

Design and Implementation of a Real-Time Controller for a 3-Wheeled Collapsible Vehicle

by

Brandon Smyth

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Engineering

(Computer Engineering)

in the University of Michigan-Dearborn

2020

Master’s Thesis Committee:

 Associate Professor Sridhar Lakshmanan, Chair

 Professor Paul Richardson

 Lecturer Paul Muench

ii

Acknowledgements

 I would like to thank Dr. Sridhar Lakshmanan and Dr. Paul Muench for providing the

idea and general background for this thesis, and specifically Dr. Lakshmanan for providing

feedback and relief during the roadblocks encountered during the development of the project.

Special thanks to Cristian Adam and Katharina Grenn for providing the mechanical design and

manufacturing for the vehicle, as well as providing moral support during the development of the

project. I would further like to thank Dr. Michael Putty for his assistance with the control loops

and signal processing along with providing useful feedback on design ideas for the controller

software and communication protocols.

iii

Table of Contents

Acknowledgements ... ii

List of Figures .. vi

List of Tables .. vii

Abstract .. viii

Chapter 1: Introduction ... 1

1.1 Problem Statement ... 1

1.2 Design Overview .. 2

1.3 Review of Existing Strategies and Related Works... 2

1.3.1 Control Methods and Algorithms ... 3

1.3.2 Sensor Fusion and Pose Estimation .. 3

1.3.3 Deep Learning Control ... 5

1.4 Hardware and Signal Layout .. 6

Chapter 2: Controller Software Architecture .. 9

2.1 Data Dispatcher and Communication Task .. 10

2.2 Inertial Measurement Unit Task ... 11

2.3 Motor Controllers Task .. 12

2.4 Control Loops Tasks .. 12

iv

2.4.1 Steering Module Task ... 12

2.4.2 Rear Track Module Task .. 13

2.4.3 Vehicle Speed Controller Task ... 13

2.5 Controller Usage and Performance .. 14

Chapter 3: Communication Protocol .. 16

3.1 Communication Flow ... 16

3.2 Cyclic Redundancy Check ... 18

3.3 Communication Packet Format .. 19

3.4 Communication Failsafe .. 20

Chapter 4: Controls and Signals ... 21

4.1 Inertial Measurement Unit – Accelerometer and Gyroscope Fusion 21

4.1.1 Kalman Filter Equations ... 21

4.1.2 Kalman Filter Results and Performance ... 25

4.2 Motor-Based Position Controllers .. 27

4.2.1 Steering Column Controller .. 29

4.2.2 Rear Track Controller ... 32

4.3 Real-Time Controls System Balancing Simulation Test.. 34

Chapter 5: Future Work and Conclusion .. 36

5.1 Future Work ... 36

5.2 Conclusion .. 38

v

References ... 39

vi

List of Figures

Figure 1. Microcontroller Peripheral Hardware Layout ... 7

Figure 2. Model of Overall Vehicle Design .. 8

Figure 3. Controller Tasks, Internal Modules, and Inter Task Communications 10

Figure 4. Data Dispatcher Call Diagram... 11

Figure 5. Steering Module Call Diagram .. 13

Figure 6. Per Task CPU Usage ... 15

Figure 7. Packet Flow ... 17

Figure 8. Communication Sequence ... 17

Figure 9. CRC Division Calculation ... 18

Figure 10. Accelerometer and Gyroscope Raw Measurements and Kalman Filter Output 26

Figure 11. BLDC Motor Model .. 27

Figure 12. BLDC Motor Controller .. 28

Figure 13. BLDC Motor Controller Simulation Results ... 28

Figure 14. Steering Column CAD Model ... 30

Figure 15. Steering Column PI Controller Experimental Data ... 31

Figure 16. Wheatstone Bridge Amplifier.. 33

Figure 17. Rear Track Control and Feedback Mechanisms .. 34

Figure 18. Steering Based Balance Output ... 35

Figure 19. Recurrent Neural Network Model ... 37

vii

List of Tables

Table 1. Feedback Message Format .. 19

Table 2. Control Message Format ... 19

viii

Abstract

This thesis focuses on designing and implementing a real-time vehicle controller. The

vehicle controller is a microcontroller that is connected to a set of sensors, such as an inertial

measurement unit, and actuators, such as drive motors. The controller takes advantage of Kalman

filters and PI controllers to calculate, in real-time, feedback messages and control actuations.

This report describes what methods were chosen and implemented in the controller and why they

were chosen. It describes a communication protocol to create an interface with the controller for

a computer to interact with, describes how a real-time operating system is leveraged to use

multitasking to operate different controllers and feedback processes, and describes how the

hardware is implemented and tested. The communication protocol is described in depth as to its

format and interaction. It provides a set of tests performed on the various algorithms to show

their effectiveness in creating the real-time control and accurate feedback. Finally, the paper sets

out a set of future works that can be achieved by leveraging this vehicle controller to provide

autonomous control and self-balancing systems as is desired for this vehicle’s final product.

1

Chapter 1: Introduction

1.1 Problem Statement

There are times when it is beneficial for an autonomous vehicle to be narrow to be able to

navigate through narrow areas, or to reduce drag and allow for higher speed travel. However,

narrow vehicles are inherently unstable and prone to falling over, especially at low speeds. A

potential solution to this is a 3-wheeled vehicle that could collapse its wheel track to allow for

more narrow travel locations, as well as higher speeds, but maintaining its balance by expanding

the track to compensate for when the vehicle begins to fall over. This allows for travel in narrow

spaces or at high speed while maintaining stability. Having a third wheel will also allow

significantly greater stability when travelling on unstable terrain. The vehicle will also be able to

carry payloads when in its expanded form. While unable to navigate narrow passages in this

mode, on a return trip it may be able to take a more optimal route in narrow areas. This thesis

will explore the embedded system design and control systems vehicle dynamics and the control

systems required to record and receive data to control the vehicle remotely or via a more

powerful computer for autonomous control, as well as a machine learning algorithm to attempt to

mimic a human controlling the balance of the vehicle. The investigation will be performed using

a scale model of the proposed vehicle design. Data collected from a human driver will be used to

facilitate supervised training on a neural network in an attempt to control the balance of the

vehicle.

2

1.2 Design Overview

This thesis investigates a design for a control system for a dynamic 3-wheeled vehicle.

The vehicle is designed such that it will be able to carry loads, with the rear wheels extended out,

at low speeds and when unloaded will be able to collapse the rear wheels in and navigate back to

a set location at higher speeds. Specifically, this paper will investigate the real-time control

systems for the entire vehicle (steering control, vehicle speed, rear track control, etc.) and sensor

data feedback. Self-balance will be achieved by expanding the rear wheel track to compensate

for the vehicle tilting as it travels. The expanded track will self-right the vehicle preventing the

vehicle from rolling over and allowing it to continue its journey in a narrow cross-sectional area

of travel along the ground. The vehicle will initially be controlled remotely by hand, recording

data about the state of the vehicle. This data can then be used to train a neural network via

supervised learning [2] to allow a computer to map the vehicle dynamics of self-balance, without

the engineer or computer needing to fully know the underlying physical behavior.

The prototype design will be a scale model in which the steering and speed of the vehicle

are remotely controlled. The prototype will be used to act as a proof of concept for the vehicle

control algorithms, the control interface, and the systems needed to train and interface with a

neural network that can be taught to map the non-linear vehicle dynamics of vehicle balance.

1.3 Review of Existing Strategies and Related Works

 The most common works explored that relate to this thesis would be the self-balancing

bicycle. It is a complex problem to solve as it is deeply involved with both vehicle dynamics and

nonlinear control systems, due to the inherent problem of the instability of a bicycle. There is

also a lot of work that can be explored regarding unstable vehicle balancing, sensor fusion, and

3

control algorithms. Neural networks also provide an interesting research route as they can allow

a system to derive a control algorithm without knowing the underlying dynamics, relying solely

on data it has been trained on and current feedback data.

1.3.1 Control Methods and Algorithms

 The self-balancing bicycle has been a problem commonly studied in vehicle dynamics for

years. There have been multiple methods implemented to solve this problem, including a

gyroscope, a moving mass, and steering. The method most related to this thesis is the steering

method, as it deals more with controlling the vehicle with its wheels rather than balancing by

adjusting a gyroscope or heavy mass.

 In the paper written by S. Vatanashevanopakorn and M. Parnichkun, they investigate

creating a self-balancing bicycle by creating a mathematical model for both the bicycle itself and

the motor that controls the steering [1]. The models for the bicycle and motor are used in a set of

two Proportional Integral Derivative (PID) control loops. They also use a Linear Quadratic

Regulator (LQR) to set the optimal gain for the different states of the control loop, such as the

current steering angle and current lean. Simulations performed on their model and algorithm

showed that their bicycle would stabilize in about 2.5 seconds from an initial lean of 5 degrees.

1.3.2 Sensor Fusion and Pose Estimation

 W. Ding, et al. created a set of algorithms that allow them to estimate the attitude

(specifically, pitch and roll) of a tricycle. The issue they encountered is that standard Inertial

Measurement Unit (IMU) sensors are not accurate enough on their own. Accelerometers are slow

to react and prone to high-frequency noise, while gyroscopes are prone to drift over time. Using

a Kalman filter they can fuse the output of these two sensors together to mitigate the flaws of the

4

separate sensors. Because the tricycle is a nonlinear system a standard Kalman filter cannot

create accurate enough data, so the authors instead use an extended Kalman filter. The extended

filter is a nonlinear variant that can linearize an estimate of the information. In their design they

have two different modes for fusing the gyroscope measurements. During the dynamic

movement of the tricycle they integrate the values from the gyroscope directly into the pitch and

roll estimations, but when the tricycle is in a static state, they feed the gyroscope output into the

Kalman filter. A standard filter would simply use the piece they use in the static state. Through

their experimentation they were able to prove that this change to the filter eliminated erroneous

changes in the attitude estimation when the tricycle switched from a dynamic to a static state.

This paper provided a good set of algorithms on how to provide accurate vehicle state estimation

while building upon commonly used algorithms to mitigate their problems.

 A great investigation written by M. Nowicki, et al. was created to compare the extended

Kalman Filter with the complementary filter [4]. They wanted to see if a complementary filter

had comparable accuracy in orientation estimation of a device when compared against an

extended Kalman filter. A complementary filter is a sensor fusion filter that works very well with

IMU data, while remaining relatively simple in design. In its simplest form it applies a low-pass

filter on the accelerometer data and weights it against the gyroscopic data. This provides the

short-term accuracy that the gyroscope provides, while using the low-weighted accelerometer to

diminish the drift of the gyroscope in the long term. The complementary filter is very useful in

an embedded environment where computing resources are limited. Its simplicity means that it

uses very little memory and computation time. The authors also note that being much simpler, it

has only 1 parameter that would need to be tuned, making accurate orientation estimate projects

quick to implement. They did notice that the complementary filter was slightly less accurate than

5

the extended Kalman filter, by about 2–4%, depending on the device they used to test with. They

noted that the extended Kalman filter was only slightly slower in computation time in their tests

but note that this is likely due to careful implementation of new mathematical libraries that were

provided for the Android operating system and their particular hardware. Overall, they believe

that the choice of filter used depends entirely on the project requirements, with the designer

needing to consider their required precision and time needed to implement the filter.

1.3.3 Deep Learning Control

 As computers are becoming more powerful it is becoming much more realistic to train a

neural network in control processes and have them operate in real time. This allows for the

creation of self-driving cars and other systems that control themselves based on data previously

collected in relation to the task at hand. A neural network can be taught to steer a car entirely on

its own by using just the raw data from cameras [5]. Collecting steering wheel angle data and

synchronizing it with camera data allowed researchers to teach a neural network what angle the

steering wheel needed to be at just by using the camera data of a camera pointed towards the

road in front of the vehicle. This allowed the network to determine what angle the steering wheel

needed to be at in a very human-like fashion. These systems, however, take in only the current

information from the camera and do not take into account how the system previously set its

steering angle. Systems like these could benefit from using a recurrent neural network, as shown

in Chi, Lu, and Yadong Mu [6] and Eraqi, H. M., Moustafa, M. N., and Honer, J. [7]. These

papers utilized Long Short-Term Memory (LSTM), which allows a neural network to

remember information from previous forward passes. This allows the neural network to learn

information temporally as well as spatially, as the feedback lets the network remember

6

previous information [8]. This can be helpful in control systems, as they are sometimes reliant

on previous states, such as what is required in a PID controller.

1.4 Hardware and Signal Layout

 The heart of the project is a microcontroller, the TI TM4C123G, that handles the real-

time communication and signals processing. The entire prototype hardware consists of the

microcontroller, an inertial measurement unit (IMU), 5 electronic speed controllers (ESCs), 5

brushless DC (BLDC) motors, and 2 potentiometers. The IMU communicates over the inter-

integrated circuit (I2C) protocol and provides acceleration and gyroscopic data. The ESCs are

used to control the motors as they high power electronics and control methods to drive them.

Each ESC has a universal asynchronous receive transmit (UART) serial connection to allow

external controllers to send commands and receive feedback through a high-level protocol. The

2 potentiometers are used as absolute position sensors for feedback on control loops described

in chapter 4. All of these peripherals need to be able to be read and/or written to by the

microcontroller. A basic schematic of how the peripherals are connected is shown in Figure 1

below.

7

Figure 1. Microcontroller Peripheral Hardware Layout

 The vehicle design, shown in Figure 2, shows how the actuators and sensors are mounted

on the vehicle. Using this system, it is possible to build a machine that can fully control itself in

real time and also provide sensor and vehicle status feedback to a machine. This is common in

vehicle systems, with the unique opportunity in this vehicle to control a collapsible rear set of

wheels.

8

Figure 2. Model of Overall Vehicle Design

9

Chapter 2: Controller Software Architecture

 The number of control systems, feedback loops, and communication systems is enough to

warrant a more complex real-time operating system (RTOS)-based software platform. Using a

pre-emptive RTOS allows the ability to run multiple tasks concurrently, with higher-priority

tasks (such as sensor data acquisition) being run before the lower-priority tasks (such as setting

vehicle speed). This also allows the system to handle interrupts more quickly and reduce

interrupt request time by posting data received from an interrupt into a mailbox for a low-priority

task to then process when allocated CPU time. Using a multitasking system also allows for finer

control of each individual loop. Each control loop can be given its own individual time between

executions that best suits the use-case for that loop. A control loop that needs to run every 100

milliseconds can run alongside a loop that needs to run every 20 milliseconds without having to

worry about timing concerns of every other loop’s execution as the task scheduler will handle

when each loop needs to run. Figure 3 shows the sequence of actions performed by each task and

how variables are shared between said tasks.

10

Figure 3. Controller Tasks, Internal Modules, and Inter Task Communications

2.1 Data Dispatcher and Communication Task

 The data dispatcher is the most critical piece of the controller software. It is responsible

for aggregating together all the data from various components and dispatching them to the

various tasks and system peripherals that need the data. This task also acts as the main driver for

communications to the outside world (i.e. the AI control computer). It first collects the necessary

data from each task, such as current vehicle tilt, vehicle speed, steering position, rear track width,

and battery status. It then packs this data into a packet to be sent to the control computer. The

task will then negotiate a data transfer with the control computer using the communication

protocol described in chapter 3. The control parameters from the control computer are finally

received and these are then dispatched to their respective control tasks through either semaphore-

11

protected global variables or mailboxes, dependent upon whether the tasks require queued data

or only cares about the presently requested data state. Figure 4 visualizes the functions called by

the task.

Figure 4. Data Dispatcher Call Diagram

2.2 Inertial Measurement Unit Task

 The Inertial Measurement Unit (IMU) task is the task that is responsible for requesting

and reading the raw data from the IMU on the I2C bus. It starts by sending I2C commands to the

IMU to initialize and configure it. It then initializes the Kalman filter, described in chapter 4. It

runs at a frequency of 200 Hz with a high task priority; this allows the Kalman filter to react

quickly to changes on the IMU and report accurate roll and pitch angles for the vehicle.

 At the beginning of each loop iteration, the controller requests the raw accelerometer and

gyroscope data from the IMU. It then converts these binary values into values understandable for

12

humans, acceleration in m/s2 and radians per second for the accelerometer and gyroscope

respectively. These values are then converted into the required format by the task, as described in

chapter 4, and the Kalman filter is updated. After the Kalman filter is finished updating, the new

filtered values are stored in a mutex-protected global variable.

2.3 Motor Controllers Task

 This task is mainly responsible for maintaining state data for the controllers. It waits for

data to be received via an interrupt. This interrupt triggers when a byte of data is received over

UART from a controller, and it then passes the data via a mailbox to the waiting task. The task

processes the data via a state machine. Once a full packet has been received, it then checks the

cyclic redundancy check (CRC) to ensure that the packet is valid. If the packet is valid, the task

processes it into a local data structure and executes a callback function. This callback function

sorts the feedback data from the electronic speed controller (ESC) into an appropriate mailbox

for the data dispatcher task to process when needed.

2.4 Control Loops Tasks

 There are 3 critical tasks that control the actuators of the vehicle. One manages the

steering module, one the rear track control module, and one the vehicle speed. As they are

critical, they all operate differently from standard tasks due to the tight timing constraints.

2.4.1 Steering Module Task

 The steering module requires tight timing constraints for its control loop to ensure

accurate control. This is achieved through using a hardware timer peripheral provided by the

microcontroller. The timer interrupt is configured to trigger a hardware interrupt on an even

periodic variable. This interrupt is then used to trigger a software interrupt on the RTOS.

13

Software interrupts preempt every task in the system and therefore run at the highest priority,

while also allowing other hardware interrupts to trigger on the system. The software interrupt is

used to process the PI controller, covered in chapter 4. The output of the controller is then sent

with an event to the task itself, as the task to control the motor can handle being interrupted and

run at a less tightly coupled time. The output value is sent via UART to the ESC responsible for

controlling the motor on the steering module. Functions called to operate the PI controller are

listed in Figure 5.

Figure 5. Steering Module Call Diagram

2.4.2 Rear Track Module Task

 The rear track module task functions identically to the steering module task but uses a

different set of controller peripherals to achieve its control methods. The main differences

between the steering module and rear track module are covered in chapter 4.

2.4.3 Vehicle Speed Controller Task

 The vehicle speed controller task is an extremely simple task that takes the speed

requested by the control computer via the data dispatcher task. It takes the requested speed in m/s

and converts it to motor RPM based on a configuration value that sets the diameter of the wheels

14

used. This task acts as a periodic transmission controller as the data dispatcher task is not

guaranteed to receive new data in time to send a new RPM request to the ESC. This task solves

that problem by sending a new RPM request at an even periodic interval by using the most

recently requested speed.

2.5 Controller Usage and Performance

 The processor usage for all these tasks is relatively minimal, occupied mostly by the data

dispatcher because it handles most of the data processing. The second most active task is the

IMU processing task since it is running the Kalman filter, which has a non-trivial amount of

calculations. As can be observed in Figure 6, the overall CPU usage maxes out at around 15%.

This leaves plenty of room for future expansion and additional sensors and actuators as required

in the future. About 54k of program memory is used, while 23k of system RAM is used. There is

plenty of program memory available for more functions, but system RAM usage will need to be

reduced through static analysis to determine a more accurate stack size for each task, to minimize

each task’s RAM usage while preventing stack overflows.

15

Figure 6. Per Task CPU Usage

16

Chapter 3: Communication Protocol

 In order for the vehicle controller to act as a real-time actuator and sensor feedback

computer, it must have a communication protocol to extract this information from the controller

for a command computer to process. This protocol is used to synchronize communication

between the computers and provide reliable communication. In order to quickly transmit the

data, the controller runs the UART peripheral at a high speed (1 megabit/s). This means that even

high density packets can be transmitted very quickly, but it drastically increases the need for data

integrity checks as there is a higher likelihood of data corruption.

3.1 Communication Flow

 It is important to have proper control over the flow of communication between

computers. This is accomplished by following a handshake protocol. The technique implemented

in this controller is similar to the transmission control protocol (TCP) three-way handshake,

which allows the two computers to synchronize their communication and provide a reliable

communication path [15]. However, this method acts more like a two-way handshake. In order

for the controller to transmit its feedback data, it sends a ready-to-send (RTS) byte to the

computer. The computer will then respond with an acknowledgement (ACK), which also acts as

a clear-to-send (CTS). This means that the computers are now synchronized, and the controller

will then send the feedback data to the computer. The computer can then process this data in any

way it deems necessary, for example using it in a neural network to control the vehicle rear track.

17

For the computer to send control requests to the controller the RTS and ACK are reversed for

which side sends each. This protocol is visualized in Figure 7 and Figure 8.

Figure 7. Packet Flow

Figure 8. Communication Sequence

18

3.2 Cyclic Redundancy Check

 Data must be reliably exchanged between computers to ensure it is interpreted correctly.

Data integrity checking can be accomplished with minimal computation by using the cyclic

redundancy check (CRC). This is an error-detecting code that can be used to detect corruption of

data in the packet, and if detected throw it away [10]. The algorithm works such that it calculates

a value from the data packet. This value is then placed at the end of the packet, and when

checking the integrity, the calculation is performed again on the packet plus the CRC value. If

the output of the algorithm is zero then the data was transmitted intact; if it is any other value, the

data was corrupted in transit. The CRC algorithm works by using polynomial division. This

division is performed on the binary data, with the data stream being the dividend and a prechosen

polynomial interpreted as a binary value as the divisor. The division results in a remainder value,

and this is what is appended to the end of the packet to perform the CRC post-transit. An

example of this computation is shown in Figure 9.

Figure 9. CRC Division Calculation [16]

19

3.3 Communication Packet Format

 The following tables describe the format of the data packet for the controller feedback

and control request messages. All data types are assumed signed unless otherwise stated

Table 1. Feedback Message Format

Name Type Size

Start of Frame Byte 1

Status Flags Byte 1

Steering Column Current

Position Float 4

Steering Motor Set RPM Integer 2

Steering Motor Current RPM Integer 2

Rear Track Width Float 4

Rear Track Angle Float 4

Rear Track Motor Set RPM Integer 2

Rear Track Motor Current RPM Integer 2

Vehicle Speed Float 4

Vehicle Roll Float 4

Accelerometer X Float 4

Accelerometer Y Float 4

Accelerometer Z Float 4

Gyroscope X Float 4

Gyroscope Y Float 4

Gyroscope Z Float 4

CRC Unsigned Integer 2

Total 56

Table 2. Control Message Format

Name Type Size

Start of Frame Byte 1

Steering Set Angle Float 4

Reartrack Set Angle Float 4

Vehicle Set Speed Float 4

CRC

Unsigned

Integer 2

Total 15

20

3.4 Communication Failsafe

 The controller requires a failsafe system if communications become corrupted or stop

altogether. These two key points are covered by separate checks in the failsafe system. First, if

the controller has not received any new messages for 500 milliseconds it will trigger the failsafe,

or if it receives 5 consecutive corrupted packets it will trigger the failsafe. Triggering on a set of

consecutive corrupted packets will usually indicate there is something wrong with the

communication link between the controller and computer. When the failsafe is triggered, the rear

track is expanded to its widest width to ensure maximum stability and the vehicle is driven to a

stop.

21

Chapter 4: Controls and Signals

4.1 Inertial Measurement Unit – Accelerometer and Gyroscope Fusion

 In order to minimize the drawbacks of using either an accelerometer or gyroscope to

measure vehicle roll the data from each sensor must be fused together such that the short-term

accuracy of the gyroscope is combined with the long-term frequency of the accelerometer. These

can be fused with a multitude of different types of filtering algorithms. As discussed in chapter 1,

both the complementary filter and the Kalman filter are good candidates. It was determined that

the microcontroller used had enough processing power to integrate a Kalman filter to obtain

more accurate readings.

4.1.1 Kalman Filter Equations

 In order to fuse the data, each sensor’s output must first be transformed into an angle that

can be processed by the filter. Degrees is used over radians for better readability.

 For the accelerometer, the following transformation is used to calculate the roll of the

vehicle.

𝜃 = 𝑎𝑡𝑎𝑛2(𝑎𝑦, 𝑎𝑧)
180

𝜋
 (1)

Where 𝑎𝑦 and 𝑎𝑧 are the accelerations measured across the y and z axes, respectively, in
𝑚

𝑠2
.

22

Using the 2-argument arctangent function gives the angle in the range of -180 to 180 degrees,

where 0 is where the vehicle is perfectly upright.

 For the gyroscope, the following transformation is used to calculate the roll of the

vehicle.

𝜃 = ∑ 𝜃̇𝑥∆𝑡
180

𝜋
 (2)

Where 𝜃̇𝑥 is the change in rotation about the x-axis in
𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑠
 and ∆𝑡 is the change in time since

the last measurement.

 Using the Kalman filter system derived by K. Lauszus [14], a controller can fuse the

gyroscope and accelerometer with the following set of equations [12][13].

The state of the system at time k:

𝒙𝑘 = 𝑭𝒙𝑘−1 + 𝑩𝒖𝑘 + 𝒘𝑘 (3)

The state matrix:

𝒙𝒌 = [
𝜃
𝜃̇𝑏

]
𝑘

(4)

Where 𝜃 is the roll angle and 𝜃̇𝑏 is the bias, which is the amount the gyroscope has drifted.

The state transition model:

𝑭 = [
1 −∆𝑡
0 1

] (5)

The control-input model:

𝑩 = [
∆𝑡
0

] (6)

23

The process noise covariance matrix:

𝑸𝑘 = [
𝑄𝜃 0
0 𝑄𝜃̇𝑏

] (7)

Using these formulas, along with the other formulas normally used in the Kalman filter,

but not needing to be repeated by the author, the filter can be fully constructed. First, we must

predict a state estimate.

The a priori state estimate:

𝒙𝑘|𝑘−1 = 𝑭𝒙̂𝑘−1|𝑘−1 + 𝑩𝒖𝑘 + 𝒘𝑘 (8)

[
𝜃
𝜃̇𝑏

]
𝑘|𝑘−1

= [
1 −∆𝑡
0 1

] [
𝜃
𝜃̇𝑏

]
𝑘−1|𝑘−1

+ [
∆𝑡
0

] 𝜃̇𝑘 (9)

= [
𝜃 − 𝜃̇𝑏∆𝑡 + 𝜃̇∆𝑡

𝜃̇𝑏

] (10)

The a priori estimate covariance:

𝑷𝑘|𝑘−1 = 𝑭𝑷𝑘−1|𝑘−1𝑭𝑡 + 𝑸𝑘 (11)

[
𝑃00 𝑃01

𝑃10 𝑃11
] = [

1 −∆𝑡
0 1

] [
𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘−1|𝑘−1

[
1 0

−∆𝑡 1
] + [

𝑄𝜃 0
0 𝑄𝜃̇𝑏

] ∆𝑡 (12)

= [
𝑃00 + ∆𝑡(∆𝑡𝑃11 − 𝑃01 − 𝑃10 − 𝑄𝜃 𝑃01 − Δ𝑡𝑃11

𝑃10 − Δ𝑡𝑃11 𝑃11 + 𝑄𝜃̇𝑏
Δ𝑡] (13)

Where 𝑄𝜃 and 𝑄𝜃̇𝑏
 are the covariances of the process noise for the accelerometer and gyroscope

drift, respectively.

24

The next step is to update the Kalman filter with predictions.

The observation:

𝒛𝑘 = 𝑯𝑘𝒙𝑘 + 𝒗𝑘 (14)

𝒛𝑘 = 𝜃𝑘 (15)

In this case, 𝒛𝑘 simply reduces to the current measured angle from the accelerometer.

The measurement pre-fit residual:

𝒚̃𝑘 = 𝒛𝑘 − 𝑯𝑥̂𝑘|𝑘−1
(16)

= 𝜃𝑘 − [1 0] [
θ

𝜃̇𝑏
]

𝑘|𝑘−1

 (17)

= 𝜃𝑘 − 𝜃𝑘|𝑘−1 (18)

The pre-fit residual covariance:

𝑺𝑘 = 𝑯𝑷𝑘|𝑘−1𝑯𝑡 + 𝑹 (19)

= [1 0] [
𝑃00 𝑃01

𝑃10 𝑃11
] [

0
1

] + 𝑹 (20)

= 𝑃00 𝑘|𝑘−1 + 𝑹 (21)

Where 𝑹 is a tunable constant that represents the covariance of the observation noise.

The optimal Kalman gain:

𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯𝑡𝑺𝑘
−1 (22)

[
𝐾0

𝐾1
]

𝑘

= [
𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘|𝑘−1

[
1
0

] 𝑺𝑘
−1 (23)

25

=

[
𝑃00

𝑃10
]

𝑘|𝑘−1

𝑺𝑘

(24)

Updated a posteriori state covariance:

𝒙̂𝑘|𝑘 = 𝒙̂𝑘|𝑘−1 + 𝑲𝑘𝒚̃𝑘 (25)

[
𝜃
𝜃̇𝑏

]
𝑘|𝑘

= [
𝜃
𝜃̇𝑏

]
𝑘|𝑘−1

+ [
𝐾0

𝐾1
]

𝑘

𝒚̃𝑘 (26)

= [
𝜃
𝜃̇𝑏

]
𝑘|𝑘−1

+ [
𝐾0 𝒚̃
𝐾1 𝒚̃

]
𝑘

(27)

Updated a posteriori estimate covariance:

𝑷𝑘|𝑘 = (𝑰 − 𝑲𝑘𝑯)𝑷𝑘|𝑘−1 (28)

[
𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘|𝑘

= ([
1 0
0 1

] − [
𝐾0

𝐾1
]

𝑘

[1 0]) [
𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘|𝑘−1

(29)

= [
𝑃00 𝑃01

𝑃10 𝑃11
]

𝑘|𝑘−1

− [
𝐾0𝑃00 𝐾0𝑃01

𝐾1𝑃10 𝐾1𝑃11
] (30)

4.1.2 Kalman Filter Results and Performance

 To test the filter’s effectiveness and accuracy, the IMU is first placed flat on a level table

to ensure it can accurately report the roll of the IMU. The IMU is then rotated 90 degrees to

observe how quickly the filter reacts to the change in angle and how fast it converges to a stable

angle in this new orientation. It is also quickly rotated back and forth to observe how it reacts to

quick fluctuations in the angle of the vehicle. A final test is performed in which the IMU is again

flat on the table and it is rapidly tapped to observe how vibrations, which will be experienced on

a vehicle, affect the accuracy of the filter output. Figure 10 shows the output of the three

26

accelerometer axes, the three gyroscope axes, and the filter output angle. The filter works

effectively as it is able to quickly update the angle of the IMU with very little noise. It converges

very rapidly to the new angle, taking only about 100 milliseconds to converge within a small

error of a few percent off the true angle. It also responds very well to vibrations that may be

experienced by the IMU when mounted in a vehicle, with the filter angle diverging very

minimally.

Figure 10. Accelerometer and Gyroscope Raw Measurements and Kalman Filter Output

27

4.2 Motor-Based Position Controllers

 There are two position controllers that needed to be implemented for the system. One is

used to control the steering column; one is used to control the rear track width. These controllers

use a brushless DC (BLDC) motor as the rotor due to their high torque capability and minimal

skipping when compared to other drive motors. These motors use three phases to drive and use a

set of inverters to convert the DC power into AC signals that drive the motor poles.

In order to understand the theory and implementation of the controllers a simulation was

run using Simulink. The hardware modules used to simulate the controller are shown in Figure

11. This simulation uses a three-phase cascaded controller design. The position, speed, and

current controllers all use proportional integral (PI) controllers. The controller this thesis focuses

on is the position controller, shown in the box in Figure 12. The speed and current controllers are

managed by ESC offboard the main controller.

Figure 11. BLDC Motor Model

28

Figure 12. BLDC Motor Controller

As shown in the simulation results in Figure 13, the motor can provide accurate and

reactive position setting by using these cascaded control loops to manage each portion of the

overall control loop.

Figure 13. BLDC Motor Controller Simulation Results

29

4.2.1 Steering Column Controller

 The steering column uses a BLDC motor that drives a worm gear through a belt, which

drives a geared turntable that acts as the steering column. The worm gear to the turntable has a

50-to-1 gear reduction. The feedback for the controller is a potentiometer that is attached to the

turntable. The potentiometer is configured such that its center point is set to the steering column

facing straight for the vehicle. The potentiometer is connected to the microcontroller through a

12-bit analogue-to-digital converter (ADC) which turns the analog voltage into a digital value

that ranges from 0 to 4096. This value can then be mapped to a range based on the maximum

sweep angle of the potentiometer, in this case about 250 degrees. Using a simple mapping

function, the ADC value from 0 to 4096 can be mapped to -125 to 125 degrees to give an

accurate angle of the steering column to the PI controller. This value can then be easily used to

calculate the error for the controller. As the motor spins, the belt will spin the worm gear which

will rotate the turntable. Through a ball bearing, the potentiometer is rotated along with the

turntable, which provides the feedback mechanism for the control loop. The model for the

steering column can be seen in Figure 14.

30

Figure 14. Steering Column CAD Model

 The PI controller was empirically tuned until a fast and stable control loop was achieved

that quickly arrives to the set point and maintains an accurate position relative to the requested

set point. After tuning the controller, the constants that were arrived at are [𝐾𝑝 𝐾𝑖] =

[55.0 20.4]. The controller shown in Figure 12 runs in the continuous time domain. In order to

use it in the microcontroller, it must be converted into the sampled data domain. This is achieved

through the following formula.

𝑈𝑡 = 𝑈𝑡−1 + (𝐾𝑝 + 𝐾𝑖Δ𝑡)𝐸𝑡 − 𝐾𝑝𝐸𝑡−1 (31)

Where 𝑈𝑡 is the controller output as motor RPM and 𝐸𝑡 is the error in degrees, which is

calculated by:

𝐸𝑡 = 𝜃𝑠𝑒𝑡 − 𝜃𝑝𝑜𝑡 (32)

31

 The controller is tested by quickly setting the set point to a steep angle (0 to 90 degrees)

and observing how fast it achieves this set point. It is also tested by setting the set point along a

linear slope to see how accurately it follows a constantly changing set point. The graphs in

Figure 15 show both the set position and the current column position as well as the set RPM

from the controller and the ESC’s current RPM. These graphs show relatively accurate control

with minor overshoot that is quickly corrected by the integral portion of the PI controller.

Figure 15. Steering Column PI Controller Experimental Data

32

4.2.2 Rear Track Controller

 The rear track controller uses a nearly identical control scheme to that of the steering

column. The key difference is that it uses a linear potentiometer to measure the rear track width

(or angle). As the rear track expands, the linear potentiometer expands linearly with the angle of

the rear track. This allows the resistance value of the linear potentiometer to drive an electrical

signal to the microcontroller that can be read by the ADC similarly to the steering column

potentiometer. The key difference is that the linear potentiometer may not fully expand or

contract with the rear track but the full range of the ADC is still desired. This can be solved by

measuring the resistance when the track is fully expanded and closed and using those values to

create a Wheatstone bridge amplifier. An example Wheatstone bridge is shown in Figure 16,

where R2 would be the linear potentiometer, and R1, R3, R4, Rx, and Rg are standard resistors

whose value would be calculated based on the resistance range of the linear regulator when in the

rear track controller. V of the Wheatstone bridge in the figure would be 3.3V, while OUT would

range from 0V to 3.3V linearly as the potentiometer extends as the rear track expands. This

amplifier can take a set of different resistances and amplify it to the full range of the ADC,

allowing the maximum resolution to be used and gaining more precise control in the PI loop.

33

Figure 16. Wheatstone Bridge Amplifier

 The BLDC motor drives a linear actuator that is responsible for expanding the rear track.

This is visualized in the model shown in Figure 17. As these actuators extend, the rear track

width and angle of the rear body mechanism would expand proportionally. This motion will

likewise extend the linear potentiometer, increasing the output resistance, providing an analog

feedback signal that can interpreted by the microcontroller ADC and be used to drive a control

loop.

34

Figure 17. Rear Track Control and Feedback Mechanisms

 Using a similar control loop to that of the steering column, the rear track PI controller is

also empirically tuned to achieve fast and accurate set points. The controller is similarly tested,

and the actuators checked for backlash and strain that may affect the control loop from behaving

properly [11].

4.3 Real-Time Controls System Balancing Simulation Test

 In order to test the controller’s ability to respond to quick changes to the vehicle balance

and ensure the communication protocol does not hinder the controller in any way, a quick self-

balance mockup test was created. It uses the control computer to listen to the feedback messages

from the controller, specifically the vehicle’s roll angle, and then calculates a PID loop value to

35

send back a steering angle to the controller. The body of the vehicle was gently rocked back and

forth to simulate an unstable vehicle and the steering mechanism was observed to see how

quickly it would respond to the change in angle. Data was also collected and analyzed to see if it

would react quickly to the sudden changes and if the controller could respond fast enough. The

roll angle and steering angle values collected are plotted in Figure 18, where the difference

between the control computer receiving the current vehicle roll and the controller starting to

actuate the steering motor was about 15 milliseconds.

Figure 18. Steering Based Balance Output

36

Chapter 5: Future Work and Conclusion

5.1 Future Work

 This project sets out and implements a controller for a unique vehicle with many sensors

and actuators. What it does not do is provide fully autonomous operation of the vehicle, but

rather gives real time sensor information and control operation that may not be possible without

a deterministic controller. The next steps would be to implement a fully autonomous controller

with a more powerful computer that interfaces with the vehicle controller to actuate the system

itself. The narrow balancing mechanism that this vehicle is designed to achieve can be

implemented using a neural network that will perform the balancing by reading the IMU data

from the controller and then sending a rear track actuation command to expand the track if the

vehicle begins to tip too far. This would be best achieved using a reinforcement learning

algorithm to teach a neural network how to achieve balance by rewarding the algorithm when it

gains balance by actuating the rear track. This would require a simulation and would not have

been achievable in the time available to complete this thesis. Another option is to use supervised

learning, where the vehicle is driven by a human and when the vehicle starts to tip the human

will manually expand the rear track. This data is logged and can be used in a training algorithm

to teach a neural network how to map this non-linear function. The best type of network to

achieve this would be a recurrent neural network. This is because the recurrent neural network

uses long short-term memory (LSTM). This is where the hidden layers of the neural network

37

 feed back on themselves and allow the network to maintain a sort of memory between

activations. This can allow the neural network to map the temporal effects that are involved in a

tipping vehicle as it will not linearly fall over, but due to gravity will accelerate as it tips more,

and as such the network can act as a sort of gain scheduler for a control loop and achieve good

balance. While the network shown in Figure 19 is not a true representation of what the neural

network for a self-balancing vehicle would look like, it acts as a good reference for how to

design it. The inputs for such a network would likely be the current roll of the vehicle,

potentially the raw data of the accelerometer as deemed necessary, and the current steering angle

of the vehicle. The hidden layers would be configured such as to map these values to a hidden

function, along with the LSTM being used to allow the network to maintain a temporal memory

of what the network had previously done. The output of the network would be the set position for

the rear track width, or angle, and an acceleration for how quickly the width needs to be

achieved.

Figure 19. Recurrent Neural Network Model

38

5.2 Conclusion

 This thesis set out to design and implement a real-time vehicle controller using a simple

ARM Cortex-M4-based microcontroller. It provides a set of sensor feedback data recorded in

real time as well as a set of actuators controlled in real time. Due to the deterministic nature of

these control schemes, they must be performed on a computer that can manage tight timings,

whereas many personal computers are not able to achieve this due to the lack of determinism in

standard operating systems. Using an RTOS allowed the controller to manage many different

tasks without relying on different triggers or interrupts to manage when to process the sensors

and actuators. The RTOS kernel is used to manage these timings for the controller itself. Overall,

this system laid out and achieved a highly performant and reliable real-time controller with rapid

feedback and control mechanisms, which can be augmented with autonomous systems that are

unable to achieve the deterministic control sequences required to operate vehicle actuators and

sensors.

39

References

[1] S. Vatanashevanopakorn and M. Parnichkun, “Steering control based balancing of a bicycle

robot,” 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach,

Phuket, 2011, pp. 2169-2174.

[2] R. Choudhary and H. K. Gianey, “Comprehensive Review On Supervised Machine Learning

Algorithms,” 2017 International Conference on Machine Learning and Data Science (MLDS),

Noida, 2017, pp. 37-43.

[3] W. Ding, M. Xu, Y. Ma and G. Shi, “Tricycle Attitude Estimation and Turn Control Based

on MEMS Sensing Technology,” 2018 IEEE 1st International Conference on Micro/Nano

Sensors for AI, Healthcare, and Robotics (NSENS), Shenzhen, China, 2018, pp. 30-34.

[4] P. Gui, L. Tang and S. Mukhopadhyay, “MEMS based IMU for tilting measurement:

Comparison of complementary and kalman filter based data fusion,” 2015 IEEE 10th Conference

on Industrial Electronics and Applications (ICIEA), Auckland, 2015, pp. 2004-2009.

[5] M. Nowicki, J. Wietrzykowski and P. Skrzypczyński, “Simplicity or flexibility?

Complementary Filter vs. EKF for orientation estimation on mobile devices,” 2015 IEEE 2nd

International Conference on Cybernetics (CYBCONF), Gdynia, 2015, pp. 166-171.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M.

Monfort, U. Muller, J. Zhang, X. Xhang, J. Zhao, “End to End Learning for Self-Driving

Cars”, arXiv: 1604.07316, 2016.

[7] Chi, Lu and Yadong Mu. “Deep Steering: Learning End-to-End Driving Model from Spatial

and Temporal Visual Cues,” arXiv: 1708.03798, 2017.

[8] Eraqi, H.M., Moustafa, M.N., Honer, J. “End-to-End Deep Learning for Steering

Autonomous Vehicles Considering Temporal Dependencies,” arXiv: 1710.03804, 2017.

[9] Kuo, C.-C. Jay. “Understanding convolutional neural networks with a mathematical

model.” J. Vis. Commun. Image Represent. 41, 2016, pp. 406-413.

[10] S. Sheng-Ju, “Implementation of Cyclic Redundancy Check in Data Communication,” 2015

International Conference on Computational Intelligence and Communication Networks (CICN),

Jabalpur, 2015, pp. 529-531.

[11] T. Wescott, “Controlling Motors in the Presence of Friction and Backlash.” (2014).

[12] H. Ferdinando, H. Khoswanto and D. Purwanto, “Embedded Kalman Filter for Inertial

Measurement Unit (IMU) on the ATMega8535,” 2012 International Symposium on Innovations

in Intelligent Systems and Applications, Trabzon, 2012, pp. 1-5.

40

[13] G. Welch and G. Bishop, “An Introduction to The Kalman Filter,” technical report, Dept. of

Computer Science, Univ. of North Carolina at Chapel Hill, 2002.

[14] K. Lauszus, “A Practical Approach to Kalman Filter and How to Implement It,” Web, TKJ

Electronics, 2012.

[15] S. Papanastasiou, M. Ould-Khaoua and V. Charissis, “The Effect of the RTS/CTS

Handshake on TCP,” 21st International Conference on Advanced Information Networking and

Applications Workshops (AINAW'07), Niagara Falls, Ont., 2007, pp. 940-946.

[16] K. Kavanagh, “Cyclic Redundancy Checking Ensures Correct Data Communications,”

technical report, Analog Dialogue, 2011.

