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Non-integrality of some Steinberg modules

Jeremy Miller, Peter Patzt, Jennifer C. H. Wilson and Dan Yasaki

Abstract

We prove that the Steinberg module of the special linear group of a quadratic imaginary
number ring which is not Euclidean is not generated by integral apartment classes. Assuming
the generalized Riemann hypothesis, this shows that the Steinberg module of a number ring is
generated by integral apartment classes if and only if the ring is Euclidean. We also construct
new cohomology classes in the top-dimensional cohomology group of the special linear group of
some quadratic imaginary number rings.
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1. Introduction

The cohomology of arithmetic groups has many applications to number theory and algebraic
K-theory. Let OK be the ring of integers in a number field K. One of the most useful tools
for studying the high-dimensional cohomology of SLn(OK) is the Steinberg module Stn(K),
a representation of GLn(K). Let r1 denote the number of real embeddings of K, and let r2
denote the number of pairs of complex embeddings. Borel and Serre [4] proved that

Hνn−i(SLn(OK); Q) ∼= Hi(SLn(OK); Q ⊗ Stn(K))

with

νn = r1

(
(n + 1)n− 2

2

)
+ r2(n2 − 1) − n + 1.

The number νn is the virtual cohomological dimension of SLn(OK), and all rational cohomology
groups (even with twisted coefficients) vanish above this degree.

To understand the cohomology in degree νn, it is important to understand generators for
Stn(K) as an SLn(OK)-module. There is a natural subset of Stn(K) consisting of so-called
integral apartment classes and it is useful to know whether these classes generate the entire
Steinberg module. Let Tn(K) denote the Tits building of K, that is, the geometric realization
of the poset of proper non-empty subspaces of Kn ordered by inclusion. The Steinberg module
is defined by the formula

Stn(K) := H̃n−2(Tn(K)).
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Let �L denote a decomposition Kn = L1 ⊕ · · · ⊕ Ln into lines. Let A�L be the full subcomplex of
Tn(K) with vertices direct sums of proper non-empty subsets of {L1, . . . , Ln}. Each subcomplex
A�L is homeomorphic to an (n− 2)-sphere called an apartment and the images of the two choices
of fundamental classes of A�L in Stn(K) = H̃n−2(Tn(K)) are called apartment classes. We say
that an apartment or apartment class is integral if

On
K = (On

K ∩ L1) ⊕ · · · ⊕ (On
K ∩ Ln).

In other words, �L is integral if it comes from a direct sum decomposition of On
K into rank-one

projective submodules. One of the main topics of this paper is the question:
For what number fields K is Stn(K) generated by integral apartment classes?
Integral apartment classes vanish after taking coinvariants by SLn(OK) for n larger than the

class number of OK , so if Stn(K) is generated by integral apartment classes, then

Hνn(SLn(OK); Q) ∼= H0(SLn(OK); Q ⊗ Stn(K))

vanishes for n sufficiently large. In [2], Ash–Rudolph proved that Stn(K) is generated by
integral apartment classes if OK is Euclidean. For n � 2, Church–Farb–Putman proved that
Hνn(SLn(OK); Q) does not vanish if the class number of OK is greater than 1 [7, Theorem D]
and moreover that Stn(K) is not generated by integral apartment classes for n � 2 for such
rings [7, Theorem B]. We prove the following.

Theorem 1.1. Let OK be a quadratic imaginary number ring that is a PID but is not
Euclidean. Then Stn(K) is not generated by integral apartment classes.

Let Od denote the ring of integers in Q(
√
d). The only examples of rings satisfying the

hypotheses of the above theorem are Od for d = −19, −43, −67 and −163. However, assuming
the generalized Riemann hypothesis, every number ring either has class number greater than
1, is Euclidean, or is quadratic imaginary; see Weinberger [22]. Thus, we have the following
corollary.

Corollary 1.2. Let OK be a ring of integers in a number field K and consider n � 2.
The generalized Riemann hypothesis implies that Stn(K) is generated by integral apartment
classes if and only if OK is Euclidean.

For K quadratic imaginary, νn = n2 − n. Our proof of Theorem 1.1 also gives the following.

Theorem 1.3. For all n, we have

dimQ Hν2n(SL2n(Od); Q) �

⎧⎪⎨⎪⎩
1 for d = −43,
2n for d = −67,
6n for d = −163.

This shows that the rational cohomological dimension and the virtual cohomological
dimension agree for these groups. This is the first example of homology in the virtual
cohomological dimension of SLn(OK) for large n not coming from the class group. In particular,
this gives the first example of the failure of [7, Theorem D] to be sharp for large n. See
Remark 5.13 for a more conceptual description of these bounds.

Our proof involves using cohomology classes in Hν2(SL2(Od); Q) to construct classes in
Hν2n(SL2n(Od); Q). In particular, the inequalities in Theorem 1.3 are actually equalities
for 2n = 2 by the work of Rahm [15, Proposition 1]. This strategy does not apply to
Hν2n(SL2n(O−19); Q) since Hν2(SL2(O−19); Q) vanishes. This also highlights the fact that
our proof of non-integrality does not rely on homological non-vanishing.
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2. Posets

In this section, we begin by fixing notation for posets. Then we recall some connectivity results
for complexes of unimodular vectors and their variants.

2.1. Notation

Definition 2.1. Given a simplicial complex X , there is an associated poset X whose elements
are the simplices of X , ordered by inclusion.

In this paper, we adopt the convention that we use calligraphic fonts for simplicial complexes
and boldface fonts for their associated posets.

Definition 2.2. Given a poset Y, let Δ(Y) denote the simplicial complex of non-degenerate
simplices of the nerve of the poset.

Concretely, the p-simplices of Δ(Y) are given by ordered (p + 1)-tuples

{y0 < y1 < · · · < yp | yi ∈ Y}.

Define the dimension dim(Y) of Y to be the dimension of Δ(Y). Let |Y| denote the geometric
realization of Δ(Y). We refer to the connectivity of a poset or simplicial complex to mean the
connectivity of its geometric realization.

We remark that, given a simplicial complex X with associated poset X, Δ(X) is the
barycentric subdivision of X . Thus, they are not isomorphic in general but have homeomorphic
geometric realizations.

Definition 2.3. Given a poset Y and y ∈ Y, let

Y�y := {y′ ∈ Y | y′ � y}

and

Y>y := {y′ ∈ Y | y′ > y}.

Define the height of y to be

ht(y) := dim(Y�y).

This is one less than the length of a maximal length chain with supremum y.

2.2. The complex of partial frames

In this subsection, we describe the complex of partial bases and a variant called the complex
of partial frames. Here and in the rest of the paper, the symbol R will denote a commutative
ring.

Definition 2.4. For a finite-rank free R-module V , we associate a simplicial complex
PB(V ) called the complex of partial bases of V . The vertices of PB(V ) are primitive vectors
in V , and vertices v0, v1, . . . , vp span a p-simplex if and only if the vectors v0, v1, . . . , vp are
a partial basis for V , that is, a subset of a basis. When V = Rn, we will abbreviate this by
PBn or by PBn(R) when we want to emphasize the ring. We write PB(V ), PBn, or PBn(R)
to denote the posets associated to these simplicial sets; these are the posets of partial bases
under inclusion.

Note that the complex PB(V ) has dimension (rank(V ) − 1).
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Definition 2.5. For V a finite-rank free R-module, we write B(V ) (similarly Bn, Bn(R))
for the simplicial complex defined as the quotient of PB(V ) by identifying vertices v, u if the
vectors v, u ∈ V differ by multiplication by a unit. A p-simplex of B(V ) encodes a decomposition
of a direct summand of V into a direct sum of (p + 1) rank-one free submodules of V . Following
Church–Putman [8], we call such a simplex a partial frame and B(V ) the complex of partial
frames of V . We write B(V ), Bn, or Bn(R), respectively, for the associated posets.

Definition 2.6. For V a finite-rank free R-module, we write B′(V ) (similarly B′
n, B′

n(R))
for the (rank(V ) − 2)-skeleton of B(V ), and B′(V ), B′

n, or B′
n(R), respectively, for the

associated posets.

Simplices of B′(V ) consist of partial frames whose sum is not all of V .

Definition 2.7. Let R be an integral domain. For a finite-rank free R-module V , we write
T(V ) (similarly Tn or Tn(R)) for the poset of proper non-zero direct summands of V ordered
by inclusion. The associated simplicial complex is the Tits building for V . We abbreviate
Δ(T(V )), Δ(Tn), and Δ(Tn(R)) by T (V ), Tn, and Tn(R), respectively.

Remark 2.8. Let V be a finite-rank free R-module and R a Dedekind domain. Since R
is an integral domain, it embeds in its field of fractions Frac(R). There is a natural bijection
between the direct summands of V and the subspaces of the Frac(R)-vector space Frac(R) ⊗R V
given by sending a submodule of Rn to its Frac(R)-span in Frac(R) ⊗R V . This map has an
inverse given by intersection with Rn. It is an elementary exercise to check that these maps are
inverses using the following property of finitely generated modules over Dedekind domains: a
submodule M of a finitely generated module V is a summand if and only if V/M is torsion-free.
This bijection induces a natural isomorphism T(V ) ∼= T(Frac(R) ⊗R V ), where V is viewed as
an R-module and Frac(R) ⊗R V is viewed as a Frac(R)-module.

2.3. Connectivity results

The following is known as the Solomon–Tits Theorem. It seems to have first appeared in print
in Solomon [18] in the case of finite fields. The general case appears in Garland [11, Theorem
2.2] and Quillen [13, Theorem 2].

Proposition 2.9 (Solomon–Tits Theorem). Let K be a field. For n � 2, |Tn(K)| has the
homotopy type of a wedge of (n− 2)–spheres.

By Remark 2.8, Tn(R) is isomorphic to Tn(Frac(R)) when R is a Dedekind domain and hence
it is also (n− 3)-connected.

The following is straightforward and is the reason we primarily use Bn instead of PBn.

Proposition 2.10. Let R be a PID. Then B1(R) is contractible.

Proposition 2.11. If GL2(R) is not generated by matrices of the form{[
u ∗
0 v

]
,

[
u 0
∗ v

]
,

[
0 u
v 0

] ∣∣∣∣∣ u, v ∈ R×, ∗ ∈ R

}
,

then the graph B2(R) is not connected.

Proof. Recall that a simplicial complex of dimension d is called Cohen–Macaulay if it is
(d− 1)-connected and if the links of p-simplicies are (d− 2 − p)-connected. In particular, a
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graph of dimension 1, that is a graph with at least one edge, is Cohen–Macaulay if and only it
is connected.

Church–Farb–Putman [7, proof of Theorem 2.1] proved that the graph PB2(R) is not Cohen–
Macaulay if GL2(R) is not generated by elementary matrices together with diagonal matrices.
Let S1 be the set of elementary matrices together with diagonal matrices and let S2 be the set
of matrices of the form{[

u ∗
0 v

]
,

[
u 0
∗ v

]
,

[
0 u
v 0

] ∣∣∣∣∣ u, v ∈ R×, ∗ ∈ R

}
.

We will show that S1 and S2 generate the same subgroup of GL2(R). Since S2 contains S1,
it suffices to show that every matrix in S2 can be written as a product of matrices in S1. To
show this, we perform the following elementary calculation:[

u ∗
0 v

]
=

[
1 ∗/v
0 1

] [
u 0
0 v

]
,

[
u 0
∗ v

]
=

[
1 0

∗ /u 1

] [
u 0
0 v

]
,

and
[
0 u
v 0

]
=

[
1 −1
0 1

] [
1 0
1 1

] [
1 −1
0 1

] [
1 0
0 −1

] [
v 0
0 u

]
.

From now on, assume that GL2(R) is not generated by these matrices and so PB2(R) is not
Cohen–Macaulay. Consider the natural map PB2(R) → B2(R). This map is a complete join
complex in the sense of Hatcher–Wahl [12, Definition 3.2]. Thus, by [12, Proposition 3.5], B2(R)
is not Cohen–Macaulay. Because B2(R) has at least one edge, it cannot be connected. �

Combining Proposition 2.11 with Cohn [9, Theorem 6.1 and 6.2] implies the following result.

Proposition 2.12. Let OK be a quadratic imaginary number ring that is a PID but is not
Euclidean. Then B2(OK) is not connected.

Proposition 2.13. If PBn(R) is d-connected for some ring R, then so is Bn(R).

Proof. Consider the natural projection PBn(R) → Bn(R). We can construct a splitting
Bn(R) → PBn(R) by choosing a primitive vector v for each line in Rn. Hence, πi(|PBn(R)|) →
πi(|Bn(R)|) is surjective for all i. �

Combining this with a result of van der Kallen [20, Theorem 2.6 (i)] gives the following
corollary.

Corollary 2.14. Let R be a PID. Then Bn(R) is (n− 3)-connected.

Proof. Since PIDs satisfy the Bass Stable Range condition SR3, the work of van der
Kallen [20, Theorem 2.6 (i)] implies PBn(R) is (n− 3)-connected. The claim now follows
from Proposition 2.13. �

Corollary 2.15. Let R be a PID. Then B′
n(R) is (n− 3)-connected.

Proof. The complex B′
n(R) is the (n− 2)-skeleton of Bn(R), which is (n− 3)-connected.

The claim follows from simplicial approximation. �

3. The map of posets spectral sequence

In this section, we recall a useful spectral sequence arising from maps of posets.
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3.1. Homology of posets

We begin by defining the homology of a poset with coefficients in a functor F .

Definition 3.1. Given a poset Y, and a functor F from the poset Y (viewed as a category)
to the category Ab of abelian groups, define the chain groups

Cp(Y;F ) :=
⊕

y0<···<yp∈Y

F (y0)

and differential given by the alternating sum of the face maps

di :
⊕

y0<···<yp

F (y0) −→
⊕

y0<···<ŷi<···<yp

F (y0) (0 < i � p)

d0 :
⊕

y0<···<yp

F (y0) −→
⊕

y1<···<yp

F (y1).

Here, the map di with (i 
= 0) maps the summand indexed by (y0 < · · · < yp) to the summand
indexed by (y0 < · · · < ŷi < · · · < yp), and acts by the identity on the group F (y0). The map
d0 maps the summand indexed by (y0 < · · · < yp) to the summand indexed by (y1 < · · · < yp),
and the map F (y0) → F (y1) is the image of the morphism y0 < y1 ∈ Y under the functor F .

If F = Z is the constant functor with identity maps, then H∗(Y; Z) coincides with the
homology groups H∗(|Y|).

The following lemma is adapted from Charney [6, Lemma 1.3].

Lemma 3.2. Suppose that F : Y → Ab is a functor supported on elements of height m.
Then

Hp(Y;F ) =
⊕

ht(y0)=m

H̃p−1(Y>y0 ;F (y0)).

Proof. Suppose that F : Y → Ab is supported on elements of height m.

Cp(Y;F ) =
⊕

y0<···<yp∈Y

F (y0) ∼=
⊕

ht(y0)=m

⎛⎝F (y0) ⊗Z

⊕
y0<···<yp

Z

⎞⎠
=

⊕
y0<···<yp∈Y

ht(y0)=m

F (y0) ∼=
⊕

ht(y0)=m

(
F (y0) ⊗Z C̃p−1(Y>y0 ; Z)

)
.

The composition of these isomorphisms is compatible with the differentials and hence gives an
isomorphism of chain complexes. Thus,

Hp(Y;F ) =
⊕

ht(y0)=m

H̃p−1(Y>y0 ;F (y0)). �

3.2. The spectral sequence for a map of posets

Given a map of posets f : X → Y, there is an associated spectral sequence introduced by
Quillen [14, Section 7]; see also Charney [6, Section 1].

Definition 3.3. Let f : X → Y be a map of posets. For y ∈ Y, define f\y ⊆ X to be the
subposet of elements whose images in Y are less than or equal to y:

f\y := {x ∈ X | f(x) � y}.
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Theorem 3.4. Given a map of posets f : X → Y, there is a spectral sequence

E2
p,q = Hp(Y; [y �→ Hq(f\y)]) ⇒ Hp+q(X).

This spectral sequence is an instance of the Grothendieck spectral sequence for the
composition of functors:

Fun(X,Ab) −→ Fun(Y,Ab)

F �−→ [y �→ H0(f\y;F )]

Fun(Y,Ab) −→ Ab

F ′ �−→ H0(Y, F ′).

4. Non-integrality

In this section, we use the map-of-posets spectral sequence and connectivity results to prove
that the Steinberg modules of quadratic imaginary PIDs which are not Euclidean are not
generated by integral apartment classes. We begin by relating the complex of partial frames to
integral apartment classes.

Note that Hn−1(Bn,B′
n) is the free abelian group on the set of (n− 1)-simplices of Bn. In

other words, Hn−1(Bn,B′
n) is isomorphic to the quotient of the free abelian group on symbols

(F1, . . . , Fn) with Fi rank-one free submodules of Rn, with Rn = F1 ⊕ · · · ⊕ Fn, modulo the
relation

(F1, . . . , Fn) = sgn(σ)(Fσ(1), . . . , Fσ(n)), σ a permutation of n, sgn(σ) the sign of σ.

There is a map α : Hn−1(Bn,B′
n) → Hn−2(Tn) = Stn(R) sending (F1, . . . , Fn) to∑

σ∈Sn

sgn(σ)
(
Fσ(1) ⊂ Fσ(1) ⊕ Fσ(2) ⊂ · · · ⊂ Fσ(1) ⊕ · · · ⊕ Fσ(n−1)

)
.

The image of α is the submodule of Stn(R) generated by integral apartment classes. In
particular, α is surjective if and only if the Steinberg module is generated by integral
apartment classes.

For the rest of this section, we will study the spectral sequence associated to the map of
posets

f : B′
n −→ Tn

{v0, . . . , vp} �−→ spanR(v0, . . . , vp).

Throughout the section, we let Er
p,q denote this spectral sequence (with implicit dependence

on a fixed choice of n).
Observe that, for V ∈ Tn, the subposet f\V is precisely B(V ). Thus, the spectral sequence

associated to f satisfies

E2
p,q = Hp(Tn; [V �→ Hq(B(V ))]) ⇒ Hp+q(B′

n).

We will use the following lemma to further describe the E2 page of the spectral sequence in
Proposition 4.2.

Lemma 4.1. Let R be a PID. Then Hp(Tn; H̃0(B(−))) ∼= 0 unless p = n− 3, when

Hn−3(Tn; H̃0(B(−))) ∼=
⊕

V⊆Rn

rank(V )=2

Stn−2 ⊗ H̃0(B2).
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Figure 1 (colour online). The page E2
p,q when n = 7. The term E2

n−3,0 is circled. Terms that
are shaded grey converge to zero.

In particular, if B2 is not connected and n � 3, the group Hn−3(Tn; H̃0(B(−))) is not zero.

Proof. The functor H̃0(B(−)) : Tn → Ab is zero except possibly on submodules V ⊆ Rn of
rank two by Proposition 2.10 and Corollary 2.14. Then by Lemma 3.2, we find

Hp(Tn; H̃0(B(−))) =
⊕

V⊆Rn

rank(V )=2

H̃p−1

(
T(Rn/V ); H̃0(B(V ))

)
.

Then T(Rn/V ) is spherical of dimension (n− 2) − 2 by the Solomon–Tits theorem, and we
find

Hp(Tn; H̃0(B(−))) =

⎧⎨⎩
⊕

V⊆Rn

rank(V )=2

St(Rn/V ) ⊗ H̃0(B(V )) if p = n− 3,

0 otherwise.

In order to see that Hn−3(Tn; H̃0(B(−))) is not zero for n � 3, recall that Stn is non-zero for
n � 1. In particular, T1 is empty so St1 ∼= H̃−1(T1) ∼= Z. �

We now establish some features of the spectral sequence Er
p,q.

Proposition 4.2. Let n � 3, R be a PID, and Er
p,q denote the spectral sequence associated

to the map of posets f : B′
n → Tn. Then

(i) E∞
p,q

∼= 0 unless p + q = n− 2 or (p, q) = (0, 0);
(ii) E2

p,q
∼= 0 unless p + q = n− 2, p + q = n− 3, or (p, q) = (0, 0);

(iii) E2
n−3,0

∼= 0 when n > 3, and E2
n−3,0

∼= Z when n = 3.

The spectral sequence is illustrated in Figure 1.
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Figure 2 (colour online). Er
n−3,0 admits no non-trivial differentials for page r � 2, illustrated

when n = 7.

Proof. Since the spectral sequence converges to Hp+q(B′
n) and dim(B′

n) = n− 2, part (i)
follows from the fact that B′

n(R) is (n− 3)-connected by Corollary 2.15. Part (iii) follows from
parts (i) and (ii): part (ii) implies that for r � 2 there are no non-trivial differentials to or from
the group Er

n−3,0 (see Figure 2), so E2
n−3,0 = E∞

n−3,0.
By part (i), we conclude that E2

n−3,0
∼= 0 for all n > 3, and when n = 3, we see

E2
n−3,0 = E2

0,0 = E∞
0,0 = H0(B′

n) ∼= Z,

where the final isomorphism follows from Corollary 2.15.
It remains to show part (ii), which we do in two parts: we first treat the case q > 0, and then

the case q = 0. For q > 0, the groups Hq(B(V )) are non-zero only when rank(V ) is (q + 1) or
(q + 2) by Corollary 2.14. We can therefore realize the functor Hq(B(−)) as an extension of
functors F ′′ by F ′ each supported on elements V of a single height, as follows:

We can then apply Lemma 3.2 to the terms in the associated long exact sequence on homology:

Since the reduced homology of T(V ) is supported in degree (rank(V ) − 2) by Proposition 2.9,
we conclude from this long exact sequence that for q > 0 the homology groups E2

p,q can be
non-zero only when (p + q) is equal to (n− 3) or (n− 2).
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Now, consider the case when q = 0. The homology group H0(B(V )) is Z for rank(V ) 
= 2
by Proposition 2.10 and Corollary 2.14. Thus, we can express the functor H0(B(−)) as an
extension of the constant functor Z by the functor H̃0(B(−)) supported on submodules V of
rank two.

We apply Lemma 3.2 and Lemma 4.1 to the associated long exact sequence on homology
groups:

Again we conclude that E2
p,0 vanishes unless p is (n− 3), (n− 2), or 0, which completes the

proof of part (ii). �

Proposition 4.3. Let R be a PID and let n � 3. There is an exact sequence:

0 → E2
n−2,0 → Stn → Hn−3(Tn; H̃0(B(−)) → 0.

Proof. Consider again the short exact sequence of functors

0 → H̃0(B(−)) → H0(B(−)) → Z → 0

and the associated long exact sequence on the homology of Tn described in the proof of
Proposition 4.2. When p = (n− 2), we get the following long exact sequence:

Here, the description of E2
n−3,0 follows from Proposition 4.2 part (iii), and the groups

Hn−2(Tn; H̃0(B(−))) and Hn−2(Tn; H̃0(B(−))) are computed in Lemma 4.1. For n > 3, we
obtain the desired short exact sequence immediately. For n = 3, we note that E2

n−3,0 = E2
0,0

∼=
E∞

0,0 and hence the map E2
n−3,0 → Hn−3(Tn; Z) agrees with the map H0(B′

3) → H0(T3). Since
B′

3 and T3 are connected, this map is an isomorphism and so the map Hn−3(Tn; H̃0(B(−))) →
E2

n−3,0 is the zero map. �

Since

Hn−3(Tn; H̃0(B(−))) ∼=
⊕

V⊆Rn

rank(V )=2

Stn−2 ⊗ H̃0(B2)
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by Lemma 4.1, the short exact sequence of Proposition 4.3 has the following consequence.

Corollary 4.4. Let n � 3, and let R be a PID such that B2(R) is not connected. The
map E2

n−2,0 → Stn is not surjective.

There is an edge morphism Hn−2(B′
n) → E∞

n−2,0. Because there are no differentials into
Er

n−2,0 for r > 1, there is a map E∞
n−2,0 → E2

n−2,0. The following proposition is implicit in the
proof of Church–Farb–Putman [7, Proof of Theorem A]. In particular, see equation (3.1) and
the surrounding discussion.

Proposition 4.5. The composition Hn−1(Bn,B′
n) → Hn−2(B′

n) → E∞
n−2,0 → E2

n−2,0 →
Stn is the map α described in the beginning of the section.

Proposition 4.6. Take n � 3, and let R be PID with B2(R) not connected. The
composition Hn−1(Bn,B′

n) → Hn−2(B′
n) → E∞

n−2,0 → E2
n−2,0 → Stn is not surjective.

Proof. The map E2
n−2,0 → Stn is not surjective so the composition is not surjective. �

Proposition 4.7. Let R be a PID with B2(R) not connected. The map α : H1(B2,B′
2) →

St2 is not surjective.

Proof. Since R is PID, B′
2
∼= T2 so we just need to show the map α : H1(B2,B′

2) → H̃0(B′
2)

is not surjective. This map fits into an exact sequence:

H1(B2,B′
2) → H̃0(B′

2) → H̃0(B2) → H0(B2,B′
2).

The relative homology group H0(B2,B′
2) vanishes because B′

2 is the 0-skeleton of B2. Since
H̃0(B2) is not zero, α : H1(B2,B′

2) → H̃0(B′
2) is not surjective. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. Let OK be a quadratic imaginary number ring which is a PID but
not Euclidean. By Proposition 2.12, B2 is not connected.

By Propositions 4.5 and 4.6 for n � 3 and by Proposition 4.7 for n = 2, the map

α : Hn−1(Bn,B′
n) → Stn

is not surjective. The image of α is the submodule of the Steinberg module generated by integral
apartment classes. Thus, Stn(K) is not generated by integral apartment classes. �

Remark 4.8. The arguments show the Steinberg module of any PID is not generated by
integral apartment classes if B2 not connected. See Cohn [9, Theorem C] and Church–Farb–
Putman [7, Proof of Proposition 2.1] for examples of rings of integers in function fields with
B2 not connected.

5. Non-vanishing of top degree cohomology

In this section, we show that our proof of non-integrality can sometimes be adapted to show
non-vanishing of the cohomology in the virtual cohomological dimension. Throughout, d will
denote a negative squarefree integer.
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5.1. An equivariant calculation of H2(SL2(Od); Q) for d = −43, −67, −163

We begin by recalling a calculation of H2(SL2(Od); Q) for d = −43,−67,−163 and then
describe our calculation of H2(GL2(Od); Q) for these rings. We also compute the torsion at
primes greater than three. Note that ν2 = 2 so this is the virtual cohomological dimension.
Since the units in these rings are {−1, 1}, Hi(SLn(Od)) is naturally an Z/2Z-representation.
Knowing both Hi(SLn(Od); Q) and Hi(GLn(Od); Q) allows one to compute Hi(SLn(Od); Q)
as a Z/2Z–representation.

The following was proven by Rahm [15, Proposition 1], with some cases previously known
by the work of Vogtmann [21]. Rahm’s result concerns the integer homology of the group
PSL2(Od), whose rational homology agrees with that of SL2(Od).

Theorem 5.1 [15, Proposition 1]. Let Od denote the ring of integers in the quadratic
number field Q(

√
d). Then

dimQ H2(SL2(Od); Q) �

⎧⎪⎨⎪⎩
1 for d = −43,
2 for d = −67,
6 for d = −163.

We now describe the analogous calculation for GL2(Od). This will follow from the methods
of [1; 10, § 3; 17; 19, § 2]. For any positive integer b, let Sb be the Serre class of finite abelian
groups with orders only divisible by primes less than or equal to b [16]. Let Γ be a finite-index
subgroup in GLn(OK). If b is larger than all the primes dividing the orders of finite subgroups
of Γ, then modulo Sb the group cohomology of Γ can be computed using the homology of
the Voronoi complex Vorn,d, a complex coming from a decomposition of a certain space of
Hermitian forms. In particular, up to torsion divisible by primes less than or equal to b, the
Voronoi complex captures the group cohomology. The number b can be explicitly bounded
from above. We refer the reader to [10, § 3.1] and [17, § 3] for the precise definition of Vorn,d.
We give a brief description in the proof of Theorem 5.5.

Proposition 5.2 [17, Lemma 3.9]. Let p be an odd prime, and let K be an imaginary
quadratic field. If g ∈ GLn(K) has order p, then

p �
{
n + 1 if p ≡ 1 mod 4,

2n + 1 otherwise.

Theorem 5.3 [17, Theorem 3.7]. Let b be an upper bound on the torsion primes for
GLn(Od). Modulo the Serre class Sb,

Hi(Vorn,d) ∼= Hi−(n−1)(GLn(Od);Stn(Q(
√
d))) ∼= Hn2−1−i(GLn(Od)).

By Proposition 5.2, the torsion primes for GL2(Od) are 2 and 3.

Corollary 5.4. Modulo S3,

H1(Vor2,d) ∼= H0(GL2(Od);Stn(Q(
√
d))) ∼= H2(GL2(Od)).

Theorem 5.5.

H1(Vor2,−43) ∼= Z/2Z, H1(Vor2,−67) ∼= (Z/2Z)2, H1(Vor2,−163) ∼= (Z/2Z)6,

H2(Vor2,−43) ∼= Z/2Z, H2(Vor2,−67) ∼= Z/2Z, H2(Vor2,−163) ∼= (Z/2Z)2.
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Proof. The algorithms for computing Voronoi homology are given in [17, § 6]. The three
stages are:

(1) determining the perfect forms;
(2) computing the Voronoi complex and the differentials;
(3) computing the homology.

We implemented these steps using magma [5] and lrs Vertex Enumeration/Convex Hull package
[3], a C implementation of the reverse search algorithm for vertex enumeration/convex hull
problems. We include some details to give a sense of the computational task. We remark the
determination of perfect forms is already known [23], and the current computational results
are consistent with the earlier results.

Let H2(C) denote the 4-dimensional real vector space of 2 × 2 Hermitian matrices with
complex coefficients. Using the chosen complex embedding of K = Q(

√
d), we can view H2(K),

the Hermitian matrices with coefficients in K, as a subset of H2(C). Moreover, this embedding
allows us to view H2(C) as a Q-vector space such that the rational points of H2(C) are
exactly H2(K). Let C∗ ⊂ H2(C) denote the non-zero positive semi-definite Hermitian forms
with K-rational kernel, and let X denote the quotient of C∗ by positive homothety. There is a
natural identification of a subset of X∗ with hyperbolic 3-space H3. Voronoi theory describes a
decomposition of X∗ in terms of configurations of minimal vectors of Hermitian forms, which
gives rise to a tessellation of H3 by ideal 3-dimensional hyperbolic polytopes. These polytopes
with certain gluing maps determine the Voronoi complex and differentials. The Voronoi complex
is obtained by working relative to the boundary, in this case exactly the 0-cells.

The computations for d = −67 and d = −163 are larger, so we just summarize some of the
key features after giving details for the case d = −43.

Let ω = 1+
√−43
2 . Consider the vectors v1, v2, . . . , v21:

[
−3ω + 3
2ω − 12

]
,

[
−ω + 3
−5

]
,

[
3

−ω − 2

]
,

[
2ω + 7
−4ω + 2

]
,

[
−ω + 10
−2ω − 10

]
,

[
ω

−ω + 3

]
,

[
1
−1

]
,

[
ω + 1
−ω + 2

]
,

[
−ω + 4
−5

]
,

[
4

−ω − 3

]
,

[
ω

−ω + 2

]
,

[
ω + 1
−ω + 3

]
,

[
3

−ω − 1

]
,

[
4

−ω − 2

]
,

[
0
1

]
,

[
1
0

]
,

[
−ω + 2
−4

]
,

[
−ω + 2
−3

]
,

[
ω + 2
−ω + 2

]
,

[
−ω + 3
−4

]
,

[
4

−ω − 1

]
.

Using the Voronoi algorithm adapted to this case, we find that there are four equivalence classes
of perfect forms. We describe a perfect form by its set of minimal vectors (up to ±1) by giving
the indices of the vectors that are the minimal vectors for that form. For example, {1, 2, 5}
represents a form with minimal vectors {±v1,±v2,±v5}. We find explicit representatives for
each class of perfect forms:

φ1 = {1, 2, 3, 4, 5, 6},

φ2 = {6, 7, 8, 9, 10, 11},

φ3 = {2, 3, 6, 7, 8, 12, 13, 14, 15},

φ4 = {7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}.

These perfect forms determine hyperbolic polytopes. The facets of φ1 are

{1, 3, 5, 6}, {2, 4, 5, 6}, {1, 2, 3, 4}, {2, 3, 6}, {1, 4, 5}.
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The facets of φ2 are

{3, 4, 5}, {2, 3, 4, 6}, {1, 4, 5, 6}, {1, 2, 3, 5}, {1, 2, 6}.
The facets of φ3 are

{1, 2, 3, 6, 7, 8}, {1, 2, 9}, {5, 6, 8}, {1, 5, 8, 9}, {2, 4, 7, 9}, {4, 5, 9}, {3, 4, 5, 6}, {3, 4, 7}.
The facets of φ4 are

{1, 3, 4, 9, 10, 12}, {2, 5, 6, 9, 11, 12}, {4, 5, 7, 8, 10, 11}, {6, 7, 11},

{1, 2, 3, 6, 7, 8}, {1, 2, 12}, {3, 8, 10}, {4, 5, 9}.
We see that φ1 and φ2 give rise to triangular prisms, φ3 gives rise to a hexagonal cap, and φ4

gives rise to a truncated tetrahedron.

The polytopes are given explicitly, and the gluing maps can be computed. There are four types
of 3-dimensional cells, six types of 2-dimensional faces, and four types of 1-dimensional edges.
We have H1(Vor2,−43) is the cokernel of the differential from 2-cells to 1-cells, and H2(Vor2,−43)
is the kernel of the differential from 2-cells to 1-cells modulo the image of the differential from
3-cells to 2-cells. An explicit linear algebra computation gives the result.

For d = −67, there are seven equivalence classes of perfect forms that give rise to one
octahedron, two triangular prisms, one hexagonal cap, two square pyramids, and one truncated
tetrahedron. This gives seven types of 3-dimensional cells, thirteen types of 2-dimensional faces,
and eight types of 1-dimensional edges. Again, we compute the differentials, and an explicit
linear algebra computation gives the result.

For d = −163, there are 25 equivalence classes of perfect forms that give rise to eleven
tetrahedra, one cuboctahedron, eight triangular prisms, two hexagonal caps, and three square
pyramids. This gives 25 types of 3-dimensional cells, 49 types of 2-dimensional faces, and 27
types of 1-dimensional edges. Again, we compute the differentials, and an explicit linear algebra
computation gives the result. �

Corollary 5.6. For d ∈ {−43,−67,−163}, modulo S3,

H0(GL2(Od);Stn(Q(
√
d))) ∼= H2(GL2(Od)) ∼= 0.

5.2. Non-vanishing for 2n � 4

The goal of this subsection is to leverage the calculations of the previous section to prove
Theorem 1.3.

Lemma 5.7. Let R be a PID. Then H̃0(B2; Q)SL2(R)
∼= (St2 ⊗ Q)SL2(R).

Proof. We will first show that H1(B2,B′
2; Q)SL2(R)

∼= 0 by the usual argument showing
integrality implies homological vanishing (see proof of [7, Theorem C]). As discussed in § 4,
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H1(B2,B′
2) is the quotient of the free abelian group on symbols (F1, F2) with F1 and F2 rank-

one free submodules of R2 with R2 = F1 ⊕ F2 modulo the relation that (F1, F2) = −(F2, F1).
Let g be an element of SL2(R) with g(F1) = F2 and g(F2) = F1. We have that g acts via
multiplication by −1 on (F1, F2). Thus, (F1, F2) = −(F1, F2) in H1(B2,B′

2; Q)SL2(R). Since 2 is
invertible in Q, this element and hence the group vanishes.

Since B′
2 is the zero skeleton of B2, H0(B2,B′

2; Q) ∼= 0. Since R is a PID, B′
2
∼= T2. Thus,

H̃0(B′
2) ∼= St2. The claim now follows from applying the coinvariants functor to the exact

sequence:

H1(B2,B′
2; Q) → H̃0(B′

2; Q) → H̃0(B2; Q) → H0(B2,B′
2; Q).

�

Since Stn(R) is a GLn(R)-representation, Stn(R)SLn(R) inherits the structure of a
GLn(R)/SLn(R)-representation. Similarly, the SLn(R)-coinvariants of⊕

V⊆Rn

rank(V )=2

St(Rn/V ) ⊗ H̃0(B(V ))

has a natural linear action of GLn(R)/SLn(R). Combining results from the previous section
gives the following.

Lemma 5.8. Let R be a PID with group of units {±1}. There is a surjection

Stn(R)SLn(R) −→

⎛⎜⎜⎝ ⊕
V⊆Rn

rank(V )=2

St(Rn/V ) ⊗ H̃0(B(V ))

⎞⎟⎟⎠
SLn(R)

.

This surjection is equivariant with respect to the action of Z/2Z ∼= GLn(R)/SLn(R).

Proof. By Lemma 4.1 and Proposition 4.3, there is a GLn(R)-equivariant surjection

Stn(R) −→ Hn−3(Tn; H̃0(B(−))) ∼=
⊕

V⊆Rn

rank(V )=2

St(Rn/V ) ⊗ H̃0(B(V )).

The claim follows from the right-exactness of coinvariants. �

Both (Stn−2(R))SLn−2(R) and (H̃0(B2))SL2(R) have a linear action by
R× ∼= GLn−2(R)/SLn−2(R) ∼= GL2(R)/SL2(R). Because R× is commutative,
(Stn−2(R))SLn−2(R) ⊗Z[R×] (H̃0(B2))SL2(R) has a linear action by R× (that only acts on
one factor) as well.

Lemma 5.9. Let R be a PID with group of units {±1}. There is an isomorphism⎛⎜⎜⎝ ⊕
V⊆Rn

rank(V )=2

St(Rn/V ) ⊗ H̃0(B(V ))

⎞⎟⎟⎠
SLn(R)

∼= (Stn−2(R))SLn−2(R) ⊗Z[Z/2Z] (H̃0(B2))SL2(R),

and this isomorphism is equivariant with respect to the action of Z/2Z ∼= GLn(R)/SLn(R) ∼=
R×.

Proof. Define

G =

{[
A ∗
0 B

] ∣∣∣∣∣ A ∈ GL2(R), B ∈ GLn−2(R), det(A)det(B) = 1

}
⊆ SLn(R)
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to be the stabilizer of the standard copy of R2 in Rn. Then⎛⎜⎜⎝ ⊕
V⊆Rn

rank(V )=2

St(Rn/V ) ⊗Z H̃0(B(V ))

⎞⎟⎟⎠
SLn(R)

∼= Z ⊗Z[SLn(R)]

⎛⎜⎜⎝ ⊕
V⊆Rn

rank(V )=2

St(Rn/V ) ⊗Z H̃0(B(V ))

⎞⎟⎟⎠
∼= Z ⊗Z[SLn(R)]

(
Z[SLn(R)] ⊗G

(
St(Rn/R2) ⊗Z H̃0(B(R2))

))
∼= Z ⊗G

(
St(Rn/R2) ⊗Z H̃0(B(R2))

)
.

Observe that the subgroup [Id2 ∗
0 Idn−2

] ⊆ G acts trivially, so the action by G factors through an
action of

H =

{[
A 0
0 B

] ∣∣∣∣∣ A ∈ GL2(R), B ∈ GLn−2(R), det(A)det(B) = 1

}
∼= (SL2(R) × SLn−2(R)) � Z/2Z.

Thus,

Z ⊗G

(
St(Rn/R2) ⊗Z H̃0(B(R2))

)
∼=

(
St(Rn/R2) ⊗Z H̃0(B(R2))

)
H

∼=
((

Stn−2(Rn/R2) ⊗Z H̃0(B(R2))
)

SL2(R)×SLn−2(R)

)
H/(SL2(R)×SLn−2(R))

∼=
(
Stn−2(Rn/R2)SLn−2(R) ⊗Z H̃0(B(R2))SL2(R)

)
Z/2Z

∼= Stn−2(Rn/R2)SLn−2(R) ⊗Z[Z/2Z] H̃0(B(R2))SL2(R)

as claimed. �

By Borel–Serre duality, the following is equivalent to Theorem 1.3.

Proposition 5.10. For all n � 1, we have

dimQ H0(SL2n(Od); Q ⊗ St2n(Q(
√
d))) �

⎧⎪⎨⎪⎩
1 for d = −43,

2n for d = −67,

6n for d = −163.

Proof. Recall that the coinvariants Q ⊗Z (Stn(Q(
√
d)))SLn(Od) are a representation of

Z/2Z ∼= GLn(Od)/SLn(Od). Let tn denote the multiplicity of the trivial representation, and sn
denote the multiplicity of the sign representation in Q ⊗Z (Stn(Q(

√
d)))SLn(Od). By Lemma 5.7,

Lemma 5.8, and Lemma 5.9, there is an equivariant surjection

(Stn)SLn
⊗ Q �

(
(Stn−2)SLn−2 ⊗Z[Z/2Z] (St2)SL2

)
⊗ Q
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and so

tn � tn−2t2 and sn � sn−2s2.

Thus,

dimQ H0(SL2n(Od); Q ⊗ St2n(Q(
√
d))) = t2n + s2n � (t2)n + (s2)n.

Since

tn = dimQ H0(GLn(Od); Q ⊗ Stn(Q(
√
d))) and tn + sn = dimQ H0(SLn(Od); Q ⊗ Stn(Q(

√
d))),

Theorem 5.1 and Corollary 5.6 give t2 = 0 and

s2 =

⎧⎪⎨⎪⎩
1 for d = −43,
2 for d = −67,
6 for d = −163. �

Remark 5.11. Since s1 = 0, one cannot easily use the proof strategy of Theorem 1.3 to
show non-vanishing of Hνn(SLn(Od); Q) for all n and d = −43,−67, or −163. In fact, sn = 0
for all n odd. To see this, note that for n odd, the Z/2Z-action on Hνn(SLn(Od); Q) is induced
by the action on the Tits building given by multiplication by ± Idn which is trivial at the level
of posets.

Remark 5.12. Let d = −19,−43,−67, or −163, let p be a prime ideal in Od, and let
R be Od with p inverted. Then it follows from Church–Farb–Putman [7, Theorem A] that
Stn(Q(

√
d)) is generated by integral (with respect to the ring R) apartment classes. The proof

of [7, Theorem C] shows that H0(SLn(R);Stn(Q(
√
d)) ⊗ Z[ 12 ]) ∼= 0 for all n � 2. In other words,

the phenomenon explored in this paper do not persist after inverting even a single prime.

Remark 5.13. Let d = −43, −67, or −163. The bounds in Theorem 1.3 come from a
surjection

H0(SL2n(Od);Stn(Q(
√
d)) ⊗ Q) �

(
H0(SL2(Od);St2(Q(

√
d)); Q)

)n⊗Z/2Z

.

It follows from our proofs that this map is induced by taking coinvariants of a (not necessarily
surjective) map

Δ: St2n(Q(
√
d)) →

⊕
0�V1�V2�···�Vn−1�(Q(

√
d))2n

, dimVi even

(⊗
i

St(Vi+1/Vi)

)
.

Since (not necessarily integral) apartment classes generate the Steinberg module, it suffices to
describe the map Δ on apartment classes. Fix lines L1, . . . , L2n with (Q(

√
d))2n = L1 ⊕ · · · ⊕

L2n and let [L1, . . . , L2n] ∈ St2n(Q(
√
d)) denote the associated apartment class. Let Xn be the

set of permutations of 2n such that σ(2i− 1) < σ(2i) for all i. After unpacking the definition
of the connecting homomorphism used in our proof, one can check that Δ is given by the
formula:

Δ([L1, . . . , L2n]) =
∑

σ∈Xn

sgn(σ)[Lσ(1), Lσ(2)] ⊗ · · · ⊗ [Lσ(2n−1), Lσ(2n)]

with [Lσ(2i−1), Lσ(2i)] ∈ St((Lσ(1) ⊕ · · · ⊕ Lσ(2i))/(Lσ(1) ⊕ · · · ⊕ Lσ(2i−2))).
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