
A User-aware Intelligent Refactoring for Discrete
and Continuous Software Integration

by

Vahid Alizadeh

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer & Information Science)

in the University of Michigan-Dearborn
2020

Doctoral Committee:

Associate Professor Marouane Kessentini, Chair
Professor William Grosky
Professor Bruce Maxim
Associate Professor Luis Ortiz
Professor Armen Zakarian





© Vahid Alizadeh 2020

All Rights Reserved



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Context: Software Refactoring . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Proposed Contributions . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . 9

II. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Software Refactoring . . . . . . . . . . . . . . . . . 10
2.2.1.1 Refactoring Operations . . . . . . . . . . 12

2.2.2 Interactive and Dynamic Evolutionary Multi-Objective
Optimization . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Code Quality Metrics . . . . . . . . . . . . . . . . . 16
2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Manual Refactoring . . . . . . . . . . . . . . . . . . 19
2.3.2 Automated Refactoring . . . . . . . . . . . . . . . . 21
2.3.3 Interactive Refactoring . . . . . . . . . . . . . . . . 23
2.3.4 Search Based Software Refactoring . . . . . . . . . . 25
2.3.5 Refactoring Recommendation . . . . . . . . . . . . 26
2.3.6 Empirical Studies on Refactoring . . . . . . . . . . . 27
2.3.7 Software Bots . . . . . . . . . . . . . . . . . . . . . 28

ii



2.4 Summary of Systematic Literature Review on Refactoring . . 29

III. Interactive Multi-Objective Refactoring . . . . . . . . . . . . . 35

3.1 Introduction and Problem Statement . . . . . . . . . . . . . . 35
3.2 Approach: Search-based Interactive Refactoring Recommen-

dation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Approach Overview . . . . . . . . . . . . . . . . . . 41
3.2.2 Adaptation . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2.1 Multi-objective formulation . . . . . . . 43
3.2.2.2 Solution representation . . . . . . . . . . 45
3.2.2.3 Solution variation . . . . . . . . . . . . . 46
3.2.2.4 Solution evaluation . . . . . . . . . . . . 48

3.2.3 Interactive Recommendation of Refactorings . . . . 49
3.2.4 Running Example: Illustration on the JVacation Sys-

tem . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4.1 Context . . . . . . . . . . . . . . . . . . 54
3.2.4.2 Illustration of the Innovization Component 55
3.2.4.3 Illustration of the Interactive and Dynamic

Components . . . . . . . . . . . . . . . . 57
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Research Questions . . . . . . . . . . . . . . . . . . 61
3.3.2 Validation Methodology . . . . . . . . . . . . . . . . 62
3.3.3 Studied Software Projects . . . . . . . . . . . . . . . 68
3.3.4 Study Participants . . . . . . . . . . . . . . . . . . 69
3.3.5 Techniques Studied . . . . . . . . . . . . . . . . . . 70

3.3.5.1 Overview of the Used Techniques . . . . 70
3.3.5.2 Parameters Setting . . . . . . . . . . . . 72

3.3.6 Case Studies Summary . . . . . . . . . . . . . . . . 73
3.3.7 Results and Discussion . . . . . . . . . . . . . . . . 75

3.3.7.1 Statistical Analysis . . . . . . . . . . . . 75
3.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

IV. Reducing Interactive Refactoring Effort via Clustering-based
Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 Approach: Clustering-based Interactive Multi-objective Soft-

ware Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.2 Phase 1: Multi-Objective Refactoring . . . . . . . . 104

4.3.2.1 Refactoring Solution Representation . . 105
4.3.2.2 Fitness Functions . . . . . . . . . . . . . 108

iii



4.3.2.3 Variation Operators . . . . . . . . . . . 108
4.3.3 Phase 2: Clustering the Pareto Front of Refactoring

Solutions . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.3.1 Calinski Harabasz (CH) Index . . . . . . 109

4.3.4 Phase 3: Developers Interaction and Preferences Ex-
traction . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.5 Applying Preference Parameters . . . . . . . . . . . 115
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.1 Research Questions . . . . . . . . . . . . . . . . . . 117
4.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . 117
4.4.3 Statistical Tests and Parameters Setting . . . . . . . 120
4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 126
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

V. From Multi-objective to Mono-objective Refactoring via De-
velopers Preference Extraction . . . . . . . . . . . . . . . . . . . 128

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.1 Phase 1: Multi-Objective Refactoring . . . . . . . . 134
5.3.1.1 Solution Representation . . . . . . . . . 137
5.3.1.2 Fitness Functions . . . . . . . . . . . . . 137

5.3.2 Phase 2: Clustering Refactoring Solutions and Ex-
tracting Developer Preferences . . . . . . . . . . . . 138

5.3.2.1 Clustering the Pareto-front . . . . . . . 138
5.3.2.2 Interaction and Preference Extraction . 140

5.3.3 Phase 3: Preference-based Mono-objective Refactoring141
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.1 Research Questions . . . . . . . . . . . . . . . . . . 145
5.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . 146
5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 157
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

VI. Simultaneous Decision and Objective Space Clustering for
Interactive Refactoring . . . . . . . . . . . . . . . . . . . . . . . . 160

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2 Interactive Refactoring Challenges . . . . . . . . . . . . . . . 164
6.3 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . 168

6.3.1 Phase 1: Multi-Objective Refactoring . . . . . . . . 168
6.3.1.1 Solution Representation . . . . . . . . . 168
6.3.1.2 Fitness Functions . . . . . . . . . . . . . 170

iv



6.3.2 Phase 2: Objective Space Clustering . . . . . . . . . 170
6.3.3 Phase 3: Decision Space Clustering . . . . . . . . . 172
6.3.4 Phase 4: Developer Feedback and Preference Extrac-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4.1 Research Questions . . . . . . . . . . . . . . . . . . 176
6.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . 177
6.4.3 Parameter Setting . . . . . . . . . . . . . . . . . . . 180
6.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 185
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

VII. Intelligent Refactoring Bot for Continuous Integration . . . . 188

7.1 Introduction and Problem Statement . . . . . . . . . . . . . . 188
7.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.2.1 RefBot Parameters Setting . . . . . . . . . . . . . . 192
7.2.2 Processing a Pull Request . . . . . . . . . . . . . . 192

7.2.2.1 Calculating Quality Changes . . . . . . 194
7.2.2.2 Optimization Using Refactoring . . . . . 194

7.2.3 Developer’s Interaction . . . . . . . . . . . . . . . . 196
7.2.4 Configuration and Customization . . . . . . . . . . 197
7.2.5 Running Example . . . . . . . . . . . . . . . . . . . 198

7.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . 203
7.3.2 Experimental Setting and Data Analysis . . . . . . 207
7.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 211
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

VIII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

v



LIST OF FIGURES

Figure

1.1 Overview of the contributions of this thesis. . . . . . . . . . . . . . 5
2.1 Number of refactoring publications over the last two decades. . . . . 31
2.2 Leading refactoring researchers over the last decade based on both

publications and citations. . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Distribution of refactoring researchers around the world. . . . . . . 32
2.4 Taxonomy of refactoring researches and the number of publications

during the past two decade. . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Approach overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Refactorings recommended by our technique. . . . . . . . . . . . . . 51
3.3 Recommended target classes by our technique for a move method

refactoring to modify. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Boxplots of G, NF, MC, PR, and RC on all the ten systems based

on 30 independent runs. (Continue on the next page.) Label of the
methods: M1 (Our approach)=Interactive+Innovization NSGA-II,
M2=Innovization NSGA-II, M3=Kessentini et al.[1], M4=Ouni et
al.[2], M5=Harman et al.[3], M6=O’Keeffe et al.[4], M7=Jdeodorant
[5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5 MC@k results on the different systems with k= 1, 5, 10 and 15. . . 87
3.6 PR@k results on the different systems with k= 1, 5, 10 and 15. . . . 87
3.7 The median NMR, NRR and NAR results in the different systems. . 88
3.8 The average productivity difference (TP) results on the different tasks

performed by the three groups using our interactive approach, Ouni
et al. [2], Harman et al.[3] . . . . . . . . . . . . . . . . . . . . . . . 89

3.9 GanttOptions before and after refactoring. . . . . . . . . . . . . . . 92
4.1 Overview of our proposed IC-NSGA-II approach. . . . . . . . . . . . 103
4.2 Allowing user to select the desired refactoring operators and fitness

functions in our tool . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3 Psuedo-code for Phase 2 of our proposed approach. . . . . . . . . . 110
4.4 Interactive solution charts in our tool. . . . . . . . . . . . . . . . . . 112
4.5 Interactive solution tables and cluster selection in our tool. . . . . . 113

vi



4.6 The median manual evaluation scores, MC, on the six systems with
95% confidence level (α = 5%) based on a one-way ANOVA statistical
test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7 Illustration of the refactoring solutions convergence to a region of in-
terest after two rounds of interactions extracted from the experiments
on the Gantt Project. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1 The output of a multi-objective refactoring tool[6] finding trade-offs
between QMOOD quality attributes on GanttProject v1.10.2 . . . 133

5.2 Overview of our proposed approach. . . . . . . . . . . . . . . . . . . 134
5.3 The output of phase 2 (Clustering) on GanttProject v1.10.2. . . . . 140
5.4 The output of phase 3 (Mono-objective) on GanttProject v1.10.2

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.5 Average manual evaluations, MC, on the 7 systems. . . . . . . . . . 152
5.6 The median number of recommended refactorings, NR, of the selected

solution on the 7 systems. . . . . . . . . . . . . . . . . . . . . . . . 153
5.7 The median number of required interactions (accept / reject/ modify

/ selection), NI, on the 7 systems. . . . . . . . . . . . . . . . . . . . 154
5.8 The average execution time, T, in minutes on the 7 systems. . . . . 155
5.9 A qualitative example of three executions extracted from our ex-

periments on GanttProject to illustrate the process of converting a
multi-objective search into a mono-objective one. . . . . . . . . . . 156

6.1 The output of a multi-objective refactoring tool [6] finding trade-offs
between QMOOD quality attributes on GanttProject v1.10.2 with
clustering only in the objective space. . . . . . . . . . . . . . . . . 167

6.2 Example of a refactoring solution proposed by our tool for GanttPro-
ject v1.10.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3 Clustering based on code locations (decision space) of the refactoring
solutions of one region of interest in the objective space of GanttPro-
ject v1.10.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.4 Illustration of the clustered solutions in the objective space and the
decision space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5 Median manual evaluations, MC, on the 7 systems. . . . . . . . . . 183
6.6 The median number of recommended refactorings, NR, of the selected

solution on the 7 systems. . . . . . . . . . . . . . . . . . . . . . . . 184
6.7 The median number of required interactions (accept / reject / modify

/ selection), NI, on the 7 systems. . . . . . . . . . . . . . . . . . . . 185
6.8 The median execution time, T, in minutes on the 7 systems. . . . . 186
7.1 The overview of RefBot Pipeline. . . . . . . . . . . . . . . . . . . . 192
7.2 Installing RefBot on a repository. . . . . . . . . . . . . . . . . . . . 193
7.3 The quality table in solution report page. . . . . . . . . . . . . . . . 198
7.4 The quality bar charts in file report page for all six quality attributes. 199
7.5 The list of refactoring operations recommended for a single file. . . . 200
7.6 The code abstraction of source and target classes after applying a

specific refactoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

vii



7.7 The refactoring instructions related to a single file are added to the
source code as a marker style. . . . . . . . . . . . . . . . . . . . . . 201

7.8 Median percentage of fixed code smells (NF) on the different pull-
requests of the seven systems. . . . . . . . . . . . . . . . . . . . . . 208

7.9 Median quality gain (G) on the different pull-requests of the seven
systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

viii



LIST OF TABLES

Table

2.1 List of refactoring operations included in this thesis. . . . . . . . . . 12
2.2 QMOOD design metrics. . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 QMOOD quality attributes. . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Example of a solution representation. . . . . . . . . . . . . . . . . . 47
3.2 Quality attributes value on the JVacation system. . . . . . . . . . . 56
3.3 Three simplified refactoring solutions recommended for JVacation v1.0. 58
3.4 Four different interaction examples with the developer applied on the

refactoring solutions recommended for JVacation v1.0. . . . . . . . . 59
3.5 Summary of the research questions, their goals, defined metrics to

answer and analyze them, and the associated tasks to collect data
and calculate the metrics. . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Statistics of the studied software projects. . . . . . . . . . . . . . . 69
3.7 Survey organization. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 F-value results from one-way ANOVA statistical tests for correspond-

ing software project and metric between different methods. . . . . . 77
3.9 Effect size values (Eta squared (η2)) for corresponding software project

and metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.10 Tukey post hoc analysis results between our method(M1) and others

reported by Mean difference and 95% confidence intervals. Label of
the methods: M1 (Our approach)=Interactive+Innovization NSGA-
II, M2=Innovization NSGA-II, M3=Kessentini et al.[1], M4=Ouni
et al.[2], M5=Harman et al.[3], M6=O’Keeffe et al.[4], M7=Jdeodorant
[5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Statistics of the studied systems. . . . . . . . . . . . . . . . . . . . . 118
4.2 Selected programmers. . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3 Median time, in minutes, and number of refactorings proposed by

both interactive approaches on the different six systems. . . . . . . . 124
5.1 Statistics of the studied systems. . . . . . . . . . . . . . . . . . . . . 147
5.2 Selected programmers. . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.1 Statistics of the studied systems. . . . . . . . . . . . . . . . . . . . . 178
6.2 Selected participants. . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.1 Statistics of the studied systems. . . . . . . . . . . . . . . . . . . . . 203

ix



7.2 Participants involved in RQ2. . . . . . . . . . . . . . . . . . . . . . 206
7.3 RQ2: Would you apply the proposed refactorings of the generated

refactoring pull-request? . . . . . . . . . . . . . . . . . . . . . . . . 209

x



LIST OF ABBREVIATIONS

NSGAII Non-dominated Sorting Genetic Algorithm

GMM Gaussian Mixture Model

IDE Integrated development environment

SLR systematic literature review

IGA Interactive Genetic Algorithm

GA Classic Genetic Algorithm

EMO Evolutionary Multi-objective Optimization

CI/CD Continous Integration/Continous Development

QMOOD Quality Metrics for Object Oriented Designs

ISE LAB Intelligent Software Engineering Laboratory

xi



ABSTRACT

Successful software products evolve through a process of continual change. How-

ever, this process may weaken the design of the software and make it unnecessarily

complex, leading to significantly reduced productivity and increased fault-proneness.

Refactoring improves the software design while preserving overall functionality

and behavior, and is an important technique in managing the growing complexity of

software systems. Most of the existing work on software refactoring uses either an en-

tirely manual or a fully automated approach. Manual refactoring is time-consuming,

error-prone and unsuitable for large-scale, radical refactoring. Furthermore, fully au-

tomated refactoring yields a static list of refactorings which, when applied, leads to

a new and often hard to comprehend design. In addition, it is challenging to merge

these refactorings with other changes performed in parallel by developers.

In this thesis, we propose a refactoring recommendation approach that dynam-

ically adapts and interactively suggests refactorings to developers and takes their

feedback into consideration. Our approach uses Non-dominated Sorting Genetic Al-

gorithm (NSGAII) to find a set of good refactoring solutions that improve software

quality while minimizing the deviation from the initial design. These refactoring so-

lutions are then analyzed to extract interesting common features between them such

as the frequently occurring refactorings in the best non-dominated solutions.

We combined our interactive approach and unsupervised learning to reduce the

developer’s interaction effort when refactoring a system. The unsupervised learning

xii



algorithm clusters the different trade-off solutions, called the Pareto front, to guide the

developers in selecting their region of interests and reduce the number of refactoring

options to explore.

To reduce the interaction effort, we propose an approach to convert multi-objective

search into a mono-objective one after interacting with the developer to identify a

good refactoring solution based on their preferences. Since developers may want to fo-

cus on specific code locations, the ”Decision Space” is also important. Therefore, our

interactive approach enables developers to pinpoint their preference simultaneously

in the objective (quality metrics) and decision (code location) spaces.

Due to an urgent need for refactoring tools that can support continuous integration

and some recent development processes such as DevOps that are based on rapid

releases, we propose, for the first time, an intelligent software refactoring bot, called

RefBot. Our bot continuously monitors the software repository and find the best

sequence of refactorings to fix the quality issues in Continous Integration/Continous

Development (CI/CD) environments as a set of pull-requests generated after mining

previous code changes to understand the profile of developers.

We quantitatively and qualitatively evaluated the performance and effectiveness

of our proposed approaches via a set of studies conducted with experienced developers

who used our tools on both open source and industry projects.
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CHAPTER I

Introduction

1.1 Research Context: Software Refactoring

A recent study [7] by the US Air Force Software Technology Support Centre

(STSC) shows that the code restructuring of several software systems reduced devel-

opers’ time by over 60% when introducing new features into a restructured architec-

ture.

General Motors (GM) is recalling nearly 4.3 million vehicles in 2017 after discov-

ering a software quality defect of poor modularity in an evolved program in a car

controller. It caused performance issues that prevented air bags from deploying in

time during a crash [8]. That flaw has already been linked to one death and three

injuries.

Clearly, urgently, software engineers need better ways to reduce and manage the

growing complexity of software systems and improve their productivity. Refactoring

[9, 10, 11] is a technique that improves the design structure while preserving the

overall functionality and behavior. Refactoring is a key practice in agile development

processes, and is well supported by refactoring tools that are standard with all major

IDEs. Refactoring is an extremely important solution to address the challenge of

managing software complexity [12, 13, 14], and has experienced tremendous adoption

in Object-oriented systems [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

1



Evolution is a characteristic of software which means modifying the software to

adapt new requirements and to incorporate new features. These modifications over

time can degrade the software quality and increase the complexity of code leading to

higher costs of development and maintenance. Therefore, there is a need of techniques

to improve the quality and reduce the complexity of the software. The research area

for this purpose is called restructuring or in case of an object-oriented environment,

Refactoring.

Martin Fowler defined Refactoring as ”a change made to the internal structure of

software to make it easier to understand and cheaper to modify without changing its

observable behavior” [9]. This implies that refactoring is a method which reconstruct

the code’s structure without altering its behavior in order to improve the software

quality in terms of maintainability, extensibility, and re-usability. Refactoring typi-

cally consists of small steps after each the functionality of the code will be unchanged.

Refactoring can be done in various areas of the software: Code, Database, or User

interface. However, we aim to focus on code refactoring.

It might be difficult for a developer to be justified to spend time on improvement of

a piece of code in order to have the same exact functionality. However, it can be seen

as an investment for future developments. Specifically, refactoring is an imperative

task on softwares with longer lifespans with multiple developers need to read and

understand the codes. Refactoring can improve both the quality of software and the

productivity of its developers. Increasing the quality of software is due to decreasing

the complexity of it at design and source code level caused by refactoring which is

proved by many studies [26, 27]. The long-term effect of refactoring is improving

the productivity of developers by increasing two crucial factors, understandability

and maintainability of the codes, especially when a new developer join to an existing

project. It is shown that refactoring can help to detect, fix, and reduce software bugs

and leading to software projects which are less likely to expose bug in development
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process [28]. Another study claims that there are some specific kinds of refactoring

methods that are very probable to induce bug fixes [29].

Refactoring is a way of removing or reducing the presence of technical debt. Tech-

nical debt is a concept analogous to financial credit and it consists of code, design,

test, and documentation debts. In software engineering world, it implies extra efforts

and costs caused by an improper design or code structure. This can be seen more

dramatically in large and long-lived software systems. Technical debt can be man-

aged by increasing awareness, detecting and repaying, and preventing accumulation

of it. Refactoring is the best strategy to cope with technical debt before it get out of

control. Refactoring is beneficial to keep technical debt low and can be more efficient

when it is automated [30].

Critical systems are those in which failure results in significant physical damages,

economic disasters, or threats to human life. There are three types of critical sys-

tems: safety, mission, and business critical systems. Examples of these systems are

automotive industry, spacecraft navigation systems, and banking. Regular changes

are inevitable in software-critical systems, therefore refactoring plays a crucial role.

It is shown that refactoring can improve the overall security of safety-critical system

[31].

1.2 Problem Statement

Software design is a human activity that cannot be fully automated because de-

signers understand the problem domain intuitively and they have targeted design

goals in mind. Thus, several studies show that fully automated refactoring does not

always lead to the desired architecture [32]. On the other hand, manual refactoring

is error-prone, time consuming and not practical for radical changes. Based on inter-

views that we conducted as part of an NSF I-Corps project, programmers spend an

average of 45% of their overall development time manually applying refactoring. Ba-
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tory et al. [33] presented several case studies where architectural refactoring involved

more than 750 refactoring steps and took more than 3 weeks to execute. Thus, it

is important to develop intelligent methods to determine when and how to integrate

programmer feedback to semi-automate architecture refactoring. We will seek to an-

swer the fundamental scientific question: ”What is the minimal guidance that leads

automated search to useful and realistic architecture refactoring recommendations?”

This will require both incorporating human- and machine- provided refactoring rec-

ommendations and human provided ”hints”.

Lack of reusable refactoring principles within the same project or across projects.

Since refactoring cannot be fully automated, the interaction with humans during

this process can be repetitive, expensive and tedious. In an interactive refactoring

process, developers must evaluate recommended refactoring methods and adapt them

to the targeted design. Recent work observes that software refactoring often requires

systematic and repetitive changes to different contexts. Why do software engineers

spend so much time repeatedly performing the same tedious low-level refactoring

tasks? Cai et al. found that 24% to 40% of architecture level fixes involve similar

changes to numerous locations [34]. A failure to systematically learn refactoring

patterns from the interaction data can lead to costly and annoying labor.

1.3 Proposed Contributions

To address the problems mentioned in Subsection 1.2, we propose the following

solutions which are organized into five main contributions as it is shown in Fig 1.1.

1. We propose a refactoring recommendation approach that dynamically adapts

and interactively suggests refactorings to developers and takes their feedback

into consideration. Our approach uses NSGAII to find a set of good refactoring

solutions that improve software quality while minimizing the deviation from the
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Figure 1.1: Overview of the contributions of this thesis.

initial design. These refactoring solutions are then analyzed to extract interest-

ing common features between them such as the frequently occurring refactorings

in the best non-dominated solutions. Based on this analysis, the refactorings

are ranked and suggested to the developer in an interactive fashion as a se-

quence of transformations. The developer can approve, modify or reject each

of the recommended refactorings, and this feedback is then used to update the

proposed rankings of recommended refactorings. We evaluated our approach on

a set of eight open source systems and two industrial projects provided by an

industrial partner. Statistical analysis of our experiments shows that our dy-

namic interactive refactoring approach performed significantly better than four

existing search-based refactoring techniques and one fully-automated refactor-

ing tool not based on heuristic search. A paper is accepted and published at

the IEEE Transactions in Software Engineering journal TSE 2018 1 [6], the

tool is licensed to industrial partners, and a patent is approved [35].

1Alizadeh, V., Kessentini, M., Mkaouer, W., Ocinneide, M., Ouni, A., & Cai, Y. (2018). An
interactive and dynamic search-based approach to software refactoring recommendations. IEEE
Transactions on Software Engineering.
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2. We propose to extend the previous contribution by combining the use of multi-

objective and unsupervised learning to reduce the developer’s interaction effort

when refactoring systems, a big challenge faced by programmers. We gener-

ate, first, using multi-objective search different possible refactoring strategies

by finding a trade-off between several conflicting quality attributes. Then, an

unsupervised learning algorithm clusters the different trade-off solutions, called

the Pareto front, to guide the developers in selecting their region of interests

and reduce the number of refactoring options to explore. The feedback from

the developer, both at the cluster and solution levels, are used to automatically

generate constraints to reduce the search space in the next iterations and fo-

cus on the region of developer preferences. We selected 14 active developers

to manually evaluate the effectiveness our tool on 5 open source projects and

one industrial system. An invention disclosure is approved for this work and

the results are published at the 33rd IEEE/ACM International Conference on

Automated Software Engineering ASE 2018 2 [36].

3. we proposed, for the first time, a way to convert multi-objective search into

a mono-objective one after interacting with the developer to identify a good

refactoring solution based on his preferences. The first step consists of using

a multi-objective search to generate different possible refactoring strategies by

finding a trade-off between several conflicting quality attributes. Then, an unsu-

pervised learning algorithm clusters the different trade-off solutions, called the

Pareto front, to guide the developers in selecting their region of interests and

to reduce the number of refactoring options to explore. Finally, the extracted

preferences from the developer are used to transform the multi-objective search

into a mono-objective one by taking the preferred cluster of the Pareto front as

2Alizadeh, V., & Kessentini, M. (2018, September). Reducing interactive refactoring effort via
clustering-based multi-objective search. In Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering (pp. 464-474).

6



the initial population for the mono-objective search and generating an evalua-

tion function based on the weights that are automatically computed from the

position of the cluster in the Pareto front. Thus, the developer will just interact

with only one refactoring solution generated by the mono-objective search. We

selected 32 participants to manually evaluate the effectiveness of our tool on

7 open source projects and one industrial project. The results show that the

recommended refactorings are more accurate than the current state of the art.

This approach is accepted and published at International Working Conference

on Source Code Analysis and Manipulation SCAM 2019 3 [37].

4. To give developers more insight about the decision space, we proposed an in-

teractive approach that enables developers to pinpoint their preference simulta-

neously in the objective (quality metrics) and decision (code location) spaces.

Developers may be interested in looking at refactoring strategies that can im-

prove a specific quality attribute, such as extendibility (objective space), but

they are related to different code locations (decision space). A plethora of so-

lutions is generated at first using multi-objective search that tries to find the

possible trade-offs between quality objectives. Then, an unsupervised learning

algorithm clusters the trade-off solutions based on their quality metrics, and

another clustering algorithm is applied to each cluster of the objective space to

identify solutions related to different code locations. The objective and decision

spaces can now be explored more efficiently by the developer, who can give feed-

back on a smaller number of solutions. This feedback is then used to generate

constraints for the optimization process, to focus on the developer’s regions of

interest in both the decision and objective spaces. The manual validation of

selected refactoring solutions by developers confirms that our approach outper-

3Alizadeh, V., Fehri, H., & Kessentini, M. Less is More: From Multi-objective to Mono-objective
Refactoring via Developer’s Knowledge Extraction. In 2019 19th IEEE International Conference on
Source Code Analysis and Manipulation (SCAM) (pp. 181-192). IEEE.
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forms state of the art refactoring techniques. This work is accepted at the IEEE

Transactions in Software Engineering journal TSE 2020 4 [38].

5. The adoption of refactoring techniques for continuous integration received much

less attention from the research community comparing to root-canal refactoring

to fix the quality issues in the whole system. Several recent empirical studies

show that developers, in practice, are applying refactoring incrementally when

they are fixing bugs or adding new features. There is an urgent need for refactor-

ing tools that can support continuous integration and some recent development

processes such as DevOps that are based on rapid releases. Furthermore, sev-

eral studies show that manual refactoring is expensive and existing automated

refactoring tools are challenging to configure and integrate into the development

pipelines with significant disruption cost.

We presented a first attempt to propose an intelligent software refactoring bot,

as GitHub app, that can submit a pull-request to refactor recent code

changes. The salient feature of the proposed bot is that it incorporates in-

teraction support, via our Web app, hence allowing developers to approve or

modify or reject the applied code refactoring. The refactoring bot also provides

support to explain why the refactorings are applied by quantifying the qual-

ity improvements. To evaluate the effectiveness of our technique, we applied

it to four open-source and one industrial projects comparing it with state-of-

the-art approaches. Our results show promising evidence on the usefulness of

the proposed interactive refactoring bot. The participants highlighted the high

usability of the bot in terms of easy integration with their development environ-

ments with the least configuration effort. An invention disclosure is approved

for this work and the results are published at the 34th IEEE/ACM International

4Alizadeh, V., Fehri, H., Kessentini, & Kazman, R. (2020). Enabling Decision and Objective
Space Exploration for Interactive Multi-Objective Refactoring. IEEE Transactions on Software
Engineering.
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Conference on Automated Software Engineering ASE 20195 [39, 40].

We note that the research contributions proposed in this thesis, generated 7 UM

inventions, which are selected by the Michigan Translational Research and Commer-

cialization (MTRAC) funding program to commercialize them and we are currently

founding a startup with the UM Technology Transfer Office. One of these inventions

(interactive refactoring) is selected by the UM Technology Transfer Office among the

top 8 inventions of the year in 2019 from over 500 applications.

1.4 Organization of the Dissertation

This thesis is organized as follows: Chapter II introduces the current state of

the art and related works to this thesis. Chapter III presents interactive refactoring

recommendation approach. Chapter IV discusses our proposed approach to reduce

refactoring effort for developers. Chapter V, describes our proposed method to convert

multi-objective to mono-objective refactoring problem based on the user’s preferences.

We present our approach to enable the users to explore decision space of recommended

refactorings in VI. Chapter VII describes our refactoring bot for CI/CD. Finally, a

summary and future research directions are presented in VIII.

5Alizadeh, V., Ouali, M. A., Kessentini, M., & Chater, M. (2019, November). RefBot: Intelli-
gent Software Refactoring Bot. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE) (pp. 823-834). IEEE.
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CHAPTER II

State of the Art

2.1 Introduction

In this chapter, we cover the necessary background information related to our

work followed by an overview of existing studies.

2.2 Background

In this section, we describe the required background to understand the proposed

approaches. First, we give an overview about software refactoring. Then, several defi-

nitions related to interactive and dynamic multi-objective optimization are described.

2.2.1 Software Refactoring

Refactoring is defined as the process of improving the code after it has been writ-

ten by changing its internal structure without changing its external behavior. The

idea is to reorganize variables, classes and methods to facilitate future adaptations

and enhance comprehension. This reorganization is used to improve different as-

pects of the software quality such as maintainability, extendibility, reusability, etc.

Some modern Integrated Development Environments (IDEs), such as Eclipse, Net-

beans, provide support for applying the most commonly used refactorings, e.g., move
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method, rename class, etc.

In order to identify which parts of the source code need to be refactored, most of

the existing work relies on the notion of bad smells (e.g., Fowler’s textbook [9]), also

called design defects or anti-patterns. Typically, code smells refer to design situations

that adversely affect the development of the software. When applying refactorings to

fix design defects, software metrics can be used as an overall indication of the quality

of the new design. For instance, high intra-class cohesion and low inter-class coupling

usually indicate a high-quality system.

Refactoring is one of the most used terms in software development and has played

a major role in the maintenance of software for decades. While most developers

have an intuitive understanding of the refactoring process, many of us lack a true

mastery of this important skill. In this article, we will explore the textbook definition

of refactoring, how this definition holds up to the reality of software development,

and how we can ensure our codebase is prepared for refactoring. Along the way, we

will walk-through an entire set of refactorings, from start to finish, to illustrate the

simplicity and importance of this ubiquitous process.

Refactoring is one of the most self-evident processes in software development, but

it is surprisingly difficult to perform properly. In most cases, we deviate from strict

refactoring and execute an approximation of the process; sometimes, things work out

and we are left with cleaner code, but other times, we get snared, wondering where

we went wrong. In either case, it is important to fully understand the importance

and simplicity of barebones refactoring.

In short, the process of refactoring involves taking small, manageable steps that

incrementally increase the cleanliness of code while still maintaining the functionality

of the code. As we perform more and more of these small changes, we start to

transform messy code into simpler, easier to read, and more maintainable code. It

is not a single refactoring that makes the change: It’s the cumulative effect of many
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Table 2.1: List of refactoring operations included in this thesis.

Refactoring Controlling Parameter

Moving Features Between Objects

Move Method Source, Target, Method

Move Field Source, Target, Attribute

Extract Class Source, Target, Attributes, Methods

Organizing Data

Encapsulate Field Source, Attribute

Simplifying Method Calls

Decrease Field Security Source, Attribute

Decrease Method Security Source, Method

Increase Field Security Source, Attribute

Increase Method Security Source, Method

Dealing with Generalization

Pull Up Field Source, Target, Attribute

Pull Up Method Source, Target, Method

Push Down Field Source, Target, Attribute

Push Down Method Source, Target, Method

Extract SubClass Source, Target, Attributes, Methods

Extract SuperClass Source, Target, Attributes, Methods

small refactorings performed toward a single goal that makes the difference.

2.2.1.1 Refactoring Operations

The refactoring operations considered in the approaches proposed in this thesis

cover the most used operations selected from different categories: ”Moving features”,

”Data organizers”, ”Method calls simplifiers”, and ”Generalization modifiers”. These

refactorings are listed in Table 2.1. We selected these refactoring operations because

they have the most impact on code quality attributes.
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2.2.2 Interactive and Dynamic Evolutionary Multi-Objective Optimiza-

tion

In this section, we give a brief overview about two important aspects in the

Evolutionary Multi-objective Optimization (EMO) [41] paradigm related to the: (1)

Interaction with the user and (2) Dynamicity of the problem.

Interacting with the human user means allowing the user to inject his/her pref-

erences into the computational search algorithm and then using these preferences

to guide the search process. To express his/her preferences, the user needs some

preference modeling tools. The most commonly used ones are [41]:

• Weights : Each objective is assigned a weighting coefficient expressing its im-

portance. The larger the weight is, the more important the objective is.

• Solution ranking : The user is provided with a sample of solutions (a subset of

the current population) and is invited to perform comparisons between pairs

of equally-ranked solutions in order to differentiate between solutions that the

fitness function regards as equal.

• Objective ranking : Pairwise comparisons between pairs of objectives are per-

formed in order to rank the problem’s objectives where strong conflict exists

between a pair of objectives.

• Reference point (also called a goal or an aspiration level vector): The user

supplies, for each objective, the desired level that he/she wishes to achieve.

This desired level is called aspiration level.

• Reservation point (also called a reservation level vector): The user supplies, for

each objective, the accepted level that he/she wishes to reach. This accepted

level is called reservation level.
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• Trade-off between objectives : The user specifies that the gain of one unit in one

objective is worth degradation in some others and vice versa.

• Outranking thresholds : The user specifies the necessary thresholds to design a

fuzzy predicate modeling the truth degree of the predicate “solution x is at least

as good as solution y.”

• Desirability thresholds : The user supplies: (1) an absolutely satisfying objective

value and (2) a marginally infeasible objective value. These thresholds represent

the parameters that define the desirability functions.

Based on these preference modeling tools, we observe that the goal of a preference-

based EMO algorithm is to assign different importance levels to the problem’s objec-

tives with the aim to guide the search towards the Region of Interest (ROI) that is the

portion of the Pareto Front that best matches the user preferences. In fact, usually,

the user is not interested with the whole Pareto front and thus he/she is searching

only for his/her ROI from which the problem’s final solution will be selected. Several

preference-based EMO algorithms have been proposed and used to solve real prob-

lems such as PI-EMOA [42], iTDEA [43], NOSGA [44], DF-SMS-EMOA [45], just to

cite a few. There are several algorithmic challenges that should be overcome such as

the preservation of Pareto dominance, the preservation of population diversity, the

scalability with the number of objectives, etc.

Until now, the user’s preferences are expressed and handled in the objective space.

It is important to highlight that one of the original aspects of our work, as detailed

later, is allowing the user (a software developer) to express his/her preferences in the

decision space and then handling these preferences to help the user finding the most

desired refactoring solution. Moreover, our approach helps the user in eliciting his/her

preferences, which is very important for any preference-based EMO algorithm. These

preferences are introduced implicitly by moving between the Pareto front of non-
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dominated solutions after obtaining feedback from the user about just a few parts of

the solution in order to better understand his preferences. This implicit exploration of

the Pareto front will be detailed in the next section where we describe the formulation

of our refactoring problem.

The incorporation of user preferences may require the handling of dynamicity is-

sues related to the introduced changes to the solution or the input (i.e. the software

system). Handling dynamicity in EMO means solving dynamic problems where the

objective functions and or the constraints may change over time such due to, for

example, the dynamic nature of most of software evolution problems including soft-

ware refactoring. Applying evolutionary algorithms (EAs) to solve Dynamic Multi-

Objective Problems (DMOPs) has received great attention from researchers thanks

to the adaptive behavior of evolutionary computation methods. A DMOP consists of

minimizing or maximizing an objective function vector under some constraints over

time. Its general form is the following[41]:



Minf(x, t) = [f1(x, t), f2(x, t), ..., fM(x, t)]T

gj(x, t) ≥ 0, j = 1, ...P ;

hk(x, t) = 0, k=1,...,Q;

xLi ≤ xi ≤ xUi , i=1,...,n;

where M is the number of objective functions, t is the time instant, P is the number of

inequality constraints, Q is the number of equality constraints, XL
i and xUi correspond

respectively to the lower and upper bounds of the variable xi .

A solution xi satisfying the (P +Q) constraints is said to be feasible, and the set

of all feasible solutions defines the feasible search space denoted by Ω. In this formu-

lation, we consider a minimization MOP since maximization can be easily turned into

minimization based on the duality principle by multiplying each objective function
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by −1 and transforming the constraints based on the duality rules.

The resolution of a MOP yields a set of trade-off solutions, called Pareto optimal

solutions or non-dominated solutions, and the image of this set in the objective space

is called the Pareto front. Hence, the resolution of a MOP consists in approximating

the entire Pareto front. In the following, we provide some background definitions

related to multi-objective optimization. It is worth noting that these definitions

remain valid in the case of DMOPs.

Definition 1: Pareto optimality

A solution x∗ ∈ Ω is Pareto optimal if ∀x ∈ Ω and I = {1, ...,M} either ∀m ∈ I
we have fm(x) = fm(x∗) or there is at least one m ∈ I such that fm(x) > fm(x∗) .

The definition of Pareto optimality states that x∗ is Pareto optimal if no feasible

vector exists that would improve some objectives without causing a simultaneous

worsening in at least one other objective.

Definition 2: Pareto dominance

A solution u = (u1, u2, ..., un) is said to dominate another solution v = (v1, v2, ..., vn)
( denoted by f(u) ≺ f(v) ) if and only if f(u) is partially less than f(v). In
other words, ∀m ∈ {1, ...,M} we have fm(u) ≤ fm(v) and ∃m ∈ {1, ...,M} where
fm(u) < fm(v) .

Definition 3: Pareto optimal set

For a given MOP f(x), the Pareto optimal set is

P ∗ = {x ∈ Ω|¬∃x′ ∈ Ω, f(x′) ≺ f(x)}.

Definition 4: Pareto optimal front

For a given MOP f(x) and its Pareto optimal set P ∗, the Pareto front is PF ∗ =
{f(x), x ∈ P ∗}.

2.2.3 Code Quality Metrics

Many studies have utilized structural metrics as a basis for defining quality indi-

cators for a good system design [18, 51]. As an illustrative example, [46] proposed a
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set of quality measures, using the ISO 9126 specification, called QMOOD. This model

is developed based on international standard for software product quality measure-

ment. QMOOD is a comprehensive way to assess the software quality and includes

four levels.

We employed the first two levels known as ”Design Quality Attributes” and

”Object-oriented Design Properties” to calculate our fitness functions used in this

thesis Reusability, Flexibility, Understandability, Functionality, Extendibility, Effec-

tiveness, Complexity, Cohesion, Coupling). Each of these quality metrics is defined

using a combination of low-level metrics as detailed in Tables 2.2 and 2.3.

The QMOOD model has been used previously in the area of search-based software

refactoring [4], so we use it to estimate the effect of the suggested refactoring solutions

on software quality. QMOOD has the advantage that it defines six high-level design

quality attributes (reusability, flexibility, understandability, functionality, extendibil-

ity, and effectiveness) that can be calculated using 11 lower level design metrics.
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Table 2.2: QMOOD design metrics.

Design Metric Design Property Description

Design Size in Classes
(DSC)

Design Size Total number of classes in the design.

Number Of Hierarchies
(NOH)

Hierarchies
Total number of ”root” classes in
the design (count(MaxInheritenceTree
(class)=0))

Average Number of An-
cestors (ANA)

Abstraction
Average number of classes in the inher-
itance tree for each class.

Direct Access Metric
(DAM)

Encapsulation
Ratio of the number of private and pro-
tected attributes to the total number of
attributes in a class.

Direct Class Coupling
(DCC)

Coupling
Number of other classes a class relates
to, either through a shared attribute or
a parameter in a method.

Cohesion Among Meth-
ods of class (CAMC)

Cohesion

Measure of how related methods are in
a class in terms of used parameters. It
can also be computed by: 1 − LackOf-
CohesionOfMethods()

Measure Of Aggrega-
tion (MOA)

Composition
Count of number of attributes whose
type is user defined class(es).

Measure of Functional
Abstraction (MFA)

Inheritance
Ratio of the number of inherited meth-
ods per the total number of methods
within a class.

Number of Polymorphic
Methods (NOP )

Polymorphism

Any method that can be used by a
class and its descendants. Counts of
the number of methods in a class ex-
cluding private, static and final ones.

Class Interface Size
(CIS)

Messaging Number of public methods in class.

Number of Methods
(NOM)

Complexity Number of methods declared in a class.
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Table 2.3: QMOOD quality attributes.

Quality attributes
Definition

Computation

Reusability
A design with low coupling and high cohesion is easily
reused by other designs.

−0.25 ∗ Coupling + 0.25 ∗ Cohesion + 0.5 ∗Messaging +
0.5 ∗DesignSize

Flexibility
The degree of allowance of changes in the design.

0.25∗Encapsulation−0.25∗Coupling+0.5∗Composition+
0.5 ∗ Polymorphism

Understandability
The degree of understanding and the easiness of learning
the design implementation details.

0.33∗Abstraction+0.33∗Encapsulation−0.33∗Coupling+
0.33∗Cohesion−0.33∗Polymorphism−0.33∗Complexity−
0.33 ∗DesignSize

Functionality
Classes with given functions that are publicly stated in in-
terfaces to be used by others.

0.12∗Cohesion+0.22∗Polymorphism+0.22∗Messaging+
0.22 ∗DesignSize+ 0.22 ∗Hierarchies

Extendibility
Measurement of design’s allowance to incorporate new func-
tional requirements.

0.5∗Abstraction−0.5∗Coupling+0.5∗Inheritance+0.5∗
Polymorphism

Effectiveness
Design efficiency in fulfilling the required functionality.

0.2∗Abstraction+0.2∗Encapsulation+0.2∗Composition+
0.2 ∗ Inheritance+ 0.2 ∗ Polymorphism

2.3 Related Work

2.3.1 Manual Refactoring

We start, this section, by summarizing existing manual approaches for software

refactoring. In Fowler’s book [9] a non-exhaustive list of low-level design problems in

source code has been defined. For each type of code smell, a list of possible refactorings

is suggested that can be applied by the developers. Du Bois et al. [47] start from the
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hypothesis that refactoring opportunities correspond to those that improve cohesion

and coupling metrics, and use this to perform an optimal distribution of features over

classes. They analyze how refactorings manipulate coupling and cohesion metrics,

and how to identify refactoring opportunities that improve these metrics. However,

this approach is limited to only certain refactoring types and a small number of

quality metrics. Murphy-Hill et al. [48, 49] proposed several techniques and empirical

studies to support refactoring activities. In [49, 50], the authors proposed new tools to

assist software developers in applying refactoring such as selection assistant, box view,

and refactoring annotation based on structural information and program analysis

techniques.

Recently, Ge and Murphy-Hill [51] have proposed a new refactoring tool called

GhostFactor that allows the developer to transform code manually, but checks the

correctness of the transformation automatically. BeneFactor [52] and WitchDoctor

[53] can detect manual refactorings and then complete them automatically. Tahvil-

dari et al. [54] also propose a framework of object-oriented metrics used to suggest to

the software developer refactoring opportunities to improve the quality of an object-

oriented legacy system. Dig [55] proposes an interactive refactoring technique to

improve the parallelism of software systems. However, the proposed approach did

not consider learning from the developers’ feedback and focused on making programs

more parallel. Other contributions are based on rules that can be expressed as asser-

tions (invariants, pre- and post-conditions). All these techniques are more concerned

around the correctness of manually applied refactorings rather than interactive rec-

ommendations.

The use of invariants has been proposed to detect parts of the program that re-

quire refactoring [56]. In addition, Opdyke [10] has proposed the definition and use of

pre- and post-conditions with invariants to preserve the behavior of the software when

applying refactorings. Hence, behavior preservation is based on the verification/sat-
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isfaction of a set of pre- and post-condition. All these conditions are expressed as

first-order logic constraints expressed over the elements of the program.

To summarize, manual refactoring is a tedious task for developers that involves

exploring the software system to find the best refactoring solution that improves the

quality of the software and fix design defects.

2.3.2 Automated Refactoring

To automate refactoring activities, new approaches have been proposed [57, 58,

59, 60, 61, 62, 63, 64, 65]. JDeodorant [5] is an automated refactoring tool imple-

mented as an Eclipse plug-in that identifies certain types of design defect using quality

metrics and then proposes a list of refactoring strategies to fix them. Search-based

techniques [66] are widely studied to automate software refactoring and consider it as

an optimization problem, where the goal is to improve the design quality of a system

based mainly on a set of software metrics. The majority of existing work combines

several metrics in a single fitness function to find the best sequence of refactorings.

Seng et al. [67] have proposed a single-objective optimization approach using a ge-

netic algorithm to suggest a list of refactorings to improve software quality. The work

of O’Keeffe et al. [4] uses various local search-based techniques such as hill climbing

and simulated annealing to provide an automated refactoring support. They use the

QMOOD metrics suite [46] to evaluate the improvement in quality.

Kessentini et al. [1] have proposed single-objective combinatorial optimization

using a genetic algorithm to find the best sequence of refactoring operations that

improve the quality of the code by minimizing as much as possible the number of

design defects detected in the source code. Kilic et al. [68] explore the use of a variety

of population-based approaches to search-based parallel refactoring, finding that local

beam search could find the best solutions. Harman et al. [10] have proposed a search-

based approach using Pareto optimality that combines two quality metrics, CBO
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(coupling between objects) and SDMPC (standard deviation of methods per class),

in two separate fitness functions. Ouni et al. [69] proposed also a multi-objective

refactoring formulation that generates solutions to fix code smells. Ó Cinnéide et al.

[70] have proposed a multi-objective search-based refactoring to conduct an empirical

investigation to assess some structural metrics and to explore relationships between

them. They have used a variety of search techniques (Pareto-optimal search, semi-

random search) guided by a set of cohesion metrics.

The majority of existing multi-objective refactoring techniques propose as output

a set of non-dominated refactoring solutions (the Pareto front) that find a good trade-

off between the considered maintainability objectives. This leaves it to the software

developers to select the best solution from a set of possible refactoring solutions, which

can be a challenging task as it is not natural for developers to express their preferences

in terms of a fitness functions value. Thus, the exploration of the Pareto front is still

performed manually, which limits the use of multi-objective search techniques to

address software engineering problems. An intelligent exploration of the Pareto front

is required to expand the applicability of multi-objective techniques for search-based

software engineering problems.

In summary, developers should accept the entire refactoring solution and exist-

ing tools do not provide the flexibility to adapt the suggested solution in existing

fully-automated refactoring techniques. Furthermore, existing automated refactoring

tools execute the whole algorithm again to suggest new refactorings after a number

of code changes are introduced by developers, rather than simply trying to update

the proposed solutions based on the new code changes. While automation is impor-

tant, it is essential to understand the points at which human oversight, intervention,

and decision-making should impact on automation. Human developers might reject

changes made by any automated programming technique. Especially if they feel

that they have little control, there will be a natural reluctance to trust and use the

22



automated refactoring tool [71].

2.3.3 Interactive Refactoring

Interactive techniques have been generally introduced in the literature of Search-

Based Software Engineering and especially in the area of software modularization.

Hall et al. [72] treated software modularization as a constraint satisfaction problem.

The idea of this work is to provide a baseline distribution of software elements using

good design principles (e.g. minimal coupling and maximal cohesion) that will be

refined by a set of corrections introduced interactively by the designer.

The approach, called SUMO (Supervised Re-modularization), consists of itera-

tively feeding domain knowledge into the remodularization process. The process is

performed by the designer in terms of constraints that can be introduced to refine

the current modularizations. Initially, the system begins with generating a module

dependency graph from an input system. This dependency is based on the correla-

tion between software elements (coupling between methods, shared attributes etc.).

Possible modularizations are then generated from the graph using multiple simulated

authoritative decompositions. Then, using a clustering technique called Bunch, an

initial set of clusters is generated that serves as an input to SUMO.

The SUMO algorithm provides a hypothesized modularization to the user, who

will agree with some relations, and disagree with others. The user’s corrections are

then integrated into the modularization process, to generate a more satisfactory mod-

ularization. The SUMO algorithm does not necessarily rely on clustering techniques,

but it can benefit from their output as a starting point for its refinement process.

Bavota et al. [73] presented the adoption of single objective interactive genetic

algorithms in software re-modularization process. The main idea is to incorporate the

user in the evaluation of the generated remodularizations. Interactive Genetic Algo-

rithms (IGAs) extend the Classic Genetic Algorithms (GAs) by partially or entirely
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involving the user in the determination of the solution’s fitness function. The basic

idea of the Interactive GA (IGA) is to periodically add a constraint to the GA such

that some specific components shall be put in a given cluster among those created so

far. Initially, the IGA evolves similarly to the non-interactive GA.

After a user-defined set of iterations, the individual with the highest fitness value

is selected from the population set (in the case of single-objective GA) or from the first

front (in the case of multi-objective GA) and presented to the user. After analyzing

the current modularization, the user provides feedback in terms of constraints dictat-

ing for example, that a specific element needs to be in the same cluster as another

one. Although user feedback is important in guaranteeing convergence, it is essential

not to overload the user by asking for a decision about all the current relationships

between elements, especially for a large system.

Overall, the above existing studies of interactive remodularization are limited

to few types of refactoring such as moving classes between packages and splitting

packages. Furthermore, the interaction mechanism is based on the manual evaluation

of proposed remodularization solutions which could be a time-consuming process. The

proposed interactive remdoularization techniques are also based on a mono-objective

algorithm and did not consider multiple objectives when evaluating the solutions.

A recent study [74] extended our previous work [75] to propose an interactive

search based approach for refactoring recommendations. The developers have to

specify a desired design at the architecture level then the proposed approach try to

find the relevant refactorings that can generate a similar design to the expected one.

In our work, we do not consider the use of a desired design, thus developers are not

required to manually modify the current architecture of the system to get refactoring

recommendations. Furthermore, developers maybe interested to change the architec-

ture mainly when they want to introduce an extensive number of refactorings that

radically change the architecture to support new features.
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Several possible levels of interaction are not considered by existing refactoring

techniques. It is easy for developers to identify large classes or long methods that

should be refactored, but they find it is difficult, in general, to locate a target class

when applying a move method refactoring [76]. In addition, existing refactoring

tools do not update their recommended refactoring solutions based on the software

developer’s feedback such as accepting, modifying or rejecting certain refactoring

operations.

Furthurmore, None of the above interactive studies considered reducing the inter-

action effort with developers which is an important step to improve the applicability

of refactoring tools as highlighted in the survey with developers.

To address the above-mentioned limitations, we proposed in this proposal, a

new way for software developers to refactor their software systems as a sequence

of transformations based on different levels of interaction, implicit exploration of

non-dominated refactoring solutions and dynamic adaptive ranking of the suggested

refactorings.

2.3.4 Search Based Software Refactoring

Search-based techniques [66] are widely studied to automate software refactoring

where the goal is to improve the design quality of a system based mainly on a set of

software metrics. The majority of existing work combines several metrics in a single

fitness function to find the best sequence of refactorings. Seng et al. [67] have pro-

posed a single-objective optimization approach using a genetic algorithm to suggest

a list of refactorings to improve software quality. The work of O’Keeffe et al. [4]

uses various local search-based techniques such as hill climbing and simulated an-

nealing to provide an automated refactoring support. They use the QMOOD metrics

suite [46] to evaluate the improvement in quality. Kessentini et al. [1] have pro-

posed single-objective combinatorial optimization using a genetic algorithm to find
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the best sequence of refactoring operations that improve the quality of the code by

minimizing as much as possible the number of design defects detected in the source

code. Kilic et al. [68] explore the use of a variety of population-based approaches to

search-based parallel refactoring, finding that local beam search could find the best

solutions. Harman et al. [10] have proposed a search-based approach using Pareto

optimality that combines two quality metrics, CBO (coupling between objects) and

SDMPC (standard deviation of methods per class), in two separate fitness functions.

Ouni et al. [69] proposed also a multi-objective refactoring formulation that generates

solutions to fix code smells. Ó Cinnéide et al. [70] have proposed a multi-objective

search-based refactoring to conduct an empirical investigation to assess some struc-

tural metrics and to explore relationships between them. They have used a variety

of search techniques (Pareto-optimal search, semi-random search) guided by a set of

cohesion metrics.

The majority of existing multi-objective refactoring techniques propose as output

a set of non-dominated refactoring solutions (the Pareto front) that find a good trade-

off between the considered maintainability objectives. This leaves it to the software

developers to select the best solution from a set of possible refactoring solutions, which

can be a challenging task as it is not natural for developers to express their preferences

in terms of a fitness functions value. Thus, the exploration of the Pareto front is still

performed manually, which limits the use of multi-objective search techniques to

address software engineering problems. An intelligent exploration of the Pareto front

is required to expand the applicability of multi-objective techniques for search-based

software engineering problems as addressed in this proposal.

2.3.5 Refactoring Recommendation

Much effort has been devoted to the definition of approaches supporting refactor-

ing. One representative example is JDeodorant, the tool proposed by Tsantalis and
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Chatzigeorgiou [25].Our paper is mostly related to approaches exploiting search-based

techniques to identify refactoring opportunities, and our discussion focuses on them

since the bot is based on multi-objective refactoring. We point the interested reader

to the survey by Bavota et al. [77] for an overview of approaches supporting code

refactoring.

O’Keeffe and Cinnéide [78] presented the idea of formulating the refactoring task

as a search problem in the space of alternative designs, generated by applying a set

of refactoring operations. Such a search is guided by a quality evaluation function

based on eleven object-oriented design metrics that reflect refactoring goals. Harman

and Tratt [3] were the first to introduce the concept of Pareto optimality to search-

based refactoring. They used it to combine two metrics, namely CBO (Coupling

Between Objects) and SDMPC (Standard Deviation of Methods Per Class), into a

fitness function and showed its superior performance as compared to a mono-objective

technique [3].

The two aforementioned works [78, 3] paved the way to several search-based ap-

proaches aimed at recommending refactoring operations [67, 1, 24, 75, 79, 2]. Several

other studies proposed refactorings at the model level as well[80, 81, 82, 83, 84, 85,

86, 87]. A representative example of these techniques is the recent work by Alizadeh

et al. et al. [6], who proposed an interactive multi-criteria code refactoring approach

to improve the QMOOD quality metrics while minimizing the number of refactor-

ings. In our approach, we decided to rely on a simpler optimization algorithm by

only considering the refactoring of recently changed files in other pull requests rather

than the root-canal refactoring approach of Alizadeh et al. et al. [6].

2.3.6 Empirical Studies on Refactoring

Empirical studies on software refactoring mainly aim at investigating the refactor-

ing habits of software developers and the relationship between refactoring and code
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quality.

We only discuss studies reporting findings relevant to our work. Murphy-Hill et

al. [71] investigated how developers perform refactorings. Examples of the exploited

datasets are usage data from 41 developers using the Eclipse environment and infor-

mation extracted from versioning systems. Among their several findings, they show

that developers often perform floss refactoring ; namely, they interleave refactoring

with other programming activities, confirming that refactoring is rarely performed in

isolation. Kim et al. [88] present a survey of software refactoring with 328 Microsoft

engineers. They show that the major obstacle of adopting many existing refactoring

tools is their configuration and painful integration within their pipelines without dis-

turbing developers with their current focus in terms of meeting deadlines and making

regular code changes. Those findings stress out the need for refactoring bots that can

be adopted for continuous integration without considerable configuration effort.

2.3.7 Software Bots

The design and implementation of software bots are still in its infancy with a

significant focus on chatbots. For instance, Lebeuf et al. et al. [89, 90] discussed the

potential of using chat bots in software engineering and how they can be helpful to

increase collaborations between programmers. The authors also proposed a possible

classification of potential benefits of using software bots in various domains, especially

to improve the productivity of developers.

An extensive empirical study of over 90 software bots was performed by Wessel

et al.et al. [91] to provide a classification and taxonomy for them. They found that

around 21 bots were actually tried on GitHub repositories and the dominant majority

are around testing but without providing any code actions or recommendations to

developers. The authors found that none of these bots provides explanations of their

analysis which reduced the adoption by developers.
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Some examples of regression testing bots include Travis CI and the bot designed

by Urli et al. [92] to repair bugs. These tools did not open a new pull-request, but

they are executed manually by the developers where they can check the recommended

patches. Another bot related to quality assessment but not refactoring is Fix-it et al.

[93]. It is mainly limited to a few types of code changes, mainly targeting dynamic

analysis metrics.

Finally, Wyrich et al. et al. [94] proposed a vision paper to emphasize the impor-

tance of refactoring bots and motivates their potential use in practice. They proposed

a prototype, not a complete bot, by running SonarQube to detect code smells. How-

ever, the work is still in its initial stage where refactorings are not recommended

yet.

2.4 Summary of Systematic Literature Review on Refactor-

ing

Due to the growing complexity of software systems, there has been a dramatic

increase and industry demand for tools and techniques on software refactoring in the

last ten years, defined traditionally as a set of program transformations intended to

improve the system design while preserving the behavior. Refactoring studies are

expanded beyond code-level restructuring to be applied at different levels (architec-

ture, model, requirements, etc.), adopted in many domains beyond the object-oriented

paradigm (cloud computing, mobile, web, etc.), used in industrial settings and consid-

ered objectives beyond improving design to include other non-functional requirements

(e.g., improve performance, security, etc). Thus, challenges to be addressed by refac-

toring work are nowadays beyond code transformation to include, but not limited to,

scheduling the opportune time to carry refactoring, recommendations of specific refac-

toring activities, detection of refactoring opportunities and testing the correctness of
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applied refactorings. Therefore, the refactoring research efforts are fragmented over

several research communities, various domains, and different objectives. To struc-

ture the field and existing research results, we provide a systematic literature review

and analyzes the results of about 2800 research papers on refactoring covering the

last two decades to offer the most scalable and comprehensive literature review of

existing refactoring research studies. Based on this survey, we created a taxonomy to

classify the existing research, identified research trends and highlighted gaps in the

literature and avenues for further research.

Several studies [95, 96] show that programmers are postponing software mainte-

nance activities that improve software quality, even while seeking high-quality source

code for themselves. In fact, the time and monetary pressures force programmers

to neglect improving the quality of their source code [13]. Due to the growing com-

plexity of software systems, the last ten years have seen a dramatic increase and

industry demand for tools and techniques on software refactoring. To get a deep un-

derstanding of the current state of the field and existing research results, we first con-

ducted a systematic literature review (SLR) and analyzed over 2800 research papers

on refactoring, spanning the last two decades. This SLR offers the most scalable and

comprehensive literature review of refactoring research to date. Based on our SLR,

we created a taxonomy to classify the existing research, identified research trends,

and highlighted gaps in the literature and avenues for further research. Refactoring

is among the fastest growing software engineering research areas, if not the fastest.

Figure 2.1 shows the dramatic growth of the refactoring field during the last decade.

During just the last three years (2014-2016), over 850 papers were published in the

field with an average of 270 papers each year. Over 4990 authors from all over the

world contributed to the field of software refactoring. We highlight the most active

authors in Figure 2.2, based on both number of publications and citations in the area.

As seen in Figure 2.3, most of the active refactoring researchers are located in the
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Figure 2.1: Number of refactoring publications over the last two decades.

Figure 2.2: Leading refactoring researchers over the last decade based on both pub-
lications and citations.

US, thus motivating the proposed infrastructure in US.

Figures 2.4 highlight that refactoring research has expanded significantly since

its inception in the early 90s. Refactoring now expands beyond code-restructuring

and targets different artefacts (architecture, model, requirements, etc.) [9, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 97], is pervasive in many domains beyond the object-

oriented paradigm (cloud computing, mobile, web, etc.)[98, 63, 99, 100, 82, 101, 102,
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Figure 2.3: Distribution of refactoring researchers around the world.

103, 104, 105], is widely adopted in industrial settings [69,71], and the objectives

expand beyond improving design into other nonfunctional requirements (e.g., improve

performance, security, etc) [97, 55, 106, 107, 108, 109, 23]. The focus of the refactoring

community nowadays goes beyond code transformation to include, but not limited to,

scheduling the opportune time to carry refactoring [110, 111, 47, 112], recommending

specific refactoring activities [97, 75, 55, 47, 113, 114, 71, 115, 116, 2, 117], inferring

refactorings from the code [18, 88], and testing the correctness of applied refactorings

[118, 71, 112]. Therefore, the refactoring research efforts are fragmented over several

research communities, various domains, and different objectives, motivating the need

for a shared infrastructure to promote reuse and collaboration.

Manual refactoring can be challenging and error-prone. Many Integrated devel-

opment environment (IDE) and software programming tools have implemented refac-

toring techniques in their products as a recommendation/guideline or partially/fully

automated. Based on a survey [119], 38% of developers answered that the refactoring

engine of an IDE was used and 7% of them stated that refactoring was done partially
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(a) Applied Paradigm (b) Type of Evaluation

(c) Other Fields / Majors (d) Software Life Cycle

(e) Refactoring Objectives (f) Programming Languages

(g) Software Targets

Figure 2.4: Taxonomy of refactoring researches and the number of publications during
the past two decade.
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automated. The main reasons for developers to do refactoring manually is that they

do not trust automated process for complex refactoring techniques or the necessary

modification is not supported in their choice of IDE. In another study [71], authors

pointed out three factors - awareness, trust, and opportunity- and issues with tool

work-flow as the limitations affecting usage of tools for refactoring. Therefore, this

study can be useful for people from industry and market to be updated from the

latest advancements in refactoring.
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CHAPTER III

Interactive Multi-Objective Refactoring

3.1 Introduction and Problem Statement

Successful software products evolve through a process of continual change. How-

ever, this process may weaken the design of the software and make it unnecessarily

complex, leading to significantly reduced productivity, increased fault-proneness and

cost of maintenance, and has even led to projects being canceled. Many studies report

that software maintenance activities consume up to 90% of the total cost of a typical

software project. It has also been shown that software developers typically spend

around 60% of their time in understanding the code they are maintaining [120].

Clearly, software developers need better ways to manage and reduce the growing

complexity of software systems and improve their productivity. The standard solution

is refactoring, which involves improving the design structure of the software while

preserving its functionality [9]. There has been much work done on various techniques

and tools for software refactoring [121, 48, 122] and these approaches can be classified

into three main categories: manual, semi-automated and fully-automated approaches,

as outlined below.

In manual refactoring, the developer refactors with no tool support at all, iden-

tifying the parts of the program that require attention and performing all aspects of

the code transformation by hand. It may seem surprising that a developer would es-
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chew the use of tools in this way, but Murphy-Hill et al. [71] found in their empirical

study of the developers usage of the Eclipse refactoring tooling that in almost 90% of

cases the developers performed refactorings manually and did not use any automated

refactoring tools.

Kim et al. [123] confirmed this observation, finding that the interviewed developers

from Microsoft preferred to perform refactoring manually in 86% of cases. In spite of

its apparent popularity, manual refactoring is very limited however; several studies

have shown that manual refactoring is error-prone, time-consuming, not scalable and

not useful for radical refactoring that requires an extensive application of refactorings

to correct unhealthy code [124].

By semi-automated refactoring, we refer to the situation where a developer uses

the standard refactoring tooling available in IDEs such as Eclipse and Netbeans to

apply the refactorings they deem appropriate. Murphy-Hill et al. [71] analyzed

data collected from 13,000 Java developers using the Eclipse IDE over a 9-month

period, finding that the trivial Rename refactoring accounted for almost 72% of the

refactorings performed, while the combination of Rename, Extract Method/Variable

and Move accounted for 89.3% of the total number of refactorings performed.

In fully-automated refactoring, a search-based process is employed to find an en-

tire refactoring sequence that improves the program in accordance with the employed

fitness function (involving e.g., code smells, software quality metrics etc.). This ap-

proach is appealing in that it is a complete solution and requires little developer

effort, but it suffers from several serious drawbacks as well. Firstly, the recommended

refactoring sequence may change the program design radically and this is likely to

cause the developer to struggle to understand the refactored program [2]. Secondly, it

lacks flexibility since the developer has to either accept or reject the entire refactoring

solution. Thirdly, it fails to consider the developer perspective, as the developer has

no opportunity to provide feedback on the refactoring solution as it is being created.
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Furthermore, as development must halt while the refactoring process executes, fully-

automated refactoring methods are not useful for floss refactoring where the goal is to

maintain good design quality while modifying existing functionality. The developers

have to accept the entire refactoring solution even though they prefer, in general,

step-wise approaches where the process is interactive and they have control of the

refactorings being applied [49].

In light of the discussion above, we propose an approach to refactoring recom-

mendation that (1) provides refactoring-centric interaction, (2) enables refactoring

and development to proceed in parallel and (3) collects information in a non-intrusive

manner that can be used to inform dynamically the refactoring process. We postulate

that enabling the developer to interact with the refactoring solution is essential both

to creating a better refactoring solution, and to creating a solution that the developer

understands and can work with.

We propose that this interaction should be centered on refactorings, which are

of direct interest to a developer, rather than code smells or software quality metrics,

which have been found not to be strong drivers of the refactoring process in practice

[11, 12]. Refactoring and development must be allowed to proceed in parallel, as this is

part of test-driven development [125] and the Agile approach to software development

in general [126]. Thus the developer can continue to extend the program with new

functionality or bug fixes while the refactoring recommendation process executes.

Finally, any development carried out is used where possible to improve the refactoring

recommendations, e.g., the developer is more likely to value refactorings that affect

recently updated code.

Our goal is to present the developer with few refactorings at a time, allowing

them to accept / reject/ modify each refactoring as they see it. Thus, developers

are not forced to either accept or run the entire refactoring operations or reject them

and the developers may not control the number the applied refactorings. In our
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approach, the developers can apply operations to the extent that they want. Finding

a refactoring solution is a naturally multi-objective problem, so there is not one single

”best” solution, rather there is a set of non-dominated solutions, the so-called Pareto

front [127].

We use the multi-objective evolutionary algorithm NSGA-II [127] to create the

Pareto front, using a fitness function that aims to improve software quality metrics

while maintaining design coherence and reducing the number of recommended refac-

torings. The question we face is how to choose one solution from this front to present

to the developer? The traditional approach is to seek a ”knee point” on the front,

but this ignores the fact that developers have their own refactoring priorities and

may prefer a refactoring solution elsewhere on the front. To this end, we propose, for

the first time in search-based software refactoring, the use of innovization (innova-

tion through optimization) [128] to analyze and explore the Pareto front interactively

and implicitly with the developer. Innovization is a technique that seeks interesting

commonalities among the solutions of the Pareto front with the aim of developing a

deeper understanding of the problem.

Our innovization algorithm starts by finding the most frequently-occurring refac-

torings among the set of non-dominated refactoring solutions. Based on this analysis,

a complete refactoring solution is chosen from the front that best matches the most

frequently-occurring refactorings, i.e., one that best represents the entire front in some

sense. The recommended refactorings are then ranked and suggested to the developer

one by one.

The developer can approve, modify or reject each suggested refactoring. Each

such action by the developer is fed back into the search process. For example, if

the developer rejects a refactoring, the search process will subsequently avoid this

refactoring in creating new solutions. After the software has been changed to some

degree, i.e. the developer has changed it by adding new functionality, fixing some bugs

38



or applying some refactorings and/or has provided feedback by rejecting a number of

refactorings, NSGA-II will continue to execute in the new modified context to repair

the set of good refactoring solutions based on the updated code and the feedback

received from the developer. The feedback received from the developers will be also

used as a set of new constraints to consider for the next iterations of NSGA-II. The

algorithm will avoid, for example, including rejected refactorings by the developer

when generating new solutions or repairing existing ones. However, the algorithm is

not based on simply discarding all refactoring suggestions rejected by developer since

adding new constraints to reduce the search space may make the current recommended

refactoring solutions invalid.

We implemented our proposed approach and evaluated it on a set of eight open

source systems and two industrial systems provided by our industrial partner, the Ford

Motor Company. Statistical analysis of our experiments showed that our proposal

performed significantly better than four existing search-based refactoring approaches

[3, 4, 1, 76] and an existing refactoring tool not based on heuristic search, JDeodorant

[5]. In our qualitative analysis, we found that the software developers who partici-

pated in our experiments confirmed the relevance of the suggested refactorings and

the flexibility of the tool in modifying and adapting the suggested refactorings.

This approach is built on our previous work [75] extending it in several ways: (1)

the interaction mechanism is improved, we define a new ranking function and different

algorithm to repair non-dominated solutions after interactions with developers, (2)

ten software applications are studied rather than five, (3) the number of participants

in the experiments is doubled from 11 to 22, (4) an entirely new set of experimental

results are presented and analyzed in far greater detail, (5) a comparison with a larger

set of existing refactoring techniques is included.

It also extends our previous study [2] where we proposed a fully-automated, multi-

objective approach to find the best refactoring solutions that improve software quality
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metrics and reduce the number of recommended refactorings. In [2], we did not con-

sider any developer interaction (fully-automated approach) and did not update/repair

refactoring solutions based on new code changes introduced by developers. A recent

study [74] extended our previous work [75] to propose an interactive search based

approach for refactoring recommendations. The developers have to specify a desired

design at the architecture level then the proposed approach try to find the relevant

refactorings that can generate a similar design to the expected one. In our work, we do

not consider the use of a desired design, thus developers are not required to manually

modify the current architecture of the system to get refactoring recommendations.

The primary contributions of this work can be summarized as follows:

1. We introduce a novel interactive way to refactor software systems using in-

novization and interactive dynamic multi-objective optimization. The proposed

technique supports the adaptation of refactoring solutions based on developer

feedback while also taking into account other code changes that the developer

may have performed in parallel with the refactoring activity.

2. We propose an implicit exploration of the Pareto front of non-dominated solu-

tions based on our novel interactive approach that can help software developers

to use multi-objective optimization for software engineering problems, avoiding

the necessity for manual exploration of the Pareto front to find the best trade-off

between the objectives.

3. We report the results of an empirical study on an implementation of our ap-

proach. The obtained results provide evidence to support the claim that our

proposal is more efficient, on average, than existing refactoring techniques based

on a benchmark of eight open source systems and two industrial projects. We

also evaluate the relevance and usefulness of the suggested refactorings for soft-

ware developers in improving the quality of their systems.
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Figure 3.1: Approach overview.

3.2 Approach: Search-based Interactive Refactoring Recom-

mendation

We first detail an overview of our approach and then we provide the details of our

problem formulation and the solution approach.

3.2.1 Approach Overview

The goal of our approach is to propose a new dynamic interactive way for software

developers to refactor their systems. The general structure of our approach is sketched

in Fig. 3.1.

Our technique comprises two main components. The first component is an offline

phase, executed in the background, when developers are modifying the source code of

the system. During this phase, the multi-objective algorithm, NSGA-II, is executed

for a number of iterations to find the non-dominated solutions balancing the two ob-

jectives of improving the quality, which corresponds to minimizing the number of code

smells, maximizing/preserving the semantic coherence of the design and improving

the QMOOD (Quality Model for Object-Oriented Design) quality metrics, and the

second objective of minimizing the number of refactorings in the proposed solutions.
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The output of this first step of the offline phase is a set of Pareto-equivalent

refactoring solutions that optimizes the above two objectives. The second step of the

offline phase explores this Pareto front in an intelligent manner using innovization

to rank recommended refactorings based on the common features between the non-

dominated solutions. In our adaptation, we assume true the hypothesis that the

most frequently occurring refactorings in the non-dominated solutions are the most

important ones. Thus, the output of this second step of the offline phase is a set of

ranked solutions based on this frequency score. NSGA-II is able to generate not only

one good refactoring solution, but a diverse set of non-dominated solutions. This

set of refactoring solutions may include specific patterns that make them better and

different than dominated (imperfect) refactoring solutions.

To extract these patterns, we used the heuristic of prioritizing the recommen-

dation of refactorings that are the most redundant ones among the non-dominated

solutions. To our intuition, it seems very likely that common patterns in the set of

non-dominated solutions are very likely to be good patterns. The opposite situation,

where some non-dominated solutions share a pattern that in of poor quality, seems

highly unlikely, though it could plausibly occur were the poor quality pattern to be

an essential enabling feature for another pattern of high quality. While we are only

expressing an intuition here, innovization has proven itself to be of value later in the

experiments section.

The second component of our approach is an online phase to manage the in-

teraction with the developer. It dynamically updates the ranking of recommended

refactorings based on the feedback of the developer. This feedback can be to ap-

prove/apply or modify or reject the suggested refactoring one by one as a sequence of

transformations. Thus, the goal is to guide, implicitly, the exploration of the Pareto

front to find good refactoring recommendations. Since the ranking is updated dy-

namically, our interactive algorithm allows the implicit move between non-dominated
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solutions of the Pareto front.

After a number of interactions, developers may have modified or rejected a high

number of suggested refactorings or have introduced several new code changes (new

functionalities, fix bugs, etc.). Whenever the developers stop the refactoring session

by closing the suggestions window, the first component of our approach is executed

again on the background to update the last set of non-dominated refactoring solutions

by continuing the execution of NSGA-II based on the two objectives defined in the first

component and also the new constraints summarizing the feedback of the developer.

In fact, we consider the rejected refactorings by the developer as constraints to avoid

generating solutions containing several already rejected refactorings. This may lead to

reducing the search space and thus a fast convergence to better solutions. Of course,

the continuation of the execution of NSGA-II takes as input the updated version of

the system after the interactions with developers.

The whole process continues until the developers decide that there is no necessity

to refactor the system any further.

3.2.2 Adaptation

We describe in the following subsections the details of the various components of

our framework.

3.2.2.1 Multi-objective formulation

In our previous work [2], we proposed a fully automated approach, to improve the

quality of a system while preserving its domain semantics. It uses multi-objective

optimization based on NSGA-II to find the best compromise between code quality

improvements and reducing the number of code changes.

In this current work, we introduce the interactive component to our NSGA-II

algorithm, which radically changes the process of finding good refactoring solutions
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in comparison to our earlier work. We will compare later in the experiments the

performance of both algorithms. We present in the following the different adaptation

steps of our approach.

We ignored in this new interactive approach two objectives considered in our previ-

ous automated refactoring work. These two objectives are used to estimate, preserve

and improve the design coherence (semantics) when fully automatically refactoring

software systems. The very initial version of our experiments actually added the

interaction, dynamic and innovization components at the top of our previous work.

However, we found that the user interactions and the constraints learned and gen-

erated from it provided the required guidance to avoid “semantics” incoherences.

Furthermore, the consideration of a large number of objectives make the execution

time much longer to converge towards acceptable solutions since an increase in the

number of objectives will increase the number of non-dominated solutions to analyze

which is not suitable for interactive optimization algorithms since it will introduce

noise in the search. Thus, we considered the textual measures as constraints to sat-

isfy when generating the refactoring solutions rather than an objective to optimize as

highlighted later. The users interaction history is sufficient based on our experiments

thus we ignored the use of development history in our new interactive approach.

As explained in Algorithm 1, the process starts with a complete execution of a

regular NSGA-II algorithm based on the objectives described in the previous section

(offline phase) then three components are introduced to improve the recommenda-

tions: innovization, interactive and dynamic components.

The first iterations of the algorithm identify the Pareto front of the non-dominated

refactoring solutions based on the fitness functions that will be discussed later. Then,

the innovization component ranks the different non-dominated solutions based on the

most common refactoring patterns between them. The different ranked refactorings

are presented to the user based on the interactive component. During this interactive
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component, the developer may accept or reject or modify the refactoring recommen-

dations. Finally, the last dynamic component uses the interaction data with the user

to reduce the search space of possible refactoring solutions and improve the future

suggestions by repairing the Pareto front as detailed later.

3.2.2.2 Solution representation

A solution consists of a sequence of n refactoring operations involving one or mul-

tiple source code elements of the system to refactor. The vector-based representation
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is used to define the refactoring sequence. Each vector’s dimension has a refactoring

operation and its index in the vector indicates the order in which it will be applied.

For every refactoring, pre- and post-conditions are specified to ensure the feasibility

of the operation.

The initial population is generated by randomly assigning a sequence of refactor-

ings to a randomly chosen set of code elements, or actors. The type of actor usually

depends on the type of the refactoring it is assigned to and also depends on its role in

the refactoring operation. An actor can be a package, class, field, method, parameter,

statement or variable. Table 2.1 depicts, for each refactoring, its involved actors and

its corresponding parameters.

The size of a solution, i.e. the vector’s length is randomly chosen between upper

and lower bound values. The determination of these two bounds is similar to the

problem of bloat control in genetic programming where the goal is to identify the

tree size limits. Since the number of required refactorings depends mainly on the size

of the target system, we performed, for each target project, several trial and error

experiments using the HyperVolume (HV) performance indicator [45] to determine

the upper bound after which, the indicator remains invariant. For the lower bound, it

is arbitrarily chosen. The experiments section will specify the upper and lower bounds

used in this study. Table 3.1 shows an example of a refactoring solution including

three operations applied to a simplified version of a solution applied to JVacation

v1.0, a Java open-source trip management and scheduling software.

3.2.2.3 Solution variation

In each search algorithm, the variation operators play the key role of moving

within the search space with the aim of driving the search towards optimal solutions.

For the crossover, we use the one-point crossover operator. It starts by selecting

and splitting at random two parent solutions. Then, this operator creates two child
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Table 3.1: Example of a solution representation.

Operation Source/entity Target entity

Move Method ctrl.booking.BookingController::
handleLodgingViewEvent
(java.awt.event.ActionEvent):void

ctrl.booking.LodgingModel

Extract Class ctrl.booking.SelectionModel:: -
flightList + addFlight():void
+clearFlight():void

ctrl.booking.FlightList

Move Method ctrl.booking.BookingController::
createBookings():void

ctrl.CoreModel

solutions by putting, for the first child, the first part of the first parent with the

second part of the second parent, and vice versa for the second child. This operator

must ensure the respect of the length limits by eliminating randomly some refactoring

operations. It is important to note that in multi-objective optimization, it is better to

create children that are close to their parents in order to have a more efficient search

process.

For mutation, we use the bit-string mutation operator that picks probabilistically

one or more refactoring operations from the solutions and replace or modify or delete

them. While the crossover operator does not introduce or modify a refactoring of a

solution but just the sequence (a swap between refactoring of different solutions), the

mutation operator definitely can add or modify or delete a refactoring when applied

to any solution of the population. When a mutation operator is applied, the goal is to

slightly change the solution for the purpose to probably improve its fitness functions.

We used these three operations for the mutation operator that are randomly selected

when a mutation is applied to a solution. Thus, the mutation operator can introduce

new refactorings by either adding completely new ones or modifying the controlling

parameters of an existing refactoring. For example, move method (m1, A, B) could

be replaced by movemethod(m1, A, C) or movemethod(m3, A,B) where m1, A and

B are the controlling parameters of the refactoring move method. Furthermore, the
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selection operator allows to regenerate part of the population randomly at every

iteration thus new refactoring will be introduced since new solutions are generated

during the execution process.

When applying the change operators, the different pre- and post-conditions are

checked to ensure the applicability of the newly generated solutions. For example,

to apply the refactoring operation movemethod a number of necessary pre-conditions

should be satisfied such as the method and the source and target classes should exists.

A post-condition example is to check that the method exists and was moved to the

target class and did not exist anymore in the source class. More details about the

adapted pre- and post-conditions for refactorings can be found in [9]. We also apply

a repair operator that randomly selects new refactorings to replace those creating

conflicts.

3.2.2.4 Solution evaluation

The generated solutions are evaluated using two fitness functions as detailed in

the following paragraphs.

Minimize the number of code changes as an objective: The application

of a specific suggested refactoring sequence may require an effort that is comparable

to that of re-implementing part of the system from scratch. Taking this observation

into account, it is essential to minimize the number of suggested operations in the

refactoring solution since the designer may have some preferences regarding the per-

centage of deviation with the initial program design. In addition, most developers

prefer solutions that minimize the number of changes applied to their design. Thus,

we formally defined the fitness function as the number of modified actors/code ele-

ments (packages, classes, methods, attributes) by the generated refactorings solution.

f(x) =
n∑

i−1

#code elements(Ri, x) (3.1)
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where x is the solution to evaluate, n is the number of refactorings in the solution x

and #code elements is a function that counts the number of modified code elements

in a refactoring. Any solution with refactorings being performed on the same code

elements will have better (lower) fitness value for this objective. Such a definition

of the objective is in favor of code locality since it encourages refactoring the same

code fragment, as developers prefer to refactor the specific elements with which they

are most familiar [123] instead of applying scattered changes throughout the whole

system. The proposed fitness function is different from that employed in our previous

work [9] where only the number of applied refactorings are counted. In fact, each

refactoring type may have a different impact on the system in terms of number of

code changes it engenders, something that can be identified using our new formulation.

Maximize software quality as an objective:

We used Quality Metrics for Object Oriented Designs (QMOOD) and its quality

attributes level to define our objective functions. This model and its defenitions

are described in Subsection 2.2.3 and Tables 2.2 and 2.3. Therefore, the objective

functions are defined as:

Quality =

∑6
i=1QAi(S)

6
(3.2)

3.2.3 Interactive Recommendation of Refactorings

The first step of the interactive component is executed as described in Algorithm

2, to investigate if there are some common principles among the generated non-

dominated refactoring solutions.

The algorithm checks if the optimal refactoring solutions have some common fea-

tures such as identical refactoring operations among most or all of the solutions, and

a specific common order/sequence in which to apply the refactorings. Such informa-

tion will be used to rank the suggested refactorings for developers using the following
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formula:

Rank(Rx,y) =

n∑
j=0

size(Sj)∑
i=0

[Ri,j = Rx,y]

MAX(
n∑

j=0

size(Sj)∑
i=0

[Ri,j = Rx,y])

∈ [0...1] (3.3)

where Rx,y is the refactoring operation number x (index in the solution vector) of

solution number y, and n is the number of solutions in the front. Si is the solution

of index i. All the solutions of the Pareto front are ranked based on the score of this

measure applied to every solution.

Once the Pareto front solutions are ranked, the second step of the interactive

step is executed as described in Algorithm 3. The refactorings of the best solution,

in terms of ranking, are recommended to the developer based on their order in the

vector. Then, the ranking score of the solutions is updated automatically after every

feedback (interaction) with the developer. Our interactive algorithm proposes three

levels of interaction as described in Fig. 3.2 and Algorithm 3.

The developer can check the ranked list of refactorings and then apply, modify or

reject the refactoring. If the developer prefers to modify the refactoring, then our
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Figure 3.2: Refactorings recommended by our technique.

algorithm can help them during the modification process as described in Fig. 3.3.

In fact, our tool proposes to the developer a set of recommendations to modify

the refactoring based on the history of changes applied in the past and the semantic

similarity between code elements (classes, methods, etc.). For example, if the devel-

oper wants to modify a move method refactoring then, having specified the source
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Figure 3.3: Recommended target classes by our technique for a move method refac-
toring to modify.

method to move, our interactive algorithm automatically suggests a list of possible

target classes ranked based on the history of changes and semantic similarity. This

is an interesting feature since developers often know which method to move, but find

it hard to determine a suitable target class [75]. The same observation is valid for

the remaining refactoring types. Another action that the developers can select is to

reject/delete a refactoring from the list.

After every action selected by the developer, the ranking is updated based on the

feedback using the following formula:

Rank(Si) =

size(Si)∑
k=1

Rank(Rk,i) (3.4)

+(RO ∩ AppliedRefactoringsList)

−(RO ∩RejectedRefactoringsList)

+0.5 ∗ (RO ∩ModifiedRefactoringsList)
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where Si is the solution to be ranked, the first component consists of the sum of the

ranks of its operations as explained previously and the second component will take

the value of 1 if the recommended refactoring operation was applied by the developer,

or -1 if the refactoring operation was rejected or 0.5 if it was partially modified by

the developer. The recommended refactorings will be adjusted based on the updated

ranking score.

It is important to note that we calculate the ranking score for each non-dominated

solution using the innovization component and then the solution with the highest

score is presented refactoring by refactoring to the developer. In fact, refactorings

tend to be dependent on one another thus it is important to ensure the coherence

of the recommended solution. After a number of modified or rejected refactorings

or several new code changes introduced, the generated Pareto front of refactoring

solutions by NSGA-II needs to be updated since the system was modified in different

locations.

To check the applicability of the refactorings, we continuously check the pre-

conditions of individual refactorings on the version after manual edits. Thus, the

ranking of the solutions will change after every interaction. If many refactorings are

rejected, the NSGA-II algorithm will continue to execute while taking into consid-

eration all the feedback from developers as constraints to satisfy during the search.

The rejected refactorings should not be considered as part of the newly generated

solutions and the new system after refactoring will be considered in the input of the

next iteration of the NSGA-II.

In the non-interactive refactoring systems, the set of refactorings, suggested by

the best-chosen solution, needs to be fully executed in order to reach the solution’s

promised results. Thus, any changes applied to the set of refactorings such as chang-

ing or skipping some of them could deteriorate the resulting system’s quality. In

this context, the goal of this work is to cope with the above-mentioned limitation by
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granting to the developer’s the possibility to customize the set of suggested refactor-

ings either by accepting, modifying or rejecting them. The novelty of this work is the

approach’s ability to take into account the developer’s interaction, in terms of intro-

duced customization to the existing solution, by conducting a local search to locate

a new solution in the Pareto Front that is nearest to the newly introduced changes.

We believe that our approach may narrow the gap that exists between automated

refactoring techniques and human intensive development. It allows the developer to

select the refactorings that best matches his/her coding preferences while modifying

the source code to update existing features.

3.2.4 Running Example: Illustration on the JVacation System

3.2.4.1 Context

To illustrate our interactive algorithm, we consider the refactoring of JVacation

v1.0 1 , a Java open-source trip management and scheduling software. We asked a

developer to update an existing feature by adding one more field (Premium member

ID) in the personal information form that a user has to fill out when booking a flight.

As JVacation architecture is based on the Model/View/Controller model, adding

this extra field would trigger small updates on the View by adding a textbox in the

personal information input form. Also the controller that handles the booking process

needs to be revised. At the model level, an attribute needs to be added to the class

that hosts the booking information. Finally, an update on the database level is needed

to save the newly modified booking objects.

To simplify the illustration, we have limited the update to these above-mentioned

changes knowing that, in order to completely implement this function, several other

updates may be needed in other views and controllers in order to show, for example,

the newly added field, as part of the information related to the passengers’ records

1https://sourceforge.net/projects/jvacation/
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for a given flight. We asked the developer to refactor the software system while

performing the given task, therefore, the developer has initially launched the plugin

that triggered our interactive algorithms. We assisted the developer in only selecting

the initial default parameters for the optimization algorithm (such as the minimum

and maximum chromosome lengths).

3.2.4.2 Illustration of the Innovization Component

After generating the upfront list of best refactoring solutions, three solutions are

selected from the Pareto front that were involved in the interactive session to simplify

this running example. Each solution has a fitness score composed of the median of

quality improvement calculated based on the structural measures of the refactored

system for each solution, and the number of operations within each solution. The

previous section describes, these fitness values, for each solution, in terms of quality

improvement and refactoring effort compared to the original system values before

refactoring. These information is shown in Table 3.2.

One of the classic challenges in multi-objective optimization is the choice of the

most suitable solution for the developer. The straightforward solution for this problem

would be to manually investigate all solutions, i. e., execute all refactoring operations

for each solution and allow the developer to compare between several refactored de-

signs. This task can easily become tedious due to the large number of solutions in

the Pareto front.

To facilitate the selection task, decision making support tools can be used to au-

tomate the selection of solutions based on the decision maker’s preferences. In our

context, these preferences can be considered as the packages and classes that the

developer is interested in when implementing the requested feature. Thus, another

straightforward heuristic would be to automatically shortlist solutions that only refac-

tor entities that are of interest to developers. Unfortunately, this will not necessarily
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Table 3.2: Quality attributes value on the JVacation system.

Quality Attribute Original System Solution 1 Solution 2 Solution 3

Reusability
(+0.5) (+0.4) (+0.5)

1.74225 1.79225 1.79225 1.79225

Flexibility
(+0.001) (+0.001) (+0.001)

1.82 1.820 1.820 1.820

Understandability
(+0.08) (+0.07) (+0.087)

-4.5408 -4.5398 -4.5398 -4.5398

Functionality
(+0.5) (+0.6) (+0.5)

1.16314 1.21314 1.21314 1.21314

Extendibility
(+0.007) (+0.012) (+0.011)

19.7225 19.7295 19.7300 19.7299

Effectiveness 9.5406 9.5406 9.5406 9.5406

Quality Gain - 0.198 0.202 0.209

Number of operations - 11 14 19

reduce drastically the number of preferred solutions especially if the system is small.

To cope with this issue, another interesting idea would be to calculate the overlap

between solutions. Still, choosing the most appropriate solution can be challenging as

the developer has to manually break the tie between solutions by comparing between

their specific refactorings. This comparison may not be straightforward because spe-

cific refactorings between to candidate solutions may both be of an interest to the

developer, for example, when comparing between solution 1 and solution 2, both

solutions contain a move-method operation that agree on moving a function called

getSaluation() but disagree on the target class.

Since this function belongs to the booking panel, the participating entities are

of an interest to the developer, so no choice can be automatically done based on

the developer’s preferred entities. Moreover, both target classes (respectively Label-

Spinner and LabelEdit), each proposed by one solution, belong to the same package

(gui.components) and they are semantically close, so the fitness function values can-
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not be used to break the tie. In this scenario, only the developer would be qualified to

take the decision of either accepting one operation over the other or maybe rejecting

both operations. Thus, simply filtering solutions based on the developer’s preferred

entities may fall short in this kind of scenarios. Furthermore, asking the developer to

exhaustively break the tie between shortlisted solutions can become tedious.

In this context, our interactive process differs from simply “filtering” operations

based on a given preference as it “learns” from the developer’s decision making and

dynamically break the tie between Pareto-equivalent solutions by upgrading those

with the highest number of successful recommendations (applied refactorings) while

penalizing those who contain rejected operations. To illustrate this process, Table 3.3

describes each solution’s refactorings along with its rank after the execution of the

first step of the interactive algorithm. For the purpose of simplicity, we considered a

first fragment of each solution. The solutions are ranked based on Equation 3.3 to

identify the most common refactorings between the non-dominated solutions. This is

achieved by counting the number of occurrences of operation within the Pareto front

solution set, this number will be averaged by the maximum number of occurrences

found.

3.2.4.3 Illustration of the Interactive and Dynamic Components

In the interaction part, the recommended refactoring wanted to move a function

that defines the trip’s starting date to a LabelCombo class. The developer thought

that moving it to DateEdit class makes more sense instead because the return value of

the moved function is of type Date and DateEdit is semantically closer to the method.

So the refactroings were partially modified by the developer and the ranking score of

the second solution was increased by 0.5 for Solution 2 but by 1 for Solution 3 since

it has already a move method operation that suggests moving the same method to

the chosen class by the developer, i. e., the applied operation exists in that solution.
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Table 3.3: Three simplified refactoring solutions recommended for JVacation v1.0.
Operation Source entity Target entity

Solution 1 fitness scores before normalization (0.198, 4)

Move Method ctrl.booking.BookingController:: handleLodgingView-
Event(java.awt.event.ActionEvent):void

ctrl.booking.LodgingModel

Extract Class ctrl.booking.SelectionModel:: - flightList + addFlight():void
+clearFlight():void

ctrl.booking.FlightList

Move Method ctrl.booking.BookingController:: createBookings():void ctrl.CoreModel

Move Method gui.panels.booking.bTravelersPanel:: getSaluta-
tion():java.lang.String

gui.components.LabelSpinner

Solution 1 Rank 3.960

Solution 2 fitness scores before normalization (0.202, 5)

Move Method ctrl.booking.BookingController:: handleLodgingView-
Event(java.awt.event.ActionEvent):void

ctrl.booking.lodgingList

Move Method gui.panels.maintenance.mLodgingsPanel ::get-
Start():java.util.Date

gui.components.LabelCombo

Inline Class ctrl.ModelChangeEvent ctrl.CoreModel

Extract Class ctrl.booking.SelectionModel:: - travelerList + addTraveler():void
+clearTraveler():void

ctrl.booking.TravelerList

Move Method gui.panels.booking.bTravelersPanel:: getSaluta-
tion():java.lang.String

gui.components.LabelSpinner

Solution 2 Rank 4.064

Solution 3 fitness scores before normalization (0.209, 6)

Move Method ctrl.booking.BookingController:: handleLodgingView-
Event(java.awt.event.ActionEvent):void

ctrl.booking.lodgingList

Move Method gui.panels.maintenance.mLodgingsPanel ::get-
Start():java.util.Date

gui.components.DateEdit

Extract Class ctrl.booking.SelectionModel:: - flightList + addFlight():void
+clearFlight():void

ctrl.booking.FlightList

Extract Class ctrl.booking.SelectionModel:: - travelerList + addTraveler():void
+clearTraveler():void

ctrl.booking.TravelerList

Inline Class ctrl.ModelChangeEvent ctrl.CoreModel

Move Class Db.factory.DBObjectFactory db

Solution 3 Rank 3.471

In the third interaction, the recommended refactoring suggests merging two classes

CoreModel and ModelChangeEvent. The first class gathers, for a given customer, all

his/her bookings and sums up the total price, since the price may be later on reduced

based on the customer’s premium number (field to be added) the developer decided

to keep the class intact and thus the operation was rejected and so the score of the

top Solution 2 was decreased by 1. The solution with the highest rank is selected

for execution and its related operations are shown to the user based on their order in

the vector. Table 3.4 summarizes the various interactions between the developer and

the suggested refactorings from the three above mentioned solutions when adding the
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Table 3.4: Four different interaction examples with the developer applied on the refac-
toring solutions recommended for JVacation v1.0.

Operation R1:MoveMethod(ctrl.booking.BookingController::handleLodgingViewEvent:void,
ctrl.booking.LodgingList)

Decision Applied

Changes AppliedRefactoringsList={R1},
RejectedRefactoringsList={}

SolutionSet Solution1 Solution2 * Solution3

Initial rank 3.960 4.064 3.471

Interation1 3.960 5.064 (+1) 4.471 (+1)

Operation R2:MoveMethod(gui.panels.maintenance.mLodgingsPanel::getStart():java.util.Date,
gui.components.LabelCombo)

Decision Modified to: R2:
MoveMethod(gui.panels.maintenance.mLodgingsPanel::getStart():
java.util.Date,gui.components.DateEdit)

Changes AppliedRefactoringsList={R1,R2},
RejectedRefactoringsList={}

SolutionSet Solution1 Solution2 * Solution3

Initial rank 3.960 4.064 3.471

Interation1 3.960 5.064 (+1) 4.471 (+1)

Interation2 3.960 5.564 (+0.5) 5.471 (+1)

Operation R3:InlineClass(ctrl.ModelChangeEvent,ctrl.CoreModel)

Decision Rejected

Changes AppliedRefactoringsList={R1,R2},
RejectedRefactoringsList={R3}

SolutionSet Solution1 Solution2 * Solution3

Initial rank 3.960 4.064 3.471

Interation1 3.960 5.064 (+1) 4.471 (+1)

Interation2 3.960 5.564 (+0.5) 5.471 (+1)

Interation3 3.960 4.564 (-1) 5.471

Operation R4:ExtractClass(ctrl.booking.SelectionModel:-
flightList+addFlight():void+clearFlight():void,ctrl.booking.FlightList)

Decision Applied

Changes AppliedRefactoringsList={R1,R2,R4},
RejectedRefactoringsList={R3}

SolutionSet Solution1 Solution2 Solution3 *

Initial rank 3.960 4.064 3.471

Interation1 3.960 5.064 (+1) 4.471 (+1)

Interation2 3.960 5.564 (+0.5) 5.471 (+1)

Interation3 3.960 4.564 (-1) 5.471

Interation4 4.960 (+1) 4.564 6.471 (+1)

new feature.

The first recommended refactoring of the top ranked solution (Solution 2) suggests

moving an event function from the controller class of the booking process, since the

developer is required to investigate this class and since this function is not called

during the booking procedure, moving it out of the class will reduce the number of
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investigated functions, so the operation was applied by the developer and accordingly

the ranking score was increased by 1 for both Solutions 2 and 3 since they include

this refactoring in their solutions.

Upon the rejection of the third suggested refactoring, the ranking score of solu-

tion 3 has become higher than the one of solution 2, this has triggered the fourth

recommended operation to be issued from solution 3 instead. All the refactorings

that belong to the intersection between solution 3 and the lists of applied/rejected

refactorings will be skipped during the recommendation process.

For instance, the first and second operation of solution 3 will be skipped as they

have been already applied by the developer, and the third operation will be suggested

during the fourth interaction. This operation suggests the extraction of a class from

the selection mode of the booking process. Since this refactoring will facilitate the

distinction between functions related to the flight from those related to the passengers,

the developer has approved the operation. The algorithm will stop recommending

new refactorings either on the request of the developer or when the system achieves

acceptable quality improvement in terms of reducing the number of design defects

and improving quality metrics. These parameters can be specified by the developer

or the team manager.

3.3 Evaluation

To evaluate the ability of our refactoring framework to generate good refactoring

recommendations, we conducted a set of experiments based on eight open source

systems and two industrial projects provided by the IT department at the Ford Motor

Company. The obtained results are subsequently statistically analyzed with the aim

of comparing our proposal with a variety of existing approaches. The relevant data

related to our experiments and a demo about the main features of the tool can be

found in [129].
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In this section, we first present our research questions and validation methodology

followed by experimental setup. Then we describe and discuss the obtained results.

3.3.1 Research Questions

We defined three categories of research questions to measure the correctness, rele-

vance and benefits of our interactive multi-objective refactoring approach comparing

to the state of the art based on several practical scenarios. It is important to eval-

uate, first, the correctness of the recommended refactoring. Since it is not sufficient

to make correct refactoring recommendations, we evaluated the benefits of applying

the recommended refactorings in terms of fixing code smells and improving quality

attributes. Programmers are not interested, in practice, to apply all the correct and

useful recommended refactorings due to limited resources thus we evaluated both the

relevance of our recommendations and our ranking efficiency from programmers per-

spective based on several real-world scenarios including productivity and post-study

questionnaires. We considered various existing refactoring approaches as a baseline

for this proposed interactive refactoring technology to define an accurate estimation

of possible improvements.

The research questions are as follows:

RQ1: Correctness, Relevance and Comparison with State of the Art.

• RQ1-a: Correctness. To what extent the results of our approach are similar

to the ones proposed by developers compared to fully-automated refactoring

techniques?

• RQ1-b: Benefits–antipatterns correction. To what extent code smells

can be fixed using our approach compared to fully-automated refactoring tech-

niques?

• RQ1-c: Benefits–improving quality. To what extent can our approach
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improve the overall quality of software systems compared to fully-automated

refactoring techniques?

• RQ1-d: Relevance to programmers. To what extent can our approach

make meaningful recommendations compared to fully-automated refactoring

techniques?

RQ2: Interaction Relevance. To what extent can our approach efficiently rank

the recommended refactorings?

RQ3: Impact based on Practical Scenarios.

• RQ3-a: To what extent our approach can improve the productivity of pro-

grammers when fixing bugs compared to fully-automated refactoring tech-

niques?

• RQ3-b: To what extent our approach can improve the productivity of pro-

grammers when adding new features compared to fully-automated refac-

toring techniques?

• RQ3-c: How do programmers evaluate the usefulness of our approach

(questionnaire)?

3.3.2 Validation Methodology

To answer the research questions described in the previous section, we give, first,

an overview about the adopted validation methodology that include the following

tasks:

• Task-1: Generate data for baseline methods by using other existing state-of-

the-art automated refactoring tools and methods offline. (RQ1a-d)

• Task-2: Manually refactor a system. (RQ1a)
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• Task-3: Use our tool (DINAR) to collect final set of recommendations. (RQ1a-

d, RQ2)

• Task-4: Rate solutions and recommendations of different methods and tools.

(RQ1d, RQ2)

• Task-5: Code smells detection after refactoring. (RQ1b)

• Task-6: Measure quality metrics after refactoring. (RQ1c)

• Task-7: Fix bugs on refactored / unrefactored systems. (RQ3a)

• Task-8: Implement features on refactored / unrefactored systems.(RQ3b)

• Task-9: Post-study questionnaire. (RQ3c)

For each task, we defined and used different evaluation metrics (Precision, Recall,

number of fixed antipatterns, the quality gain, manual correctness, number of modi-

fied/rejected/accepted recommendations and execution time) which are described in

this section. These metrics are calculated and compared for different refactoring tech-

niques which are applied on a variety of software projects under the specific above

scenarios. Table 3.5 shows the summary of the connections between the research

questions, metrics and tasks detailed in this section.

In order to have a consistent comparison, we considered the refactoring solutions

recommended by our approach after all interactions with the developers (last set of

solutions). Therefore, we refer to these sets of refactoring solutions as “our approach

results” afterward. To create a baseline, we asked the participants in our study to

analyze and apply manually several refactoring types using Eclipse IDE on several

code fragments extracted from different systems where most of them correspond to

code smells identified in previous studies as worth removing by refactoring [19, 54].

This golden set is defined based on the following two main criteria: 1. Refactorings
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Table 3.5: Summary of the research questions, their goals, defined metrics to answer
and analyze them, and the associated tasks to collect data and calculate
the metrics.

RQ# RQ Goal Sub-RQ Sub-Goal Metric(s) Task(s)#

RQ1 Relevant Solutions

RQ1-a Similarity RC, PR 1, 2, 3

RQ1-b Fixing code smells NF 1,3,5

RQ1-c Overall quality G 1,3,6

RQ1-d Meaningful recommendation MC 1,3,4

RQ2 Efficient ranking - NAR, NRR, NMR,
PR@k, MC@k

3, 4

RQ3 Usefulness

RQ3-a Productivity / fixing bugs
TP

7

RQ3-b Productivity /adding features 8

RQ3-c questionnaire 9

that fix a design flaw and did not change the behavior or introduce bugs, 2. Refac-

torings that improve a set of quality metrics (based on the QMOOD model) and did

not change the behavior or introduce bugs. We refer to these refactoring solutions as

“expected refactorings” afterward.

To answer RQ1, it is important to validate the proposed refactoring solutions from

both quantitative and qualitative perspectives. For RQ1-a, we calculated precision

and recall scores to compare between refactorings recommended by each approach

and those expected based on the participants opinion:

RCrecall =
Approach Solution ∩ Expected Refactorings

Expected Refactorings
∈ [0, 1] (3.5)

PRprecision =
Approach Solution ∩ Expected Refactorings

Approach Solution
∈ [0, 1] (3.6)

When calculating the precision and recall, we consider a refactoring as a correct

recommendation if all the controlling parameters are the same like the expected ones.

For RQ1-b, we considered another quantitative evaluation which is the percentage

of fixed code smells (NF ) by the refactoring solution. The detection of code smells

after applying a refactoring solution is performed using the detection rules of [1].
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Formally, NF is defined as:

NF =
#fixed code smells

#code smells
∈ [0, 1] (3.7)

The detection of code smells is very subjective and some developers prefer not

to fix some smells because the code is stable or some of them are not important to

fix. To this end, we considered for RQ1-c another metric, G, based on QMOOD that

estimates the quality improvement of the system by comparing the quality before and

after refactoring independently from the number of fixed design defects. The average

of the six QMOOD attributes were used: reusability, flexibility, understandability,

Extendibility, Functionality and effectiveness. All of them are formalized using a set of

quality metrics. Hence, the gain for each of the considered QMOOD quality attributes

and the average total gain in quality after refactoring can be easily estimated as:

G =

6∑
i=1

Gqi

6
and Gqi = q′i − qi (3.8)

where q′i and qi represents the value of the QMOOD quality attribute i after and

before refactoring, respectively.

For RQ1-d, we asked the participant in our study, as detailed in Section 4.4, to

evaluate, manually, whether the suggested refactorings are feasible and efficient at

improving the software quality and achieving their maintainability objectives. We

define the metric Manual Correctness (MC) to mean the number of meaningful refac-

torings divided by the total number of recommended refactorings. The meaningful

refactorings are recognized by taking the majority of votes from the developers. This

procedure is analogous to the real-world situations based on our own experience with

our industrial partners. Therefore, MC is given by the following equation:

MC =
# Meaningful Refactorings

# Recommended Refactorings
(3.9)
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To avoid the computation of the MC metric being biased by the developer’s feed-

back, we asked the developers to manually evaluate the correctness of the recom-

mended refactorings of our approach on the systems that they did not refactor using

our tool. Therefore, The developers did not evaluate the results of their own results of

interactive refactoring but the resultant refactorings recommended on other systems

where other developers apllied our approach. The main motivation for the “manual

correctness” metric is actually to address the concern that the deviation with the

expected refactorings could be just because of the preferences of the developers. The

manual correctness metric is evaluated manually on each refactoring one-by-one to

check their validity. Thus, we evaluated the results produced by the different tools

and we were not limited to the comparison with the expected results. We did the

comparison with the expected results to provide an automated way to evaluate the

results and avoid the developers being biased by the results of our tool (developers

did not know anything about the refactorings suggested by the different tools when

they provided their recommendations).

We used the metrics MC, RC, PR, NF and G to perform the comparisons and

answer respectively RQ1a-d.

We considered some other useful metrics to answer RQ2 that count the percentage

of refactorings that were accepted (NAR) or rejected (NRR) or applied with some

modifications (NMR). Formally, these metrics are defined as:

NAR =
# Accepted Refactorings

# Recommended Refactorings
∈ [0, 1] (3.10)

NRR =
# Rejected Refactorings

# Recommended Refactorings
∈ [0, 1] (3.11)

NMR =
# Modified Refactorings

# Recommended Refactorings
∈ [0, 1] (3.12)
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To answer RQ2, we also evaluated the relevance of the recommended refactorings

in the top k where k =1, 5, 10 and 15 using the following metrics PR@k and MC@k.

We used the same equations defined for RQ1 with the only difference that the consid-

ered suggested refactorings are exclusively those located in the top k positions of the

ranked list of refactorings at multiple instances after the execution of the innovization

component.

To answer RQ3, we aimed to assess how the refactoring actually increases the

software quality and productivity in that the effort to fixing bugs (R3-a) or adding

new features (R3-b) should reduce after performing the refactorings. We asked the

software developers participated in this study to add new features and fix a set of bugs.

To avoid that the achieved results might be due to the different levels of ability of

the developers groups, we adapted a counter-balanced design where each participant

performed two tasks, one on the original system and one on the refactored system.

The details of these scenarios will be described later as detailed in Section 4.6. To

estimate the impact of the suggested refactorings on the productivity of developers,

we defined the following metric TP to measure the time required to perform the same

activities on the system with and without refactoring:

TPi = 1− #minutes required to perform task i on the system after refactoring

#minutes required to perform task i on the system befor refactoring
(3.13)

We have also compared the productivity results of our approach compared to

Kessentini et al. [1], Ouni et al. [2] and Harman et al. [3] to test the hypothesis if

better quality of the software may increase the productivity of developers. To answer

RQ3-b, we used a post-study questionnaire that collects the opinions of developers

on our tool as detailed in the next section.
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3.3.3 Studied Software Projects

We used a set of well-known open-source Java projects and two systems from our

industrial partner, the Ford Motor Company. We applied our approach to eight open-

source Java projects: Xerces-J, JHotDraw, JFreeChart, GanttProject, Apache Ant,

Rhino and Log4J and Nutch. Xerces-J is a family of software packages for parsing

XML. JFreeChart is a free tool for generating charts. Apache Ant is a build tool

and library specifically conceived for Java applications. Rhino is a JavaScript inter-

preter and compiler written in Java and developed for the Mozilla/Firefox browser.

GanttProject is a cross-platform tool for project scheduling. Log4J is a popular log-

ging package for Java. Nutch is an Apache project for web crawling. JHotDraw is a

GUI framework for drawing editors.

In order to get feedback from the original developers of a system, we considered

in our experiments two large industrial projects provided by our industrial partner,

the Ford Motor Company. The first project is a marketing return on investment tool,

called MROI, used by the marketing department of Ford to predict the sales of cars

based on the demand, dealers’ information, advertisements, etc. The tool can collect,

analyze and synthesize a variety of data types and sources related to customers and

dealers. It was implemented over a period of more than eight years and frequently

changed to include and remove new/redundant features.

The second project is a Java-based software system, JDI, which helps the Ford

Motor Company to create the best schedule of orders from the dealers based on

thousands of business constraints. This system is also used by Ford Motor Company

to improve their vehicles sales by selecting the right vehicle configuration to match

the expectations of their customers. JDI is highly structured and software developers

have developed several versions of it at Ford over the past 10 years. Due to the

importance of the application and the high number of updates performed on both

systems, it is critical to ensure that they remain of high quality so to reduce the time
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Table 3.6: Statistics of the studied software projects.
System Release #classes KLOC #Code smells #Applicable Refactorings

Xerces-J v2.7.0 991 240 61 80

JHotDraw v6.1 585 21 22 36

JFreeChart v1.0.9 521 170 51 96

GanttProject v1.10.2 245 41 60 63

Apache Ant v1.8.2 1191 255 61 74

Rhino v1.7R1 305 42 79 50

Log4J v1.2.1 189 31 27 41

Nutch v1.1 207 39 39 24

JDI-Ford v5.8 638 247 83 94

MROI-Ford V6.4 786 264 97 119

required by developers to introduce new features in the future.

We selected these 10 systems for our validation because they range from medium to

large-sized open-source projects, which have been actively developed over the past 10

years, and their design has not been responsible for a slowdown of their developments.

Table 3.6 provides some descriptive statistics about these 10 programs.

3.3.4 Study Participants

Our study involved 14 participants from the University of Michigan and 8 software

developers from the Ford Motor Company. Participants include 6 master students

in Software Engineering, 8 Ph.D. students in Software Engineering and 8 software

developers. All the participants are volunteers and familiar with Java development

and refactoring. The experience of these participants on Java programming ranged

from 2 to 19 years. We carefully selected the participants to make sure that they

already applied refactorings during their previous experiences in development.

All the graduate students have already taken at least one position as software

engineer in industry for at least two years as software developer and most of them

(11 out of 14 students) participated in similar experiments in the past, either as

part of a research project or during graduate courses on Software Quality Assurance

or Software Evolution offered at the University of Michigan. Furthermore, 6 out

the 14 students (the selected master students) are working as full-time or part-time
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developers in the software industry.

Participants were first asked to fill out a pre-study questionnaire containing five

questions. The questionnaire helped to collect background information such as their

role within the company, their programming experience, and their familiarity with

software refactoring. In addition, all the participants attended one lecture about

software refactoring and passed six tests to evaluate their performance in evaluate

and suggest refactoring solutions.

We formed 3 groups. The groups were formed based on the pre-study question-

naire and the test results to ensure that all the groups have almost the same average

skill level. We divided the participants into groups according to the studied systems,

the techniques to be tested and developers’ experience.

Each of the first two groups (A and B) is composed of three masters students and

four Ph.D. students. The third group is composed of eight software developers from

the Ford Motor company, since they agreed to participate only in the evaluation of

their two software systems. It is important to note that the third group formed by the

developers from Ford is part of the original developers of the two evaluated systems.

3.3.5 Techniques Studied

3.3.5.1 Overview of the Used Techniques

To answer our research questions from the perspective of evaluating our inter-

active approach performance against the state-of-the-art refactoring techniques, we

compared our approach to four other existing fully-automated search-based refactor-

ing techniques and our multi-objective approach without the interaction component

(NSGA-II-Innovization). Studied techniques includes: Kessentini et al. [1], O’Keeffe

and O’ Cinnéide [4], Ouni et al. [2] and Harman et al. [3] that consider the refactoring

suggestion task only from the quality improvement perspective.

Autors in [1], formulate software refactoring as a mono-objective search problem

70



where the main goal is to fix design defects and improve quality metrics. Also,

[4] proposed a mono-objective formulation to automate the refactoring process by

optimizing a set of quality metrics. The authors in [2] and [3] proposed a multi-

objective refactoring formulation that generates solutions to fix code smells. Both

techniques are non-interactive and fully-automated.

We considered in our experiments another popular design defects detection and

correction tool JDeodorant [5] that does not use heuristic search techniques. The cur-

rent version of JDeodorant is implemented as an Eclipse plug-in that identifies some

types of design defects using quality metrics and then proposes a list of refactoring

strategies to fix them. Since JDeodorant just recommends a few types of refactor-

ing with respect to the ones considered by our tool. We restricted, in this case, the

comparison to the same refactoring types supported by JDeodorant such as Move

Method, Extract Method and Extract Class.

Our approach differs with the above fully-automated techniques in two factors: in-

novization and interactive features. Therefore, it is important to evaluate the impact

of every factor on the quality of our results. If the innovization makes the largest

contribution, which is another fully automated search-based approach, the results

cannot support the hypothesis related to the outperformance of interactive refactor-

ing. Thus, we compared our approach to NSGA-II with the innovization feature using

the same multi-objective optimization but without the use of the interactive feature.

All these existing techniques are fully-automated and do not provide any interac-

tion with the developers to update their solutions.

Table 3.7 summarizes the survey organization including the list of systems and

algorithms evaluated by the groups of participants.
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Table 3.7: Survey organization.
Participants groups Software Projects Approaches Tasks

Group A

Xerces-J

Interactive NSGA-II,
[4],
[2],
JDeodorant [5],
[1],
[3]

-Interactive refactoring
-Manual refactoring
-Post-study questionnaire
-Fixing bugs
-Adding features

JHotDraw

JFreeChart

GanttProject

Group B

Apache Ant

Rhino

Log4J

Nutch

Group C

JDI-Ford
Interactive NSGA-II,
[4],
[9],
JDeodorant [5]MROI-Ford

3.3.5.2 Parameters Setting

Parameter setting influences significantly the performance of a search algorithm

on a particular problem [130]. For this reason, for each algorithm and for each system,

we perform a set of experiments using several population sizes: 50, 100, 200, 300 and

500. The stopping criterion was set to 100,000 evaluations for all algorithms in order

to ensure fairness of comparison. The other parameters’ values were fixed by trial

and error and are as follows: crossover probability = 0.8; mutation probability =

0.5 where the probability of gene modification is 0.3; stopping criterion = 100,000

evaluations.

In order to have significant results, for each couple (algorithm, system), we use

the trial and error method [131] in order to obtain a good parameter configuration.

Trial and error is a fundamental method of problem solving. It is characterized by

repeated and varied attempts of algorithm configurations.

Regarding the evaluation of fixed code smells, we focus on the following code

smell types: Blob, Spaghetti Code (SC), Functional Decomposition (FD), Feature

Envy (FE), Data Class (DC), Lazy Class (LC), and Shotgun Surgery (SS). We choose

these code smell types in our experiments because they are the most frequent and hard

to fix based on several studies [9, 48]. These design flaws are automatically detected
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using the detection rules of our previous work [1] based on genetic programming.

We have generated and manually validated, in [1] and several of our other previous

studies, a set of metrics-based rules that can automatically detect the different types

of code smells considered in our experiments. Table 3.6 reports the number of code

smells for each system. Only real design flaws that were manually validated in our

previous work [1] are considered in this validation.

The upper and lower bounds on the chromosome length used in this study are set

to 10 and 350 respectively. Several SBSE problems including software refactoring are

characterized by a varying chromosome length. This issue is similar to the problem

of bloat control in genetic programming where the goal is to identify the tree size

limits. To solve this problem, we performed several trial and error experiments where

we assess the average performance of our algorithm using the hypervolume (HV)

performance indicator while varying the size limits between 10 and 500 operations.

3.3.6 Case Studies Summary

Each group of participants received a questionnaire, a manuscript guide to help

them to fill the questionnaire, the tools and results to evaluate and the source code

of the studied systems as described in the following five scenarios:

In the first scenario, we selected a total of 90 classes from all the systems that

include design defects (9 classes to fix per system). Then we asked every participant to

manually apply refactorings to improve the quality of the systems by fixing an average

of two of these defects. As an outcome of the this scenario, we have a set of “expected

refactorings” and we are able to calculate the differences between the recommended

refactorings and the expected ones (manually suggested by the developers).

In the second scenario, we asked the developers to evaluate the suggested solutions

of our algorithm. We performed a cross-validation between the ratings of each group

to avoid the computation of the MC metric being biased by the developer’s feedback.
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Thus, the developers in each group rated results generated by the other developers

in the same group.

In the third scenario, we collected a set of 6 bugs per system from the bug reports

of the studied release for every project and asked the groups to fix them based on

the refactored and non-refactored version. The tasks are completely different and

they are applied to different packages/classes of the same version of the systems.

Furthermore, the participants did not know if they are working on the system before

or after refactoring. We did not follow as well any specific order when asking the

developers to work on the tasks. Only 3 out of the 22 participants worked as part

of the experiments on the systems before refactoring and then the systems after

refactoring. We adapted a counter-balanced design where we asked every developer

to fix 2 bugs on the version before refactoring and then 2 other bugs in the version

after refactoring. We selected the bugs that require almost the same effort to fix in

terms of number of changes, with an average of 15 changes.

In the fourth scenario, we asked the groups to add two simple features to every

system before refactoring, and then two other features on the system after refactoring.

All the features require almost the same number of changes to be introduced or deleted

with an average of 23 code changes per feature. In the third and fourth scenarios,

the bugs to fix and features to add are related to the classes that are refactored by

the developers when using our tool.

The participants were asked to justify their evaluation of the solutions and these

justifications are reviewed by the organizers of the study (one faculty member, one

postdoc, one Ph.D. student and one Master’s student). Participants do not know the

particular experiment research questions and the used algorithms.

In the fifth scenario, we asked the participants to use our tool during a period

of two hours on the different systems and then we collected their opinions based on

a post-study questionnaire. To better understand subjects’ opinions with regard to
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usefulness of our approach in a real setting, the post-study questionnaire was given to

each participant after completing the refactoring tasks using our interactive approach

and all the techniques considered in our experiments. The questionnaires collected the

opinions of the participants about their experience in using our approach compared

to manual and fully-automated refactoring tools. We asked participants to rate their

agreement on a Likert scale from 1 (complete disagreement) to 5 (complete agreement)

with the following statements:

1. The interactive dynamic refactoring recommendations are a desirable feature in

integrated development environments (IDEs).

2. The interactive manner of recommending refactorings by our approach is a

useful and flexible way to refactor systems compared to fully-automated or

manual refactorings.

The remaining questions of the post-study questionnaire were about the benefits

and also limitations (possible improvements) of our interactive approach.

3.3.7 Results and Discussion

3.3.7.1 Statistical Analysis

Since meta-heuristic algorithms are stochastic optimizers, they can provide differ-

ent results for the same problem instance from one run to another. For this reason,

our experimental study is based on 30 independent simulation runs for each prob-

lem instance. The following statistical tests show that all the comparisons performed

between our approach and existing ones are statistically significant based on all the

metrics and the systems considered in our experiments.

We used one-way ANOVA statistical test with a 95% confidence level (α = 5%) to

find out whether our sample results of different approaches are different significantly.
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Since one-way ANOVA is an omnibus test, A statistically significant result determines

whether three or more group means differ in some undisclosed way in the population.

One-way ANOVA is conducted for the results obtained from each software project

to investigate and compare each performance metric (dependent variable) between

various studied algorithms (independent variable - groups).

We test the null hypothesis (H0) that population means of each metric are equal for

all methods (∀ Software Projects : µmetric
M1 = µmetric

M2 = ... = µmetric
M7 where metric ∈

{G,NF,MC,PR,RC}) against the alternative (H1) that they are not all equal and

at least one method population mean is different.

There are some assumptions for one-way ANOVA test which we assessed before

applying the test on the data:

Outliers: There were no outliers in the data, as assessed by inspection of a boxplot

for values greater than 1.5 box-lengths from the edge of the box.

Normal Distribution: Some of the dependent variables were not normally dis-

tributed for each method, as assessed by Shapiro-Wilk’s test. However, the one-way

ANOVA is fairly robust to deviation from normality. Since the sample size is more

than 15 (there are 30 observations in each group) and the sample sizes are equal for

all groups (balanced), non-normality is not an issue and does not affect Type I error.

Homogeneity of variances: The one-way ANOVA assumes that the population

variances of the dependent variables are equal for all groups of the independent vari-

able. If the variances are unequal, this can affect the Type I error rate. There

was homogeneity of variances, as assessed by Levene’s test for equality of variances

(p > 0.05).

The results of one-way ANOVA tests for all pair of software projects and metrics

indicates that The group means were statistically significantly different (p < .0005)

and, therefore, we can reject the null hypothesis and accept the alternative hypothesis

which says there is difference in population means between at least two groups. Table
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Table 3.8: F-value results from one-way ANOVA statistical tests for corresponding
software project and metric between different methods.

Software G NF MC PR RC

ApacheAnt 335.7 224.8 803.9 379.1 757.1

GanttProject 209.6 593.0 1463.2 379.6 1130.4

JDIFord 135.6 320.3 1036.2 917.3 1032.8

JFreeChart 300.1 776.7 494.7 211.9 663.9

JHotDraw 181.7 408.2 1022.6 158.4 663.8

Log4J 297.8 306.2 477.8 617.9 1044.9

MROIFord 189.5 474.8 1260.2 1228.8 1217.2

Nutch 333.7 361.3 408.1 269.9 658.9

Rhino 121.2 606.2 872.8 598.0 702.2

XercesJ 155.0 214.5 598.0 492.3 633.8

3.8 reports the obtained value of F-statistics with the between and within groups

degree of freedoms equal to 6 and 203, respectively. In one-way ANOVA, the F-

statistic is the ratio of variation between sample means over variation within the

samples. The larger value of F-statistics represents the group means are further apart

from each other and are significantly different. Also, it shows that the observation

within each group are close to the group mean with a low variance within samples.

Therefore, a large F-value is required to reject the null hypothesis that the group

means are equal. Our obtained F-statistics results are correspond to very small p-

values.

One-way ANOVA does not report the size of the difference. Therefore, we calcu-

lated Eta squared (η2) which is a measure of the effect size (strength of association)

and it estimates the degree of association between the independent factor and depen-

dent variable for the sample. Eta squared is the proportion of the total variance that

is attributed to a factor (the ”refactoring methods” in this study). Table 3.9 reports

Eta squared values for each pair of software projects and metrics. These values shows

to what extent different algorithms are the cause of variability of the metrics. For

instance, it says 90% of the total variance of metric G for ApacheAnt software project

is accounted for by different algorithms effect, not error or other effects.

Tukey post hoc analysis [132] is carried out in order to find out between which
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Table 3.9: Effect size values (Eta squared (η2)) for corresponding software project
and metric.

Software G NF MC PR RC

ApacheAnt 0.908 0.869 0.960 0.918 0.957

GanttProject 0.861 0.946 0.977 0.918 0.971

JDIFord 0.789 0.898 0.966 0.962 0.966

JFreeChart 0.899 0.958 0.936 0.862 0.952

JHotDraw 0.843 0.923 0.968 0.824 0.951

Log4J 0.898 0.900 0.934 0.948 0.969

MROIFord 0.839 0.929 0.972 0.971 0.971

Nutch 0.908 0.914 0.923 0.889 0.951

Rhino 0.782 0.947 0.963 0.946 0.954

XercesJ 0.821 0.864 0.946 0.936 0.949

group(s) the significant difference is occurred. Basically, it tests all possible group

comparisons. However, we only report the results of comparison of our method and

others in Table 3.10. This table represents the point estimate of the difference be-

tween each pair of means and is computed from the sample data. Also, it includes the

confidence interval showing the difference between population means and is centered

on point estimate. If This interval does not include zero, indicates that the difference

between the means is statistically significant. The 95% individual confidence level in-

dicates that we can be 95% confident that each interval contains the real difference for

that particular comparison. The results shows that all pairwise comparisons between

our method and others’ for each pair of (software / metric) are statistically significant

at the 0.05 level except for G and NF of JFreeChart as their results highlighted in

the table of the results. Therefore, the difference between the means of these two

metrics,G and NF, for JFreeChart project is 0.

To this end, we used the Vargha-Delaney A measure [133] which is a non-parametric

effect size measure. In our context, given the different performance metrics (such as

PR, RC, MC, etc.), the A statistic measures the probability that running an algorithm

B1 (interactive NSGA-II) yields better performance than running another algorithm

B2 (such as[1], [4], [2], etc.). If the two algorithms are equivalent, then A = 0.5. In

our experiments, we have found the following results: a) On small and medium scale
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Table 3.10: Tukey post hoc analysis results between our method(M1) and others
reported by Mean difference and 95% confidence intervals. Label of
the methods: M1 (Our approach)=Interactive+Innovization NSGA-II,
M2=Innovization NSGA-II, M3=Kessentini et al.[1], M4=Ouni et al.[2],
M5=Harman et al.[3], M6=O’Keeffe et al.[4], M7=Jdeodorant [5].

|Mean difference | 95% Confidence Interval|
G NF MC PR RC

A
p
a
c
h
e
A
n
t

M1-M2 0.10 (0.09,0.12) 0.05 (0.04,0.06) 0.07 (0.06,0.08) 0.09 (0.07,0.10) 0.07 (0.06,0.08)

M1-M3 0.15 (0.13,0.17) 0.07 (0.06,0.09) 0.12 (0.11,0.13) 0.14 (0.12,0.15) 0.18 (0.17,0.19)

M1-M4 0.12 (0.10,0.14) 0.05 (0.04,0.07) 0.10 (0.09,0.11) 0.12 (0.10,0.13) 0.13 (0.12,0.14)

M1-M5 0.21 (0.19,0.23) 0.10 (0.09,0.11) 0.17 (0.16,0.18) 0.13 (0.11,0.14) 0.18 (0.17,0.19)

M1-M6 0.16 (0.14,0.18) 0.04 (0.03,0.05) 0.14 (0.13,0.15) 0.12 (0.10,0.13) 0.10 (0.09,0.11)

M1-M7 0.18 (0.17,0.20) 0.15 (0.14,0.17) 0.29 (0.28,0.30) 0.23 (0.21,0.24) 0.28 (0.27,0.29)

G
a
n
tt
P
ro

je
c
t M1-M2 0.05 (0.03,0.07) 0.02 (0.01,0.03) 0.11 (0.10,0.12) 0.10 (0.08,0.11) 0.03 (0.02,0.04)

M1-M3 0.09 (0.07,0.10) 0.06 (0.05,0.07) 0.15 (0.14,0.16) 0.12 (0.10,0.13) 0.08 (0.07,0.09)

M1-M4 0.07 (0.06,0.09) -0.04 (-0.05,-0.03) 0.22 (0.21,0.23) 0.12 (0.10,0.13) 0.06 (0.05,0.07)

M1-M5 0.15 (0.13,0.17) 0.17 (0.16,0.18) 0.30 (0.29,0.31) 0.20 (0.19,0.21) 0.29 (0.28,0.30)

M1-M6 0.15 (0.13,0.17) 0.14 (0.13,0.15) 0.26 (0.25,0.27) 0.16 (0.14,0.17) 0.10 (0.09,0.11)

M1-M7 0.12 (0.10,0.14) 0.14 (0.13,0.15) 0.33 (0.32,0.34) 0.18 (0.17,0.19) 0.22 (0.21,0.23)

J
D
IF

o
rd

M1-M2 0.03 (0.01,0.04) -0.02 (-0.03,-0.01) 0.07 (0.06,0.08) 0.08 (0.07,0.09) 0.06 (0.05,0.07)

M1-M3 - - - - - - - - - -

M1-M4 0.03 (0.01,0.04) -0.03 (-0.04,-0.02) 0.20 (0.19,0.21) 0.13 (0.12,0.14) 0.15 (0.14,0.16)

M1-M5 - - - - - - - - - -

M1-M6 0.07 (0.05,0.08) 0.10 (0.09,0.11) 0.20 (0.19,0.21) 0.17 (0.16,0.18) 0.06 (0.05,0.07)

M1-M7 0.11 (0.09,0.12) 0.08 (0.07,0.09) 0.25 (0.24,0.26) 0.25 (0.24,0.26) 0.27 (0.26,0.28)

J
F
re

e
C
h
a
rt

M1-M2 0.09 (0.07,0.11) 0.02 (0.00,0.03) 0.08 (0.07,0.09) 0.07 (0.06,0.08) 0.12 (0.11,0.13)

M1-M3 0.12 (0.10,0.14) 0.02 (0.01,0.03) 0.14 (0.13,0.15) 0.12 (0.11,0.13) 0.16 (0.15,0.17)

M1-M4 0.00 (-0.02,0.02) 0.00 (-0.01,0.01) 0.12 (0.11,0.13) 0.10 (0.09,0.11) 0.14 (0.12,0.15)

M1-M5 0.14 (0.12,0.16) 0.24 (0.22,0.25) 0.14 (0.13,0.16) 0.15 (0.14,0.16) 0.28 (0.26,0.29)

M1-M6 0.17 (0.15,0.19) 0.09 (0.08,0.10) 0.20 (0.19,0.22) 0.10 (0.09,0.12) 0.16 (0.15,0.17)

M1-M7 0.13 (0.11,0.15) 0.15 (0.13,0.16) 0.22 (0.21,0.24) 0.12 (0.11,0.13) 0.24 (0.23,0.25)

J
H
o
tD

ra
w

M1-M2 0.02 (0.01,0.03) 0.05 (0.04,0.07) 0.08 (0.07,0.09) 0.04 (0.03,0.05) 0.06 (0.04,0.07)

M1-M3 0.06 (0.05,0.07) 0.04 (0.03,0.05) 0.16 (0.15,0.17) 0.09 (0.08,0.10) 0.10 (0.09,0.12)

M1-M4 0.03 (0.02,0.04) -0.02 (-0.03,-0.01) 0.14 (0.13,0.15) 0.07 (0.06,0.08) 0.09 (0.08,0.10)

M1-M5 0.08 (0.07,0.09) 0.14 (0.13,0.15) 0.30 (0.29,0.31) 0.12 (0.11,0.13) 0.21 (0.20,0.22)

M1-M6 0.04 (0.03,0.05) 0.14 (0.13,0.15) 0.24 (0.23,0.25) 0.10 (0.09,0.11) 0.17 (0.16,0.18)

M1-M7 0.11 (0.10,0.12) 0.08 (0.07,0.09) 0.24 (0.23,0.25) 0.10 (0.09,0.12) 0.24 (0.23,0.25)

L
o
g
4
J

M1-M2 0.08 (0.07,0.10) 0.06 (0.05,0.07) 0.08 (0.07,0.10) 0.03 (0.01,0.04) 0.06 (0.05,0.07)

M1-M3 0.13 (0.12,0.14) 0.13 (0.12,0.14) 0.12 (0.11,0.13) 0.14 (0.12,0.15) 0.22 (0.21,0.23)

M1-M4 0.10 (0.09,0.11) 0.06 (0.05,0.07) 0.10 (0.09,0.11) 0.05 (0.03,0.06) 0.08 (0.06,0.09)

M1-M5 0.14 (0.13,0.15) 0.15 (0.14,0.16) 0.19 (0.18,0.20) 0.19 (0.17,0.20) 0.21 (0.20,0.22)

M1-M6 0.19 (0.18,0.21) 0.13 (0.12,0.14) 0.16 (0.15,0.17) 0.12 (0.11,0.13) 0.19 (0.18,0.20)

M1-M7 0.12 (0.10,0.13) 0.15 (0.14,0.16) 0.21 (0.20,0.22) 0.22 (0.21,0.23) 0.31 (0.30,0.32)

M
R
O
IF

o
rd

M1-M2 0.05 (0.04,0.07) 0.02 (0.01,0.04) 0.08 (0.07,0.09) 0.06 (0.05,0.07) 0.12 (0.11,0.13)

M1-M3 - - - - - - - - - -

M1-M4 0.08 (0.07,0.09) 0.03 (0.02,0.04) 0.16 (0.15,0.17) 0.09 (0.08,0.10) 0.16 (0.15,0.17)

M1-M5 - - - - - - - - - -

M1-M6 0.12 (0.10,0.13) 0.17 (0.16,0.19) 0.21 (0.20,0.22) 0.13 (0.12,0.14) 0.26 (0.25,0.27)

M1-M7 0.13 (0.11,0.14) 0.14 (0.13,0.15) 0.29 (0.28,0.30) 0.31 (0.30,0.32) 0.28 (0.27,0.29)

N
u
tc
h

M1-M2 0.07 (0.05,0.08) 0.06 (0.04,0.07) 0.07 (0.06,0.08) 0.04 (0.03,0.05) 0.05 (0.04,0.06)

M1-M3 0.14 (0.12,0.16) 0.11 (0.10,0.12) 0.11 (0.10,0.12) 0.08 (0.07,0.09) 0.14 (0.13,0.15)

M1-M4 0.10 (0.08,0.12) 0.05 (0.04,0.07) 0.09 (0.08,0.10) 0.08 (0.07,0.09) 0.05 (0.04,0.06)

M1-M5 0.20 (0.18,0.22) 0.19 (0.18,0.20) 0.18 (0.17,0.19) 0.12 (0.11,0.13) 0.19 (0.18,0.21)

M1-M6 0.14 (0.12,0.16) 0.15 (0.14,0.16) 0.14 (0.13,0.15) 0.06 (0.05,0.07) 0.17 (0.16,0.18)

M1-M7 0.17 (0.15,0.19) 0.09 (0.08,0.10) 0.19 (0.18,0.20) 0.16 (0.15,0.17) 0.22 (0.21,0.23)

R
h
in

o

M1-M2 0.06 (0.04,0.08) 0.07 (0.06,0.09) 0.05 (0.03,0.06) 0.04 (0.03,0.05) 0.09 (0.08,0.10)

M1-M3 0.08 (0.06,0.10) 0.14 (0.13,0.15) 0.09 (0.08,0.10) 0.06 (0.05,0.07) 0.16 (0.15,0.17)

M1-M4 0.07 (0.05,0.09) 0.12 (0.11,0.13) 0.07 (0.06,0.08) 0.05 (0.04,0.06) 0.13 (0.12,0.15)

M1-M5 0.13 (0.11,0.15) 0.20 (0.19,0.22) 0.23 (0.21,0.24) 0.22 (0.21,0.23) 0.28 (0.27,0.29)

M1-M6 0.08 (0.06,0.10) 0.18 (0.17,0.19) 0.14 (0.13,0.15) 0.12 (0.11,0.13) 0.15 (0.14,0.17)

M1-M7 0.11 (0.09,0.13) 0.24 (0.23,0.26) 0.28 (0.27,0.29) 0.17 (0.16,0.18) 0.23 (0.22,0.24)

X
e
rc

e
sJ

M1-M2 0.03 (0.02,0.04) 0.02 (0.01,0.03) 0.06 (0.05,0.07) 0.09 (0.08,0.11) 0.08 (0.07,0.09)

M1-M3 0.07 (0.06,0.08) 0.02 (0.01,0.04) 0.11 (0.10,0.12) 0.16 (0.15,0.17) 0.13 (0.12,0.14)

M1-M4 0.04 (0.03,0.05) -0.02 (-0.03,0.00) 0.08 (0.07,0.09) 0.13 (0.12,0.15) 0.10 (0.09,0.11)

M1-M5 0.12 (0.11,0.13) 0.12 (0.11,0.13) 0.20 (0.19,0.21) 0.19 (0.18,0.21) 0.22 (0.21,0.23)

M1-M6 0.08 (0.07,0.09) 0.08 (0.07,0.10) 0.23 (0.21,0.24) 0.16 (0.15,0.17) 0.20 (0.19,0.21)

M1-M7 0.09 (0.08,0.10) 0.06 (0.05,0.08) 0.17 (0.16,0.18) 0.23 (0.22,0.25) 0.20 (0.19,0.21)
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software projects (GanttProject, Rhino, Log4J and Nutch) our approach is better

than all the other algorithms based on all the performance metrics with an A effect

size higher than 0.94; and b) On large scale software projects (JDI-Ford, MROI-Ford,

Apache Ant, Xerces-J, JHotDraw and JFreeChart), our approach is better than all

the other algorithms with an A effect size higher than 0.87.

Results for RQ1a: Fig. 3.4 summarizes our findings regarding the obtained

precision (PR) and recall (RC) results on the 10 systems. We found that a con-

siderable number of proposed refactorings, with an average of more than 82% and

86% respectively in terms of precision and recall, were already applied by the soft-

ware development team and suggested manually (expected refactorings). The recall

scores are higher than precision ones since we found that the refactorings suggested

manually by developers are incomplete compared to the solutions provided by our

approach. In addition, we found that the slight deviation with the expected refac-

torings is not related to incorrect operations but to the fact that the developers were

interested mainly in fixing the severest code smells or improving the quality of the

code fragments that they frequently modify.

Fig. 3.4 also confirms the out-performance of our interactive refactoring approach

comparing to existing fully-automated techniques and since we confirmed a statisti-

cally significant difference between the means of metrics, we can say that these better

results are not obtained by chance. The precision and recall scores were consistent

on all the ten systems which confirm that the results are independent from the size of

the systems, number of refactorings and number of code smells. The closest results

are those obtained by NSGA-II based on innovization (without interaction) and the

multi-objective refactoring approach of Ouni et al. This may confirm that the ob-

tained results are more due to the interaction component of our approach. A detailed

qualitative discussion will be presented later in RQ1d.

Results for RQ1b: We evaluated also the ability of our approach to fix several
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types of code smell. Fig. 3.4 depicts the percentage of fixed code smells (NF). It is

higher than 82% on all the ten systems, which is an acceptable score since developers

may reject or modify some refactorings that fix some code smells because they do not

consider them very important (their goal is not to fix all code smells in the system)

or the current version of the code becomes stable. Some systems, such as Rhino and

Gantt, have a higher percentage of fixed code smells with an average of more than

88%. This can be explained by the fact that these systems include a higher number

of code smells than others.

However, the percentage of fixed code smells (NF) is slightly lower than some

fully-automated refactoring techniques such as [1] and [2]. This is can be explained

by the reason that the main goal of developers during the interaction process is not to

fix the maximum number the code smells detected in the system (which was the goal

of [1] and [2]) thus they rejected or modified some refactorings suggested by our tool.

In addition, our approach is based on a multi-objective algorithm to find a trade-off

between improving the quality and reducing the number of changes. Therefore, the

slight loss in NF is explained by the fact that we are not considering fixing code smells

as one of the objectives, and justified by a better improvement in the quality of the

refactored system.

Results for RQ1c: Fig. 3.4 and Table 3.10 show that the refactorings recom-

mended by the approach and applied by developers improved the quality metrics

value (G) of the ten systems. For example, the average quality gain for the two in-

dustrial systems was the highest among the ten systems with more than 0.3. The

improvements in the quality gain confirm that the recommended refactorings helped

to optimize different quality metrics. The functionality attribute has the lowest im-

provement on the different systems. This may be explained by the fact that refactor-

ing is expected to preserve the behavior of existing functionalities. Our interactive

approach clearly also outperforms existing fully-automated techniques. One of the
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reasons could be related to the fact that the optimization of the quality attributes is

considered as part of the fitness functions unlike some of the existing techniques.

Results for RQ1d: We report the results of our empirical qualitative evaluation

(MC) in Fig. 3.4. As reported in this figure, the majority of the refactoring solutions

recommended by our interactive approach were correct and approved by developers.

On average, for all of our ten studied projects, 87% of the proposed refactoring opera-

tions are considered as semantically feasible, improve the quality and are found to be

useful by the software developers of our experiments. The highest MC score is 93%

for the Gantt project and the lowest score is 86% for JFreeChart. Thus, it is clear

that the results are independent of the size of the systems and the number of recom-

mended refactorings. Most of the refactorings that were not manually approved by

the developers were found to be either violating some post-conditions or introducing

design incoherence.

Fig. 3.4 shows that our approach provides significantly higher manual correctness

results (MC) than all other approaches having MC scores respectively between 60%

and 78%, on average as MC scores on the different systems.

Qualitative Evaluation of RQ1 Results: To provide more qualitative evalua-

tion, we considered some of the feedback that we received from the developers at Ford

since they are part of the original developers of these systems. For example, these

developers rejected a set of move methods because they believed that these methods

should stay in their original class. The original class in this case is responsible for

implementing several security constraints (e.g. login information) around database

access. The number of security constraints is very high and they were implemented in

several methods grouped into one class. Although this set of methods created a blob,

the developers assessed that they should stay together because there is a logic behind

implementing them in that way, and splitting the behavior may require a redesign of

the application.
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(a) Metrics of Apacheant (b) Metrics of GanttProject

(c) Metrics of JDIFord (d) Metrics of JFreeChart

(e) Metrics of JHotDraw (f) Metrics of Log4J

(g) Metrics of MROIFord (h) Metrics of Nutch

Figure 3.4: Boxplots of G, NF, MC, PR, and RC on all the ten systems based on 30 in-
dependent runs. (Continue on the next page.) Label of the methods: M1
(Our approach)=Interactive+Innovization NSGA-II, M2=Innovization
NSGA-II, M3=Kessentini et al.[1], M4=Ouni et al.[2], M5=Harman et
al.[3], M6=O’Keeffe et al.[4], M7=Jdeodorant [5]
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(i) Metrics of Rhino (j) Metrics of XercesJ

Figure 3.4: (Continue from the previous page.) Boxplots of G, NF, MC, PR, and
RC on all the ten systems based on 30 independent runs. Label of
the methods: M1 (Our approach)=Interactive+Innovization NSGA-II,
M2=Innovization NSGA-II, M3=Kessentini et al.[1], M4=Ouni et al.[2],
M5=Harman et al.[3], M6=O’Keeffe et al.[4], M7=Jdeodorant [5]

In another case, the developers elected to extract a class that regroups several

methods implementing a parser to extract dealer information. However, this refac-

toring was not recommended by our approach since the methods were located in a

small class that did not contain any code smell or quality violation symptoms. Thus,

the refactoring applied by the developers was more based on the features implemented

in the methods. This refactoring is hard to recommend even with the considered se-

mantics/textual similarity measures since few comments exist in these methods and

furthermore their implementation structures look very different. These observations

explain the reasons why some the refactorings recommended by our approach was

rejected by the developers and also the differences with those that are manually rec-

ommended by the developers.

In general, we found that most of the common patterns in the Pareto front are

not individual operations, but a short sequence of refactorings. Thus, we believe

that most of these patterns are targeting specific quality issues and hence the applied

refactorings are not individual operations but small refactoring patterns. This obser-

vation was found to be valid when we manually checked the interactive results of our
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tool.

A general interesting observation from the experiments is that evolutionary search

involves both diversification and convergence, so the question is does innovization

emphasize convergence at the cost of sacrificing divergence? We would argue against

this, for the following reasons: In the context of our refactoring problem, it is very

rare to observe no overlap between non-dominated solutions for several reasons such

as the large size of refactoring solutions and the fact that some common quality issues

should be fixed (high priority). In fact, at least few quality issues (e.g. code smells)

need to be fixed independently from the other objectives. Thus, it is normal to always

observe some overlap between the refactoring solutions. Regarding diversification, the

ranking of the refactoring solutions is only used after the generation of the Pareto

front so this ranking is not part of the fitness function used in the search. The goal

is to implicitly explore the front based on the feedback of the developers to identify

the region of interest and prioritize the solutions that contain common patterns.

We believe that these common patterns distinguish non-dominated solutions from

dominated ones. The diversification is not penalized because we do not consider the

innovization heuristic as part of the fitness functions but as a post-processing step to

prioritize solutions (and not eliminating them).

We compared the results of our approach (M1) and innovization NSGA-II method

(M2) in Fig. 3.4 and Table 3.10 in order to contrast the impact of interactivity compo-

nent. The best solution (at the knee point) based on the innovization feature (without

interaction) was evaluated based on all studied metrics. The results confirm that our

interactive approach outperforms NSGA-II with the only use of innovation (without

interaction) in terms of G, NF, MC, PR, and RC. However, the results of NSGA-II

with innovization are better than regular multi-objective refactoring approaches (e.g.

Ouni et al., etc.) thus it is clear that the positive results of our approach are due to

the combination of the two factors: innovization and interactive features.
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The superior performance of our interactive approach can be explained by sev-

eral factors. First, [1], [4] and [3] use only structural indications (quality metrics) to

evaluate the refactoring solutions and thus a high number of refactorings lead to a

semantically incoherent design. Our approach reduces the number of semantic inco-

herencies when suggesting refactorings and during the interaction with the developers.

Second, the innovization component improved the quality of the suggested refactor-

ing solutions by using an interactive approach as compared to a regular NSGA-II

where the developers need to select one solution from the Pareto front that cannot

be updated dynamically. Third, JDeodorant proposes some pre-defined patterns to

fix some types of code smells that cannot be sometimes generalized.

To summarize and answer RQ1, the experimentation results confirm that our

interactive approach helps the participants to refactor their systems efficiently by

finding more relevant refactoring solutions and improve the quality of all the ten

systems under study. In addition, our interactive approach provides better results,

on average, than all of the existing fully-automated refactoring techniques.

Results for RQ2: We evaluated the ability of our approach to help software

developers to find quickly good refactorings based on an efficient ranking of the pro-

posed operations. We compared the MC@k and PR@k where k was varied between 1,

5, 10 and 15 as described in Fig. 3.5 and Fig. 3.6 where show that the lowest MC@1

is 93% and the highest is 100% on the different ten systems confirming that the

highest-ranked refactoring was almost always correct and relevant for the developers.

The MC@15 presents the lowest results, which is to be expected since we evaluated

the manual correctness of the top 15 recommended refactorings at several interactions

and this increases the probability that it contains few irrelevant refactorings. However,

the average MC@15 still could be considered acceptable with an average of more than

81%. The same observations are also valid for the PR@k; however the results are a

bit lower than for MC@k. The average PR@k results were respectively 94%, 89%,
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Figure 3.5: MC@k results on the different systems with k= 1, 5, 10 and 15.

Figure 3.6: PR@k results on the different systems with k= 1, 5, 10 and 15.

84% and 80% for k = 1, 5, 10 and 15. Thus, it is clear that the ranking function used

by our interactive approach to explore the Pareto front is efficient.

Considering three other metrics NAR (percentage of accepted refactorings), NMR

(percentage of modified refactorings) and NRR (percentage of rejected refactorings),

we seek to evaluate the efficiency of our interactive approach to rank the refactorings.

We recorded these metrics using a feature that we implemented in our tool to record

all the actions performed by the developers during the refactoring sessions. Fig. 3.7
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Figure 3.7: The median NMR, NRR and NAR results in the different systems.

shows that, on average, more than 71% of the recommended refactorings were applied

by the developers. In addition, an average of 17% of the recommended refactorings

were modified by the developers, while 12% of the suggested refactorings were re-

jected by the developers. Thus, it is clear that our recommendation tool successfully

suggested a good set of refactorings to apply.

To conclude, our approach efficiently ranked the recommended refactorings and

helped software developers to quickly find good refactorings recommendations.

Results for RQ3a: Fig. 3.8 shows that the time is reduced by 61% and 57%

to finalize respectively the two tasks of fixing bugs when programmers worked on

the refactored program using our interactive approach. These results outperform the

productivity improvements obtained when programmers worked on similar tasks of

fixing bugs of the refactored programs by Ouni et al. [2] and Harman et al. [3]. For

Ouni et al., the productivity improvements are between 41% and 37% while Harman

et al. [3] are between 33% and 31%. The results are correlated with the quality

improvements of the evaluated programs, as discussed in the previous sections. Thus,

a better quality of the software may increase the productivity of programmers when

fixing bugs.
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Figure 3.8: The average productivity difference (TP) results on the different tasks
performed by the three groups using our interactive approach, Ouni et al.
[2], Harman et al.[3]

Results for RQ3b: Similar results to RQ3a are obtained for the tasks of adding

new features. Fig. 3.8 shows that the time is reduced by 51% and 48% to finalize

respectively the two tasks of adding new features when programmers worked on the

refactored program using our interactive approach. These results outperform the

productivity improvements obtained when programmers worked on similar tasks of

adding features of the refactored programs by Ouni et al. [2] and Harman et al.

[3]. For Ouni et et al. , the productivity improvements are between 38% and 31%

while Harman et al. [3] are between 29% and 23%. The results are correlated with

the quality improvements of the evaluated programs. Thus, a better quality of the

software may increase the productivity of programmers when adding new features.

Overall, the productivity gain when programmers worked on adding new features is

lower than the one observed for fixing bugs. This could be related to the fact that

the complexity of adding new features was higher than fixing bugs and the locations

where refactorings are introduced.

The metric (TP) to measure the time to perform the different bugs fixing and

adding new features task on the systems before and after refactoring included the ex-
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ecution time of the different (interactive and fully-automated) refactoring techniques

to generate the new systems after refactoring. While the execution time of our inter-

active approach is slightly higher than fully-automated approaches with an average

of 6 minutes comparing to Ouni et al. and Harman et al. on the different systems

used in both scenarios, the overall time that developers spent to perform the new

tasks is much lower when working on the new systems after refactoring based on our

approach comparing to the state of the art. Thus, the extra manual effort required

by our approach is compensated by higher productivity and better accuracy of the

results. We believe that the slightly higher execution time by our interactive approach

comparing to fully automated search-based refactoring despite the extra-manual ef-

fort is explained by the fact that the user feedback can reduce dramatically the search

space to converge toward better recommendations. Furthermore, the efficient ranking

of refactorings to be inspected by programmers help a lot in reducing the interaction

time. Finally, we want to highlight that programmers spend considerable time evalu-

ating long list of refactoring recommendations after the execution of fully-automated

approaches which is comparable to the manual interaction effort required during the

execution of our interactive approach.

In the following, we describe a qualitative example to illustrate the observed time

reduction when updating a feature on the refactored code. The scenario consists of

modifying the existing loading and saving of CSV files feature in Gant. The updated

feature will enable the modification of colors used in the charts to highlight specific

project tasks to match different priorities (e.g. red for high priority task, green for

low priority task, etc.) then modify the current CSV format to support the use of

colors in the Gantt chart.

To implement this feature, several methods have to be modified that append to

different classes before refactoring. The main class related to this feature is Gant-

tOptions that includes 68 methods and highly coupled with 14 classes which can
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be considered as a blob. Our interactive refactoring tool proposed a sequence of 29

refactorings to be applied to this class and some related classes (CSVOptions and

UIConfiguration). The sequence of refactorings included Extract class, Move field,

Move method, PushDown field, PushDown method and Extract method that refac-

tored the GanttOptions as illustrated in Fig. 3.9.

The new version of GanttOptions contained only 43 methods and several methods

and fields were moved from/to CSVOptions and UIConfiguration. Thus, the devel-

opers introduced less number of changes to update the methods related to changing

the colors of the chart tasks and the format of the CSV files since they were cohe-

sively moved to GanttOptions after refactorings rather than being distributed between

CSVOptions and UIConfiguration. These refactorings not only reduced the number

of changes but also improved the coupling and cohesion within these classes since

other methods and fields were moved from CSVOptions which reduced as well the

time for developers to identify the relevant methods and fields to modify to integrate

the new features.

Results for RQ3c: The post-study questionnaire results show the average agree-

ment of the participants was 4.8 and 4.3 based on a Likert scale for the first and second

statements (discussed in section 4.6), respectively. This confirms the usefulness of our

approach for the software developers considered in our experiments.

We summarize in the following the feedback of the developers. Most of the partic-

ipants mention that our interactive approach is faster than manual refactoring since

they spent a long time with manual refactoring to find the locations where refac-

torings should be applied. For example, developers spend time when they decide to

extract a class to find the methods to move to the newly created class or when they

want to move a method then it takes time to find the best target class by manual

exploration of the source code. Thus, the developers liked the functionality of our

tool that helps them to modify a refactoring and finding quickly the right parameters
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Figure 3.9: GanttOptions before and after refactoring.

based on the recommendations.

Our interactive algorithm automatically suggests a list of possible target classes

ranked based on the history of changes and semantic similarity. Furthermore, refac-

torings may affect several locations in the source code, which is a time-consuming

task to perform manually, but they can perform it instantly using our tool.

The participants found our tool helpful for both floss refactoring, to maintain a

good quality design and also for root canal refactoring to fix some quality issues such

as code smells. The developers justify their conclusions by the following interesting

observations about our tool: a) the list of recommended refactorings helps them to

choose the desired refactoring very quickly, b) our tool offers them the possibility

to modify the source code (to add new functionality) while doing refactoring since

the list of recommendations is updated dynamically. So developers can switch be-

tween both activities: refactoring and modifying the source code to modify existing

functionalities. c) our tool allows developers to access all the functionality of the IDE
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(e.g., Eclipse). d) the suggested refactorings by our interactive tool can fix code smells

(root canal refactoring) or improve some quality metrics (floss canal refactoring) due

to the use of the multi-objective approach.

Another important feature that the participants mention is that our interactive

approach allows them to take the advantages of using multi-objective optimization

for software refactoring without the need to learn anything about optimization and

exploring explicitly the Pareto front to select one “ideal” solution. The implicit

exploration of the Pareto front in an interactive fashion represents an important

advantage of our tool along with the dynamic update of the recommended list of

refactoring using innovization. In fact, the developers found a lot of difficulties using

the multi-objective tool of [116] to explore the Pareto front to find a good refactoring

solution. In addition, they did not appreciate the long list of refactoring suggested by

[116] since they want to take control of modifying and rejecting some refactorings. In

addition, the validation of this long list of refactorings is time-consuming. Thus, they

appreciate that our tool suggests refactoring one by one and update the list based on

the feedback of developers.

The participants also suggested some possible improvements to our interactive

approach. Some participants believe that it will be very helpful to extend the tool

by adding a new feature to apply automatically some regression testing techniques

to generate test cases to test applied refactorings. Another possibly suggested im-

provement is to use some visualization techniques to evaluate the impact of applying

a refactoring sequence.

3.4 Threats to Validity

There are four types of threats that can affect the validity of our experiments. We

consider each of these in the following paragraphs.

Conclusion validity is concerned with the statistical relationship between the treat-
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ment and the outcome. We addressed conclusion threats to validity by performing

30 independent simulation runs for each problem instance and statistically analyzing

the obtained results using the Wilcoxon rank sum test with a 95% confidence level

(α = 5%). However, the parameter tuning of the different optimization algorithms

used in our experiments creates another internal threat that we need to evaluate in

our future work. The parameters’ values used in our experiments are found by trial-

and-error, which is commonly used in the SBSE community. However, it would be an

interesting perspective to design an adaptive parameter tuning strategy [134] for our

approach so that parameters are updated during the execution in order to provide

the best possible performance. In addition, our multi-objective formulation treats

the different types of refactoring with the same weight in terms of complexity when

calculating one of the fitness functions. However, some refactoring types can be more

complex than others to apply by developers.

Internal validity is concerned with the causal relationship between the treatment

and the outcome. We dealt with internal threats to validity by performing 30 inde-

pendent simulation runs for each problem instance. This makes it highly unlikely that

the observed results were caused by anything other than the applied multi-objective

approach. The second internal threat is related to the variation of correctness and

speed between the different groups when using our approach and other tools such as

JDeodorant. In fact, our approach may not be the only reason for the superior per-

formance because the participants have different programming skills and familiarity

with refactoring tools.

To counteract this, we assigned the developers to different groups according to

their programming experience so as to reduce the gap between the different groups

and we also adapted a counter-balanced design. Regarding the selected participants,

we have taken precautions to ensure that our participants represent a diverse set of

software developers with experience in refactoring, and also that the groups formed
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had, in some sense, a similar average skill set in the refactoring area. The results ob-

tained by the developers from Ford and those by the graduate students are consistent.

The evaluated open source and industrial systems provided similar conclusions in our

experiments. The industrial systems are mainly evaluated by the original developers

and the results are still consistent with the open source systems.

Construct validity is concerned with the relationship between theory and what is

observed. To evaluate the results of our approach, we selected solutions at the knee

point when we compared our approach with fully-automated refactoring approaches,

but the developers may select a different solution based on their preferences to give

different weights to the objectives when selecting the best refactoring solution. The

different developers involved in our experiments may have divergent opinions about

the recommended refactorings in terms of correctness and readability. We consid-

ered in our experiments the majority of votes from the developers. We selected the

“majority of votes” as the technique to aggregate the date since it is similar to real-

world situations. Almost all of our industrial collaborators in the refactoring area

are selecting major refactoring strategies based on discussions between the architects

to adopt the best alternative. The architects discuss several possibilities to refactor

the current architecture and they will decide the best one based on the majority.

We adopted this strategy for our experiments to simulate real-world scenarios. For

the selection threat, the participant diversity in terms of experience could affect the

results of our study. We addressed the selection threat by giving a lecture and ex-

amples of refactorings already evaluated with arguments and justification. For the

fatigue threat, we did not limit the time to fill the questionnaire and we also sent

the questionnaires to the participants by email and gave them the required time to

complete each of the required tasks. We believe that one of the principal strengths

of our approach is the interaction component with the developer since many aspects

of software quality are subjective and impossible to formalize precisely using quality
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metrics alone. The interaction with the developer (i.e., developer feedback) can help

to improve the refactoring recommendations, by critically augmenting the objective

metric values with subjective developer insight. However, a better fitness function

may indeed reduce the interaction effort. Thus, the use of the QMOOD model in a

fitness function can be considered as a possible threat since the use of quality metrics

to solutions’ evaluation is subjective.

External validity refers to the generalizability of our findings. In this study, we

performed our experiments on eight different widely used open-source systems be-

longing to different domains and having different sizes, and two industrial projects.

However, we cannot assert that our results can be generalized to other applications,

and to other practitioners. Future replications of this study are necessary to confirm

our findings. Further empirical studies are also required to deeply evaluate the per-

formance of the interactive NSGA-II using the same problem formulation. The first

threat is the limited number of participants and evaluated systems, which externally

threatens the generalizability of our results. In addition, our study was limited to the

use of specific refactoring types and types of code smell. Future replications of this

study are necessary to confirm our findings.

3.5 Conclusion

We proposed an interactive recommendation tool for software refactoring that dy-

namically adapts and suggests refactorings to developers based on their feedback and

introduced code changes. Our interactive approach allows developers to benefit from

search-based refactoring tools without explicitly involving any knowledge about opti-

mization and multi-objective optimization algorithms. In fact, the exploration of the

non-dominated refactoring solutions is implicitly performed based on the interaction

with the developers. The feedback received from the developers is used to reduce the

search space and converge to better solutions. To evaluate the effectiveness of our
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tool, we conducted a human study on a set of software developers who evaluated the

tool and compared it with the state-of-the-art refactoring techniques. Our evaluation

results provide strong evidence that our tool improves the applicability of software

refactoring, and proposes a novel way for software developers to refactor their systems

interactively.

Future work involves validating our technique with additional refactoring types,

programming languages and code smell types in order to conclude about the general

applicability of our methodology. Furthermore, we only focused on the recommen-

dation of refactorings. We plan to extend the approach by automating the test and

verification of applied refactorings. In addition, we will consider the importance of

code smells during the correction step using previous code changes, class complexity,

etc. Another future research direction related to our work is to build an interac-

tive software engineering framework that applies a similar approach to other software

engineering problems such as the next release problem.

The exploration of Pareto front is a very challenging problem, and this work is the

first to apply an interactive approach on a large number of Pareto optimal refactoring

solutions. Thus, several extensions could be proposed to make the interaction with

the users better and less time-consuming including the use of machine learning which

is part of our future work.
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CHAPTER IV

Reducing Interactive Refactoring Effort via

Clustering-based Search

4.1 Introduction

As projects evolve, developers frequently postpone necessary system restructuring,

known as refactoring [9], in the rush to deliver a new release until a crisis happens.

When that occurs it often results in substantially degraded system performance, per-

haps an inability to support new features, or even in terminally broken system ar-

chitecture. Thus, refactoring received much attention during the last two decades

to propose solutions that can manage the growing complexity of software systems

nowadays.

Most existing studies focus on either manual or fully automated code-level refac-

toring. The manual support, integrated into modern IDEs such as Eclipse, NetBeans,

and Visual Studio [113, 114, 71, 23, 33, 115, 97, 116, 75, 47, 2], consists of helping

developers to apply refactorings based on automated routines that can check a list of

pre- and post-conditions but they have to specify manually which types of refactoring

to be applied, such as extract class or move method, and where. The fully automated

techniques try to identify refactoring opportunities and which refactorings to apply

using static and dynamic analysis, and the history of changes. However, design re-
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structuring is a human activity that cannot be fully automated because developers

understand the problem domain intuitively and they have targeted design goals in

mind. Thus, several empirical studies show that fully automated refactoring does

not always lead to the desired architecture [113, 107, 34, 74]. Furthermore, manual

refactoring is error-prone, time consuming and not practical for radical changes. For

instance, Batory et al. [115] presented several case studies where refactoring involved

more than 750 refactoring steps on one project and took more than 3 weeks to execute.

Recently, few approaches have been proposed to interactively evaluate refactoring

recommendations using search-based software engineering [75, 74, 135]. The develop-

ers can provide a feedback about the refactored code and introduce manual changes

to some of the recommendations. However, this interactive process can be repetitive,

expensive, and tedious since developers must evaluate recommended refactorings, and

adapt them to the targeted design especially in large systems where the number of

possible strategies can grow exponentially. Thus, we seek, in this work, to answer the

fundamental scientific question: ”What is the minimal guidance that leads automated

search to useful and realistic refactoring recommendations?”

We propose an interactive approach combining the use of multi-objective search,

based on NSGA-II [127] and unsupervised learning to reduce the developer’s interac-

tion effort when refactoring systems. We generate, first, using multi-objective search

different possible refactoring strategies by finding a trade-off between several conflict-

ing quality attributes. Then, an unsupervised learning algorithm clusters the different

trade-off solutions, called the Pareto front, to guide the developers in selecting their

region of interests and reduce the number of refactoring options to explore. The

feedback from the developer, both at the cluster and solution levels, are used to au-

tomatically generate constraints to reduce the search space in the next iterations and

focus on the region of developer preferences. For instance, the developer can select the

most relevant cluster of solutions, called region of interest, based on his preferences
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and the multi-objective search will reduce the space of possible solutions, in the next

iterations, by generating constraints from the interaction data such as eliminating

part of the code (e.g classes or methods) that are not relevant for refactoring to the

programmer.

We selected 14 active developers to manually evaluate the effectiveness our tool

on 5 open source projects and one industrial system. The results show that the

participants found their desired refactorings faster and more accurate than the current

state of the art.

The primary contributions of this chapter can be summarized as follows:

1. This chapter introduces, for the first time, an approach combining multi-objective

search and machine learning to guide developers in their decision making pro-

cess. The proposed technique supports the adaptation of refactoring solutions

based on developer feedback and learning automatically their preferences from

the interaction data.

2. We propose an intelligent exploration of the Pareto front of non-dominated

solutions by grouping them into different clusters, based on the similarities

between the solutions and their impact on the code, that can summarize to

the developer the main options to explore to refactor their systems rather than

evaluating a large number of possible strategies.

3. The project reports the results of an empirical study on an implementation

of our approach. The obtained manual evaluation results provide evidence to

support the claim that our proposal is more efficient, on average, than existing

refactoring techniques based on a benchmark of six open source systems and

one industrial project in terms of the relevance of recommended refactorings

and reducing the refactoring effort.
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4.2 Problem Statement

While successful tools and approaches for refactoring have been proposed, several

challenges are still to be addressed to expand the adoption of refactoring tools in

practice.

To investigate the challenges associated with current refactoring tools, a survey

was conducted, as part of an NSF I-Corps project, with 127 professional develop-

ers at 38 medium and large companies including eBay, Amazon, Google, IBM, and

others. 112 of these interviews were conducted face-to-face. As an outcome of these

interviews, the following challenges were identified:

- Challenge 1: The refactorings effort required by existing approaches

and tools. 83% of the interviewed developers confirmed that they were reluctant to

use existing automated refactoring tools because those detect, in general, hundreds

of code level quality issues such as anti-patterns but without specifying from where

to start or how they are dependent on each others, nor are there any clear benefits

such as an impact on the system’s quality. During the interviews, 86% of developers

confirmed that they want better refactoring tools to give them better understanding

of design preferences rather than asking developers to manually inspect a large list

of recommendations covering the whole system. A developer said ”We need better

solutions of refactoring tasks that can reduce the current time-consuming manual work

of evaluating a large number of refactorings. Automated tools provide refactoring

solutions that are hard and costly to repair because they did not consider our design

needs and hard to assess their impact.” This argument is consistent with empirical

studies performed by Kim et al. [115].

- Challenge 2: Lack of visualization support to estimate the impact

of recommended refactorings. 69 out of the 112 participants highlighted in the

interviews that it is hard to understand the impact of suggested refactorings on the

system and they have to look manually at the code before and after refactoring.
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Determining which anti-pattern should be refactored and how is never a pure technical

problem in practice. Instead, high-level refactoring decisions have to take into account

trade-offs between code quality, available resources and expected effort. Furthermore,

53 participants mentioned that several refactoring ”paths” are discussed between

architects to determine the best solution to restructure the current architecture or

code. However, most of existing refactoring tools and approaches just recommend

only one sequence of refactorings to apply.

- Challenge 3: It is difficult for developers to express their preferences

upfront. Based on our extensive experience working on licensing refactoring research

prototypes to industry, developers always have a concern on expressing their prefer-

ences upfront as an input for a tool to guide refactoring suggestions. They prefer

to get insights from some generated refactoring solutions then decide which quality

attributes they want to improve. However, several of existing refactoring tools fail to

consider the developer perspective, as the developer has no opportunity to provide

feedback on the refactoring solution as it is being created. Furthermore, as develop-

ment must halt while the refactoring process executes, fully-automated refactoring

methods are not useful for floss refactoring where the goal is to maintain good design

quality while modifying existing functionality. The developers have to accept the

entire refactoring solution even though they prefer, in general, step-wise approaches

where the process is interactive and they have control of the refactorings being ap-

plied.

- Challenge 4: Lack of refactoring tools that can learn from developers

interaction. High-level refactorings are usually systematic and repetitive in different

contexts, involving similar changes to numerous locations [136]. If these repetitive

high-level changes can be learned, abstracted, and automated, a large amount of

maintenance effort could be saved.

To address all the above challenges, we describe in the next section our interac-
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Figure 4.1: Overview of our proposed IC-NSGA-II approach.

tive clustering-based multi-objective refactoring approach then we will explain in the

validation section how they are addressed by evaluating the proposed approach and

tool with active developers.

4.3 Approach: Clustering-based Interactive Multi-objective

Software Refactoring

In this section, we describe an overview of our proposed approach and its compo-

nents. Then, we provide the details of each component.

4.3.1 Overview

The general structure of our approach is sketched in Fig. 4.1. In the following,

we describe the different main components of our approach. Our technique comprises

three main components. First, we extract the source code structure information using

a dedicated parser. Then, we calculate software design quality metrics and use them

as the fitness functions for a multi-objective search algorithm. The results of this

phase is a set of Pareto-optimal solutions that can find a trade-off between different

quality attributes.

After the generation of the first Pareto front, a number of clusters is selected using
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the Calinski and Harabaz score [137]. Then, we fit a Gaussian Mixture Model (GMM)

with the number of selected clusters. The GMM parameters are optimized by the

Expectation-Maximization algorithm. Then a solution with maximum density will

be identified as the cluster representative (center). In the last phase, the user can

visualize the clusters of solutions and interact with our tool by evaluating solutions,

modifying refactorings and selecting the desired cluster. We extract the user pref-

erences from these activities and consider them in the next round of iterations to

converge towards the user’s region of interest. This loop can continue until the user

is satisfied and a refactoring solution is selected to apply on the source code.

4.3.2 Phase 1: Multi-Objective Refactoring

Discovering a refactoring solution can be a challenging task since a large search

space needs to be explored. This large search space is the result of the number

of refactoring operations and the importance of their order and combination. To

explore this search space, we propose an adaptation of the non-dominated sorting

genetic algorithm (NSGA-II) [127] to interactively find a trade-off between multiple

quality attributes.

A multi-objective optimization problem can be formulated in the following form:


Minimize F (x) = (f1(x), F2(x), ..., fM(x)),

Subject to x ∈ S,

S = {x ∈ Rm : h(x) = 0, g(x) ≥ 0};

where S is the set of inequality and equality constraints and the functions fi are

objective or fitness functions. In multi-objective optimization, the quality of a solution

is recognized by dominance. The set of feasible solutions that are not dominated by

any other solution is called Pareto-optimal or Non-dominated solution set.

NSGA-II is a multi-objective evolutionary algorithm operating on a population of

104



candidate solutions which are evolved toward the Pareto-optimal solution set. NSGA-

II uses an explicit diversity-preserving strategy together with an elite-preservation

strategy [127]. The complexity of NSGA-II is at most O(MN2) where M and N are

the number of objectives and the population size, respectively.

As described in Algorithm 1, the first iteration of the process begins with a

complete execution of adapted NSGA-II to our refactoring recommendation prob-

lem based on the fitness functions that will be discussed later. At the beginning, a

random population of encoded refactoring solutions, P0, is generated as the initial

parent population. Then, the children population, Q0, is created from the initial

population using crossover and mutation. Parent and children populations are com-

bined together to form R0. Finally, a subset of solutions is selected from R0 based on

the crowding distance and domination rules. This selection is based on elitism which

means keeping the best solutions from the parent and child population. Elitism does

not allow an already discovered non-dominated solution to be removed. This process

is continued until the stopping criteria is satisfied.

The results of the first execution of search algorithm are a set of non-dominated

solutions that will be clustered and then updated by the users. After this interac-

tions phase, the multi-objective search algorithm will continue to run using the new

constraints generated at the cluster and solution levels.

4.3.2.1 Refactoring Solution Representation

A refactoring solution is represented as a vector consists of an ordered sequence

of multiple refactoring operations. Each refactoring operation includes a refactoring

action and its specific controlling parameters. The refactoring types considered in our

experiments are: Move Method, Move Field, Extract Class, Encapsulate Field, Pull

Up Field, Pull Up Method, Push Down Field, Push Down Method, Extract SubClass,

Extract SuperClass. These refactoring operations are described in Table 2.1.
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Algorithm 1: Interactive Clustering-based NSGA-II (IC-NSGA-II)

Input : Population Size (N), Source Code
Output: Recommended Pareto-optimal Solutions

1 UserPreferences ← ∅ ; /* Initiate Preference Parameters */

2 while ¬ The user is satisfied do
phase1 begin Multi-objective Refactoring

4 P1 ← InitializePopulation(N ,UserPreferences); /* User

preferred random population */

5 EvaluateObjectives(P1,UserPreferences);
6 FastNonDominatedSort(P1);
7 Q1 ← SelectCrossoverMutate(P1,UserPreferences);
8 while ¬StoppingCondition() do
9 EvaluateObjectives(Q1,UserPreferences); /* User preferred

evaluation */

10 Rt ← P1 ∪Q1;
11 Fronts=FastNonDominatedSort(Rt);
12 Pt+1 ← ∅;
13 i← 1 ;
14 while |Pt+1|+ |Fronti| ≤ N do
15 CrowdingDistanceAssign(Fronti);
16 Pt+1 ← Pt+1 ∪ Fronti;
17 i← i+ 1;

18 SortByRankAndDistance(Fronti);
19 Pt+1 ← Pt+1 ∪ Fronti[1 : (N − |Pt+1|)];
20 Qt+1 ← SelectCrossoverMutate(Pt+1,UserPreferences) ;

/* Customized GA Operator */

21 t = t+ 1;

22 RecommendedSolutions ← Qt+1;

phase2 begin Pareto Front Clustering
24 GMMClustering (RecommendedSolutions); /* Described in

Algorithm 2 */

25 ClustersCenter ();

phase3 begin Interaction and User Preference
27 GetUserFeedBack (Clusters,Centers) ; /* Described in

Algorithm 3 */

28 UserPreferences ← ExtractPreferences ();

29 Return RecommendedSolutions;
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Figure 4.2: Allowing user to select the desired refactoring operators and fitness func-
tions in our tool

Refactoring operations are created or modified randomly during the population

initialization or mutation. Also, the size of a solution vector which is the number of

included refactoring operation is randomly selected between lower and upper bound

values. Therefore, it is important to investigate the feasibility of a solution and its

operations using related pre- and post-conditions [10]. These conditions ensure that

the program will not break while the behavior is preserved by the refactoring. Our

tool allows the user to select the desired refactoring operations to be included in the

process as it is shown in Figure 4.2.
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4.3.2.2 Fitness Functions

The fitness or objective function evaluates a candidate solution and calculates

its goodness degree to the considered problem. In order to measure the influence

of a refactoring solution on the software project, we utilized QMOOD [46] which is

described in Subsection 2.2.3 and 2.2 and 2.3.

The relative change of the quality metric after applying the refactoring solution

is considered as the fitness function and can be expressed as:

FitnessFunctioni =
QMafter

i −QM before
i

QM before
i

(4.1)

where QM before
i and QMafter

i are the value of the quality metric i before and after

applying a refactoring solution, respectively.

4.3.2.3 Variation Operators

Variation operators help to navigate through the search space and to maintain

a good diversity in the population. There are three variation operators used in the

optimization algorithm known as selection, crossover, and mutation.

• Selection: Parent selection is a crucial step which directly affects the con-

vergence rate. We used ”Roulette Wheel Selection”. The idea is to divide a

circular wheel and assign the pies to each individual based on its fitness value.

Therefore, the more fitted individual has a higher chance to be selected.

• Corssover: The process of combining parents in order to generate new off-

springs is called parent crossover. We utilized ”Single Point Crossover” operator

for this mean. In this operator, a random crossover point is chosen and then

the two sides of the parents are swapped to produce new children.

• Mutation: A small random modification in solution individual is named muta-
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tion. This process aid to keep diversity in the population. However, by assign-

ing a low probability to this operator, we avoid a random search. We employed

”Bit Flip Mutation” with which a random refactoring operation is selected and

replaced with another randomly selected available refactoring operation.

4.3.3 Phase 2: Clustering the Pareto Front of Refactoring Solutions

The goal of this phase is to reduce the effort to investigate the solutions in Pareto-

optimal front. We try to group the solutions based on their fitness function values

without filtering or removing any of them. In this way, the solutions can be catego-

rized based the similarity among them in the objectives space. Then, a representative

solution is identified from each partition to recommend to the decision maker (center

of the cluster). For this purpose we used clustering analysis technique. Clustering is

one of the most important and popular unsupervised learning problems in Machine

Learning. It helps to find a structure in a set of unlabelled data in a way that the

data in each cluster are similar together while they are dissimilar to the data in other

clusters.

One of the challenges in cluster analysis is to define the optimal number of clusters.

Therefore, we need cluster validity index as a measure of clustering performance.

Different partitions is computed and the ones that fits the data better are selected.

The procedure of Phase 2 is illustrated in Algorithm 2.

4.3.3.1 Calinski Harabasz (CH) Index

Calinski Harabasz (CH) Index is an internal clustering validation measure based

on two criteria: compactness and separation [137]. CH evaluates the clustering results

based on the average sum of squares between and within clusters and it defines as
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Algorithm 2: Pareto-front Clustering

Input : Pareto-front solutions (S)
Output: Labeled solutions (LS),

Clusters Representative Solution (CR)

1 begin Calculate best number of clusters-K
2 for i← 2 to 10 do
3 LS = GMMClustering (i, S);
4 Scorei=CalinskiHarabaszIndex(LS);

5 K ← MaxScoreIdx();

6 begin GMMClustering (K,S)
7 µk,Σk, πk ← Initialize-K-Gaussian();

/* Expectation-Maximization */

8 while ¬ converge do
9 γ(snk)← Expectation();

10 µk,Σk, πk ← Maximization();
11 EvaluateLikelihood();

12 foreach sn ∈ S do
/* assigning cluster labels */

13 Ln ← MaxResponsibilityIdx(sn);

/* Find Clusters Representative */

14 foreach Cluster Ck do
15 CRk ← MaxDensity(snk ∈ Ck)

16 Return LS, CR;

Figure 4.3: Psuedo-code for Phase 2 of our proposed approach.

follows:

CH =
(N −K)

(K − 1)

K∑
k=1

|ck| dist(ck, S)

K∑
k=1

∑
si∈ck

dist(si, ck)

(4.2)

where dist(a, b) is the Euclidean distance, ck and S are the cluster and global cen-

troids, respectively.

The first step in Pareto-front clustering is to execute the clustering process with

different number of components and to compute CH score for each. The best number

of clusters (K) is defined as the one that achieves the highest CH score.
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Gaussian Mixture Model (GMM) is a probabilistic model-based clustering

algorithm with which a mixture of k Gaussian distributions is fitted on the data.

GMM is soft-clustering approach in which each data point is assigned a degree that

it belongs to each of the clusters. The parameters that need to fit are Mean (µk),

Co-variance (Σk), and Mixing coefficient (πk).

GMM clustering begins by random initiation of parameters for K components.

Then, Expectation-Maximization (EM) algorithm [138] is employed for parameter

estimation. EM is an iterative process to train the parameters and has two steps.

In the expectation step, an assignment score to each Gaussian distribution, called

”responsibility” or ”membership weight”, is determined for each solution point as

follow:

γ(znk) =
πkN (sn|µk,Σk)∑K
i=1 πiN (sn|µi,Σi)

(4.3)

The responsibility coefficient will be used later for preference extraction step. In

the maximization step, the parameters of each Gaussian are updated using the com-

puted responsibility coefficients. Lastly, ”Likelihood”, the probability that the data

S was generated by the fitted Gaussian mixture, is computed. After the convergence

of EM, each solution is labeled appropriately. Furthermore, in order to find a rep-

resentative member of each cluster, we measure the corresponding density for each

solution and select the solution with the highest density value.

4.3.4 Phase 3: Developers Interaction and Preferences Extraction

Our tool presents the results of clustering-based multi-objective refactoring in

a user-friendly way via interactive colored graphical charts and tables as shown in

Figure 4.4 and Figure 4.5.

111



Figure 4.4: Interactive solution charts in our tool.

The developer has the ability to explore the recommended solutions and clusters

efficiently and discover the shared underlying characteristics of the solutions in a

cluster at a glance. The user may only investigate the cluster’s center solution or

search further and examine the solutions inside a cluster of interest. Every refactoring

operation can be evaluated by the programmer. As described in Algorithm 3, We

translate each evaluation feedback to a continuous score in the range of [-1,1].
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Figure 4.5: Interactive solution tables and cluster selection in our tool.
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Algorithm 3: Interaction and User Preferences

Input : Labeled solutions (LS)
Output: Preferred Cluster (PC),

Preference Parameters=[
CWP(Classes Weighted Probability,
RWP(Refactorings Weighted Probability),
RS(Reference Solution)]

begin User Interaction and Feedback
while ¬ interaction is done do

Feedbacki ← UserEvaluation(Refi);
Vi ← Score(Feedbacki);

/* Solutions and clusters score */
Scoresi ← Average(Vi ∈ si);
Scoreck ← Average(Scoresi ∈ ck);
PC ← cluster with Max score;

begin User Preference Extraction
/* Representative solution as reference */
RS ← CRPC ;
foreach [refi, cli] ∈ PC do

RWPp ← AverageWeightedFreq(refp);
CWPq ← AverageWeightedFreq(clq);

Return PC, Preference Parameters[];

The user can interact with the tool at the solution level by accepting / rejecting

/ modifying specific refactoring or the cluster level by specifying a specific cluster as

the region of interest. After the interaction is done and the user decides to continue

to the next round, the score of each solution and cluster are computed. Solution

score (Scoresi) is defined as the average of all refactoring operations score exists in

the solution vector. Similarly, Cluster score (Scoreck) is calculated as the average

of all solutions score assigned to the cluster. Then, the cluster achieved the highest

score among all clusters is considered as the user preferred partition in Pareto-front

space from which the preference parameters will be extracted.

The next step of phase 3 of our proposed approach is to extract user preference

parameters from the interaction step. We consider the representative solution of the
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preferred cluster as the reference point. Then, we compute the weighted probability

of refactoring operations (RWP ) and target classes of the source code (CWP ). Note

that only the name of refactoring action without its associated controlling parameters

is matched. Assuming the selected cluster’s index is j, these parameters can be

computed as follow:

RWPp =

∑
si∈cj

γij × (|rp ∈ si|)∑
rm∈Ref

∑
si∈cj

γij × (|rm ∈ si|)
(4.4)

CWPq =

∑
si∈cj

γij × (|clq ∈ si|)∑
clm∈Cls

∑
si∈cj

γij × (|clm ∈ si|)
(4.5)

where si is the solution vector, γij is the membership coefficient of solution i to the

cluster j, r is refactoring action, Ref is the set of all refactoring operations, and Cls

is the set of all classes in the source code.

At this point, if the user satisfied with the recommended refactoring solution(s),

they can be applied on the source code, otherwise, we consider the extracted prefer-

ences in the next round of optimization which is detailed in the next subsection.

4.3.5 Applying Preference Parameters

If the user decides to continue the search process, then the preference parame-

ters will be applied during the execution of different components of multi-objective

optimization as described in the following:

• Preference-based initial population: The solutions from preferred clusters will

make up the initial population of next iteration as a means of customized search

starting point. In this way, we initiate the search from the region of interest

rather than randomly. New solutions need to be generated to fill and achieve

the pre-defined population size. Instead of random creation of the refactoring
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operations (refactoring action and target class) based on a unify probability

distribution, we utilize RWP and CWP as a probability distribution.

• Preference-based mutation: For this operator, similarly, if a solution is selected

to mutate, we give a higher chance to refactoring operations of interest to replace

the chosen one based on the probability distribution RWP .

• Preference-based selection: the selection operator tends to filter the population

and assign higher chance to the more valuable ones based on their fitness values.

In order to consider the user preferences in this process, we adjusted this oper-

ator to include closeness to the reference solution as an added measure of being

a valuable individual of the population. That means the chance of selection is

related to both fitness values and distance to the region of interest as:

Chance(si) ∝
1

dist(si, CRj)
, F itness(si) (4.6)

where dist() indicates Euclidean distance and CRj is the representative solution

of cluster j.

The above-mentioned customized operators aid to keep the stochastic nature of

the optimization process and at the same time take the user preferred refactoring and

target code locations (classes) into account. This oppose to simple post-filtering and

limiting the population to the individuals of region of interest.

4.4 Evaluation

In this section, we first present our research questions and validation methodology

followed by experimental setup. Then, we describe and discuss the obtained results.

The data of our experiments including a tool demo and the complete statistical results

can be found in the following link [139].
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4.4.1 Research Questions

We defined three main research questions to measure the correctness, relevance

and benefits of our interactive clustering-based multi-objective refactoring tool com-

paring to existing approaches that are based on interactive mutli-objective search

[75], fully automated multi-objective search (Ouni et al.) [2] and fully automated

deterministic tool not based on heuristic search (JDeodorant) [5].

The research questions are as follows:

• RQ1: Refactorings relevance. To what extent can our approach make

meaningful recommendations compared to existing refactoring techniques?

• RQ2: Interactive clustering relevance. To what extent can our clustering-

based approach efficiently reduce the interaction effort?

• RQ3: Impact. How do programmers evaluate the usefulness of our tool

(questionnaire)?

4.4.2 Experimental Setup

To address the different research questions, we used the six systems in Table 4.1.

We selected these six systems because of their size, have been actively developed over

the past 10 years and extensively analyzed by the competitive tools considered in this

work. UTest1 is a project of our industrial partner used for identifying, reporting and

fixing bugs. We selected that system for our experiments since three programmers of

that system agreed to participate in the experiments and they are very knowledgeable

about refactoring since they are part of the maintenance team. Table 4.1 provides

information about the size of the subject systems (in terms of number of classes and

KLOC).

1Company anonymized for double-blind.
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Table 4.1: Statistics of the studied systems.
System Release #Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25
GanttProject v1.11.1 245 49
UTest v7.9 357 74
Apache Ant v1.8.2 1191 112
Azureus v2.3.0.6 1449 117

To answer RQ1, we asked a group of 14 active programmers to identify and man-

ually evaluate the relevance of the best refactorings sequence that they found us-

ing four tools. These tools are our IC-NSGA-II approach, an existing interactive

multi-objective refactoring tool [75] (without the clustering feature) and two fully-

automated refactoring tools by the means of Ouni et al. [2] and JDeodorant [5]. Ouni

et al. [2] proposed a multi-objective refactoring formulation based on NSGA-II that

generates a solution to maximize the design coherence and refactorings reuse from

previous releases. JDeodorant [5] is an Eclipse plugin to detect bad smells and ap-

ply refactorings. As JDeodorant supports a lower number of refactoring types with

respect to the ones considered by our tool, we restrict our comparison with it to

these refactorings. Mkaouer et al. [75] proposed a tool for interactive multi-objective

refactoring but the interactions were limited to the refactorings (accept/reject) and

there is no clustering of the Pareto front or learning mechanisms from the interaction

data. We used these three competitive tools to evaluate the benefits of the clustering

feature in helping developers identifying relevant refactorings.

We preferred not to use the antipatterns and internal quality indicators as proxies

for estimating the refactorings relevance since we the developers manual evaluation

already includes the review of the impact of suggested changes on the quality. Fur-

thermore, not all the refactorings that improve any quality attributes are relevant to

the developers, which is one of the main motivations of this work. The only rigorous

way to evaluate our the relevance of our tool is the manual evaluation of the results

by active developers.
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Table 4.2: Selected programmers.
System #Subjects Avg. Prog. Exp. Avg. Refactoring Exp.
ArgoUML 4 10 High
JHotDraw 4 11.5 Very High
Azureus 4 9 Medium
GanttProject 4 10.5 High
UTest 7 13.5 Very High
Apache Ant 4 12 Very High

Participants were first asked to fill out a pre-study questionnaire containing five

questions. The questionnaire helped to collect background information such as their

role within the company, their programming experience, and their familiarity with

software refactoring. In addition, all the participants attended one lecture of two

hours on software refactoring by the organizers of the experiments. The details of

the selected participants can be found in Table 4.2 including their programming

experience, familiarity with refactoring, etc. Each participant was asked to assess

the meaningfulness of the refactorings recommended after using two out of the four

tools on two different systems to avoid the training threat. The participants did

not only evaluate the suggested refactorings but were asked to configure, run and

interact with the tools on the different systems. The only exceptions are related to

the participants from the industrial partner where only two out of the three agreed to

evaluate an additional system to UTest while the third only reviewed the refactoring

recommendations on the industrial software. Thus, the total number of evaluations

of the different tools is 27. We assigned the tasks to the participants according to the

studied systems, the techniques to be tested and developers’ experience. Each of the

four tools has been evaluated at least one time on every of the six systems.

To answer RQ2, we measured the time (T ) that developers spent to identify the

best refactoring strategies based on their preferences and the number of refactorings

(NR). Furthermore, we qualitatively evaluated the impact of the interactions with the

users on the Pareto front to better converge towards a ”region of interests” reflecting
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their preferences. For this research question, we decided to limit the comparison to

only the interactive multi-objective work of Mkaouer et al. [75] since it is the only one

that offers interaction with the users and it will help us understand the real impact

of the clustering feature (not supported by [75]) on the refactoring recommendations

and interaction effort.

To answer RQ3, we asked the participants to use our tool during a period of

two hours on the different systems and then we collected their opinions based on

a post-study questionnaire. To better understand subjects’ opinions with regard to

usefulness and usablility of our approach in a real setting, the post-study question-

naire was given to each participant after completing the refactoring tasks using our

interactive approach and all the techniques considered in our experiments. The ques-

tionnaires collected the opinions of the participants about their experience in using

our tool compared to existing manual, interactive and fully-automated refactoring

techniques.

4.4.3 Statistical Tests and Parameters Setting

We used one-way ANOVA statistical test with a 95% confidence level (α = 5%) to

find out whether our sample results of different approaches are different significantly.

Since one-way ANOVA is an omnibus test, A statistically significant result determines

whether three or more group means differ in some undisclosed way in the population.

One-way ANOVA is conducted for the results obtained from each software project

to investigate and compare each performance metric (dependent variable) between

various studied algorithms (independent variable). We test the null hypothesis (H0)

that population means of each metric are equal for all methods against the alternative

(H1) that they are not all equal and at least one method population mean is different.

One-way ANOVA does not report the size of the difference. Therefore, we cal-

culated the Vargha-Delaney A measure [133] which is a measure of the effect size
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(strength of association) and it estimates the degree of association between the inde-

pendent factor and dependent variable for the sample. Eta squared is the proportion

of the total variance that is attributed to a factor (the ”refactoring methods” in this

study).

A detailed description of the statistical tests results can be found in this link [139].

Parameter setting influences significantly the performance of a search algorithm on

a particular problem [130]. For this reason, for each algorithm and for each system,

we perform a set of experiments using several population sizes: 50, 100, 150, 200,

250 and 30. The stopping criterion was set to 100,000 evaluations for all search

algorithms in order to ensure fairness of comparison (without counting the number of

interactions since it is part of the users decision to reach the best solution based on

his preferences). The other parameters’ values were fixed by trial and error and are as

follows: crossover probability = 0.6; mutation probability = 0.5 where the probability

of gene modification is 0.4.

In order to have significant results, for each couple (algorithm, system), we use

the trial and error method [131] in order to obtain a good parameter configuration.

4.4.4 Results

Results for RQ1: Refactorings relevance. We report the results of our

empirical qualitative evaluation (MC) in Figure 4.6 based on the manual checking of

the best solutions identified by each tool. As reported in this figure, the majority of

the refactoring solutions recommended by our interactive clustering-based approach

were correct and validated by the participants on the different systems. On average,

for all of our ten studied projects, 86% of the proposed refactoring operations are

considered as semantically feasible, improve the quality and are found to be useful

by the software developers of our experiments. The remaining approaches have an

average of 70%, 63% and 52% respectively for Mkoauer et al. (interactive multi-
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Figure 4.6: The median manual evaluation scores, MC, on the six systems with 95%
confidence level (α = 5%) based on a one-way ANOVA statistical test

objective approach), Ouni et al. (fully automated multi-objective approach) and

JDeodorant (deterministic non-search based approach).The highest MC score is 93%

for the Gantt project and the lowest score is 80% for JHotDraw. Thus, it is clear that

the results are independent of the size of the systems and the number of recommended

refactorings as detailed in RQ2 as well. Both of the interactive tools outperformed

fully-automated ones which shows the importance of integrating the human in the

loop when refactoring a system. Furthermore, it is clear that adding the clustering

feature to enable the developers to select a region of interests based on which quality

objectives they want to prioritize and what refactoring solutions they partially liked.

A qualitative analysis of the results show that several interactions with the de-

velopers helped to reduce the search space by avoiding the refactorings that were

rejected by them and their location. We found that the best final refactoring solu-

tions identified by the developers after several interactions with our tool cannot be

recommended by the remaining approaches. In fact, all these solutions are obtained

either after 1) eliminating refactorings applied to specific code locations not relevant
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to the programmers’ context (something that cannot be learned with the interaction

component) or 2) emphasizing specific cluster that prioritizes some objectives and

penalizes others. For instance, the developers from the industrial partner found sev-

eral of the refactorings that are recommended by Ouni et al. and JDeodorant as non

relevant, while they could be correct, because it may refactor a stable code or classes

that are not of their interest to be refactored.

All the results based on the MC metric on the different systems were statistically

significant with 95% of confidence level. Regarding the effect size, we found that our

approach is better than all the other algorithms with an A effect size higher than

0.92 for ArgoUML, GanttProject, UTest and Apache Ant; and an A effect size higher

than 0.83 for JHotDraw and Azureus.

Results for RQ2: Interactive clustering relevance. Table 4.3 summarizes

the time, in minutes, and the number of refactorings in the most relevant solution

found using our tool, IC-NSGA-II, and the interactive approach of Mkaouer et al.

[75]. All the participants spent less time to find the most relevant refactorings on

the different systems comparing to Mkaouer et al. [75]. For instance, the average

time is reduced by over 60% for the case of Apache Ant from 147 minutes to just

51 minutes. The time includes the execution of IC-NSGA-II and the different phases

of interaction until that the developer is satisfied with a specific solution. It is clear

as well that the time reduction is not correlated with the number of recommended

refactorings. For instance, the deviation between IC-NSGA-II and Mkaouer et al. for

Apache Ant in terms of number of recommended refactorings is limited to 9 (26 vs 35)

but the time reduction is almost 100 minutes. However, it is clear that our approach

reduced as well the number of recommended refactorings comparing to Mkaouer et

al. while increasing the manual correctness as described in RQ1. The highest number

of refactorings was observed on the industrial system with 52 refactorings using IC-

NSGA-II and 75 refactorings using Mkaouer et al. This could be explained by the
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Table 4.3: Median time, in minutes, and number of refactorings proposed by both
interactive approaches on the different six systems.

Techniques

Systems IC-NSGA-II (T,NR) Mkaouer et al. (T,NR)

ArgoUML 100 29 124 34
JHotDraw 25 27 67 52
Azureus 70 24 125 35
GanttProject 36 30 86 39
UTest 46 52 83 75
Apache Ant 51 26 147 35

fact that the original developers can better understand the possible relevance of the

recommended refactorings comparing the remaining participants’ evaluation on the

open source systems.

Figure 4.7 shows a qualitative example extracted from our experiments using IC-

NSGA-II on the Gantt project with a population size of 100 based on three phases

of interactions. After the generation of the Pareto front, the clustering feature iden-

tified three main different clusters for the two objectives selected by the developer

(extendibility and effectiveness). During the first phase, the developer selected the

cluster with id 0 as the preferred one after exploring several refactoring solutions in

that cluster including the center of the cluster. Thus, the next iterations of IC-NSGA-

II prioritized that ”region of interest” so more refactoring options were generated

around the previously selected cluster. Then, since the user selected again a cluster

maximizing these two objectives (cluster with id 1) more refactoring options in the

next iterations until that a good refactoring sequence is selected.

Results for RQ3: Impact. We summarize in the following the feedback of

the developers based on the post-study questionnaire. 12 out the 14 participants

mention that our interactive clustering-based refactoring tool is faster and much easier

to use than the interactive multi-objective tool of Mkaouer et al. [75] to identify

quickly relevant refactorings based on their interests. For instance, the comment of

one participant is the following : ”I believe the addition of the clustering algorithm

really helped identify a solution quicker. It was difficult to decide between similar
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Figure 4.7: Illustration of the refactoring solutions convergence to a region of interest
after two rounds of interactions extracted from the experiments on the
Gantt Project.

refactoring solutions using the non-clustering version of the tool. The cluster centers

helped focus the attention to just a few solutions, which were easy to choose between.”

A similar observation is valid when comparing our tool to the fully-automated multi-

objective refactorings tool of Ouni et al. [2] where 9 out of the 14 participants

highlighted the difficulty to select one relevant refactoring solution from a large set

of non-dominated solutions and without offering any flexibility to update them. One

example of received comments is ”The main advantage of this tool is instead of looking

so many refactoring solutions manually this tool helps us to find the best solution

based on objective selecting the center of the different clusters which provide the good

refactoring recommendations.”

All the developers mentioned the high usability of the tool and the different op-

tions that are offered comparing to deterministic tools like JDeodorant. In addition,

they did not appreciate a lot the long list of refactoring suggested by Ouni et al. and

JDeodorant since they want to take control of modifying and rejecting some refac-

torings. In addition, the validation of this long list of refactorings is time-consuming.

Thus, they appreciate that our tool suggests refactoring one by one and update the
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list based on the feedback of developers. 13 participants commented on the mini-

mum effort required to understand the impact of the proposed refactorings on the

quality and to identify a relevant solution using the clusters comparing all the three

remaining tools: ”Refactoring with clustering reduces the time of the analysis of the

objectives. It keeps the similar type of classes or patterns in the same cluster and

dissimilar patterns in another cluster.” All the participants found as well our tool

helpful for both floss refactoring, to maintain a good quality design and also for root

canal refactoring to fix some quality issues such as code smells.

4.5 Threats to Validity

Conclusion validity. The parameter tuning of the different optimization al-

gorithms used in our experiments creates another internal threat that we need to

evaluate in our future work. The parameters’ values used in our experiments are

found by trial-and-error [131]. However, it would be an interesting perspective to de-

sign an adaptive parameter tuning strategy [134] for our approach so that parameters

are updated during the execution in order to provide the best possible performance.

Internal validity. The variation of correctness and speed between the differ-

ent groups when using our approach and other tools such as JDeodorant. In fact,

our approach may not be the only reason for the superior performance because the

participants have different programming skills and familiarity with refactoring tools.

To counteract this, we assigned the developers to different groups according to their

programming experience so as to reduce the gap between the different groups and we

also adapted a counter-balanced design. Regarding the selected participants, we have

taken precautions to ensure that our participants represent a diverse set of software

developers with experience in refactoring, and also that the groups formed had, in

some sense, a similar average skill set in the refactoring area.

Construct validity. The different developers involved in our experiments may
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have divergent opinions about the recommended refactorings in terms of relevance

which may impact our results.

External validity. The first threat is the limited number of participants and

evaluated systems, which externally threatens the generalizability of our results. In

addition, our study was limited to the use of specific refactoring types. Future repli-

cations of this study are necessary to confirm our findings.

4.6 Conclusion

We proposed an interactive clustering-based recommendation tool for software

refactoring that reduces the effort of improving the quality of software systems. The

exploration of the non-dominated refactoring solutions is implicitly performed based

on the interaction with the developers. The feedback received from the developers and

the clustering of non-dominated refactoring solutions are used to reduce the search

space and converge to better solutions.

To evaluate the effectiveness of our tool, we conducted an evaluation with 14 soft-

ware developers who evaluated the tool and compared it with the state-of-the-art

refactoring techniques. Our evaluation results provide strong evidence that our tool

improves the applicability of software refactoring, and proposes a novel way for soft-

ware developers to refactor their systems interactively with reasonable effort. Future

work involves validating our technique with additional refactoring types, program-

ming languages and programmers in order to conclude about the general applicability

of our methodology. Furthermore, we only focused on the recommendation of refac-

torings. We plan to extend the interactive clustering-based approach to others related

software maintenance problems such as regression testing and bugs localization. We

will also work on making the refactoring recommendations more personalized based

on the profile of programmers by learning their preferences.
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CHAPTER V

From Multi-objective to Mono-objective

Refactoring via Developers Preference Extraction

5.1 Introduction

Software restructuring, or refactoring [9], is critical to improve software quality

and developers’ productivity, but can be complex, expensive, and risky [96, 140, 141].

A recent study [142] shows that developers are spending over 50% of their time

struggling with existing code (e.g. understanding, restructuring, etc.) rather than

creating new code. As projects evolve, developer,s in the rush to deliver a new

release, frequently postpone necessary refactorings until a crisis happens [95]. When

that occurs, it often results in substantially degraded system performance, perhaps an

inability to support new features, or even in a terminally broken system architecture

and significant losses.

While code-level refactoring, such as Move-Method, Pullup-Method, etc, is widely

studied and well-supported by tools [113, 114, 71, 23, 33, 115, 97, 116, 75, 47, 2],

understanding the refactoring rationale , or the preferences of developers, is still

lacking and yet not well supported. In our recent survey, supported by an NSF I-Corps

1 project, with 127 developers at 38 medium and large companies (Google, eBay, IBM,

1https://www.nsf.gov/news/special reports/i-corps
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Amazon, etc.), 84% of face-to-face interviewees confirmed that most of the existing

automated refactoring tools detect and recommend hundreds of code-level issues (e.g.

anti-patterns and low quality metrics/attributes) and refactorings but do not specify

where to start or how they can be relevant for their context and preferences. This

observation is consistent with another recent study [74]. Furthermore, refactoring

is a human activity that cannot be fully automated and requires developers’ insight

to accept, modify, or reject some of these recommendations because the developers

understand the problem domain intuitively and may have a clear target design in

mind. Several studies reveal that automated refactoring does not always lead to

the desired architecture even when the quality issues are well detected, due to the

subjective nature of software design [79, 2, 143, 97, 144, 75, 145]. However, manual

refactoring can be error-prone and time-consuming [71, 146].

Few studies have been proposed, recently, to interactively evaluate refactoring

recommendations by developers [75, 74, 135, 6, 36]. The developers can provide

feedback about the refactored code and introduce manual changes to some of the rec-

ommendations. However, this interactive process can be expensive since developers

must evaluate a large number of possible refactoring strategies/solutions and elim-

inate irrelevant ones. Both interactive and automated refactoring approaches have

to deal with a big challenge to consider many quality attributes for the generation

of refactoring solutions. Thus, refactoring studies either aggregated these quality

metrics to evaluate possible code changes or treated them separately to find trade-

offs [79, 74, 135, 2, 143, 97, 145, 70]. However, it is challenging to define upfront

the weights for the quality objectives since developers are not able to express them

upfront. Furthermore, the number of possible trade-offs between quality objectives is

large which makes developers reluctant to look at many refactoring solutions due to

the time-consuming and confusing process.

In this chapter, we propose an approach that takes advantage of both existing
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categories of refactoring work. Thus, we propose, for the first time, a way to con-

vert multi-objective search into a mono-objective one after few interactions with the

developer. The first step consists of using a multi-objective search, based on the

evolutionary algorithm NSGA-II [127], to generate a diverse set of refactoring strate-

gies by finding a trade-off between several conflicting quality attributes. Then, an

unsupervised learning algorithm clusters the different trade-off solutions, called the

Pareto front, to guide the developers in selecting their region of interests and reduce

the number of refactoring options to explore. Finally, the extracted preferences from

the developer are used to transform the multi-objective search into a mono-objective

one by taking the preferred cluster of the Pareto front as the initial population for the

mono-objective search and generating an evaluation function based on the weights

that are automatically calculated from the center of the preferred cluster in the Pareto

front. Therefore, the developer will just interact with only one refactoring solution

generated by the mono-objective search.

Our approach is taking the advantages of mono-objective search, multi-objective

search, clustering and interactive computational intelligence. Multi-objective algo-

rithms are powerful in terms of diversifying solutions and finding trade-offs between

many objectives but generate many solutions as an output. The clustering and inter-

active algorithms are useful in terms of extracting developers’ knowledge and prefer-

ences. Mono-objective algorithms are the best in terms of optimization power once

the evaluation function is well-defined and generate only one solution as an output.

We selected 32 active developers to manually evaluate the effectiveness of our tool

on 6 open source projects and one industrial system. The results show that the par-

ticipants found their desired refactorings faster and more accurate than the current

state of the art. A tool demo of our interactive refactoring tool of this chapter and an

appendix containing all the details of the experiments can be found in the following

link [147].
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5.2 Motivations

While successful tools for refactoring have been proposed, several challenges are

still to be addressed to expand the adoption of refactoring tools in practice. To

investigate the challenges associated with current refactoring tools, we conducted a

survey, as part of an NSF I-Corps project, with 127 professional developers at 38

medium and large companies including eBay, Amazon, Google, IBM, and others. 112

of these interviews were conducted face-to-face.

The question we encounter most during our industrial collaborations in refactor-

ing is ”We agree that this is a problem, but what should we do?” Although code-level

anti-patterns can largely be automated, higher-level refactoring —such as redistribut-

ing functionality into different components, decoupling a large code base into smaller

modules, redesigning to a design pattern— requires abstractions determined by hu-

man architects. In these cases, the architect usually has a desired design in mind as

the refactoring target, and the developer needs to conduct a series of low-level refac-

torings to achieve this target. Without explicit guidance about which path to take,

such refactoring tasks can be demanding: It took a software company several weeks

to refactor the architecture of a medium-size project (40K LOC) [36]. Several books

[95, 96, 9] on refactoring legacy code and workshops on technical debt [148] present

the substantial costs and risks of large-scale refactorings. For example, Tokuda and

Batory [149] presented two case studies where architectural refactoring involved more

than 800 steps, estimated to take more than 2 weeks.

Prior work [150] shows that even semi-automated tools for lower-level refactorings

have been underutilized. Given that fully automatic refactoring usually does not lead

to the desired architecture and that a designer’s feedback should be included, we

propose an interactive architecture refactoring recommendation system to integrate

higher-level abstractions from humans with lower-level refactoring automation. Over

77% of the interviewees reported that the refactorings they perform do not match
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the capabilities of low-level transformations supported by existing tools, and 86% of

developers confirmed that they need better design guidance during refactoring: ”We

need better solutions of refactoring tasks that can reduce the current time-consuming

manual work. Automated tools provide refactoring solutions that are hard and costly

to repair because they did not consider our design needs.”

Based on our extensive experience working on licensing refactoring research pro-

totypes to industry, developers always have a concern on expressing their preferences

upfront as an input for a tool to guide refactoring suggestions. They prefer to get in-

sights from some generated refactoring solutions then decide which quality attributes

they want to improve. However, several existing refactoring tools fail to consider the

developer perspective, as the developer has no opportunity to provide feedback on

the refactoring solution as it is being created. Furthermore, as development must

halt while the refactoring process executes, fully-automated refactoring methods are

not useful for floss refactoring where the goal is to maintain good design quality while

modifying existing functionality. The developers have to accept the entire refactoring

solution even though they prefer, in general, step-wise approaches where the process

is interactive and they have control of the refactorings being applied. Determining

which quality attribute should be improved and how is never a pure technical prob-

lem in practice. Instead, high-level refactoring decisions have to take into account the

trade-offs between code quality, available resources, project schedule, time-to-market,

and management support. Based on our survey, it is very challenging to aggregate

quality objectives into one evaluation function to find good refactoring solutions since

developers are not able, in general, to express their preferences upfront. Figure 5.1

shows an example of a Pareto front of non-dominated refactoring solutions improving

the QMOOD quality attributes of a GanttProject generated using an existing tool [6].

QMOOD is one of the widely accepted software quality models in industry based on

our previous collaborations with industry and recent studies [6, 36, 12, 151, 152].
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Figure 5.1: The output of a multi-objective refactoring tool[6] finding trade-offs be-
tween QMOOD quality attributes on GanttProject v1.10.2

While developers were interested to give a feedback for some of the refactoring solu-

tions but they expected to see only one refactoring solution in the future after this

interaction. This means after the first round of optimization and evaluation, the

developer wants to have a single personalized solution. The extraction of develop-

ers’ knowledge from the interaction data is beyond the scope of existing refactoring

tools. Furthermore, existing search-based software engineering approaches did not

explore converting multi-objective into mono-objective search after knowledge extrac-

tion. While multi-objective search algorithms are known to be good in diversifying

solutions but they cannot beat well-formulated mono-objective search algorithms in

terms of the optimization power.

5.3 Approach Overview

Our proposed approach includes three main phases. First, we use multi-objective

optimization to find a set of non-dominated refactoring solutions capable of improving

the quality of the software. Second, we cluster these solutions and obtain the center

of each cluster to reduce the exploration effort of the Pareto-front by the decision
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Figure 5.2: Overview of our proposed approach.

maker. Third, we extract automatically the preferences and utilize them to trans-

form the multi-objective problem to a mono-objective one after the user’s interaction

and evaluation of the recommended refactoring solutions. Finally, the output of the

mono-objective search is a single solution fitting to the user’s expectations and pref-

erences then the developer can interact with that solution if needed and continue the

execution of the mono-objective algorithm until selecting a final refactoring solution.

The pseudo code of our algorithm is described in the appendix [147]. In the following,

we will explain, in details, the steps of our proposed technique which its overview is

depicted in Fig 5.2

5.3.1 Phase 1: Multi-Objective Refactoring

Search-based software refactoring techniques need to investigate a large possible

refactoring space which is the result of the variety of the refactoring operations as

well as a combinatorial combinations of code locations, attributes, and methods.

Considering the goals and objectives of refactoring a software, this challenging

task can be formulated as a multi-objective optimization problem as described in

Subsection 2.2.2.
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In multi-objective optimization, the quality of an optimal solution is determined

by dominance. The set of feasible solutions that are not dominated with respect to

each other is called Pareto-optimal or Non-dominated set.

We proposed an adaptation of the non-dominated sorting genetic algorithm (NSGA-

II) [127] to interactively find refactoring solutions with a trade-off between multiple

quality attributes in 3.2.

NSGA-II is a multi-objective evolutionary algorithm operating on a population

of candidate solutions which are evolved toward the Pareto-optimal solution set.

This method uses an explicit diversity-preserving strategy together with an elite-

preservation strategy [127]. The complexity of NSGA-II is at most O(MN2) where

M and N are the number of objectives and the population size, respectively.

Our proposed algorithm is described in Algorithm 4. We begin with an execution

of the adapted NSGA-II [127] based on the encoded refactoring operations and qual-

ity objectives. A set of solutions, P0, is formed as the initial population. Then, using

the change operators, the offspring population, Q0, is produced. Finally, a subset

of solutions is selected from R0 set which is the union of initial and offspring pop-

ulations. This selection is based on domination rules and crowding distance where

it guarantees that the already discovered non-dominated solution to be kept for the

future generation. This process is iterated until the stopping criteria are met.

The result of the first phase of our approach, as it is shown in the Figure 5.1,

is a set of Pareto-optimal refactoring solutions. In the following subsections, we

briefly summarize the adaptation of multi-objective search to the software refactoring

problem.
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Algorithm 4: Interactive Preference-based Multi-objective to Mono-
objective Refactoring (IPMM)

Input : Population Size (N), Source Code
Output: Recommended Pareto-optimal Solutions

1 UserPreferences ← ∅ ; /* Initiate Preference Parameters */

2 while ¬ The user is satisfied do
phase1 begin Multi-objective Refactoring

4 P1 ← InitializePopulation(N);
5 EvaluateObjectives(P1);
6 FastNonDominatedSort(P1);
7 Q1 ← SelectCrossoverMutate(P1);
8 while ¬StoppingCondition() do
9 EvaluateObjectives(Q1);

10 Rt ← P1 ∪Q1;
11 Fronts=FastNonDominatedSort(Rt);
12 Pt+1 ← ∅;
13 i← 1 ;
14 while |Pt+1|+ |Fronti| ≤ N do
15 CrowdingDistanceAssign(Fronti);
16 Pt+1 ← Pt+1 ∪ Fronti;
17 i← i+ 1;

18 SortByRankAndDistance(Fronti);
19 Pt+1 ← Pt+1 ∪ Fronti[1 : (N − |Pt+1|)];
20 Qt+1 ← SelectCrossoverMutate(Pt+1) ;
21 t = t+ 1;

22 ParetoFront + = Qt+1;

phase2 begin Pareto Front Clustering and User Interaction
24 GMMClustering (ParetoFront); /* Described in Section 3.3

*/

25 ClustersCenter ();
26 GetUserFeedBack (Clusters,Centers);
27 UserPreferences ← ExtractPreferences ();

phase3 begin Preference-based Mono-objective Optimization
29 W ← CalculateObjectivesWeight(UserPreferences);

/* Described in Section 3.4 and Algorithm 1 */

30 RecommendedSolution←
MonoObjectiveOptimization(W,UserPreferences);

31 Return RecommendedSolution;
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5.3.1.1 Solution Representation

We encode a refactoring solution as an ordered vector of multiple refactoring

operations. Each operation is defined by an action (e.g. move method, extract

class, etc.) and its specific controlling parameters (e.g. source and target classes,

attributes, methods, etc.). We considered a set of the most important and widely

used refactorings in our experiments: Extract Class/SubClass/SuperClass/Method,

Move Method/Field, PullUp Field/Method, PushDown Field/Method, Encapsulate

Field and Increase/Decrease Field/Method Security. These refactoring operations are

described in Table 2.1.

During the process of population initialization or mutation operation of the algo-

rithm, the refactoring operation and its parameters are formed randomly. Therefore,

due to the random nature of the process, it is crucial to evaluate the feasibility of a so-

lution meaning to preserve the software behavior without breaking it. This evaluation

is based on a set of specific pre- and post-conditions for each refactoring operation

[10].

The length of an encoded refactoring vector is selected randomly from a pre-

defined range.

5.3.1.2 Fitness Functions

The fitness function is the essential aspect of an optimization problem where we

strive to find the best quality value for the given fitness function. It is used to evaluate

the goodness of a candidate solution in terms of maximization or minimization. There

are two crucial factors for a fitness function: discrimination degree between individuals

of a population and calculation speed.

We used the QMOOD [46] as a means of estimating the effect of a refactoring

operation on the quality of a software.

This model is described in Subsection 2.2.3 and 2.2 and 2.3. We considered the
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relative change of six quality attributes (Understandability, Functionality, Reusability,

Effectiveness Flexibility, Extendibility) after applying a refactoring solution as the

fitness function.

5.3.2 Phase 2: Clustering Refactoring Solutions and Extracting Devel-

oper Preferences

One of the most challenging and tedious tasks for the user during every multi-

objective optimization process is the decision making. Since many Pareto-optimal

solutions are offered, it is up to the user to select among them which requires explo-

ration and evaluation of the Pareto-front solutions.

The main goal of this step is to cluster and categorize the solutions based on

their similarity in the objective space. These clusters of solutions help the user to

have an overview of the possible existing options. Therefore, this technique gives the

user a more clear initial step of exploration where she can initiate the interaction

by evaluating each cluster center or representative member. Based on our previous

refactoring collaborations with industry, developers are always highlighting the time

consuming and confusing process to deal with the large population of Pareto-front

solutions: ”where should I start to find my preferred solution?”. This observation is

valid for various SBSE applications using multi-objective search [36].

5.3.2.1 Clustering the Pareto-front

Clustering is an unsupervised learning method to discover a meaningful underlying

structure and pattern between a set of unlabelled data. It puts the data into groups

where the similarity of the data points within each group is maximized while keeping

a minimized similarity between the groups.

Determining the optimal number of clusters is a fundamental issue in clustering

techniques. One of the methods to overcome this issue is to optimize a criterion where
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we try to minimize or maximize a measure for the different number of clusters formed

on the data set. For this purpose, we utilized Calinski Harabasz (CH) Index which

is an internal clustering validation measure based on two criteria: compactness and

separation [137]. CH assesses the clustering outcomes based on the average sum of

squares between and within clusters. Therefore, we execute the clustering algorithm

on the Pareto-front solutions with a various number of components as the input. The

CH score is calculated for each execution, and the result with the highest CH score

is recognized as the optimal way of clustering our data.

After determining the best number of clusters, we employed a probabilistic model-

based clustering algorithm called ”Gaussian Mixture Model” (GMM). GMM is a

soft-clustering method using a combination of Gaussian distributions with different

parameters fitted on the data. The parameters are the number of distributions,

Mean, Co-variance, and Mixing coefficient. The optimal values for these parameters

are estimated using Expectation-Maximization (EM) algorithm [138]. EM trains the

variables through two steps iterative process.

After the convergence of EM, the membership degree of each solution to a fitted

Gaussian or cluster is kept for preference extraction step. Furthermore, in order to

find a representative member of each cluster, we measure the corresponding density

for each solution and select the solution with the highest density value.

The line chart of Pareto-front solutions after clustering is shown in Figure 5.3.

Compared to the original chart in Figure 5.1, the color of each line indicates its cluster

and the solutions marked with triangles are the cluster representative member.
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Figure 5.3: The output of phase 2 (Clustering) on GanttProject v1.10.2.

5.3.2.2 Interaction and Preference Extraction

The results of multi-objective refactoring after clustering are presented to the user

in various interactive tables and charts alongside with extensive analysis to explain

and guide the process of decision making. These explanations are automatically

generated using statistical analysis and investigating the content of the solutions and

clusters.

The explanations of Pareto-front assist the user to gain a vibrant picture of the

available options, costs, and benefits. Furthermore, by clustering similar solutions, it

requires less effort to initiate the exploration and finally making a decision.

The user may begin to evaluate the cluster center solutions or expand the search

to the other solutions in the cluster. The interaction can be performed at the cluster,

solution, and refactoring operation levels depending on the user’s desire. The feedback

is quantified to a continuous score in the range of [-1,1].

The developer can evaluate a solution by modifying its refactoring operations (edit,

add, delete, re-order) or just rate the whole solution or cluster. After the developers

interaction, Solution score (Scoresi) and Cluster score (Scoreck) are computed as the

average score of operations in a solution and the average score of solutions in a cluster,
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respectively.

The cluster of solutions with the highest score is considered as the region of in-

terest in the solution space. It indicates the preferred objectives, code locations, and

refactoring operations. For instance, if the solutions in the selected cluster tend to

emphasize on improving Extendibility by applying mostly Generalization category of

refactoring operations on certain packages or classes of the software, we consider these

factors as the user preferences in the execution of the next phase of our approach.

For this purpose, we compute the weighted probability of refactoring operations

(RWP ) and target classes of the source code (CWP ) as follow:

RWPp =

∑
si∈cj γij × (|rp ∈ si|)∑

rm∈Ref

∑
si∈cj γij × (|rm ∈ si|)

(5.1)

CWPq =

∑
si∈cj γij × (|clq ∈ si|)∑

clm∈Cls

∑
si∈cj γij × (|clm ∈ si|)

(5.2)

where j is the index of selected cluster, si is the solution vector, γij is the membership

weight of solution i to the cluster j, r is refactoring action, Ref is the set of all

refactoring operations, and Cls is the set of all classes in the source code.

5.3.3 Phase 3: Preference-based Mono-objective Refactoring

One of the main contributions of this chapter is the ability to convert a multi-

objective algorithm into a mono-objective one after interacting with the developer to

extract his preferences and knowledge. Mono-objective algorithms are known to be

the best in terms of optimization but require that the fitness function should be well

defined based on the decision maker’s preferences. The Multi-objective Evolutionary

Algorithm used in Phase 1 might not provide high-quality solutions in the region of

interest of the developer because of the high dimensionality nature of the problem and

the need to find trade-offs. Therefore, it is important to consider the user preferences
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extracted in Phase 2.

The goal of this phase is to use the preferences extracted from the developer af-

ter the multi-objective optimization to transform the problem into a single objective

optimization problem by aggregating objectives according to the user’s preferences.

This transformation gives the decision maker a single solution in the region of inter-

est. Consequently, our proposed approach is a combination of all three categories of

preference-based search where the preferences are expressed after the first evolution-

ary process, then they are incorporated to guide the single objective optimization.

One way to convert a multi-objective optimization problem to a mono-objective

problem and achieve a single solution is called the Weighted Sum Method (WSM). In

this method, the single preference fitness function is computed as a linear weighted

sum of multiple objectives. The main drawback of the WSM method is that it

needs the weights parameters to be given. Fortunately, in our case, those parameters

are computed automatically from the decision maker preferences of the interactive

optimization process (preferred cluster) in the objectives space (quality attributes).

Thus, the weight of one or more objectives can get the value 0 (or almost) if the

selected cluster by the developer penalized them while favoring other objectives. Also,

the WSM is not computationally expensive unlike the other scalarization methods.

Therefore, the optimization problem can be formulated as:

Minimize PF (X) =
M∑
i=1

ωifi(x),

Subject to X ∈ S,

ωi ≥ 0;
M∑
i=1

ωi = 1;

where PF (X) is the single scalar preference function, and weights ωi reflects the a

priori preferences of the user over the objectives. The weights are a tool to steer
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Algorithm 5: Preference-based Mono-objective Optimization

Input : Preferences (P),
Preferred Cluster (PC),
Cluster Center (CC)

Output: RecommendedSolution

begin Calculating Objective’s Weight
NormalizeAll(PC);
Wi ← NormalizeUnitSum(CC);

begin Mono-objective Optimization
initialPopulation ← PC;
if size(initialPopulation) ¡ N then

initialPopulation + = fillPopulation();

while ¬ stoppingCondition() do
customSelection();
Crossover();
customMutation();
fitness← weightedSum(fi, wi);
evaluate(fitness);

RecommendedSolution ← getFittest();

Return RecommendedSolution;

the search along the Pareto-front into a direction determined by the user. This way,

the decision maker is offered a single solution that corresponds to his interests and

reduces on him the burden of having to go through multiple solutions.

In order to solve the converted mono-objective problem, we adopted a standard

Genetic Algorithm (GA). To adapt the GA algorithm to our refactoring context, we

use the same solution representation and quality fitness functions as reported in phase

1. Algorithm 5 explains the steps of this phase.

We begin by normalizing the values of each fitness function separately for all

solutions in the preferred cluster. Then, we pick the center of the cluster and normalize

this solution’s fitness values. We use the result as the aggregation weights in WSM

where the condition
∑M

i=1 ωi = 1 is satisfied. Therefore, we assign the importance of

the objectives accordingly based on the intuition and preferences of the user.

The obtained single fitness function is employed to evaluate the solutions in the
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execution of adapted GA. We consider the preferences extracted in the previous phase,

to customize the components of GA via Preference-based initial population generation

and Preference-based Mutation/Selection operators.

Instead of generating the initial population randomly, we acquire the user pre-

ferred cluster as the elite set of solution from which the search process is initiated.

Thus, we do not generate solutions randomly for the mono-objective GA but we take

the solutions in the preferred cluster as the initial population thus we do not lose

the knowledge extracted from the developer. Since the number of solutions in the

preferred cluster might be less than the required size, we form new individuals to

fill the gap. The new solutions are produced based on CWP and RWP probability

distribution. It means, for each new solution, we pick the operation and its target

class attribute from a distribution aligned with the preferences of the user.

The preference probability distribution for code locations and refactoring opera-

tions are used during the mutation process similarly.

The selection operator which is used to keep the most valuable solutions of the

population is customized to consider the distance of a solution to the region of in-

terest. Therefore, being closer to the preferences and having higher fitness value are

both measured to be factors of selecting an elite solution. Finally, the solutions are

evaluated via the preference function aggregated from multiple objectives. When the

stopping condition is satisfied, the single optimal solution is recommended to the user.

Similar to Phase 1, the user can interact with this solution via editing/adding/remov-

ing the refactoring operations.

If the developer is still not satisfied, he can proceed with the search process in

two ways: 1) going back to Phase 2 and selecting another cluster. 2) returning to

Phase 1 and executing the multi-objective optimization again where, in this time, the

approach is customized to accommodate the prior knowledge of the preferences. The

result of Phase 3 is represented in Figure 5.4. As it is shown, at this step, the user
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Figure 5.4: The output of phase 3 (Mono-objective) on GanttProject v1.10.2 system.

is required to only interact with one customized solution where it takes shorter effort

and time and produces less confusion.

5.4 Evaluation

5.4.1 Research Questions

We defined three main research questions to measure the correctness, relevance

and benefits of our interactive clustering-based multi-objective refactoring tool com-

paring to existing approaches that are based on interactive multi-objective search

[75], fully automated multi-objective search (Ouni et al.) [2] and fully automated

deterministic tool not based on heuristic search (JDeodorant) [5]. A tool demo of our

interactive refactoring tool and supplementary appendix materials (questionnaire,

setup of the experiments, statistical analyses, and detailed results) can be found in

our study’s website 2. The appendix includes:(a) Study-steps; (b) Pre/Post-study-

questionnaires (QMOOD, experience, comments, etc.); (c) Parameters-tuning;(d)

2Demo and supplementary appendix materials can be found in the following link:
https://sites.google.com/view/scam2019
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Box-plots/statistical-tests to give more details than the median.

The research questions are as follows:

• RQ1: Benefits. To what extent can our approach make relevant recommen-

dations for developers compared to existing refactoring techniques?

• RQ2: The relevance of developers’ knowledge extraction. To what

extent can our approach reduce the interaction effort, comparing to existing

refactoring techniques, while quickly identifying relevant refactoring recommen-

dations?

• RQ3: Tool usefulness. How do developers evaluate the relevance of our tool

in practice (post-study survey)?

5.4.2 Experimental Setup

We considered a total of seven systems summarized in Table 5.1 to address the

above research questions. We selected these seven systems because of their size,

have been actively developed over the past 10 years and extensively analyzed by

the competitive tools considered in this work. UTest3 is a project of our industrial

partner used for identifying, reporting and fixing bugs. We selected that system

for our experiments since five developers of that system agreed to participate in the

experiments and they are very knowledgeable about refactoring (they are part of the

maintenance team). Table 5.1 provides information about the size of the subject

systems (in terms of number of classes and KLOC).

To answer RQ1, we asked a group of 32 participants to identify and manually

evaluate the relevance of the refactoring solutions that they selected using four other

tools. The first tool is an existing interactive multi-objective refactoring approach

proposed by Mkaouer et al. et al. [75, 6] but the interactions were limited to the

3Company anonymized.
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Table 5.1: Statistics of the studied systems.
System Release #Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25
GanttProject v1.10.2 241 48
UTest v7.9 357 74
Apache Ant v1.8.2 1191 112
Azureus v2.3.0.6 1449 117
JFreeChart v1.0.9 521 170

refactorings (accept/reject) and there is no clustering of the Pareto front or learning

mechanisms from the interaction data. The second tool is an interactive cluster-

ing based multi-objective approach proposed by Alizadeh et al. et al. [36] however

they did not consider the developers’ knowledge extraction neither the use of mono-

objective search to directly converge towards one refactorings solution after extract-

ing developers preferences. The comparison with these tools will help us evaluating

the main new contribution of this chapter related to converting multi-objective to

a mono-objective one after extracting the developers’ preferences from exploring the

clusters and the Pareto front. We have also compared our IMMO approach to two

fully-automated refactoring tools by means of Ouni et al. [2] and JDeodorant [5].

Ouni et al. [2] proposed a multi-objective refactoring formulation based on NSGA-II

that generates a solution to maximize the design coherence and refactorings reuse

from previous releases. JDeodorant [5] is an Eclipse plugin to detect bad smells and

apply refactorings. As JDeodorant supports a lower number of refactoring types with

respect to the ones considered by our tool, we restrict our comparison with it to these

refactorings. We used these two competitive tools to evaluate the benefits of the

interaction feature in helping developers identifying relevant refactorings especially

with the preferences extraction feature and the mono-objective search.

We preferred not to use the antipatterns and internal quality indicators as prox-

ies for estimating the refactorings relevance since the developers manual evaluation

already includes the review of the impact of suggested changes on the quality. Fur-
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thermore, not all the refactorings that improve any quality attributes are relevant to

the developers, which is one of the main motivations of this work. The only rigorous

way to evaluate the relevance of our tool is the manual evaluation of the results by

active developers. This manual evaluation score, MC, consists of the number of rel-

evant refactorings identified by the developers over the total number of refactorings

in the selected solution.

Unlike fixing bugs, refactoring is a very-subjective activity and there is no unique

solution to refactor a code/design thus it is very difficult to construct a gold-standard

for large-systems which makes calculating the recall very challenging. Does the devi-

ation from an expected refactoring solution means that the recommendation is wrong

or simply another way to refactor the code? The context of our work is related to

“incremental” refactoring rather than the rare “root canal” refactoring where devel-

opers will look at the whole architecture/system to make major refactorings. In this

context of incremental refactoring, the main factor is the precision. In addition, de-

velopers can check via our tool the impact of the refactoring solutions on the overall

code quality using many attributes. Thus, they continue to interactively evaluate

and apply refactorings until that they are satisfied in terms of improving the quality

attributes that they consider them concerning. Our tool enables the developers to

evaluate the current quality of the system then tuning the search algorithm to focus

on specific locations of the code based on their needs. With the current large-size of

the systems, it is unrealistic to look for all possible refactoring strategies targeting

the whole project which is not also the scope of this chapter(root-canal refactoring).

Participants were first asked to fill out a pre-study questionnaire containing six

questions. The questionnaire helped to collect background information such as their

role within the company, their programming experience, and their familiarity with

software refactoring. Although the vast majority of participants are already famil-

iar with refactoring as part of their job and graduate studies, all the participants
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Table 5.2: Selected programmers.
System #Subjects Avg. Prog. Exp. Avg. Refactoring Exp.
ArgoUML 5 7.5 Very High
JHotDraw 5 8 Very High
Azureus 5 9.5 High
GanttProject 5 7 High
UTest 5 15.5 Very High
Apache Ant 5 9 Very High
JFreeChart 5 7 Very High

attended one lecture of two hours on software refactoring by the organizers of the ex-

periments. The details of the selected participants can be found in Table 5.2, including

their programming experience (years) and level of familiarity with refactoring. Each

participant was asked to assess the meaningfulness of the refactorings recommended

after using up-to two out of the five tools on up-to two different systems to avoid the

training threat. The participants did not ”only” evaluate the suggested refactorings

but were asked to configure, run and interact with the tools on the different systems.

The only exceptions are related to the five participants from the industrial partner

where they agreed to evaluate only the industrial software. We assigned the tasks to

the participants according to the studied systems, the techniques to be tested and

developers’ experience. Each of the five tools has been evaluated at least one time on

each of the seven systems. 3 out of 32 participants were asked to refactor two projects

to ensure that all the seven projects are refactored using the five different tools. To

mitigate the training threat, the counter-balanced design ensured that these three

participants: (1) did not evaluate the same system using two different tools; (2) did

not evaluate the same tool more than one time (even on different projects) and(3) did

not evaluate the same type of technique more than one time. Thus, if the participant

used a multi-objective tool, then he/she will evaluate JDeodorant (deterministic) on

another project.

To answer RQ2, we measured the time (T ) that developers spent to identify the

best refactoring strategies based on their preferences and the number of refactorings
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(NR). Furthermore, we evaluated the number of interactions (NI ) required on the

Pareto front comparing to the one required once the mono-objective search is exe-

cuted. This evaluation will help to understand if we efficiently extracted the developer

preferences after the Pareto-front interactions. For this research question, we decided

to limit the comparison to only the interactive multi-objective work of Mkaouer et al.

[75, 6] and Alizadeh et al. [36] since they are the only ones offering interaction with

the users and it will help us understand the real impact of the knowledge extraction

and mono-objective features (not supported by existing studies) on the refactoring

recommendations and interaction effort.

To answer RQ3, we collected the opinions of participants based on a post-study

questionnaire. To better understand subjects’ opinions with regard to usefulness and

usability of our approach in a real setting, the post-study questionnaire was given

to each participant after completing the refactoring tasks using our approach and

all the techniques considered in our experiments. The questionnaires collected the

opinions of the participants about their experience in using our tool compared to the

remaining tools used in these experiments and their past experience.

The stopping criterion was set to 100,000 evaluations for all search algorithms in

order to ensure fairness of comparison (without counting the number of interactions

since it is part of the users’ decision to reach the best solution based on his/her

preferences). The mono-objective search was limited to 10,000 evaluations after the

interactions with the user. The other parameters’ values are as follows for both the

multi-objective and mono-objective algorithms: crossover probability = 0.4; mutation

probability = 0.7 where the probability of gene modification is 0.5. Each parameter

has been uniformly discretized in some intervals. Values from each interval have been

tested for our application. Finally, we pick the best values for all parameters. Hence,

a reasonable set of parameter’s values have been experimented.
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5.4.3 Results

Results for RQ1: Benefits. Figure 5.5 summarizes the manual validation re-

sults of our IMMO approach comparing to the state of the art as evaluated by the

participants. It is clear from the overall results that interactive approaches generated

much more relevant refactorings to the programmers comparing to the automated

tools of Ouni et al. and JDeodorant. Among the interactive approaches, IMMO

outperformed the existing interactive approaches of Mkaouer et al. and Alizadeh et

al. which may confirm the importance of extracting the developers’ preferences and

the performance of mono-objective search in terms of optimization when the fitness

function is well-defined based on knowledge extraction from the user. On average,

for all of our seven studied projects, 89% of the proposed refactoring operations are

considered to be useful by the software developers of our experiments. The remaining

approaches have an average of 83%, 71%, 67%, and 56% respectively for Alizadeh

et al. (interactive with clustering), Mkaouer et al. (interactive multi-objective ap-

proach), Ouni et al. (fully automated multi-objective approach) and JDeodorant

(deterministic non-search based approach). The highest MC score is 96% for the

Azureus project, and the lowest score is 86% for JHotDraw. The participants were

not guided on how to interact with the systems, and they mainly looked to the source

code to understand the impact of recommended refactorings.

When comparing manually the results of the different tools, we found that auto-

mated refactorings generate a lot of false positive and noise of developers. Both Ouni

et al. and JDeodroant tools recommended a large number of refactorings comparing

the interactive tools where several of them are not interesting for the context of the

developers thus they reject them even if they are correct. For instance, the develop-

ers of the industrial partner rejected several recommendations from these automated

tools simply because they are related to a stable code or code fragments out of their

interests. The majority of them will not change a code out of their ownership as well.
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Figure 5.5: Average manual evaluations, MC, on the 7 systems.

Furthermore, they were not interested to blindly change anything in the code just

to improve quality attributes. Comparing to the remaining interactive approaches,

we found that some of the refactoring solutions of IMMO will never be proposed by

Mkaouer et al. or Alizadeh et al. since they are emphasizing specific objectives than

others. In fact, one of the main challenges of multi-objective search is the noise in-

troduced by sacrificing some objectives and trying to diversify the solutions. Thus,

the use of mono-objective search when the preferences of the user are extracted is

powerful both in terms of interaction and optimization. The mono-objective search

helped to focus on specific code locations and quality attributes rather than wasting

the optimization power on multiple objectives. To conclude, our IMMO approach

outperformed the four remaining refactoring approaches in terms of recommending

relevant refactoring solutions for developers (RQ1).

Results for RQ2: The relevance of developers’ knowledge extraction.

Figures 5.6, 5.7 and 5.8 give an overview about the number of refactorings of the
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Figure 5.6: The median number of recommended refactorings, NR, of the selected
solution on the 7 systems.

selected solution, number of required interaction and the time, in minutes, using

our tool, the interactive clustering approach of Alizadeh et al., and the interactive

multi-objective approach of Mkaouer et al. Based on the results of Figure 5.6, it

is clear that our approach significantly reduced the number of recommended refac-

torings comparing to both other interactive approaches while increasing the manual

correctness as described in RQ1. The highest number of refactorings was observed

on the industrial system with 34 refactorings using IMMO, 48 using Alizadeh et al.

and 72 refactorings using Mkaouer et al. It may be explained by the size and the

quality of this system along with the fact that it was evaluated by some of the original

developers of UTest. The lower number of recommended refactorings using IMMO

comparing to interactive approaches is mainly related to the elimination of the noise

in multi-objective search to handle multiple quality attributes and the extraction of

developers preferences. It is normal to see fewer refactorings when the search space

is reduced which was the case of IMMO.
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Figure 5.7: The median number of required interactions (accept / reject/ modify /
selection), NI, on the 7 systems.

Figure 5.7 shows that IMMO required much fewer developer interactions than

the remaining interactive approaches. For instance, only 13 interactions to modify,

reject and select refactorings were observed on JFreeChart using our approach while

24 and 37 interactions were needed respectively for Vahid et al. and Mkaouer et al.

The reduction of the number of interactions are mainly due to the move from multi-

objective to mono-objective search after one round of interactions since the developers

will not deal anymore with a set of solutions in the front but only one.

The participants also spent less time to find the most relevant refactorings on the

different systems compared to the remaining interactive approaches. For instance,

the average time is reduced by over 65% comparing to Mkaouer et al. for the case of

JHotDraw (from 62 minutes to just 21 minutes). The time includes the execution of

the multi-objective and mono-objective search (if any), the clustering (if any) and the

different phases of interaction until the developer is satisfied with a specific solution.

The drop of the execution time is mainly explained by the fast execution of the
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Figure 5.8: The average execution time, T, in minutes on the 7 systems.

mono-objective search and the reduced search space after the interactions with the

developers.

Figure 5.9 shows a qualitative example extracted from our experiments using

IMMO on the GanttProject based on the four interaction phases. After the gener-

ation of the Pareto front, the clustering algorithm of the non-dominated refactoring

solutions identified three different main clusters for the two objectives selected by

the developer (extendibility and effectiveness). During the first phase, the developer

selected the cluster with id 0 as the preferred one after exploring several refactoring

solutions in that cluster including mainly the solution located at the center of the

cluster. Thus, the next phase took the solutions in the id 0 cluster and generated an

initial population for the mono-objective genetic algorithm, and the center of the se-

lected cluster was used to generate the weights for the fitness function. The output of

the mono-objective search is one refactoring solution (instead of many solutions like

the multi-objective search) that optimize better the selected objectives than all the
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Figure 5.9: A qualitative example of three executions extracted from our experiments
on GanttProject to illustrate the process of converting a multi-objective
search into a mono-objective one.

solutions in the preferred cluster. Finally, the interactions with the user (accept/re-

ject/modify some refactorings) on that solution helped to converge towards a better

final solution by continuing the execution of the mono-objective search.

Results for RQ3: Impact. We did a post-study questionnaire to collect the

feedback of the developers about the different evaluated refactoring tools. We found

that 26 out the 32 participants highlighted that they preferred IMMO comparing

to the remaining tools because of mainly the ability to interact with one solution

(instead of a front) and the fast improvement of the refactoring results after just a

few interactions. One of the participants submitted the following message: ”It is

really great to see only refactoring solutions meeting my needs after just a couple of

interactions!”.

21 out the 32 participants appreciated the combination of multi-objective and

156



mono-objective search algorithms. They found that multi-objective search was useful

to get some insights about several possible strategies to improve the code then the

mono-objective powerful in generating better solutions based on their feedback. For

instance, one of the developers commented the following: ”I had no idea about the

beginning from where to start but looking to the first set of recommendations and their

code impact, I had a clear idea on what quality metrics I need to target then it was

easy to just give feedback to only one strategy (solution).” 29 out the 32 participants

found that the major refactoring suggestions of both Ouni et al. and JDeodorant hard

to evaluate and understand. They found the lack of interactions as a main limitation

since they have to accept or reject the whole refactoring suggestions and it is difficult

to estimate their impacts. The participants noticed, in the survey, that they were

satisfied with the the considered quality attributes and refactoring types by our tool.

They did not suggest to add new types of refactoring or quality attribute.

5.5 Threats to Validity

Conclusion validity. Since we used a variety of computational search and ma-

chine learning algorithms, the parameter tuning used in our experiments creates an

internal threat that we need to evaluate in our future work. The parameters’ values

used in our experiments are found by trial-and-error. However, it would be an inter-

esting perspective to design an adaptive parameter tuning strategy for our approach

so that parameters are updated during the execution in order to provide the best pos-

sible performance. Another conclusion threat is the number of interactions with the

developers since we did not force them to use the same interaction effort which may

sometimes explain the out-performance of our approach. However, the participants

were given the same maximum amount of time to use the tool (limited to 3 hours).

Internal validity. The variation of correctness and speed between the different

groups when using our approach and other tools can be one internal threat. Our
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approach may not be the only reason for the superior performance because the par-

ticipants have different programming skills and familiarity with refactoring tools. To

counteract this, we assigned the developers to different groups according to their pro-

gramming experience so as to reduce the gap between the different groups, and we

also adopted a counter-balanced design. Regarding the selected participants, we have

taken precautions to ensure that our participants represent a diverse set of software

developers with experience in refactoring, and also that the groups formed had, in

some sense, a similar average skill set in the refactoring area.

External validity. The first threat is the limited number of participants and

evaluated systems, which externally threatens the generalizability of our results. In

addition, our study was limited to the use of specific refactoring types and quality

attributes. Furthermore, we mainly evaluated our approach using NSGA-II and GA

algorithms, but other state-of-the-art metaheuristic algorithms can be used. Future

replications of this study are necessary to confirm our findings.

5.6 Conclusion

In this chapter, we proposed a novel approach to extract developers’ knowledge

and preferences to find good refactoring recommendations. We combined the use of

multi-objective search, clustering, mono-objective search and users interaction in our

approach. To evaluate the effectiveness of our tool, we conducted an evaluation with

32 software developers who evaluated the tool and compared it with the state-of-

the-art refactoring techniques. Our evaluation results provide strong evidence that

our tool improves the relevance of recommended refactoring, helped developers to

quickly find relevant refactorings and successfully extracted developers’ knowledge

and preferences.

As part of our future work, we are planning to evaluate our approach on further

projects and a more extensive set of participants. We will also adapt our approach
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to address other problems requiring developer interactions such as bugs localization.

The exploration of the non-dominated refactoring solutions is implicitly performed

based on the interaction with the developers. The feedback received from the devel-

opers and the clustering of non-dominated refactoring solutions is used to reduce the

search space and converge to better solutions. Once the developer selected the right

cluster(s) and provided sufficient feedback interactions, the multi-objective search is

converted into a mono-objective one by selecting the solutions in the preferred cluster

as the initial population and using the center of the cluster to generate the weights

for the fitness function.
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CHAPTER VI

Simultaneous Decision and Objective Space

Clustering for Interactive Refactoring

6.1 Introduction

With the ever-growing size and complexity of software projects, there is a high

demand for efficient refactoring [9] tools to improve software quality, reduce technical

debt, and increase developer productivity. However, refactoring software systems

can be complex, expensive, and risky [96, 140, 141]. A recent study [142] shows

that developers are spending considerable time struggling with existing code (e.g.,

understanding, restructuring, etc.) rather than creating new code, and this may have

a harmful impact on developer creativity.

Various tools for code refactoring have been proposed during the past two decades

ranging from manual support to fully automated techniques [113, 114, 71, 23, 33,

115, 97, 116, 75, 47, 2]. While these tools are successful in generating correct code

refactorings, developers are still reluctant to adopt these refactorings. This reluctance

is due to the tools’ poor consideration of context and developer preferences when

finding refactorings[23, 144, 71, 136]. In fact, the preferences of developers ranging

from quality improvements to code locations, are still not well supported by existing

tools and a large number of refactorings are recommended, in general, to fix the
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majority of the quality issues in the system.

In our recent survey, supported by an NSF I-Corps project, with 127 experienced

developers in software maintenance at 38 medium and large companies (Google, eBay,

IBM, Amazon, etc.) [6, 36], 84% of face-to-face interviewees confirmed that most of

the existing automated refactoring tools detect and recommend hundreds of code-

level issues (e.g., antipatterns and low quality metrics/attributes) and refactorings.

However, these tools do not specify where to start or how they relate to a developer’s

context (e.g., the recently changed files) and preferences in terms of quality targets.

This observation is consistent with another recent study [74]. Furthermore, refactor-

ing is a human activity that cannot be fully automated and requires a developer’s

insight to accept, modify, or reject recommendations because developers understand

their problem domain and may have a clear target design in mind. Several studies re-

veal that automated refactoring does not always lead to the desired architecture even

when quality issues are properly detected, due to the subjective nature of software

design choices [79, 2, 143, 97, 144, 75, 145]. However, manual refactoring is often

error-prone and time-consuming [71, 146].

Several studies have been proposed recently to have developers interactively evalu-

ate refactoring recommendations [75, 74, 135, 6, 36]. The developers provide feedback

about the refactored code and may introduce manual changes to some of the recom-

mendations. However, this interactive process can be expensive since developers must

evaluate a large number of possible refactorings and eliminate irrelevant ones. Both

interactive and automated refactoring approaches have to deal with the challenge of

considering many quality attributes for the generation of refactoring solutions. One

of the most commonly used quality attributes are the ones of the QMOOD model

including reusablitiy, extensibility, effectiveness, etc [46]. QMOOD was empirically

validated by many studies, based one hundreds of open source and industry projects,

to ensure that they are associated with the qualities they are supposed to measure
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and that they are also conflicting [153, 79, 154].

Refactoring studies have either aggregated these quality metrics to evaluate possi-

ble code changes or treated them separately to find trade-offs [79, 74, 135, 2, 143, 97,

145, 70]. However, it is challenging to define weights upfront for the quality objectives

since developers are often unable to express. Furthermore, the number of possible

trade-offs between quality objectives is large, which makes developers reluctant to

look at many refactoring solutions—a time-consuming and confusing process. The

closest work to this study of Alizadeh et al. [36, 6] shows that even the clustering

of non-dominated refactoring solutions based on quality metrics will still generate a

considerable number of refactorings to explore. Developers, in practice, combine the

use of quality metrics and code locations/files to target when deciding which refac-

toring to apply. However, existing refactoring tools are not enabling the interactive

exploration of both quality metrics and code locations during the refactoring process

to identify relevant solutions. The search is beyond just filtering the refactorings but

how can the algorithm finds better recommendations after understanding the prefer-

ences of the users and giving them a good understanding on how the refactorings are

distributed if they are interested to improve specific quality objectives.

In this chapter, we propose an interactive approach that combines multi-objective

search, interactive optimization, and unsupervised learning to reduce developer effort

in exploring both objective spaces (quality attributes) and decision spaces (files). As

a first step, a multi-objective search algorithm, based on NSGA-II [127], is executed

to find a compromise between the multiple conflicting quality objectives and gener-

ates a set of non-dominated refactoring solutions. Then, an unsupervised clustering

algorithm clusters the different trade-off solutions based on their quality metrics. Fi-

nally, another clustering algorithm is applied to each cluster of the objective space

based on the code locations where the refactorings are recommended. The developer

can interact with our tool by exploring both the decision and objective spaces to
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identify relevant refactorings based on their preferences quickly. Thus, the developers

can focus on their regions of interest in both the objective and decision spaces. The

developers are, in general, first concerned about improving specific quality attributes

then they will look for the refactorings that best target the files related to their current

interests and ownership [146, 144]. Thus, we followed this pattern in our approach

by clustering first the objective space then we showed the developers the distribution

of the refactorings into different decision space clusters for their prefered objective

space cluster.

Our approach takes advantage of multi-objective search, clustering, and interactive

computational intelligence. Multi-objective algorithms are powerful in terms of diver-

sifying solutions and finding trade-offs between many objectives but generate many

solutions. The clustering and interactive algorithms are useful in terms of extracting

developers knowledge and preferences. Existing search-based software engineering

techniques are mainly limited to objective space exploration without considering the

decision space.

To evaluate our approach, we selected active developers to manually evaluate the

effectiveness of our tool on 5 open source projects and one industrial system. Our

results show that the participants found their desired refactorings faster and more

accurately than the current state of the art of refactoring tools. This confirms our

hypothesis that the second level of clustering (decision space) can help developers to

quickly find relevant refactorings based on their preferences in terms of both qual-

ity objectives to improve and the location of these changes. A video demo of our

interactive refactoring tool can be found at [155].

The main contributions of this chapter can be summarized as follows:

1. To the best of our knowledge, the chapter introduces one of the first search-

based software engineering techniques that enables the interactive exploration

of the objective and decision spaces while existing work focus only on the objec-
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tive space. Our approach is not about a simple filtering of the refactorings based

on the locations/files or a clustering of the Pareto front based on the locations.

We enabled programmers to interactively navigate between both objective and

decision spaces to understand how the refactorings are distributed if they are

interested to improve specific quality objectives. Then, our approach can gen-

erate even more relevant suggestions after extracting that knowledge from the

exploration of the Pareto front.

2. Our contribution is beyond the adoption of an existing metaheuristic technique

to refactoring. The proposed approach includes a novel algorithm to enable

the exploration of both decision and objective spaces by combining two level of

clustering algorithms with multi-objective search.

3. We implemented and validated our framework on a variety of open source and

industrial projects. The results support the hypothesis that the combination

of both the objective and decision spaces significantly improved the refactoring

recommendations.

The remainder of this chapter is structured as follows. Section 6.2 presents the

challenges in interactive refactoring. Section 6.3 describes our approach, while the

results obtained from our experiments are presented and discussed in Section 6.4.

Threats to validity are discussed in Section 6.5. Finally, in Section 6.6, we summarize

our conclusions and present some ideas for future work.

6.2 Interactive Refactoring Challenges

Refactoring is a human activity that is hard to automate due to its subjective

nature and the high dependency on context. While successful tools for refactoring

have been created, several challenges are still to be addressed to expand the adoption

of refactoring tools in practice. To investigate the challenges associated with current
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refactoring tools, we conducted a survey, as part of an NSF I-Corps project, with 127

professional developers at 38 medium and large companies including eBay, Amazon,

Google, IBM, and others [36, 6]. All these developers had a minimum of 11 years

of experience in software maintenance tasks and especially refactoring. 112 face-to-

face meetings were conducted based on semi-structured interviews to understand the

challenges that developers are facing with existing refactoring tools.

From these interviews and our extensive industry collaboration, we learned that

architects usually have a desired design in mind as a refactoring target, and develop-

ers need to conduct a series of low-level refactorings to achieve this target. Without

guiding developers, such refactoring tasks can be demanding: it took one software

company several weeks to refactor the architecture of a medium-size project (40K

LOC) [36]. Several books [95, 96] on refactoring legacy code and workshops on tech-

nical debt [148] present the substantial costs and risks of large-scale refactorings.

For example, Tokuda and Batory [149] proposed different case studies with over 800

applied refactorings, estimated to take more than 2 weeks.

The majority of the interviewees emphasized that root-canal refactoring to re-

structure the whole system is rare and they are mainly interested in refactoring files

that they own rather than files owned by their peers. However, most existing refac-

toring tools do not offer a capability of integrating their preferences, in terms of which

files they may want to refactor, and purely rely on potential quality improvements.

Fully automated refactoring usually do not lead to the desired architecture, and a

designer’s feedback should be considered. Moreover, prior work [150] shows that

even some semi-automated tools are underutilized by developers. Over 77% of our

interviewees reported that the refactorings they perform do not match the capabili-

ties of low-level transformations supported by existing tools, and 86% of developers

confirmed that they need better design guidance during refactoring: ”We need bet-

ter solutions of refactoring tasks that can reduce the current time-consuming manual
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work. Automated tools provide refactoring solutions that are hard and costly to repair

because they did not consider our design needs.”

Based on our previous experience on licensing refactoring research prototypes to

industry, developers always have a concern about expressing their preferences up front

as an input to guide refactoring suggestions. They prefer to get insights from some

generated refactoring solutions then decide which quality attributes they want to im-

prove. Even worse, these preferences are not limited to just the quality metrics and

their improvements but also where these refactorings will be applied. However, many

existing refactoring tools fail to consider the developer perspective, and the developer

has no opportunity to provide feedback on the refactoring solution being created.

Furthermore, as development must halt while the refactoring process executes, fully-

automated refactoring methods are not useful for floss refactoring where the goal is to

maintain good design quality while modifying existing functionality. The developers

have to accept the entire refactoring solution even though they prefer, in general,

step-wise approaches where the process is interactive, and they have control of the

refactorings being applied. Determining which quality attribute should be improved,

and how, is never a purely technical problem in practice. Instead, high-level refactor-

ing decisions have to take into account the trade-offs between code quality, available

resources, project schedule, time-to-market, and management support.

Based on our survey, it is challenging to aggregate quality objectives into one

evaluation function to find good refactoring solutions since developers are not able,

in general, to express their preferences upfront. While recent advances on refactoring

proposed tools support multiple preferences of developers based on multi-objective

search, these tools still require the user to navigate through many solutions. Fig-

ure 6.1 shows an example of a Pareto front of non-dominated refactoring solutions

improving the QMOOD [143] quality attributes of a Gantt Project generated using

an existing tool [6]. QMOOD is a widely accepted software quality model, based
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Figure 6.1: The output of a multi-objective refactoring tool [6] finding trade-offs be-
tween QMOOD quality attributes on GanttProject v1.10.2 with clustering
only in the objective space.

on our collaborations with industry and existing studies [6, 36, 12, 151, 152, 79, 75].

While developers were interested in giving feedback for some refactoring solutions,

they still find the interaction process time-consuming. Even when refactoring so-

lutions are clustered based on the quality objectives, as shown in Figure 5.1, the

number of solutions to be checked by developers can be substantial. Thus, they want

to know how different the solutions are within the same objective space. It may be

possible to find more than one refactoring solution that offers the same level of quality

improvements but by refactoring different code locations/files. Existing refactoring

techniques do not, however, enable developer interaction based on both the decision

space and objective space; that is the main challenge of this chapter. For instance,

the objective space exploration can help developers focusing on their targeted design

quality improvements then the decision space can help them to focus on files they are

owning or related to their current tasks or interests.
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6.3 Approach Overview

Our proposed approach is composed of four major steps. In the first step, a

multi-objective search algorithm is executed to find a set of non-dominated solutions

between different conflicting quality objectives of QMOOD [46]. Then, the second

step clusters these solutions based on these quality attributes. We call this procedure

”objective space clustering”. The third step takes, as input, every cluster identified

in the objective space and execute another unsupervised learning algorithm to cluster

the solutions based on their code locations. Hence, we call this ”decision space clus-

tering”. Finally, developers can interactively choose among the clustered solutions

to find a compromise that suits their preferences in both the decision and objective

spaces. For instance, developers may select a cluster that corresponds to their quality

improvement preferences. Then, the decision space clustering will identify the most

diverse solutions in that cluster that are refactoring different code locations but still

provide the same level of quality improvement.

The next sections will explain in further detail the steps of our methodology.

6.3.1 Phase 1: Multi-Objective Refactoring

The search for a refactoring solution requires the exploration of a large search

space to find trade-offs between 6 different quality objectives. The multi-objective

optimization problem can be formulated mathematically as described in background

2.2.2.

In the following subsections, we briefly summarize the adaptation of multi-objective

search to the software refactoring problem.

6.3.1.1 Solution Representation

We encode a refactoring solution as an ordered vector of multiple refactoring

operations. Each operation is defined by an action (e.g., move method, extract
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Figure 6.2: Example of a refactoring solution proposed by our tool for GanttProject
v1.10.2.

class, etc.) and its specific controlling parameters (e.g., source and target classes,

attributes, methods, etc.). We considered a set of the most important and widely

used refactorings in our experiments: Extract Class/SubClass/SuperClass/Method,

Move Method/Field, PullUp Field/Method, PushDown Field/Method, Encapsulate

Field and Increase/Decrease Field/Method Security. These refactoring operations are

described in Table 2.1.

We selected these refactoring operations because they have the most impact on

QMOOD quality attributes. During the process of population initialization or a

mutation operation of the algorithm, the refactoring operation and its parameters

are formed randomly. Due to the random nature of this process, it is crucial to

evaluate the feasibility of a solution meaning to preserve the software behavior without

breaking it. This evaluation is based on a set of specific pre- and post-conditions for

each refactoring operation as described in [10]. Figure 6.2 shows an example of a

concrete refactoring solution proposed by our approach for GanttProject v1.10.2,

including several refactorings applied to different code locations.
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6.3.1.2 Fitness Functions

The fitness function is the essential aspect of an optimization problem where we

strive to find the best quality value for the given fitness function. It is used to evaluate

the goodness of a candidate solution in terms of maximization or minimization. There

are two crucial factors for a fitness function: discrimination degree between individuals

of a population and calculation speed.

We used the QMOOD [46] as a means of estimating the effect of a refactoring

operation on the quality of a software. This model is described in Subsection 2.2.3

and 2.2 and 2.3.

6.3.2 Phase 2: Objective Space Clustering

One of the most challenging and tedious tasks for a user during any multi-objective

optimization process is decision making. Since many Pareto-optimal solutions are

offered, it is up to the user to select among them, which requires exploration and

evaluation of the Pareto-front solutions.

The goal of this step is to cluster and categorize solutions based on their similarity

in the objective space. These clusters of solutions help give the user an overview of

the options. Therefore, this technique gives the users more explicit initial exploration

steps where they can initiate the interaction by evaluating each cluster center or rep-

resentative member. Based on our previous refactoring collaborations with industry,

developers are always highlighting the time-consuming and confusing process to deal

with the large population of Pareto-front solutions: ”where should I start to find

my preferred solution?”. This observation is valid for many Search-based software

engineering (SBSE) applications using multi-objective search [36].

Clustering is an unsupervised learning method to discover meaningful underly-

ing structures and patterns among a set of unlabelled data. It puts the data into

groups where the similarity of the data points within each group is maximized while
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minimizing the similarity between groups.

Determining the optimal number of clusters is a fundamental issue in clustering

techniques. One method to overcome this issue is to optimize a criterion where we

try to minimize or maximize a measure for the different number of clusters formed

on the data set. For this purpose, we used the Calinski Harabasz (CH) Index, which

is an internal clustering validation measure based on two criteria: compactness and

separation [137]. We selected the CH index due to the small size of the number of

solutions to cluster (our data), and it is known to provide quick clustering solutions

with acceptable quality for similar problems. CH assesses the clustering outcomes

based on the average sum of squares between individual clusters and within clusters.

Therefore, we execute the clustering algorithm on the Pareto-front solutions with var-

ious numbers of components as input. The CH score is calculated for each execution,

and the result with the highest CH score is recognized as the optimal clustering.

After determining the best number of clusters, we employ a probabilistic model-

based clustering algorithm called ”Gaussian Mixture Model” (GMM). GMM is a

soft-clustering method using a combination of Gaussian distributions with different

parameters fitted on the data. The parameters are the number of distributions,

Mean, Co-variance, and Mixing coefficient. The optimal values for these parameters

are estimated using the Expectation-Maximization (EM) algorithm [138]. EM trains

the variables through a two-step iterative process.

After the convergence of EM, the membership degree of each solution to a fitted

Gaussian or cluster is kept for the preference extraction step. Furthermore, to find

a representative member of each cluster, we measure the corresponding density for

each solution and select the solution with the highest density.
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Figure 6.3: Clustering based on code locations (decision space) of the refactoring
solutions of one region of interest in the objective space of GanttProject
v1.10.2.

6.3.3 Phase 3: Decision Space Clustering

Our approach gives developers the ability to pinpoint their preferences in a differ-

ent space than the optimization space related to the location of refactorings. After

selecting a preferred objective space cluster, the developer may want to see “what

are the most diverse solutions within that region of interests”. In other words, the

clustering in the decision space will show developers the refactoring solutions that

improve the quality at the same level (within the same objective space cluster) but

targeting different parts of the systems. To do this, we group the solutions by their

similarity in the decision space and present them to the developer as depicted in Fig-

ure 6.3 where only two clusters were found in the decision space. In each of these two

clusters, the solutions composing it are introducing refactorings into similar locations

with comparable impact on the different quality attributes. These solutions in the

decision space are clustered based on the refactoring locations and their frequency.

As Algorithm 6 represents, to get an optimal grouping of solutions in the decision

space of where refactorings are applied, we use a procedure similar to the one used

in the objective space with additional pre-processing steps to project the solutions
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Algorithm 6: Decision-Space Clustering

Input : Pareto-Front Solutions, Clusters
Output: Labeled Pareto-Front Solutions (LS)

begin Projection Operator
2 RefactoredClasses← GetRefactoredClasses (ParetoFront) ;
3 ProjectedParetoFront(PS)←ExtractFrequency

(RefactoredClasses,ParetoFront)

begin Calculate best number of clusters-K
for i← 2 to 10 do

6 LS = GMMClustering (i,PS);
7 Scorei = CalinskiHarabaszIndex (LS)

K ← MaxScoreIdx ();

begin GMMClustering (K,PS)
µk,Σk, πk ← Initialize-K-Gaussian (); /*Expectation-Maximization
while ¬converge do

γ(snk)← Expectation ();
µk,Σk, πk ← Maximization ();
EvaluateLikelihood ();

foreach sn ∈ S do
16 //assigning cluster labels

Ln ← MaxResponsibilityIdx ();

18 Return LS;

on the decision space. We define a projection operator based on the frequency of

changes to the classes by the refactorings and their locations (refactored files). Since

refactoring operations affect classes differently, where some make changes only at the

same class level while others have a source class and a target class, we only count

source classes in our work to have a consistent representation for all vectors and to

create a new representation for the refactoring vector in the decision space. In this

new domain space, the solutions are represented as vectors of integers where the

refactored classes are the dimensions of the space, and the values are the number of

refactoring operations for that class. The projection operator is used for the entire

Pareto-front and enables having two different representations of the same solution

set.

The main contribution of our work is enabling the exploration of a diverse set
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Figure 6.4: Illustration of the clustered solutions in the objective space and the deci-
sion space.

of refactoring solutions within the same objectives space. This amounts to having

multiple solutions that are neighbors in the objective space but completely different

in the decision space. To do this, we go through all the clusters determined in

the previous step and then use the GMM clustering algorithm with the same steps

described above to group similar solutions in the decision space. Thus, developers can

improve the code toward their preferred objectives while only refactoring the parts of

the code that interest them.

Figure 6.4 shows an example of our approach using the Bi-Clustering NSGA-II al-

gorithm where after generating the Pareto-front for the effectiveness and extendibility

objectives, the developer can select a cluster in the objective space for further explo-

ration. Then, a developer can explore the clusters and observe that within this cluster,

there are three different clusters in the decision space. The region of interest can be
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highlighted, and the developer can select solutions that correspond to their interest

to create further constraints for the optimization process to converge to the desired

optimum.

6.3.4 Phase 4: Developer Feedback and Preference Extraction

The results of the Bi-Space clustering algorithm are presented to developers in

the form of an interactive chart where they can visualize the cluster of their choice

in the objective and decision spaces. This presentation helps them get a complete

picture of the diversity of the refactoring solutions and the various compromises they

may offer. Our goal is to minimize the effort spent by developers to interact with the

system and select a final set of refactorings.

Looking at the solutions, developers can evaluate every solution based on their

preferences. The granularity offered by our representation enables developers to make

evaluations at the cluster level (selecting one or more clusters in the objective space),

solution level (selecting solutions within a chosen cluster) and refactoring level (choos-

ing to accept, reject, or modifying some refactorings within the chosen solution as

shown in Figure 6.2.). The score obtained reflects developer preferences and serves

to determine their region of interest.

At the solution level, the developer is capable of inspecting every refactoring and

modifying it. Refactoring operations can be added, deleted, modified, or re-ordered.

The information collected afterward is used to calculate a score at the solution level

by averaging the scores for every refactoring, and at the cluster levels by averaging

the scores of the solutions.

In this way, we can characterize the developer’s region of interest as the cluster

with the highest score. Information about the preferred classes, refactorings, and

quality metrics is extracted and used to create constraints on the optimization process.

Therefore, the search becomes guided in both the decision and the objective spaces,
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and we can converge on a developer’s preferred solution faster.

For this purpose, we compute the weighted probability of refactoring operations

(RWP ) and target classes of the source code (CWP ) as follow:

RWPp =

∑
si∈cj γij × (|rp ∈ si|)∑

rm∈Ref

∑
si∈cj γij × (|rm ∈ si|)

(6.1)

CWPq =

∑
si∈cj γij × (|clq ∈ si|)∑

clm∈Cls

∑
si∈cj γij × (|clm ∈ si|)

(6.2)

where j is the index of selected cluster, si is the solution vector, γij is the membership

weight of solution i to the cluster j, r is refactoring action, Ref is the set of all

refactoring operations, and Cls is the set of all classes in the source code.

6.4 Evaluation

6.4.1 Research Questions

We defined two main research questions to measure the correctness, relevance,

and benefits of our decision and objective space interactive clustering-based refactor-

ing (DOIMR) tool comparing to existing approaches that are based on interactive

clustering-based refactoring only in the objectives space (Alizadeh et al.) [36], inter-

active multi-objective search (Mkaouer et al.) [75, 6], fully automated multi-objective

search (Ouni et al.) [2] and fully automated deterministic tool not based on heuris-

tic search (JDeodorant) [5]. A tool demo of our tool and supplementary appendix

materials (questionnaire, setup of the experiments, statistical analyses, and detailed

results) can be found in our study’s website 1.

The research questions are as follows:

• RQ1: Does our approach make more relevant recommendations for developers,

1A demo and supplementary appendix materials can be found at the following link: https://sites.
google.com/view/tse2020decision
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as compared to existing refactoring techniques?

• RQ2: Does our approach significantly reduce the number of relevant refactor-

ing recommendations and the user interaction effort, as compared to existing

interactive refactoring approaches?

6.4.2 Experimental Setup

We considered a total of seven systems, summarized in Table 6.1, to address

the above research questions. We selected these seven systems because they are

of reasonable size, have been actively developed over the past 10 years, and have

been extensively analyzed by the other tools considered in this work. UTest2 is a

project of our industrial partner used for identifying, reporting, and fixing bugs. We

selected that system for our experiments since five developers of that system agreed to

participate in the experiments, and they are very knowledgeable about refactoring—

they are part of the maintenance team. Table 6.1 provides information about the size

of the subject systems (in terms of number of classes and KLOC).

To answer RQ1, we asked a group of 35 participants to manually evaluate the

relevance of the refactoring solutions that they selected using four other tools. The

first tool of Alizadeh et al. is an approach based on only objective clustering of the

Pareto front [36], using the interactive multi-objective search. The second tool is an

interactive multi-objective refactoring approach proposed by Mkaouer et al. et al. [75,

6], but the interactions were limited to the refactorings (accept/reject) and there is no

clustering of the Pareto front or learning mechanisms from the interaction data. Thus,

the comparison with these tools will help us to evaluate our main contribution that

is built on the top of existing multi-objective refactoring algorithms: the combined

use of decision and objective space exploration for interactive refactoring. We have

also compared our DOIMR approach to two fully-automated refactoring tools: Ouni

2Company anonymized for double-blind.
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Table 6.1: Statistics of the studied systems.
System Release #Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25
GanttProject v1.10.2 241 48
UTest v7.9 357 74
Apache Ant v1.8.2 1191 112
Azureus v2.3.0.6 1449 117
JFreeChart v1.0.9 521 170

et al. [2] and JDeodorant [5]. Ouni et al. [2] proposed a multi-objective refactoring

formulation based on NSGA-II that generates a solution to maximize the design

coherence and refactoring reuse from previous releases. JDeodorant [5] is an Eclipse

plugin to detect bad smells and apply refactorings. As JDeodorant supports a lower

number of refactoring types with respect to the ones considered by our tool, we restrict

our comparison with it to those refactorings. We used these two tools to evaluate the

relative benefits of our interactive features in helping developers identifying relevant

refactorings.

We preferred not to use measures such as anti-patterns or internal quality indi-

cators as proxies for estimating the relevance of refactorings since the developers’

manual evaluation already includes a review of the impact of suggested changes on

the quality. Furthermore, not all the refactorings that improve quality attributes are

relevant to the developers, which is one of the main motivations of this work. The

only rigorous way to evaluate the relevance of our tool is the manual evaluation of

the results by active developers. This manual evaluation score, MC, consists of the

number of relevant refactorings identified by the developers over the total number

of refactorings in the selected solution. Due to the subjective nature of refactoring

and the large size of considered systems, it is almost impossible to estimate the re-

call. There is no unique solution to refactor a code/design; thus, it is challenging to

construct a gold-standard for large-systems, which makes calculating the recall very
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challenging.

Participants were first asked to fill out a pre-study questionnaire containing six

questions. The questionnaire helped to collect background information such as their

role within the company, their programming experience, and their familiarity with

software refactoring. The list of questions of all the questionnaires and the obtained

results can be found in the online appendix. Although the vast majority of partici-

pants were already familiar with refactoring as part of their jobs and graduate studies,

all the participants attended a two-hour lecture on refactoring by the organizers of

the experiments. The details of the selected participants can be found in Table

6.2, including their programming experience in years, familiarity with refactoring,

etc. These participants were recruited based on our networks and previous collab-

orations with 4 industrial partners. They all had a minimum of 6 years experience

post-graduation and were working as active programmers with strong backgrounds

in refactoring, Java, and software quality metrics.

Each participant was asked to assess the meaningfulness of the refactorings rec-

ommended after using up to two of the five tools on up to two different systems, to

avoid a training threat to validity. The participants not only evaluated the suggested

refactorings but were asked to configure, run, and interact with the tools on the dif-

ferent systems. The only exceptions were related to the five participants from the

industrial partner, where they agreed to evaluate only their industrial software. We

assigned tasks to the participants according to the studied systems, the techniques

to be tested and developers’ experience. Each of the five tools has been evaluated at

least one time on each of the seven systems.

To answer RQ2, we measured the time (T ) that developers spent to identify the

best refactoring strategies based on their preferences and the number of refactorings

(NR). Furthermore, we evaluated the number of interactions (NI ) required on the

Pareto front for all interactive refactoring approaches. This evaluation will help to
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Table 6.2: Selected participants.
System #Subjects Prog. Exp. Avg. Refactoring Exp.

(Years)[Avg-Min-Max]
ArgoUML 5 [7.5 - 6 - 8.5] Very High
JHotDraw 5 [8 - 6.5 - 9] Very High
Azureus 5 [9.5 - 7.5 - 11.5] High
GanttProject 5 [7 - 6 - 8.5] High
UTest 5 [15.5 - 13 - 19.5] Very High
Apache Ant 5 [9 - 6 - 12.5] Very High
JFreeChart 5 [7 - 6 - 9.5] Very High

understand if we efficiently reduced the interaction effort. For this research ques-

tion, we decided to limit the comparison to only the interactive multi-objective work

of Mkaouer et al. [75, 6] and Alizadeh et al. [36] since they are the only ones of-

fering interaction with the users, and it will help us understand the real impact of

the decision space exploration (not supported by existing studies) on the refactoring

recommendations and interaction effort.

6.4.3 Parameter Setting

It is well known that many parameters compose computational search and machine

learning algorithms. Parameter setting is one of the longest standing grand challenges

of the field. We have used one of the most efficient and popular approaches for

parameter setting of evolutionary algorithms, which is Design of Experiments (DoE).

Each parameter has been uniformly discretized in some intervals. Values from each

interval have been tested for our application. Finally, we pick the best values for all

parameters. Hence, a reasonable set of parameter’s values have been experimented.

The stopping criterion was set to 100,000 evaluations for all optimization and

search algorithms to ensure fairness of comparison (without counting the number of

interactions since it is part of the users’ decision to reach the best solution based on

their preferences).

The parameters of the multi-objective algorithm are as follows: crossover proba-
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bility = 0.7; mutation probability = 0.4, where the probability of gene modification is

0.5. Furthermore, we used the maximum number of iterations = 1000 and convergence

threshold = 0.0001 for the GMM clustering phase.

6.4.4 Results

Results for RQ1. Figure 6.5 summarizes the manual validation results of our

DOIMR approach compared to the state of the art, as evaluated by the participants.

It is clear from the results that interactive approaches generated much more relevant

refactorings, as compared with the automated tools of Ouni et al. and JDeodor-

ant. Among the interactive approaches, DOIMR outperformed the other interactive

approaches of Mkaouer et al. and Alizadeh et al. which supports the idea that infor-

mation that the developer used from the decision space, such the code locations where

refactorings were applied and the refactorings frequency, was helpful. On average, for

all of our seven studied projects, 91% of the proposed refactoring operations were

considered to be useful by the subjects. The remaining approaches have an average

of 83%, 71%, 67%, and 56% respectively for Alizadeh et al. (interactive with objec-

tive space clustering), Mkaouer et al. (interactive multi-objective approach), Ouni et

al. (fully automated multi-objective approach) and JDeodorant (deterministic non-

search-based approach). The highest MC score is 100% for the Azureus and Gantt

projects, and the lowest score is 91% for the industrial system UTest. This lowest

score can be explained by the fact that the participants are very knowledgeable about

the evaluated system. The participants were not guided on how to interact with the

systems, and they mainly looked at the source code to understand the impact of

recommended refactorings.

We found that automated refactorings generate a lot of false positives. Both the

Ouni et al. and JDeodorant tools recommended a large number of refactorings com-

pared to the interactive tools, and many of them are not interesting for the context
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of the developers, and so the developers reject these refactorings, even though they

may be correct. For instance, the developers of the industrial partner rejected several

recommendations from these automated tools simply because they were related to

stable code or code fragments outside of their interests. The majority of them will

not change code out of their ownership as well. Furthermore, they were not interested

to blindly change anything in the code just to improve quality attributes. Compared

to the remaining interactive approaches, we found that some of the refactoring solu-

tions of DOIMR will never be proposed by Mkaouer et al. or Alizadeh et al. since

they are selected because of their extensive refactoring on specific code fragments

that developers may found essential to improve their quality based on the features

included in these classes. In fact, one of the main challenges of multi-objective search

is the noise introduced by sacrificing some objectives and trying to diversify the so-

lutions. Thus, the decision space exploration can help the developers know the most

diverse refactoring solutions among one preferred cluster in the objective space. Thus,

developers did not waste time on evaluating refactoring solutions that are similar but

related to entirely different code files.

To conclude, our DOIMR approach outperformed the four other refactoring ap-

proaches in terms of recommending relevant refactoring solutions for developers (RQ1).

Results for RQ2. Figures 6.6, 6.7, and 6.8 give an overview of the number of

refactorings for the selected solution, number of required interactions, and the time, in

minutes, using our tool, the interactive clustering approach of Alizadeh et al., and the

interactive multi-objective approach of Mkaouer et al. Based on the results of Figure

6.6, it is transparent that our approach significantly reduced the number of recom-

mended refactorings compared to the other interactive approaches while increasing

the manual correctness as described in RQ1. The highest number of refactorings was

observed on the industrial system with 32 refactorings using DOIMR, 48 using Al-

izadeh et al. and 72 refactorings using Mkaouer et al. This result may be explained
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Figure 6.5: Median manual evaluations, MC, on the 7 systems.

by the size and the quality of this system along with the fact that it was evaluated by

some of the original developers of UTest. The lower number of recommended refac-

torings using DOIMR, compared to the other interactive approaches, is related to the

elimination of the noise in multi-objective search not only in terms of objectives but

the relevant code locations to be refactored (decision space). It is normal to see fewer

refactorings when the search space is reduced to a smaller number of files, which was

the case of DOIMR.

Figure 6.7 shows that DOIMR required far fewer developer interactions than the

other interactive approaches. For instance, only 13 interactions were required to

modify, reject and select refactorings on Azureus using our approach, while 23 and

38 interactions respectively were needed for Alizadeh et al. and Mkaouer et al. The

reduction of the number of interactions is mainly due to the smaller number of solu-

tions to explore, after the selection of a preferred cluster in both the objective and

decision spaces.
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Figure 6.6: The median number of recommended refactorings, NR, of the selected
solution on the 7 systems.

The participants also spent less time to find the most relevant refactorings on

the various systems compared to the other interactive approaches, as described in

Figure 6.8. The execution time of our approach includes the execution of the multi-

objective search, both clusterings, and the different phases of interaction until the

developer is satisfied with a specific solution. The execution time of Alizadeh et al.

included all the steps of multi-objective search, the objective space clustering, and

the interactions while Mkaouer et al. included the multi-objective search and the user

interactions. Thus, it is natural that the main differences in the execution time can

be observed in the interaction effort. The average time of our approach is reduced

by over 40 minutes (70%) compared to Mkaouer et al. for the case of JHotDraw.

The reduction of the execution time is mainly explained by the rapid exploration of

fewer solutions after looking mainly to the most diverse (different) solutions in the

decision space of the preferred cluster in the objective space. In fact, our DOIMR

tool has more components (clustering at both objective and decision spaces) than
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Figure 6.7: The median number of required interactions (accept / reject / modify /
selection), NI, on the 7 systems.

Alizadeh et al. and Mkaouer et al. but the clustering at both spaces significantly

reduced the most time-consuming step (user interactions) since the clusterings, and

multi-objective search algorithms are quick and executed in few minutes (between 2

and 4 minutes).

6.5 Threats to Validity

Conclusion validity. The parameter tuning used in our experiments creates an

internal threat that we need to evaluate in our future work. We have used one of

the most efficient and popular approaches for parameter setting of evolutionary algo-

rithms, which is Design of Experiments (DoE). Each parameter has been uniformly

discretized in some intervals. Values from each interval have been tested for our ap-

plication. Finally, we chose the best values for all parameters. Hence, a reasonable

set of parameter values have been studied. Another conclusion threat is the number

of interactions with the developers since we did not force them to use the same max-
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Figure 6.8: The median execution time, T, in minutes on the 7 systems.

imum number of interactions which may sometimes explain the out-performance of

our approach. However, the participants were given the same amount of time to use

the tool (limited to three hours).

Internal validity. The variation of correctness and speed between the different

groups when using our approach and other tools can be an internal threat since the

participants have different levels of experience. To counteract this, we assigned the

developers to different groups according to their programming experience to reduce

the gap between the groups, and we also adopted a counter-balanced design. Re-

garding the selected participants, we took precautions to ensure that our participants

represented a diverse set of software developers with experience in refactoring, and

also that the groups formed had similar average skill sets in terms of refactoring area.

Construct validity. The developers involved in our experiments may have had

divergent opinions about the relevance of the recommended refactorings, which may

impact our results. However, some of the participants are the original programmers of

the industrial system, which may reduce the impact of this threat. Unlike fixing bugs,

refactoring is a subjective process, and there is no unique refactor solution; thus, it is
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difficult to construct a gold-standard for large systems which makes calculating recall

challenging. Does the deviation from an expected refactoring solution mean that the

recommendation is wrong or simply another way to refactor the code?

External validity. The first threat is the limited number of participants and eval-

uated systems, which threatens the generalizability of our results. Besides, our study

was limited to the use of specific refactoring types and quality attributes. Further-

more, we mainly evaluated our approach using classical algorithms such as NSGA-II,

but other existing metaheuristics can be used. Future replications of this study are

necessary to confirm our findings.

6.6 Conclusion

In this chapter, we presented a novel way to enable interactive refactoring by

combining the exploration of quality improvements (objective space) and refactor-

ing locations (decision space). Our approach helped developers to quickly explore

the Pareto front of refactoring solutions that can be generated using multi-objective

search. The clustering of the decision space helped the developers identify the most

diverse refactoring solutions among ones located within the same cluster in the objec-

tive space, improving some desired quality attributes. To evaluate the effectiveness

of our tool, we conducted an evaluation with human subjects who evaluated the tool

and compared it with the state-of-the-art refactoring techniques. Our evaluation re-

sults provide evidence that the insights from both the decision and objective spaces

helped developers to quickly express their preferences and converge towards relevant

refactorings that met the developers’ expectations.

Future work idea can be automatically learning from user interactions for fast

convergence to good refactoring solutions. Besides, the experiments can be expanded

with more systems and participants.
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CHAPTER VII

Intelligent Refactoring Bot for Continuous

Integration

7.1 Introduction and Problem Statement

Refactoring, defined as a set of program transformations intended to improve the

system design while preserving the desired behaviour, is becoming a critical software

maintenance activity, especially with the growing complexity of software systems

[156]. A recent study by the US Air Force Software Technology Support Center

(STSC) shows that restructuring the code of a large project reduced developers’

time by over 60% when introducing new features. However, refactoring is expensive.

Developers take an average of 6 weeks to refactor the design of medium-size projects

(around 30K LOC) [74]. There has been much work done on various techniques and

tools for software refactoring [157, 158, 159, 4, 160] and these approaches can be

classified into three main categories: manual, semi-automated and fully-automated

approaches.

In manual refactoring, the developers refactor with no tool support except the

execution part, identifying the parts of the program that require attention and per-

forming all aspects of the code transformation by hand. It may seem surprising that

a developer would eschew the use of tools in this way, but Murphy-Hill et al. [71]
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found in their empirical study of the developers’ usage of the Eclipse refactoring tool-

ing that in almost 90% of cases the developers performed refactorings manually and

did not use automated refactoring tools. Kim et al. [88] confirmed this observation,

finding that the interviewed developers from Microsoft preferred to perform refactor-

ing manually in 86% of cases. Despite its apparent popularity, manual refactoring is

very limited. However, several studies have shown that manual refactoring is error-

prone, time-consuming, not scalable and not practical for extensive application of

refactorings to fix major quality issues [122, 161, 158]. Although developers are doing

refactorings manually, the surveys confirmed that they are not frequently refactoring

their code because of the above limitations.

In fully-automated refactoring, developers provide their code as input, and the

tool will provide refactoring recommendations automatically [157]. The majority of

existing automated refactoring tools assume that developers want to fix code smells

[162, 163, 164]. This approach is appealing, in that it is a complete solution and

requires little developer effort, but it suffers from several serious drawbacks as well.

First, the recommended refactoring sequence may change the program design radi-

cally, and this is likely to cause the developer to struggle to understand the refactored

program, and they lose any control of the introduced code changes. Second, it lacks

flexibility since the developer has to either accept or reject the entire refactoring so-

lution. In fact, developers intentions may not be, most of the time, fixing code smells

or the majority of them. Third, it fails to consider the developer perspective, as the

developer has no opportunity to provide feedback on the refactoring solution as it

is being created. Furthermore, as development must halt while the refactoring pro-

cess executes, fully-automated refactoring methods are not useful for floss refactoring

where the goal is to maintain good design quality while modifying existing function-

ality. The developers have to accept the entire refactoring solution even though they

prefer, in general, step-wise approaches where the process is interactive and they have

189



control of the refactorings being applied [25]. Finally, one of the significant limitations

of existing automated refactoring tools is the high configuration effort required to in-

tegrate them into the current development pipeline of the team/company. In fact,

several companies are now using continuous integration and DevOps, which make the

adoption of current automated refactoring tools very challenging.

Recently, few interactive refactoring techniques were proposed [75, 79, 36, 6]. They

provide to the developers the flexibility to approve or reject the recommended refactor-

ing that can improve the quality. However, this interaction process is time-consuming,

and developers get frustrated from providing feedback on files that are out of their

interests/ownership or navigating through many refactoring recommendations/strate-

gies to improve several quality metrics.

To address all the above challenges, we propose the first attempt to design and

build an intelligent refactoring bot as a GitHub app that can be easily integrated into

any project repository on GitHub. The bot can be customized to monitor the quality

in the repository after some pull-requests repeatedly or automatically executed when

the quality analysis shows a significant decrease. The bot analyzes the files changed

during that pull request(s) to identify refactoring opportunities using a set of quality

attributes then it will find the best sequence of refactorings to fix the quality issues if

any. The bot recommends all these refactorings through an automatically generated

pull-request. The developer, whenever available without interrupting the development

pipeline, can review the recommendations, and their impacts in a detailed report

and select the code changes that he wants to keep or ignore. After this review, the

developer can close and approve the merge of the bot’s pull request. We quantitatively

and qualitatively evaluated the performance and effectiveness of RefBot by a survey

conducted with experienced developers who used the bot on both open source and

industry projects.

The primary contributions of this chapter can be summarized as follows:
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1. This chapter introduces a novel way to refactor software systems using au-

tonomous intelligent software bots but still considering developers interaction

to review the generated pull-request.

2. We propose an implementation of the refactoring bot as a Git app that can be

quickly adopted in a continuous integration environment or DevOps process.

3. The chapter reports the results of an empirical study on an implementation

of our approach. The obtained results provide evidence to support the claim

that, on average, our bot is more efficient than existing automated refactoring

techniques based on a benchmark of six open source systems and one indus-

trial project. This chapter also evaluates the relevance and usefulness of the

suggested refactorings for software developers in improving the quality of the

modified files in several pull-request.

The remainder of this chapter is structured as follows. Section 7.2 describes

our intelligent refactoring bot, while the results obtained from our experiments are

presented and discussed in Section 7.3. Threats to validity are discussed in Section

7.4. Finally, in Section 7.5, we summarize our conclusions and present some ideas for

future work.

7.2 Approach

We developed the ”Refactoring Bot” (RefBot) as a GitHub App using which the

workflow can be automated, and the developers can integrate the bot easily to any

repository of their interest. The overview of the Refactoring bot is shown in Figure

7.1.
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Figure 7.1: The overview of RefBot Pipeline.

7.2.1 RefBot Parameters Setting

The first step of utilizing the Refactoring bot is to install its GitHub application

on organizations or user accounts and to set up the appropriate permissions. As the

installation page in Figure 7.2 shows, the user can select the repositories. Therefore,

RefBot is granted access to the specific repositories via the GitHub API. RefBot has

read and write permissions to ”Pull Requests” and ”WebHook”, and also is subscribed

to ”Pull Requests” and its related ”reviews and comments” events.

After this step, RefBot automatically sets up a web-hook for the developer’s profile

which means the permitted activities on the selected repositories will be posted as

JSON-formatted payloads to the designated external server.

7.2.2 Processing a Pull Request

RefBot continuously monitors the actions performed on the repository by checking

the subscribed payloads delivered to its server. In our current configuration, opening

a new pull request action triggers the RefBot’s workflow.
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Figure 7.2: Installing RefBot on a repository.

First, the commits in the pull request are compared to the commit at the point

where the branch is created to extract the list of all files changed by the pull request.

Then, two versions of the files, before and after the pull request, are downloaded to

the external server for further processing and modifications.

By processing only the changed files by the pull request, we ensure that the devel-

opers are provided with the reports and refactorings limited to the codes they recently

modified. This feature facilitates the evaluation of recommended refactorings and is

aligned with the idea of maintaining/improving the code quality in the continuous

development process.
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7.2.2.1 Calculating Quality Changes

The RefBot analyses the code quality of the extracted files. For this purpose, we

adopted QMOOD quality assessment methodology, which is a hierarchical model for

object-oriented designs [46]. This model is described in Subsection 2.2.3 and 2.2 and

2.3.

QMOOD model comprises of four levels from which we utilized the first level,

Design Quality Attributes, to measure code quality changes of the pull request.

It is shown that QMOOD metrics model is highly effective in predicting software

defects in both traditional and iterative (like agile) software development processes

[165].

Since the QMOOD metrics are not limited to a specific range, it is difficult for

the user to interpret their values. Therefore, we built a software quality benchmark

dataset consisting of the quality metrics calculated for over 100 open-source and

industrial software projects. Then, to summarize all six quality attributes, we defined

a super metric called Total Quality Index (TQI) as the linear summation of the

metrics.

Finally, we compared the quality metrics and TQI of a new project/file with the

range of the benchmark and assigned a quality label (A, B, C, and D) based on the

quartile of a value.

This method facilitates the analysis of quality reports and gives meaning to the

metrics in terms of the quality level (low/high) of software compared to other standard

projects.

7.2.2.2 Optimization Using Refactoring

Finding a refactoring solution can be a challenging task since a huge search space

requires to be explored. This search space is the outcome of the number of refactoring

operations and the importance of their order and combination. To search this space,
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we employed an adaptation of the NSGAII [127] to discover a trade-off between

multiple quality attributes.

NSGA-II is a multi-objective evolutionary algorithm operating on a population of

candidate solutions that are evolved toward the Pareto-optimal solution set. NSGA-

II uses an explicit diversity-preserving strategy together with an elite-preservation

strategy. [127].

A refactoring solution is designed as a vector that consists of an ordered sequence

of multiple refactoring operations. Each refactoring operation includes a refactoring

action and its specific controlling parameters. The refactoring operations considered

in RefBot cover the most used operations selected from different categories: ”Moving

features”, ”Data organizers”, ”Method calls simplifiers”, and ”Generalization modi-

fiers”. These refactorings are listed in Table 2.1.

Refactoring operations are created or modified randomly during the population

initialization or mutation. Also, the size of a solution vector which is the number of

included refactoring operation is randomly selected between lower and upper bound

values. Therefore, it is crucial to examine the feasibility of a solution using related

pre-conditions and post-conditions [10]. These conditions ensure that the program

will not break while the behaviour is preserved by the refactoring.

To evaluate a candidate refactoring solution, a fitness function is defined to esti-

mate its goodness. In order to measure the impact of a refactoring solution on the

software project, we utilized six QMOOD quality attributes. The relative change of

each quality attribute after applying the refactoring solution to the software system

is considered as the fitness function and is expressed as:

FitnessFunctioni =
AQMafter

i (CC)− AQM before
i (CC)

AQM before
i (CC)

(7.1)

where AQM before
i and AQMafter

i are the averages of the quality metric i before and

after applying a refactoring solution over all changed classes CC, respectively.
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By defining the fitness function in this way, we aim to find the solutions capable

of improving the quality attributes of the pull request.

Additionally, we constraint the search process to the solutions in which at least a

”class” controlling parameter is in the set of changed files in the pull request. For this

purpose, we modified a variation operator of the search algorithm called ”Selection

Operator”. Variation operators help to navigate through the search space and to

maintain a good diversity in the population. Parent selection is a crucial step that

directly affects the convergence rate. We added the controlling parameter constraint

to the selection process.

After the execution of the refactoring search algorithm is finished, the instruction

of applying each refactoring operation is added to the related files as a distinctive

marker format similar to the Git conflict marker. Finally, RefBot creates a new pull

request to introduce the changes to the repository.

7.2.3 Developer’s Interaction

One of the main advantages of RefBot is to include the developer in the refactoring

process loop. When the internal workflow of RefBot on a pull request is completed,

the developer is notified by email and also via GitHub checks API in the same page

of the pull request. These notifications contain a link to the report page of the pull

request where the users can analyze the results and give feedback to the recommended

refactorings.

There are three levels of reports generated for each pull request and provided for

the user:

• Solution Report: contains the quality history of the pull request and the impact

of the recommended solution on the changed files.

• File Report: includes the list of refactorings applied to the selected file and the
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detailed quality history and impact of refactoring.

• Refactoring Report: represents the instruction of a single refactoring and the

high-level code abstraction of source and target classes which are transformed

by the operation.

Analyzing these simple yet effective reports give the ability of swift detection of

required improvements based on individual preferences.

The developer can interact with the refactoring results of RefBot with three ac-

tions. Each refactoring can be ”rejected”, ”applied with a code marker”, or ”applied

automatically”.

By rejecting a refactoring, it is not considered in the pull request. Applying with

a code marker adds the refactoring instruction as a marker inside the related files.

Therefore, the developer can manually implement the required changes. Last, apply-

ing automatically, gives permission to RefBot to change and apply the refactorings

to the source code itself.

The reason we have both manual and automated refactoring is that sometimes

the developers prefer to take control of the refactoring process and the changes in

the structure of their code either for the whole software or a specific set of important

classes/files.

When the developer is satisfied with the feedback, he/she can update the previ-

ously created RefBot’s pull request.

RefBot can be combined with continuous integration tools like TravisCI, Jenkins,

or CircleCI to identify the problems that may occur during the automated refactoring

by running integration tests.

7.2.4 Configuration and Customization

RefBot is highly customizable in terms of setting its internal workflow parameters

and execution management.
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Figure 7.3: The quality table in solution report page.

Sometimes a developer is not willing to be disturbed for every new pull request.

Therefore, RefBot can be configured to monitor the repository at a specific time

interval or even can be triggered manually for a specific pull request.

Furthermore, users can enable/disable different refactoring types and quality at-

tributes. In this way, they can control the optimization process and limit the search

to the refactoring operations they are willing to apply and to the quality attributes

they prefer to improve.

Additional materials such as the default parameter settings for NSGA-II and video

demo of RefBot can be found at this publication’s web page 1.

7.2.5 Running Example

In this section, to illustrate the process of RefBot and its performance in refac-

toring a pull request, we provide a running example on a real open-source software

system.

We considered a pull request from ”atomix” software repository and manually

triggered RefBot to process it. Figure 7.3 represents part of the file quality table in

the solution report page, which is generated for the selected pull request. It shows the

TQI grade for the changed files before and after creating the pull request alongside

1https://sites.google.com/view/ase2019refbot
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Figure 7.4: The quality bar charts in file report page for all six quality attributes.

with the impact of the recommended refactoring solution on the quality. As an

example, the quality of the second file is degraded from 4.05 (B) to 1.18 (C). The

solution which RefBot found for the pull request contains seven refactoring operations

applied to this file. These refactorings could improve the file quality to 5.72 (B).

The user can view the detailed report page for each file. The bar charts in the

file report page are provided in Figure 7.4. It shows the quality changes after the

pull request and the refactoring solution impact for each of the six quality attributes,

individually. We can observe that the recommended refactoring solution improves 5

out of 6 quality attributes for the file compared to the pull request quality.

Another section in the file report page is shown in Figure 7.5. It lists the refac-

toring operations from the recommended solution which have a controlling parameter

applied to the selected file. The developer can interact with this list and reject or

apply (code mark/auto options are as a popup window) each of the refactorings.

Additionally, the developer can further investigate each of the refactorings by

viewing the refactoring report page. Figure 7.6 represents the abstract code changes

after applying the selected refactoring on the source and target classes. This report

can facilitate the decision making of users and help them to understand the changes

in the structure introduced by a specific refactoring.

When a developer completes the interaction and analysis, the pull request is up-
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Figure 7.5: The list of refactoring operations recommended for a single file.

Figure 7.6: The code abstraction of source and target classes after applying a specific
refactoring.

dated in the software repository, including the feedbacks on the refactorings. For any

refactoring that applied as a code marker, the instructions are added to the top of

the related files. Figure 7.7 depicts an example of the format of these markers.
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Figure 7.7: The refactoring instructions related to a single file are added to the source
code as a marker style.

7.3 Validation

We define three categories of research questions to evaluate RefBot and compare

it to state-of-the-art techniques for automated refactoring:

• RQ1: Quality improvement. To what extent can our refactoring bot improve

the quality of software systems as compared to existing automated refactoring

techniques? In RQ1, we use the internal quality attributes [46] and code smells

as proxies to assess the quality improvement brought by the refactoring oper-

ations generated by the RefBot for a set of selected pull-requests on different

systems. We compare the performance of our approach (MO-MFO) with two,

state-of-the-art, refactoring techniques: Ouni et al. [2] and JDeodorant [5].

Ouni et al. [2] proposed an automated multi-objective refactoring formulation

based on NSGA-II using an aggregation of quality metrics while reducing the

number of refactorings. JDeodorant [5] is an Eclipse plugin able to detect code

smells and automatically recommend refactorings to fix them. JDeodorant is

not based on the use of heuristics search. As JDeodorant supports a lower num-

ber of refactoring types with respect to the ones we considered, we restrict our
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comparison with it to these refactorings. We have also limited the comparison

to the changed files in the pull-requests.

• RQ2: Refactoring meaningfulness. Are the refactoring recommendations

produced by the RefBot meaningful from a developer’s point of view? How do

they compare with those generated by existing automated refactoring techniques?

Using antipatterns or internal quality indicators as proxies for code quality (as

we do in RQ1) has substantial limitations. For this reason, in RQ1, we survey 25

developers asking for their opinion about the meaningfulness of the refactorings

recommended by our technique and by the automated refactoring competitive

technique [2]. In RQ2, we do not compare with JDeodorant since we preferred to

focus on the most similar competitive technique in the literature to better study

the advantages brought by the refactoring bot. The main substantial difference

between RefBot and the approach by Ouni et al. [2] is indeed the interactive

and incremental approach of the refactoring bot to focus on pull-requests.

• RQ3: Industrial validation. To what extent can RefBot support of refac-

toring in a real-world continuous integration setting? We integrated a beta

version of Refbot into a previously licensed refactoring tool and asked one of

our industrial partners to use it for a limited period of 3 business days (with

six developers involved) on their regular pull-request after installing the bot on

their repository. During this period, we checked the ability of RefBot to select

relevant refactorings for the recent pull-requests introduced by the programmers

during their daily activities.

The context of our study is represented by the seven systems in Table 7.1. We

selected these seven systems for our validation because they range from medium to

large-size projects and have been actively developed over the past 10 years. JDI2 is

2Company anonymized for double-blind.
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Table 7.1: Statistics of the studied systems.
System Release #classes #smells KLOC
Xerces-J v2.7.0 991 91 240
JHotDraw v7.5.1 585 25 21
JFreeChart v1.0.18 521 72 170
GanttProject v1.11.1 245 49 41
JDI v5.8 638 88 247
Apache Ant v1.8.2 1191 112 255
Rhino v1.7.5 305 69 42

an industrial project for which 6 of the developers involved in the JDI maintenance

agreed to take part in our experiments.

Table 7.1 provides information about the size of the subject systems (in terms of

the number of classes and KLOC), and the number of code smells affecting them as

detected with the rules defined in [97].

7.3.1 Data Collection

We present the data collection and analysis process grouped by research question

category.

To address RQ1, we calculated NF as the percentage of code smells fixed by the

refactoring solutions generated by the three considered approaches, over the total

number of code smells which are affecting recent pull-requests of the subject systems.

We selected the latest ten pull-requests for each of the open-source systems while a

total of 8 pull-requests were opened during the three business days of the RefBot

trial by our industrial partner. The detection of code smells before/after applying

a refactoring solution was performed with the rules defined in [97]. The considered

code smells are Blob, Feature Envy (FE), Data Class (DC), Spaghetti Code (SC),

Functional Decomposition (FD), and Shotgun Surgery (SS).

Since the concept of code smell is very subjective (i.e., different developers may

have different opinions on whether a code component is smelly or not) [166], we

also use more objective metrics to assess the quality of the refactorings generated by
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the experimental approaches. We adopted the G metric based on QMOOD [46] that

estimates the quality improvement of the system by comparing the quality before and

after refactoring independently from the number of fixed design defects. Six quality

factors are considered by QMOOD : reusability, flexibility, extendibility, functionality,

understandability and effectiveness. All of them are formalized using a set of quality

metrics. Hence, the total gain in quality G for each of the considered QMOOD quality

attributes qi before and after refactoring can be estimated as:

G =

∑6
i=1 Gqi

6
where Gqi = q′i − qi (7.2)

where q′i and qi represent the value of the quality attribute i respectively after and

before refactoring.

To answer RQ2 we asked 25 developers to evaluate the meaningfulness of the

refactorings recommended by RefBot and by the approach of Ouni et al. [2] for

pull-requests on the seven subject systems. Before explaining the study design for

RQ2, it is important to remember that both the experimental techniques generate

output sequences of refactoring operations that make sense when considered together

rather than when looking at them in isolation. However, it is not an option to ask

a developer to assess the meaningfulness of all the refactoring operations generated

for a given system. For this reason, we started by filtering for each system the

sequences of refactoring operations impacting the files of a set of pull-requests to make

a fair comparison between both tools. Then, the developers manually evaluated the

outcomes of both tools for each pull-request.

Each participant was then asked to assess the meaningfulness of the sequences of

refactoring operations. Since on six of the seven systems (all but JDI) we involved

external developers (i.e., professional developers who did not take part in the devel-

opment of the subject system), we made sure that each participant only evaluated

refactoring sequences recommended by the two competitive techniques on one specific
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system (e.g. JHotDraw). The rationale for such a choice is that an external developer

would need time to acquire a system’s knowledge by inspecting its code, and we did

not want participants to comprehend the code from four different systems since this

would introduce a strong tiring effect in our study.

To answer RQ3, the six developers of the JDI project evaluated the refactoring

sequences generated for that system, since here we wanted to exploit their experience

as original developers of the system. They used RefBot, as a beta version tool, during

a period of 3 days instead of a refactoring tool that we licensed to their company in

the past. Our industrial partner was motivated to try out RefBot since they are

interested in upgrading their current quality assessment tool to another one that can

support DevOps like our RefBot. They also expressed a concern about the lack of

customization and high configuration effort/training required by existing automated

refactoring tools.

To support such a complex experimental design, we built a Java Web-app that

automatically assigns the refactored pull-requests to be evaluated to the developers.

The Web-app showed each participant one sequence of refactoring operations on a

single page, providing the developer with (i) the list of refactorings (e.g. move method

mi to class Cj, then push down field fk to subclass Cj, etc. ), (ii) the code of the

classes impacted by the sequence of refactorings, and (iii) the complete code of the

system subject of the refactoring with the description of the opened pull-request

and the generated refactoring pull-request by the refactoring bot. The web page

showing the refactoring sequence asked participants the question Would you apply

the proposed refactorings? with a choice between no (i.e., the refactoring sequence is

not meaningful), maybe (i.e., the refactoring sequence is meaningful, but the quality

improvement it brings does not justify changing the code), or yes (i.e., the refactoring

sequence is meaningful and should be implemented). Moreover, participants were

allowed to leave a comment justifying their assessment (this was optional). The
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Table 7.2: Participants involved in RQ2.
System #Partic. Avg. Prog. Avg. Java Avg. Refact.

Experience Experience Exp.(1-5)
Xerces-J 4 11 9 4.0 (high)
JHotDraw 4 10 7 3.0 (medium)
JFreeChart 4 10 7 3.3 (medium)
GanttProject 4 9 8 3.5 (high)
JDI 6 14 12 4.5 (very high)
Apache Ant 3 9 7 3.7 (high)

Web-app was also in charge of:

Balancing the evaluations per system. We made sure that each system received

roughly the same number of participants evaluating the different refactored pull-

requests (files associated/modified by these pull-requests) by the two approaches.

Keeping track of the time spent by participants in the evaluation of each refactoring

sequence/refactoring pull-request. The time spent by participants was counted in

seconds since the moment the Web-app showed the refactoring on the screen to the

moment in which the participant submitted their assessment. This feature was done to

remove participants from our data set who did not spend a reasonable amount of time

in evaluating the refactorings. We consider less than 60 seconds a reasonable threshold

to remove noise (i.e., we removed all evaluation sessions in which the participant spent

less than 60 seconds in analyzing a single refactoring sequence).

Collecting demographic information about the participants. We asked their pro-

gramming experience (in years) overall and in Java, and a self-assessment of their

refactoring experience (from very low to very high).

Table 7.2 shows the participants involved in our study and how they were dis-

tributed in the evaluation of the refactoring sequences generated on the seven sys-

tems.

For the three days industrial validation, we integrated a routine in our RefBot to

record all the actions of the 6 developers including the number of applied and rejected
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refactorings, number of selected test cases, the introduced code changes and commit

messages.

7.3.2 Experimental Setting and Data Analysis

For each algorithm and each system, we performed a set of experiments using

several population sizes: 50, 100, 200, and 300. Then, we specified the maximum

chromosome length (maximum number of operations/test cases per solution). The

resulting vector length is proportional to the number of refactorings that are con-

sidered, and the size of the program to refactor. Based on those considerations, the

upper and lower bounds on the chromosome length were set to 10 and 350, respec-

tively. The stopping criterion was set to 10,000 fitness evaluations for all algorithms

to ensure fairness. In order to have significant results, for each couple (algorithm,

system), we use the trial and error method [134] for parameter configuration.

Concerning RQ2, we report the percentage of refactoring sequences assessed with

a no, maybe, or yes by developers for each treatment (i.e., RefBot and Ouni system

[2]). Then, we discuss interesting comments left by developers when justifying their

assessment.

7.3.3 Results

RQ1: Quality improvement. Figures 7.8 and 7.9 provide the percentage of

fixed code smells (NF) and the quality gain (G) based on the QMOOD model, re-

spectively. The average NF on the seven systems is 91% with peaks of ∼96% for

JHotDraw and GanttProject.

The recommended refactorings also improved the G metric values (Figure 7.9) of

the seven systems. The average quality gain for the Rhino system was the highest

among the seven systems with 0.43. The improvement in the quality gain shows that

the recommended refactorings help to optimize different quality metrics. Besides,
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Figure 7.8: Median percentage of fixed code smells (NF) on the different pull-requests
of the seven systems.

Figure 7.9: Median quality gain (G) on the different pull-requests of the seven sys-
tems.

the performance of RefBot is superior as compared to the competitive refactoring

techniques [2, 5], even though the difference in terms of fixed code smells is not that

marked (Figure 7.8). This latter result is also due to the fact that RefBot does not

only recommend refactoring operations aimed at removing code smells it also focuses
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Table 7.3: RQ2: Would you apply the proposed refactorings of the generated refac-
toring pull-request?

Approach no maybe yes
RefBot 4/68 (5%) 11/68 (16%) 53/68 (77%)
Ouni et al. [2] 29/83 (34%) 41/83 (49%) 13/83 (15%)

on refactoring classes not affected by code smells but were changed during recent pull-

requests. For example, in a manual investigation of the refactorings recommended by

RefBot for JFreeChart, we found that 17 of the impacted classes do not exhibit any

criticality as indicated by code smells and they were still improved in terms of quality

attributes.

RQ2: Refactoring meaningfulness. Table 7.3 summarizes the manual refac-

toring evaluation results obtained from the 25 participants. Note that there is a slight

deviation between the total number of refactorings evaluated by the two approaches

(68 vs 83) since we did not consider for the data analysis the evaluations in which

participants spent less than 60 seconds to assess the meaningfulness of the refactoring

sequence under analysis and also the approach of Ouni et al. tends to generate much

more refactorings on the analyzed files from the pull-requests.

The analysis of the quality by the Refactoring Bot improved the relevance of the

recommended refactorings compared to the fully automated multi-objective approach.

Indeed, the percentage of meaningful recommendations (i.e., the sum of the maybe

and yes answers) is much better for RefBot comparing to Ouni et al. (94% for RefBot

and 66% for Ouni et al. ). The percentage of refactorings that participants believe

must be applied (i.e., yes answers) is significantly higher for Refbot as well (77% vs

15%).

By looking at the comments left by participants when justifying their assessment,

four out of the six original developers of the JDI system highlighted in their comments

for three refactoring sequences that they found the refactorings relevant because it is

improving the modularity of a class that they frequently modify in all the most recent
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pull-requests. For example, one of the developers wrote in a comment: “That is a

very good recommendation, I spent days working on this class recently there, so I like

this move method very much and extract sub-class. It will improve the reusability a lot

as highlighted by the explanations of the bot”. We found this comment as important

qualitative evidence of the value of our refactoring bot in terms of analyzing the

recently closed pull-requests to identify changed files and fix the identified quality

issues in these files.

RQ3: Industry validation. Figures 7.8 and 7.9 summarize the results of deploy-

ing our RefBot during 3 business days to our industrial partner on the JDI repository.

The six developers used the bot as part of their daily programming activities instead

of a previously licensed refactoring tool. The tool was deployed as a Git app that con-

nects automatically to a private GitHub repository whenever some code changes are

introduced by the developers to check for refactorings and generate a new pull-request

for the review of developers.

Overall, the achieved results confirm the effectiveness of our bot to generate ef-

ficient refactoring pull-requests. We found that the developers approved 9 out of 11

refactoring pull-requests generated by the bot during the three days. For the two re-

maining pull-requests, we found that a total of 7 out of 11 refactorings were approved.

The achieved results confirm the basic intuition behind this work, showing that de-

velopers are more motivated to apply refactorings when the tool is easy to integrate

within their development pipeline. The six developers also confirmed that they feel

more comfortable in applying refactorings due to the high level of control proposed by

the bot to review the generated pull-request which gives them more confidence and

trust to the tool. This may explain the reason why a good number of recommended

refactorings were applied.
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7.4 Threats to Validity

Our refactoring bot mainly focuses on the recent pull-requests, but developers

may have different priorities based on their current context. However, the developers

can modify the configuration of our bot to focus on commits, branches, specific files

or developers’ contributions. Another internal threat is related to the used quality

attributes since developers may want to express different preferences than QMOOD,

or they want to tune them based on their needs or how critical is the code.

Construct validity is concerned with the relationship between theory and what is

observed. To evaluate the results of our approach, we selected a set of pull-requests

when comparing with other techniques, but may perform better on other pull-requests

where the quality of them are different.

External validity refers to the generalize-ability of our findings. We performed our

experiments on open-source systems belonging to different domains, and one indus-

trial project, by involving participants in the evaluations of the refactoring operations.

However, we cannot assert that our results can be generalized to other applications,

and other developers. Future replications of this study are necessary to confirm our

findings.

7.5 Conclusion

We presented a first attempt to propose an intelligent software refactoring bot,

as GitHub app, that can submit a pull-request to refactor recent code changes. The

salient feature of the proposed bot is that it incorporates interaction support, via our

Web app, hence allowing developers to approve or modify or reject the applied code

refactoring. The refactoring bot also provides support to explain why the refactorings

are applied by quantifying the quality improvements. To evaluate the effectiveness of

our technique, we applied it to four open-source and one industrial projects compar-

211



ing it with state-of-the-art approaches. Our results show promising evidence on the

usefulness of the proposed interactive refactoring bot. The participants highlighted

the high usability of the bot in terms of easy integration with their development

environments with the least configuration effort.

Future work will involve validating our technique with additional refactoring types,

programming languages, quality issues and participation from practitioners to inves-

tigate the general applicability of the proposed methodology.

212



CHAPTER VIII

Conclusion

Refactoring is nowadays widely adopted in the industry because bad design deci-

sions can be very costly and extremely risky. On the one hand, automated refactoring

does not always lead to the desired design. On the other hand, manual refactoring

is error-prone, time-consuming and not practical for radical changes. Thus, recent

research trends in the field focused on integrating developers feedback into automated

refactoring recommendations because developers understand the problem domain in-

tuitively and may have a clear target design in mind. However, this interactive process

can be repetitive, expensive, and tedious since developers must evaluate recommended

refactorings, and adapt them to the targeted design especially in large systems where

the number of possible strategies can grow exponentially.

The features and improvements that were delivered in this dissertation and the

results that were achieved are summarized in this chapter. In addition, the suggested

possible improvements to the proposed refactoring approaches are discussed.

8.1 Summary

In Chapter I and Chapter II, we defined the problem and the challenges of code

refactoring, the contributions of this thesis, required background (including multi-

objective optimization, software refactoring, code quality, etc. ), and state-of-the-art
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and related works to our approaches.

In Chapter III, we proposed a refactoring recommendation approach that dy-

namically adapts and interactively suggests refactorings to developers and takes their

feedback into consideration. Our approach uses NSGAII to find a set of good refac-

toring solutions that improve software quality while minimizing the deviation from

the initial design. These refactoring solutions are then analyzed to extract interesting

common features between them such as the frequently occurring refactorings in the

best non-dominated solutions.

Based on this analysis, the refactorings are ranked and suggested to the devel-

oper in an interactive fashion as a sequence of transformations. The developer can

approve, modify or reject each of the recommended refactorings, and this feedback

is then used to update the proposed rankings of recommended refactorings. After a

number of introduced code changes and interactions with the developer, the inter-

active NSGA-II algorithm is executed again on the new modified system to repair

the set of refactoring solutions based on the new changes and the feedback received

from the developer. We evaluated our approach on a set of eight open source systems

and two industrial projects provided by an industrial partner. Statistical analysis of

our experiments shows that our dynamic interactive refactoring approach performed

significantly better than four existing search-based refactoring techniques and one

fully-automated refactoring tool not based on heuristic search.

In Chapter IV, we proposed an interactive approach combining the use of multi-

objective and unsupervised learning to reduce the developer’s interaction effort when

refactoring systems. We generate, first, using multi-objective search different pos-

sible refactoring strategies by finding a trade-off between several conflicting quality

attributes. Then, an unsupervised learning algorithm clusters the different trade-off

solutions, called the Pareto front, to guide the developers in selecting their region

of interests and reduce the number of refactoring options to explore. The feedback

214



from the developer, both at the cluster and solution levels, are used to automatically

generate constraints to reduce the search space in the next iterations and focus on

the region of developer preferences. We selected 14 active developers to manually

evaluate the effectiveness our tool on 5 open source projects and one industrial sys-

tem. The results show that the participants found their desired refactorings faster

and more accurate than the current state of the art.

Refactoring studies either aggregated quality metrics to evaluate possible code

changes or treated them separately to find trade-offs. For the first category of work,

it is challenging to define upfront the weights for the quality objectives since devel-

opers are not able to express them upfront. For the second category of work, the

number of possible trade-offs between quality objectives is large which makes devel-

opers reluctant to look at many refactoring solutions.

Therefore, in Chapter V, we proposed, for the first time, a way to convert multi-

objective search into a mono-objective one after interacting with the developer to

identify a good refactoring solution based on his preferences. The first step consists

of using a multi-objective search to generate different possible refactoring strategies

by finding a trade-off between several conflicting quality attributes. Then, an unsu-

pervised learning algorithm clusters the different trade-off solutions, called the Pareto

front, to guide the developers in selecting their region of interests and to reduce the

number of refactoring options to explore. Finally, the extracted preferences from the

developer are used to transform the multi-objective search into a mono-objective one

by taking the preferred cluster of the Pareto front as the initial population for the

mono-objective search and generating an evaluation function based on the weights

that are automatically computed from the position of the cluster in the Pareto front.

Thus, the developer will just interact with only one refactoring solution generated

by the mono-objective search. We selected 32 participants to manually evaluate the

effectiveness of our tool on 7 open source projects and one industrial project. The
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results show that the recommended refactorings are more accurate than the current

state of the art.

Due to the conflicting nature of quality measures, there are always multiple refac-

toring options to fix quality issues. Thus, interaction with developers is critical to

inject their preferences. While several interactive techniques have been proposed,

developers still need to examine large numbers of possible refactorings, which makes

the interaction time-consuming. Furthermore, existing interactive tools are limited

to the ”objective space” to show developers the impacts of refactorings on quality at-

tributes. However, the “decision space” is also important since developers may want

to focus on specific code locations.

To give developers more insight about the decision space, in Chapter VI, we

proposed an interactive approach that enables developers to pinpoint their preference

simultaneously in the objective (quality metrics) and decision (code location) spaces.

Developers may be interested in looking at refactoring strategies that can improve a

specific quality attribute, such as extendibility (objective space), but they are related

to different code locations (decision space). A plethora of solutions is generated at

first using multi-objective search that tries to find the possible trade-offs between

quality objectives. Then, an unsupervised learning algorithm clusters the trade-off

solutions based on their quality metrics, and another clustering algorithm is applied

to each cluster of the objective space to identify solutions related to different code

locations. The objective and decision spaces can now be explored more efficiently

by the developer, who can give feedback on a smaller number of solutions. This

feedback is then used to generate constraints for the optimization process, to focus

on the developer’s regions of interest in both the decision and objective spaces. The

manual validation of selected refactoring solutions by developers confirms that our

approach outperforms state of the art refactoring techniques.

Finally, Chapter VII is dedicated to our Refactoring Bot. The adoption of
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refactoring techniques for continuous integration received much less attention from the

research community comparing to root-canal refactoring to fix the quality issues in the

whole system. Several recent empirical studies show that developers, in practice, are

applying refactoring incrementally when they are fixing bugs or adding new features.

There is an urgent need for refactoring tools that can support continuous integration

and some recent development processes such as DevOps that are based on rapid

releases. Furthermore, several studies show that manual refactoring is expensive and

existing automated refactoring tools are challenging to configure and integrate into

the development pipelines with significant disruption cost.

Therefore, in Chapter VII, we proposed, for the first time, an intelligent soft-

ware refactoring bot, called RefBot. Integrated into the version control system (e.g.

GitHub), our bot continuously monitors the software repository, and it is triggered

by any ”open” or ”merge” action on pull requests. The bot analyzes the files changed

during that pull request to identify refactoring opportunities using a set of quality

attributes then it will find the best sequence of refactorings to fix the quality issues if

any. The bot recommends all these refactorings through an automatically generated

pull-request. The developer can review the recommendations and their impacts in a

detailed report and select the code changes that he wants to keep or ignore. After

this review, the developer can close and approve the merge of the bot’s pull request.

We quantitatively and qualitatively evaluated the performance and effectiveness of

RefBot by a survey conducted with experienced developers who used the bot on both

open source and industry projects.

8.2 Future Work

While code-level refactoring has been widely studied and is well supported by

tools, understanding refactoring rationale, or why developers should apply recom-

mended refactorings, is less well understood. Without a rigorous understanding of
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the rationale for refactoring, existing refactoring recommendation tools will continue

to suffer from a high false-positive rate and limited relevance for developers. If, how-

ever, refactoring rationale can be identified automatically, this can be used to guide

refactoring recommendations to be more purposeful and less ad hoc.

Moreover, once these refactorings have been applied, it is time-consuming for

developers to manually document them. However, most existing approaches to auto-

matic generation of documentation focus on functional changes, which are easier to

generate from code changes.

Some future works direction can be summarized as follows:

1. Analyzing Refactoring Rationale:

We need to understand and characterize real-world refactoring rationale. This

will guide future research on refactoring by better understanding: (1) developer

intentions when refactoring, (2) potential inconsistencies between developer in-

tentions and actual refactorings, and (3) when and how developers document

their refactorings. The primary challenges of this research include collecting

representative documented refactorings; designing taxonomies and finding the

keywords that are suitable for characterizing refactoring rationale; and mining

large repositories, bug reports and communications data, to identify the kinds

of refactorings that are actually successful in targeting developer intentions.

We have to answer ”How do programmers refactor source code?”. This

question targets the physical process that programmers follow to refactor the

source code. In our previous works, we used the history of changes of several

open source and industrial systems to understand how programmers identify

refactoring opportunities and fix these detected quality issues. We propose

extending this research to search for patterns that are commonly used in eye

movements, and mouse/keyboard cursor strikes when refactoring the source-

code. These patterns will highlight the areas of code that are important, as
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well as areas that are less important, for program refactoring. Currently, the

identification of refactoring opportunities and recommendation of useful refac-

torings are not very well understood. The majority of program refactoring tools

rely on assumptions based on structural quality metrics and fully automated

recommendations, but recent studies strongly suggest that these tools make

incorrect assumptions.

2. Enabling Context-Driven Refactoring Recommendations:

We need to determine how the generated knowledge from previous step can

aid us in finding relevant refactorings based on context. Without guidance

on which path to take, refactoring choices can be challenging for developers.

Given that fully automated refactoring rarely meets developer needs, we can

develop an interactive refactoring recommendation system via natural language

support. For this purpose, finding refactoring recommendations based on up-

front developer preferences is crucial. Based on our current research results,

preferences can be extracted from the history of code changes, bug reports,

communication data, commit messages, and pull-request descriptions.

The above mentioned future line of works demonstrate the vast potentiality of the

intelligent software refactoring, which needs to be further evaluated. Our research

team in Intelligent Software Engineering Laboratory (ISE LAB) will continue

investigating the possible applications and techniques that can improve the perfor-

mance and viability of our interactive and intelligent software refactoring tools.

219



BIBLIOGRAPHY

[1] M. Kessentini, W. Kessentini, H. A. Sahraoui, M. Boukadoum, and A. Ouni,
“Design defects detection and correction by example,” in The 19th IEEE Inter-
national Conference on Program Comprehension, ICPC 2011, Kingston, ON,
Canada, June 22-24, 2011, pp. 81–90, IEEE Computer Society, 2011.

[2] A. Ouni, M. Kessentini, H. A. Sahraoui, K. Inoue, and K. Deb, “Multi-criteria
code refactoring using search-based software engineering: An industrial case
study,” ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, pp. 23:1–23:53, 2016.

[3] M. Harman and L. Tratt, “Pareto optimal search based refactoring at the design
level,” in Genetic and Evolutionary Computation Conference, GECCO 2007,
Proceedings, London, England, UK, July 7-11, 2007 (H. Lipson, ed.), pp. 1106–
1113, ACM, 2007.
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G. Fraser, eds.), pp. 464–474, ACM, 2018.

[37] V. Alizadeh, H. Fehri, and M. Kessentini, “Less is more: From multi-objective
to mono-objective refactoring via developer’s knowledge extraction,” in 19th
International Working Conference on Source Code Analysis and Manipulation,
SCAM 2019, Cleveland, OH, USA, September 30 - October 1, 2019, pp. 181–
192, IEEE, 2019.

[38] V. Alizadeh, H. Fehri, M. Kessentini, and R. Kazman, “Enabling decision and
objective space exploration for interactive multi-objective refactoring.,” IEEE
Transactions on Software Engineering, 2020.

[39] V. Alizadeh, M. A. Ouali, M. Kessentini, and M. Chater, “Refbot: Intelligent
software refactoring bot,” in 34th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2019, San Diego, CA, USA, November
11-15, 2019, pp. 823–834, IEEE, 2019.

223



[40] S. Rebai, O. B. Sghaier, V. Alizadeh, M. Kessentini, and M. Chater, “Interactive
refactoring documentation bot,” in 19th International Working Conference on
Source Code Analysis and Manipulation, SCAM 2019, Cleveland, OH, USA,
September 30 - October 1, 2019, pp. 152–162, IEEE, 2019.

[41] M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective optimization prob-
lems: test cases, approximations, and applications,” IEEE Trans. Evolutionary
Computation, vol. 8, no. 5, pp. 425–442, 2004.

[42] K. Deb, A. Sinha, P. J. Korhonen, and J. Wallenius, “An interactive evolu-
tionary multiobjective optimization method based on progressively approxi-
mated value functions,” IEEE Trans. Evolutionary Computation, vol. 14, no. 5,
pp. 723–739, 2010.
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ommendation system for software refactoring using innovization and interactive
dynamic optimization,” in ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014
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service antipatterns detection,” IEEE Trans. Serv. Comput., vol. 10, no. 4,
pp. 603–617, 2017.

[99] H. Wang, A. Ouni, M. Kessentini, B. R. Maxim, and W. I. Grosky, “Identifica-
tion of web service refactoring opportunities as a multi-objective problem,” in
IEEE International Conference on Web Services, ICWS 2016, San Francisco,
CA, USA, June 27 - July 2, 2016 (S. Reiff-Marganiec, ed.), pp. 586–593, IEEE
Computer Society, 2016.

[100] H. Wang, M. Kessentini, and A. Ouni, “Prediction of web services evolution,”
in Service-Oriented Computing - 14th International Conference, ICSOC 2016,
Banff, AB, Canada, October 10-13, 2016, Proceedings (Q. Z. Sheng, E. Stroulia,
S. Tata, and S. Bhiri, eds.), vol. 9936 of Lecture Notes in Computer Science,
pp. 282–297, Springer, 2016.

[101] M. Daagi, A. Ouni, M. Kessentini, M. M. Gammoudi, and S. Bouktif, “Web
service interface decomposition using formal concept analysis,” in 2017 IEEE
International Conference on Web Services, ICWS 2017, Honolulu, HI, USA,
June 25-30, 2017 (I. Altintas and S. Chen, eds.), pp. 172–179, IEEE, 2017.

[102] H. Wang, M. Kessentini, T. Hassouna, and A. Ouni, “On the value of quality
of service attributes for detecting bad design practices,” in 2017 IEEE Inter-
national Conference on Web Services, ICWS 2017, Honolulu, HI, USA, June
25-30, 2017 (I. Altintas and S. Chen, eds.), pp. 341–348, IEEE, 2017.

[103] M. Kessentini and A. Ouni, “Detecting android smells using multi-objective
genetic programming,” in 4th IEEE/ACM International Conference on Mobile
Software Engineering and Systems, MOBILESoft@ICSE 2017, Buenos Aires,
Argentina, May 22-23, 2017, pp. 122–132, IEEE, 2017.

[104] A. Ouni, M. Daagi, M. Kessentini, S. Bouktif, and M. M. Gammoudi, “A
machine learning-based approach to detect web service design defects,” in 2017
IEEE International Conference on Web Services, ICWS 2017, Honolulu, HI,
USA, June 25-30, 2017 (I. Altintas and S. Chen, eds.), pp. 532–539, IEEE,
2017.

[105] M. Kessentini, H. Wang, J. T. Dea, and A. Ouni, “Improving web services
design quality using heuristic search and machine learning,” in 2017 IEEE In-
ternational Conference on Web Services, ICWS 2017, Honolulu, HI, USA, June
25-30, 2017 (I. Altintas and S. Chen, eds.), pp. 540–547, IEEE, 2017.

[106] M. Kim and D. Notkin, “Discovering and representing systematic code
changes,” in 31st International Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Proceedings, pp. 309–319, IEEE,
2009.

230



[107] Y. Cai, R. Kazman, C. Jaspan, and J. Aldrich, “Introducing tool-supported
architecture review into software design education,” in 26th International Con-
ference on Software Engineering Education and Training, CSEE&T 2013, San
Francisco, CA, USA, May 19-21, 2013 (T. Cowling, S. Bohner, and M. A.
Ardis, eds.), pp. 70–79, IEEE, 2013.

[108] A. F. Yamashita and L. Moonen, “Do developers care about code smells? an ex-
ploratory survey,” in 20th Working Conference on Reverse Engineering, WCRE
2013, Koblenz, Germany, October 14-17, 2013 (R. Lämmel, R. Oliveto, and
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robust multi-objective approach to balance severity and importance of refactor-
ing opportunities,” Empirical Software Engineering, vol. 22, no. 2, pp. 894–927,
2017.
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