccines (Nelson et al., 2013). The study population consisted of children

aged 6 weeks to 2 years enrolled at Kaiser Permanente Washington from September 2008 to Jan-

uary 2011. Healthcare databases routinely captured information on demographics, immunizations,

and diagnosis of fever within a 5-day post-vaccination risk window based on the International

Classification of Diseases, Ninth Revision (ICD-9-CM) code.

In the absence of randomization, causal inference methods can be applied to evaluate the ad-

verse effect of DTaP-IPV-Hib vaccine. However, because such administrative data are not collected

for research purposes, potential bias due to unmeasured confounding can undermine the validity of

causal conclusion. In particular, parents of infants may request separate injections or the combina-
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tion vaccine due to unmeasured health-seeking preference, and such health-seeking behavior may

be associated with fever diagnosis. To explore the possibility of confounding due to health-seeking

behavior, the study monitored presence of injury/trauma (ICD-9 code 800-904, 910-959) and ring-

worm (ICD-9 code 110) within 30 days post vaccination, which are not expected to be related to the

vaccine-outcome pair of interest. In particular, injury/trauma is unlikely to be causally affected by

DTaP-IPV-Hib vaccination but may be associated with parents’ health-seeking behavior on behalf

of their children. Similarly, ringworm is unlikely to be a cause of fever that occurs during the

5-day risk window but may also be associated with health-seeking behavior. Therefore, we take

injury/trauma as a negative control outcome and ringworm as a negative control exposure to detect

and account for potential unmeasured confounding. During the study, 27,064 DTaP-IPV-Hib vac-

cinations were administered, among which 60 fevers (0.22%) were observed within the risk window.

In contrast, 19,677 comparator vaccines were administered with 46 fevers (0.23%) observed. There

were 45 ringworm cases and 46 injury/trauma cases. Sex and age group at vaccination (< 5 months

or 5 months−2 years) were also recorded.

Because A, Z, and X are all binary, nonparametric (NP) estimation based on empirical frequen-

cies is in fact feasible. This is done by fitting a saturated model for each component of the likelihood

by including main effects and all possible interactions. For example, the negative control outcome

model was specified as E[W | A,Z,X1, X2] = α0 + αAA + αZZ + αX1
X1 + αX2

X2 + αA:ZAZ +

αA:X1
AX1+αZ:X1

ZX1+αA:X2
AX2+αZ:X2

ZX2+αX1:X2
X1X2+αA:Z:X1

AZX1+αA:Z:X2
AZX2+

αA:X1:X2
AX1X2 + αZ:X1:X2

ZX1X2 + αA:Z:X1:X2
AZX1X2, where X1 denotes age group and X2

denotes sex. As stated in Remark 3, under Mnonpar when all nuisance parameters were nonpara-

metrically estimated, all methods should produce exactly the same point estimate and confidence

interval. We thus took the NP model as the true model to illustrate robustness to departure from

the NP model via model restrictions in the following scenarios

• M2 and M3 are restricted: E[W | A,Z,X] is fitted without age-sex interaction;

• M1 and M3 are restricted: R(A,X) is fitted without age-sex interaction;

• M1 and M2 are restricted: f(Z | A,X) is fitted without age-sex interaction;

• All are restricted: E[W | A,Z,X] and R(A,X) are fitted without age-sex interaction.

Table 2 lists for each method the point estimates (scaled by 103) of ∆, ∆confounded, ∆bias

and their 95% confidence intervals (scaled by 103), the bias evaluated as the proportion of the

ATE under the NP model which is taken as the true value, and the p-value from a Wald-test of
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Table 2: Adverse effect of DTaP-IPV-Hib vaccine on fever among children.

Scenario Method
∆̂ Prop

p-val
∆̂confounded ∆̂bias

(95% CI) Bias (95% CI) (95% CI)

∆1 1.7 (-1.1, 4.5) 0.0 0.2 0.5 (-0.5, 1.4) -1.2 (-3.8, 1.3)
All ∆2 1.7 (-1.1, 4.5) 0.0 0.2 0.5 (-0.5, 1.4) -1.2 (-3.8, 1.3)
models are ∆3 1.7 (-1.1, 4.5) 0.0 0.2 0.5 (-0.5, 1.4) -1.2 (-3.8, 1.3)
NP MLE 1.7 (-1.1, 4.5) 0.0 0.2 0.5 (-0.5, 1.4) -1.2 (-3.8, 1.3)

MR 1.7 (-1.1, 4.5) 0.0 0.2 0.5 (-0.5, 1.4) -1.2 (-3.8, 1.3)

M1 is NP ∆2 1.7 (-1.4, 4.8) -0.3 0.3 0.5 (-0.5, 1.4) -1.2 (-4.1, 1.6)
M2,M3 ∆3 0.5 (-0.5, 1.4) -72.3 0.3 0.5 (-0.5, 1.4) -0.0 (-0.3, 0.3)
are restricted MLE 1.6 (-1.5, 4.7) -5.6 0.3 0.5 (-0.5, 1.4) -1.1 (-4.0, 1.7)

MR 1.6 (-1.3, 4.5) -5.2 0.3 0.5 (-0.5, 1.4) -1.2 (-3.8, 1.5)

M2 is NP ∆1 1.7 (-1.1, 4.4) -3.1 0.2 0.5 (-0.5, 1.4) -1.2 (-3.7, 1.3)
M1,M3 ∆3 1.7 (-1.1, 4.4) -3.1 0.2 0.5 (-0.5, 1.4) -1.2 (-3.7, 1.3)
are restricted MR 1.7 (-1.1, 4.6) 1.6 0.2 0.5 (-0.5, 1.4) -1.3 (-3.9, 1.3)

M3 is NP ∆1 1.7 (-1.1, 4.5) 0.0 0.2 0.5 (-0.5, 1.4) -1.2 (-3.8, 1.3)
M1,M2 ∆2 1.7 (-2.4, 5.7) -2.4 0.4 0.5 (-0.5, 1.4) -1.2 (-5.1, 2.7)
are restricted MR 1.7 (-1.1, 4.5) -0.0 0.2 0.5 (-0.5, 1.4) -1.2 (-3.8, 1.3)

∆1 1.7 (-1.1, 4.4) -3.1 0.2 0.5 (-0.5, 1.4) -1.2 (-3.7, 1.3)
All ∆2 1.7 (-1.4, 4.8) -0.3 0.3 0.5 (-0.5, 1.4) -1.2 (-4.1, 1.6)
models are ∆3 1.4 (-0.4, 3.2) -19.7 0.1 0.5 (-0.5, 1.4) -0.9 (-2.4, 0.6)
restricted MLE 1.6 (-1.5, 4.7) -5.6 0.3 0.5 (-0.5, 1.4) -1.1 (-4.0, 1.7)

MR 1.7 (-1.2, 4.7) 0.6 0.2 0.5 (-0.5, 1.4) -1.3 (-4.0, 1.5)
Note: all point estimates and 95% confidence intervals (CI) are scaled by 103. Prop bias (%) is the bias

calculated as the proportion of the ATE under the saturated model (NP model) taken as the true value.

H0 : ∆ = 0. Similar to the original study, our results indicated a slightly elevated risk of fever

among children who received DTaP-IPV-Hib vaccine relative to children who received other DTap-

containing comparator vaccines, although the effect was not statistically significant. In addition,

there was no evidence of unmeasured confounding as the confidence interval for ∆bias included zero.

As expected, under Mnonpar, all methods provided exactly the same point estimate and confidence

interval. Under model misspecification, i.e., deviation from the NP model via model restrictions,

all methods produced a stable estimate of ∆confounded, while ∆bias was estimated with larger bias.

The MR estimator had generally smaller bias than other methods, which indicated that multiply

robust estimation provided protection against model misspecification. A caveat is that in practice

if the negative control exposure is rare, the positivity assumption in Assumption 3 may be violated.

Sensitivity analysis switching the negative control variables produced similar conclusions, which are

presented in Section I of the supplementary material.
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6 Final remarks

In this paper, we have developed a general semiparametric framework for causal inference in the

presence of unmeasured confounding leveraging a pair of negative control exposure and outcome

variables. Our method provides an alternative to more conventional methods such as instrumental

variable (IV) methods. Particularly, negative controls are sometimes available when a valid IV

may not be, in settings such as air pollution studies (Miao and Tchetgen Tchetgen, 2017), genetic

research (Gagnon-Bartsch and Speed, 2012), and observational studies using routinely collected

healthcare databases such as electronic health records and claims data (Schuemie et al., 2014).

In particular, as majority of the variables in administrative healthcare data are documented by

medical codes and thus are naturally categorical, we believe our application study demonstrated

the promising role of double negative control for detection and control of confounding bias in

observational studies using healthcare databases. Our paper also contributes to the literature of

differential confounding misclassification since negative controls can also be viewed as mismeasured

versions of the unobserved confounder (Kuroki and Pearl, 2014; Ogburn and VanderWeele, 2012;

Miao et al., 2018). Our findings established a theoretical basis for future research on semiparametric

estimation with negative control adjustment for continuous unmeasured confounding. Another open

problem is the possibility of using modern machine learning for estimation of high dimensional

nuisance parameters in the context of multiply robust estimation much in the spirit of Athey and

Wager (2017); Chernozhukov et al. (2016); Van der Laan and Rose (2011).
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Appendix

A.1 Estimation under M1-M3

Throughout we use dim(v) to denote the length of a vector v, such as dim(βR).

A.1.1 Estimation under M1

The first class of estimators involves models f(A,Z | X;αA,Z) and R(A,X;βR) under M1, with

nuisance parameter γ1 = (αA,Z , βR). Specifically, let α̂A,Z
mle denote the MLE of αA,Z , and define

f(A | Z,X; α̂A,Z
mle ) = f(A,Z | X; α̂A,Z

mle )/
∑

a f(A = a, Z | X; α̂A,Z
mle ) and f(Z | A,X; α̂A,Z

mle ) = f(A,Z |
X; α̂A,Z

mle )/
∑

z f(A,Z = z | X; α̂A,Z
mle ). Because R(A,X;βR) does not by itself give rise to a likelihood

function, we obtain an estimator β̂R
gest of βR by solving the following g-estimation type equation

(Robins, 1994; Wang and Tchetgen Tchetgen, 2018)

Pn

{[

h1(A,Z,X)− E[h1(A,Z,X) | A,X; α̂A,Z
mle ]

] [

Y −W ·R(A,X; β̂R
gest)

]}

= 0,

where h1(A,Z,X) is a vector of user-specified dim(βR) functions ofA, Z, andX, and E[h1(A,Z,X) |
A,X; α̂A,Z

mle ] is evaluated under f(Z | A,X; α̂A,Z
mle ). We then have ∆̂1 = ∆̂confounded,ipw − ∆̂bias,gest,

where ∆̂confounded,ipw = Pn

[

(2A−1)Y

f(A|Z,X;α̂A,Z
mle

)

]

, ∆̂bias,gest = Pn

[

E[R(1−A,X; β̂R
gest) | Z,X; α̂A,Z

mle ]
(2A−1)W

f(A|Z,X;α̂A,Z
mle

)

]

.

A.1.2 Estimation under M2

The second class of estimators involves models f(A,Z | X;αA,Z), ξWZ (A,X;βWZ), and δWA (Z,X;βWA)

under M2, with nuisance parameter γ2 = (αA,Z , βWZ , βWA). Specifically, let β̂WZ
ipw and β̂WA

ipw solve

the following g-estimating equation

Pn

{[

h2(A,Z,X)− E[h2(A,Z,X) | X; α̂A,Z
mle ]

][

W−

ξWZ (A = 0, X; β̂WZ
ipw )Z − δWA (Z = 0, X; β̂WA

ipw )A− ηWAZ(X; β̂WAZ
ipw )AZ

]}

= 0

where h2(A,Z,X) is a vector of user-specified functions with dimension dim(βWZ) + dim(βWA)−
dim(βWAZ), and E[h2(A,Z,X) | X; α̂A,Z

mle ] is evaluated under f(A,Z | X; α̂A,Z
mle ). Then ∆̂2 =

∆̂confounded,ipw−∆̂bias,ipw, where ∆̂confounded,ipw = Pn

[

2A−1

f(A|Z,X;α̂A,Z
mle

)
Y

]

, ∆̂bias,ipw = Pn

[

(2Z−1)Y

f(Z|A,X;α̂A,Z
mle

)

f(1−A|X;α̂A,Z
mle

)

f(A|X;α̂A,Z
mle

)

E[δWA (Z,X;β̂WA
ipw )|1−A,X;α̂A,Z

mle
]

ξW
Z

(A,X;β̂WZ
ipw

)

]

.
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A.1.3 Estimation under M3

The third class of estimators involves models E[W | Z,A,X;βW ], E[Y | Z = 0, A,X;βY ], and

R(A,X;βR) under M3, with nuisance parameter γ3 = (βW , βY , βR). Specifically, let β̂W
mle =

(β̂W0
mle , β̂

WZ
mle , β̂

WA
mle ) denote the MLE of βW , and β̂Y

mle denote the restricted MLE of βY , where the

latter is obtained by maximizing the likelihood under the working model E[Y | Z = 0, A,X;βY ]

restricted to the subsample with Z = 0. Let β̂R
or solve the following estimating equation

Pn

[

h3(A,Z,X)
(

Y −E[Y | Z = 0, A,X; β̂Y
mle]−R(A,X; β̂R

or)(W −E[W | Z = 0, A,X; β̂W
mle])

)]

= 0,

where h3(A,Z,X) is a nonzero vector function of dimension dim(βR). We obtain E[Y | Z,A,X; β̂Y
mle, β̂

W
mle; β̂

R
or]

by Eq. (9) using E[Y | Z = 0, A,X; β̂Y
mle], ξWZ (A,X; β̂W

mle), and R(A,X; β̂R
or). Combining the

above estimators, we have ∆̂3 = ∆̂confounded,or − ∆̂bias,or, where ∆̂confounded,or = Pn

[

E[Y | A =

1, Z,X; β̂Y
mle, β̂

W
mle; β̂

R
or]−E[Y | A = 0, Z,X; β̂Y

mle, β̂
W
mle; β̂

R
or]

]

and ∆̂bias,or = Pn

[

R(1−A,X; β̂R
or)δ

W
A (Z,X;

β̂W
mle)

]

.

A.2 Estimated working models for the multiply robust estimator

Following the variation independent parameterization detailed in (7)-(10), we specify the esti-

mated working models by plugging in the corresponding components in θ as follows: f(A |
Z,X; θ̂) = f(A,Z | X; α̂A,Z

mle )/
∑

a f(A = a, Z | X; α̂A,Z
mle ), f(A | X; θ̂) =

∑

z f(A,Z = z | X; α̂A,Z
mle ),

f(Z | A,X; θ̂) = f(A,Z | X; α̂A,Z
mle )/

∑

z f(A,Z = z | X; α̂A,Z
mle ), E[Y | A = 0, Z,X; θ̂] = E[Y | Z =

0, A,X; β̂Y
mle] + R(A,X; β̂R

dr)ξ
W
Z (A,X; β̂WA

dr )Z, E[Y | Z,A,X; θ̂] = E[Y | Z = 0, A,X; β̂Y
mle] +

R(A,X; β̂R
dr)ξ

W
Z (A,X; β̂WZ

dr ), E[W | A,Z,X; θ̂] = E[W | A = 0, Z = 0, X;βW0
mle ] + ξWZ (A =

0, X;βWZ
dr )Z + δWA (Z = 0, X;βWA

dr )A + ηWAZ(X;βWAZ
dr )AZ, E[R(1 − A,X) | Z,X; θ̂] =

∑

aR(1 −
a,X; β̂R

dr)f(A = a | Z,X; α̂A,Z
mle ), and E[δWA (Z,X) | 1 − A,X; θ̂] =

∑

z δ
W
A (z,X; β̂WA

dr )f(Z = z |
1−A,X; α̂A,Z

mle ). In addition, to simplify notation, we let R(A,X; θ̂) = R(A,X; β̂R
dr), δ

W
A (Z,X; θ̂) =

δWA (Z,X; β̂WA
dr ), and ξWZ (A,X; θ̂) = ξWZ (A,X; β̂WZ

dr ).
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