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Abstract 

Mild driving, i.e., accelerating slowly and smoothly, braking less frequently, and increasing 

spacing between vehicles to avoid harsh braking, has been shown to be effective in the 

improvement of fuel economy, especially for conventional vehicles with an internal combustion 

engine. For electric vehicles (EVs), it is implied that the energy consumption can also be improved 

by driving less aggressively. However, the extent in which the driver behavior reduces the energy 

consumption of an EV in various traffic environments has not been fully explored. A simulated 

environment can create a greater variety of driving cycles and conditions, thereby providing more 

insight as to how driving aggressiveness affects the vehicle’s energy consumption. 

The objective of this study is to evaluate the impact of the driving behavior on the energy 

consumption a battery electric vehicle (BEV) under various traffic scenarios. To simulate the 

driver behavior, a driver model is typically required to replicate the behavior of a human driver 

while traversing a given route (e.g., maintaining a safe distance from the preceding vehicle).  

Various driver models can be found in literature. Among these, the widely used Intelligent Driver 

Model is chosen in this study to characterize the different levels of driver aggressiveness. To that 

end, the microscopic traffic simulator, PTV Vissim, is used to simulate various realistic traffic 

environments in which a human driver’s behavior can be evaluated. The co-simulation of the PTV 

Vissim Component Object Model (COM) interface in conjunction with MATLAB allows the 

energy consumption performance on an EV to be determined for various levels of driving 

aggressiveness. The results obtained from the co-simulation with a virtual traffic environment are 
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compared to those from single-lane car-following scenarios created using EPA (Environmental 

Protection Agency) standardized driving schedules.  

The results of the single-lane car-following scenario shows that there is a slight increase (<1.5%) 

in energy usage per kilometer by changing from a mild driving style to an aggressive driving style. 

For the city driving cycle created in Vissim, aggressive driving can lead to a 6.6% decrease in the 

average energy usage per kilometer driven than mild driving if it allows the vehicle to avoid red 

traffic signals and general vehicle traffic. However, driving at medium-level aggression is not 

quick enough to avoid these obstacles and consequently increases the average energy usage per 

kilometer by 1.1% over mild driving. For the highway driving cycle, the benefits of driving milder 

can be realized, as switching from aggressive to mild driving results in a 3.4% decrease in average 

energy usage per kilometer.  The results of these driving tests demonstrate that the level of driving 

aggressiveness cannot be fixed and should instead adapt to the traffic environment in order to 

maximize the battery life and range of an EV.  
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Chapter 1: Introduction 

1.1 Background and Motivation 

In an effort to reduce greenhouse gas (GHG) emissions and the impact vehicles have on global 

warming, battery electric vehicles (BEVs) have been growing alternative to internal combustion 

engine (ICE) vehicles owing to their lack of vehicle emissions. According to a study done by the 

Edison Electric Institute [1], the number of EVs sales, which includes BEVs and plug-in hybrid 

electric vehicles (PHEVs), has increased from 200,000 in 2017 to 361,000 in 2018 in the U.S. 

Since 2011, the number of EVs in the U.S. has continuously increased, reaching to more than 1.18 

million EVs on the road in the U.S. as of March 2019. 

 

Figure 1: Electric vehicles on the road in the U.S. from 2011 to 2019 [1] 

 Although BEVs do not directly generate any greenhouse gases, they can generate indirect 

emissions based on their source of electricity. As a result, it is significant to reduce the overall
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 energy consumption of BEVs in order to reduce the indirect production of GHGs and their impact 

to the electrical grid. 

One key method of reducing the energy usage of a BEV is to adjust the driver behavior. Generally, 

reducing the acceleration rate, braking less frequently, maintaining a large gap between vehicles, 

and reducing the vehicle speed can improve the energy usage of the vehicle. [2] Since electric 

vehicles are capable of regenerative braking, some of the energy can be recuperated from braking, 

and thereby reducing the effect of driving more aggressively. While there have been several studies 

done on the impact of the driver behavior on the fuel economy of ICE vehicles, there are few that 

have studied the impact of BEVs.  

1.2 Literature Review 

Several studies that have investigated the impact of driving behavior on a vehicle’s energy 

consumption. Bingham et. al. [3] investigated the effect of driving behavior on BEVs energy 

consumption and range using data collected from real-world driving performed by one driver along 

predefined routes in rural parts of the United Kingdom. The findings from this study showed that 

there was a 30% increase in energy consumption over the specified driving cycle by changing from 

moderate driving to more aggressive driving.  

Since this study simulates the driver behavior using the Intelligent Driver Model (IDM), other 

studies were reviewed for their usage of the model. The authors in [4] had developed a modified 

version of the IDM called the Enhanced Driver Model (EDM), which adds a tuning parameter that 

is based on driver aggressiveness, as well as an algorithm to detect traffic signals and stop signs, 

so the model can react to more driving scenarios.  The driver model was evaluated on a mild-

hybrid vehicle model over real-world driving data to show that the EDM can capture the behavior 
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of human drivers. In previous work [5], the IDM was used in a simulation study to evaluate the 

energy consumption of a BEV with an integrated thermal management system model. The model 

was tested under different levels of driver aggressiveness in a car-following scenario for 3 different 

EPA driving cycles. 

The authors in [6] combined MATLAB/Simulink, the IDM, PTV Vissim, and CarSim to evaluate 

the fuel economy of an ICE vehicle for different levels of driver aggressiveness and traffic density 

over three driving cycles based on real roads in Columbus, Ohio and Ann Arbor, Michigan. The 

IDM was modified in this study to be capable of stopping for traffic lights and stop signs.  

1.3 Contribution from this Study 

The work done in this paper makes several contributions on top of the work done in [6]. The main 

contribution is studying the impact of the driving behavior on an electric vehicle instead of an ICE 

vehicle like in [6]. While [3] uses real-world results to show how much aggressive driving impacts 

the energy consumption of an electric vehicle, having a simulation environment would allow for 

more variety of electric vehicles, driving behaviors, and traffic environments to be tested. 

Additionally, it would allow for the test to be repeatable across different vehicles, without having 

to drive each vehicle, which costs time and resources. In [3], one driver and a fixed driving cycle 

based in the United Kingdom are considered, so the results may be different on roads in the U.S., 

or for U.S. drivers.  

This study also modifies the IDM and adds an object detection algorithm for the vehicle to respond 

to other vehicles, traffic signals, and speed limits set in Vissim. A separate free-flow acceleration 

model based on the IDM is also used for situations where there are no objects in front the IDM-

based vehicle. The levels of driver aggressiveness studied here also take into consideration the 
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time headway as a variable since more aggressive drivers leave shorter gaps between vehicles. The 

time headway was not considered in [6] as a part of the levels of driving aggressiveness. 

Additionally, the vehicle is allowed to change lanes based on the driver model used in Vissim. 

Lane changing was also omitted in [6].  

Lastly, this study aims to provide more detail on the processes involved in combining the driver 

model, vehicle model, and traffic environment all into one simulation using MATLAB and PTV 

Vissim, as it is briefly presented in [6]. This study will make this energy consumption evaluation 

simulation more accessible to the autonomous and connected vehicle and electrified vehicle 

research community. 

1.4 Objectives and Organization 

The chapters in this paper break up the combined model into several individual models, which 

describe the driver behavior, the vehicle powertrain model, and the traffic environment simulation. 

Chapter 2 discusses existing driver models and why the Intelligent Driver Model (IDM) was 

selected for this study. It also discusses how the IDM functions and how different levels of driver 

aggressiveness were set using its parameters. Lastly, the objection detection algorithm and its 

integration in the Vissim traffic environment are described.  

Chapter 3 explains why an electric vehicle was chosen for this study and the significance of electric 

vehicles in reducing emissions. Moreover, this chapter presents the vehicle’s specifications, the 

powertrain model, and how the energy consumption is determined.  

Chapter 4 discusses the two driving cycles in which the driver model and vehicle will be evaluated. 

The first section uses three driving cycles from the Environmental Protection Agency (EPA) to 

simulate several car-following scenarios as a basis for comparison. The second section shows two 
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driving cycles created in Vissim, one city-based and one highway-based, and the simulation set-

up for both scenarios.  

Chapter 5 analyzes the results of 100 simulation runs of each of these driving cycles and evaluates 

the energy consumption for each level of driver aggressiveness. The car-following driving cycles 

using the EPA driving cycles are compared to the driving cycles created in Vissim where the 

vehicle is capable of changing lanes and interacting with the objects in Vissim. Lastly, Chapter 6 

summarizes the results of this study and discusses several directions for future work. 
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Chapter 2: Driver Model 

2.1 Modeling Driver Behavior 

One of the key factors in solving today’s traffic congestion problem is understanding how people 

drive. Human driving behavior places constraints on how engineers design roads and highways, 

and thereby how traffic is regulated. To better understand this phenomena, researchers and 

engineers have developed mathematical models that represent human driving in order to simulate 

real-world traffic scenarios. These models are known as microscopic models since they describe 

the behavior of a single vehicle rather than the general traffic flow behavior of many vehicles. 

In traffic simulation, the simplest driver models are usually car-following models, in which one 

vehicle is following another vehicle from a certain distance. Typically, these driver models assume 

that the vehicles are in the same lane and that the speed of the following vehicle is continuously 

adjusted to maintain a safe distance from the leading vehicle in order to avoid collision. Based on 

how the parameters are set in the models, the vehicles can follow more or less aggressively. More 

advanced models include features for changing lanes and making decisions such as deciding which 

direction to take at an intersection. However, since the focus is on the longitudinal driving 

behavior, which dominates the energy consumption of driving, only single-lane car-following 

acceleration models will be studied.  

2.2 Literature Review of Driver Models 

In the field of traffic flow dynamics, several driver models have been developed to describe the 

dynamics of traffic flow.  According to [7], some of the earliest car-following models were created
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 by Reuschel in 1950 [8] and Pipes in 1953 [9]. These models established the concept that the 

safety distance, which is the minimum bumper-to-bumper distance to the vehicle in front, should 

be proportional to the speed of the vehicle. Another early model to use this concept was the 

Optimal Velocity Model (OVM), which is a continuous-time car-following model that calculates 

the acceleration based on the difference between the actual speed and the optimal speed over the 

adaption time. [7] The Newell car-following model also applied this concept but had made it 

applicable to discrete time and had introduced the desired speed as an additional parameter. This 

created a free-flow region, so the vehicle was not restricted to only car-following scenarios. [10] 

The problem with some of these earlier models was that they were sometimes difficult to interpret 

because of their abstract parameters. The Gipps model [11] used more tangible parameters, such 

as the vehicle maximum acceleration, the most severe braking rate, and the desired speed, which 

could be more clearly defined. The author in [7] states that Gipps also ends up producing more 

realistic results than the Newell in highway scenarios. The Krauß model in [12] expands upon the 

Gipps model to gain further understanding of different types of congestion found in traffic flow. 

Other models, such as the Das and Asundi model, focused more on traffic density and the overall 

vehicle flow, which are more analogous to fluid dynamics [13]. Lastly, the Intelligent Driver 

Model [14] simplifies the parameters for microscopic vehicle dynamics and provides a robust 

model that functions well in many traffic applications. The reasons for focusing on this driver 

model will be discussed in the following section. 

2.3 Intelligent Driver Model 

2.3.1 Overview of Intelligent Driver Model 

The Intelligent Driver Model (IDM) was first introduced in [14] as a microscopic single-lane car-

following driver model to simulate congested traffic on Germany freeways. The IDM was 
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proposed in this paper as a solution that avoids the problems with existing driver models. To 

summarize the shortcomings with other models according to the authors, the goal was to create a 

simple model that features few, straightforward parameters, asymmetric acceleration and braking, 

produces no accidents, has realistic driver behavior for acceleration and braking, accounts for the 

driver’s desired speed, and can function in a deterministic approach. For this study, other driver 

models, such as the Gipps model [11], the Krauß model [12], and the Das and Asundi model [13] 

were reviewed and compared against the IDM. According the authors in [14], the Gipps and Krauß 

models do not function as well at the deterministic limit, which is where the driving behaviors can 

be studied for a given driver model. The Das and Asundi is better suited for applications where the 

speed and density of traffic flow are being studied and would not work well for this study since 

the focus is on a single vehicle.  

Lastly, the IDM has been applied in various other literature and has been shown to be responsive 

to modification. In [15], the IDM was used to create a hypothetical lead vehicle driving cycle for 

an autonomous vehicle to follow for fuel economy evaluation. In [4], the IDM was improved upon 

by adjusting the braking dynamics, so it adapts more realistically to a greater variety of traffic 

conditions. The IDM was also modified to react to stop signs and traffic signals and implemented 

in the microscopic traffic simulation software PTV Vissim for fuel economy testing in [6]. In 

addition, [7] further explores the functionality and mechanics of the IDM, including how to add 

more human-like behavior to the model and how it responds to various traffic scenarios. As a result 

of its widespread application, the IDM is chosen as a basis for modeling human driving behavior. 

2.3.2 Mechanics of Intelligent Driver Model 

Before discussing the mechanics of the IDM, there is some terminology that must be defined to 

understand how the vehicles are positioned in space. In the given single-lane car-following 
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scenario, the vehicle α using IDM follows the preceding vehicle α-1 down a road. The position, 

speed, and acceleration at each time step t for each vehicle are defined in Figure 1.  

 
Figure 2: Overview of single-lane car-following scenario 

The position of each vehicle is measured at the front bumper. The gap s is the distance between 

the rear bumper of the leading vehicle and the front bumper of the following vehicle at any time, 

shown in Eq. (1). The gap s takes into consideration the length of the preceding vehicle lα-1.  

 𝑠 = 𝑥𝛼−1 − 𝑥𝛼 − 𝑙𝛼−1  (1) 

The IDM is based on two equations, one for the acceleration of the IDM vehicle and one for the 

desired safe gap that the IDM vehicle wants to be at from the preceding vehicle. In a car-following 

scenario, the IDM determines the acceleration needed for the vehicle to maintain a safe distance 

from the preceding vehicle based on the desired safe gap s*(vα, Δv). The acceleration aα(t) of the 

IDM vehicle is described by Eq. (2) and it is a function of the desired safe gap s* between the two 

vehicles computed from Eq. (3) as follows:  

 𝑎𝛼 =
𝑑𝑣𝛼

𝑑𝑡
= 𝑎𝛼,𝑚𝑎𝑥 [1 − (

𝑣𝛼

𝑣0
)
𝛿

− (
𝑠∗(𝑣𝛼,𝛥𝑣)

𝑠
)
2

]  (2) 

 𝑠∗(𝑣𝛼 , 𝛥𝑣) = 𝑠0 + 𝑠1√
𝑣𝛼

𝑣0
+ 𝑣𝛼𝑇 +

𝑣𝛼𝛥𝑣

2√𝑎𝛼,𝑚𝑎𝑥𝑏𝛼
  (3) 
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The acceleration of the following vehicle is divided into two parts. The first part determines the 

acceleration of the vehicle to its desired speed v0, which is shown in Eq. (4). 

 
𝑑𝑣𝛼

𝑑𝑡
= 𝑎𝛼,𝑚𝑎𝑥 (1 − (

𝑣𝛼

𝑣0
)
𝛿
)  (4) 

The acceleration exponent δ in the acceleration controls the rate at which the acceleration is 

reduced as the vehicle speed approaches v0. Most simulations set δ = 4 as a standard value such as 

in [4], [14], and [16]. When accelerating from a complete stop, the vehicle will accelerate at its 

maximum acceleration and then taper off as it approaches its desired speed. While this may seem 

unrealistic, this is only done during the first time-step, and all subsequent acceleration values are 

continually reduced, resulting in a gradual increase in speed.  

The latter part of Eq. (2) is the intelligent braking model based on the desired safety gap and the 

gap s between the vehicles: 

 
𝑑𝑣𝛼

𝑑𝑡
= −𝑎𝛼,𝑚𝑎𝑥 (

𝑠∗(𝑣𝛼𝛥𝑣)

𝑠
)
2

  (5) 

The braking is primarily dependent on how the desired safe gap compares to the actual gap between 

the vehicles. The desired safe gap shown in Eq. (3) is also split into two parts, one for conditions 

where both vehicle speeds are the same (such as when stopped or cruising at constant speed), and 

when the vehicle speeds are different. When the IDM vehicle approaches a stop sign or stopped 

vehicle, the term s0, as known as the jam distance, defines the minimum gap between the IDM 

vehicle and the object in front of it. [14] This is the only term not dependent on the vehicle speed 

and will affect the spacing of vehicles during traffic jams. The other jam distance s1 is an additional 

gap that increases nonlinearly as the vehicle approaches its desired speed. The maximum value of 

this term is achieved when the vehicle reaches its desired speed. However, due to its nonlinear 

behavior, the term s1 is typically set to zero. [14] 
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The time headway T is defined as the time that it takes for the front bumper of the IDM vehicle to 

reach the front bumper of the preceding vehicle. Essentially this is the time gap between the two 

vehicles plus the time for a vehicle to move a whole vehicle length l. It is analogous to the distance 

headway being the distance between the front bumpers of the two vehicles. Lastly, the final term 

of s* is dependent on the approach speed Δv, which is defined as Δv = vα – vα-1. In cases where the 

speed of the IDM vehicle is greater than that of the preceding vehicle, Δv will be positive, thereby 

increasing s* and causing the IDM vehicle to brake to avoid collision. On the other hand, when the 

IDM vehicle is slower than the preceding vehicle, Δv is negative and therefore the s* decreases, as 

there is more distance between vehicles. As a result, the IDM vehicle will accelerate to reduce the 

gap. 

The braking is also affected by the comfortable braking term b. The authors in [7] studied the 

behavior of this term in isolation by removing the acceleration component and the equilibrium 

terms s0 + vT. When the IDM vehicle is approaching a stop light or stopped vehicle, the preceding 

object speed vα-1 is zero and the distance between the IDM vehicle and the preceding object is s. 

Therefore, the difference in speeds Δv is equal to the IDM vehicle speed vα, and results in the 

following: 

 𝑎𝛼 = −(
𝑣𝛼
2

2𝑠
)
2
1

𝑏
= −

𝑏𝑘𝑖𝑛
2

𝑏
  (6) 

Where the kinematic deceleration bkin is defined as: 

 𝑏𝑘𝑖𝑛 =
𝑣𝛼
2

2𝑠
  (7) 

In critical situations where bkin is greater than b, the IDM vehicle will exceed bkin to avoid collision 

with the preceding vehicle. This behavior of the IDM makes it difficult to estimate the maximum 

braking acceleration of the vehicle since it can exceed the value of b. In non-critical situations 
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where bkin is less than b, the deceleration is less than bkin. Generally, the IDM will attempt to 

equalize the comfortable deceleration and kinematic deceleration [7].  

To illustrate this effect, the following figure shows the effect of different values of b when a vehicle 

is approaching a stop light. The stop light is positioned 60m away and the vehicle has an initial 

speed of 54 km/hr. At t = 0s, the light turns red. The plot shows that setting the value for b too low 

causes the vehicle to initially overestimate the braking effort needed. For this scenario, bkin is 1.875 

m/s2. Although b = 2 m/s2 is greater than bkin, bkin is re-evaluated at every time step, and therefore 

the required braking effort is changing at every time step. This is why the value of b is not a hard 

limit and can be exceeded based on the driving conditions. 

 

Figure 3: IDM vehicle braking for red light 60m away for different values of comfortable deceleration 

2.3.3 Intelligent Driver Model Parameter Selection for Driving Behaviors 

From the kinematic equations, the speed and position of the following vehicle can be found at 

every time step based on the computed acceleration. Based on how the parameters are set for the 

IDM, the vehicle behavior can be tuned to be more aggressive or more relaxed. By studying the 

effect of each parameter, one can create driving profiles that describe various levels of driver 

aggressiveness or mildness. Various sources are considered to determine how the IDM parameters 

should be set. Table 1 summarizes how different literature sets the parameters for the IDM. 
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 Source 

Parameters 

Highway 

Driving [7]  

City Driving 

[7] 

Typical Vehicle 

[4] 

Vehicle using IDM 

[17] 

Desired speed v0 [kph] 120 54 120 108 

Maximum acceleration 

amax [m/s2] 

1 1 0.73 1.4 

Acceleration exponent δ 4 4 4 4 

Comfortable 

deceleration b [m/s2] 

1.5 1.5 1.67 2 

Time headway T [s] 1 1 1.6 1.5 

Minimum gap s0 [m] 2 2 2 2 

Vehicle length lveh [m] 5 5 N/A 4.5 

Table 1: Literature review of typical IDM parameter values 

For the studies in the table, a typical vehicle has a maximum acceleration of 0.73-1.4 m/s2, a 

comfortable deceleration of 1.5-2 m/s2, and a time headway of 1-1.6s. All of them uses the same 

value for δ and the s0. To get a better perspective of how aggressive these values are, one can 

compare them to the acceleration and deceleration seen in the Environmental Protection Agency 

(EPA) driving schedules. The three driving schedules are the Urban Dynamometer Driving 

Schedule (UDDS) for city driving, the Highway Fuel Economy Driving Schedule (HWFET) for 

highway driving, and the US06 Supplemental Federal Test Procedure (US06) for aggressive 

driving. For each of these driving schedules, the average and maximum acceleration and 

deceleration are calculated and summarized in Table 2. 

 Driving Schedule 

Parameter EPA City (UDDS) EPA Hwy (HWFET) US06 

aavg [m/s2] 0.5 0.19 0.67 

amax [m/s2] 1.5 1.4 3.8 

bavg [m/s2] -0.58 -0.22 -0.73 

bmax [m/s2] -1.5 -1.5 -3.1 

Table 2: Speed, acceleration, and deceleration for EPA driving schedules 
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Comparing the information in Tables 1 and 2, one can see that the maximum acceleration values 

in Table 1 are lower than what is typically expected in both city and highway driving, and much 

lower than the maximum acceleration during aggressive driving. As a result, to meet the driving 

demands of most situations, the maximum acceleration of the IDM vehicle can be selected between 

about 1.5 m/s2 to 4 m/s2. As expected, higher maximum acceleration will result in more aggressive 

driving.  

As previously discussed, the comfortable deceleration b does not represent the maximum 

deceleration the IDM vehicle experiences. However, the maximum deceleration should be 

considered for selecting b. While the average deceleration for the driving schedules are less than 

1 m/s2, the studies reviewed in Table 1 all set b to be at least 1.5 m/s2 to avoid issues with the IDM 

overestimating the braking effort required. Higher values of b up to 3 m/s2 should be considered 

in case of emergency scenarios where higher braking effort is needed or when decelerating from 

high speeds.   

In Table 1, the time headway T ranges between 1s and 1.6s. According to [18], a 1s time headway 

is a reasonable minimum for heavy traffic scenarios, while 1-2s covers most emergency braking 

situations. For this study, the time headway will range from 1-3s because a higher value of T results 

in smoother, more efficient driving. While 3s may not always be feasible, it may cause the vehicle 

to drive slower to increase the gap between vehicle, thereby reducing the energy consumption. 

Taking into consideration the values used in other works, the parameter sets for mild, medium, 

and aggressive driving are defined as follows: 
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Driving 

Behavior 

Maximum 

Acceleration a 

[m/s2] 

Comfortable 

Deceleration b 

[m/s2] 

Time 

Headway T 

[s] 

Acceleration 

Exponent δ 

Jam 

distance 

s0 [m] 

Mild 1.5 1.5 3 4 2 

Medium 2 2.5 2 4 2 

Aggressive 3.5 3 1 4 2 

Table 3: IDM parameters chosen for mild, medium, and aggressive driving styles 

The values of the mild and aggressive category were chosen based on the maximum and minimum 

values of the parameters discussed, so the difference in behavior is more apparent. The maximum 

acceleration and deceleration of the aggressive driver is set to 3.5m/s2 and 3m/s2 because at the 

short time headway of 1s, higher acceleration and acceleration may result in oscillations and 

unstable behavior. The medium driving style falls somewhere in the middle, with slightly higher 

braking than the median of the mild and aggressive braking, and slight lower acceleration than the 

median of the maximum acceleration values of the other two styles. This was done to avoid the 

same issues as the aggressive driver given the time headway and prioritize braking over 

acceleration.  

To verify the selection leads to the desired effect, a speed trace is made to visualize the driving 

behavior. A vehicle using the IDM is placed 2000m from a wall and attempts to accelerate up to 

its desired speed of 100kph. The IDM recognizes the wall and stops the vehicle to avoid collision. 

The figure confirms the selected parameters for each driving behavior result in higher acceleration, 

higher deceleration, and later braking as the driving behavior becomes more aggressive. Therefore, 

the selected parameters can reasonably represent the basic longitudinal dynamics of these three 

driving behaviors. 
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Figure 4: Speed traces for vehicle braking for object 2000m 

2.3.4 Modifications to Intelligent Driver Model 

To implement the IDM in MATLAB, some modifications were made to allow the change the 

equation to a discrete function. Equations (2) and (3) must be combined so that there is one 

equation for the acceleration at the current time step. The approach rate Δv can be substituted by 

vα - vα-1, so that the desired safe gap s* is only dependent on the speed of the IDM vehicle. By 

substituting s* into the acceleration equation, one can define the acceleration of the IDM vehicle 

as a polynomial equation in terms of its speed. This results in the acceleration at the current time 

step i. 

𝑎𝛼 =
𝑑𝑣

𝑑𝑡
= 𝑘0 + 𝑘1𝑣𝛼

𝛿 + 𝑘2𝑣𝛼
0.5 + 𝑘3𝑣𝛼

1 + 𝑘4𝑣𝛼
1.5 + 𝑘5𝑣𝛼

2 + 𝑘6𝑣𝛼
2.5 + 𝑘7𝑣𝛼

3 + 𝑘8𝑣𝛼
4  (8) 

Where the terms k0 through k8 can be defined as the following. 

 𝑘0 = 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑎𝑥
𝑠0
2

𝑠2
  (9) 
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 𝑘1 = −
𝑎𝑚𝑎𝑥

𝑣0
𝛿  (10) 

 𝑘2 = −
2𝑠0𝑠1𝑎𝑚𝑎𝑥

𝑣0
1/2

𝑠2
  (11) 

 𝑘3 = −
2𝑠0𝑇𝑎𝑚𝑎𝑥

𝑠2
+
𝑠0𝑣𝛼−1√𝑎𝑚𝑎𝑥

𝑠2√𝑏
−
𝑠1
2𝑎𝑚𝑎𝑥

𝑠2𝑣0
  (12) 

 𝑘4 = −
2𝑠1𝑇𝑎𝑚𝑎𝑥

𝑣0
1/2

𝑠2
+
𝑠1𝑣𝛼−1√𝑎𝑚𝑎𝑥

𝑠2√𝑏𝑣0
  (13) 

 𝑘5 = −
𝑠0√𝑎𝑚𝑎𝑥

𝑠2√𝑏
−
𝑇2𝑎𝑚𝑎𝑥

𝑠2
+
𝑇𝑣𝛼−1√𝑎𝑚𝑎𝑥

𝑠2√𝑏
−
𝑣𝛼−1
2

4𝑠2𝑏
  (14) 

 𝑘6 = −
𝑠1√𝑎𝑚𝑎𝑥

𝑠2√𝑏𝑣0
  (15) 

 𝑘7 = −
𝑇√𝑎𝑚𝑎𝑥

𝑠2√𝑏
+
𝑣𝛼−1

2𝑠2𝑏
  (16) 

 𝑘8 = −
1

4𝑠2𝑏
  (17) 

Using the kinematic equations, the position and velocity are calculated for the next time step i+1. 

 𝑣𝛼(𝑖 + 1) = 𝑣𝛼(𝑖) + 𝑎𝛼(𝑖)(𝑡(𝑖 + 1) − 𝑡(𝑖))  (18) 

 𝑥𝛼(𝑖 + 1) = 𝑥𝛼(𝑖) + 𝑣𝛼(𝑖)𝑡(𝑖) +
1

2
𝑎𝛼(𝑖)𝑡(𝑖)

2  (19) 

The IDM equation was modified to resolve an issue when the speed of the IDM vehicle and the 

leading vehicle are both zero. When both the speed of both vehicles is zero, Equation (2) and (3) 

should simplify to: 

 𝑎𝛼 = 𝑎𝛼,𝑚𝑎𝑥 [1 − (
0

𝑣0
)
𝛿

− (
𝑠0

𝑠0
)
2

] = 0  (20) 

 𝑠∗(𝑣𝛼 = 0, 𝛥𝑣 = 0) = 𝑠0 + 𝑠1√
0

𝑣0
+ 0 ∗ 𝑇 +

0∗0

2√𝑎𝛼,𝑚𝑎𝑥𝑏𝛼
= 𝑠0  (21) 
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However, if the IDM vehicle is not placed exactly s0 distance away from the leading vehicle when 

both are stopped, then s* is greater than s0 and the IDM vehicle will accelerate at amax(1-s0/s) to 

close the gap. This value tends to be very high and causes the vehicle to accelerate quickly and 

then braking harshly to avoid collision. This problem occurs because the IDM favors high initial 

acceleration when the vehicle speeds are different and then tapering off the acceleration to when 

sufficiently far from the leading the leading vehicle. To avoid this issue, a conditional statement is 

added to force the IDM acceleration to zero when both vehicles are stopped.  

Since the acceleration is discrete, the sampling rate may not always be high enough to capture the 

small adjustments in acceleration needed for certain scenarios. In some cases, the IDM vehicle can 

also brake excessively and calculate a negative speed. During these cases, the vehicle is already 

coming to a stop, but had overestimated the amount of braking effort necessary. Therefore, a 

conditional statement can be added to force the speed at the next time step vα(i+1) equal to zero. 

Given a sampling rate of ts, the required deceleration to reach that speed from its current speed 

vα(i) is simply 

 𝑎𝛼(𝑖) =
𝑣𝛼(𝑖+1)−𝑣𝛼(𝑖)

𝑡𝑠
=

−𝑣𝛼(𝑖)

𝑡𝑠
 (22) 

Lastly, in some scenarios where there are no vehicles or objects in front of the IDM vehicle, the 

vehicle is in a free flow state. During this state, the acceleration is defined in [7] as the free flow 

acceleration afree(vα). The function is defined as follows: 

 𝑎𝑓𝑟𝑒𝑒(𝑣) =

{
 
 

 
 𝑎 [1 − (

𝑣

𝑣0
)
𝛿

]  𝑖𝑓 𝑣 ≤ 𝑣0,

−𝑏 [1 − (
𝑣0

𝑣
)

𝑎𝛿

𝑏
]  𝑖𝑓 𝑣 > 𝑣0

 (23) 
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The original creators of the IDM implement the free flow acceleration in [7] in an overall 

acceleration function that takes into consideration the gaps between the vehicle and other objects. 

Since the simulation will use a separate algorithm to detect the position of vehicles and objects, it 

is not necessary for the free flow acceleration function to consider the gap between vehicles. The 

authors in [7] use Equation (23) to develop the Improved Intelligent Driver Model (IIDM), which 

corrects some issues that occur when the IDM vehicle is traveling faster than the desired speed or 

following another vehicle near the desired speed. The authors state that the IIDM corrects some 

issues for city driving, but at the expense of different behavior during highway driving. Since most 

the driving done in these simulations are car-following or object-following scenarios, it was not 

necessary to fully implement the IIDM.  

Compared to the EDM discussed in earlier found in [4], the IIDM keeps the base behavior of the 

IDM and adds some improvements in specific scenarios, whereas the EDM deviates more from 

the original IDM. The EDM breaks up the IDM based on the vehicle speed, adds another parameter 

to further tune the driver’s aggressiveness, adds an equation for the desired speed as a function of 

aggressiveness, and adds an objection detection algorithm to give the vehicle the ability to react to 

traffic signals and stop signs. While the EDM contributes more depth for describing aggressive 

driving, the tunable parameter and equation it adds make it difficult to tie back the values to reality. 

Furthermore, it also removes the time headway and the desired gap equation, which help describe 

how aggressively the preceding vehicle is being followed. Therefore, the EDM was also not used 

for this study because it was more desirable to tune the driver aggressiveness based on the realistic 

parameters already used in the IDM. 
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2.4 Object Detection Model 

For the driving cycles that are created in Vissim, there needs to be an objection detection model 

(ODM) in place so that the vehicle can respond to the traffic environment. This section provides 

an overview of the detection algorithm and explains how the data taken from Vissim is used to 

determine how the vehicle should react. A more detailed explanation of how the data stored in the 

objects in Vissim can be accessed and altered can be found in Appendix. Later chapters will discuss 

the traffic environment developed in Vissim in more detail. 

Depending on the types of objects added to the traffic environment, the ODM requires that certain 

information be extracted from each object. For this application, only the information from other 

vehicles, the traffic signals, and the speed limits were needed. Data such as the object’s position, 

the link number, the lane number, the speed limit value, the vehicle speed, and the traffic signal 

state were stored at each time step. The objects are separated based on what effect they have on 

the IDM vehicle. Speed limits only affect the desired speed of the vehicle, and only need to be 

recognized when in close proximity while traveling on the same road to update the desired speed. 

On the other hand, vehicles and traffic signals affect the actual speed of the vehicle and must be 

recognized even at far distances in order to allow the IDM vehicle sufficient room to react 

accordingly. Depending on what the object and its state is, there must be multiple options available 

to account for the variability of that object’s behavior.  

In order to determine how the IDM vehicle should react, the first thing to determine is the position 

of the critical objects in the simulations. In Vissim, the roads are referred to as links. Links can be 

connected together via other links called connectors to form intersections and roadways. The 

position of an object is always measured from the start of the link that it is placed on. When it 

drives another link, its position is reset and measured relative to the start of that new link. 
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Figure 5: Starting position for links and connectors in Vissim 

Therefore, it becomes challenging to recognize which objects on the subsequent link(s) are most 

important. While a vehicle set to specific vehicle route will show the next link in its sequence, 

there is the possibility that it cannot make it to that subsequent link if there is traffic preventing it 

from reaching that link. Additionally, creating vehicles routes for every possible combination of 

start and end points is inefficient. Therefore, to avoid the complexity associated with detecting 

objects in other links, the following measures are taken: 1. For all objects, the critical object will 

lie on the same link and same lane as the IDM vehicle. 2. Static objects such as speed limits and 

traffic signals will not be placed at the start of link. 3. Links merging onto other links will not be 

placed at the start of a link. 4. Use a vehicle route for the IDM that covers entire route to prevent 

it from going to the first connecting link it runs into. Using these design guidelines, the ODM can 

be simplified and a lot of potential errors can be avoided. 

The decision tree for the speed limits outlines the checks needed to determine if the desired speed 

of the IDM vehicle should be updated.  
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Figure 6: Speed limit detection decision tree 

The algorithm sorts out the speed limits in the simulation for the ones that are on the same link and 

lane as the IDM vehicle. Once that group is found, the gap relative to the IDM vehicle is calculated 

for each speed limit in that group. The absolute value of each gap is taken to avoid choosing a 

large negative gap. The closest speed limit that is within 10m of the IDM vehicle is selected. The 

speed limit recognition distance is set to ±10m from the speed limit position because ensures that 

the IDM vehicle will travel over that 20m segment and recognize the speed limit. If the recognition 

distance is too small, or the IDM vehicle speed is too high, it could be possible that the next 

position that is calculated is past the speed limit recognition distance. With a 20m range and using 

a time step of 0.1s, the vehicle would have to travel more than 200m/s (720kph) to not recognize 

the speed limit, which is unrealistic but provides a more than sufficient margin. If a larger time 

step of 1s is used, then the range would have to be increased because any vehicle traveling more 

than 20m/s (72kph) could avoid it. While normally humans recognize speed limits that are far 

away from them, the other vehicles in Vissim only respond to a speed limit once they pass over its 

position, so setting the speed limit as proposed keeps the ODM consistent with other vehicles and 
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prevents the IDM vehicle from speeding up in advance of the surrounding vehicles. Once the speed 

limit is detected, the desired speed of the vehicle is set according to the speed limit value. If any 

of these checks result in an empty vector, then the algorithm defaults to using the desired speed 

from the previous time step.  

The algorithm for the objects that affect the vehicle’s speed is slightly different, since the closest 

object needs to be identified first before the IDM can be set up properly. Below is the decision tree 

for objection detection. 

 

Figure 7: Object detection decision tree 

 Like the previous decision tree, first the objects that are in the same link and lane as the IDM 

vehicle are identified. Then the gap between those objects and the IDM vehicle is calculated. If 

there are no objects in front of the IDM vehicle, then this calculation would result in an empty 

vector. In that case, IDM vehicle is in a free-flow state and would use the free-flow acceleration 

equation to determine the acceleration needed to reach its desired speed. Otherwise, if the vector 
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was not empty, then there are objects in front of the IDM vehicle, and the closest one would need 

to be identified. If the object is a vehicle, then the IDM equation can be used for following the 

vehicle as normal. However, if the object is a traffic signal, the behavior depends on the signal 

state. If the signal state is red or amber, the traffic signal should act as if there was a parked vehicle 

at the traffic signal position. In that case, the speed of the object is zero and the traffic signal 

position would be used in the IDM equation. Otherwise, if the light is green, the vehicle continues 

using the free-flow equation until it passes the traffic signal and identifies another vehicle.  

Other objects such as reduced speed zones, conflict area, stop signs, pedestrian crossings, and yield 

signs could be added to the ODM but require a more complicated decision model. However, with 

this simplified algorithm one can develop the common city and highway driving scenarios to 

evaluate the performance of the driver model. The next section will discuss how the vehicle 

powertrain is designed so that the performance of the driver model can be measured. 

 



25 

Chapter 3: Battery Electric Vehicle Model 

3.1 Importance of Battery Electric Vehicles 

Due to the increased global demand from consumers, stricter emission regulations, and greater 

accessibility of charging networks, manufacturers are turning to building electric vehicles more 

than ever before.  According to [19], the global market for EVs has increased about 60% each year 

from 2014-2018, with 2.1 million global sales in plug-in electric vehicles (PHEVs) and battery 

electric vehicles (BEVs) in 2018, with BEVs making up the greater percentage of sales. It is clear 

why consumers are interested in EVs, especially BEVs: BEVs offer a quieter driving experience, 

are less mechanically complex than internal combustion engine (ICE) vehicles, have instant power 

delivery, produce no tailpipe emissions, can partially recharge while braking, and can be recharged 

at home. There are still several major downsides to BEVs, such as low battery range, high battery 

cost, battery health degradation and slow charging speeds. However, despite the overall simplicity 

of the BEV platform, it is still not well understood how driving behavior affects their energy usage, 

especially considering that some energy can be regenerated when braking. While there are some 

BEVs that use up to 4 motors, only single-motor BEVs will be studied here.  

3.2 Battery Electric Vehicle Powertrain Model  

3.2.1 General Vehicle Specifications 

The electric vehicle used in the simulation is a front wheel drive (FWD) car with some 

specifications based around the 2017 Chevrolet Bolt and 2014 Chevrolet Spark EV.
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 The battery is connected to a motor/generator unit, which transfers power to a differential and 

drives the front wheels. 

 

Figure 8: Electric vehicle powertrain model 

The vehicle weight is set slightly higher than Bolt at 1633kg, whereas the drag coefficient is 

brought down to 0.30. The tire radius is 0.2921m, or 11.5inches, which is the same size as the 

Spark EV. The vehicle frontal area is based on multiplying the width and height of the Spark EV. 

The tires used on the vehicle have coefficient of rolling resistance of 0.009, since it is a typical 

value for Original Equipment Manufacturer (OEM) tire. [20] The vehicle specifications are 

summarized in the table below. 

Specification IDM-based BEV  2017 Chevrolet Bolt  2014 Chevrolet Spark EV  

Weight 3600lbs (1633kg) 3580lbs (1625kg) [21] 2989lbs (1356kg) [22] 

Drag Coefficient 0.30 0.308 [23] 0.326 [24] 

Tire Radius 11.5in (0.2921m) 12.75in (0.3239m) 11.5in (0.2921m) [25] 

Frontal Area 25.8ft2 (2.4m2) N/A 2.5m2 [22] 

Coefficient of 

Rolling Resistance 

0.009 [20] N/A N/A 

Table 4: General vehicle specifications of simulated BEV compared to Chevrolet BEVs 

3.2.2 Electric Motor Selection 

The electric motor used in this vehicle is a Unique Mobility 100kW (peak) permanent magnet 

electric motor and inverter. The data for this motor is taken from the advanced vehicle simulator 
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Advisor, which is developed by the National Renewable Energy Laboratory (NREL). Although 

the motor chosen does not act as a generator, it is assumed that the motor can be used as a generator 

for regenerative braking, so the motor map is referenced to find the generator efficiency during 

regeneration. It is also assumed that during braking, regenerative braking is 100% efficient, so 

there are no losses due to friction braking. The electric motor is connected to a differential with a 

final drive ratio of 3.4:1 to centralize its operation around its wide torque range like the Spark EV.  

Specification IDM-based BEV 2017 Chevrolet Bolt 

[26] 

2014 Chevrolet Spark EV 

[26] 

Electric Motor Max 

Power 

100kW 150kW 105kW 

Electric Motor Max 

Torque 

582N∙m 360N∙m 540Nm 

Electric Motor Max 

Speed 

4400RPM 8810RPM 4500RPM 

Final Drive Ratio 3.4:1 7.05:1 3.17:1 

Table 5: Electric motor specifications of simulated BEV compared to Chevrolet BEVs 

3.2.3 Battery Modeling 

The battery uses a simple open circuit voltage source and resistor model (also known as an OCV-

R model).  

 

Figure 9: Battery electric circuit model 
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Since the focus of this study is primarily on the energy usage as a result of the driving behavior, 

the dynamics of the battery are kept simple and are only used to estimate how much energy was 

used. Normally the battery’s open circuit voltage (VOCV) can change depending on the SOC or 

ambient temperature, but for simplicity, the battery’s nominal VOCV is set to 450V and is assumed 

to be constant.  

The battery shares some similarities to the Bolt. The battery capacity is set to 60kWh. Since the 

Bolt uses prismatic “nickel-rich lithium ion” battery cells, the battery cells used in this model are 

LiNiMnCo cells, based on the PL-7789182-2C battery cells found in [27]. The battery 

specifications are shown in the table below. Each cell has a VOCV of 3.7V, an internal resistance 

of 8mΩ, and a capacity of 9Ah as stated by the manufacturer’s specifications. Since the VOCV for 

the battery is set to 450V, the battery cells specifications can be used to calculate the number of 

cells required and the battery pack voltage and resistance. 

 𝑁𝑠 =
450𝑉

3.7𝑉/𝑐𝑒𝑙𝑙
≈ 122 𝑐𝑒𝑙𝑙𝑠 (24) 

 𝑁𝑝 =
𝑄𝑏𝑎𝑡𝑡

𝑉𝑂𝐶𝑉𝑄𝑐𝑒𝑙𝑙
≈ 15 𝑐𝑒𝑙𝑙𝑠  (25) 

 𝑉𝑂𝐶𝑉,𝑝𝑎𝑐𝑘 = 𝑉𝑂𝐶𝑉𝑁𝑆 = 451.4𝑉  (26) 

 𝑅𝑝𝑎𝑐𝑘 =
𝑅𝑐𝑒𝑙𝑙𝑁𝑠

𝑁𝑝
= 65.1𝑚Ω  (27) 

The battery and battery cell specifications are summarized in the following table. 
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Specification IDM-based BEV 

(PL-7789182-2C 

cell) [28] 

2017 Chevrolet Bolt  2014 Chevrolet Spark EV  

Battery Chemistry LiNiMnCo “Nickel rich lithium ion” N/A 

Battery Capacity 

Qpack 

60kWh 60kWh [21] 21.3kWh [22] 

Battery Voltage 

(nominal) VOCV 

450V 350V 360V 

Battery Pack 

Resistance Rpack 

65.1mΩ N/A N/A 

Battery Cell 

Capacity Qcell 

9Ah N/A N/A 

Battery Cell 

Nominal VOCV 

3.7V 3.75V N/A 

Battery Cell 

Resistance Rcell 

8mΩ N/A N/A 

Number of Cells in 

Series Ns 

122 96 N/A 

Number of Cells in 

Parallel Np 

15 3 N/A 

Table 6: Battery specifications of simulated BEV compared to Chevrolet BEVs 

At each time step t, the battery power to meet the wheel demand is determined. The power drawn 

from the auxiliary components such as the HVAC is set to a constant value of 400W. Given the 

demanded battery power, the battery current at each time step is calculated as follows. 

 𝐼 =
𝑉𝑂𝐶𝑉−√𝑉𝑂𝐶𝑉

2 −4𝑅𝑝𝑎𝑐𝑘𝑃𝑑𝑒𝑚𝑎𝑛𝑑

2𝑅𝑝𝑎𝑐𝑘
  (28) 

Positive current denotes discharging, whereas negative current denotes charging. The state-of-

charge (SOC) of the battery for the next time step is calculated from the amount charged or 

discharged from the battery. 

 𝑆𝑂𝐶(𝑡 + 1) = 𝑆𝑂𝐶(𝑡) −
𝐼𝑡𝑠

𝑄𝑝𝑎𝑐𝑘
  (29) 
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3.2.4 Vehicle Model Implementation with Driver Model 

The vehicle’s energy management is seamlessly integrated with the IDM and the Vissim traffic 

environment since the energy usage can be calculated at each time step. Before running the 

simulation in Vissim, the EV’s specifications and electric motor data are loaded and are used to 

determine the motor and battery specifications based on the EPA driving cycles. At each time step, 

Vissim’s functions are used to get the position and speed of the IDM vehicle and the vehicle or 

object in front of it. The IDM determines the vehicle’s acceleration aα at the current time step in 

order to calculate its speed and position for the next time step. The total tractive force Ftr is 

calculated as follows to determine the required wheel torque and speed. 

 𝐹𝑡𝑟 = 𝑚𝑎𝛼 + 𝐹𝑎 + 𝐹𝑔 + 𝐹𝑟𝑟 (30) 

The vehicle is assumed to be on a flat surface, so there is no angle of inclination, and therefore 

the force due to gravity Fg is zero. The remaining force to aerodynamics and force due to the 

coefficient of rolling resistance Crr can be written as shown. 

 𝐹𝑡𝑟 = 𝑚𝑎𝛼 +
1

2
𝜌𝐶𝑑𝐴𝑓𝑣𝛼

2 + 𝐶𝑟𝑟𝑚𝑔 (31) 

With the radius of the wheel rwheel known, the required wheel torque Twheel, wheel speed ωwheel, 

and wheel power Pwheel can be determined. 

 𝑇𝑤ℎ𝑒𝑒𝑙 = 𝐹𝑡𝑟𝑟𝑤ℎ𝑒𝑒𝑙 (32) 

 𝜔𝑤ℎ𝑒𝑒𝑙 =
𝑣𝛼

𝑟𝑤ℎ𝑒𝑒𝑙
 (33) 

 𝑃𝑤ℎ𝑒𝑒𝑙 = 𝑇𝑤ℎ𝑒𝑒𝑙𝜔𝑤ℎ𝑒𝑒𝑙 = 𝐹𝑡𝑟𝑣𝛼 (34) 
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The wheel demand can be used to determine the motor torque, speed and power. The motor power 

is first passed through the differential with a gear ratio GRmw and motor to wheel efficiency of ηmw 

to reduce the speed and increase the torque as it goes from the motor to the wheels. All efficiency 

factors used are the ratio of the output over the input. The efficiency factor is used differently 

depending on whether the wheel power is positive, meaning energy is used, or negative, meaning 

energy is regenerated. Working backwards, the demanded motor output power Pmotor,out is 

calculated as shown below. 

 𝜔𝑚𝑜𝑡𝑜𝑟 = 𝜔𝑤ℎ𝑒𝑒𝑙𝐺𝑅𝑚𝑤 (35) 

 𝑃𝑚𝑜𝑡𝑜𝑟,𝑜𝑢𝑡 = {

𝑃𝑤ℎ𝑒𝑒𝑙

𝜂𝑚𝑤
, 𝑃𝑤ℎ𝑒𝑒𝑙 > 0

𝑃𝑤ℎ𝑒𝑒𝑙𝜂𝑚𝑤, 𝑃𝑤ℎ𝑒𝑒𝑙 < 0
0, 𝑃𝑤ℎ𝑒𝑒𝑙 = 0 

 (36) 

 𝑇𝑚𝑜𝑡𝑜𝑟 =
𝑃𝑚𝑜𝑡𝑜𝑟,𝑜𝑢𝑡

𝜔𝑚𝑜𝑡𝑜𝑟
 (37) 

The motor speed and torque are used to determine the motor efficiency ηmotor on the motor map. 

During braking regeneration, the absolute value of the motor torque is taken to be able to reference 

the corresponding efficiency value on the motor map. The input motor power Pmotor,in is found 

using the motor efficiency ηmotor and the output motor power Pmotor,out. The resultant battery power 

Pbattery is equal to the sum of the motor input power Pmotor,in and the constant auxiliary load Paux, 

exception for cases where the vehicle is stopped when Pwheel is zero. 

 𝑃𝑚𝑜𝑡𝑜𝑟,𝑖𝑛 = {

𝑃𝑚𝑜𝑡𝑜𝑟,𝑜𝑢𝑡

𝜂𝑚𝑜𝑡𝑜𝑟
, 𝑃𝑤ℎ𝑒𝑒𝑙 > 0

𝑃𝑚𝑜𝑡𝑜𝑟,𝑜𝑢𝑡𝜂𝑚𝑜𝑡𝑜𝑟 , 𝑃𝑤ℎ𝑒𝑒𝑙 < 0

0, 𝑃𝑤ℎ𝑒𝑒𝑙 = 0 

 (38) 

 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = {
𝑃𝑚𝑜𝑡𝑜𝑟,𝑖𝑛+𝑃𝑎𝑢𝑥, 𝑃𝑤ℎ𝑒𝑒𝑙 < 0 𝑜𝑟 𝑃𝑤ℎ𝑒𝑒𝑙 > 0

𝑃𝑎𝑢𝑥 , 𝑃𝑤ℎ𝑒𝑒𝑙 = 0
 (39) 
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 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 (40) 

Based on the battery power used the change in SOC is calculated as discussed in the previous 

section and subsequently the SOC at the start of the next time step. The process is repeated for the 

new position and speed calculated from the IDM at the next time step. With the driver model and 

vehicle model combined, the combined model can be tested on different traffic simulations to 

evaluate the effect of the driving behavior on the vehicle’s energy usage. The next section will 

discuss the driving cycles used for the simulation and how they were created. The driving cycles 

created using Vissim will be compared to those created using EPA driving schedules. 
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Chapter 4: Traffic Environment Simulation 

4.1 Car-Following Driving Cycles Using EPA Driving Schedules 

To determine the fuel economy and emissions produced by new vehicles, the Environmental 

Protection Agency (EPA) developed several standardized driving cycles to test the performance 

of each new vehicle. The first driving cycle created was the Urban Dynamometer Driving Schedule 

(UDDS), which comprised of 7.46mi route developed based on the LA 4 road. [29] The speed 

trace for the UDDS has an average speed of 19.6 mph and duration of 1372s. The UDDS was 

developed to capture the peak smog-producing driving conditions when driving in Los Angeles.  

The EPA also developed other standardized driving cycles were created to capture other common 

driving scenarios. The Highway Fuel Economy Test (HWFET) replicates highway driving 

conditions under 60mph and the US06 Supplemental Federal Test Procedure (SFTP) captures 

aggressive driving due to its high acceleration and high maximum speed of 80mph. Other driving 

cycles have been developed for varying weather conditions, such as the SC03 SFTP, which 

captures city driving conditions in hot ambient temperatures with the air conditioning on, and an 

additional test cycle of the UDDS at cold ambient temperatures. 

The EPA driving cycles are used in this study to compare with the driving cycles created in the 

Vissim. Since ambient temperature is not factored in this study, only the EPA UDDS, HWFET, 

and US06 driving cycles will be used. The vehicle using the IDM will follow another vehicle 

driving at the speeds indicated in each of the selected driving cycles. 
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To sufficiently deplete the battery, each driving cycle is repeated five times with a 5 second pause 

in between each cycle, as shown below for the HWFET cycle: 

 

Figure 10: HWFET driving cycle repeated 5 times with 5 second pause in between 

The IDM vehicle is evaluated under three different parameter sets that correspond to mild, 

medium, and aggressive driving. Each driving behavior is tested on all three driving cycles. At the 

end of 5 cycles, the results are divided by the distance traveled because the actual distance the 

IDM vehicle travels can vary based on the driving behavior. 

4.2 Simulated Driving Cycles Using Vissim 

4.2.1 City-Based Driving Cycle Using Vissim 

The vehicle is also tested over two driving cycles created in Vissim. The first driving cycle 

represents city driving, where there are multiple traffic intersections in succession. The vehicle 

route is marked by the yellow arrow starting from the left, crossing five intersections, and ending 

at the road on the right. 
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Figure 11: City driving cycle created in Vissim 

The main road is inspired by SW 22nd St (Coral Way) in Miami, FL, where there is typically high 

volume of city traffic. The design of the intersections is modeled after the intersection of Coral 

Way and SW 27th Ave, where there are two lanes for going straight and two separate lanes for 

turning right and turning left at the intersection. This design was used over other 3 or 4 lane 

intersections because it prevents issues with the IDM vehicle getting trapped in a lane that only 

turns left or right but does not continue straight. The dimensions of the intersections are not set to 

the exact measurements of the Coral Way and 27th intersection. 

 

Figure 12: On left: Google Maps StreetView of SW 22nd St (Coral Way) and SW 27th Ave in Miami, 

FL. On right: Intersection in Vissim 

All roads in the Vissim model have speed limits set to 35mph (56.3kph), based on the speed limits 

on Coral Way. The connecting roads comprise of two lanes going in each direction. All of the 
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inbound roads are set to randomly generate a volume of 500 vehicles per hour. These vehicles use 

the default Wiedemann model in Vissim. Vehicle routes are placed over each intersection to allow 

any randomly generated vehicle to select between multiple routes, thereby creating a more realistic 

traffic flow.  

 The traffic signal controllers have a cycle time of 60 seconds, with the signal state sequence set 

to the intervals shown in Table 7. There is a 2 second gap between the end of signal 2 and the start 

of signal 1 to allow any vehicles to cross the intersection before the green state is activated, thereby 

avoiding collisions. The controller used for each traffic signal along the road alternates between 

Signal Group 1 and Signal Group 2. Each intersection has potential conflict zones identified and 

marked such that any randomly generated vehicle will wait for another vehicle to pass before 

making a left or right turn on the intersection. Each turn is also marked with a reduced speed 

decision to slow down vehicles before making a sharp turn. 

Signal 

Group 

Signal Sequence During 

Cycle 

Green State 

Duration [s] 

Amber State 

Duration [s] 

Red State 

Duration [s] 

1 

 

25 3 32 

2 

Table 7: Signal controller configuration for Vissim city-based driving cycle  
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The city-based cycle simulation has a duration of 1800 seconds with a sampling time ts of 0.1 

seconds. Each time the simulation is ran, a new random seed is set to randomize the quantity, 

starting time, and behavior of the vehicles generated in Vissim. Since there are variations in the 

driving behavior of the surrounding vehicles, the resulting behavior of the IDM vehicle will be 

quasi-stochastic as it adapts to the traffic conditions. 100 simulations are conducted for each 

driving behavior over the created route to account for variations. Since the simulation is ran with 

respect to time and not distance, the IDM may not travel the exact same distance every run. If the 

vehicle is too slow, it may not cross all intersections. To account for these variations in distance 

traveled, the energy usage for each run is normalized by the distance traveled just like the EPA 

cycles discussed earlier. In addition, the number of stops and the duration of each stop is also 

calculated to account for situations where the signal timing may allow the vehicle to cross before 

it changes to red. 

4.2.2 Highway-Based Driving Cycle Using Vissim 

The second driving cycle is a highway comprised of 2 lanes with 4 onramps and 3 offramps to 

allow for vehicles to enter or exit the highway. This driving cycle does not resemble any particular 

real-world highway section since highways can vary greatly based on the geography and 

surrounding infrastructure. 

 

Figure 13: Highway driving cycle created in Vissim 
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The speed limit is set to 65mph (104.6kph). All other onramps and offramps connect to roads set 

to 35mph (56.3kph). The IDM vehicle begins at the first onramp from a stop and accelerates to 

merge into the highway. The vehicle continues on the highway until it reaches the end of the 

highway. The end of the highway has a speed reduction zone of 55mph (88.5kph).  

 

Figure 14: Highway speed reduction zone, marked in yellow 

The offramps also have speed reduction zones of 50mph (80kph), and then down to 35mph 

(56.3kph). The highway is set to have a vehicle input of 2000 vehicles per hour, whereas the 

onramps are set to 600 vehicles per hour. Routing decisions were added to allow vehicles to 

continue or exit the highway at any of the offramps, with the exception of the IDM vehicle. The 

simulation for the highway cycle also has a duration of 1800s and has a sampling time of 0.1s. 

Like the city-based cycle, the simulation is performed 100 times for each driving behavior to 

account for variations and averaged over the distance traveled. 
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Chapter 5: Driving Simulation Results  

5.1 Results of Car-Following Simulation Using EPA Driving Cycles 

The following results give some perspective of how each of the driving behaviors compare when 

following a vehicle. As mentioned previously, EPA driving schedules were used for the leading 

vehicle speed trace. The cycles were stitched together 5 times back-to-back with a 5 second pause 

in between. The figure below shows the average speed, acceleration, and deceleration of the IDM 

vehicle for each driving behavior and for each driving cycle. 

 
Figure 15: Average speed, acceleration and deceleration for EPA cycle car-following 

 Since the IDM vehicle is following another vehicle throughout the duration of the cycle, it can 

only go as far as the vehicle in front, and therefore its average speed does not vary significantly 

for each driving behavior type. However, as the driving behavior becomes more aggressive, higher 
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acceleration and braking can be achieved, and the gap becomes shorter between the vehicles.  

Since the distance traveled over each driving cycle is different, the percent change in SOC (%SOC) 

over the entire driving cycle and the net energy usage over the cycle is normalized by the total 

distance traveled in each cycle. The figures below show the %SOC/km and energy usage in 

kWh/km for each of the driving behaviors and driving cycles. The arrows show the percentage 

change by changing from mild to aggressive driving. Since there aren’t many opportunities for 

accelerating or braking in the HWFET cycle, the decrease in %SOC remains approximately the 

same despite different driving behaviors. For the UDDS and US06 cycles, there is a greater drop 

in the %SOC per kilometer as the following behavior gets more aggressive. 

 
Figure 16: SOC change comparison for 3 driving styles over 3 EPA driving cycles 

In terms of the battery energy used in kWh/km, changing from mild to aggressive driving can 

result in more than 1% in increased energy usage for the UDDS and US06 driving cycles. Despite 

the percentage difference being small, for car-following scenarios, there is little benefit of driving 

aggressively since the leading vehicle controls the speed to the destination.  
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Figure 17: Battery energy consumption comparison for 3 driving styles over 3 EPA driving cycles 

5.2 Results of Stochastic Traffic Simulation Using PTV Vissim 

5.2.1 Results from City-Based Driving Cycle 

The results of the city simulation performed in Vissim is less straightforward than the simulations 

using the EPA driving cycles. Unlike the EPA driving cycles, the IDM vehicle is not always in a 

car-following scenario, since it and the other vehicles can change lanes. Additionally, the 

simulations are not deterministic, because of the random seed changing the dynamics of each run. 

The simulations have a fixed time period of 1800s, so the distance traveled varies in each 

simulation run. To compare each run, the data related to the energy usage is normalized by the 

distance traveled over that run. The average of each distribution is displayed in bold in each figure. 

The results show that aggressive driving had the greatest variation and the greatest distance 

traveled on average than the other two driving styles. 
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Figure 18: Total distance traveled in Vissim city driving cycle for each driving behavior 

Among the three driving behaviors, aggressive driving resulted in the lowest average energy usage 

per kilometer and the average percent decrease in SOC per kilometer, at 0.137±0.0091kWh/km 

and -0.228±0.0151%SOC/km. One would expect this to be the highest. Instead, the mild and 

medium driving styles showed higher energy usage per kilometer, and with medium being the 

highest at 0.148±0.0077kWh/km and -0.247±0.0129%SOC/km. The normal distribution for the 

plots of the mild and medium driving have similar dimensions, and also have similar profiles for 

the distance traveled. Therefore, the distribution profiles suggest that the driving cycle for the 

aggressive driving style was much more different, since the results from the EPA driving cycles 

would suggest that the energy used for the aggressive driving style would be a slighter higher than 

the medium driving style for the same driving cycle. 
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Figure 19: Average energy used per kilometer and average decrease in SOC per kilometer for Vissim city 

driving cycle 

 
Figure 20: Average speed, acceleration and braking for Vissim city driving cycle 
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Looking at the average speed, acceleration, and deceleration of each combination of driving 

behavior and driving cycle, one can find that the trend is not as linear as it was for the EPA cycles. 

The average speed for mild and medium are close at 26.9kph±0.48kph and 27.7kph±0.43kph, 

whereas aggressive showed higher average speed of 37.5kph and a greater deviation of 2.8kph, 

meaning that the vehicle was able to maintain its speed. One would expect the average acceleration 

and deceleration to increase as the driving becomes more aggressive, but it is not the case here. 

The average acceleration for aggressive is closer to mild, with mild at 0.680±0.045m/s2 and 

aggressive at 0.699±0.041m/s2. Medium is the highest at 0.733±0.048m/s2. Lastly, while the 

average deceleration is highest for the aggressive driving style at -0.563m/s2, it is not significantly 

higher than mild and medium, which are both around -0.50m/s2. To get a better understanding of 

the traffic environment, one has to also look at the time spent stopped and the number of stops for 

the city cycle, as the signal timing and signal spacing could have influenced these results. 

  
Figure 21: Average number of stops and time stopped for Vissim driving cycles 
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The mild driving style always had two stops, and the duration was on average around 29s. The 

medium driving style had three stops on average, which coincides with the time spent stopped 

being higher. The aggressive driving style had two stops on average and averaged 42s stopped, 

with some cases having three stops and close to 60s of stop time. Depending the number of stops 

made, the driving cycle could be different. Looking at a typical run when 2 stops and 3 stops occur, 

one can see the variation between each driving behavior. 

 
Figure 22: Typical speed and acceleration trace with 2 or 3 stops during city driving cycle 

In the speed trace for Run #10, both the mild and medium driver do not come to a complete stop 

at the first traffic light, which is why they are counted as only having 2 stops in this run. The 

aggressive driver stops for the first and second traffic signal but catches the third and fourth signal 

in the transition phase, allowing it to maintain its speed throughout the run. This demonstrates why 

the aggressive driver usually only stops twice and maintains a higher average speed. Furthermore, 

because the vehicle was reaching its desired speed sooner, it could avoid more of the traffic being 

generated because the volume of vehicles on each inbound road is generated gradually. The rate is 
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in vehicles per hour rather than per minute, so in three-minute-long simulation the roads wouldn’t 

reach the full volume.  

In the few scenarios where the aggressive driver stops thrice, like in Run #6, its behavior is more 

similar to the medium driver, but achieves slighter lower average energy usage of 0.143kWh/km 

as shown in the figure below.  

 
Figure 23: Comparison of energy used per kilometer with 2 or 3 stops during city driving cycle 

Looking at the acceleration trace for Run #6, the aggressive driver had taller, narrower acceleration 

peaks, whereas the medium driver had shorter and wider peaks, which explains why the medium 

driver achieved a higher average acceleration, and subsequently higher energy usage. However, 

more data is needed to be able to confidently confirm if aggressive driving always performs better 

than medium driving in these scenarios with 3 stops.  

For all cases, the average battery power discharge rate and charge rate data also suggest why the 

aggressive driving style used less energy. While it was assumed that the vehicle would be able to 
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regenerate all the energy during braking and no friction braking would be used, the general trend 

is still as expected. Since the aggressive driving average deceleration rate is higher, the amount of 

energy recovered when slowing down also increases, which results in the higher charging rate of 

9.50kW/km. The aggressive driver maintained a higher average speed, so less energy on average 

was expended in bringing its speed back up to its desired speed. Therefore, less energy was used 

overall. Aggressive driving can be beneficial if it helps avoid situations that force the vehicle to 

slow down. However, in all of these scenarios, the vehicle never exceeded the speed limit to get 

to the destination faster. 

  
Figure 24: Average discharging and charging rate for city driving cycles 

There is still a benefit to mild driving in city driving scenarios. Compared to the medium driving 

style, mild driving resulted in fewer stops, less time stopped, and a 1.07% decrease in average 

energy usage in kWh/km. The only drawback is that driving milder is slower on average and in 

the same period of time the mild driving style traveled 2.8% less distance on average than the 

medium driving style. 
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Projecting the average energy usage for each of the driving behaviors in the Vissim city-based 

driving cycle, one can determine the potential range of the vehicle. The vehicle’s battery capacity 

is 60kWh, so the potential range based on the battery size is over 400km for each of the cases. 

Assuming that the average energy usage is constant, the aggressive driver can expect 437km of 

range in city driving scenario, 28km more than the mild driver. 

 
Figure 25: Potential range based on the average energy use per kilometer in Vissim city driving cycle for 

each driving behavior 

5.2.2 Results from Highway-Based Driving Cycle 

The data from the highway driving cycle yields more straightforward results since the energy usage 

is no longer affected by the timing of traffic signals. The total distance traveled increases as the 

driving behavior becomes more aggressive as there are less obstructions to slow down or stop the 

vehicle, and the desired speed can be achieved much quicker. Like the city driving cycle, the 

energy consumption data is divided by the distance traveled in each cycle to account for variations 

in driving distance over the fixed simulation time. The following figure shows the total distance 

traveled as a histogram for each driving behavior. 
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Figure 26: Total distance traveled in Vissim highway driving cycle for each driving behavior 

 
Figure 27: Average energy used per kilometer and average decrease in SOC per kilometer for Vissim 

highway driving cycle 

For the highway driving cycle, the energy usage per kilometer and decrease in SOC per kilometer 
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both increase in magnitude as the driving gets more aggressive. For the mild driving style, the 

energy usage is 0.206±0.0105kWh/km and increases to 0.208±0.0086kWh/km for the medium 

driving style, and again up to 0.213±0.0084kWh/km for the aggressive driving style. There is 

greater variability in energy usage for the mild driving style than the aggressive driving style due 

to the slight increase in vehicles on the main highway by the time the vehicle merges onto the 

highway under the mild driving style. The additional vehicles can prevent the vehicle from 

reaching its desired speed and cause the vehicle to drive slower overall. 

 
Figure 28: Average speed, acceleration and braking for Vissim highway driving cycle 

The histogram of the average speed, acceleration, and deceleration show that the lower average 

speed, higher average braking, and similar distribution of average acceleration of the mild driving 

style are the causes for the reduced energy usage. On the other hand, the aggressive driving style 

has a narrower average velocity distribution, imply that it was able to achieve higher highway 

speeds more consistently. This is supported by the low average acceleration and low average 
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deceleration, which could have been even lower if not for some outlier cases. The medium driving 

style fits in the middle between these two, reinforcing that the parameters selections correctly 

represent a middle ground between these two extremes.  

Run #10 and Run #6 highlight the typical speed and accelerations traces found in the Vissim 

highway cycle and provide further clarification. Both runs show that the mild and medium drivers 

tended to run into more traffic, especially traffic entering the highway. This merging traffic caused 

more situations where the vehicle has to slow down and follow the vehicle ahead. As a result, the 

mild and medium drivers end up driving slower on average and braking more often, as shown in 

the previous figure. The figure below also confirms that the aggressive driver was decelerating 

less often and maintaining its speed throughout the driving cycle. 

 
Figure 29: Speed and acceleration traces with 2 or 3 stops during highway driving cycle 

In terms of average discharging and charging rates, the mild driving style showed both the highest 

discharge and regeneration rate of all the driving styles, at 4.96±0.559kW/km 
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and -10.6±4.42kW/km. The medium 4.93±0.648kW/km and -9.06±4.71kW/km, while the 

aggressive driving style had values of 4.78± 0.623kW/km and -8.32±5.78kW/km. All had similar 

distributions in terms of width for the discharge rates, but there was more variability in regard to 

the charging rates. The difference in the charging rate between mild and aggressive driving is 

greater than the difference in the discharging rate between mild and aggressive driving, therefore 

overall mild driving leads to less power delivered per kilometer because of the higher charging 

rates from regenerative braking. 

 
Figure 30: Average discharging and charging rate for highway driving cycles 

As another measure for comparison, the projected range using the average energy usage for each 

of the driving behaviors in the Vissim highway-based driving cycle shows a potential range under 

300km for each. Assuming that the average energy usage is constant, the mild driver can expect 

292km of range in highway driving scenario, 10km more than the aggressive driver. The range 

here is much lower than the city driving scenario because the overall energy usage is much higher 
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on the highway because of the aerodynamic losses from maintaining a higher speed and the vehicle 

does not use regenerative braking as often in these scenarios. 

 

Figure 31: Potential range based on the average energy use per kilometer in Vissim highway driving cycle 

for each driving behavior 
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 Chapter 6: Conclusion and Future Work 

6.1 Conclusion 

To summarize, the objective of this study was to evaluate the impact of the driving behavior on 

the energy consumption of a BEV. A driver model was developed to simulate different levels of 

driving aggressiveness and BEV powertrain model was created to determine the energy usage of 

the vehicle. Using the EPA standardized driving schedules and PTV Vissim, several driving cycles 

were created to simulate common driving scenarios for evaluation. 

The results of the single-lane car-following scenario created with the EPA driving schedules show 

that there is a slight increase in energy usage per kilometer by changing from a mild driving style 

to an aggressive driving style for the UDDS, HWFET, and US06 driving cycles. For the UDDS-

based cycle, going from mild to aggressive increases the energy consumption per kilometer by 

+1.03%, for the HWFET-based cycle, it increases by +0.27%, and for the US06 cycle, by +1.41%.  

Switching from mild to medium the incrementation is half as much, at +0.57%, +0.15%, and 

+0.85% for the UDDS, HWFET, and US06 cycle, respectively. Since the vehicle is unable to go 

faster than the vehicle it is following, there is no benefit to driving aggressively, and results in 

wasted energy. 

For the driving cycles created in Vissim, the driving behavior makes a more significant impact in 

the energy consumed. For the city driving cycle created in Vissim, changing from mild driving to 

aggressive driving can lead to 6.6% decrease in the average energy usage per kilometer driven. 

Analyzing the driving data, driving aggressively reduced the number of stops, reduced the time 



55 

spent stopped, greatly increased the average vehicle speed, and reduced the average acceleration 

in each run. Therefore, if driving aggressively allows the vehicle to avoid red traffic signals and 

general vehicle traffic, then there is possible to reduce the long-term energy usage. Medium driving 

is not sufficiently quick to avoid these obstacles; it ends in more frequently stops and more time 

spent stopped and consequently results in a 1.1% increase in average energy usage over mild 

driving.  

For the highway driving cycle, changing from mild to aggressive driving results in a +3.4% 

increase in average energy usage per kilometer, with a +7.78% increase in distance traveled 

compared to mild driving over the 3-minute period simulated. The increased energy usage going 

from mild to medium driving is less pronounced, at +0.98%, and increases the average driving 

distance by 3%. Therefore, the small penalty in energy usage from changing from mild to medium 

driving may be worthwhile if time was a concern.  

To give more context on the impact of each driving behavior for each driving scenario, the cost to 

fully charge the vehicle per year can be calculated using the average energy usage for each 

scenario. Assuming an average of 12,000 miles per year, and $0.13 per kWh of electricity, 

switching for the least efficient driving behavior to the most efficient one can result in the 

following savings: For the EPA car-following driving cycles, switching from aggressive to mild 

driving can save $2.77/year in the UDDS cycle, $0.09/year in the HWFET cycle, and $6.13/year 

in the US06 cycle. For the Vissim city cycle, switching from medium to aggressive driving can 

save $28/year. Lastly, for the Vissim highway cycle, $17/year is saved from switching from 

aggressive to mild driving. While the savings may not seem significant for car-following scenarios, 

there is a great benefit to optimizing the driving behavior in regular driving conditions. For the 
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vehicle used in this simulation, the savings in the city could be used to fully recharge the vehicle 

4 more times, or it could mean 2 less stops to charge during a road trip on the highway. 

Ultimately, these driving tests demonstrate that there is no single solution for all driving scenarios. 

In car-following scenarios, mild driving is the most efficient. In situations where the traffic 

environment can slow down the vehicle, it may be beneficial to drive aggressively, so long as the 

speed limits are obeyed, and the periods of increased acceleration are used to avoid obstructions. 

Lastly, in highway driving, medium driving might provide the best compromise in terms of energy 

efficiency and distance traveled over the given time period. Therefore, the level of driving 

aggressiveness should adapt to the traffic environment in order to minimize charging costs and 

maximize the range of an EV. 

6.2 Future Work 

To expand upon the work done in this study, the addition of more complexity in the models can 

provide greater detail the impact of the driver behavior. A nonlinear battery model could show 

how the driving aggressive affects the energy consumption at different levels of SOC. A gradual 

regenerative braking system could help provide more accurate representation of the actual energy 

usage of the vehicle, since some of the energy is wasted due to friction braking. The driver model 

could be improved to include more human-like factors such as reaction time, as well as a model 

for lane-changing based on different levels of aggressiveness. The traffic environment could also 

vary the traffic density to compare the effect of the driving behaviors in high density traffic. The 

performance of the vehicle model could be evaluated against a real electric vehicle to validate the 

model.  
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The work done in this study could be expanded upon many applications. Since it is programmed 

in MATLAB, it is accessible and easy to modify in order to evaluate the impact of different models 

or parameters. Future applications of this work could include vehicle to vehicle communication, 

vehicle to infrastructure communication, and advanced safety systems by accessing the data stored 

in the objects in Vissim; applying advanced battery models, cooling system models, and vehicle 

powertrains; integrating more complex variations of the Intelligent Driver Model; and evaluating 

the performance of any of these applications over more sophisticated traffic environments using 

Vissim’s toolset.
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Appendices 

A.1 Tutorial on PTV Vissim and Component Object Model using MATLAB 

A.1.1 Introduction to PTV Vissim 

This chapter of the appendix serves as a guide about the traffic environment in PTV Vissim and 

how the simulation was set up in MATLAB to connect with the Component Object Model (COM) 

in Vissim. Since there are not many detailed resources available explaining how the COM works 

in conjunction with MATLAB, this section aims to provide additional clarity on the topic. 

PTV Vissim is a traffic flow simulation software developed in Karlsruhe, Germany. It is capable 

of microscopic simulations, meaning that each object (such as a vehicle, pedestrian, or train) can 

be simulated individually, with its own properties and behavior. It is also multi-modal, meaning 

that it can simulate multiple traffic types like cars, pedestrians, bicycles, and so on. Its primary use 

is simply to design roadways and simulate traffic flow, but it offers a lot of flexibility and 

accessibility, thus allowing the user to create complex traffic environments. It can also be 

combined with PTV Group’s other software, such as PTV Visum for example, for creating map 

network to import into Vissim. Additionally, software languages, such Python, MATLAB, and 

Microsoft Visual Basic can be used to access the information stored in Vissm’s objects and run 

external programs. Before discussing how that can be done, first the driver model used in Vissim 

must be understood as it is a key component to the simulations performed in Vissim.  



62 

A.1.2 Wiedemann Car-Following Driver Model 

The driving behavior of the vehicles in Vissim is based on a modified version of the psycho-

physical Wiedemann car-following model created in 1974 [30]. The model is based on four driving 

states or regions. The states are free flow, approaching, following, and braking. According to [7], 

each of these states have a different acceleration function a(s,v,Δv). The states are separated by 

speed and gap-related thresholds which are based on nonlinear functions. The convention used by 

the authors in [7] and [31] refer to the thresholds as CLDV (Closing Difference in Velocity), 

OPDV (Opening Difference in Velocity), SDV (Sensitivity Difference in Velocity), ABX 

(minimum gap for free flow, following, and approaching regions), and SDX (maximum gap for 

following region). Looking at the figure below, the line coming down from the top right of the plot 

describes the flow of state changes in a scenario where a vehicle is approaching a slower moving 

vehicle. The vehicle starts off at the free-flow state, and then transitions to the approaching state, 

and then following state when the gap and approach rate decrease sufficiently. The vehicle remains 

in that region until there is a significant change in the gap or the approach rate.  

 

Figure 32: States of the Wiedemann model [7] 
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The model used in Vissim also uses a rule-based algorithm for lateral movement, such as changing 

lanes. The vehicle can consider the behavior of 4 vehicles in front by default, and two vehicles in 

the adjacent lanes [30]. The overall model is stochastic, allowing for slight variations in the 

behavior of each vehicle in each simulation. Each simulation run has a random seed that acts as a 

starting point for generating randomness in the vehicle’s velocity, perception of other objects, and 

other factors. The seed can be changed so that each simulation run results in slightly different 

results. 

A.2 PTV Vissim Component Object Model and MATLAB 

A.2.1 Overview of the Component Object Model 

One of the advanced features in Vissim is the Component Object Model (COM) programming. 

The COM allows users to access the data and functions contained in Vissim through programming 

languages like Visual Basic for Applications (VBA), Python, C/C++, and MATLAB. This feature 

allows users to implement other functions or scripts that are not available in Vissim. Most of the 

help guides are presented in VBA or Python, so the following sections will explain how to use the 

COM in MATLAB.  

The Vissim COM uses a hierarchy-based system for accessing different objects. Objects can range 

from real things like vehicles, links, and stops signs, to simulation settings, conflict areas, and 

camera positions. In the figure below, each object is written with an “I” for “Interface” in front of 

the object name. While it is typically not used when calling out objects, it is mentioned here 

because it is sometimes used for referencing object types. 

Objects are divided into three classes: objects, containers, and collections. Objects are simply all 

the things in Vissim, like a vehicle (Vehicle #25), a traffic signal (Traffic signal #2), or a reduced 
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speed area (Reduced speed area #3).   

 

Figure 33: Vissim hierarchy of objects 

Collectively, all these objects are put into a container, which contains all of the same objects. 

Generally, all containers are the plural form of the object they contain. For example, the container 

“ILinks” would contain all the objects “ILink”, which are all the links in the simulation. A 

container would be used to access a certain property for all the objects within that container. Lastly, 

a collection contains references to objects. As an example, a static vehicle route 

“IVehicleRouteStatic” has the property “ILinkSeq”, which is the order of the links in that vehicle 

route. ILinkSeq only references the links, so if a link is removed from ILinkSeq, it is no longer in 

the vehicle route, but the link will still be in the simulation. All of the objects, containers and 

collections in Vissim can be found in the “Objects” section of the “COM Help” document. 

A.2.2 Accessing Data Using COM and MATLAB 

Objects in Vissim have attributes, which are the parameters that define that object. For the object 

IVehicle, attributes include its speed, its desired speed, its current position, and its weight, to name 
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a few.  Attributes can be accessed using various functions for an object or a container. For example, 

to edit the volume of vehicles traveling on a link to 600 vehicles per hour, one can set the 

“Volume(1)” attribute to 600 on the first IVehicleInput as shown:  

set(Vissim.Net.VehicleInputs.ItemByKey(1),’AttValue’,’Volume(1)’, 600); 

Here the “ItemByKey” term is a property, which are functions that call out a single object within 

a container. The key “1” is entered to call out the first IVehicleInput in the container 

IVehicleInputs. Then the term “AttValue” is used to state that an attribute is being accessed, called 

“Volume(1)”. The 1 in this case denotes the first defined time interval. This is specific to some 

attributes. Finally, the value of the new volume is entered. One can substitute the volume and key 

callout value for a variable in MATLAB if desired. To illustrate this, here is another example 

which gets the link number of the first IVehicleInput. 

LinkNum=get(Vissim.Net.VehicleInputs.ItemByKey(VehInput_Num),'AttValue

','Link'); 

In this example, the variable VehInput_Num contains the key or number of the desired 

IVehicleInput. Entering “Link” as the attribute gives the link number corresponding the desired 

IVehicleInput, and is saved in the variable LinkNum.Typically, it is preferred to access the 

attribute values for all the objects in a container. Most containers have specific functions called 

“Methods” that allow access to the information inside the container. To implement the IDM in 

Vissim, it is necessary to able to access all the parameters of each vehicles at every time step. One 

option is to use a for loop and the “GetAll” Method in Vissim to get the desired attributes for all 

the objects at that time step, as shown below. 

All_Vehicles = Vissim.Net.Vehicles.GetAll; % get all vehicles in the 

network at the actual simulation second 

for cnt_Veh = 1 : length(All_Vehicles), 

    veh_number = get(All_Vehicles{cnt_Veh}, 'AttValue', 'No'); 
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    veh_type = get(All_Vehicles{cnt_Veh}, 'AttValue', 'VehType'); 

    veh_speed = get(All_Vehicles{cnt_Veh}, 'AttValue', 'Speed'); 

    veh_position = get(All_Vehicles{cnt_Veh}, 'AttValue', 'Pos'); 

    veh_linklane = get(All_Vehicles{cnt_Veh}, 'AttValue', 'Lane'); 

end 

This method is available in the “COM Basic Commands” MATLAB script found in the “Examples 

Training” folder in Vissim. This is the slowest method for getting the attributes. A faster approach 

is to use the “GetMultiAttValues” method, which gets the attribute values for all the objects in the 

container. The output is a cell with the indices in the first column, and the values in the second 

column. 

veh_numbers = Vissim.Net.Vehicles.GetMultiAttValues('No'); 
veh_numbers = cell2mat(veh_numbers(:,2)); % convert second column to a 

matrix 

The fastest approach is the “GetMultipleAttributes” method since it creates a cell with each column 

being the desired attribute as they are called out. 

all_veh_attributes = Vissim.Net.Vehicles.GetMultipleAttributes({'No'; 

'VehType'; 'Speed'; 'Pos'; 'Lane'}); 

 

A.2.3 Setting Up a Simulation Using COM and MATLAB 

Prior to starting a new simulation, it is important to configure MATLAB properly for Vissim. All 

of the functions in Vissim can only accept vectors, not matrices. By default, MATLAB will pass 

matrices, so this may cause some errors. To avoid this issue, adding this line of code will cause 

MATLAB to only pass vectors to Vissim, even if a matrix is used. 

feature('COM_SafeArraySingleDim', 1); % Matlab should only pass one-

dimensional array to COM 

To open a Vissim network and layout file in Vissim using MATLAB, first a new Vissim window 

must be opened. This step allows gives to access Vissim’s objects and functions.  
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% Connecting the COM Server => Open a new Vissim Window: 

Vissim = actxserver('Vissim.Vissim'); 

Then the Vissim Network file Traffic_Environment.inpx and the Layout file 

Traffic_Environment.layx are loaded. The variable Path_of_Traffic_Environment_network is set 

to “cd”, which stands for current directory. The network and layout files must be stored in the same 

folder as the MATLAB script in order to be loaded. The files can be opened using the “LoadNet” 

and the “LoadLayout” functions. 

Path_of_Traffic_Environment_network = cd; 

%'C:\Users\Public\Documents\PTV Vision\PTV Vissim 11\My Files\Thesis 

Files\IDM_main'; 

  

% Load a Vissim Network: 

filename = 

fullfile(Path_of_Traffic_Environment_network,'Traffic_Environment.inpx

'); 

flag_read_additionally = false; 

Vissim.LoadNet(filename, flag_read_additionally)% Load a Layout: 

filename = 

fullfile(Path_of_Traffic_Environment_network,'Traffic_Environment.layx

'); 

Vissim.LoadLayout(filename); 

 

Any changes to the network or layout file can be saved using the “SaveNetAs” and “SaveLayout” 

methods. 

% Saving 

Filename = fullfile(Path_of_Traffic_Environment_network, 

'Traffic_Environment.inpx'); 

Vissim.SaveNetAs(Filename) 

Filename = fullfile(Path_of_Traffic_Environment_network, 

'Traffic_Environment.layx'); 

Vissim.SaveLayout(Filename) 

Once a network and layout file are loaded, any commands ran in the Command Window in 

MATLAB or from a script will act on the open network. It is recommended that most objects 

related to the traffic environment should be created and set in Vissim instead of MATLAB for 
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each of use. Once the traffic environment is created, MATLAB can access the information stored 

in those objects through the COM.  

Before running a simulation, it is important to set up the simulation settings. These can be set in 

MATLAB so changes can be made quickly without having to edit the settings on the Vissim 

network file. The object ISimulation contains all the attributes related to simulation such as the 

number of runs, resolution, and the duration. Similar to the past examples, the set function can be 

used to set the value of each attribute. The first attribute is the SimPeriod, which is the duration of 

the simulation measured in simulation seconds. This value is not equal to real world time; it is only 

a measurement of the simulated duration. 

t_sim = 60; % duration of simulation in seconds 

set(Vissim.Simulation, 'AttValue', 'SimPeriod', t_sim); 

 

The simulation resolution SimRes is the number of time steps per simulation second. The default 

value is 1, and the max is 10. The difference in time between each time step will be equal to 

1/SimRes. To improve the performance of the IDM, the SimRes is set to 10 so the vehicle’s speed 

and acceleration is calculated every 0.1s. 

SimRes = 10; % resolution, time step [s] per simulation second (max is 

10). Each time step is 1/SimRes seconds long 

set(Vissim.Simulation, 'AttValue', 'SimRes', SimRes);  

 

The Wiedemann car-following model used in Vissim is stochastic by design, and to ensure 

randomness, random seeds are introduced to create variation between simulations. A random seed 

is a number used to generate random numbers. If one wishes to calculate the average value over 

several runs, the random seed can be set for the first run and then incremented after every run so 

that the random values used in each simulation are different. This allows the average to represent 

the results over many simulations with slight variations in the vehicle’s speed and routes. 
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RandSeed = 45; % random seed, can be any integer value 

set(Vissim.Simulation, 'AttValue', 'RandSeed', RandSeed); 

RandSeedIncr = 1; % incrementation of random seed after each run 

set(Vissim.Simulation, 'AttValue', 'RandSeedIncr', RandSeedIncr); 

NumRuns = 5; % number of simulation runs 

set(Vissim.Simulation, 'AttValue', 'NumRuns', NumRuns); 

set(Vissim.Simulation, 'AttValue', 'UseMaxSimSpeed', true); 

To start a simulation run, one can use the method “Vissim.Simulation.RunSingleStep” to run a 

single time step. The simulation can be ran continuously using the method 

“Vissim.Simulation.RunContinuous”. A break point can be added by setting the “SimBreakAt” 

attribute of ISimulation to the time the break point occurs. 

set(Vissim.Simulation,'AttValue','SimBreakAt', 40); % break point at 

40s 

To stop the simulation, use “Vissim.Simulation.Stop”. To close Vissim, use “Vissim.Exit”. 

A.2.4 Adding Vehicles to a Simulation 

Vehicles can be added to a simulation through random generation or deterministically through 

various methods. Vehicles are generated randomly by setting an IVehicleInput to a link, which 

determines the number of vehicles per hour going through that link. The vehicles generated in this 

manner follow the Wiedemann car-following model but do not have a set route. Instead, they travel 

along the same link until they reach a connector with its direction attribute set to “All” starting at 

the link they are traveling on. In the figure below, the four vehicles traveling on Link 1 reach the 

Connector 10000 along their route. Since the vehicles do not have a set route, they will always 

change to Connector 10000. If the direction attribute of Connector 10000 was set to “Left” or 

“Right”, then the vehicles will not travel on Connector 10000 because they cannot make the choice 

to travel of the connector set to a direction other than “All”. 



70 

 

Figure 34: Route selection of vehicles generated without a set vehicle route 

To correct this issue, vehicle route can be added so that the vehicles know what route are possible. 

Two vehicle routes are added in the figure below. The route starts at the magenta line and ends at 

either of the two turquoise lines. The vehicles decide when crossing the start line of which of the 

two routes to select. 

 

Figure 35: Use of static vehicle routes resolves vehicle routing problem 

The static vehicle route does not need to terminate at the end of a link and can start at any point of 

a link. Therefore, it’s best to use them around intersections or split paths where multiple routes are 

possible. In addition, the routes should be created from the same starting point, since the vehicles 

will set a route depending on the first starting point they cross. Otherwise if there is another static 
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vehicle route further down the same link, it will never be used because the vehicles already have 

a route. 

 

Figure 36: Vehicles stay on Route 2 until completed and will ignore Route 1 

The other approach is to manually add vehicles using MATLAB. The method 

“AddVehicleAtLinkPosition” takes 6 inputs: the vehicle type, its desired speed, the starting link, 

the starting lane, the position on that link, and whether it interacts with other vehicles or objects. 

The vehicle type describes if the vehicle is a car, bus, tram, HGV (heavy goods vehicle), 

pedestrian, or a bicyclist. The interaction Boolean determines whether the vehicle interacts with 

surrounding vehicles and responds to the traffic environment using the Vissim’s modified 

Wiedemann driving model. Setting it to “False” means that the vehicle travels at its desired speed 

regardless of other vehicles or objects in the environment. Similar to the vehicles generated using 

IVehicleInput, the vehicles created this way do not follow a specific route. The vehicle will always 

go to the first connector set with the direction “All” unless it runs into a static vehicle route along 

its path that gives the opportunity to travel to a different link. The limitation of this method of 

adding vehicles is that the simulation run must be started, or an error will occur. Run a single time 

step using “Vissim.Simulation.RunSingleStep” and then enter the following to add a vehicle: 

% Add vehicle to network 

vehicle_type = 100; % set to 100 for car 

desired_speed = 25; % set initial speed of first vehicle [km/h] 

link = 1; 

lane = 2; 

xcoordinate = 10; % set initial position of first vehicle [m] 
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interaction = true; % optional boolean 

Vehicle_1 = 

Vissim.Net.Vehicles.AddVehicleAtLinkPosition(vehicle_type,... 

    link, lane, xcoordinate, desired_speed, interaction); 

 

A.2.5 Incorporating the Intelligent Driver Model 

Using the techniques discussed in the previous sections the IDM can be incorporated into a vehicle 

in Vissim. It must be noted that Vissim has built-in menus for running external driver models 

without having to operate Vissim externally using a programming language. An external driver 

model can be added to a vehicle type in the vehicle type settings menu. 

 

Figure 37: Adding an external driver model to a vehicle type 

The driver model DLL file and its parameter file can be tied to a specific vehicle type for 

comparisons to the default vehicles in Vissim. The driver model DLL file is called out at each time 

step and can affect all or some of the vehicles in the network. The DLL file must be written in C 

or C++, which limits the accessibility of this method. However, the focus here is to implement the 

IDM using MATLAB, which is still feasible without using Vissim’s built-in menu for external 

driver models. More information about adding an external driver model can be found in Section 

18.3 of the Vissim manual [30]. 
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To incorporate the IDM in a vehicle in Vissim, the AddVehicleAtLinkPosition method is used to 

generate the IDM vehicle. To use AddVehicleAtLinkPosition, the simulation must be already 

running, so it is necessary run a single time step using Vissim.Simulation.RunSingleStep outside 

of the main for-loop used for the IDM.  The interaction Boolean must be set to “False” to avoid 

the Wiedemann model from overriding the IDM. It is important to note that although the generated 

vehicle will not use the Wiedemann driver model, but it is still capable of performing lane changes 

in accordance to Vissim’s algorithm. The output should be saved to a variable so that the attributes 

from the IDM vehicle can be easily accessed. 

Vissim.Simulation.RunSingleStep; % Run first simulation step i = 1; 

Vehicle_IDM=Vissim.Net.Vehicles.AddVehicleAtLinkPosition(vehicle_type,

link, lane, xcoordinate, desired_speed, interaction); 

 

The vehicle now appears in the Vissim traffic environment. Now the information stored in the 

vehicle can be used. Any of the methods discussed earlier to assess the stored vehicle data, but it 

is recommended to use the “get” function to access the data specific to the IDM vehicle. For 

example, the attribute “Speed” contains the speed of the vehicle in km/hr. The current vehicle 

speed can be stored in a vector at every time step so it can be used in the IDM or referenced later. 

v_IDM(t_step) = get(Vehicle_IDM,'AttValue','Speed')/3.6; % converted 

from km/hr to m/s 

 

For other vehicles, it is recommended to use the GetMultiAttValues method to the data stores in 

all vehicles and remove the first row, as the IDM vehicle should be the first vehicle to spawn in 

the simulation.  

veh_speeds = Vissim.Net.Vehicles.GetMultiAttValues('Speed'); 

veh_speeds = cell2mat(veh_speeds(2:end,2)); % [km/hr] 

 

With these tools, one can implement their own driver model and run their model along with the 

other vehicles in Vissim.  


