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ABSTRACT 

 

The purpose of this study was to investigate the effects of multiple holes on stress 

concentrations in a continuous fiber reinforced quasi-isotropic laminate using a current industry 

standard finite element analysis software. The hole configurations included two asymmetric and 

two axisymmetric square holes with different corner radii and circular holes. The hole edge-to-

edge distance was varied to study the effects of their proximity on stress concentration factors.   

The influence of stress concentrations upon damage initiation in the composite laminate was also 

studied using Hashin’s composite failure criteria.  

 The stress concentration factor increases with decreasing hole-to-hole proximity. 

Similarly, the stress concentration factor increases with decreasing hole edge-to-laminate edge 

distance. Further, the stress concentration factor increases to an even greater degree when both 

the “hole-to-hole proximity effect” and the “edge effect” are present. As the corner radius in the 

square hole is increased, the stress concentration is reduced. Square holes with sufficiently 

rounded corners elicit lower stress concentration factors than circular holes of equivalent 

dimension.  

 Damage initiates in the general location of stress concentration regions in any given 

lamina, which is always found at the periphery of a hole or holes, and is independent of hole 

geometry. Further, damage initiates sooner for holes that are within a sufficiently close distance 

of one another. The severity of the “hole-to-hole proximity effect” and the “edge effect” dictate 

the damage initiation time. 
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CHAPTER 1: INTRODUCTION 

 

An introduction to composite materials is given, followed by a background of the 

research topics. The research problem and objective are then established, and lastly the outline of 

the thesis is given. 

 

1.1 Introduction 

Composites are thought to have found their initial use in 1500 B.C., when the some of the 

first Egyptians and Mesopotamian settlers combined mud and straw to form a material which 

proved to be useful in the construction of tougher, more substantial buildings [1]. By definition, a 

composite is any combination of at least two chemically distinct materials, where the new 

material possesses properties superior to that of its constituents. The use of composites in 

engineering and related fields began in the 1940s, when glass fiber reinforced polymers were 

used in marine applications to replace traditional construction materials such as wood and metal 

[2]. This was due mainly to their low weight and ability to resist redox reactions (corrosion). 

Well recognized for their versatility, composites enjoy an increasing presence in engineering 

industries such as aerospace, automotive, civil, and mechanical. Tremendous variety exists in the 

choice of fiber and matrix, which, when coupled with the ability to alter the fiber direction and 

stacking sequence, allows for a tailored approach to composite design. This substantial degree of 

control lends itself significantly to their appeal as either an existing material substitute, or an 

initial design choice. Widely used in engineering industries due to superior material properties 

such as high strength, low density, and low coefficient of thermal expansion, it becomes of 

greater importance to fully understand their capabilities, and perhaps most importantly, their 

failure. Fiber reinforced composites benefit from high strength-to-weight ratios, high modulus-

to-weight ratios, and high internal damping characteristics. The choice to use composites over 

their conventional metallic counterparts (e.g. steel, aluminum, cast iron, etc.) is usually governed 

by the constituent properties and resulting characteristics, and typically limited by material and 

manufacturing costs, or deficiencies which exist in the understanding of their mechanical 
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behavior. Mallick [3] pointed out that the effective design, process development, and subsequent 

implementation of composites is based upon judicious practice, and a full grasp of their 

attributes.  

Holes are perhaps one of the most commonly used features in engineering design. The 

practical use of composites requires the presence of holes to enable joining via mechanical 

fastening hardware. Further, holes are often implemented in order to provide accessibility (which 

can facilitate serviceability efforts), or routing for electrical wiring. Additionally, the removal of 

material from components serves to reduce mass (and hence weight), which is a common 

practice in engineering design. Such efforts, as well as the inherent properties of composites, 

translate directly into greater fuel economy and higher performing systems when applied to the 

automotive and aerospace industries (among others). Examples of square holes in composites 

and other materials used in engineering industries can be seen below in Figs. 1.1 and 1.2. It is 

worth recognizing that in Fig. 1.2b, both the “hole-to-hole proximity effect” and the “edge 

effect” are of concern, as thermal stresses due to electronics and battery discharge can be present. 

 

 

Figure 1.1: Examples of square holes in aerospace engineering: (a) elongated square holes with rounded corners in a 

carbon fiber aircraft fuselage, (b) square hole with rounded corners in an aircraft aft fuselage. 
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Figure 1.2: Examples of square holes in engineering: (a) square anchor holes in a truck frame, (b) square hole with 

rounded corners and circular holes in a 2019 iPhone chassis, (c) square holes in a reinforced bracket, (d) square 

holes in a tiedown. 

 

1.2 Background 

The use of holes in engineering design is very common. Invariably, the presence of a 

hole, notch, cutout, or other discontinuity in any material results in a redistribution and 

localization of stresses, when subjected to external loading. Stress concentrations surrounding 

holes are of great practical concern, since they are usually the leading cause of failure. Stress 

concentrations in continuous fiber reinforced composites which contain multiple holes are not 

largely understood, nor is the resultant influence upon damage within the composite. While the 

effect of single and multiple holes in composite laminates have been studied, this has been only 

to a small degree. Additionally, most existing research does not consider multiple simultaneous 

effects. This thesis addresses the lack of information in these areas. It is known that the “hole-to-

hole proximity effect” and the “edge effect” can occur with the presence of multiple holes, and 

close proximity to geometric boundaries, respectively. Further, such phenomena can have great 

influence upon the magnitude of resultant stress concentrations and component strength. As is 
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the case with most materials, the failure strength depends strongly upon notch sensitivity. These 

phenomena, in turn, contribute to premature damage initiation within the composite structure.  

While composites possess many distinct advantages over traditionally used materials (as 

mentioned in Section 1.1), they are not without drawbacks. High notch sensitivity is typically 

associated with brittle materials. In contrast, ductile materials exhibit low notch sensitivity, 

which lends to their frequent use in structural applications, where holes are often necessary. It 

has been found that the presence of a notch, hole, cutout, or other discontinuity, in a notch 

sensitive material significantly reduces its strength. This has also been found to be consistent 

with the behavior of composites. However, one cannot categorize a composite as either a ductile 

or a brittle material. Rather, research has demonstrated that the strength of a composite is a 

function of the size of the notch, or hole. This behavior has been designated the “hole size 

effect”. 

Failure within composites is caused by damage accumulation, an understanding of which 

gives rise to a more pronounced and accurate ability to predict component lifetime. It is critical 

to make the distinction that composites do not fail catastrophically; their failure is governed by a 

progressive damage mechanism. Because a composite cannot yield like a ductile material, the 

energy which would ordinarily be used for the redistribution of stresses is instead used to create 

damage at locations where allowable stress/strain limits are exceeded. While many types of 

damage models and criteria exist for composite failure, there is no universally agreed upon 

“best” model. This is predicated by the fact that since the damage failure mechanism is so 

complex, no one failure theory can adequately capture the interplay of the many micro-failure 

modes which contribute to progressive composite damage. However, most, if not all, of the 

currently available damage theories are capable of modeling damage to an acceptable level.  

 

1.3 Research Problem and Objective 

The primary research problem was to understand the effect of multiple holes upon stress 

concentrations within a quasi-isotropic composite laminate using finite element analysis (FEA). 

The effects of hole shape, corner radius size, hole edge-to-edge proximity, and hole edge-to-

laminate edge proximity upon stress concentrations are taken into consideration.  

The second research problem was to gain insight into the damage initiation caused by the 

stress concentrations due to multiple holes (also using the finite element analysis approach). 
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Local damage initiation due to the “hole-to-hole proximity effect”, hole shape, and the “edge 

effect” are explored.  

The first objective of this study was to investigate the effect of multiple holes on stress 

concentrations in a continuous fiber reinforced composite laminate, focusing on a quasi-isotropic 

stacking sequence. Attention was given to multiple holes, which builds upon theory and results 

from single holes. Additionally, hole shapes and spacings were varied and investigated. It was 

believed that the influence of the “hole-to-hole proximity effect”, hole shape, and the “edge 

effect” upon stress distribution would elicit increased local stress concentrations at the holes.  

The second objective of this study was to understand the influence of the “hole-to-hole 

proximity effect”, hole shape, and the “edge effect” upon consequent local damage initiation. It 

was believed that the influence of the “hole-to-hole proximity effect”, hole shape, and the “edge 

effect” upon stress distribution and concentrations would dictate the location of damage initiation 

at the hole periphery, and give rise to an increased amount of local damage. It was thought that 

the multiple hole configuration with both the “edge effect” and the “hole-to-hole proximity 

effect” present would produce an increased amount of damage, which would initiate before the 

multiple hole configuration with only the “hole-to-hole proximity effect” present.  

 

1.4 Outline of Thesis 

Past research which is relevant to this study has been reviewed, and can be found in 

Chapter 2. The phenomena of stress concentration due to single and multiple holes, and their 

associated stress field analysis methods are presented and discussed, with attention given to 

research done by Esp. [4] and Kheradiya [5] on multiple circular holes in finite width continuous 

fiber reinforced composite laminates. The finite element model for a single eccentrically located 

circular hole in an isotropic plate of finite width subjected to an in-plane uniaxial load is 

developed and validated against results from Pilkey and Pilkey [6] in Chapter 3. Stress 

concentrations due to the “edge effect” for a single offset circular hole and a single offset square 

hole within a finite width continuous fiber reinforced composite laminate are investigated using 

ANSYS Mechanical APDL 19.1 in Chapter 4. The “edge effect” and the “hole-to-hole proximity 

effect” in the presence of multiple holes within a continuous fiber reinforced composite laminate 

are investigated in Chapter 5. A study of damage initiation in a continuous fiber reinforced 
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composite laminate which contains multiple holes using ANSYS Mechanical APDL 19.1 is 

given in Chapter 6. Conclusions are presented in Chapter 7. 
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CHAPTER 2: LITERATURE REVIEW 

 

The phenomena of stress concentration in an isotropic plate with a single circular hole is 

introduced. A brief exploration of stress distribution in an isotropic plate containing a single 

centered square hole is then given, followed by a review of stress distribution within laminated 

composites containing a single hole. The latter discussion is then extended to multiple holes, 

where emphasis is placed upon work by Esp [4] and Kheradiya [5]. Lastly, a review of the 

evolution of damage within laminated composites is given. 

 

2.1 Stress Distribution in Homogeneous Isotropic Plates with a Single Circular Hole 

The behavior of the stresses in a notched homogeneous isotropic plate has been well 

understood for many years.1 The problem of a single circular hole in the center of a wide plate in 

tension was investigated and solved by Kirsch [7] as early as 1898. In fact, such phenomena have 

undergone a seemingly exhaustive study, as evidenced by the work from Pilkey and Pilkey [6], 

and Young et al. [8]. There, stress concentrations for various single hole geometries as well as 

multiple hole geometries and patterns were explored and catalogued. It is important to first 

understand the concept of stress concentration, as it serves for the foundation of this study.  

 

2.1.1 Infinite-Width Plates 

When subjected to external loading, a material prefers to redistribute internal forces 

throughout its volume such that its maximum strength is retained. For illustration of this concept, 

consider the simple case of an isotropic plate containing a single centered circular hole under in-

plane uniaxial tension. The internal forces can be thought of as force lines which run through the 

volume of the material parallel to the direction of loading. Upon any removal of volume, the 

force lines become compressed, as the same amount must now pass through a smaller space on 

 
1 For potential clarity, the difference here is that homogeneous means the same in all places, whereas isotropic 

means the same in all directions. 
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both sides of the hole, causing localization. In effect, the stress field of the body becomes 

distorted. This can be easily visualized in Fig. 2.1. 

 

 

Figure 2.1: The compression of internal force lines in the presence of a single circular hole. 

 

The localization is known as stress concentration, the magnitude of which can be 

measured with the aid of the stress concentration factor. This factor, 𝐾, is defined as the ratio of 

the maximum stress in the plate (or stress in the perturbed region of interest) to a reference stress 

(typically the applied remote stress). The distinction between plates of infinite and finite width is 

worthwhile to make here, as the latter requires a geometrical correction factor. It is noted that in 

general, a reasonable amount of agreement exists between finite and infinite plate solutions. 

However, infinite plates remain impractical to model via FEA software, for obvious reasons. It 

has been suggested that one can mimic infinite plate behavior by simply scaling down the size of 

the hole; however, there appears to be a practical limit of miniscule hole size beyond which 

stress field accuracy is lost. For the loading condition shown below in Fig. 2.2, the elastic stress 

concentration factor (SCF) in a homogeneous isotropic plate of infinite width which contains a 

single circular hole is given by the well-known equation 

 

 𝐾𝑡 =
𝜎𝑚𝑎𝑥

𝜎𝑛𝑜𝑚
 (2.1) 
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Figure 2.2: A uniaxially loaded infinite width plate with a single circular hole. 

 

where the nominal stress is the applied remote (global) stress, 𝜎𝑛𝑜𝑚 = 𝜎, and 𝜎𝑚𝑎𝑥 is the local 

stress at points 𝐴 and 𝐵 on the hole periphery2. It is important to make the distinction that this 

relationship applies only to a homogeneous, perfectly elastic body. If desired, the nominal 

(reference) stress can be calculated based upon either the gross, 𝑡𝑤 (the remote), or net, 𝑡(𝑤 −

𝑑) (the local), cross-sectional area, where 𝑡 and 𝑤 are the thickness and width of the plate, 

respectively, and 𝑑 is the diameter of the hole. This choice will result in slightly different values 

of the stress concentration factor as depicted below in Fig. 2.3, because 

 

𝜎𝑔𝑟𝑜𝑠𝑠 = 𝜎 (2.2) 

and 

𝜎𝑛𝑒𝑡 = 𝜎 (1 −
𝑑

𝑤
) (2.3) 

 
2 The subscript 𝑡 stands for theoretical, in that the maximum stress within the plate is based upon the theory of 

elasticity, or acquired from laboratory experiment. 
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To further clarify the relationship (and difference) between the stress concentration factors, it can 

be shown using Eqns. 2.2 and 2.3 that 

 

𝐾𝑡𝑔 =
𝜎𝑚𝑎𝑥

𝜎𝑔𝑟𝑜𝑠𝑠
 (2.4) 

 

and 

𝐾𝑡𝑛 =
𝜎𝑚𝑎𝑥

𝜎𝑛𝑒𝑡
 (2.5) 

 

Therefore, 

𝐾𝑡𝑛 =
𝜎𝑚𝑎𝑥

𝜎𝑔𝑟𝑜𝑠𝑠

𝜎𝑔𝑟𝑜𝑠𝑠

𝜎𝑛𝑒𝑡
= 𝐾𝑡𝑔

1

1 −
𝑑
𝑤

 (2.6) 

 

so  

∴ 𝐾𝑡𝑔 = 𝐾𝑡𝑛 (1 −
𝑑

𝑤
) (2.7) 

 

 

Figure 2.3: Stress concentration factors 𝐾𝑡𝑔 and 𝐾𝑡𝑛 for a single centered circular hole in a finite width plate. 
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It is worth recognizing that the increasing behavior of the top curve in Fig. 2.3 is due to the fact 

that as the diameter of the hole increases with respect to the fixed width of the plate, less material 

remains between the hole periphery and the free edge of the plate. Consequently, greater stress 

localization in that area occurs, as the same amount of force lines must now pass through a 

smaller volume, thereby causing the stress concentration factor to increase. 

 Timoshenko and Goodier [9] obtained equations for the stress distribution of an infinite 

width isotropic plate containing a single circular hole, and when converted from their polar form 

to cartesian form [10], they are as follows. 

 

𝜎𝑥

𝜎
= 1 +

1

2
(
𝑅

𝑦
)
2

+
3

2
(
𝑅

𝑦
)
4

 (2.8a) 

 

𝜎𝑦

𝜎
=

3

2
(
𝑅

𝑦
)
2

−
3

2
(
𝑅

𝑦
)
4

 (2.8b) 

 

where 𝜎 is the applied remote stress parallel to the 𝑥-axis, and 𝑅 is the radius of the hole.3 

Interestingly, if the normalized stress is plotted as a function of the distance ahead of the hole 

(𝑦 − 𝑅), the stress concentration becomes much more localized in the case of a smaller hole. In 

effect, hole diameter influences stress concentration. This behavior can be seen below in Fig. 2.4, 

where Eqn. 2.8a is plotted in terms of (𝑦 − 𝑅) for two different hole radii. 

 

 
3 Throughout this work, 𝑆, 𝜎, 𝜎𝑛𝑜𝑚, 𝜎, and 𝜎∞ are used interchangeably. They mean the same thing; a remote 

applied stress. 
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Figure 2.4: Stress distributions for a large and small circular hole in an infinite isotropic plate subjected to uniaxial 

tension. 

 

Here, one can recognize the relationship between the rate of change of the circumferential 

curvature and the resulting slope of the stress concentration curve; smaller holes give rise to 

rapid horizontal asymptotic approach, whereas larger holes demonstrate a slower degree of 

curvature in the solution graph. The behavior of Eqns. 2.8a and 2.8b can be seen below in Fig. 

2.5. 

 

 

Figure 2.5: Stress distribution along the section Y-Y, in both the 𝑥 and 𝑦-directions. 
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It is important to note in Fig. 2.5 that 𝜎𝑦 ≪ 𝜎𝑥 for all values of 𝑦. At the ends of the horizontal 

diameter, 𝜎𝑥 reaches the maximum value equal to 𝐾𝑡𝑆; however, 𝜎𝑦 = 0. At a distance 𝑦 =

1.414𝑅, 𝜎𝑦 reaches its maximum value and then starts to decrease with increasing distance. It is 

also worthwhile to recognize that the magnitude of 𝜎𝑚𝑎𝑥 is dependent upon its proximity to the 

hole periphery. For an in-plane uniaxially loaded homogeneous isotropic plate, the highest stress 

is realized directly at the hole edge, and decreases with increasing distance from the hole. This 

trend is consistent throughout the following sections. To provide a frame of reference, and to 

illustrate the concept that the stress concentration produced by a given notch, or hole, is not a 

unique number, the stress concentration factors for a circular hole in a wide plate based upon the 

type of stress are given below in Table 2.1.  

 

Table 2.1: Stress concentration factors based upon stress type for a single centered circular hole in a wide plate [10]. 

  In Tension In Biaxial Tension 
In Shear (Max 

Tension) 

In Shear (Max 

Shear) 

𝑲𝒕 3 2 4 2 

 

For an infinite plate with a single centered circular hole (as seen below in Fig. 2.6), the 

stress field components in polar coordinates [11] are 

 

𝜎𝑟𝑟(𝑟, 𝜃) =
𝜎

2
[(1 −

𝑎2

𝑟2
) + (1 + 3

𝑎4

𝑟4
− 4

𝑎2

𝑟2
) cos 2𝜃] (2.9) 

  

𝜎𝜃𝜃(𝑟, 𝜃) =
𝜎

2
[(1 +

𝑎2

𝑟2
) − (1 + 3

𝑎4

𝑟4
) cos 2𝜃] (2.10) 

  

𝜎𝑟𝜃(𝑟, 𝜃) = −
𝜎

2
[(1 + 3

𝑎4

𝑟4
− 4

𝑎2

𝑟2
) sin 2𝜃] (2.11) 

 

where 𝑎 is the radius of the hole, 𝑟 is the radial distance to the point of interest, 𝜎 is the remote 

applied stress in the 𝑥-direction, and 𝜃 is the angle with respect to the 𝑥-axis to the point of 

interest. 
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Figure 2.6: Distribution of 𝜎𝑟𝑟, 𝜎𝜃𝜃, and 𝜏𝑥𝑦 stresses around a circular hole. 

 

At 𝑟 = 𝑎, Eqns. 2.9-2.11 become 

 

𝜎𝑟𝑟(𝑟 = 𝑎, 𝜃) = 0 (2.9a) 

  

𝜎𝜃𝜃(𝑟 = 𝑎, 𝜃) = 𝜎(1 − 2 cos 2𝜃) (2.10b) 

  

𝜎𝑟𝜃(𝑟 = 𝑎, 𝜃) = 0 (2.11c) 

 

The maximum value of the hoop stress 𝜎𝜃𝜃 is reached at 𝜃 = 𝜋 2⁄ , giving 𝜎𝜃𝜃 = 𝜎𝑚𝑎𝑥 = 3𝜎. 

Thus, the stress concentration factor, 𝐾𝑡, is 3 for an isotropic plate of infinite width containing a 

single centered circular hole. This, along with stress field behavior can be seen below in Fig. 2.7. 

 



15 
 

 

Figure 2.7: Distribution of hoop stress component, 𝜎𝜃𝜃: (a) circumferential distribution in a large body, (b) radial 

distribution for 𝜃 = 𝜋 2⁄ . 

 

2.1.2 Finite-Width Plates 

Timoshenko and Goodier [9] stated that due to Saint-Venant’s principle, for a finite width 

plate with a single centered circular hole, the change in the stress field is negligible at distances 

which are large compared to the radius, 𝑎, of the hole. Further, he pointed out that a concentric 

circle of radius 𝑏 can be drawn about the hole, on which the stresses at the circular boundary are 

essentially equal to that of a plate with no hole. This is depicted below in Fig. 2.8. 

 

 

Figure 2.8: Stress distribution and influence of radial distance, 𝑏, in a finite width plate with a single centered 

circular hole of radius, 𝑎, subjected to an externally applied in-plane uniform tensile stress, 𝑆. 
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Stress distribution within a finite width plate has been studied using the Heywood 

equation, which, in terms of the stress concentration factor based on gross area, is given by 

Pilkey and Pilkey [6] as 

 

𝐾𝑡𝑔 =
2 + (1 − 𝑑 𝑊)⁄ 3

1 − 𝑑 𝑊⁄
 (2.12) 

 

where 𝑑 is the diameter of the hole, and 𝑊 is the width of the plate. If desired, the stress 

concentration factor can be expressed in terms of the net area 

 

𝐾𝑡𝑛 = 2 + (1 − 𝑑 𝑊)⁄ 3
 (2.13) 

 

Pilkey and Pilkey [6] informed that Eqn. 2.13 was found to show good correlation with 

experimental results from Howland (Heywood [12]) for 𝑑 𝑊⁄ < 0.3, and is only about 1.5% 

lower at 𝑑 𝑊⁄ = 1 2⁄ . Further, Pilkey and Pilkey [6] stated that because most design applications 

are such that 𝑑 𝑊⁄ < 0.3, Eqn. 2.13 is suitable for use. 

 

2.2 Stress Distribution in Homogeneous Isotropic Plates with a Single Square Hole 

 The stress field disturbance created by a single square hole in an isotropic plate has been 

studied to some detail. Young et al. [8] listed the following stress concentration factor based on 

gross area for a rectangular hole with rounded corners in an infinitely wide thin plate subjected to 

in-plane uniaxial tension.  

 

𝐾𝑡𝑔 = 𝐶1 + 𝐶2 (
𝑏

𝑎
) + 𝐶3 (

𝑏

𝑎
)

2

+ 𝐶4 (
𝑏

𝑎
)
3

 (2.14) 

 

where 

𝐶1 = 14.815 − 15.774√
𝑟

𝑏
+ 8.149 (

𝑟

𝑏
) (2.15) 
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𝐶2 = −11.201 − 9.750√
𝑟

𝑏
+ 9.600 (

𝑟

𝑏
) (2.16) 

 

𝐶3 = 0.202 + 38.662√
𝑟

𝑏
− 27.374 (

𝑟

𝑏
) (2.17) 

  

𝐶4 = 3.232 − 23.002√
𝑟

𝑏
+ 15.482 (

𝑟

𝑏
) (2.18) 

for 

0.2 ≤ 𝑟 𝑏⁄ ≤ 1.0 (2.19) 

  

0.3 ≤ 𝑏 𝑎⁄ ≤ 1.0 (2.20) 

 

where 2𝑎 is the width of the rectangle, 2𝑏 is the height of the rectangle, and 𝑟 is the radius of the 

corners of the rectangular hole. For the case of a square hole, one simply lets 𝑎 = 𝑏. The 

rectangular hole with rounded corners can be seen below in Fig. 2.9.  

 

 

Figure 2.9: Rectangular hole with rounded corners in an infinite plate subjected to an externally applied in-plane 

uniaxial tensile stress. 
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2.3 Stress Distribution in Laminated Composites with a Single Hole 

The distribution of stresses within symmetric laminated composite plates which contain a 

hole can be determined in a variety of ways, each of which possessing its own level of accuracy 

and ease of application. Such methods are listed and discussed in the following subsections. It is 

important to begin with the recognition of the various aspects which influence stress 

concentration, as they can dictate the solution approach. These aspects can include the effect of 

finite geometry, the interaction of multiple holes, degree of anisotropy, hole geometry, and the 

length of computation time (modeling and solution).  

For an infinite symmetric laminated plate containing a circular hole of radius 𝑅, the 

approximate solution for the stress distribution along the axis perpendicular to the loading 

direction was found by Konish and Whitney, and given by [13] as 

 

𝜎𝑦(𝑥, 0)

𝜎
=

1

2
{2 + (

𝑅

𝑥
)
2

+ 3(
𝑅

𝑥
)
4

− (𝐾𝑡
∞ − 3) [5 (

𝑅

𝑥
)
6

+ 7(
𝑅

𝑥
)
8

]}    𝑓𝑜𝑟   𝑥 > 𝑅 (2.21) 

 

where 

 

𝐾𝑡
∞ = 1 + √

2

𝐴22
[√𝐴11𝐴22 − 𝐴12 +

𝐴11𝐴22 − 𝐴12
2

2𝐴66
] (2.22) 

 

where 𝐾𝑡
∞ is the stress concentration factor at the edge of the hole, and 𝐴𝑖𝑗 for 𝑖, 𝑗 = 1, 2, and 6 

are the components of the in-plane stiffness matrix with 1 and 2 being parallel and transverse to 

the loading directions, respectively. Eqn. 2.22 can be expressed in terms of the engineering 

elastic constants 𝐸𝑥, 𝐸𝑦, 𝐺𝑥𝑦 , and 𝜈𝑥𝑦 as 

 

𝐾𝑡
∞ = 1 + √2(√

𝐸𝑦

𝐸𝑥
− 𝜈𝑥𝑦) +

𝐸𝑦

𝐺𝑥𝑦
 (2.23) 
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where 𝐸𝑦 and 𝐸𝑥 are the laminate moduli in the 𝑦-direction (loading) and 𝑥-direction 

respectively, and 𝐺𝑥𝑦 and 𝜈𝑥𝑦 are the laminate shear modulus and Poisson’s ratio, respectively. It 

can be readily seen that by substituting the stress concentration factor for a circular hole in an 

isotropic plate, 𝐾𝑡
∞ = 3, in Eqn. 2.21, one recovers Eqn. 2.8a. 

 It is important to note that, currently, no closed form exact solution for the stress 

distribution in a finite width composite plate containing a single circular hole has been found. 

However, Tan [14] was able to approximate the effect of finite width in a closed form solution 

for an anisotropic material. This, and other similar shortcomings are typically addressed via the 

use of computer driven numerical analysis, such as finite element analysis. This is discussed in 

the following section. 

 

2.3.1 Finite Element Analysis 

 The finite element method (FEM) has been used with some frequency to model and study 

stress concentrations within fiber reinforced composite laminates. Since the number of closed 

form solutions for infinite orthotropic composite plates is limited, results from FEA prove useful 

for comparison and validation. Further, the FEM becomes necessary for problems which are 

analytically intractable. To simulate infinite geometric conditions within FE computer models, 

plates are often taken to be some large, but reasonable (≈1000x), value of length, width, and 

thickness. 

 Work by Soutis et al. [15] sought the hole spacing for which no stress interaction occurs 

using 2D finite elements. It was found that the hole centers should be spaced at least four 

diameters apart in order to ensure that no stress field interaction occurs.  

Kheradiya [5], whose work focused on using ANSYS to model a composite laminate and 

analyze the “edge effect”, “hole-to-hole proximity effect”, and “hole size effect”, revealed the 

correlation between these phenomena and resultant stress concentration. It was demonstrated 

through a ply-by-ply analysis of a single circular hole in a uniaxially loaded finite width 

composite laminate, that shear rotation dictates the exact location of maximum stresses in a 

lamina with fibers which are oriented at some angle, 𝜃, with respect to the loading axis. 

Additionally, the “edge effect” was shown to greatly influence the stress concentrations at a 

point on the hole periphery close to the free edge of the laminate. This behavior can be seen 

below in Fig. 2.10. 
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Figure 2.10: Distribution of stress across the width (1.5 inches) of a laminate containing a single offset circular hole, 

where 𝑒 is the distance in inches from the edge of the hole to the laminate edge [5]. 

 

2.3.2 Single Square Hole 

 The stress concentrations which arise from single square holes have been studied, but to 

only a limited extent. It is important to note that no rigorous closed-form solution exists for a 

single square hole in an orthotropic plate (finite width or infinite width), however an 

approximate expression for the tangential stress on the contour of a square hole does exist, and 

was found by Lekhnitskii, as informed by Rowlands et al. [17].  

The stress concentration and strength of uniaxially loaded finite width composite plates 

containing central square holes with both rough and smooth surfaces was investigated by 

Rowlands et al. [17]. It was discovered that the tensile stress concentration factor increases and 

strength decreases as the hole diameter-to-plate width ratio increases. This behavior is consistent 

with conventional metallic materials. Further, it was found that strength decreases with 

decreasing ratio of laminate thickness-to-hole diameter. Interestingly, it was recommended that if 

minimum weight is to be placed as a design priority, it may be more advantageous to thicken the 

plate, rather than increase its width, provided that a specified hole dimension and required gross 

strength exist. Also, it was found that laminates having a 25.4 mm square hole are slightly 

stronger than plates with a 25.4 mm diameter circular hole.  

Jong [18] studied stress concentrations around square holes with rounded corners using 

various CFRP composite stacking sequences, and found that square holes with sufficiently 
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rounded corners do not cause much higher stress concentrations than circular holes. Further, the 

highest stresses were found to occur mostly in general proximity to the rounded corners.  

 Cannon [19] studied the effect of stacking sequence and varying radii on a single 

centered square hole and found that quasi-isotropic laminates possessed lower SCFs than 

isotropic plates. Additionally, it was found that decreasing the percent of 0° laminas and/or 

increasing the percent of 45° laminas reduced the SCFs for each hole shape. 

 

2.3.3 Finite-Width Correction Factor 

 As mentioned previously, composite plates of finite width require a correction factor to 

obtain the true value of the stress concentration factor. Bakhshandeh et al. [20] informed that the 

finite width correction factor for an isotropic plate is independent of material properties, and can 

thus be obtained through curve fitting. However, in the case of an orthotropic material, the stress 

analysis must be employed via elasticity equations or through the FEM. Tan [13] obtained an 

improved theory for stress concentration prediction in finite width orthotropic plates by 

implementing a magnification factor into the Heywood formula (Eqn. 2.25). For a single 

centered circular hole in an orthotropic plate of finite width, the approximate finite width 

correction factor for gross area is 

 

𝐾𝑇𝑔,𝑂
∞

𝐾𝑇𝑔,𝑂
=

3(1 − 𝑑 𝑊⁄ )

2 + (1 − 𝑑 𝑊⁄ )3
+

1

2
(
𝑑

𝑊
𝑀)

6

(𝐾𝑇𝑔
∞ − 3) [1 − (

𝑑

𝑊
𝑀)

2

] (2.24) 

 

where 

 

𝑀2 =

√1 − 8 [
3(1 − 𝑑 𝑊)⁄

2 + (1 − 𝑑 𝑊)⁄ 3 − 1] − 1

2(𝑑 𝑊)⁄ 2  

 

where 𝐾𝑇𝑔,𝑂
∞  is the stress concentration factor in an infinite width orthotropic plate (equal to 3 for 

a circle), 𝐾𝑇𝑔,𝑂 is the stress concentration factor in a finite width orthotropic plate, 𝑑 is the hole 

diameter, 𝑊 is the width of the plate, and 𝑀 is the magnification factor. 
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For a quasi-isotropic plate of infinite width containing a single centered circular hole, 

𝐾𝑇𝑔
∞ = 3, and if substituted into Eqn. 2.24, one recovers the Heywood formula for a finite width 

isotropic plate containing a single centered circular hole, 

 

𝐾𝑇𝑔,𝑂
∞

𝐾𝑇𝑔,𝑂
=

3(1 − 𝑑 𝑊⁄ )

2 + (1 − 𝑑 𝑊⁄ )3
 (2.25) 

 

where 𝐾𝑇𝑔,𝑂
∞  is the stress concentration factor in an infinite width orthotropic plate (equal to 3 for 

a circle), 𝐾𝑇𝑔,𝑂 is the stress concentration factor in a finite width orthotropic plate, 𝑑 is the hole 

diameter, 𝑊 is the width of the plate, and 𝑀 is the magnification factor. To make use of Eqn. 

2.24, one must obtain 𝐾𝑇𝑔,𝑂
∞ , which was found by Lekhnitskii [16] and given as 

 

𝐾𝑇𝑔,𝑂
∞ =

𝐸𝜃

𝐸11

{[− cos2 𝜑 + (𝑘 + 𝑛) sin2 𝜑]𝑘 cos2 𝜃

+ [(1 + 𝑛) cos2 𝜑 − 𝑘 sin2 𝜑] sin2 𝜃 − 𝑛(1 + 𝑘

+ 𝑛) sin𝜑 cos𝜑 sin 𝜃 cos 𝜃} 

(2.26) 

 

where  

 

1

𝐸𝜃
=

sin4 𝜃

𝐸11
+ (

1

𝐺12
−

2𝜈12

𝐸11
) sin2 𝜃 cos2 𝜃 +

cos4 𝜃

𝐸22
 (2.27) 

 

from which one may obtain 

 

𝐸𝜃

𝐸11
=

1

sin4 𝜃 + (𝑛2 − 2𝑘) sin2 𝜃 cos2 𝜃 +𝑘2cos4 𝜃
 (2.28) 

 

𝑛 = √2(√
𝐸11

𝐸22
− 𝜈12 +

𝐸11

2𝐺12
) (2.29) 
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𝑘 = √𝐸11 𝐸22⁄  (2.30) 

 

where 𝐸𝜃 is Young’s modulus for directions tangential to the hole periphery, 𝐸11 and 𝐸22 are 

elastic moduli in the principal material direction, 𝐺12 is the shear modulus, 𝜈12 is the major 

Poisson’s ratio, 𝜃 is the angle of the point of interest on the periphery of the circular hole 

measured from the 𝑥-axis (principal material direction), and 𝜑 is the angle of the applied force, 

𝑝, with respect to the 𝑥-axis. To obtain Eqn. 2.30, simply let 𝜃 = 0 in Eqns. 2.27 and 2.28, and 

substitute the result of Eqn. 2.27 into Eqn. 2.28. 

 In the case of an infinite width plate with a single centered circular hole subjected to in-

plane uniaxial tension, where the direction of the applied force is aligned with the principal 

material direction, 𝜑 = 0°, and hence 𝜃 = 0° and 90° at points 𝐴 and 𝐵, respectively. 

Substituting these values into Eqns. 2.26 and 2.27, and using Eqn. 2.30 when necessary, one 

finds 

 

𝐾𝑇𝑔,𝑂
∞,1 = −

1

𝑘
 (2.31) 

 

𝐾𝑇𝑔,𝑂
∞,2 = 1 + 𝑛 (2.32) 

 

where 𝐾𝑇𝑔,𝑂
∞,1

 and 𝐾𝑇𝑔,𝑂
∞,2

 are the stress concentration factors at points 𝐴 and 𝐵 for an infinite width 

orthotropic plate, respectively. The infinite width orthotropic plate can be seen below in Fig. 

2.11. 
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Figure 2.11: An infinite plate containing a single centered circular hole subjected to an externally applied in-plane 

tensile force, 𝑝. 

 

It should be noted that for the case of an isotropic material, where 𝐾𝑇𝑔
∞ = 3 at point 𝐵, if 

this value is substituted into Eqn. 2.24, one again recovers the Heywood formula for an infinite 

width isotropic plate with a single centered circular hole, as expected. Finally, one may obtain 

the stress concentration factors at points 𝐴 and 𝐵 for an infinite width isotropic plate with a 

single centered circular hole by letting 𝐸11 = 𝐸22 in Eqns. 2.29 and 2.30, letting 𝐺12 =

𝐸11 2(1 + 𝜈12)⁄  in Eqn. 2.29, and then substituting the results into Eqns. 2.31 and 2.32. 

 

2.4 Stress Distribution in Laminated Composites with Multiple Holes 

The distribution of stresses within laminated composites which contain multiple circular 

holes has been investigated using analytical methods and numerical analysis by Esp [4] and 

Kheradiya [5], respectively. These approaches are addressed in the following sections. 

 

2.4.1 Analytical Methods 

 Various methods are available for the analysis of stress distribution in orthotropic 

materials. Research by Esp [4] has led to an understanding of the stress fields surrounding 

multiple circular holes in an orthotropic composite plate. Esp [4] developed an analytical 

approach to solving for the stress field due to multiple holes. This is discussed below in Section 

2.4.1.1. 
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2.4.1.1 Least Square Boundary Collocation Method 

 Esp [4] applied the least square boundary collocation method to internal and external 

boundaries for two circular holes in an orthotropic material in order to obtain the full field stress 

solution. Further, Esp [4] was able to demonstrate excellent correlation of circumferential stress, 

𝜎𝜃, to published solutions from Ling (1942), Fan and Wu (1988), and Lekhnitskii, as well as 

finite element method solutions.  

 

2.4.2 Finite Element Analysis 

 As with a single hole, the finite element method has been used to model and study stress 

concentrations due to multiple holes in fiber reinforced composite laminates. The FEM approach 

offers great modeling flexibility, as finite geometry, multiple holes, loading and boundary 

conditions, and material anisotropy are all once complex issues now easily dealt with. Moreover, 

it is relatively straightforward to tailor FEM models to the problem geometry and conditions at 

hand, especially since current commercial FEA programs are quite robust with regard to both 

graphical user interface (GUI) and character user interface (CUI).  

Kheradiya [5] studied the effect of multiple circular holes upon stress concentration in an 

orthotropic [03/±45/90]S laminate, and found that for two side-by-side holes transverse to tensile 

loading, the maximum stress at a point on the hole periphery increases as the distance between 

the two holes decreases. Additionally, it was found that for three holes in 45° and 60° triangular 

arrays, the maximum stress of the 0° ply occurs at a point on the outer hole edge. Further, for a 

given hole array, the maximum stress of the 0° ply increases as the hole size ratio increases.  

 Doctoral research by Esp [4] used FEA to validate the least square boundary collocation 

analytic approach, and revealed less than a 1.0% peak difference when used to model two equal 

diameter holes in close proximity across three different laminate layups. Further, when used to 

model two unequal sized holes in close proximity, less than a 2.0% peak difference was found. 

The finite element model used by Esp [4], and its associated stress contour plot and data can be 

seen below in Figs. 2.12-2.14 and Table 2.2, respectively. Due to symmetry, only half of the 

plate was modeled.  
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Figure 2.12: Finite element model with two equal diameter circular holes [4]. 

 

 

Figure 2.13: Enlarged view of mesh refinement [4]. 
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Figure 2.14: Stress field contour plot of 𝜎𝑥 for a quasi-isotropic laminate with equal side-by-side holes [4]. 

 

Table 2.2: Comparison between FEM and boundary collocation method for a finite geometry model with equal side-

by-side holes [4]. 

  
𝝈𝒙 (Pt. C) - 

FEM 

𝝈𝒙 (Pt. C) - 

B.C. 
%Δ 

𝝈𝒙 (Pt. D) - 

FEM 

𝝈𝒙 (Pt. D) - 

B.C. 
%Δ 

Quasi-

Isotropic 
5.1281 5.1265 0.03 4.3065 4.3082 0.04 

Hard 

Laminate 
7.2445 7.2314 0.18 4.2989 4.2900 0.21 

Soft 

Laminate 
4.5742 4.5637 0.23 4.4109 4.4304 0.44 

 

2.5 Damage Evolution in Laminated Composites 

The understanding of damage initiation and evolution within a composite laminate 

subjected to external loading is of great importance to a variety of engineering industries. The 

proper design of a fiber reinforced composite laminate depends greatly on knowledge of its 

mechanical limitations. It is beneficial to know the magnitude of the applied external loading 

force that initiates damage, and the rate at which damage accumulates. This allows for a more 

informed design, where failure is avoided (or at least mitigated) and consequent injury or loss of 

life does not result. Works by Esp [4] and Kheradiya [5] revealed that hole-to-hole proximity 

governs local stress concentration. Additionally, the “edge effect” also gives rise to increased 

local stress concentration, per Kheradiya [5]. It is worth commenting that the inherent 

complexity of the manufacturing of fiber reinforced composite laminates can also produce 

defects within the laminate. Such occurrences can lead to premature damage initiation, evolution, 
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and subsequent failure. The foregoing provides reasons for the motivation to develop this area of 

knowledge. 

The overall mechanism which governs the progressive failure and subsequent damage 

accumulation of fiber reinforced composite laminates is exceptionally complicated. This is 

because damage can arise from many different types of individual micro-failure modes, which 

can occur either singularly or simultaneously, and is typically progressive in nature. Various 

types of micro-failure modes and their role in damage evolution can be seen below in Fig. 2.15. 

 

 

Figure 2.15: Damage evolution in a continuous fiber reinforced composite laminate. 

 

Micro-failure modes can include fiber fracture, fiber buckling, matrix cracking, delamination 

(common), and fiber-matrix interfacial shear. Owing to such complexities, composite damage 

problems quickly become analytically intractable. This difficulty can be readily addressed via 

numerical techniques such as the finite element method.  

There are various failure theories which can be used in the analysis of composite damage. 

Barbero and Shahbazi [21] developed a method to calculate the material parameters required by 

the progressive damage analysis (PDA) material-model in ANSYS. They found that the 

ANSYS/PDA predictions of those parameters were dependent upon mesh density, number of 

elements, and number of nodes, but independent of element type. Further, some of the damage 

parameters required by PDA (𝐹2𝑡, 𝐹12, and 𝐺𝑐) were adjusted, and used to predict damage 

initiation and evolution in composite laminates with good correlation to available experimental 

data, in light of certain restrictions. 
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Investigation by Tan [13] using a progressive failure model comprised of FEMESH and 

PROFAS revealed that once the number of finite elements in a mesh reaches a certain number, 

the predicted composite strength approaches a stable value. 

El-Sisi et al. [22] simulated progressive damage behavior of a composite plate containing 

a hole using the FEM in ANSYS with a subroutine, USERMAT. They demonstrated through the 

use of various numerical damage models such as ply discount method (PDM), simple 

progressive damage model (SPDM), and continuum damage mechanics model (CDMM), that 

good agreement was found in the SPDM, CDMM, and published experimental results. 

Additionally, El-Sisi et al. [22] used three different damage evolution laws; linear, quadratic, and 

degradation, and found that no substantial difference in the predicted failure load between them 

was present. 
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CHAPTER 3: FINITE ELEMENT MODEL 

 

The composite modeling and analysis capabilities of ANSYS Mechanical APDL 19.1 are 

discussed, followed by the composite laminate, its properties, and stacking sequence. The hole 

configurations to be investigated are shown, and the development of the finite element model is 

then presented. The model is validated against established theory, and convergence is 

demonstrated. 

 

3.1 ANSYS Mechanical APDL 

Because the majority of real-world physical phenomena give rise to nonlinear behavior, 

computer software is typically implemented as a solution method to problems which are 

otherwise intractable; be it far too cumbersome and/or time consuming to be solved by hand. 

ANSYS Mechanical APDL is a commercially available multi-purpose analysis tool frequently 

used in both academia and industry to model and solve complex engineering problems. The 

ANSYS finite element program is capable of modeling and solving numerous types of problems 

which involve composite materials, with various levels of complexities ranging from orthotropic 

to anisotropic, and static to dynamic. The user has the ability to obtain many types of stress/strain 

results, as well as create any type of lamina stacking sequence, including using different material 

properties for each lamina. Additionally, many types of elements may be used, some of which 

are more suited to composite modeling than others.  

 

3.2 Composite Laminate 

 The fiber reinforced composite laminate studied in this thesis is manufactured from a 

glass fiber reinforced epoxy (HyE 9082Af, Fiberite). The choice in material owes to the 

availability of strength and damage coefficients necessary for composite damage analysis 

(Chapter 6), and the fact that glass fiber/epoxy lends itself readily to photoelastic study in a 

laboratory, should future interest arise. A quasi-isotropic layup [03/(±45)3/903]S is considered. In 

order to correctly model the composite laminate in ANSYS Mechanical APDL 19.1, certain 
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mechanical properties must be known. In this case, the composite laminate is composed of 

twenty-four thin laminas, each with a thickness of 0.127 mm and characterized by 6 independent 

engineering elastic constants (identical for each lamina). Determined in the lamina coordinate 

system, they are 𝐸11, 𝐸22, 𝐺12, 𝐺23, 𝜈12, and 𝜈23. Here, the subscripts 1, 2, and 3 are parallel to the 

fiber direction, perpendicular to the fiber direction in the plane of the lamina, and normal to the 

lamina surface, respectively. This can be seen below in Fig. 3.1. 

 

 

Figure 3.1: Unidirectional lamina coordinate system. 

 

The elastic constants for the unidirectional fiber reinforced composite laminas can be found 

below in Table 3.1. 

 

Table 3.1: Unidirectional lamina elastic constants [21, 23]. 

Glass Fiber/Epoxy (HyE 9082Af, Fiberite) 

𝑬𝟏𝟏 (MPa) 𝑬𝟐𝟐  (MPa) 𝑬𝟑𝟑  (MPa) 

44700 12700 12700 

𝑮𝟏𝟐 (MPa) 𝑮𝟐𝟑 (MPa) 𝑮𝟏𝟑 (MPa) 

5800 4500 5800 

𝝂𝟏𝟐 𝝂𝟐𝟑 𝝂𝟏𝟑 

0.297 0.4111 0.297 

 

The overall dimensions for the composite laminate used in this study are given below in Table 

3.2. The length (𝐿) and width (𝑊) of the laminate were selected to follow the modeling 

guidelines that 𝐿 ≥ 2𝑊 for stress field study. When measuring stress with the intent of 

ascertaining resultant stress concentration factors, the laminate must be sufficiently long such 



32 
 

that the ends of the laminate in the length direction do not influence the stress fields at the hole 

(or holes). This is why theory considers plates of infinite dimensions; in order to obtain the true 

behavior of the stress fields, without any influence from the boundaries. 

 

Table 3.2: Composite laminate dimensions. 

Stacking 

Sequence 

Width, 𝑾 

(mm) 
Length, 𝑳 (mm) 

Number of 

Laminas, 𝑵 

Lamina 

Thickness, 𝒕 

(mm) 

Laminate 

Thickness, 𝑯 

(mm) 

[03/(±45)3/903]S 38.1 127 24 0.127 3.048 

 

3.2.1 Quasi-Isotropic Laminate 

 To obtain a quasi-isotropic laminate, the individual laminas must be oriented such that 

the extensional stiffness matrix, [𝐴], becomes isotropic. In this manner, extension and shear 

become decoupled (𝐴16 = 𝐴26 = 0), and the components of [𝐴] become independent of the 

lamina orientation. For a quasi-isotropic laminate [3], 

 

[𝐴] = [

𝐴11 𝐴12 0
𝐴12 𝐴22 = 𝐴11 0

0 0 𝐴66 =
𝐴11 − 𝐴12

2

] (3.1) 

 

The above conditions for isotropic behavior apply only to the [𝐴] matrix; the [𝐵] and [𝐷] 

matrices may or may not be completely populated, and bending-twisting coupling is still 

possible. Staab [24] pointed out that for a laminate to be considered quasi-isotropic, the 

following conditions shall be met: 

1. The total number of layers, 𝑁 ≥ 3 

2. All layers shall possess identical orthotropic elastic constants (i.e. they shall be the same 

material) and identical thickness. 

3. The orientation of the 𝑘th layer of an 𝑁-layer laminate shall be 

𝜃𝑘 =
𝜋(𝑘 − 1)

𝑁
 (3.2) 
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For further clarity, top views of various quasi-isotropic fiber orientations are shown below in Fig. 

3.2. 

 

 

Figure 3.2: Top view of common examples of quasi-isotropic fiber orientations. 

 

It is worth noting that an example of the general form of a quasi-isotropic stacking sequence for 

N=4 is [0n/(±45)n/90n]S, where 𝑛 is the number of laminas for each fiber orientation. The number 

of laminas, 𝑛, must be the same for the various fiber orientation angles in each general form 

example, in order to ensure that Eqns. 3.1 and 3.2 are satisfied. 

Additionally, Mallick [3] informed that for a quasi-isotropic laminate, the elastic 

constants at the laminate level may be obtained via 

 

𝐸𝑥𝑥 = 𝐸𝑦𝑦 =
𝐴11

2 − 𝐴12
2

ℎ𝐴11
 (3.3) 

  

𝜈𝑥𝑦 =
𝐴12

𝐴11
 (3.4) 

 

𝐺𝑥𝑦 =
𝐴11 − 𝐴12

2ℎ
 (3.5) 

 

where ℎ is the laminate thickness (equal to 𝐻 in this study). 

 

3.2.2 Laminate Stacking Sequence 

The stacking sequence is chosen to reflect the quasi-isotropic construction that is 

commonly used in design. Balanced and symmetric stacking sequences avoid the bending-
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twisting coupling. For additional clarity, the stacking sequence of the laminate used in this study 

is shown below in Figs. 3.3 and 3.4.4 

 

 

Figure 3.3: Stacking sequence for the top half of the [03/(±45)3/903]S laminate. 

 

 

Figure 3.4: ANSYS Mechanical APDL 19.1 lamina stacking sequence for the top half of the [03/(±45)3/903]S 

laminate. 

 
4 ANSYS Mechanical APDL 19.1 will only display 20 layers at a time, therefore only half of the laminate (12 

layers) is shown in Fig. 3.4. 
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3.3 Composite Laminate Hole Configurations 

 The configuration for the various hole patterns and their associated dimensions are shown 

below in Fig. 3.5. There, 𝑑 is the diameter of the circular hole (constant), 𝑑𝑒 is the distance of the 

hole edge to the free edge of the laminate, 𝑑ℎ is the distance between the two holes, ℎ is the 

height of the square hole (constant), 𝐿 is the length of the laminate, 𝑟𝑐 is the radius of the rounded 

corners for Hole 1 and Hole 2, and 𝑊 is the width of the laminate. 

 

 

Figure 3.5: Laminate hole configurations: (a) eccentrically located single square hole with rounded corners, (b) 

eccentrically located single circular hole, (c) two asymmetric square holes with rounded corners, (d) two 

axisymmetric square holes with rounded corners. 

 

The variables which are of particular interest to this study are 𝑑𝑒, 𝑑ℎ, and 𝑟𝑐. The remaining 

laminate geometry variables, 𝐿 and 𝑊, are held constant. The laminate thickness, 𝐻, which is not 

shown in Fig. 3.5 is also constant. The points around the periphery of the hole or holes can range 

from 𝐴 to 𝐻, and are points of interest where the magnitude of local stress fields is measured and 

recorded. 

 

3.4 Finite Element Model Development 

The finite element model is constructed via ANSYS Mechanical APDL 19.1, an industry 

standard analysis software. It is then validated against results from Pilkey and Pilkey [6], to 

ensure the integrity of the model, as discussed in Section 3.6. The Batch Mode method is used to 
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create the finite element model, which involves the use of an input file written in ANSYS 

Parametric Design Language (APDL). In this manner, the geometry and features of the model 

are easily controlled and modified, and the troubleshooting process becomes relatively 

straightforward. Because finite element problems (especially complex ones) cannot be readily 

solved with a model that lacks sufficient integrity, much effort has been taken to ensure that the 

modeling process (geometry, discretization, mesh refinement, convergence, etc.) has been 

followed correctly. Because this work addresses problems for which no rigorously established 

theoretical closed form solutions exist, it is imperative that a robust finite element model is 

created and used for study. 

 

3.4.1 Element Types 

 The selection of element types is critical to the formulation and solution of any FE model. 

Some elements are better suited to model certain types of problems than others. Depending upon 

the problem, an element with more nodes and integration points will yield more accurate 

numerical results and response. However, it should be noted that while using elements with more 

nodes than is necessary may yield slightly more accurate results, computation time and cost of 

analysis will often suffer. The finite element model was constructed using two different element 

type approaches: 1) Using PLANE183 and SOLID186 elements, 2) Using SHELL281 elements. 

Although both approaches are acceptable, this was done in order to ascertain the most accurate 

and appropriate type of element for this study. 

  

3.4.1.1 SOLID186 Element 

The finite element model makes use of two different types of elements, due to the method 

in which it is constructed. Initially, an individual lamina is meshed using 2D structural elements 

called PLANE183, which is a solid quadrilateral containing 8 nodes. Using a loop within the 

user code, the lamina is copied 𝑁 times and then extruded to create the laminate volume which 

contains 𝑁 layers. The 3D continuum element SOLID186 is a hexahedron containing 20 nodes, 

with each node having three translational degrees of freedom: 𝑢𝑥, 𝑢𝑦, and 𝑢𝑧. This rectangular 

solid element, sometimes referred to as a “brick” element, is then used for the laminate volume. 

The element sizes are selected such that their aspect ratio remains under 20, as to avoid element 



37 
 

shape warning messages from ANSYS, and subsequent convergence issues. The PLANE183 and 

SOLID186 elements are shown below in Fig. 3.6. 

 

 

Figure 3.6: ANSYS FEA elements considered: (a) PLANE183 element (8 node quadrilateral), (b) SOLID186 

element (20 node hexahedron). 

 

3.4.1.2 SHELL281 Element 

 The finite element model is now constructed using the SHELL281 element, which is a 

structural shell quadrilateral element in 3D space. The use of shell elements in the modeling of 

composites is a common practice, as they tend to yield more accurate results. In fact, ANSYS 

Mechanical APDL user documentation recommends using shell elements (either SHELL181 or 

SHELL281) when modeling composites. Further, it is relatively straightforward to employ shell 

elements when writing the batch file, as they do not require the use of loops to generate the 

laminate volume. Perhaps the only drawback to using shell elements is that the graphical display 

of the results shows only one 2D lamina at a time, whereas with solid elements the 3D laminate 

can be viewed with all the contour information of every lamina present at once. The SHELL281 

element contains 8 nodes with each node having six degrees of freedom (three translational: 𝑢𝑥, 

𝑢𝑦, and 𝑢𝑧, and three rotational: 𝜃𝑥, 𝜃𝑦, and 𝜃𝑧), and either 1, 3, 5, 7, or 9 through-thickness 

integration points. For this study, 5 integration points were used in all laminate configurations. It 

was discovered that if one intends to model surfaces which contain curvature, the presence of the 

three rotational degrees of freedom are both desirable, and necessary; they are not for this study. 

The inclusion of the rotational degrees of freedom lead to data which did not consistently obey 
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expected trends, nor was convergence in the FEA model possible. Consequently, additional code 

was implemented to eliminate the rotational degrees of freedom. The SHELL281 element allows 

the user to obtain stress results at three different locations in the through-thickness direction, 

from the top, middle, or bottom sections of the element. This can be especially useful, as the top 

and bottom stress results of the SHELL281 element will differ if through-thickness bending is 

present; it is not for this study. All stress field data were taken from the middle layer for the sake 

of consistency; however, all layers will yield the same results. The SHELL281 element, and its 

different stress result layers can be seen below in Fig. 3.7. 

 

 

Figure 3.7: SHELL281 element: (a) SHELL281 element (8 node quadrilateral), (b) SHELL281 element layers (TOP, 

MID, and BOTTOM) for stress results. 

 

3.4.2 Modeling and Mesh Generation 

 The methodology used in the creation of the finite element model for the composite 

laminate ensures that an efficient and accurate 3D model is created. As mentioned in Section 

2.4.2, ANSYS has both a GUI and a CUI. Here, the latter is utilized to create the model (the GUI 

is used to acquire all numerical data, and stress contour plots). A bottom-up approach is used in 

the creation of the finite element model, and is accomplished through the use of a batch file 

containing user written code. While the subsequent sections detail the process for the creation of 

the finite element model geometry used for single hole validation, the methodology remains the 

same for multiple hole configurations. 
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3.4.2.1 Keypoints 

 The modeling process begins with the creation of the keypoints. Each keypoint is defined 

by (𝑥, 𝑦, 𝑧) coordinates with respect to the working plane. The keypoints are then connected by 

lines to form areas, which will then be discretized by the mesh. The numbered keypoints are 

shown below in Fig. 3.8. 

 

 

Figure 3.8: Numbered keypoints. 

 

3.4.2.2 Areas 

The areas are created by specifying the keypoints at each corner of the intended area. A 

Boolean subtraction is then performed to create the circular hole. Once the numbered areas have 

been established, they are discretized by the meshing approach specified by the user. This is 

described in greater detail in Section 3.6.1. The numbered areas can be seen below in Fig. 3.9. 
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Figure 3.9: Numbered areas. 

 

3.4.2.3 Laminate 

For the case of the SOLID186 element, the laminate is generated by copying and 

extruding the meshed area of a lamina, as described above in Section 3.4.1.1. A completed half-

laminate which will be used solely for validation, and an enlarged view depicting its 12 

individual laminas are shown below in Figs. 3.10 and 3.11, respectively. 
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Figure 3.10: Completed half-laminate using SOLID186 elements. 

 

 

Figure 3.11: Enlarged view of the 12 laminas in the completed half-laminate using SOLID186 elements. 
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For the case of the SHELL281 element, the laminate is generated by specifying the 

number of layers and their respective fiber orientation. The laminate is represented by a sheet, 

which contains the laminas specified by the user. In order to view stress field contour results, the 

user simply specifies the layer and coordinate system to be displayed. A completed laminate 

which will be used solely for validation, and an enlarged view are shown below in Figs. 3.12 and 

3.13, respectively. 

 

 

Figure 3.12: Completed laminate using SHELL281 elements. 
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Figure 3.13: Enlarged view of the completed laminate using SHELL281 elements. 

 

 Since the general behavior of stress concentration within a notched material is known a 

priori (localization at the cutout), the finite element model can be broken into two distinct 

regions; areas in which stress localization is expected, and areas in which it is not. In the interest 

of keeping the total number of finite elements in the model at a level which does not exceed what 

is truly necessary, the global mesh is optimized for local analysis and overall computational 

efficiency. Because an accurate value of the stress gradients immediately surrounding the cutout 

is required for study, this region of the mesh must be sufficiently refined. To this end, square 

areas are defined around the holes, which serve as local regions for mesh refinement. This is 

addressed in Section 3.6. For the case of validation, only a single hole exists in the laminate, and 

thus only one square area of the mesh needs to be refined. This can be seen below in Fig. 3.14. 
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Figure 3.14: Square region (outlined in red) for local mesh refinement. 

 

3.4.3 Boundary Conditions 

The appropriate boundary conditions must be applied to the finite element model in order 

to ensure results which are consistent with the problem intent. It is important to make sure that 

the model is not overconstrained, as this would distort the stress field and produce incorrect 

results. In the case of the SHELL281 element, and for this particular study, only the three 

translational degrees of freedom must be fixed, at particular points and boundaries. User code 

has been implemented to remove the three rotational degrees of freedom from the SHELL281 

elements. This is due to the fact that the laminate is modeled as a flat plate, thereby eliminating 

any curvature in the surfaces, and any consequent need for rotational degrees of freedom to 

capture such an effect. Further, immobilizing all six degrees of freedom explicitly would result in 

an overconstrained model, thereby inducing artificial stiffness, leading to inaccurate results. To 

eliminate the coupling effects of tension and shear and well as bending and torsion, the fiber 

reinforced composite laminates used in this study are all balanced, and symmetric about the 

midplane. Consequently, because of the lamina stacking sequence symmetry, and for the case of 

the PLANE183 and SOLID186 element modeling approach, only laminas which are above the 
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midplane need to modeled. Thus, the translational degree of freedom in the 𝑧-plane is fixed, such 

that all nodes with coordinates of 𝑧 = 0 experience zero displacement (𝑈𝑧 = 0). The composite 

laminate is assumed to be fixed along the surface of its 𝑦𝑧 face in the longitudinal direction (𝑥-

direction) at one end (𝑥 = 𝐿), such that zero translational displacement occurs (𝑈𝑥 = 0). Lastly, 

all the nodes along a vertical center line (𝑦-direction) are constrained such that no displacement 

occurs (𝑈𝑦 = 0). The nodal boundary conditions can be seen below in Fig. 3.15. 

 

 

Figure 3.15: Fixed nodal boundary conditions. 

 

3.4.4 Loading Condition 

The fiber reinforced composite laminate is considered to be under a static state of in-

plane uniaxial tension. In effect, the FEA simulation seeks to mimic a laboratory tension test. 

However, it must be noted that this is not a tension test. When measuring stress and resultant 

stress concentration factors, one needs only apply enough load such that the general behavior of 

the stress field is captured. This is to avoid damaging the laminas, which would influence the 

local stress field and will not then provide the accurate measure of the stress concentration 

factors. Thompson and Thompson [25] recognized that due to the round off error (≈1e-20 units) 
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which is present in all computer driven FEA simulations, it becomes necessary to consider all 

problems which would ordinarily have equal and opposite forces applied to maintain static 

equilibrium, as constrained on one side and loaded on the other. Such an approach is considered 

here; a nominal in-plane uniaxial tensile stress, σ, is applied to the 𝑦𝑧 face of the composite 

laminate which is not constrained (𝑥 = 0). ANSYS only allows a distributed force to be applied 

as a pressure. Because pressure is considered to act at an inward normal direction with respect to 

the body upon which it is applied, it must be negated in order to act as a tensile stress. For the 

case of the SHELL281 elements, the laminate is loaded using a force acting over a line, rather 

than over an area. Therefore, the applied in-plane nominal tensile stress is 𝜎 = 100 psi =

0.689476 MPa. Since 𝜎 = 𝐹 𝐴⁄ = 𝐹 (𝑁𝑡𝑊) = 𝑁𝑥𝑥 (𝑁𝑡)⁄⁄ , the applied uniform line load (or 

normal force resultant) is 𝑁𝑥𝑥 = 𝜎𝑁𝑡. Consequently, the linear load that must be applied to the 

[03/(±45)3/903]S laminate in ANSYS, is 𝑁𝑥𝑥 = 0.689476 MPa ∗ 24 layers ∗ 0.127 mm/layer =

2.10152 N/mm. The loading condition (vertical red line) along with the individual nodes (white 

dots) for the [03/(±45)3/903]S laminate using the SHELL281 element can be seen below in Fig. 

3.16.  

 

 

Figure 3.16: Applied negative uniform linear load at 𝑥 = 0, for the SHELL281 laminate. 
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For the case of the laminate model which uses SOLID186 elements, the applied in-plane nominal 

tensile stress is the same, 𝜎 = 100 psi = 0.689476 MPa, however the stress is applied over the 

unconstrained surface of the laminate at 𝑥 = 0,  as opposed to using a uniform linear force in the 

case of the SHELL281 model. This can be seen below in Fig. 3.17. 

 

 

Figure 3.17: Applied negative uniform surface pressure at 𝑥 = 0, for the SOLID186 half-laminate. 

 

3.4.5 Reaction Forces 

The reaction forces should reflect the proper constraint of the laminate based upon the 

applied loading. These include nodal forces (NFOR) and reaction forces (RFOR). Their locations 

and directions are as expected, based upon the applied external loading and constraint. The nodal 

forces (pink arrows) and reaction forces (purple arrows) can be seen below in Fig. 3.18. 
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Figure 3.18: Nodal forces and reaction forces at the constrained edge 𝑥 = 𝐿 (the right edge). 

 

3.5 Validation 

It is critical to validate the finite element model against previous research results which 

are well defined, and universally accepted. This ensures accuracy of the modeling technique, and 

brings confidence to the results developed in later sections. Consequently, the ANSYS model is 

compared to the results obtained from Pilkey and Pilkey [6]. There, the “edge effect” for an 

eccentrically located single circular hole in an isotropic plate of finite width subjected to a 

remotely applied in-plane uniaxial tensile stress was investigated. In the interest of a thorough 

comparison, both gross and net stress concentration factors are explored. The closed form 

solution for the stress concentration factor based upon gross area is 

 

𝐾𝑡𝑔 = 𝐶1 + 𝐶2 (
𝑎

𝑐
) + 𝐶3 (

𝑎

𝑐
)
2

+ 𝐶4 (
𝑎

𝑐
)
3

 (3.6) 

 

where 

𝐶1 = 2.9969 − 0.0090 (
𝑐

𝑒
) + 0.01338 (

𝑐

𝑒
)
2

 (3.7) 
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𝐶2 = 0.1217 + 0.5180 (
𝑐

𝑒
) − 0.5297 (

𝑐

𝑒
)
2

 (3.8) 

 

𝐶3 = 0.5565 + 0.7215 (
𝑐

𝑒
) + 0.6153 (

𝑐

𝑒
)
2

 (3.9) 

  

𝐶4 = 4.082 + 6.0146 (
𝑐

𝑒
) − 3.9815 (

𝑐

𝑒
)
2

 (3.10) 

  

where 𝑎 is the hole radius, 𝑐 is the distance from the close edge of the plate to the center of the 

circular hole, and 𝑒 is the distance from the far edge of the plate to the center of the circular hole.  

The maximum stress at point B is then simply 

 

𝜎𝑚𝑎𝑥 = 𝜎𝐵 = 𝐾𝑡𝑔𝜎 (3.11) 

 

The closed form solution for the stress concentration factor based upon net area is 

 

𝐾𝑡𝑛 = 𝐶1 + 𝐶2 (
𝑎

𝑐
) + 𝐶3 (

𝑎

𝑐
)
2

 (3.12) 

 

where 

𝐶1 = 2.989 − 0.0064 (
𝑐

𝑒
) (3.13) 

  

𝐶2 = −2.872 + 0.095 (
𝑐

𝑒
) (3.14) 

 

𝐶3 = 2.348 + 0.196 (
𝑐

𝑒
) (3.15) 

 

where all variables are as defined above. The maximum stress at point B is then  
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𝜎𝑚𝑎𝑥 = 𝜎𝐵 = 𝐾𝑡𝑛𝜎𝑛𝑜𝑚 (3.16) 

 

where 

 

𝜎𝑛𝑜𝑚 =
𝜎√1 − (𝑎 𝑐⁄ )2

1 − (𝑎 𝑐⁄ )

1 − (𝑐 𝐻⁄ )

1 − (𝑐 𝐻⁄ ) [2 − √1 − (𝑎 𝑐⁄ )2]
 (3.17) 

 

where 𝐻 is the width of the plate, and all other variables are as defined above. The corresponding 

stress concentration factors chart from Pilkey and Pilkey (p. 272) [6] can be seen below in Fig. 

3.19. 

 

 

Figure 3.19: Stress concentration factors for a finite width isotropic plate in uniaxial tension with an eccentrically 

located single circular hole (based upon mathematical analysis of Sjӧstrӧm 1950) [6].  
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Since the above results from Pilkey and Pilkey [6] are for that of a homogeneous 

isotropic plate, the validation was conducted with an isotropic material, namely A36 steel. To 

change the ANSYS composite model, one may simply alter the material properties in the code to 

that of A36 steel in the following manner:  

 

 𝐸11 = 𝐸22 = 𝐸33 (3.18) 

   

 
𝐺12 = 𝐺13 = 𝐺23 =

𝐸11

2(1 + 𝜈12)
 (3.19) 

 

𝜈12 = 𝜈13 = 𝜈23 (3.20) 

 

The above properties of A36 steel are given below in Table 3.3. 

 

Table 3.3: Material properties for A36 steel [26]. 

Young's Modulus, 𝑬𝟏𝟏 (GPa) Shear Modulus, 𝑮𝟏𝟐 (MPa) Poisson's Ratio, 𝝂𝟏𝟐 

200 79365.1 0.26 

 

3.6 Convergence 

Perhaps one of the most important steps in the proper use of finite element software to 

solve problems is the test for convergence. In the sections below, the mesh is refined until the 

number of elements used no longer significantly affects the results provided by ANSYS. The 

initial instinct is typically that “more is better”, however, computer models with vast amounts of 

elements can take many hours to solve, which can be time consuming and expensive. Therefore, 

an initial test for convergence avoids unnecessary effort, and serves to validate both the model 

and the approach. In the interest of a simple comparison to the theoretical results, Sections 3.6.1-

3.6.3 consider the above from Pilkey and Pilkey [6]. It is important to recall that the finite 

element method (FEM) obtains only approximate solutions. However, these are often within 1%-

5% of the theoretical solution, provided the mesh is sufficiently refined and the problem is 

accurately modeled. This is discussed and demonstrated in the following sections. 

 



52 
 

3.6.1 Mesh Sensitivity 

Since the approximate location of the stress concentration is known, only the meshed 

areas immediately surrounding the hole need to be refined, as this is where stress field data will 

be acquired. To demonstrate convergence, this square area is discretized into a progressively 

increasing number of elements, which is shown in Sections 3.6.1.1-3.6.1.4. Throughout this 

study a mapped meshing approach is used. This allows for greater control over discretization; 

element size, shape, aspect ratio, and number of elements can all be controlled with relative ease. 

Further, meshes generated using this approach are more regular and geometrically structured. 

Consequently, a mapped mesh is more computationally well-behaved. In order to ensure that a 

sufficient amount of the stress field surrounding the hole is accurately captured, the width and 

height of the square area for local mesh refinement is taken to be equal to half of the laminate 

width, or 𝑤 = ℎ = 𝑊 2⁄ = 38.1 mm/2 = 19.05 mm. It should be noted for the cases of offset 

holes and multiple holes, this square area must shrink as the hole approaches the edge of the 

laminate, or becomes within proximity of another hole. It is important to recognize that the 

introduction of discretization into the problem brings inherent approximation error. However, 

this can be mitigated by increasing the number of elements in the mesh. This is perhaps 

somewhat at odds with previous statements regarding the unnecessary use of large numbers of 

elements. The progression from a coarse mesh to a very fine mesh serves to illustrate the 

correlation between the number of finite elements used in the mesh and the accuracy of the 

simulated stress results. In effect, this is an analysis of mesh sensitivity. The accuracy of the 

solution, namely the stress gradient results, will depend upon the mesh density. As expected, a 

finer mesh will yield a more accurate solution due to a greater number of nodes being used in 

computation. It is important to note that all stress data acquired in this study is from the nodal 

solution provided by ANSYS. The nodal stress solution, as opposed to the elemental stress 

solution, is an average of the stresses at the nodes. This averaged nodal solution results in a stress 

field contour which is continuous across the elements. Such results are achieved through nodal 

integration, as opposed to Gauss point integration used in the elemental solution. Ultimately, the 

mesh must be refined to a degree such that the stress/strain gradients are captured at a level 

which most accurately reflects reality. Once an acceptable amount of error is achieved, the 

addition of more elements serves only to hinder the CPU effort, subsequent computational time, 

and cost of FEA simulation.  
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3.6.1.1 Coarse Mesh 

The test for convergence begins with a finite element model which possesses a coarse 

mesh. The level of mesh refinement is very low, and consequently, the accuracy of the expected 

stress results is also very low. It is important to note the number of elements in the square area 

surrounding the hole. As the convergence process evolves, this area will become more refined, 

and hence increase in its number of elements. The coarse mesh can be seen below in Fig. 3.20. 

 

 

Figure 3.20: Coarse mesh. 

 

The number of elements within the square area which surrounds the hole is directly related to the 

accuracy of the stress results. In Fig. 3.20 above, the number of circular division lines in the 

square area is equal to four, and the number of radial division lines is 80. The element count for 

the square area is given below in Table 3.4. 

 

Table 3.4: Number of elements in square area for coarse mesh. 

Circular Division Lines Radial Division Lines Number of Elements 

4 80 400 
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3.6.1.2 Medium Mesh 

Here the degree of mesh refinement is slightly greater than before, but the expected 

accuracy of the stress results is still very low. It is anticipated that the mesh will still need to be 

refined two more times before mesh sensitivity is sufficiently eliminated. The medium mesh can 

be seen below in Fig. 3.21. 

 

 

Figure 3.21: Medium mesh. 

 

Now the number of circular division lines in the square area has increased to eight. The number 

of radial division lines remains 80. The element count for the square area is given below in Table 

3.5. It can be seen that the number of elements in the medium mesh is now almost double that of 

the coarse mesh. 

 

Table 3.5: Number of elements in square area for medium mesh. 

Circular Division Lines Radial Division Lines Number of Elements 

8 80 720 
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3.6.1.3 Fine Mesh 

The third mesh refinement step will yield much better results than the previous two, yet 

still retains a degree of sensitivity. The fine mesh can be seen below in Fig. 3.22. 

 

 

Figure 3.22: Fine mesh. 

 

At this stage of mesh refinement, the number of circular division lines in the square area has 

increased to 17. The number of radial division lines is again 80. The element count for the square 

area is given below in Table 3.6.  

 

Table 3.6: Number of elements in square area for fine mesh. 

Circular Division Lines Radial Division Lines Number of Elements 

17 80 1440 

 

3.6.1.4 Very Fine Mesh 

Following a number of mesh refinement iterations, the mesh sensitivity has been almost 

completely eliminated, and is sufficiently refined. The resulting stress field behavior can now be 

captured with a high level of accuracy, and the very fine mesh can be seen below in Fig. 3.23. 
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Figure 3.23: Very fine mesh. 

 

In the final level of local mesh refinement, the number of circular division lines in the square 

area has increased to 35. The number of radial division lines remains unchanged at 80. The 

element count for the square area is given below in Table 3.7. 

 

Table 3.7: Number of elements in square area for very fine mesh. 

Circular Division Lines Radial Division Lines Number of Elements 

35 80 2880 

 

3.6.2 Theoretical Results 

 By using Eqns. 3.6-3.17, and plotting the result on the stress chart below in Fig. 3.24 for 

the circular hole, at point 𝐵, with 𝑎 𝑐⁄ = 0.45, and 𝑒 𝑐⁄ = 3.8, the stress concentration factor 

based upon gross area and net area, is 𝐾𝑡𝑔 = 3.7459 and 𝐾𝑡𝑛 = 2.2933, respectively. Therefore, 

since the local stress at section 𝐴𝐵, 𝜎𝑛𝑜𝑚 , can be calculated based upon the applied stress, 𝜎, the 

maximum stress at point 𝐵 for gross and net area are 𝜎𝑚𝑎𝑥 = 3.7459𝜎, and 𝜎𝑚𝑎𝑥 =

2.2933𝜎𝑛𝑜𝑚, respectively. 
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Figure 3.24: Stress concentration factors for gross and net area [6]. 

 

3.6.3 Convergence Results 

The final step in the convergence process is to summarize the information, and calculate 

the error between the FEA and experimental results for the two types of element approaches, 

such that the accuracy of the ANSYS finite element model may be understood. A comparison is 

also made between the acquired stress data, and the theoretical stress based upon the two types of 

stress concentration factors, 𝐾𝑡𝑔 and 𝐾𝑡𝑛. The ANSYS mesh sensitivity results for the two 

different element modeling approaches, SOLID186 and SHELL281, are shown in Figs. 3.25 and 

3.26, respectively. Data regarding the validation and calculated error for both the SOLID186 and 

SHELL281 models can be found below in Tables 3.8 and 3.9, respectively. 
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Figure 3.25: SOLID186 mesh results: (a) coarse, (b) medium, (c) fine, (d) very fine. 

 

 

Figure 3.26: SHELL281 mesh results: (a) coarse, (b) medium, (c) fine, (d) very fine. 
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Table 3.8: Correlation between number of elements to SOLID186 FEA stress result accuracy. 

Local 

Mesh 

Refinement 

Total 

Number 

of 

SOLID186 

Elements 

Total 

Number 

of 

SOLID186 

Nodes 

SOLID186 

FEA Stress, 

𝝈𝒙,𝒎𝒂𝒙 

(MPa) 

Theoretical 

Stress, 

𝝈𝒙,𝒎𝒂𝒙 

(MPa) 

Based on 

𝑲𝒕𝒈 

FEA 𝝈𝒙,𝒎𝒂𝒙 

versus 𝑲𝒕𝒈 

Theoretical 

𝝈𝒙,𝒎𝒂𝒙 % 

Error 

Theoretical 

Stress, 

𝝈𝒙,𝒎𝒂𝒙 

(MPa) 

Based on 

𝑲𝒕𝒏 

FEA 𝝈𝒙,𝒎𝒂𝒙 

versus 𝑲𝒕𝒏 

Theoretical 

𝝈𝒙,𝒎𝒂𝒙 % 

Error 

ANSYS 

Runtime 

Coarse 51840 373560 2.5777 

2.5827 

0.193 

2.6417 

2.423 2 min 38 sec 

Medium 56640 407160 2.6497 2.593 0.301 3 min 2 sec 

Fine 66240 474360 2.6743 3.548 1.234 4 min 33 sec 

Very Fine 85440 608760 2.6816 3.830 1.510 6 min 57 sec 

 

Table 3.9: Correlation between number of elements to SHELL281 FEA stress result accuracy. 

Local Mesh 

Refinement 

Total 

Number of 

SHELL281 

Elements 

Total 

Number of 

SHELL281 

Nodes 

SHELL281 

FEA Stress, 

𝝈𝒙,𝒎𝒂𝒙 

(MPa) 

Theoretical 

Stress, 

𝝈𝒙,𝒎𝒂𝒙 

(MPa) 

Based on 

𝑲𝒕𝒈 

FEA 𝝈𝒙,𝒎𝒂𝒙 

versus 𝑲𝒕𝒈 

Theoretical 

𝝈𝒙,𝒎𝒂𝒙 % 

Error 

Theoretical 

Stress, 

𝝈𝒙,𝒎𝒂𝒙 

(MPa) 

Based on 

𝑲𝒕𝒏 

FEA 

𝝈𝒙,𝒎𝒂𝒙 

versus 𝑲𝒕𝒏 

Theoretical 

𝝈𝒙,𝒎𝒂𝒙 % 

Error 

ANSYS 

Runtime 

Coarse 4320 13316 2.5235 

2.5827 

2.293 

2.6417 

4.476 2 sec 

Medium 4720 14516 2.5944 0.451 1.793 2 sec 

Fine 5520 16916 2.6188 1.398 0.868 3 sec 

Very Fine 7120 21716 2.6261 1.678 0.593 3 sec 

 

The trend between the number of elements in the finite element model and their 

relationship to the maximum stress in the 𝑥-direction, 𝜎𝑥,𝑚𝑎𝑥, as calculated by ANSYS for the 

SOLID186 and SHELL281 elements are shown below in Fig. 3.27 and 3.28, respectively. 
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Figure 3.27: FEA max stress versus the total number of SOLID186 elements. 

 

 

Figure 3.28: FEA max stress versus the total number of SHELL281 elements. 

 

 In the case of the SOLID186 elements, the finite element model converges to a value 

above that which is predicted by theory for both the gross and net area stress concentration 

factors. This value is only slightly above the theoretical value for the net area stress 

concentration factor, and is thought to be due to truncation error within ANSYS. Also, there may 

exist some practical limit of ply thinness that can be modeled using SOLID186 elements which 
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has been reached or exceeded. Even so, the model yields results which are still very close to 

values which are predicted by theory. The results from the SHELL281 finite element model 

slightly exceed what is predicted by 𝐾𝑡𝑔, but then converge below the value of 𝐾𝑡𝑛, which is 

desirable. Therefore, the proposed SHELL281 meshing yields data which are consistent with the 

published results, and within a small amount of error (≈1.68% and ≈0.59% for 𝐾𝑡𝑔 and 𝐾𝑡𝑛, 

respectively). It is thought that both models surpass the 𝐾𝑡𝑔 stress concentration factor due to 

error introduced by defining the remote stress at a large distance from the local stress point of 

interest. This can be seen in the complexity of Eqns. 3.6-3.10 versus Eqns. 3.12-3.15. 

Additionally, the use of SHELL281 elements saves greatly on computation time, as the high 

number of elements present in the SOLID186 finite element model due to the presence of half of 

the layers (12 laminas) in the laminate gives rise to an exceedingly large number (>1,000,000 for 

the case of the very fine mesh) of partial differential equations to solve. Based upon the above 

results, it is concluded that SHELL281 elements with a very fine mesh size should be used. 



62 

 

CHAPTER 4: LAMINATE WITH A SINGLE HOLE 

 

Stress distributions, maximum stress locations, and stress concentrations due to the “edge 

effect” for a single offset square hole with rounded corners transverse to an externally applied in-

plane uniaxial tensile stress in a finite width laminate are studied. Additionally, this phenomenon 

is also explored for a single offset circular hole transverse to an externally applied in-plane 

uniaxial tensile stress. Stress concentration factors for both hole geometries are then investigated, 

which is followed by a conclusion. 

 

4.1 Single Square Hole Transverse to Applied Load 

 Stress distributions and maximum stress locations due to a single offset square hole with 

rounded corners subjected to an in-plane uniaxial tensile stress in a finite width laminate are 

explored here. In order to investigate the “edge effect”, four different cases are considered. To 

begin with, the square hole is located at the center of the laminate width, with each subsequent 

case becoming closer to the laminate edge by a factor of one-half. In the interest of contrast, 

these results will be compared to that of a single offset circular hole in Section 4.2. The initial 

study of a single square hole with rounded corners is to provide a baseline for the extension to 

two holes in Chapter 5.  

 

4.1.1 Geometry and Loading 

 The geometry and loading configuration for the single square hole with rounded corners 

is shown below in Fig. 4.1. The hole dimension, ℎ, is 6.35 mm and the plate width, 𝑊, is 38.1 

mm, so that the ℎ 𝑊⁄  ratio is 0.17. The plate thickness, 𝐻, is 3.048 mm. The hole edge-to-

laminate edge distance, 𝑑𝑒, is varied, along with the corner radius, 𝑟𝑐, which ranges over four 

different values for each case; 𝑟𝑐 = 0.25, 1, 2, and 3 mm. The height (and thus, the width) of the 

square hole, ℎ, is held constant for all cases. For all values of 𝑑𝑒, the center of the square hole is 

located at the mid-length of the laminate, at 𝑥 = 𝐿/2. Lastly, 𝐴 through 𝐷 are the points of 

interest at the hole corners where stress field measurements are taken.  
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Figure 4.1: Geometry and loading condition for the single offset square hole with rounded corners. 

 

The various cases for the spacing of the single offset square hole with rounded corners 

are given below in Table 4.1. 

 

Table 4.1: Cases for the single offset square hole with rounded corners. 

Case 
Hole Edge-to-Laminate Edge 

Distance, 𝒅𝒆 (mm) 
Square Hole Height, 𝒉 (mm) 

1 15.875 (Centered) 

6.35 
2 7.938 

3 3.969 

4 1.984 

 

4.1.2 Meshing 

 The mesh is obtained using the same approach as in Chapter 3. Keypoints are established 

and used to generate areas, which are then meshed and refined locally in the square area 

surrounding the square hole. In order to ensure a high degree of accuracy, the number of 

elements in the square area surrounding the hole was refined and compared against results from 

Eqns. 2.14-2.20 until good agreement for the various corner radii values was obtained for an 

isotropic plate (A36 steel). The isotropic elastic constants in ANSYS were then changed to the 

values in Table 3.1 to reflect the quasi-isotropic laminate. Additionally, the number of elements 
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in the square area (3840) is kept constant for all corner radius sizes, 𝑟𝑐, and hole edge-to-laminate 

edge distances, 𝑑𝑒. It should be noted that this study omits the case of a square hole with sharp 

corners. Due to the stress singularities at the sharp corners, refining the mesh serves only to 

increase the maximum stress value. In theory, the stress at the corners is infinite in magnitude, 

because the area over which the force acts shrinks to an infinitesimal point. Since stress is 

defined as  𝜎 = 𝐹 𝐴⁄ , where 𝐹 is the applied force, and 𝐴 is the area over which the force acts, 

dividing by such a small number would result in infinity. Conversely, for the case of the rounded 

corners, the singularity is eliminated by the smooth curvature of the corner radius. Thus, some 

finite value of maximum stress at the neighborhood of the hole corners can now be converged 

upon. The meshing for the single offset square hole with a corner radius of 𝑟𝑐 = 2 mm can be 

seen below in Fig. 4.2. 
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Figure 4.2: Mapped meshing for the single offset square hole for 𝑟𝑐 = 2 mm: (a) 𝑑𝑒 = 15.875 mm, (b) 𝑑𝑒 = 7.938 

mm, (c) 𝑑𝑒 = 3.969 mm, (d) 𝑑𝑒 = 1.984 mm. 

 

4.1.3 Stress Distribution 

 It should be mentioned that ANSYS APDL allows the user to select stress results in a 

variety of ways. The SHELL281 element model contains elements in each lamina which possess 

local coordinate systems that are aligned with the specified fiber angle for that lamina. As such, 



66 
 

the user can select 𝜎𝑥 stress results from ANSYS which are in the global coordinate system 

(laminate level; 𝜎𝑥, 𝜎𝑦 , and 𝜏𝑥𝑦), or the local coordinate system of the fiber orientation (lamina 

level; 𝜎11, 𝜎22, and 𝜏12). Using the local fiber coordinate system gives different stress results (in 

most cases much higher) than when using the global coordinate system, provided the fibers are 

oriented at some angle with respect to the loading direction. In effect, the maximum stress results 

obtained using the local fiber coordinate system represent the peak lamina stress which the fibers 

must withstand for a particular lamina. It is important to recall that laminate strength and failure 

are governed by the maximum stress and its location within each lamina. Therefore, all stress 

data acquired in this study are taken from the local coordinate system in each lamina. For clarity, 

the global and local coordinate systems for each lamina, along with the fiber orientation, are 

shown below in Fig. 4.3. 

 

 

Figure 4.3: Global and local coordinate systems for the laminas: (a) 0° lamina, (b) 45° lamina, (c) -45° lamina, (d) 

90° lamina. 

 

It is interesting to note that using Eqns. 2.14-2.20 for the case of an infinite isotropic plate 

with a single centered square hole with rounded corners yields a result close to that which is 

obtained using the finite width FEM model. It is not expected that these two results will coincide 

exactly; however, Timoshenko and Goodier [9] revealed that finite width versus infinite width 
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isotropic plate solutions for a circular hole are usually within roughly 6% of one another, 

provided the width of the plate is not less than four times the diameter of the hole. Here, the 

width of the plate is six times the width of the square hole. The comparison can be seen below, in 

Table 4.2. It is worth recognizing that as the corner radius increases to the point of transforming 

the square to a circle, both the FEA and the theoretical SCFs approach 3, the value of a single 

centered circular hole in an infinite isotropic plate. In Eqn. 2.19, the value for the corner radius is 

only allowed to shrink to ≈ 0.65 mm before the governing equations become invalid. It should 

be noted that because of this, substantial confidence is not present in the quantitative accuracy of 

data acquired for the composite laminate with 𝑟𝑐 = 0.25 mm; it is shown merely to illustrate the 

high stresses encountered as one approaches a singularity, and the general qualitative behavior of 

the stress fields and SCF. Such effort may be predominately academic. Further, such a small 

radius is impractical from both a design and machining standpoint; the probability that such a 

small radius would be necessary for a component is relatively low. It can be seen in Table 4.2 

that the percent error between the SCFs based on FEA and theory converges to -1.721% as the 

square hole transitions into a circular hole. The higher error in the case of the 3 mm corner radius 

is attributed primarily to the number of elements used in the local meshing surrounding the 

square hole, and secondly to a comparison between finite width results and infinite width plate 

solutions. It is also important to be aware that Eqns. 2.14-2.20 are the result of a curve fit to 

experimental data, and are within 5% error of that data per [8]. Further, Eqns. 2.14-2.20 were 

used to calculate the theoretical 𝐾𝑡𝑔 found below in Table 4.2. 

 

Table 4.2: Theoretical infinite width SCFs versus FEA finite width SCFs for a single centered square hole with 

rounded corners in an isotropic plate. 

Applied 

Remote 

Stress, 𝝈 

(MPa) 

Corner 

Radius, 𝒓𝒄 

(mm) 

FEA Max 

Stress, 𝝈𝒙,𝒎𝒂𝒙 

(MPa) 

FEA 𝑲𝒕𝒈, Finite 

Isotropic Plate (A36 

Steel) 

Theory 𝑲𝒕𝒈, Infinite 

Isotropic Plate 
𝑲𝒕𝒈 % Error 

0.689 

1 2.308 3.347 3.357 -0.284 

2 1.999 2.899 2.909 -0.334 

3 2.029 2.942 2.994 -1.721 

 

The 𝜎11 stress field contours for each of the laminas in the single square hole with 𝑟𝑐 = 2 

mm can be seen below in Figs. 4.4-4.7. 
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Figure 4.4: 𝜎11 stress field contours in the 0° lamina for the single offset square hole with 𝑟𝑐 = 2 mm: (a) 𝑑𝑒 =
15.875 mm, (b) 𝑑𝑒 = 7.938 mm, (c) 𝑑𝑒 = 3.969 mm, (d) 𝑑𝑒 = 1.984 mm. 
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Figure 4.5: 𝜎11 stress field contours in the 45° lamina for the single offset square hole with 𝑟𝑐 = 2 mm: (a) 𝑑𝑒 =
15.875 mm, (b) 𝑑𝑒 = 7.938 mm, (c) 𝑑𝑒 = 3.969 mm, (d) 𝑑𝑒 = 1.984 mm. 
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Figure 4.6: 𝜎11 stress field contours in the -45° lamina for the single offset square hole with 𝑟𝑐 = 2 mm: (a) 𝑑𝑒 =
15.875 mm, (b) 𝑑𝑒 = 7.938 mm, (c) 𝑑𝑒 = 3.969 mm, (d) 𝑑𝑒 = 1.984 mm. 
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Figure 4.7: 𝜎11 stress field contours in the 90° lamina for the single offset square hole with 𝑟𝑐 = 2 mm: (a) 𝑑𝑒 =
15.875 mm, (b) 𝑑𝑒 = 7.938 mm, (c) 𝑑𝑒 = 3.969 mm, (d) 𝑑𝑒 = 1.984 mm. 
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4.1.4 Location of Maximum Stresses 

The behavior of the 𝜎11 stress field for the single square hole changes based upon the 

presence of the corner radii, their size, as well as the distance of the square hole from the central 

axis of the laminate. The incremental enlargement of the corner radius changes the magnitude 

and location of the maximum stress within the laminas. The location of the greatest 𝜎11 stress in 

the laminate for any given 𝑑𝑒 and 𝑟𝑐 occurs in the 0° laminas, specifically, in the vicinity of the 

transition from the horizontal straight edge (parallel to the central axis of the laminate) of the 

hole to the curvature of the corner radius. This is consistent with results from Jong [18], in that 

the location of the highest stress is found in the neighborhood of the rounded corner. Such 

behavior can be seen below in Fig. 4.8 for 𝑟𝑐 = 0.25 mm. It must be noted that ANSYS displays 

only one maximum stress location, however, due to symmetry conditions explained in Section 

4.3.1, there can exist more than one location of maximum 𝜎11 stress on the hole periphery. 

 

 

Figure 4.8: (a) Maximum 𝜎11 stress location in the 0° lamina for 𝑑𝑒 = 15.875 mm, and 𝑟𝑐 = 0.25 mm, (b) enlarged 

view. 

 

By way of simple trigonometric relationships, one can determine the clocking angle of 

the maximum 𝜎11 stress locations (𝐴′ and 𝐵′) in the single square hole with rounded corners. 

This can be seen below in Fig. 4.9, where 𝑎 and 𝑏 are the vertical and horizontal legs of the 

triangle under investigation, respectively. 
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Figure 4.9: Diagram for the locations of maximum 𝜎11 stresses in the 0° lamina for the single centered square hole 

with rounded corners. 

 

Using the inverse tangent function, the angle with respect to the vertical axis of the center of the 

square is 

 

𝜑 = 𝑡𝑎𝑛−1
𝑏

𝑎
= 𝑡𝑎𝑛−1

𝑥1 − 𝑥0

𝑦𝑜 − 𝑦1
 (4.1) 

 

where 𝑥𝑜 and 𝑦𝑜 are the coordinates of the center of the hole (known), and 𝑥1 and 𝑦1 are the 

coordinates of one of the maximum 𝜎11 stress nodes (obtained using ANSYS) at the end point of 

the line 𝐴′𝐵′. The locations of the maximum 𝜎11 stress in the 0° lamina with respect to the 

horizontal loading direction, 𝑥, are now simply 

 

𝛾𝐴′ = 𝜑 − 90° (4.2) 

 

𝛾𝐵′ = 𝜑 + 90° (4.3) 

 

For the case of the single centered square hole with rounded corners, the magnitude of the 𝜎11 

stress in the 0° lamina is the same at each corner due to symmetry about the central axis, as well 

as the fiber orientation. This relationship is lost as soon as the hole moves away from the central 
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axis of the laminate. The clocking angle for the maximum stress at points 𝐴′ and 𝐵′ for the single 

centered square hole with varying radii are calculated and given below in Table 4.3.  

 

Table 4.3: Clocking angle for the maximum 𝜎11 stress locations in the 0° lamina for a single centered square hole 

with rounded corners. 

Hole Edge-to-Laminate Edge Distance, 𝒅𝒆 (mm) Corner Radius, 𝒓𝒄 (mm) 𝜸𝑨′  (°) 𝜸𝑩′  (°) 

15.875 (Centered) 

0.25 -46.54 133.46 

1 -53.56 126.44 

2 -64.55 115.45 

3 -82.41 97.59 

 

The angular change in the location of the maximum 𝜎11 stress for the case of the single 

centered square hole with rounded corners can be seen below in Fig. 4.10. For this case, the 

locations of the maximum 𝜎11 stress in the 0° lamina are always found in the neighborhood of 

points 𝐴 through 𝐷 (a consequence of symmetry, see Fig. 4.24a) on the hole periphery. 

 

 

Figure 4.10: Location of maximum 𝜎11 stress in the 0° lamina with 𝑑𝑒 = 15.875 mm for: (a) 𝑟𝑐 = 0.25 mm, (b) 

𝑟𝑐 = 1 mm, (c) 𝑟𝑐 = 2 mm, (d) 𝑟𝑐 = 3 mm. 
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For the single offset square hole with rounded corners, the maximum 𝜎11 stress always 

occurs in the 0° lamina. This is because the fibers in the 0° ply are parallel to the loading axis, 

and therefore carry most of the load applied to the laminate. These findings are consistent with 

results for a single square hole with rounded corners from Cannon [19]. Also, for a given hole 

offset distance in the 0° lamina, the magnitude of the stress drops for increasing 𝑟𝑐, provided 

0.25 mm < 𝑟𝑐 < 2 mm, but then increases for 𝑟𝑐 > 2 mm. This decreasing-increasing behavior is 

consistent with earlier results for an isotropic plate in Table 4.2, and is also consistent with 

results from Cannon [19] (discussed in Section 4.3.2). Additionally, the magnitude of the stress 

in the ±45° laminas is equivalent, as is expected. The maximum 𝜎11 stress for each lamina is 

given below in Table 4.4. 

 

Table 4.4: Maximum 𝜎11 stress in each lamina for the single offset square hole with rounded corners. 

Single Offset Square Hole 

Corner Radius, 𝒓𝒄 

(mm) 

Hole Edge-to-Laminate 

Edge Distance, 𝒅𝒆 (mm) 

𝝈𝟏𝟏,𝒎𝒂𝒙 (MPa) 

0° Lamina 45° Lamina -45° Lamina 90° Lamina 

0.25 

15.875 (Centered) 5.974 5.663 5.663 2.138 

7.938 6.198 5.907 5.907 2.273 

3.969 6.771 6.483 6.483 2.602 

1.984 7.515 7.291 7.291 3.115 

  

1 

15.875 (Centered) 4.304 3.512 3.512 0.971 

7.938 4.464 3.644 3.644 1.021 

3.969 4.833 3.948 3.948 1.147 

1.984 5.219 4.355 4.355 1.374 

  

2 

15.875 (Centered) 3.728 2.883 2.883 0.670 

7.938 3.917 2.974 2.974 0.705 

3.969 4.349 3.175 3.175 0.789 

1.984 5.134 3.440 3.440 0.911 

  

3 

15.875 (Centered) 3.800 2.660 2.660 0.530 

7.938 4.019 2.766 2.766 0.552 

3.969 4.594 2.989 2.989 0.612 

1.984 5.664 3.345 3.345 0.702 
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4.2 Single Circular Hole Transverse to Applied Load 

 Stress distributions and maximum stress locations due to a single offset circular hole 

subjected to an in-plane uniaxial tensile stress in a finite width laminate are investigated in this 

section. As in Section 4.1, the hole edge-to-laminate edge distance is varied in the interest of 

studying the “edge effect”, and comparing it to the results from the previous section.  

 

4.2.1 Geometry and Loading 

 The geometry and loading configuration for the single circular hole is shown below in 

Fig. 4.11. The hole edge-to-laminate edge distance, 𝑑𝑒, is varied, while the diameter of the hole, 

𝑑, is held constant at 6.35 mm. This circular hole geometry is equivalent to a square hole with 

rounded corners, when 𝑟𝑐 = 3.175 mm. For all values of 𝑑𝑒, the center of the circular hole is 

located at the mid-length of the laminate, at 𝑥 = 𝐿/2. Lastly, 𝐴 and 𝐵 are points of interest 

where stress field measurements will be taken.  

 

 

Figure 4.11: Geometry and loading condition for the single offset circular hole. 

 

The various cases for the spacing of the single offset circular hole are given below in 

Table 4.5. 
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Table 4.5: Cases for the single offset circular hole. 

Case Hole Edge-to-Laminate Edge Distance, 𝒅𝒆 (mm) Hole Diameter, 𝒅 (mm) 

1 15.875 (Centered) 

6.35 
2 7.938 

3 3.969 

4 1.984 

 

4.2.2 Meshing 

 The mesh is obtained using the same approach as in Chapter 3. The keypoints are 

established and used to generate areas, which are then meshed and refined locally in each square 

area surrounding the circular hole. As in Section 4.1.2, the number of elements in the square area 

surrounding the hole is held constant at 3840 for each offset distance. The meshing for the single 

offset circular hole can be seen below in Fig. 4.12. 
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Figure 4.12: Mapped meshing for the single offset circular hole: (a) 𝑑𝑒 = 15.875 mm, (b) 𝑑𝑒 = 7.938 mm, (c) 𝑑𝑒 =
3.969 mm, (d) 𝑑𝑒 = 1.984 mm. 

 

4.2.3 Stress Distribution 

The 𝜎11 stress field contours for each of the laminas in the single offset circular hole can 

be seen below in Figs. 4.13-4.16. 
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Figure 4.13: 𝜎11 stress field contours in the 0° lamina for the single offset circular hole: (a) 𝑑𝑒 = 15.875 mm, (b) 

𝑑𝑒 = 7.938 mm, (c) 𝑑𝑒 = 3.969 mm, (d) 𝑑𝑒 = 1.984 mm. 
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Figure 4.14: 𝜎11 stress field contours in the 45° lamina for the single offset circular hole: (a) 𝑑𝑒 = 15.875 mm, (b) 

𝑑𝑒 = 7.938 mm, (c) 𝑑𝑒 = 3.969 mm, (d) 𝑑𝑒 = 1.984 mm. 
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Figure 4.15: 𝜎11 stress field contours in the -45° lamina for the single offset circular hole: (a) 𝑑𝑒 = 15.875 mm, (b) 

𝑑𝑒 = 7.938 mm, (c) 𝑑𝑒 = 3.969 mm, (d) 𝑑𝑒 = 1.984 mm. 
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Figure 4.16: 𝜎11 stress field contours in the 90° lamina for the single offset circular hole: (a) 𝑑𝑒 = 15.875 mm, (b) 

𝑑𝑒 = 7.938 mm, (c) 𝑑𝑒 = 3.969 mm, (d) 𝑑𝑒 = 1.984 mm. 
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4.2.4 Location of Maximum Stresses 

 The locations of the maximum 𝜎11 stress on the periphery of the single centered circular 

hole change depending upon the lamina. Due to symmetry conditions for single centered circular 

hole, one might initially expect points 𝐴 and 𝐵 to be of the same magnitude and location, 

regardless of lamina. It has been shown by Kheradiya [5] that for a single centered circular hole, 

the maximum 𝜎11 stress in the 0° lamina occurs at points 𝐴 and 𝐵. It may be thought 

(erroneously) that the location of the maximum 𝜎11 stresses in the 45° lamina are simply at the 

tangent points (𝐶 and 𝐷) of the fibers and circular hole periphery, as below in Fig. 4.17. 

 

 

Figure 4.17: Tangent point locations (𝐶 and 𝐷) of the fibers and circular hole periphery in the 45° lamina. 

 

However, due to the angle of inclination (or declination) of the fibers in the ±45° lamina, as well 

as the effect of shear rotation, the locations of the maximum 𝜎11 stress (𝐶 and 𝐷) are rotated at 

some angle other than ±45° with respect to the vertical axis of the hole center. The effect of shear 

rotation on the locations of the maximum 𝜎11 stress in the 45° lamina can be seen below in Fig. 

4.18. 
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Figure 4.18: Maximum 𝜎11 stress locations in the 45° lamina for the single centered circular hole. 

 

One can use the same approach found in Section 4.1.4 to determine the clocking angle of 

the maximum 𝜎11 stress locations for the single offset circular hole, as shown below in Fig. 4.19. 

 

 

Figure 4.19: Diagram for the locations of maximum 𝜎11 stresses in the 45° lamina for the single offset circular hole. 

 

Evaluating Eqns. 4.1-4.3, one finds the angles listed below in Table 4.6 for points 𝐶′ and 

𝐷′ for the 45° laminas. For the -45° laminas, the values of 𝛾𝐶′ and 𝛾𝐷′ are simply reversed from 

the 45° lamina results. This table also shows that the centered circular hole results are consistent 

with results from Kheradiya [5]. It is interesting to note that there is no change in the location of 

the maximum 𝜎11 stress from 𝑑𝑒 = 7.938 mm to 𝑑𝑒 = 3.969 mm. For the case of the single 

centered circular hole, the magnitude of the 𝜎11 stress in the 45° lamina is the same at points 𝐶′ 
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and 𝐷′ due to symmetry about the central axis, as well as the fiber orientation. This relationship 

is lost as soon as the hole moves away from the central axis of the laminate. 

 

Table 4.6: Clocking angle for the maximum 𝜎11 stress locations in the 45° lamina for the single offset circular hole. 

Hole Edge-to-Laminate Edge Distance, 𝒅𝒆 (mm) 𝜸𝑪′  (°) 𝜸𝑪′  (°), [5] 𝜸𝑫′ (°) 𝜸𝑫′ (°), [5] 

15.875 (Centered) -67.50 -67.50 112.50 112.50 

7.938 -71.25 

N/A 

108.75 

N/A 3.969 -71.25 108.75 

1.984 -75.00 105.00 

 

 The maximum 𝜎11 stress for each lamina and offset distance, 𝑑𝑒 is given below in Table 

4.7. It can readily be seen that the maximum 𝜎11 stress increases with decreasing offset distance, 

regardless of fiber orientation. Additionally, the ±45° laminas share the same maximum 𝜎11 

stress value for all offset distances, as expected. Remark is due here, in that the agreement 

between the results for this study and the results from Kheradiya [5] (where 𝑑 = 12.7 mm) 

would seem to indicate that for a centered circular hole, the locations of the maximum stress are 

the same in the ±45° laminas, irrespective of the hole diameter, layup sequence, and material, 

provided that the external applied stress, laminate length, and laminate width are equivalent.  

 

Table 4.7: Maximum 𝜎11 stress in each lamina for the single offset circular hole. 

Single Offset Circular Hole 

Hole Edge-to-Laminate Edge Distance, 

𝒅𝒆 (mm) 
Fiber Orientation Angle, 𝜽 (°) 𝝈𝟏𝟏,𝒎𝒂𝒙 (MPa) %Δ wrt Centered Hole 

15.875 (Centered) 

0 4.012 

- 
45 2.643 

-45 2.643 

90 0.516 

  

7.938 

0 4.244 5.62 

45 2.750 3.95 

-45 2.750 3.95 

90 0.538 4.14 

  

3.969 

0 4.852 18.95 

45 3.008 12.91 

-45 3.008 12.91 

90 0.591 13.50 

  

1.984 

0 6.042 40.39 

45 3.422 25.68 

-45 3.422 25.68 

90 0.674 26.43 
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4.3 Stress Concentration Factors 

To obtain the stress concentration factor for each lamina, the applied stress in each 

lamina with no hole present must first be calculated. The following approach is taken, as there 

exist no closed form solutions for the SCF of a lamina which contains a single (or multiple) 

square hole with rounded corners. Further, this methodology is consistent with that found in 

work by Kheradiya [5] and Cannon [19]. Using classical laminate analysis equations for a 

balanced symmetric laminate from Mallick [3], and with no bending moment present (i.e. 𝑘𝑥𝑥 =

𝑘𝑦𝑦 = 𝑘𝑥𝑦 = 0), the applied stresses in the jth lamina with no hole are simply 

 

[

𝜎𝑥𝑥,𝑁𝑜 𝐻𝑜𝑙𝑒

𝜎𝑦𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒

𝜏𝑥𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒

]

𝑗

= [𝑄̅𝑚𝑛]𝑗 [

𝜀𝑥𝑥
°

𝜀𝑦𝑦
°

𝛾𝑥𝑦
°

]

𝑗

= [𝑄̅𝑚𝑛]𝑗
1

𝐴11𝐴22 − 𝐴12
2

[
 
 
 

𝐴22 −𝐴12 0
−𝐴12 𝐴11 0

0 0
𝐴11𝐴22 − 𝐴12

2

𝐴66 ]
 
 
 

[

𝑁𝑥𝑥

𝑁𝑦𝑦

𝑁𝑥𝑦

] 

 

(4.4) 

 

where [𝑄̅𝑚𝑛]𝑗 is the stiffness matrix for the jth lamina, and 𝑁𝑥𝑥, 𝑁𝑦𝑦, and 𝑁𝑥𝑦 are the applied 

force resultants per unit width on the edges of the laminate. For this study, 𝑁𝑦𝑦 = 𝑁𝑥𝑦 = 0. The 

applied stresses for each lamina with no hole are calculated and shown below in Table 4.8. 

Excellent agreement between the ANSYS FEA simulation and closed form theoretical equations 

was obtained.  

 

Table 4.8: Applied lamina stresses 𝜎𝑥𝑥,𝑁𝑜 𝐻𝑜𝑙𝑒 , 𝜎𝑦𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒 , and 𝜏𝑥𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒  for the [03/(±45)3/903]S laminate with no 

hole. 

Lamina 

Global CS, 

ANSYS 

Stress, 

𝝈𝒙𝒙,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

Global CS, 

ANSYS 

Stress, 

𝝈𝒚𝒚,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

Global CS, 

ANSYS 

Stress, 

𝝉𝒙𝒚,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

Theoretical 

Stress, 

𝝈𝒙𝒙,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

Theoretical 

Stress, 

𝝈𝒚𝒚,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

Theoretical 

Stress, 

𝝉𝒙𝒚,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

ANSYS 

versus 

Theoretical 

𝝈𝒙𝒙,𝑵𝒐 𝑯𝒐𝒍𝒆 

% Error 

0° 1.29333 0.005002 0 1.29341 0.004987 0 -0.0062 

45° 0.559916 0.12956 0.169864 0.559863 0.129466 0.169951 0.0095 

-45° 0.559916 0.12956 -0.169864 0.559863 0.129466 -0.169951 0.0095 

90° 0.344746 -0.264123 0 0.344852 -0.264179 0 -0.0307 

 

Having obtained the applied lamina stresses, 𝜎𝑥𝑥,𝑁𝑜 𝐻𝑜𝑙𝑒, 𝜎𝑦𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒, and 𝜏𝑥𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒, one 

is now able to calculate the stress in each lamina based upon the fiber coordinate system (local). 

Appealing to the stress transformation equations for a thin lamina under plane stress listed by 

Mallick [3], one finds 
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𝜎11,𝑁𝑜 𝐻𝑜𝑙𝑒 = 𝜎𝑥𝑥,𝑁𝑜 𝐻𝑜𝑙𝑒 cos2 𝜃 + 𝜎𝑦𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒 sin2 𝜃 + 2𝜏𝑥𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒 cos 𝜃 sin 𝜃  

𝜎22,𝑁𝑜 𝐻𝑜𝑙𝑒 = 𝜎𝑥𝑥,𝑁𝑜 𝐻𝑜𝑙𝑒 sin2 𝜃 + 𝜎𝑦𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒 cos2 𝜃 − 2𝜏𝑥𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒 cos 𝜃 sin 𝜃 (4.5) 

𝜏12,𝑁𝑜 𝐻𝑜𝑙𝑒 = (−𝜎𝑥𝑥,𝑁𝑜 𝐻𝑜𝑙𝑒

+ 𝜎𝑦𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒) sin 𝜃 cos 𝜃 + 𝜏𝑥𝑦,𝑁𝑜 𝐻𝑜𝑙𝑒(cos2 𝜃 − sin2 𝜃) 

 

 

where 𝜃 is the fiber orientation angle with respect to the laminate (global) 𝑥-axis. For any given 

lamina, Eqn. 4.5 represents the stresses in the laminas due to the applied lamina stresses. These 

are thought to be the equations used by ANSYS to calculate the stresses in the lamina using the 

local coordinate systems, from which all data in this study is acquired. It is important to recall 

that for any given unidirectional continuous fiber lamina, the matrix carries a much smaller 

fraction of the applied load in relation to the fibers. In fact, the contribution from the elastic 

modulus of the matrix, 𝐸𝑚, is often neglected when considering the elastic modulus of the 

lamina in the 11-direction, 𝐸11, such that it becomes a function of the fiber stress, 𝜎𝑓. The lamina 

stresses for each lamina with no hole are calculated and shown below in Table 4.9. Again, 

excellent agreement between the ANSYS FEA simulation and closed form theoretical equations 

was found.  

 

Table 4.9: Lamina stresses 𝜎11,𝑁𝑜 𝐻𝑜𝑙𝑒, 𝜎22,𝑁𝑜 𝐻𝑜𝑙𝑒 , and 𝜏12,𝑁𝑜 𝐻𝑜𝑙𝑒  for the [03/(±45)3/903]S laminate with no hole. 

Lamina 

Local CS, 

ANSYS 

Stress, 

𝝈𝟏𝟏,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

Local CS, 

ANSYS 

Stress, 

𝝈𝟐𝟐,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

Local CS, 

ANSYS 

Stress, 

𝝉𝟏𝟐,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

Theoretical 

Stress, 

𝝈𝟏𝟏,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

Theoretical 

Stress, 

𝝈𝟐𝟐,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

Theoretical 

Stress, 

𝝉𝟏𝟐,𝑵𝒐 𝑯𝒐𝒍𝒆 

(MPa) 

ANSYS 

versus 

Theoretical 

𝝈𝟏𝟏,𝑵𝒐 𝑯𝒐𝒍𝒆 

% Error 

0° 1.29333 0.005002 0 1.29341 0.004987 0 -0.0062 

45° 0.514602 0.174874 -0.215178 0.514616 0.174714 -0.215199 -0.0027 

-45° 0.514602 0.174874 0.215178 0.514616 0.174714 0.215199 -0.0027 

90° -0.264123 0.344746 0 -0.264179 0.344852 0 -0.0212 

 

 To fully illustrate the need for the lamina stress with no hole, one may return to the 

concept of force lines, as briefly discussed in Section 2.1.1. At the laminate level, the SCF for 

gross area, 𝐾𝑡𝑔, is obtained by dividing the stress present at the location of interest in the 

laminate by the applied remote stress, analogous to Eqn. 2.1. However, for the case of an 

individual lamina, the stress at the location of interest in the lamina with a hole must be divided 
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by the applied stress present in the lamina without a hole. The presence of the hole creates a 

disturbance in the constant force lines, thus creating a localization, and consequent increase in 

local stress. This concept is analogous to fluid flow, wherein the force lines would be considered 

streamlines. Such behavior can be seen below in Fig. 4.20. 

 

 

Figure 4.20: Constant force lines in the 0° lamina for the composite laminate: (a) with no hole, (b) with a single 

square hole with rounded corners. 

 

 In order to calculate the stress concentration factor for each individual lamina, the peak 

lamina 𝜎11,𝑚𝑎𝑥 stress (local CS) is divided by the applied 𝜎𝑥𝑥,𝑁𝑜 𝐻𝑜𝑙𝑒 stress (global CS) in each 

lamina with no hole, conceptually analogous to Eqn. 2.1, and given below in Eqn. 4.6.  

 

𝐾𝑡,𝜃 = 𝜎11,𝑚𝑎𝑥,𝜃 𝜎𝑥𝑥,𝑁𝑜 𝐻𝑜𝑙𝑒,𝜃⁄  (4.6) 
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4.3.1 Effect of Edge Distance 

The lamina stress concentration factors, 𝐾𝑡,𝜃, are calculated using Eqn. 4.6 and the values 

from Tables 4.4, 4.7, and 4.8, and summarized below in Table 4.10. The highest SCFs are always 

found in the ±45° laminas, due to division by the lower value of 𝜎𝑥𝑥,𝑁𝑜 𝐻𝑜𝑙𝑒 stress found in the 

±45° lamina values from Table 4.8. 

 

Table 4.10: Lamina SCFs for the single offset square hole with rounded corners and the single offset circular hole. 

Corner Radius, 

𝒓𝒄 (mm) 
Hole Edge-to-Laminate Edge, 𝒅𝒆 (mm) 

Single Offset Square Hole: 𝑲𝒕,𝜽 

𝜽 = 𝟎° 𝜽 = 𝟒𝟓° 𝜽 = −𝟒𝟓° 𝜽 = 𝟗𝟎° 

0.25 

15.875 (Centered) 4.619 10.113 10.113 6.201 

7.938 4.792 10.550 10.550 6.594 

3.969 5.235 11.579 11.579 7.549 

1.984 5.811 13.022 13.022 9.035 

  

1 

15.875 (Centered) 3.328 6.273 6.273 2.815 

7.938 3.452 6.509 6.509 2.963 

3.969 3.737 7.052 7.052 3.327 

1.984 4.035 7.777 7.777 3.987 

  

2 

15.875 (Centered) 2.882 5.148 5.148 1.942 

7.938 3.029 5.312 5.312 2.044 

3.969 3.363 5.671 5.671 2.288 

1.984 3.970 6.144 6.144 2.642 

  

3 

15.875 (Centered) 2.938 4.750 4.750 1.536 

7.938 3.108 4.940 4.940 1.602 

3.969 3.552 5.337 5.337 1.775 

1.984 4.379 5.975 5.975 2.036 

    Single Offset Circular Hole: 𝑲𝒕,𝜽 

3.175 (Circle) 

15.875 (Centered) 3.102 4.721 4.721 1.498 

7.938 3.281 4.911 4.911 1.561 

3.969 3.751 5.373 5.373 1.714 

1.984 4.672 6.112 6.112 1.954 

 

The SCFs for each lamina as a function of distance from the hole edge to the laminate 

edge are shown below in Figs. 4.21-4.23. It can readily be seen that as the square hole edges 

become more rounded, the SCF curves approach the behavior of a circular hole, as expected.  
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Figure 4.21: SCFs for 0° lamina versus single square hole edge-to-laminate edge distance. 

 

 

Figure 4.22: SCFs for ±45° lamina versus single square hole edge-to-laminate edge distance. 
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Figure 4.23: SCFs for 90° lamina versus single square hole edge-to-laminate edge distance. 

 

It is worthwhile to recognize that due to symmetry created by the fiber orientation angle, 

certain stress field values at each of the four corners of the square hole are expected to be 

equivalent. However, this is only encountered for single centered square hole. Once the hole 

moves away from the central axis, some symmetry relationships are lost due to influence from 

the “edge effect”. The symmetry equivalencies for a single centered square hole can be seen 

below in Fig. 4.24, where the dashed lines passing through each hole represent the fibers. The 

symmetry conditions for a single centered square hole with rounded corners are consistent with 

those found by Cannon [19].  
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Figure 4.24: Stress symmetry conditions based on fiber orientation directions for a single centered square hole: (a) 

0° fiber, (b) 90° fiber, (c) 45° fiber, (d) -45° fiber. 

 

To illustrate symmetry and the “edge effect”, the normalized 0° lamina 𝜎11 stress for the 

various single offset square hole cases with 𝑟𝑐 = 2 mm are plotted below in Fig. 4.25. 

 

 

Figure 4.25: Normalized 0° lamina 𝜎11 stress for the single offset square hole cases with 𝑟𝑐 = 2 mm. 
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these locations. The 𝜎11 stress is lower at points 𝐴 and 𝐵, which are on the opposite side of the 

square hole, closer to the central axis of the laminate.  

Further, symmetry is present in the 0° laminas for all offset cases for select corner points. 

Specifically, 𝜎11,𝐴 = 𝜎11,𝐵 and 𝜎11,𝐶 = 𝜎11,𝐷. Once the center of the single square hole moves 

away from the central axis of the laminate (i.e. 𝑑𝑒 < 15.875 mm), symmetry about the central 

axis is lost due to influence from the “edge effect”, and secondary bending. As such, the 𝜎11 

stress at all four corner points will no longer be equal. This behavior can be seen below in Fig. 

4.26, and Table 4.11. It is worth noting that the “splitting” of the normalized 𝜎11 stress curve due 

to the “edge effect” is consistent with results from Kheradiya [5]. The remaining study will focus 

only on a corner radius of 𝑟𝑐 = 2 mm, which is more of a practical application. 

 

 

Figure 4.26: Normalized 0° lamina 𝜎11 stress at points 𝐴 through 𝐷 for 𝑟𝑐 = 0.25 mm. 

 

Table 4.11: Normalized 𝜎11 stress at the single offset square hole corner points for the 0° lamina with 𝑟𝑐 = 0.25 mm. 

Hole Edge-to-Laminate Edge Distance, 𝒅𝒆 (mm) 
𝝈𝟏𝟏,𝟎°/𝝈𝒙𝒙,𝑵𝒐 𝑯𝒐𝒍𝒆,𝟎° 

𝑨 𝑩 𝑪 𝑫 

15.875 (Centered) 4.619 4.619 4.619 4.619 

7.938 4.792 4.792 4.638 4.638 

3.969 5.235 5.235 4.892 4.892 

1.984 5.811 5.811 4.994 4.994 

 

4.500

4.625

4.750

4.875

5.000

5.125

5.250

5.375

5.500

5.625

5.750

5.875

0 2 4 6 8 10 12 14 16

σ
1
1
, 
0

°/
σ

x
x
, 
N

o
 H

o
le

, 
0

°

Hole Edge-to-Laminate Edge Distance, de (mm)

Point A

Point B

Point C

Point D

C, D

A, B



94 
 

The 𝜎11 stress values at each of the four corners of the single offset square hole with 𝑟𝑐 =

2 mm are given below in Table 4.12. 

 

Table 4.12: 𝜎11 stress at points 𝐴 through 𝐷 for the single offset square hole with 𝑟𝑐 = 2 mm. 

Hole Edge-to-Laminate Edge Distance, 𝒅𝒆 (mm) 
Fiber Orientation 

Angle, θ (°) 

𝝈𝟏𝟏 (MPa) 

𝑨 𝑩 𝑪 𝑫 

15.875 (Centered) 

0 

3.728 3.728 3.728 3.728 

7.938 3.822 3.822 3.917 3.917 

3.969 4.061 4.061 4.349 4.349 

1.984 4.192 4.192 5.134 5.134 

  

15.875 (Centered) 

45 

-0.064 2.883 -0.064 2.883 

7.938 -0.066 2.970 -0.059 2.974 

3.969 -0.079 3.175 -0.077 3.130 

1.984 -0.394 3.440 -0.314 2.710 

  

15.875 (Centered) 

-45 

2.883 -0.064 2.883 -0.064 

7.938 2.970 -0.066 2.974 -0.059 

3.969 3.175 -0.079 3.130 -0.077 

1.984 3.440 -0.394 2.710 -0.314 

  

15.875 (Centered) 

90 

0.670 0.670 0.670 0.670 

7.938 0.705 0.705 0.629 0.629 

3.969 0.789 0.789 0.545 0.545 

1.984 0.911 0.911 0.276 0.276 

 

The 𝜎11 stress values at points 𝐴 through 𝐷 for the single square hole with rounded 

corners (𝑟𝑐 = 2 mm) from Table 4.12 are normalized and shown below in Figs. 4.27-4.29. 
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Figure 4.27: Normalized 0° lamina 𝜎11 stress at points 𝐴 through 𝐷 for 𝑟𝑐 = 2 mm. 

 

 

Figure 4.28: Normalized 45° lamina 𝜎11 stress at points 𝐴 through 𝐷 for 𝑟𝑐 = 2 mm. 
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Figure 4.29: Normalized 90° lamina 𝜎11 stress at points 𝐴 through 𝐷 for 𝑟𝑐 = 2 mm. 

 

The loss of equivalency in the stress values at the various points around the square hole 

with rounded corners is due to the eccentricity of the load path. Secondary bending is introduced 

once the hole moves away from the central axis, which serves to increase the stress at both the 

top and bottom of the hole. This origin of this effect is shown in the free body diagrams below in 

Fig. 4.30. There, the loading for the laminate can be transformed by using equivalent forces in 

order to arrive at the loading case which gives rise to secondary bending (Step 4). 

 

 

Figure 4.30: Laminate free body diagrams illustrating secondary bending. 
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The stresses which act at the four points of the square hole (or holes) can be understood 

using the same concept. The equivalent stress due to the applied load can be split into the stresses 

found at each point; those due to the applied force, 𝑃, and those due to the moment, 𝑀, induced 

by the offset force. Fundamentally, this can also be thought of as the addition of stresses due to 

an applied force and moment as seen below in Fig 4.31. Free body diagrams depicting the 

application of the concept to this study can be seen below in Fig. 4.32. 

 

 

Figure 4.31: General free body diagram illustrating the directional contribution of distributed 𝜎𝑃 and 𝜎𝑀 stresses due 

to 𝑃 and 𝑀, respectively. 

 

 

Figure 4.32: Offset square hole free body diagrams illustrating secondary bending effects. 
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To further illustrate the effects of secondary bending, the 𝜎11 stress field contours for the 

single centered square hole (𝑑𝑒 = 15.875 mm) and the single offset square hole (𝑑𝑒 = 1.984 

mm) with 𝑟𝑐 = 2 mm are shown below in Figs. 4.33 and 4.34. An enlarged view of Fig. 4.34 is 

provided below in Fig. 4.35. The undeformed laminate (solid white lines) is also shown to 

provide context in Figs. 4.33-4.35. Further, the effect of extension and bending are greatly 

exaggerated by ANSYS, with an auto calculated scale factor of ≈ 1689. Additionally, the 

Poisson effect can also be seen below in Fig. 4.35. 

 

 

Figure 4.33: Single centered square hole (𝑑𝑒 = 15.875) with rounded corners (𝑟𝑐 = 2 mm), with no secondary 

bending and 𝑥-direction extension only.  

 

 

Figure 4.34: Single offset square hole (𝑑𝑒 = 1.984 mm) with rounded corners (𝑟𝑐 = 2 mm), with secondary bending 

and 𝑥-direction extension present.  
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Figure 4.35: Enlarged view of single offset square hole (𝑑𝑒 = 1.984 mm) with rounded corners (𝑟𝑐 = 2 mm), with 

secondary bending and 𝑥-direction extension present.  

 

To fully understand the distribution of 𝜎11 stress found in the laminas, as well as the 

influence of the “edge effect” for the single circular hole, it is worthwhile to plot the normalized 

𝜎11 stress. Because the greatest 𝜎11 stress in the laminate is found in the 0° lamina, this layer is 

of particular interest. The normalized 𝜎11 stress field results for the 0° laminas at the four 

different hole edge-to-laminate edge distances can be seen below in Fig. 4.36. 
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Figure 4.36: Normalized 0° lamina 𝜎11 stress for the single offset circular hole cases. 

 

For the single circular hole, the effect of edge distance upon the normalized maximum 

𝜎11 stress found in each layer can be seen below in Fig. 4.37. It is noted that the 45° and -45° 

laminas should possess the same stress values, and there was consistent agreement up to the fifth 

decimal place, which is the maximum that ANSYS displayed.  

 

 

Figure 4.37: Normalized maximum 𝜎11 stress in the laminas for the single offset circular hole cases. 
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 The normalized 𝜎11 stress in the 0° lamina around the periphery of the circular hole as a 

function of the angle about the center of the hole, 𝛾, has been determined for the various offset 

distances and is shown below in Fig. 4.38. 

 

 

Figure 4.38: Normalized 0° lamina 𝜎11 periphery stress for the single offset circular hole cases. 
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the 0° laminas. As the hole becomes closer to the edge of the laminate, the “edge effect” begins 

to have a greater influence on the maximum 𝜎11 stress found at point 𝐴, which is expected.  

 

4.3.2 Effect of Corner Radius 

 The normalized 𝜎11 stress from the edge of the laminate to the hole center for the 0° 

lamina is plotted below in Figs. 4.39 and 4.40. There, the behavior of the 𝜎11 stress concentration 

as the square hole with rounded corners transitions to a circular hole can be readily understood. 

 

-0.2

0.3

0.8

1.3

1.8

2.3

2.8

3.3

3.8

4.3

4.8

0 30 60 90 120 150 180 210 240 270 300 330 360

σ
1

1
, 
0

°/
σ

x
x
, 
N

o
 H

o
le

, 
0

°

γ (°)

de=15.875 mm

(Centered)

de=7.938 mm

de=3.969 mm

de=1.984 mm

𝐴𝐵



102 
 

 

Figure 4.39: Normalized 0° lamina 𝜎11 stress versus hole edge-to-laminate edge distance for the single centered 

square hole with rounded corners and the single centered circular hole. 

 

 

Figure 4.40: Enlarged view of the normalized 0° lamina 𝜎11 stress versus hole edge-to-laminate edge distance for the 

single centered square hole with rounded corners and the single centered circular hole. 
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that the normalized 𝜎11 stress in each curve approaches an average value of ≈ 0.975 at the edge 

of the laminate (zero on the global 𝑦-axis). While this value is slowly decreasing, it is certainly 

not equal to the normalized applied laminate stress, 𝜎 𝜎𝑥𝑥,𝑁𝑜 𝐻𝑜𝑙𝑒,0°⁄ , of 0.533. This is to be 

expected, as the plate is of finite width. If the plate were of infinite width, one would recover the 

value of the applied stress (or normalized stress), at some large distance from the center of the 

hole.  

It is worthwhile to compare the results from the single square hole to the single circular 

hole, in the interest of identifying stress field behavior trends. Stress concentration factors in 

each lamina for both the single centered circular hole and the single centered square hole with 

varying corner radii are presented below in Fig. 4.41, where the laminate thickness increases 

from left to right, with the midplane (vertical dashed line) being located in the center of the two 

90° laminas. The ±45° and 90° lamina clusters have been reduced from three to one on each side 

of the midplane in order to condense the size of the graph. It can readily be seen that the stress 

concentration factors in each lamina approach those of a circular hole, upon increasing corner 

radius size.  

 

 

Figure 4.41: Stress concentration factor for each lamina in a single centered square hole with varying corner radii 

laminate and in a single centered circular hole laminate. 
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below in Table 4.13. The SCF for the square hole with rounded corners approaches the SCF for a 

circle in both the 0° and 45° laminas as the corner radius increases. 

  

Table 4.13: Lamina SCFs for the 0° and ±45° laminas.  

Fiber 

Orientation 

Angle, 𝜽 (°) 

Hole Edge-

to-Laminate 

Edge 

Distance, 𝒅𝒆 

(mm) 

 Single Square Hole: 𝑲𝒕,𝜽 Single Circular Hole: 𝑲𝒕,𝜽 

𝒓𝒄 = 𝟎. 𝟐𝟓 

mm 

𝒓𝒄 = 𝟏 

mm 

𝒓𝒄 = 𝟐 

mm 

𝒓𝒄 = 𝟑 

mm 

Hole Diameter, 𝒅 = 𝟔. 𝟑𝟓 mm 

(𝒓𝒄 = 𝟑. 𝟏𝟕𝟓 mm) 

0 15.875 

(Centered) 

4.619 3.328 2.882 2.938 3.102 

±45 10.113 6.273 5.148 4.750 4.721 

 

Transformation of the 𝜎11 stress field can be seen in the 0° lamina with increasing corner 

radius. The four maximum 𝜎11 stress points at each corner of the square hole travel inward to 

converge at a single point, mimicking the 𝜎11 stress field behavior seen in the circular hole. This 

is depicted below in Fig. 4.42. 

 

 

Figure 4.42: 0° lamina 𝜎11 stress field transformation: (a) central square hole with 𝑟𝑐 = 0.25 mm, (b) central square 

hole with 𝑟𝑐 = 1 mm, (c) central square hole with 𝑟𝑐 = 2 mm, (d) central square hole with 𝑟𝑐 = 3 mm, (e) central 

circular hole (𝑟𝑐 = 3.175 mm). 
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Transformation of the 𝜎11 stress field can also be seen in the 45° lamina. It should be 

noted that the location of the maximum 𝜎11 stress begins to travel clockwise as the corner radius 

is increased. This can be seen below in Fig. 4.43. 

 

 

Figure 4.43: 45° lamina 𝜎11 stress field transformation: (a) central square hole with 𝑟𝑐 = 0.25 mm, (b) central square 

hole with 𝑟𝑐 = 1 mm, (c) central square hole with 𝑟𝑐 = 2 mm, (d) central square hole with 𝑟𝑐 = 3 mm, (e) central 

circular hole (𝑟𝑐 = 3.175 mm). 

 

The SCFs for the transition of a single centered square hole with rounded corners to a 

single centered circular hole are graphed below in Fig. 4.44, along with a fourth order 

polynomial trendline. It is worth recognizing that a minimum exists at the inflection point in the 

𝐾𝑡,𝜃=0° curve found in Fig. 4.44. The SCF for the 0° lamina decreases with increasing corner 

radius until the minimum value is reached, at which point the SCF increases for increasing 

corner radius, until the corresponding SCF for a circle is attained. This behavior is consistent 

with results from Cannon [19], which can be seen further below in Fig. 4.45. By fitting a 

trendline to the curve in Fig. 4.44, one can easily see that a minimum corner radius actually 

exists at some value of 𝑟𝑐 for 2.3 mm ≤ 𝑟𝑐 ≤ 2.8 mm, and not at a point found on the original 

𝐾𝑡,𝜃=0° curve, as one may be initially lead to believe. That point is the min(𝑦), and a more 

accurate approximation of that value can be determined simply by first letting 
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𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
(0.1381𝑥4 − 1.0373𝑥3 + 3.0211𝑥2 − 4.3202𝑥 + 5.5263) = 0 (4.7) 

  

𝑑𝑦

𝑑𝑥
= 0.5524𝑥3 − 3.1119𝑥2 + 6.0422𝑥 − 4.3202 = 0 (4.8) 

  

Solving Eqn. 4.8 for the independent variable gives 𝑥 = 2.537 mm, indicating that the minimum 

SCF for the 0° lamina is obtained when the corner radius is 𝑟𝑐 = 2.537 mm. This would be more 

readily apparent in the 𝐾𝑡,𝜃=0° curve, had data been taken for additional values of 𝑟𝑐. Similarly, 

this is also the case for results from Cannon [19] in Fig. 4.45 below.  

 

 

Figure 4.44: SCFs and trendline for the 0° lamina with a single centered square hole. 
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Figure 4.45: SCF for laminas in quasi-isotropic laminates [19]. 

 

 To validate the results from Eqn. 4.8, the single square hole with 𝑟𝑐 = 2.537 mm was 

created and the SCF results are plotted below in Fig. 4.46. Fitting a fourth order polynomial 

again gives an R2 value of 0.9996 which is very close to unity, indicating an excellent correlation 

between the revised data and the new curve fit. The data for Fig. 4.46 is given below in Table 

4.14, where one can easily see that 𝑟𝑐 = 2.537 mm does indeed yield a minimum value for the 

SCF 𝐾𝑡,𝜃=0°. 

 

 

Figure 4.46: Addition of 𝑟𝑐 = 2.537 mm data point and updated trendline for the 0° lamina. 
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Table 4.14: SCFs for the 0° laminas in Fig. 4.46. 

Corner Radius, 𝒓𝒄 (mm) 𝑲𝒕,𝜽=𝟎° 

0.250 4.619 

1.000 3.328 

2.000 2.882 

2.537 2.853 

3.000 2.938 

3.175 (Circle) 3.102 

 

4.3.3 Laminate Stress Concentration 

Using classical laminate analysis equations from Mallick [3], the extensional stiffness 

matrix, [𝐴], for the [03/(±45)3/903]S laminate is found to be 

 

[𝐴] = [
79.08 22.44 0
22.44 79.08 0

0 0 28.32
] (4.9) 

 

The elastic constants for the laminate are calculated using Eqns. 3.3-3.5 as below in Table 4.15. 

 

Table 4.15: Elastic constants for the quasi-isotropic laminate. 

𝑬𝒙 (MPa) 𝑬𝒚 (MPa) 𝑮𝒙𝒚 (MPa) 𝝂𝒙𝒚 

23857.10 23857.10 9292.22 0.28 

 

It is worth remarking that if one uses the above values for [𝐴] in Eqn. 2.22, and the 

values from Table 4.15 in Eqn. 2.23, one finds that 𝐾𝑡 = 3 in both instances, thus recovering the 

stress concentration factor for a single centered circular hole in an infinitely wide isotropic plate 

subjected to an in-plane uniaxial tensile stress. In effect, this validates the fact that the quasi-

isotropic laminate behaves (in the 𝑥𝑦-plane only) as an isotropic material. This is shown below 

in Table 4.16. 

 

Table 4.16: Laminate theoretical stress concentration factors for a single centered circular hole. 

SCF Orthotropic Plate Central Circular Hole Using 

[A] Values 

SCF Orthotropic Plate Central Circular Hole 

Using Laminate Elastic Constants 

3 3 
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The maximum stress in the laminate can be obtained by using the values from Table 4.15 

as the elastic constants for the laminate. In this way, the composite is modeled as an isotropic 

material using its own laminate-level elastic constants. This approach is taken, as there exist no 

closed form solutions for laminate-level SCFs for single (or multiple) square holes with rounded 

corners. The elastic constants used in ANSYS to obtain the global laminate stress, 𝜎𝑥, and SCFs 

are given below in Table 4.17. 

 

Table 4.17: Elastic constants for an isotropic laminate. 

E-Glass Fiber/Epoxy 

𝑬𝟏𝟏 (MPa) 𝑬𝟐𝟐  (MPa) 𝑬𝟑𝟑  (MPa) 

23857.10 23857.10 23857.10 

𝑮𝟏𝟐 (MPa) 𝑮𝟐𝟑 (MPa) 𝑮𝟏𝟑 (MPa) 

9292.22 9292.22 9292.22 

𝝂𝟏𝟐 𝝂𝟐𝟑 𝝂𝟏𝟑 

0.28 0.28 0.28 

 

The maximum laminate 𝜎𝑥 stress for all cases of both the single square hole with rounded 

corners and the single circular hole are given below in Table 4.18. 
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Table 4.18: Maximum laminate 𝜎𝑥 stress using laminate elastic constants. 

Corner Radius, 𝒓𝒄 

(mm) 

Hole Edge-to-Laminate Edge 

Distance, 𝒅𝒆 (mm) 
Single Square Hole: 𝝈𝒙,𝒎𝒂𝒙 (MPa) 

0.25 

15.875 (Centered) 3.254 

7.938 3.375 

3.969 3.681 

1.984 4.079 

  

1 

15.875 (Centered) 2.310 

7.938 2.397 

3.969 2.591 

1.984 2.796 

  

2 

15.875 (Centered) 2.000 

7.938 2.103 

3.969 2.333 

1.984 2.740 

  

3 

15.875 (Centered) 2.030 

7.938 2.148 

3.969 2.454 

1.984 3.025 

    Single Circular Hole: 𝝈𝒙,𝒎𝒂𝒙 (MPa) 

3.175 (Circle) 

15.875 (Centered) 2.141 

7.938 2.264 

3.969 2.588 

1.984 3.223 

 

In order to calculate the SCFs for the laminate, one can make use of the following 

equation 

 

𝐾𝑡𝑔 = 𝜎𝑥,𝑚𝑎𝑥,𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑒 𝜎⁄  (4.10) 

  

The SCFs for the laminate with the single square hole and the various corner radii along with the 

laminate containing the single circular hole are calculated using Eqn. 4.10 above, and shown 

below in Table 4.19. Additionally, correlation to published results from Jong [18] has been 

identified, in that square holes with sufficiently rounded corners do not cause much higher stress 

concentrations than circular holes.  
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Table 4.19: SCFs based on the gross area of the laminate. 

Corner Radius, 𝒓𝒄 (mm) Hole Edge-to-Laminate Edge Distance, 𝒅𝒆 (mm) Single Square Hole: 𝑲𝒕𝒈 

0.25 

15.875 (Centered) 4.719 

7.938 4.896 

3.969 5.339 

1.984 5.915 

  

1 

15.875 (Centered) 3.350 

7.938 3.477 

3.969 3.758 

1.984 4.055 

  

2 

15.875 (Centered) 2.901 

7.938 3.049 

3.969 3.384 

1.984 3.974 

  

3 

15.875 (Centered) 2.945 

7.938 3.115 

3.969 3.559 

1.984 4.388 

    Single Circular Hole: 𝑲𝒕𝒈 

3.175 (Circle) 

15.875 (Centered) 3.105 

7.938 3.284 

3.969 3.754 

1.984 4.675 

 

 The laminate SCFs for the various corner radii for a single square hole, and single 

circular hole are plotted below in Fig. 4.47. 

 

 

Figure 4.47: Laminate SCFs for the single square hole with rounded corners and the single circular hole. 
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To illustrate the similarity in behavior between the quasi-isotropic laminate and the 

isotropic A36 steel plate, the SCF values from Table 4.2. are plotted against the laminate SCF 

values for 1 mm ≤ 𝑟𝑐 ≤ 3 mm. It is expected that the steel plate and laminate perform 

identically, and this can be seen below in Fig. 4.48 and Table 4.20. As explained in the beginning 

of this chapter, the slight difference between the data points at 𝑟𝑐 = 3 mm for the FEA and 

theoretical results is attributed to the number of elements present in the local meshing 

surrounding the square hole (constant for all values of 𝑟𝑐), and also the fact that the FEA 

simulation uses a plate of finite width, whereas theory considers a plate of infinite width. This 

variance begins to emerge slightly before 𝑟𝑐 = 2 mm, and becomes more pronounced as the 

corner radius approaches 𝑟𝑐 = 3 mm.  

 

 

Figure 4.48: SCF based on the gross area for an isotropic plate and quasi-isotropic laminate containing a single 

centered square hole with rounded corners. 

 

Table 4.20: A36 steel plate and laminate SCF comparisons for a single centered square hole with rounded corners. 

Applied 

Remote 

Stress, 𝝈 

(MPa) 

Corner 

Radius, 𝒓𝒄 

(mm) 

FEA 𝑲𝒕𝒈, 

Isotropic 

Plate (A36 

Steel) 

Theory 

𝑲𝒕𝒈, 

Isotropic 

Plate 

%Error, 

Isotropic 

Plate 𝑲𝒕𝒈 

versus 

Theory 𝑲𝒕𝒈 

Quasi-

Isotropic 

Laminate 𝑲𝒕𝒈 

%Error, Quasi-

Isotropic Laminate 

𝑲𝒕𝒈 versus FEA 

Isotropic Plate 𝑲𝒕𝒈 

0.689 

1 3.347 3.357 -0.284 3.350 -0.067 

2 2.899 2.909 -0.334 2.901 -0.069 

3 2.942 2.994 -1.721 2.945 -0.071 
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For a single centered circular hole in a finite width isotropic plate, the Heywood formula 

(Eqn. 2.12) yields 𝐾𝑡𝑔 = 3.094. This value is within 0.341% error of the SCF for the finite width 

laminate containing a single centered circular hole from Table 4.19 (further above), 𝐾𝑡𝑔 =

3.105. Interestingly, if one uses the square hole equations to model a circular hole (let 𝑎 = 𝑏 = 𝑟 

in Eqns. 2.14-2.20), one obtains 𝐾𝑡𝑔 = 3.041, which has a ≈ −1.713% error when compared to 

results from the Heywood formula. The SCF for the quasi-isotropic laminate containing a single 

centered square hole with varying corner radius is shown below in Fig. 4.49.  

 

 

Figure 4.49: Laminate SCFs for the quasi-isotropic laminate containing a single centered square hole with rounded 

corners, with 𝑑𝑒 = 15.875 mm. 

 

It should be noted that a minimum exists at the inflection point in the curve found in Fig. 

4.49. The SCF for the laminate decreases with increasing corner radius, until the minimum value 

is reached, at which point the SCF for the laminate increases for increasing corner radius, until 

the corresponding SCF for a circle is attained. This behavior is consistent with results for an 

isotropic plate, from Cannon [19], which can be seen below in Fig. 4.50. It is thought that had 

more corner radii data points been taken for the quasi-isotropic laminates in the study by Cannon 

[19], the same trend as seen in the isotropic curve would emerge.  
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Figure 4.50. SCF for quasi-isotropic laminates and an isotropic plate [19]. 

 

The difference in curvature between Figs. 4.49 and 4.50 is thought to be due to the 

dimensions of the square hole (hole size effect), and corner radii. Because of the smaller square 

hole and corner radii used in this study, the curve must bend more severely (fishhook) to 

approach the SCF of a circle, versus the gradual slope change seen above in Fig. 4.50. Also, the 

laminate width to square hole height ratio used by Cannon [19] is 15, whereas the ratio used in 

this study is 6, meaning that Cannon [19] has modeled conditions which more closely represent 

an infinite width laminate. This could also be the cause for a smoother, more gradual change in 

the 0° lamina and laminate SCF curves, as well as the SCF equal to 3 at a radius value of unity. 

 

4.4 Conclusions 

 The maximum 𝜎11 stress tables for both the single offset square hole with rounded 

corners and the single offset circular hole reveal a steadily increasing trend in the 𝜎11 stress in all 

laminas as the hole edge-to-laminate edge distance, 𝑑𝑒, decreases. This behavior is expected, as 

the contribution from the “edge effect” and secondary bending serve to increase the stress found 

at all points on the periphery of the square hole and circular hole. 

 The maximum 𝜎11 stress in the laminate is always found in the 0° lamina, regardless of 

hole edge-to-laminate edge distance and corner radius, 𝑟𝑐, size. This is expected, as the 0° lamina 
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contains fibers which are parallel to the direction of the externally applied remote stress, 𝜎, and 

thus are the predominate load bearing material in the laminate. 

 The location of the maximum 𝜎11 stress always occurs in the vicinity of the rounded 

corner transition which is parallel to the central axis of the laminate, regardless of hole edge-to-

laminate edge distance and corner radius size. 

 In terms of 𝜎11 stress concentration, a square hole with sufficiently rounded corners (𝑟𝑐 >

0.25 mm) located at the laminate edge 𝑑𝑒 = 1.984 mm elicits a lower SCF than a circular hole. 

Also, due to decreasing-increasing 𝜎11 stress behavior found in the 0° lamina for a single square 

hole with rounded corners, an associated minimum SCF exists. 

 In terms of the laminate SCF, a single centered square hole with rounded corners elicits a 

lower gross SCF than a single centered circular hole, provided ≈ 1.5 mm < 𝑟𝑐 < 3.175 mm. 

Further, a minimum laminate gross SCF for all 𝑑𝑒 for a single square hole with rounded corners 

exists due to decreasing-increasing 𝜎𝑥 stress behavior. 

 In general, square holes with sufficiently rounded corners evoke lower SCFs than a circle 

of equal width. This is consistent with observations from Pilkey & Pilkey [6], in that an isotropic 

plate containing a square hole with rounded corners equal to about one-third of its width (𝑟𝑐 =

2.117 mm for this study) has a lower SCF than a circular hole of the same diameter. 
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CHAPTER 5: LAMINATE WITH TWO HOLES 

 

Stress distributions, maximum stress locations, and stress concentrations due to the “edge 

effect” and the “hole-to-hole proximity effect” for two asymmetric square holes with rounded 

corners transverse to an externally applied in-plane uniaxial tensile stress are studied. 

Additionally, these phenomena are also explored for two symmetric square holes with rounded 

corners transverse to an externally applied in-plane uniaxial tensile stress. For both the 

asymmetric and symmetric two-hole configurations, two circular holes are also investigated. A 

comparison of the results between the different two-hole configurations is made, which is then 

followed by a conclusion. 

 

5.1 Two Asymmetric Square Holes Transverse to Applied Load 

 Stress distributions, maximum stress locations, and stress concentrations due to two 

asymmetric square holes with rounded corners subjected to an in-plane uniaxial tensile stress in a 

finite width composite laminate are explored here. In order to investigate the “edge effect” and 

the “hole-to-hole proximity effect” simultaneously, three different cases are considered. To begin 

with, a square hole (Hole 2 in Fig. 5.1) is located at the center of the laminate width, while 

another square hole (Hole 1) is held at a constant distance from the edge. Both holes have the 

same dimensions, 6.35 mm x 6.35 mm. Each subsequent case moves Hole 2 closer toward Hole 

1 by a factor of one-half.  

 

5.1.1 Geometry and Loading 

 The geometry and loading configuration for the two asymmetric square holes with 

rounded corners are shown below in Fig. 5.1. The inside hole edge-to-edge distance, 𝑑ℎ, is 

varied, along with the corner radius, 𝑟𝑐, which ranges over four different values for each case; 

𝑟𝑐 = 0.25, 1, 2, and 3 mm. The Hole 1 edge-to-laminate edge distance, 𝑑𝑒, and the square hole 

height for both holes, ℎ, are each held constant. In addition, two asymmetric circular holes with a 

diameter of 3.175 mm are also considered, where the 𝑑𝑒 and 𝑑ℎ values are the same as those 
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used for two asymmetric square holes. For all values of 𝑑ℎ, the centers of the holes are located at 

the mid-length of the laminate, at 𝑥 = 𝐿/2. Lastly, 𝐴 through 𝐻 are the points of interest at the 

hole corners where stress field measurements are taken.  

 

 

Figure 5.1: Geometry and loading condition for two asymmetric square holes with rounded corners. 

 

The various cases for the spacing of the two asymmetric square holes with rounded 

corners are given below in Table 5.1.  

 

Table 5.1: Cases for the two asymmetric square holes with rounded corners. 

Case 
Hole 1 Edge-to-Laminate 

Edge Distance, 𝒅𝒆 (mm) 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Square Hole Height, 𝒉 

(mm) 

1 

1.984 

7.541 (Hole 2 Centered) 

6.35 2 3.770 

3 1.885 

 

5.1.2 Meshing 

 The mesh is obtained using the same approach as in Chapter 3. The keypoints are 

established and used to generate areas, which are then meshed and refined locally in each square 

area surrounding the two square holes. The number of elements in the square area surrounding 
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each hole is kept constant at 5760. This number was increased from the 3840 used in the single 

hole cases in order to avoid aspect ratio warnings from ANSYS. The meshing for two square 

holes with a corner radius of 𝑟𝑐 = 2 mm can be seen below in Fig. 5.2. It is worth mentioning 

that the horizontal solid white lines seen in Fig. 5.2a and 5.2c are areas of high element count. 

This was done to ensure stress field accuracy for the “hole-to-hole proximity effect” and the 

“edge effect” seen in Fig. 5.2a and 5.2c, respectively. The extension of the solid white lines 

beyond the immediate area of stress field interest (the two square areas surrounding the square 

holes with rounded corners) is an unintended consequence of the discretization method used by 

ANSYS. 

 

 

Figure 5.2: Mapped meshing for two asymmetric square holes with 𝑟𝑐 = 2 mm and 𝑑𝑒 = 1.984 mm: (a) 𝑑ℎ = 7.541 

mm (Hole 2 centered), (b) 𝑑ℎ = 3.770 mm, (c) 𝑑ℎ = 1.885 mm. 
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5.1.3 Stress Distribution 

 The 𝜎11 stress field contour plots for the two asymmetric square holes with rounded 

corners can be seen below in Figs. 5.3-5.6. It can be seen in all laminas that as Hole 2 approaches 

Hole 1, the stress field between the two holes increases in magnitude, as does the maximum 𝜎11 

stress in the lamina. Such behavior is due to the “hole-to-hole proximity effect”. 

 

 

Figure 5.3: 𝜎11 stress field contours in the 0° lamina for two asymmetric square holes with 𝑟𝑐 = 2 mm and 𝑑𝑒 =
1.984 mm: (a) 𝑑ℎ = 7.541 mm (Hole 2 centered), (b) 𝑑ℎ = 3.770 mm, (c) 𝑑ℎ = 1.885 mm. 
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Figure 5.4: 𝜎11 stress field contours in the 45° lamina for two asymmetric square holes with 𝑟𝑐 = 2 mm and 𝑑𝑒 =

1.984 mm: (a) 𝑑ℎ = 7.541 mm (Hole 2 centered), (b) 𝑑ℎ = 3.770 mm, (c) 𝑑ℎ = 1.885 mm. 
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Figure 5.5: 𝜎11 stress field contours in the -45° lamina for two asymmetric square holes with 𝑟𝑐 = 2 mm and 𝑑𝑒 =
1.984 mm: (a) 𝑑ℎ = 7.541 mm (Hole 2 centered), (b) 𝑑ℎ = 3.770 mm, (c) 𝑑ℎ = 1.885 mm. 
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Figure 5.6: 𝜎11 stress field contours in the 90° lamina for two asymmetric square holes with 𝑟𝑐 = 2 mm and 𝑑𝑒 =
1.984 mm: (a) 𝑑ℎ = 7.541 mm (Hole 2 centered), (b) 𝑑ℎ = 3.770 mm, (c) 𝑑ℎ = 1.885 mm. 

 

5.1.4 Location of Maximum Stresses 

It is interesting to note the progression of the “hole-to-hole proximity effect” present in 

the 0° lamina. As Hole 2 approaches Hole 1, the 𝜎11 stress fields between the two holes coalesce 

and intensify. Also, the location of the maximum 𝜎11 stress is always found in the neighborhood 

of points 𝐶 and 𝐷 (a consequence of symmetry, see Fig. 5.11a) on Hole 1 at the edge of the 

laminate, regardless of hole edge-to-edge distance. This would suggest that the “edge effect” has 
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a greater influence than the “hole-to-hole proximity effect”, even in light of 𝑑ℎ < 𝑑𝑒 for Case 3. 

Further, because the location of the maximum 𝜎11 stress does not change, but increases with 

decreasing 𝑑ℎ, it would seem that the “hole-to-hole proximity effect” exacerbates the “edge 

effect”. This is depicted below in Fig. 5.7, and Table 5.2. Using 𝑑ℎ = 7.541 mm as a baseline 

for comparison, it can be seen that for a 50% reduction in 𝑑ℎ, there exists a 7.89% increase in 

maximum 𝜎11 stress, and for a 75% reduction in 𝑑ℎ, there exists a 18.28% increase in maximum 

𝜎11 stress. As before, ANSYS displays only one maximum stress location, however, due to 

symmetry conditions explained in Section 5.1.5, there can exist more than one location of 

maximum 𝜎11 stress on the hole periphery. 

 

 

Figure 5.7: Effect of hole-to-hole proximity on 𝜎11 stress fields for two asymmetric square holes with 𝑟𝑐 = 2 mm 

and 𝑑𝑒 = 1.984 mm: (a) 𝑑ℎ = 7.541 mm (Hole 2 centered), (b) 𝑑ℎ = 3.770 mm, (c) 𝑑ℎ = 1.885 mm. 

 

Table 5.2: Effect of hole-to hole-proximity on hole edge-to-laminate edge maximum 𝜎11 stress for two asymmetric 

square holes with 𝑟𝑐 = 2 mm. 

Hole Edge-to-Edge Distance, 𝒅𝒉 (mm) Hole 1 Edge-to-Laminate Edge Distance, 𝒅𝒆 (mm) 
𝝈𝟏𝟏,𝒎𝒂𝒙 

(MPa) 

7.541 (Hole 2 Centered) 

1.984 

5.411 

3.770 5.838 

1.885 6.400 

 

 The maximum 𝜎11 stress for each lamina is given below in Table 5.3. For comparison, 

two circular holes, each with a 6.35 mm diameter, were also modeled. It can be seen that for both 

types of holes, the maximum 𝜎11 stress always occurs in the 0° lamina. As in the case of single 

holes, this is because the fibers in the 0° lamina are parallel to the loading direction, and 

therefore carry the majority of the load applied to the laminate. For each lamina and all values of 

𝑟𝑐, the maximum 𝜎11 stress increases with decreasing hole edge-to-edge distance, 𝑑ℎ. This is 
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anticipated and is a result of the “hole-to-hole proximity effect”. Consistent with results seen in 

Chapter 4, there is a decreasing-increasing behavior in the 𝜎11 stress for increasing corner radius, 

suggesting a minimum 𝑟𝑐. Finally, the 𝜎11 stresses in the +45° and -45° laminas are equivalent up 

to three decimal places for most cases. 

 

Table 5.3: Maximum 𝜎11 stress in each lamina for two asymmetric square holes with rounded corners and two 

asymmetric circular holes. 

Corner 

Radius, 

𝒓𝒄 (mm) 

Hole 1 Edge-to-

Laminate Edge 

Distance, 𝒅𝒆 (mm) 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Two Asymmetric Square Holes: 𝝈𝟏𝟏,𝒎𝒂𝒙 (MPa) 

0° Lamina 45° Lamina -45° Lamina 90° Lamina 

0.25 1.984 

7.541 (Hole 2 Centered) 8.439 8.227 8.226 3.599 

3.770 9.360 9.054 9.053 3.908 

1.885 10.201 9.665 9.665 4.094 

  

1 1.984 

7.541 (Hole 2 Centered) 5.612 4.924 4.924 1.653 

3.770 6.314 5.474 5.474 1.823 

1.885 7.081 5.901 5.901 1.905 

  

2 1.984 

7.541 (Hole 2 Centered) 5.411 3.838 3.838 1.088 

3.770 5.838 4.313 4.312 1.226 

1.885 6.400 4.732 4.732 1.279 

  

3 1.984 

7.541 (Hole 2 Centered) 5.916 3.485 3.485 0.825 

3.770 6.314 3.738 3.738 0.951 

1.885 6.823 4.258 4.258 1.017 

      Two Asymmetric Circular Holes: 𝝈𝟏𝟏,𝒎𝒂𝒙 (MPa) 

3.175 

(Circle) 
1.984 

7.541 (Hole 2 Centered) 6.257 3.545 3.545 0.791 

3.770 6.663 3.772 3.772 0.914 

1.885 7.171 4.200 4.200 0.983 

 

5.1.5 Stress Concentration Factors 

 It is important to note that due to the asymmetrically offset square holes, secondary 

bending is present, and therefore a contribution from this is found in the maximum 𝜎11 stress and 

resulting SCF. This behavior can be seen below in Fig. 5.8. 
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Figure 5.8: Two asymmetric square holes with 𝑑𝑒 = 1.984 mm, 𝑑ℎ = 7.541 mm (Hole 2 centered), and 𝑟𝑐 = 2 mm, 

with secondary bending and 𝑥-direction extension present.  

 

The normalized 𝜎11 stress in the 0° lamina due to the “hole-to-hole proximity effect” and 

the “edge effect” between the two asymmetric square holes for the various cases can be 

represented graphically, and is shown below in Figs. 5.9 and 5.10. For a given 𝑑ℎ, it can be seen 

that the maximum normalized 𝜎11 stress always occurs at the side of the hole closest to the edge 

of the laminate (Hole 1), and that the normalized stress decreases with increasing distance from 

the bottom laminate edge (𝑦 = 0). Moreover, the maximum (and overall) normalized 𝜎11 stress 

decreases with increasing 𝑑ℎ. 

 

 

Figure 5.9: Normalized 0° lamina 𝜎11 stress for two asymmetric square holes with 𝑑𝑒 = 1.984 mm and 𝑟𝑐 = 2 mm. 
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Figure 5.10: Enlarged view of the normalized 0° lamina 𝜎11 stress for two asymmetric square holes with 𝑑𝑒 = 1.984 

mm and 𝑟𝑐 = 2 mm. 

 

The conditions for symmetry in the 𝜎11 stress field behavior for the two asymmetric 

square holes with rounded corners are slightly different than the conditions found for a single 

square hole with rounded corners. Here, only the 0° and 90° laminas exhibit such behavior. The 

symmetry equivalencies and the 𝜎11 stress values at each of the four corners for the two 

asymmetric square holes can be seen below in Fig. 5.11, and Table 5.4, respectively. The solid 

line below Hole 1 in Fig. 5.11 represents the laminate edge (𝑦 = 0). 

 

 

Figure 5.11: 𝜎11 stress symmetry conditions based on fiber orientation directions for two asymmetric square holes 

with rounded corners: (a) 0° lamina, (b) 90° lamina. 

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 3 5 8

σ
1
1
, 
0

°/
σ

x
x
, 
N

o
 H

o
le

, 
0

°

Distance from the Bottom Edge (y=0) of the Laminate, (mm)

dh=7.541 mm (Hole 2

Centered)

dh=3.770 mm

dh=1.885 mm

Hole 1



127 
 

Table 5.4: 𝜎11 stress at points 𝐴 through 𝐻 for two asymmetric square holes with rounded corners, for 𝑑𝑒 = 1.984 

mm and 𝑟𝑐 = 2 mm. 

Two Asymmetric Square Holes 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Fiber 

Orientation 

Angle, 𝜽 (°) 

𝝈𝟏𝟏 (MPa) 

Hole 1 Hole 2 

𝑨 𝑩 𝑪 𝑫 𝑬 𝑭 𝑮 𝑯 

7.541 (Hole 2 Centered) 

0 

4.601 4.601 5.411 5.411 3.914 3.914 4.041 4.041 

3.770 5.223 5.223 5.838 5.838 4.209 4.209 4.749 4.749 

1.885 6.277 6.277 6.400 6.400 4.579 4.579 5.919 5.919 

  

7.541 (Hole 2 Centered) 

45 

-0.334 3.838 -0.263 3.024 -0.267 3.073 -0.295 3.392 

3.770 -0.375 4.313 -0.269 3.253 -0.292 3.356 -0.346 3.978 

1.885 -0.415 4.732 -0.317 3.588 -0.324 3.703 -0.397 4.526 

  

7.541 (Hole 2 Centered) 

-45 

3.838 -0.334 3.024 -0.263 3.073 -0.267 3.392 -0.295 

3.770 4.312 -0.375 3.252 -0.269 3.356 -0.292 3.978 -0.346 

1.885 4.732 -0.415 3.588 -0.317 3.703 -0.324 4.526 -0.397 

  

7.541 (Hole 2 Centered) 

90 

1.088 1.088 0.127 0.127 0.751 0.751 0.963 0.963 

3.770 1.226 1.226 0.122 0.122 0.871 0.871 1.151 1.151 

1.885 1.279 1.279 0.171 0.171 1.015 1.015 1.244 1.244 

 

 The behavior of the symmetry found at the various points of the two asymmetric square 

holes with rounded corners using the normalized 𝜎11 stress values can be easily understood in 

graphical form, which is shown below in Figs. 5.12-5.15. 

 

 

Figure 5.12: Normalized 0° lamina 𝜎11 stress at points 𝐴 through 𝐻 for two asymmetric square holes with rounded 

corners with 𝑑𝑒 = 1.984 mm and 𝑟𝑐 = 2 mm. 
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Figure 5.13: Normalized 45° lamina 𝜎11 stress at points 𝐴 through 𝐻 for two asymmetric square holes with rounded 

corners with 𝑑𝑒 = 1.984 mm and 𝑟𝑐 = 2 mm. 

 

 

Figure 5.14: Enlarged view of the normalized 45° lamina 𝜎11 stress at points 𝐴, 𝐶, 𝐸, and 𝐺, for two asymmetric 

square holes with rounded corners with 𝑑𝑒 = 1.984 mm and 𝑟𝑐 = 2 mm. 
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Figure 5.15: Normalized 90° lamina 𝜎11 stress at points 𝐴 through 𝐻 for two asymmetric square holes with rounded 

corners with 𝑑𝑒 = 1.984 mm and 𝑟𝑐 = 2 mm. 

 

 As in Section 4.3, the SCFs for the laminas found in the two asymmetric square holes 

with rounded corners configuration are obtained using Eqn. 4.6 and the values in Table 5.3, and 

given below in Table 5.5. 

 

Table 5.5: Lamina SCFs for two asymmetric square holes with rounded corners and two asymmetric circular holes. 

Corner 

Radius, 

𝒓𝒄 (mm) 

Hole 1 Edge-to-

Laminate Edge 

Distance, 𝒅𝒆 (mm) 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Two Asymmetric Square Holes: 𝑲𝒕,𝜽 

𝜽 = 𝟎° 𝜽 = 𝟒𝟓° 𝜽 = −𝟒𝟓° 𝜽 = 𝟗𝟎° 

0.25 1.984 

7.541 (Hole 2 Centered) 6.525 14.693 14.692 10.438 

3.770 7.237 16.169 16.169 11.335 

1.885 7.887 17.262 17.261 11.875 

  

1 1.984 

7.541 (Hole 2 Centered) 4.339 8.794 8.794 4.794 

3.770 4.882 9.777 9.777 5.289 

1.885 5.475 10.539 10.539 5.526 

  

2 1.984 

7.541 (Hole 2 Centered) 4.184 6.854 6.854 3.155 

3.770 4.514 7.702 7.702 3.557 

1.885 4.949 8.451 8.451 3.709 

  

3 1.984 

7.541 (Hole 2 Centered) 4.574 6.225 6.224 2.394 

3.770 4.882 6.675 6.675 2.758 

1.885 5.275 7.605 7.605 2.950 

  Two Asymmetric Circular Holes: 𝑲𝒕,𝜽 

3.175 

(Circle) 
1.984 

7.541 (Hole 2 Centered) 4.838 6.331 6.331 2.294 

3.770 5.152 6.737 6.737 2.652 

1.885 5.545 7.501 7.501 2.853 
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The normalized maximum 𝜎11 stress in each lamina as a function of hole edge-to-edge 

distance has been plotted below in Figs. 5.16-5.18. These graphs are equivalent to the lamina 

SCF, 𝐾𝑡,𝜃. 

 

 

Figure 5.16: Normalized maximum 0° lamina 𝜎11 stress for two asymmetric square holes with rounded corners and 

two asymmetric circular holes. 
 

 

Figure 5.17: Normalized maximum ±45° lamina 𝜎11 stress for two asymmetric square holes with rounded corners 
and two asymmetric circular holes. 
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Figure 5.18: Normalized maximum 90° lamina 𝜎11 stress for two asymmetric square holes with rounded corners and 

two asymmetric circular holes. 

 

As before, the maximum 𝜎𝑥 stress in the laminate can be obtained by using the values 

from Table 4.17 as the elastic constants for the laminate, in order to model it as an isotropic 

material. The maximum laminate 𝜎𝑥 stress for all cases of both the two asymmetric square holes 

with rounded corners and the two asymmetric circular holes are given below in Table 5.6. The 

laminate SCFs are calculated as in Section 4.3.3, via Eqn. 4.10, and are also given below in 

Table 5.6. This approach is taken, as there exist no closed form solutions for the laminate level 

SCFs for multiple square holes with rounded corners, or for multiple circular holes. 
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Table 5.6: Maximum laminate 𝜎𝑥 stress using laminate elastic constants, and SCFs based on the gross area of the 

laminate. 

Corner 

Radius, 𝒓𝒄 

(mm) 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Two Asymmetric Square Holes: 

𝝈𝒙,𝒎𝒂𝒙 (MPa) 

Two Asymmetric Square Holes: 

𝑲𝒕𝒈 

0.25 

7.541 (Hole 2 Centered) 4.576 6.636 

3.770 5.074 7.359 

1.885 5.523 8.011 

   

1 

7.541 (Hole 2 Centered) 3.007 4.361 

3.770 3.383 4.907 

1.885 3.793 5.501 

 

2 

7.541 (Hole 2 Centered) 2.890 4.192 

3.770 3.119 4.524 

1.885 3.418 4.958 

 

3 

7.541 (Hole 2 Centered) 3.157 4.579 

3.770 3.369 4.887 

1.885 3.640 5.280 

    
Two Asymmetric Circular Holes: 

𝝈𝒙,𝒎𝒂𝒙 (MPa) 

Two Asymmetric Circular Holes: 

𝑲𝒕𝒈 

3.175 

(Circle) 

7.541 (Hole 2 Centered) 3.338 4.841 

3.770 3.555 5.155 

1.885 3.826 5.549 

 

 The SCFs for the laminate are also shown graphically, which can be seen below in Fig. 

5.19.  

 

 

Figure 5.19: Laminate SCFs for two asymmetric square holes with rounded corners and two asymmetric circular 

holes. 
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5.2 Two Axisymmetric Square Holes Transverse to Applied Load 

 Stress distributions, maximum stress locations, and stress concentrations due to two 

axisymmetric square holes with rounded corners subjected to a transversely applied in-plane 

uniaxial tensile stress in a finite width laminate are investigated here. The locations of Hole 1 

and Hole 2 are varied equally about the central axis of the laminate, at four different hole-to-hole 

distances, in order to investigate the “hole-to-hole proximity effect”.  

 

5.2.1 Geometry and Loading 

 The geometry and loading configuration for the two axisymmetric square holes with 

rounded corners are shown below in Fig. 5.20. The Hole 1 edge-to-laminate edge distance, 𝑑𝑒, 

the hole edge-to-edge distance, 𝑑ℎ, and the corner radius, 𝑟𝑐, are all varied. The corner radius 

ranges over four different values; 𝑟𝑐 = 0.25, 1, 2, and 3 mm. In addition, two axisymmetric 

circular holes with a diameter of 3.175 mm are also considered, where the 𝑑𝑒 and 𝑑ℎ values are 

the same as those used for two axisymmetric square holes. For all values of 𝑑𝑒 and 𝑑ℎ, the 

centers of the holes are located at the mid-length of the laminate, at 𝑥 = 𝐿/2. Again, 𝐴 through 

𝐻 are the points of interest at the hole corners where stress field measurements are taken.  

 

 

Figure 5.20: Geometry and loading condition for two axisymmetric square holes with rounded corners.  
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The various cases for the spacing of the two axisymmetric square holes with rounded 

corners are given below in Table 5.7. 

 

Table 5.7: Cases for the two axisymmetric square holes with rounded corners. 

Case 
Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Hole 1 Edge-to-Laminate 

Edge Distance, 𝒅𝒆 (mm) 
Square Hole Height, 𝒉 (mm) 

1 8.467 (Equidistant) 8.467 (Equidistant) 

6.35 
2 7.541 8.930 

3 3.770 10.815 

4 1.885 11.757 

 

5.2.2 Meshing 

The mesh is obtained using the same approach as in Chapter 3. The keypoints are 

established and used to generate areas, which are then meshed and refined locally in each square 

area surrounding the two square holes. The number of elements in the square area surrounding 

the holes was 576 for 𝑑ℎ = 8.467 mm, and kept constant at 3840 for 𝑑ℎ = 7.541 mm and 3.770 

mm. To avoid an element aspect ratio warning for 𝑑ℎ = 1.885 mm, this number was increased to 

5760. The meshing for two axisymmetric square holes with a corner radius 𝑟𝑐 = 2 mm can be 

seen below in Fig. 5.21.  
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Figure 5.21: Mapped meshing for two axisymmetric square holes with 𝑟𝑐 = 2 mm: (a) 𝑑ℎ = 8.467 mm 

(equidistant), (b) 𝑑ℎ = 7.541 mm, (c) 𝑑ℎ = 3.770 mm, (d) 𝑑ℎ = 1.885 mm. 

 

5.2.3 Stress Distribution 

 The 𝜎11 stress field contour plots for the two axisymmetric square holes with rounded 

corners are shown below in Figs. 5.22-5.25. It can be seen that as the two holes approach one 

another, the magnitude of the 𝜎11 stress between the holes increases, as does the maximum value 

of the 𝜎11 stress in each lamina.  
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Figure 5.22: 𝜎11 stress field contours in the 0° lamina for two axisymmetric square holes with 𝑟𝑐 = 2 mm: (a) 𝑑ℎ =
8.467 mm (equidistant), (b) 𝑑ℎ = 7.541 mm, (c) 𝑑ℎ = 3.770 mm, (d) 𝑑ℎ = 1.885 mm. 
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Figure 5.23: 𝜎11 stress field contours in the 45° lamina for two axisymmetric square holes with 𝑟𝑐 = 2 mm: (a) 𝑑ℎ =
8.467 mm (equidistant), (b) 𝑑ℎ = 7.541 mm, (c) 𝑑ℎ = 3.770 mm, (d) 𝑑ℎ = 1.885 mm. 
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Figure 5.24: 𝜎11 stress field contours in the -45° lamina for two axisymmetric square holes with 𝑟𝑐 = 2 mm: (a) 

𝑑ℎ = 8.467 mm (equidistant), (b) 𝑑ℎ = 7.541 mm, (c) 𝑑ℎ = 3.770 mm, (d) 𝑑ℎ = 1.885 mm. 
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Figure 5.25: 𝜎11 stress field contours in the 90° lamina for two axisymmetric square holes with 𝑟𝑐 = 2 mm: (a) 𝑑ℎ =
8.467 mm (equidistant), (b) 𝑑ℎ = 7.541 mm, (c) 𝑑ℎ = 3.770 mm, (d) 𝑑ℎ = 1.885 mm. 
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5.2.4 Location of Maximum Stresses 

The locations and magnitude of the maximum 𝜎11 stress in the 0° laminas for the two 

axisymmetric square holes with rounded corners, can be seen below in Fig. 5.26 and Table 5.8, 

respectively. The location of the maximum 𝜎11 stress is always found in the neighborhood of 

points 𝐴, 𝐵, 𝐺 and 𝐻 (a consequence of symmetry, see Fig. 5.33a) on Hole 1 and Hole 2. As 

before, ANSYS displays only one maximum stress location, however, due to symmetry 

conditions explained in Section 5.2.5, there can exist more than one location of maximum 𝜎11 

stress on the hole periphery. The 𝜎11 stress field interaction due to the “hole-to-hole proximity 

effect” can also be seen in Fig. 5.26. 

 

 

Figure 5.26: 0° lamina 𝜎11 stress field interaction and maximum 𝜎11 stress locations for two axisymmetric square 

holes with 𝑟𝑐 = 2 mm: (a) 𝑑ℎ = 8.467 mm (equidistant), (b) 𝑑ℎ = 7.541 mm, (c) 𝑑ℎ = 3.770 mm, (d) 𝑑ℎ = 1.885 

mm. 

 

Using 𝑑𝑒 = 𝑑ℎ = 8.467 mm as the baseline in Table 5.8, it can be seen that for a 10.94% 

reduction in 𝑑ℎ, there exists a 9.16% increase in maximum 𝜎11 stress, for a 55.47% reduction in 
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𝑑ℎ, there exists a 19.8% increase in maximum 𝜎11 stress, and for a 77.74% reduction in 𝑑ℎ, there 

exists a 37.66% increase in maximum 𝜎11 stress. 

 

Table 5.8: Effect of hole-to-hole proximity on the 0° lamina maximum 𝜎11 stress for two axisymmetric square holes 

with 𝑟𝑐 = 2 mm. 

Hole Edge-to-Edge Distance, 𝒅𝒉 

(mm) 

Hole 1 Edge-to-Laminate Edge Distance, 𝒅𝒆 

(mm) 

𝝈𝟏𝟏,𝒎𝒂𝒙 

(MPa) 

8.467 (Equidistant) 8.467 (Equidistant) 3.702 

7.541 8.930 4.041 

3.770 10.815 4.435 

1.885 11.757 5.096 

 

As the two holes become close enough, the stress fields surrounding each hole begin to 

coalesce. Consequently, the magnitude of the stresses in the area between both holes increases. 

From a practical design standpoint, holes within such close proximity as seen in Fig. 5.26d are 

rarely encountered, if at all. However, it is worthwhile to be aware of the high stresses which can 

result from holes within such proximity.  

The maximum stress results for two axisymmetric holes are given below in Table 5.9. In 

general, for a given corner radius, the maximum stress increases in all laminas as the holes 

become closer. This trend is consistent with results from both Esp [4] and Kheradiya [5]. As in 

previous results, the maximum 𝜎11 stress is always found in the 0° laminas, and the magnitude of 

the maximum stress in the ±45° laminas is equivalent.  
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Table 5.9: Maximum 𝜎11 stress in each lamina for two axisymmetric square holes with rounded corners and two 

axisymmetric circular holes. 

Corner 

Radius, 

𝒓𝒄 (mm) 

Hole 1 Edge-to-

Laminate Edge 

Distance, 𝒅𝒆 (mm) 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Two Axisymmetric Square Holes: 𝝈𝟏𝟏,𝒎𝒂𝒙 (MPa) 

0° Lamina 45° Lamina -45° Lamina 90° Lamina 

0.25 

8.467 (Equidistant) 8.467 (Equidistant) 5.361 5.241 5.241 1.688 

8.930 7.541 7.131 6.922 6.922 2.900 

10.815 3.770 7.777 7.503 7.503 3.150 

11.757 1.885 8.129 7.633 7.633 3.118 

  

1 

8.467 (Equidistant) 8.467 (Equidistant) 4.128 3.428 3.428 0.774 

8.930 7.541 4.866 4.160 4.160 1.303 

10.815 3.770 5.333 4.535 4.535 1.436 

11.757 1.885 5.709 4.739 4.739 1.470 

  

2 

8.467 (Equidistant) 8.467 (Equidistant) 3.702 2.910 2.910 0.535 

8.930 7.541 4.041 3.271 3.271 0.874 

10.815 3.770 4.435 3.602 3.602 0.984 

11.757 1.885 5.096 3.865 3.865 1.013 

  

3 

8.467 (Equidistant) 8.467 (Equidistant) 3.916 2.702 2.702 0.450 

8.930 7.541 4.078 2.894 2.894 0.679 

10.815 3.770 4.192 3.175 3.175 0.784 

11.757 1.885 5.038 3.539 3.539 0.827 

      Two Axisymmetric Circular Holes: 𝝈𝟏𝟏,𝒎𝒂𝒙 (MPa) 

3.175 

(Circle) 

8.467 (Equidistant) 8.467 (Equidistant) 4.157 2.690 2.690 0.440 

8.930 7.541 4.296 2.860 2.860 0.652 

10.815 3.770 4.371 3.110 3.110 0.756 

11.757 1.885 5.216 3.501 3.501 0.802 

 

It is worthwhile to note the transformation and the resulting interaction of the 𝜎11 stress 

fields in the 0° and 45° laminas for the two holes at their closest proximity, 𝑑ℎ = 1.885 mm, as 

this is where the greatest stresses in the laminate are developed for any given 𝑟𝑐. As the corner 

radius increases, the stress fields coalesce, giving rise to an increase in stress magnitude which is 

greater than that which is seen for a single independent square hole with rounded corners. As 

expected, this is due to the “hole-to-hole proximity effect”. This behavior can be seen below for 

𝑟𝑐 = 2 mm in Figs. 5.27 and 5.28. 

 



143 
 

 

Figure 5.27: 0° lamina 𝜎11 stress field transformation and interaction, and maximum 𝜎11 stress locations for two 

axisymmetric square holes for 𝑑ℎ = 1.885 mm: (a) 𝑟𝑐 = 0.25 mm, (b) 𝑟𝑐 = 1 mm, (c) 𝑟𝑐 = 2 mm, (d) 𝑟𝑐 = 3 mm, 

(e) 𝑟𝑐 = 3.175 mm (circle). 

 

 

Figure 5.28: 45° lamina 𝜎11 stress field transformation and interaction, and maximum 𝜎11 stress locations for two 

axisymmetric square holes for 𝑑ℎ = 1.885 mm: (a) 𝑟𝑐 = 0.25 mm, (b) 𝑟𝑐 = 1 mm, (c) 𝑟𝑐 = 2 mm, (d) 𝑟𝑐 = 3 mm, 

(e) 𝑟𝑐 = 3.175 mm (circle). 



144 
 

5.2.5 Stress Concentration Factors 

 It is important to illustrate that for all cases of two axisymmetric square holes, that due to 

the symmetry present in the spacing of the holes about the central axis, secondary bending is not 

present, and thus no contribution is found in the resultant stresses or SCFs. Further, as in the case 

of the single centered hole, only extension in the 𝑥-direction is present, along with some Poisson 

effect. This can be seen below in Fig. 5.29. However, the “edge effect” and the “hole-to-hole 

proximity effect” are present in all hole spacing configurations. 

 

 

Figure 5.29: Two axisymmetric square holes with 𝑑𝑒 = 𝑑ℎ = 8.467 mm (equidistant) and 𝑟𝑐 = 2 mm, with no 

secondary bending and 𝑥-direction extension only.  

 

The stress concentration factors for each lamina for the two axisymmetric holes are given 

below in Table 5.10. As in previous sections, the highest SCFs are always found in the ±45° 

laminas, due to division by the lower value of stress found in the ±45° laminas with no hole 

using Eqn. 4.6. 
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Table 5.10: Lamina SCFs for two axisymmetric square holes with rounded corners and two axisymmetric circular 

holes. 

Corner 

Radius, 

𝒓𝒄 (mm) 

Hole 1 Edge-to-

Laminate Edge 

Distance, 𝒅𝒆 (mm) 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Two Axisymmetric Square Holes: 𝑲𝒕,𝜽 

𝜽 = 𝟎° 𝜽 = 𝟒𝟓° 𝜽 = −𝟒𝟓° 𝜽 = 𝟗𝟎° 

0.25 

8.467 (Equidistant) 8.467 (Equidistant) 4.145 9.360 9.360 4.895 

8.930 7.541 5.513 12.363 12.363 8.413 

10.815 3.770 6.013 13.401 13.401 9.138 

11.757 1.885 6.285 13.633 13.633 9.043 

  

1 

8.467 (Equidistant) 8.467 (Equidistant) 3.192 6.123 6.123 2.244 

8.930 7.541 3.762 7.430 7.430 3.780 

10.815 3.770 4.123 8.099 8.099 4.165 

11.757 1.885 4.414 8.463 8.463 4.265 

  

2 

8.467 (Equidistant) 8.467 (Equidistant) 2.862 5.198 5.198 1.550 

8.930 7.541 3.125 5.842 5.842 2.537 

10.815 3.770 3.429 6.433 6.433 2.853 

11.757 1.885 3.940 6.902 6.902 2.937 

  

3 

8.467 (Equidistant) 8.467 (Equidistant) 3.028 4.826 4.826 1.304 

8.930 7.541 3.153 5.168 5.168 1.970 

10.815 3.770 3.241 5.670 5.670 2.274 

11.757 1.885 3.895 6.320 6.320 2.397 

      Two Axisymmetric Circular Holes: 𝑲𝒕,𝜽 

3.175 

(Circle) 

8.467 (Equidistant) 8.467 (Equidistant) 3.214 4.805 4.805 1.275 

8.930 7.541 3.321 5.107 5.107 1.891 

10.815 3.770 3.379 5.554 5.554 2.192 

11.757 1.885 4.033 6.253 6.253 2.328 

 

The SCFs for each lamina as a function of hole edge-to-edge distance are plotted below 

in Figs. 5.30-5.32. As one may expect, the SCF increases as the two holes become closer to one 

another, for all values of 𝑟𝑐. 
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Figure 5.30: 0° lamina SCF for two axisymmetric square holes with rounded corners and two axisymmetric circular 

holes. 

 

 

Figure 5.31: ±45° lamina SCF for two axisymmetric square holes with rounded corners and two axisymmetric 

circular holes. 
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Figure 5.32: 90° lamina SCF for two axisymmetric square holes with rounded corners and two axisymmetric 

circular holes. 

 

Since both square holes are always spaced equally from each other about the central axis 

of the laminate, symmetry conditions are present. As well as that which is created by the fiber 

orientation angle, certain 𝜎11 stress field values at each of the four corners of the square hole are 

expected to be equivalent. However, certain symmetry conditions are only present for the 

equidistant hole and edge spacing. Once the holes approach one another, symmetry conditions 

are lost due to influence from the “hole-to-hole proximity effect”. The symmetry equivalencies 

for two axisymmetric square holes with rounded corners can be seen below in Fig. 5.33, where 

the dashed blue line between the two holes represents the central axis. 
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Figure 5.33: 𝜎11 stress symmetry conditions based on fiber orientation directions for two axisymmetric square holes: 

(a) 0° fiber, (b) 90° fiber, (c) 45° fiber, (d) -45° fiber. 

 

 The 𝜎11 stress values at each of the four corners of the two axisymmetric square holes for 

𝑟𝑐 = 2 mm are given below in Table 5.11. It should be noted that for the case of equidistant hole 

and edge spacing, that points 𝐴, 𝐵, 𝐺, and 𝐻 are slightly greater than points 𝐶, 𝐷, 𝐸, and 𝐹, which 

are the points closest to the edges of the laminate. This would seem to indicate that the “hole-to-

hole proximity effect” has a greater influence than the “edge effect”, all other things being equal.  
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Table 5.11: 𝜎11 stress at points 𝐴 through 𝐻 for two axisymmetric square holes with 𝑟𝑐 = 2 mm. 

Two Axisymmetric Square Holes 

Hole Edge-

to-Edge 

Distance, 

𝒅𝒉 (mm) 

Hole Edge-

to-Laminate 

Edge 

Distance, 𝒅𝒆 

(mm) 

Fiber 

Orientation 

Angle, 𝜽 (°) 

𝝈𝟏𝟏 (MPa) 

Hole 1 Hole 2 

𝑨 𝑩 𝑪 𝑫 𝑬 𝑭 𝑮 𝑯 

8.467 

(Equidistant) 

8.467 

(Equidistant) 

0 

3.702 3.702 3.696 3.696 3.696 3.696 3.702 3.702 

7.541 8.930 4.041 4.041 4.022 4.022 4.022 4.022 4.041 4.041 

3.770 10.815 4.435 4.435 4.147 4.147 4.147 4.147 4.435 4.435 

1.885 11.757 5.096 5.096 4.311 4.311 4.311 4.311 5.096 5.096 

  

8.467 

(Equidistant) 

8.467 

(Equidistant) 

45 

0.087 2.910 0.110 2.749 0.110 2.749 0.087 2.910 

7.541 8.930 -0.368 3.271 -0.340 3.019 -0.340 3.019 -0.368 3.271 

3.770 10.815 -0.413 3.602 -0.363 3.163 -0.363 3.163 -0.413 3.602 

1.885 11.757 -0.339 3.865 -0.296 3.370 -0.296 3.370 -0.339 3.865 

  

8.467 

(Equidistant) 

8.467 

(Equidistant) 

-45 

2.910 0.087 2.749 0.110 2.749 0.110 2.910 0.087 

7.541 8.930 3.271 -0.368 3.019 -0.340 3.019 -0.340 3.271 -0.368 

3.770 10.815 3.602 -0.413 3.163 -0.363 3.163 -0.363 3.602 -0.413 

1.885 11.757 3.865 -0.339 3.370 -0.296 3.370 -0.296 3.865 -0.339 

  

8.467 

(Equidistant) 

8.467 

(Equidistant) 

90 

0.535 0.535 0.325 0.325 0.325 0.325 0.535 0.535 

7.541 8.930 0.874 0.874 0.704 0.704 0.704 0.704 0.874 0.874 

3.770 10.815 0.984 0.984 0.773 0.773 0.773 0.773 0.984 0.984 

1.885 11.757 1.013 1.013 0.836 0.836 0.836 0.836 1.013 1.013 

 

The behavior of the symmetry found at the various points of the two axisymmetric square 

holes with rounded corners using the normalized 𝜎11 stress values can be easily understood in 

graphical form, which is shown below for the various laminas, in Figs. 5.34-5.37.  

 



150 
 

 

Figure 5.34: Normalized 0° lamina 𝜎11 stress at points 𝐴 through 𝐻 for two axisymmetric square holes with rounded 

corners for 𝑟𝑐 = 2 mm. 

 

 

Figure 5.35: Normalized 45° lamina 𝜎11 stress at points 𝐴 through 𝐻 for two axisymmetric square holes with 

rounded corners for 𝑟𝑐 = 2 mm. 
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Figure 5.36: Enlarged view of the normalized 45° lamina 𝜎11 stress at points 𝐴, 𝐶, 𝐸, and 𝐺, for two axisymmetric 

square holes with rounded corners for 𝑟𝑐 = 2 mm. 

 

 

Figure 5.37: Normalized 90° lamina 𝜎11 stress at points 𝐴 through 𝐻 for two axisymmetric square holes with 

rounded corners for 𝑟𝑐 = 2 mm. 
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rounded corners and the two axisymmetric circular holes are given below in Table 5.12, along 

with the laminate SCFs based on the gross area of the quasi-isotropic laminate. 

 

Table 5.12: Maximum laminate 𝜎𝑥 stress using laminate elastic constants, and SCFs based on the gross area of the 

laminate. 

Corner Radius, 

𝒓𝒄 (mm) 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Two Axisymmetric Square Holes: 

𝝈𝒙,𝒎𝒂𝒙 (MPa) 

Two Axisymmetric Square 

Holes: 𝑲𝒕𝒈 

0.25 

8.467 (Equidistant) 2.996 4.346 

7.541 3.876 5.622 

3.770 4.220 6.120 

1.885 4.402 6.384 

 

1 

8.467 (Equidistant) 2.250 3.263 

7.541 2.608 3.783 

3.770 2.856 4.143 

1.885 3.058 4.435 

 

2 

8.467 (Equidistant) 2.003 2.905 

7.541 2.167 3.144 

3.770 2.378 3.449 

1.885 2.722 3.948 

 

3 

8.467 (Equidistant) 2.100 3.046 

7.541 2.179 3.160 

3.770 2.239 3.247 

1.885 2.691 3.904 

    
Two Axisymmetric Circular Holes: 

𝝈𝒙,𝒎𝒂𝒙 (MPa) 

Two Axisymmetric Circular 

Holes: 𝑲𝒕𝒈 

3.175 (Circle) 

8.467 (Equidistant) 2.225 3.228 

7.541 2.292 3.324 

3.770 2.331 3.382 

1.885 2.783 4.036 

 

The SCFs for the quasi-isotropic laminate are graphed and shown below in Fig. 5.38.  
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Figure 5.38: Laminate SCFs for the two axisymmetric square holes with rounded corners and the two axisymmetric 

circular holes. 

 

It can be seen in Fig. 5.38 that once the square hole corners become sufficiently rounded 

(𝑟𝑐 > 2 mm), the hole edge-to-edge distance has less influence upon the magnitude of maximum 
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influence of 𝑑ℎ upon the magnitude of maximum laminate stress for 1.984 mm ≤ 𝑑ℎ  ≤ 3.770 

mm becomes appreciable. A corner radius of 𝑟𝑐 = 3 mm elicits a lower SCF than a circular hole 

for all values of 𝑑ℎ.  
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2 mm, the maximum stress is found on the inside corners of Hole 1 and Hole 2, suggesting that 

influence from the “hole-to-hole proximity effect” is greater than the “edge effect”.  

For an equivalent 𝑑ℎ and 𝑟𝑐 between two axisymmetric square holes and two asymmetric 

square holes, the presence of the laminate edge (“edge effect”) in the case of the two asymmetric 

square holes produces an increase in maximum 𝜎11 stress in the 0° lamina. This can be seen 

below in Table 5.13 for various 𝑑ℎ and 𝑟𝑐 = 2 mm. It is interesting to note that the largest 

percent increase maximum 𝜎11 stress between the two configurations coincides with the lowest 

maximum 𝜎11 stress in the 0° lamina. One should recall that secondary bending is present for the 

two asymmetric holes, and not for the two axisymmetric holes.  

 

Table 5.13: Influence of the “edge effect” and the “hole-to-hole proximity effect” on maximum 𝜎11 stress in the 0° 

lamina for two square holes with 𝑟𝑐 = 2 mm. 

Hole Edge-to-Edge Distance, 𝒅𝒉 (mm) Hole Configuration 
𝝈𝟏𝟏,𝒎𝒂𝒙 

(MPa) 

% 

Increase 

7.541 (Hole 2 Centered for Asymmetric Case 

Only) 

Two Axisymmetric 4.041 
28.99 

Two Asymmetric  5.411 

3.770 
Two Axisymmetric  4.435 

27.31 
Two Asymmetric 5.838 

1.885 
Two Axisymmetric  5.096 

25.59 
Two Asymmetric  6.400 
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CHAPTER 6: DAMAGE INITIATION ANALYSIS 

 

 An introduction to composite damage is given, followed by a background on continuum 

damage mechanics which includes an explanation of the Hashin criteria. A damage analysis for a 

single centered square hole with rounded corners and a single centered circular hole is then 

given. This is followed by a damage analysis for two asymmetric square holes with rounded 

corners and two axisymmetric square holes with rounded corners. Lastly, a conclusion is given.  

 

6.1 Introduction 

Composites do not possess the same capability to redistribute stress around local areas of 

stress concentration when compared to their metallic counterparts. In metals, stress redistribution 

is made possible by the yielding of the material surrounding the local areas of stress 

concentration. Composites are restricted in their ability to redistribute stress in this manner. 

Instead, damage is created at local areas of stress concentration. As discussed briefly in Section 

2.5, this can occur in micro-failure modes such as fiber fracture, fiber buckling, matrix cracking, 

delamination (common), and fiber-matrix interfacial shear. It is important to be aware that 

damage occurs at a very small scale, and thus a robust model is one that incorporates multiple 

orders of magnitude, and can transition from micro to meter scale. In this way, an understanding 

of damage initiation and evolution can be more readily attained. 

 

6.2 Composite Damage Analysis 

In this study, ANSYS Mechanical APDL 19.1 was used to investigate the initiation and 

evolution of damage within the quasi-isotropic laminate. ANSYS possesses the capability to 

model progressive composite damage using various damage evolution laws, which are based 

upon different mathematical damage models. Such models include the continuum damage 

mechanics (CDM) method and the material property degradation (MPDG) method. This study 

focuses on the former method. The main difference between the two approaches is that CDM is 

based upon the progressive dissipation of discrete amounts of energy and can be thought of as a 
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“toughness reduction” model, whereas MPDG models composite damage using “instant stiffness 

reduction”, hence its material degradation name. In ANSYS, CDM, which models gradually 

increasing damage, can be seen as superior in some ways to MPDG. The latter can only qualify a 

mesh element as damaged or undamaged (a consequence of modeling damage with a step 

function), whereas CDM can qualify and quantify damage evolution within an element, as well 

as throughout the mesh. For the various failure modes, ANSYS can plot either the nodal or the 

elemental contours of the failure index. It uses a color scale to quantify and qualify the initiation 

of any damage within a particular element on a scale of roughly zero (no damage predicted) to 

unity or above (damage predicted). Similarly, ANSYS can also plot either the nodal or elemental 

contours of the damage variable, and represent the presence of any damage within a particular 

element on a color scale of zero (no damage) to unity (total failure; complete loss of stiffness). 

Any value between zero and unity indicates that damage is present within the lamina. Both the 

failure indices and the damage variables are discussed in the following section.  

 

6.2.1 Damage Initiation 

 Many types of damage initiation criteria have been developed based upon theory which 

governs the behavior of the fiber-matrix interface. Each type possesses its own ease of use, 

advantages, and limitations. The appeal of the Hashin criteria is that unlike traditional 

alternatives such as Tsai-Wu, which informs of only the initiation of damage, it is able to not 

only quantify damage initiation, but reveals the type of damage predicted (fiber or matrix) and 

whether it is due to tensile or compressive stresses. In order to model composite damage 

evolution, ANSYS requires the user to first select a damage initiation criterion. ANSYS allows 

the user to select from failure criteria which include: maximum stress, maximum strain, Puck, 

Hashin, LaRc03, LaRc04, and up to nine user-defined criteria. It should be noted that the criteria 

are damage method specific. The Hashin criteria only works with progressive damage analysis 

(PDA) such as the CDM method, and the remaining failure criteria only work with the MPDG 

method. For this study, the two-dimensional Hashin damage initiation criteria was used in 

conjunction with CDM. The Hashin criteria proposes four separate modes of failure, each with 

its own equation. It is important to be aware of the fact that these criteria are applied at the 

lamina level, and accordingly, they involve strength parameters and stress components, 𝜎𝑖𝑗, 

measured at the lamina level. These failure modes and their governing equations are as follows:  
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(1) For fiber tension failure,  

𝐼𝐹𝑓𝑡 = (
𝜎11

𝐹1𝑡
)
2

+ 𝛼 (
𝜏12

𝐹12
)
2

  𝑖𝑓 𝜎11 ≥ 0 (6.1) 

 

where 𝐼𝐹𝑓𝑡 is the failure index for fiber failure in tension, 𝜎11 is the stress in the longitudinal 

direction of the fibers, 𝐹1𝑡 is the fiber tensile strength, 𝛼 is a weight factor which controls the 

influence of shear stress on fiber failure, 𝜏12 is the shear stress in the 12-plane, and 𝐹12 is the 

shear failure stress in the 12-plane. For this study, it is assumed that 𝛼 = 0. Barbero and 

Shahbazi [21] pointed out that fiber tension is a misnomer encountered in the literature, in that 

this failure mode represents the longitudinal tensile failure of the composite lamina. 

 

(2) For fiber compression failure, 

 

𝐼𝐹𝑓𝑐 = (
𝜎11

𝐹1𝑐
)
2

  𝑖𝑓 𝜎11 < 0 (6.2) 

 

where 𝐼𝐹𝑓𝑐 is the failure index for fiber failure in compression, 𝐹1𝑐 is the fiber compressive 

strength, and all other variables are as defined previously. In a similar fashion to the above, this 

mode represents longitudinal compressive failure of the composite lamina. 

 

(3) For matrix tension failure, 

 

𝐼𝐹𝑚𝑡 = (
𝜎22

𝐹2𝑡
)
2

+ (
𝜏12

𝐹12
)
2

  𝑖𝑓 𝜎22 ≥ 0 (6.3) 

 

where 𝐼𝐹𝑚𝑡 is the failure index for matrix failure in tension, 𝜎22 is the stress in the transverse 

direction of the fibers, 𝐹2𝑡 is the matrix tensile strength, and all other variables are as defined 

above. This mode represents the transverse tensile and in-plane shear failure of the composite 

lamina. 

 



158 
 

(4) For matrix compression failure, 

 

𝐼𝐹𝑚𝑐 = (
𝜎22

2𝐹4
)
2

+ [(
𝐹2𝑐

2𝐹23
)
2

− 1]
𝜎22

𝐹2𝑐
+ (

𝜏12

𝐹12
)
2

  𝑖𝑓 𝜎22 < 0 (6.4) 

 

where 𝐼𝐹𝑚𝑐 is the failure index for matrix failure in compression, 𝐹23 is the shear failure stress in 

the 23-plane, 𝐹2𝑐 is the matrix compressive strength, and all other variables are as defined above. 

For this study, 𝐹4 = 1 2𝐹2𝑐⁄ . This mode represents the transverse compressive failure of the 

composite lamina. 

 The damage failure (or more appropriately, initiation) indexes, 𝐼𝐹𝑓𝑡, 𝐼𝐹𝑓𝑐, 𝐼𝐹𝑚𝑡, and 𝐼𝐹𝑚𝑐 

govern the onset of damage for a particular damage mode within a given lamina. Damage is 

predicted to occur when the initiation failure index is equal to or exceeds unity; 𝐼𝐹 ≥ 1. Barbero 

and Shahbazi [21] also indicated that “failure” is not the most accurate way to describe such 

phenomena. For a laminate which has been properly designed and manufactured, no catastrophic 

failure typically occurs at that physical location. Instead, small amounts of damage appear, and 

evolve as the displacement (or load) continues to be increased.  

For the various failure modes, ANSYS is able to display the associated damage variables. 

These are as follows: 𝑑𝑚𝑡, 𝑑𝑚𝑐, 𝑑𝑓𝑡, and 𝑑𝑓𝑐, which correspond to the damage variable for 

matrix tension, matrix compression, fiber tension, and fiber compression, respectively. The 

accumulation of damage within any given lamina can then be considered using three “global 

damage variables” as below [28] 

 

𝑑𝑓 = 1 − (1 − 𝑑𝑓𝑡)(1 − 𝑑𝑓𝑐) (6.5) 

 

𝑑𝑚 = 1 − (1 − 𝑑𝑚𝑡)(1 − 𝑑𝑚𝑐) (6.6) 

 

𝑑𝑠 = 1 − (1 − 𝑑𝑓𝑡)(1 − 𝑑𝑓𝑐)(1 − 𝑑𝑚𝑡)(1 − 𝑑𝑚𝑐) (6.7) 
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where 𝑑𝑓 is the global fiber damage variable, 𝑑𝑚 is the global matrix damage variable, and 𝑑𝑠 is 

the global shear damage variable. When any given damage variable becomes greater than zero, 

damage has occurred in the lamina. 

The user must also provide the associated Hashin criteria material strengths when using 

the CDM method, as these values govern largely the onset of material damage. The extent of 

composite damage is determined by the applied displacement (or load), stacking sequence, holes 

or notches and their consequent SCFs, and material properties. These composite material 

properties are given below in Table 6.1. It should be noted that some values are in situ, meaning 

that they can only be acquired during the time of the experiment, thereby necessitating laboratory 

testing. The material strength values 𝐹2𝑡 and 𝐹12 are in situ. All of the values were taken from a 

research paper by Barbero and Shahbazi [21], in which experimental data from a physical 

specimen was used in tandem with ANSYS to effectively determine these values, as mentioned 

briefly in Section 2.5. Without the benefit of such experimental tension test data from a physical 

specimen, it becomes necessary to appeal to an alternative method in order to acquire these 

parameters, namely searching existing research publications for a complete set of data. Barbero 

[27] noted that from a practical standpoint, the major drawback of CDM is the requisite need for 

additional experimentation in order to determine these model specific parameters. It is important 

to note the large difference in magnitude between the fiber tensile strength and the matrix tensile 

strength, as seen below in Table 6.1. These two values govern largely their respective Hashin 

failure criterion. 

 

Table 6.1: HyE 9082Af, Fiberite strength values needed for CDM damage modeling in ANSYS [21]. 

Fiber Tensile Strength, 𝑭𝟏𝒕 (MPa) Fiber Compressive Strength, 𝑭𝟏𝒄 (MPa) 

1020 -620 

Matrix Tensile Strength, 𝑭𝟐𝒕 (MPa) Matrix Compressive Strength, 𝑭𝟐𝒄 (MPa) 

80 -140 

Z Tensile Failure Stress, 𝑭𝟑𝒕 (MPa) Z Compressive Strength, 𝑭𝟑𝒄 (MPa) 

80 -140 

XY Shear Failure Stress, 𝑭𝟏𝟐 (MPa) XZ Shear Failure Stress, 𝑭𝟏𝟑 (MPa) 

48 48 

YZ Shear Failure Stress, 𝑭𝟐𝟑 (MPa) 

52.7 
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 6.2.2 Damage Evolution 

The CDM method is governed by two types of variables for each damage mode; the 

dissipation of energy per unit area (fracture toughness), 𝐺𝑐, and the viscosity damping coefficient 

of the material, 𝜂. Once damage is initiated, the damage variables increase gradually, as they are 

dictated by the amount of energy dissipated within the material. The values of 𝐺𝑐 and 𝜂 must be 

determined beforehand via standard laboratory tests. The fracture toughness is described by the 

following equation: 

 

𝐺𝑐 = ∫ 𝜎𝑒𝑑𝑈𝑒

𝑈𝑒
𝑓

0

 (6.8) 

 

where 𝜎𝑒 is the equivalent stress (equal to 𝜎𝑥 for the case of an in-plane uniaxial stress state in 

the 𝑥-direction), 𝑈𝑒 is the equivalent displacement (for an in-plane uniaxial stress state, 𝑈𝑒 =

𝐿𝑐𝜖𝑥 where 𝐿𝑐 is the length of the element in the 𝑥-direction, and 𝜖𝑥 is the strain), and 𝑈𝑒
𝑓
 is the 

ultimate equivalent displacement, where the total material stiffness is lost for the specific failure 

mode. The graph for Eqn. 6.8 is shown below in Fig. 6.1, and as implied by Eqn. 6.8, the fracture 

toughness is simply the area under the equivalent stress curve. The fracture toughness values 

used in the CDM modeling are given below in Table 6.2. 

 

 

Figure 6.1: Fracture toughness. 
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Table 6.2: Fracture toughness values used for CDM damage modeling in ANSYS [21]. 

Fiber Tensile Damage Dissipation Energy, 𝑮𝒄
𝒇𝒕

 

(kJ/m^2) 

Fiber Compressive Damage Dissipation Energy, 𝑮𝒄
𝒇𝒄

 

(kJ/m^2) 

1000000 1000000 

Matrix Tensile Damage Dissipation Energy, 𝑮𝒄
𝒎𝒕 

(kJ/m^2) 

Matrix Compressive Damage Dissipation Energy, 𝑮𝒄
𝒎𝒄 

(kJ/m^2) 

25 1000000 

 

Because ANSYS can encounter difficulty in converging upon a solution, the CDM model 

incorporates damping coefficients, 𝜂, for each of the damage modes, which are used to retard the 

damage accumulation and overcome any such incident. Convergence difficulties arise due to the 

softening of the material. Control of the damage evolution rate is gained via adjustment of the 

damping coefficient; the lower the damping value, the more pronounced the damage 

accumulation. For a specific damage mode, the damage evolution is internally regularized by the 

following: 

 

𝑑𝑡+∆𝑡
′ =

𝜂

𝜂 + ∆𝑡
𝑑𝑡

′ +
∆𝑡

𝜂 + ∆𝑡
𝑑𝑡+∆𝑡 (6.9) 

 

where ∆𝑡 is the time step, 𝑑𝑡+∆𝑡
′  is the regularized damage variable at the current time, 𝑑𝑡+∆𝑡 is 

the un-regularized damage variable at the current time and is used for material degradation, and 

𝑑𝑡
′  is the regularized damage variable at the previous time (end of last substep). The viscous 

damping coefficients are 𝜂𝑓𝑡 , 𝜂𝑓𝑐, 𝜂𝑚𝑡 , and 𝜂𝑚𝑐 for the fiber tensile, fiber compressive, matrix 

tensile, and matrix compressive damage modes, respectively. The viscous damping coefficient 

values used in the current study are given below in Table 6.3. 

 

Table 6.3: Viscous damping coefficient values used for CDM damage modeling in ANSYS [21]. 

Fiber Tensile Damage Viscosity Damping 

Coefficient, 𝜼
𝒇𝒕

 

Fiber Compressive Damage Viscosity Damping 

Coefficient, 𝜼
𝒇𝒄

 

0.001 0.001 

Matrix Tensile Damage Viscosity Damping 

Coefficient, 𝜼
𝒎𝒕

 

Matrix Compressive Damage Viscosity Damping 

Coefficient, 𝜼
𝒎𝒄

 

0.005 0.001 
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In order to create an adequate amount of damage, sufficient displacement must be 

imposed on the ANSYS model. The software will fail to converge upon a solution if too large of 

a displacement is applied in any given displacement step. However, this can be overcome by 

adding additional lines of code which allow for the adjustment of the convergence values (force 

and displacement) and their tolerance. But, it is recommended by most sources that the total 

applied displacement be split into manageable increments, such that it can be applied gradually 

and more precisely. Therefore, multiple displacement steps (referred to as load steps by ANSYS 

documentation) must be used in order to split the displacement up into increments which are 

small enough to ensure nonlinear solution convergence, and a more well-behaved model. 

Although a sufficient distributed force could be applied to the model in order to create damage, it 

was discovered that in some problems an applied displacement typically results in a more 

gradual failure, and thus it is easier to detect the exact initiation time of damage. Such conditions 

mimic an actual tension test which would be performed in a laboratory, and are therefore more 

appropriate. However, it must be noted that this is not a tension test. One simply endeavors to 

apply only enough displacement to initiate and create an adequate amount of damage; that which 

is detectable (qualifiable) and measurable (quantifiable). Substeps are used to discretize each 

displacement step, a number which must be specified by the user. Typically, the number of 

substeps is chosen to be large enough such that damage can be shown to evolve gradually. 

Further, a greater number of substeps facilitates the detection of the exact time and location of 

damage onset. The time rate of change of displacement in the 𝑥-direction is given by 𝑈̇𝑥 = 𝑈𝑥 𝑇⁄  

(mm/sec), which in this study, is taken as 𝑈̇𝑥 = 0.1 mm/sec. 

It is useful to know the equivalent applied remote force at which the lamina will begin to 

experience damage, and it can be easily obtained from some of the basic principles of mechanics. 

The parameters needed to ascertain the equivalent applied remote force are given below in Table 

6.4.  

 

Table 6.4: Quasi-isotropic laminate properties. 

Length, 𝑳 (mm) Laminate Modulus, 𝑬𝒙 (MPa) Area, 𝑨 (mm2) 

127 23857.1 116.129 

 



163 
 

To begin, the strain (in mm/mm) in the 𝑥-direction of the laminate is simply 

 

𝜖𝑥 =
∆𝐿

𝐿𝑜
=

𝑈𝑥

𝐿𝑜
 (6.10) 

 

where 𝑈𝑥 is the applied external displacement in mm, and 𝐿𝑜 is the initial length (in the 𝑥-

direction) of the laminate in mm. One may take 𝐿 = 𝐿𝑜 in Table 6.4. Using Hooke’s law, the 

equivalent applied remote stress in MPa is then  

 

𝜎𝑥 = 𝐸𝑥𝜖𝑥 (6.11) 

 

where 𝐸𝑥 is the laminate modulus in the longitudinal direction (parallel to the direction of the 

applied displacement). Finally, from the definition of stress, one can arrive at the equivalent 

applied remote force in Newtons as 

 

𝐹𝑥 = 𝐴𝜎𝑥 (6.12) 

 

where 𝐴 is the cross-sectional area of the laminate in mm2. 

 

6.3 Single Square Hole Transverse to Applied Displacement 

 The damage initiation and evolution due to an incrementally applied displacement for a 

single square hole is investigated in this section. The hole geometry is the same as that of 

Chapter 4, Section 4.1.1, except that only a single centered square hole (Table 6.5) is considered 

here.  

 

6.3.1 Geometry and Displacement 

 The geometry and displacement configuration for the single centered square hole is 

shown below in Fig. 6.2. The hole edge-to-laminate edge distance, 𝑑𝑒, the height of the square 

hole, ℎ, and the corner radius, 𝑟𝑐, are all held constant at 15.875 mm, 6.35 mm, and 2 mm, 

respectively. The center of the square hole is located at the mid-length of the laminate, at 𝑥 =

𝐿/2. 𝐴 through 𝐷 are the four corner points around the periphery of the square hole. One end of 
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the laminate is fixed at 𝑥 = 𝐿, and an incremental in-plane horizontal displacement, 𝑈𝑥, is 

applied uniformly along the width of the free end of the laminate (𝑥 = 0) from 𝑦 = 0 to 𝑦 = 𝑊.  

 

 

Figure 6.2: Geometry and displacement condition for the single centered square hole with rounded corners. 

 

The case for the spacing of the single centered square hole with 𝑟𝑐 = 2 mm is given 

below in Table 6.5. 

 

Table 6.5: Damage analysis case for the single centered square hole with 𝑟𝑐 = 2 mm. 

Case Hole Edge-to-Laminate Edge Distance, 𝒅𝒆 (mm) Square Hole Height, 𝒉 (mm) 

1 15.875 (Centered) 6.35 

 

For the case of the single centered square hole, eight displacement steps are used, each 

containing 100 substeps. The number of substeps was chosen such that an adequate amount of 

damage evolution could be shown, without severely hindering the computation time. The 

damage displacement parameters, which include the number of displacement steps, the number 

of substeps, and the applied external in-plane displacement increment are given below in Table 

6.6.  
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Table 6.6: CDM displacement parameters and ANSYS runtime for the single centered square hole with 𝑟𝑐 = 2 mm. 

Single Centered Square Hole 

Hole Edge-to-

Laminate Edge 

Distance, 𝒅𝒆 (mm) 

Displacement 

Step 

# of 

Substeps 

Applied 

Displacement, 𝑼𝒙 

(mm) 

Displacement 

Step End Time, 

𝑻 (sec) 

ANSYS 

Runtime 

15.875 (Centered) 

1 100 0.10 1 

2 hr 56 min 4 

sec 

2 100 0.20 2 

3 100 0.30 3 

4 100 0.40 4 

5 100 0.50 5 

6 100 0.60 6 

7 100 0.70 7 

8 100 0.80 8 

 

6.3.2 Meshing  

The mesh used for CDM analysis of the single centered square hole with rounded corners 

is the same that was used for the stress analysis in Chapter 4, Section 4.1.2, Fig. 4.2a. For 

convenience, it is shown below in Fig. 6.3. 

 

 

Figure 6.3: Mapped meshing for the single centered square hole with 𝑟𝑐 = 2 mm. 
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6.3.3 Results 

The failure indices which predict the initiation of damage in their respective laminas for 

the single centered square hole with 𝑟𝑐 = 2 mm are given below in Table 6.7.  

 

Table 6.7: Hashin failure indices for matrix and fiber failure in tension for the single centered square hole with 𝑑𝑒 =
15.875 mm and 𝑟𝑐 = 2 mm. 

Single Centered Square Hole 

Displacement 

Step 
Substep Failure Mode/Lamina 

ANSYS Failure 

Index (Matrix 

Tension), 𝑰𝑭𝒎𝒕 

ANSYS Failure 

Index (Fiber 

Tension), 𝑰𝑭𝒇𝒕 

Time, 𝑻 

(sec) 

3 47 Matrix Tension, MT/±45° 1.0008 N/A 2.47 

3 79 Matrix Tension, MT/90° 1.0066 N/A 2.79 

3 91 Fiber Tension, FT/±45° N/A 1.0034 2.91 

5 2 Matrix Tension, MT/0° 1.0022 N/A 4.02 

5 4 Fiber Tension, FT/0° N/A 1.0032 4.04 

 

The maximum displacement applied to the laminate is 𝑈𝑥 = 0.80 mm. Correspondingly, 

the maximum displacement of each lamina is 𝑈𝑥 = 0.80 mm. Once the Hashin failure index 

reaches unity, damage is predicted by theory to occur, and the appearance of damage is expected 

in the following substeps. It should be noted that the appearance of the damage was not seen 

immediately following the failure index reaching unity, but some substeps thereafter. This 

difference is a small fraction of the elapsed time for the first two matrix failure modes, but 

somewhat larger for the 0° lamina matrix tension and fiber tension modes. This is thought to be 

due to the failure index being a prediction, or indicator that damage was likely to occur once the 

criterion was satisfied. Also, this can be attributed to the large amount of substeps used. Had a 

fewer amount of substeps been used, the damage would appear immediately after the failure 

index reached unity. One should note that fiber tension damage is predicted to occur in the ±45° 

lamina shortly after matrix tension damage. This agrees with intuition, as the fibers would be 

forced to carry more load upon any damage to the matrix. Similarly, this behavior is also seen in 

the 0° lamina. However, the 0° lamina fibers fail immediately after the matrix, which is due to 

the fact that the fibers are parallel to the direction applied displacement, and therefore carry most 

of the resultant stress. 

The matrix tensile failure index for the 45° lamina can be seen below in Fig. 6.4. In order 

to illustrate the connection between the locations of stress concentration and the failure index 
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reaching unity, a comparison between the 𝜎22 stress field and 𝐼𝐹𝑚𝑡 is made in Fig. 6.5. It can be 

seen in Fig. 6.5b that the failure index reaches a value of 𝐼𝐹𝑚𝑡 = 1.00077 at the periphery of the 

rounded corners, specifically at the locations of stress concentration depicted in Fig. 6.5a. This is 

consistent with intuition, as one expects damage to initiate at the locations of the highest stress.  

 

 

Figure 6.4: Matrix tensile failure index, 𝐼𝐹𝑚𝑡 = 1.00077 for the 45° lamina in the single centered square hole with 

𝑟𝑐 = 2 mm laminate. 

 

 

Figure 6.5: Single centered square hole with 𝑟𝑐 = 2 mm: (a) 𝜎22 stress field at 𝐼𝐹𝑚𝑡 = 1.00077, (b) enlarged view of 

the matrix tensile failure index, 𝐼𝐹𝑚𝑡 = 1.00077 for the 45° lamina. 
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Damage begins first at 𝑈𝑥 = 0.260 mm in the ±45° laminas, and is due to matrix tensile 

failure. The amount of applied external tensile force required to initiate this damage is 5671.9 N. 

Fiber tensile failure modes do not occur until 𝑈𝑥 = 0.493 mm, owing to the two order of 

magnitude difference in the fiber tensile strength, as compared to the matrix tensile strength seen 

in Table 6.1. Fiber tensile damage initiation in the 0° laminas occurs at 𝑈𝑥 = 0.493 mm and in 

the ±45° laminas at 𝑈𝑥 = 0.609 mm. The corresponding loads are 10754.8 N and 13285.3 N. 

The displacement step sequence for the damage modes is given below in Table 6.8. 

 

Table 6.8: Displacement step sequence of damage initiation for the single centered square hole with 𝑑𝑒 = 15.875 

mm and 𝑟𝑐 = 2 mm. 

Single Centered Square Hole 

Displacement 

Step 
Substep 

Failure 

Mode/Lamina 

Applied 

Displacement, 

𝑼𝒙 (mm) 

Strain, 𝝐𝒙 

(mm/mm) 

Equivalent 

Applied 

Remote 

Stress, 𝝈𝒙 

(MPa) 

Equivalent 

Applied 

Remote 

Force, 𝑭𝒙 

(N) 

Time, 

𝑻 (sec) 

3 60 
Matrix Tension, 

MT/±45° 
0.260 0.00205 48.841 5671.9 2.60 

3 91 
Matrix Tension, 

MT/90° 
0.291 0.00229 54.665 6348.1 2.91 

5 38 
Matrix Tension, 

MT/0° 
0.438 0.00345 82.279 9554.9 4.38 

5 93 
Fiber Tension, 

FT/0° 
0.493 0.00388 92.611 10754.8 4.93 

7 8 
Fiber Tension, 

FT/±45° 
0.609 0.00480 114.401 13285.3 6.08 

 

It can be seen in Table 6.8 that damage initiates first in the ±45°, 90°, and 0° laminas, and 

is due to matrix tensile failure. Again, this is because the matrix tensile strength and 𝑥𝑦 shear 

failure strength values are much lower than the fiber tensile strength, and thus it is much easier to 

meet the failure criterion, as seen in Eqn. 6.3. The equivalent applied remote force, 𝐹𝑥, versus the 

displacement, 𝑈𝑥, data from Table 6.8 is shown below in Fig. 6.6.  
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Figure 6.6: Equivalent applied remote force, 𝐹𝑥, versus applied displacement, 𝑈𝑥, for the single centered square hole 

with 𝑟𝑐 = 2 mm. 

 

 To further validate the connection between stress concentration location and its effect 

upon damage initiation location, the 𝜎22 stress field and the matrix tension damage variable, 𝑑𝑚𝑡, 

at 𝑇 = 4.38 seconds for the 0° lamina are shown below in Fig. 6.7a and 6.7b, respectively. 

Similarly, the 𝜎11 stress field and the fiber tension damage variable, 𝑑𝑓𝑡, at 𝑇 = 6.08 seconds for 

the 0° lamina are also shown below in Fig. 6.7c and 6.7d, respectively. It can be seen that 

damage initiates in the general location of stress concentration, which is at corners 𝐴 through 𝐷 

of the square hole periphery.  
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Figure 6.7: 0° lamina in the single centered square hole with 𝑟𝑐 = 2 mm laminate: (a) 𝜎22 stress field depicting 

locations of stress concentration at 𝑇 = 4.38 sec, (b) matrix tension damage variable, 𝑑𝑚𝑡 , depicting location of 

damage initiation at 𝑇 = 4.38 sec, (c) 𝜎11 stress field depicting locations of stress concentration at 𝑇 = 6.08 sec, (d) 

fiber tension damage variable, 𝑑𝑓𝑡, depicting location of damage initiation at 𝑇 = 6.08 sec. 

 

The magnitude of the fiber tension and matrix tension damage variables for the different 

laminas at the time of damage onset (see Table 6.8) and maximum displacement (𝑇 = 8 sec, 

𝑈𝑥 = 0.80 mm) are given below in Table 6.9.  

 

Table 6.9: Matrix damage variable at damage onset and maximum displacement for the single centered square hole 

with 𝑟𝑐 = 2 mm. 

Single Centered Square Hole 

Failure 

Mode/Lamina 

ANSYS Matrix 

Damage Variable, 

𝒅𝒎𝒕,𝒐𝒏𝒔𝒆𝒕 

ANSYS Fiber 

Damage Variable, 

𝒅𝒇𝒕,𝒐𝒏𝒔𝒆𝒕 

ANSYS Maximum 

Matrix Damage 

Variable, 𝒅𝒎𝒕,𝒎𝒂𝒙 

ANSYS Maximum 

Fiber Damage 

Variable, 𝒅𝒇𝒕,𝒎𝒂𝒙 

Matrix Tension, 

MT/±45° 
0.00016 N/A 0.7898 N/A 

Matrix Tension, 

MT/90° 
0.00042 N/A 0.7536 N/A 

Matrix Tension, 

MT/0° 
0.00078 N/A 0.5697 N/A 

Fiber Tension, 

FT/0° 
N/A 0.00093 N/A 0.5328 

Fiber Tension, 

FT/±45° 
N/A 0.00078 N/A 0.2049 
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The first failure mode and corresponding damage evolution for the composite laminas 

can be seen below in Figs. 6.8 and 6.9.  

 

 

Figure 6.8: Damage evolution of matrix tensile damage variable, 𝑑𝑚𝑡 , in 45° lamina for 𝑑𝑒 = 15.875 mm: (a) 

before damage, 𝑈𝑥 = 0.259 mm, (b) damage onset, 𝑈𝑥 = 0.260 mm, (c) damage evolution, 𝑈𝑥 = 0.500 mm, (d) 

damage evolution, 𝑈𝑥 = 0.601 mm, (e) damage evolution, 𝑈𝑥 = 0.701 mm, (f) maximum damage, 𝑈𝑥 = 0.801 

mm. 

 

 

Figure 6.9: Damage evolution of matrix tensile damage variable, 𝑑𝑚𝑡 , in -45° lamina for 𝑑𝑒 = 15.875 mm: (a) 

before damage, 𝑈𝑥 = 0.259 mm, (b) damage onset, 𝑈𝑥 = 0.260 mm, (c) damage evolution, 𝑈𝑥 = 0.500 mm, (d) 

damage evolution, 𝑈𝑥 = 0.601 mm, (e) damage evolution, 𝑈𝑥 = 0.701 mm, (f) maximum damage, 𝑈𝑥 = 0.801 

mm. 
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6.4 Single Circular Hole Transverse to Applied Displacement 

 The damage initiation and evolution due to an incrementally applied displacement for a 

single circular hole is investigated in this section. The hole geometry is the same as that of 

Chapter 4, Section 4.2.1, except that only a single centered circular hole (Table 6.10) is 

considered here.  

 

6.4.1 Geometry and Displacement 

 The geometry and displacement configuration for the single centered circular hole is 

shown below in Fig. 6.10. The diameter of the hole, 𝑑, and the hole edge-to-laminate edge 

distance, 𝑑𝑒, are held constant at 6.35 mm and 15.875 mm, respectively. This geometry is 

equivalent to a square hole with rounded corners, where 𝑟𝑐 = 3.175 mm. The center of the 

circular hole is located at the mid-length of the laminate, at 𝑥 = 𝐿/2. 𝐴 and 𝐵 are points of 

interest on the hole periphery. One end of the laminate is fixed at 𝑥 = 𝐿, and an incremental in-

plane horizontal displacement, 𝑈𝑥, is applied uniformly along the width of the free end of the 

laminate (𝑥 = 0) from 𝑦 = 0 to 𝑦 = 𝑊.  

 

 

Figure 6.10: Geometry and displacement condition for the single centered circular hole. 

 

The case for the spacing of the single centered circular hole is given below in Table 6.10.  
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Table 6.10: Damage analysis case for the single centered circular hole. 

Case Hole Edge-to-Laminate Edge Distance, 𝒅𝒆 (mm) Hole Diameter, 𝒅 (mm) 

1 15.875 (Centered) 6.35 

 

For the case of the single centered circular hole, eight displacement steps are used, each 

containing 100 substeps. The number of substeps was chosen such that an adequate amount of 

damage evolution could be shown, without severely hindering the computation time. The 

damage displacement parameters, which include the number of displacement steps, the number 

of substeps, and the applied external in-plane displacement increment are given below in Table 

6.11.  

 

Table 6.11: CDM displacement parameters and ANSYS runtime for the single centered circular hole with 𝑑 = 6.35 

mm. 

Single Centered Circular Hole 

Hole Edge-to-Laminate 

Edge Distance, 𝒅𝒆 (mm) 

Displacement 

Step 

# of 

Substeps 

Applied 

Displacement, 

𝑼𝒙 (mm) 

Displacement 

Step End 

Time, 𝑻 (sec) 

ANSYS 

Runtime 

15.875 (Centered) 

1 100 0.10 1 

3 hr 29 min 

6 sec 

2 100 0.20 2 

3 100 0.30 3 

4 100 0.40 4 

5 100 0.50 5 

6 100 0.60 6 

7 100 0.70 7 

8 100 0.80 8 

 

6.4.2 Meshing  

The mesh used for CDM analysis of the single centered circular hole is the same that was 

used for the stress analysis in Chapter 4, Section 4.2.2, Fig. 4.12a. For convenience, it is shown 

below in Fig. 6.11. 
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Figure 6.11: Mapped meshing for the single centered circular hole with 𝑑 = 6.35 mm. 

 

6.4.3 Results 

The failure indices which predict the initiation of damage in their respective laminas for 

the single centered circular hole are given below in Table 6.12. Remark is due here, in that the 

damage initiation sequence is slightly different than for the single centered square hole with 𝑟𝑐 =

2 mm in Section 6.3.3. Here damage is predicted to initiate due to fiber tension failure in the 0° 

lamina before the matrix tension failure mode. This is attributed to the higher SCF found in the 

0° lamina of the laminate which contains the single centered circular hole. From Table 4.10, for a 

single centered square hole with 𝑟𝑐 = 2 mm and a single centered circular hole (𝑟𝑐 = 3.175 mm), 

𝐾𝑡,𝜃=0° = 2.882 and 3.102, respectively. Therefore, since the fibers in the 0° lamina carry the 

majority of the stresses in the laminate, it is reasonable to expect a higher SCF to dictate an 

earlier damage initiation time. With the exception of the 0° lamina failure modes, the damage 

initiates in the same failure mode/lamina sequence as in Section 6.3.3, albeit with different 

displacement step and substep values. 
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Table 6.12: Hashin failure indices for matrix and fiber failure in tension for the single centered circular hole with 

𝑑𝑒 = 15.875 mm and 𝑑 = 6.35 mm. 

Single Centered Circular Hole 

Displacement 

Step 
Substep Failure Mode/Lamina 

ANSYS Failure 

Index (Matrix 

Tension), 𝑰𝑭𝒎𝒕 

ANSYS Failure 

Index (Fiber 

Tension), 𝑰𝑭𝒇𝒕 

Time, 𝑻 (sec) 

3 40 Matrix Tension, MT/±45° 1.0013 N/A 2.40 

3 80 Matrix Tension, MT/90° 1.0031 N/A 2.80 

4 77 Fiber Tension, FT/±45° N/A 1.0036 3.77 

5 53 Fiber Tension, FT/0° N/A 1.0044 4.53 

5 56 Matrix Tension, MT/0° 1.0025 N/A 4.56 

 

The matrix tensile failure index for the 45° lamina can be seen below in Fig. 6.12. As in 

Section 6.3.3, a comparison between the 𝜎22 stress field and 𝐼𝐹𝑚𝑡 is made in Fig. 6.13. It can be 

seen in Fig. 6.13b that the failure index reaches a value of 𝐼𝐹𝑚𝑡 = 1.0013 at the periphery of the 

hole, near the locations of stress concentration depicted in Fig. 6.13a. As with the single centered 

square hole, damage initiates in close proximity to the locations of the highest stress.  

 

 

Figure 6.12: Matrix tensile failure index, 𝐼𝐹𝑚𝑡 = 1.0013 for the 45° lamina in the single centered circular hole with 

𝑑 = 6.35 mm laminate. 
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Figure 6.13: Single centered circular hole: (a) 𝜎22 stress field at 𝐼𝐹𝑚𝑡 = 1.0013, (b) enlarged view of the matrix 

tensile failure index, 𝐼𝐹𝑚𝑡 = 1.0013 for the 45° lamina. 

 

It can be seen below in Table 6.13 that damage occurs in the same failure mode/lamina 

sequence as in Section 6.3.3, but with different displacement step and substep values. 

 

Table 6.13: Displacement step sequence of damage development for the single centered circular hole with 𝑑𝑒 =
15.875 mm and 𝑑 = 6.35 mm. 

Single Centered Circular Hole 

Displacement 

Step 
Substep 

Failure 

Mode/Lamina 

Applied 

Displacement, 

𝑼𝒙 (mm) 

Strain, 𝝐𝒙 

(mm/mm) 

Equivalent 

Applied 

Remote 

Stress, 𝝈𝒙 

(MPa) 

Equivalent 

Applied 

Remote 

Force, 𝑭𝒙 (N) 

Time, 

𝑻 (sec) 

3 48 
Matrix Tension, 

MT/±45° 
0.248 0.00195 46.587 5410.1 2.48 

3 86 
Matrix Tension, 

MT/90° 
0.286 0.00225 53.725 6239.1 2.86 

5 82 
Matrix Tension, 

MT/0° 
0.482 0.00380 90.544 10514.8 4.82 

6 28 
Fiber Tension, 

FT/0° 
0.528 0.00416 99.185 11518.3 5.28 

7 68 
Fiber Tension, 

FT/±45° 
0.669 0.00527 125.672 14594.2 6.68 

 

The equivalent applied remote force, 𝐹𝑥, versus the displacement, 𝑈𝑥, data from Table 

6.13 is shown below in Fig. 6.14. 
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Figure 6.14: Equivalent applied remote force, 𝐹𝑥, versus applied displacement, 𝑈𝑥, for the single centered circular 

hole with 𝑑 = 6.35 mm. 

 

To further validate the connection between stress concentration location and its effect 

upon damage initiation location, the 𝜎22 stress field and the matrix tension damage variable, 𝑑𝑚𝑡, 

at 𝑇 = 2.86 seconds for the 0° lamina are shown below in Fig. 6.15a and 6.15b, respectively. 

Similarly, the 𝜎11 stress field and the fiber tension damage variable, 𝑑𝑓𝑡, at 𝑇 = 5.28 seconds for 

the 0° lamina are also shown below in Fig. 6.15c and 6.15d, respectively. It can be seen that 

damage initiates in the general location of stress concentration, which is at points 𝐴 and 𝐵 on the 

circular hole periphery.  
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Figure 6.15: Single centered circular hole with 𝑟𝑐 = 2 mm: (a) 𝜎22 stress field depicting locations of stress 

concentration at 𝑇 = 2.86 sec in the 45° lamina, (b) matrix tension damage variable, 𝑑𝑚𝑡 , depicting location of 

damage initiation at 𝑇 = 2.86 sec in the 45° lamina, (c) 𝜎11 stress field depicting locations of stress concentration at 

𝑇 = 5.28 sec in the 0° lamina, (d) fiber tension damage variable, 𝑑𝑓𝑡, depicting location of damage initiation at 𝑇 =

5.28 sec in the 0° lamina. 

 

The magnitude of the fiber tension and matrix tension damage variables for the different 

laminas at the time of damage onset (see Table 6.13) and maximum displacement (𝑇 = 8 sec, 

𝑈𝑥 = 0.80 mm) are given below in Table 6.14.  

 

Table 6.14: Matrix damage variable at damage onset and maximum displacement for the single centered circular 

hole with 𝑑 = 6.35 mm. 

Single Centered Circular Hole 

Failure 

Mode/Lamina 

ANSYS Matrix 

Damage Variable, 

𝒅𝒎𝒕,𝒐𝒏𝒔𝒆𝒕 

ANSYS Fiber 

Damage Variable, 

𝒅𝒇𝒕,𝒐𝒏𝒔𝒆𝒕 

ANSYS Maximum 

Matrix Damage 

Variable, 𝒅𝒎𝒕,𝒎𝒂𝒙 

ANSYS Maximum 

Fiber Damage 

Variable, 𝒅𝒇𝒕,𝒎𝒂𝒙 

Matrix Tension, 

MT/±45° 
0.00187 N/A 0.78321 N/A 

Matrix Tension, 

MT/90° 
0.00003 N/A 0.74726 N/A 

Matrix Tension, 

MT/0° 
0.00027 N/A 0.51409 N/A 

Fiber Tension, 

FT/0° 
N/A 0.00085 N/A 0.50898 

Fiber Tension, 

FT/±45° 
N/A 0.00020 N/A 0.19791 
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The first failure mode and corresponding damage evolution for the composite laminas 

can be seen below in Figs. 6.16 and 6.17.  

 

 

Figure 6.16: Damage evolution of matrix tensile failure mode in 45° lamina for 𝑑𝑒 = 15.875 mm: (a) before 

damage, 𝑈𝑥 = 0.247 mm, (b) damage onset, 𝑈𝑥 = 0.248 mm, (c) damage evolution, 𝑈𝑥 = 0.500 mm, (d) damage 

evolution, 𝑈𝑥 = 0.601 mm, (e) damage evolution, 𝑈𝑥 = 0.701 mm, (f) maximum damage, 𝑈𝑥 = 0.801 mm. 

 

 

Figure 6.17: Damage evolution of matrix tensile failure mode in -45° lamina for 𝑑𝑒 = 15.875 mm: (a) before 

damage, 𝑈𝑥 = 0.247 mm, (b) damage onset, 𝑈𝑥 = 0.248 mm, (c) damage evolution, 𝑈𝑥 = 0.500 mm, (d) damage 

evolution, 𝑈𝑥 = 0.601 mm, (e) damage evolution, 𝑈𝑥 = 0.701 mm, (f) maximum damage, 𝑈𝑥 = 0.801 mm. 
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6.5 Two Asymmetric Square Holes Transverse to Applied Displacement 

 The damage initiation and evolution due to an incrementally applied displacement for 

two asymmetric square holes with rounded corners is investigated in this section. The hole 

geometries and spacings are the same as that of Chapter 5, Section 5.1.1, except that only a 

corner radius of 𝑟𝑐 = 2 mm is considered here.  

 

6.5.1 Geometry and Displacement 

 The geometry and displacement configuration for the two asymmetric square holes is 

shown below in Fig. 6.18. The hole edge-to-edge distance, 𝑑ℎ, is varied, while the Hole 1 edge-

to-laminate edge distance, 𝑑𝑒, and the corner radius for both holes, 𝑟𝑐, are held constant at 1.984 

mm and 2 mm, respectively. For all values of 𝑑ℎ, the centers of the holes are located at the mid-

length of the laminate, at 𝑥 = 𝐿/2. 𝐴 through 𝐻 are points of interest on the corners of the hole 

peripheries. One end of the laminate is fixed at 𝑥 = 𝐿, and an incremental in-plane horizontal 

displacement, 𝑈𝑥, is applied uniformly along the width of the free end of the laminate (𝑥 = 0) 

from 𝑦 = 0 to 𝑦 = 𝑊.  

 

 

Figure 6.18: Geometry and displacement condition for two asymmetric square holes with rounded corners. 
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The various cases for the spacing of the two asymmetric square holes with rounded 

corners are given below in Table 6.15.  

 

Table 6.15: Damage analysis cases for two asymmetric square holes with 𝑟𝑐 = 2 mm. 

Case 
Hole Edge-to-Laminate Edge 

Distance, 𝒅𝒆 (mm) 

Hole Edge-to-Edge Distance, 

𝒅𝒉 (mm) 

Square Hole Height, 𝒉 

(mm) 

1 

1.984 

7.541 (Hole 2 Centered) 

6.35 2 3.770 

3 1.885 

 

For all cases of the two asymmetric square holes, four displacement steps are used, each 

containing 25 substeps. The number of substeps was chosen such that an adequate amount of 

damage evolution could be shown, without severely hindering the computation time. The 

damage displacement parameters, which include the number of displacement steps, the number 

of substeps, and the applied external in-plane displacement increment are given below in Table 

6.16.  

 

Table 6.16: CDM displacement parameters and ANSYS runtime for two asymmetric square holes with 𝑟𝑐 = 2 mm. 

Two Asymmetric Square Holes 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Displacement 

Step  

# of 

Substeps 

Applied 

Displacement, 

𝑼𝒙 (mm) 

Displacement 

Step End 

Time, 𝑻 (sec) 

ANSYS Runtime 

7.541 (Hole 2 Centered) 

1 25 0.10 1 

6 hr 42 min 36 sec 
2 25 0.20 2 

3 25 0.30 3 

4 25 0.40 4 

  

3.770 

1 25 0.10 1 

4 hr 58 min 12 sec 
2 25 0.20 2 

3 25 0.30 3 

4 25 0.40 4 

  

1.885 

1 25 0.10 1 

5 hr 53 min 32 sec 
2 25 0.20 2 

3 25 0.30 3 

4 25 0.40 4 
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6.5.2 Meshing 

 The mesh used for CDM analysis is the same that was used for the stress analysis in 

Chapter 5, Section 5.1.2, Fig. 5.2. It is shown again for convenience below in Fig. 6.19. 

 

 

Figure 6.19: Mapped meshing for two asymmetric square holes with 𝑟𝑐 = 2 mm and 𝑑𝑒 = 1.984 mm: (a) 𝑑ℎ =
7.541 mm (Hole 2 centered), (b) 𝑑ℎ = 3.770 mm, (c) 𝑑ℎ = 1.885 mm. 

 

6.5.3 Results 

The failure indices which predict the initiation of damage in their respective laminas for 

the two asymmetric square holes with 𝑟𝑐 = 2 mm are given below in Table 6.17. It can be seen 

that for all matrix failure modes, the damage initiation time decreases with decreasing hole edge-

to-edge distance. This is expected, as the “hole-to-hole proximity effect” increases the maximum 
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stresses found at the hole peripheries, thereby initiating damage sooner. Only matrix failure 

modes are considered here.  

 

Table 6.17: Hashin failure indices for matrix failure in tension for two asymmetric square holes with 𝑟𝑐 = 2 mm. 

Two Asymmetric Square Holes 

Hole Edge-to-

Edge Distance, 

𝒅𝒉 (mm) 

Displacement 

Step 
Substep Failure Mode/Lamina 

ANSYS Failure Index 

(Matrix Tension), 𝑰𝑭𝒎𝒕 

Time, 

𝑻 (sec) 

  

7.541 (Hole 2 

Centered) 

 2 23 Matrix Tension, MT/±45° 1.0265  1.92 

 3 6 Matrix Tension, MT/90° 1.0270  2.24 

 4 4 Matrix Tension, MT/0° 1.0227  3.16 

 

3.770 

 2 20 Matrix Tension, MT/±45° 1.0100  1.80 

 3 3 Matrix Tension, MT/90° 1.0323  2.12 

 3 21 Matrix Tension, MT/0° 1.0052  2.84 

 

1.885 

 2 17 Matrix Tension, MT/±45° 1.0176  1.68 

 2 22 Matrix Tension, MT/90° 1.0081  1.88 

 3 18 Matrix Tension, MT/0° 1.0171  2.72 

 

The matrix failure indices for the 0°, 45°, and 90° laminas for the various values of 𝑑ℎ 

can be seen below in Fig. 6.20. It can be seen that for decreasing hole edge-to-edge distance, the 

failure index fields intensify between the two square holes. As in Section 6.4.3, a comparison 

between the 𝜎22 stress field and 𝐼𝐹𝑚𝑡 is made in Fig. 6.21. One finds in Fig. 6.21b that when 

𝑑ℎ = 1.885 mm, the failure index for the 45° lamina reaches a value of 𝐼𝐹𝑚𝑡 = 1.0176 at the 

periphery of the hole, specifically at the locations of stress concentration as seen in Fig. 6.21a. 

Again, this is consistent with intuition, as one expects damage to initiate at the locations of the 

highest stress.  
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Figure 6.20: Matrix failure indices, 𝐼𝐹𝑚𝑡, for two asymmetric square holes with 𝑟𝑐 = 2 mm: (a) 0° lamina, 𝑑ℎ =
7.541 mm (Hole 2 centered), (b) 45° lamina, 𝑑ℎ = 7.541 mm (Hole 2 centered), (c) 90° lamina, 𝑑ℎ = 7.541 mm 

(Hole 2 centered), (d) 0° lamina, 𝑑ℎ = 3.770 mm, (e) 45° lamina, 𝑑ℎ = 3.770 mm, (f) 90° lamina, 𝑑ℎ = 3.770 mm, 

(g) 0° lamina, 𝑑ℎ = 1.885 mm, (h) 45° lamina, 𝑑ℎ = 1.885 mm, (i) 90° lamina, 𝑑ℎ = 1.885 mm. 

 

 

Figure 6.21: Location of maximum 𝜎22 stress and matrix tension failure index, 𝐼𝐹𝑚𝑡, in the 45° lamina for two 

asymmetric square holes with 𝑑ℎ = 1.885 mm and 𝑟𝑐 = 2 mm: (a) 𝜎22 stress field at 𝐼𝐹𝑚𝑡 = 1.0176, (b) enlarged 

view of the matrix tensile failure index, 𝐼𝐹𝑚𝑡 = 1.0176. 
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The damage initiation analysis of the failure modes and corresponding values for the two 

asymmetric square holes with 𝑟𝑐 = 2 mm are given below in Table 6.18. It can be seen that 

damage initiates sooner for all failure modes and laminas with decreasing hole edge-to-edge 

distance. Again, this is due to the “hole-to-hole proximity effect”. The amount of equivalent 

applied stress required to initiate damage for any given lamina decreases with decreasing hole 

edge-to-edge distance.  

 

Table 6.18: Displacement step sequence of damage development for two asymmetric square holes with 𝑟𝑐 = 2 mm. 

Two Asymmetric Square Holes 

Hole Edge-

to-Edge 

Distance, 

𝒅𝒉 (mm) 

Failure 

Mode/Lamina 

Displacement 

Step 
Substep 

Applied 

Displacement, 

𝑼𝒙 (mm) 

Strain, 𝝐𝒙 

(mm/mm) 

Equivalent 

Applied 

Remote 

Stress, 𝝈𝒙 

(MPa) 

Equivalent 

Applied 

Remote 

Force, 𝑭𝒙 

(N) 

Time, 

𝑻 

(sec) 

7.541 (Hole 

2 Centered) 

Matrix Tension, 

MT/±45° 
2 24 0.196 0.00154 36.819 4275.7 1.96 

Matrix Tension, 

MT/90° 
3 7 0.228 0.00180 42.830 4973.8 2.28 

Matrix Tension, 

MT/0° 
4 6 0.324 0.00255 60.864 7068.0 3.24 

 

3.770 

Matrix Tension, 
MT/±45° 

2 22 0.188 0.00148 35.316 4101.2 1.88 

Matrix Tension, 

MT/90° 
3 4 0.216 0.00170 40.576 4712.0 2.16 

Matrix Tension, 
MT/0° 

3 23 0.292 0.00230 54.853 6370.0 2.92 

 

1.885 

Matrix Tension, 

MT/±45° 
2 17 0.168 0.00132 31.559 3664.9 1.68 

Matrix Tension, 

MT/90° 
2 23 0.192 0.00151 36.067 4188.5 1.92 

Matrix Tension, 

MT/0° 
3 19 0.276 0.00217 51.847 6020.9 2.76 

 

The equivalent applied remote force, 𝐹𝑥, versus the applied displacement, 𝑈𝑥, data from 

Table 6.18 is shown below in Fig. 6.22.  
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Figure 6.22: Equivalent applied remote force, 𝐹𝑥, versus applied displacement, 𝑈𝑥, for two asymmetric square holes 

with 𝑟𝑐 = 2 mm. 

 

To again illustrate the connection between stress concentration location and its effect 

upon damage initiation location, the 𝜎22 stress field and the matrix tension damage variable, 𝑑𝑚𝑡, 

at 𝑇 = 1.68 seconds for the 45° lamina when 𝑑ℎ = 1.885 mm are shown below in Fig. 6.23a and 

6.23b, respectively. Similarly, the 𝜎22 stress field and the matrix tension damage variable, 𝑑𝑚𝑡, 

at 𝑇 = 2.76 seconds for the 0° lamina when 𝑑ℎ = 1.885 mm are also shown below in Fig. 6.23c 

and 6.23d, respectively. It can be seen that damage initiates in the general location of stress 

concentration, which is at point 𝐴 for the 45° lamina, and points 𝐴 and 𝐵 for the 0° lamina. 
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Figure 6.23: Two asymmetric square holes with 𝑑ℎ = 1.885 mm and 𝑟𝑐 = 2 mm: (a) 𝜎22 stress field depicting 

locations of stress concentration at 𝑇 = 1.68 sec in the 45° lamina, (b) matrix tension damage variable, 𝑑𝑚𝑡 , 

depicting location of damage initiation at 𝑇 = 1.68 sec in the 45° lamina, (c) 𝜎22 stress field depicting locations of 

stress concentration at 𝑇 = 2.76 sec in the 0° lamina, (d) matrix tension damage variable, 𝑑𝑚𝑡 , depicting location of 

damage initiation at 𝑇 = 2.76 sec in the 0° lamina. 

 

The magnitude of the matrix tension damage variable for the different laminas and values 

of 𝑑ℎ at the time of damage onset (see Table 6.18) and maximum displacement (𝑇 = 4 sec, 𝑈𝑥 =

0.40 mm) are given below in Table 6.19. It can be seen that 𝑑𝑚𝑡,𝑚𝑎𝑥 increases with decreasing 

𝑑ℎ for equivalent failure modes and laminas. This is due to the increased stress concentrations at 

the hole peripheries which arise from the “hole-to-hole proximity effect” and the “edge effect”. 
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Table 6.19: Matrix damage variable at damage onset and maximum displacement for two axisymmetric square holes 

with 𝑟𝑐 = 2 mm. 

Two Asymmetric Square Holes 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 

Failure 

Mode/Lamina 

ANSYS Matrix Damage 

Variable, 𝒅𝒎𝒕,𝒐𝒏𝒔𝒆𝒕 

ANSYS Maximum Matrix 

Damage Variable, 𝒅𝒎𝒕,𝒎𝒂𝒙 

  

7.541 (Hole 2 Centered) 

Matrix Tension, 

MT/±45° 
0.0065 0.5539 

Matrix Tension, 

MT/90° 
0.0080 0.4695 

Matrix Tension, 

MT/0° 
0.0038 0.2205 

 

3.770 

Matrix Tension, 

MT/±45° 
0.0117 0.5843 

Matrix Tension, 

MT/90° 
0.0123 0.5060 

Matrix Tension, 

MT/0° 
0.0005 0.3126 

 

1.885 

Matrix Tension, 

MT/±45° 
0.0075 0.6370 

Matrix Tension, 

MT/90° 
0.0107 0.5715 

Matrix Tension, 

MT/0° 
0.0021 0.3674 

 

6.6 Two Axisymmetric Square Holes Transverse to Applied Displacement 

The damage initiation and evolution due to an incrementally applied displacement for 

two axisymmetric square holes with rounded corners is investigated in this section. The hole 

geometries and spacings are the same as that of Chapter 5, Section 5.2.1, except that only a 

corner radius of 𝑟𝑐 = 2 mm is considered here.  

 

6.6.1 Geometry and Displacement 

 The geometry and displacement configuration for the two axisymmetric square holes is 

shown below in Fig. 6.24. The hole edge-to-edge distance, 𝑑ℎ, is varied, while the hole height, ℎ, 

and corner radius for both holes, 𝑟𝑐, are held constant at 6.35 mm and 2 mm, respectively. For all 

values of 𝑑𝑒 and 𝑑ℎ, the centers of the holes are located at the mid-length of the laminate, at 𝑥 =

𝐿/2. 𝐴 through 𝐻 are points of interest on the corners of the hole peripheries. One end of the 

laminate is fixed at 𝑥 = 𝐿, and an incremental in-plane horizontal displacement, 𝑈𝑥, is applied 

uniformly along the width of the free end of the laminate (𝑥 = 0) from 𝑦 = 0 to 𝑦 = 𝑊. 
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Figure 6.24: Geometry and displacement condition for two axisymmetric square holes with rounded corners. 

 

The various cases for the spacing of the two axisymmetric square holes with rounded 

corners are given below in Table 6.20.  

 

Table 6.20: Damage analysis cases for two axisymmetric square holes with 𝑟𝑐 = 2 mm. 

Case 
Hole Edge-to-Edge Distance, 

𝒅𝒉 (mm) 

Hole 1 Edge-to-Laminate Edge 

Distance, 𝒅𝒆 (mm) 

Square Hole Height, 

𝒉 (mm) 

1 8.467 (Equidistant) 8.467 (Equidistant) 

6.35 
2 7.541 8.930 

3 3.770 10.815 

4 1.885 11.757 

 

For all cases of the two axisymmetric square holes, four displacement steps are used, 

each containing 25 substeps. This number of substeps was chosen such that an adequate amount 

of damage evolution could be shown, without severely hindering the computation time. The 

damage displacement parameters, which include the number of displacement steps, the number 

of substeps, and the applied external in-plane displacement increment are given below in Table 

6.21.  
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Table 6.21: CDM displacement parameters and ANSYS runtime for two axisymmetric square holes with 𝑟𝑐 = 2 

mm. 

Two Axisymmetric Square Holes 

Hole Edge-to-

Edge Distance, 

𝒅𝒉 (mm) 

Displacement 

Step 
# of Substeps 

Applied Displacement, 

𝑼𝒙 (mm) 

Displacement Step 

End Time, 𝑻 (sec) 

ANSYS 

Runtime 

8.467 

(Equidistant) 

1 25 0.10 1 

11 min 22 sec 
2 25 0.20 2 

3 25 0.30 3 

4 25 0.40 4 

  

7.541 

1 25 0.10 1 

1 hr 15 min 

20 sec 

2 25 0.20 2 

3 25 0.30 3 

4 25 0.40 4 

 

3.770 

1 25 0.10 1 

1 hr 35 min 

36 sec 

2 25 0.20 2 

3 25 0.30 3 

4 25 0.40 4 

 

1.885 

1 25 0.10 1 

3 hr 45 min 

54 sec 

2 25 0.20 2 

3 25 0.30 3 

4 25 0.40 4 

 

6.6.2 Meshing 

 The mesh used for CDM analysis is the same that was used for the stress analysis in 

Chapter 5, Section 5.2.2, Fig. 5.21. It is shown again for convenience below in Fig. 6.25. 
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Figure 6.25: Mapped meshing for two axisymmetric square holes with 𝑟𝑐 = 2 mm: (a) 𝑑ℎ = 8.467 mm 

(equidistant), (b) 𝑑ℎ = 7.541 mm, (c) 𝑑ℎ = 3.770 mm, (d) 𝑑ℎ = 1.885 mm. 

 

6.6.3 Results 

The failure indices which predict the initiation of damage in their respective laminas for 

the two axisymmetric square holes with 𝑟𝑐 = 2 mm are given below in Table 6.22. It can be seen 

that the matrix fails in the same failure mode/lamina sequence that occurred in the two 

asymmetric square holes with 𝑟𝑐 = 2 mm. As in Section 6.5.3, for all matrix failure modes, the 
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damage initiation time decreases with decreasing hole edge-to-edge distance. Again, this is 

expected, as the “hole-to-hole proximity effect” increases the maximum stresses found at the 

hole peripheries, thereby initiating damage sooner. It should be noted that for 𝑑ℎ = 8.467 mm, 

the failure index for matrix tension in the 0° lamina does not reach a value of unity, and therefore 

damage is not predicted to initiate. Only matrix failure modes are considered here.  

 

Table 6.22: Hashin failure indices for matrix failure in tension for two axisymmetric square holes with 𝑟𝑐 = 2 mm. 

Two Axisymmetric Square Holes 

Hole Edge-to-

Edge Distance, 

𝒅𝒉 (mm) 

Displacement 

Step 
Substep Failure Mode/Lamina 

ANSYS Failure 

Index (Matrix 

Tension), 𝑰𝑭𝒎𝒕 

Time, 

𝑻 (sec) 

 

8.467 

(Equidistant) 

3 14 Matrix Tension, MT/±45° 1.0041 2.56 

3 21 Matrix Tension, MT/90° 1.0084 2.84 

4 25 Matrix Tension, MT/0° 0.9077 4.00 

 

7.541 

3 9 Matrix Tension, MT/±45° 1.0213 2.36 

3 15 Matrix Tension, MT/90° 1.0114 2.60 

4 14 Matrix Tension, MT/0° 1.0079 3.56 

 

3.770 

3 4 Matrix Tension, MT/±45° 1.0262 2.16 

3 10 Matrix Tension, MT/90° 1.0329 2.40 

4 6 Matrix Tension, MT/0° 1.0065 3.24 

 

1.885 

2 23 Matrix Tension, MT/±45° 1.0186 1.92 

3 4 Matrix Tension, MT/90° 1.0051 2.16 

4 3 Matrix Tension, MT/0° 1.0127 3.12 

 

The matrix failure indices for the 0°, 45°, and 90° laminas for the various values of 𝑑ℎ 

can be seen below in Fig. 6.26. It can be seen that for decreasing hole edge-to-edge distance, the 

failure index fields intensify between the two square holes. As in Section 6.5.3, a comparison 

between the 𝜎22 stress field and 𝐼𝐹𝑚𝑡 is made in Fig. 6.27. One finds in Fig. 6.27b that when 

𝑑ℎ = 1.885 mm, the failure index for the 45° lamina reaches a value of 𝐼𝐹𝑚𝑡 = 1.0186 at the 

periphery of the hole, specifically at the locations of stress concentration as seen in Fig. 6.27a.  
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Figure 6.26: Matrix failure indices, 𝐼𝐹𝑚𝑡, for two axisymmetric square holes with 𝑟𝑐 = 2 mm: (a) 0° lamina, 𝑑ℎ =
8.467 mm (equidistant), (b) 45° lamina, 𝑑ℎ = 8.467 mm (equidistant), (c) 90° lamina, 𝑑ℎ = 8.467 mm 

(equidistant), (d) 0° lamina, 𝑑ℎ = 7.541 mm, (e) 45° lamina, 𝑑ℎ = 7.541 mm, (f) 90° lamina, 𝑑ℎ = 7.541 mm, (g) 

0° lamina, 𝑑ℎ = 3.770 mm, (h) 45° lamina, 𝑑ℎ = 3.770 mm, (i) 90° lamina, 𝑑ℎ = 3.770 mm, j) 0° lamina, 𝑑ℎ =
1.885 mm, (k) 45° lamina, 𝑑ℎ = 1.885 mm, (l) 90° lamina, 𝑑ℎ = 1.885 mm. 
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Figure 6.27: Location of maximum 𝜎22 stress and matrix tension failure index, 𝐼𝐹𝑚𝑡, in the 45° lamina for two 

axisymmetric square holes with 𝑑ℎ = 1.885 mm and 𝑟𝑐 = 2 mm: (a) 𝜎22 stress field at 𝐼𝐹𝑚𝑡 = 1.0186, (b) enlarged 

view of the matrix tensile failure index, 𝐼𝐹𝑚𝑡 = 1.0186. 

 

The damage initiation analysis of the failure modes for the two axisymmetric square 

holes with 𝑟𝑐 = 2 mm and corresponding values are given below in Table 6.23. As in Section 

6.5.3, damage initiates sooner for all failure modes and laminas with decreasing hole edge-to-

edge distance. The amount of equivalent applied stress required to initiate damage for any given 

lamina decreases with decreasing hole edge-to-edge distance. Also, damage due to matrix 

tension does not appear in the 0° lamina for 𝑑ℎ = 8.467 mm, as its failure index did not reach a 

value of unity in Table 6.22.  
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Table 6.23: Displacement step sequence of damage development for two axisymmetric square holes with 𝑟𝑐 = 2 

mm. 

Two Axisymmetric Square Holes 

Hole Edge-to-

Edge Distance, 

𝒅𝒉 (mm) 

Failure 

Mode/Lamina 

Displacement 

Step 
Substep 

Applied 

Displacement, 

𝑼𝒙 (mm) 

Strain, 𝝐𝒙 

(mm/mm) 

Equivalent 

Applied 

Remote 

Stress, 𝝈𝒙 

(MPa) 

Equivalent 

Applied 

Remote 

Force, 𝑭𝒙 

(N) 

Time, 

𝑻 

(sec) 

   

8.467 

(Equidistant) 

Matrix Tension, 
MT/±45° 

3 22 0.288 0.00227 54.101 6282.7 2.88 

Matrix Tension, 

MT/90° 
4 4 0.316 0.00249 59.361 6893.5 3.16 

Matrix Tension, 
MT/0° 

N/A N/A N/A N/A N/A N/A N/A 

 

7.541 

Matrix Tension, 

MT/±45° 
3 11 0.244 0.00192 45.836 5322.8 2.44 

Matrix Tension, 

MT/90° 
3 17 0.268 0.00211 50.344 5846.4 2.68 

Matrix Tension, 

MT/0° 
4 19 0.376 0.00296 70.632 8202.4 3.76 

 

3.770 

Matrix Tension, 

MT/±45° 
3 5 0.220 0.00173 41.327 4799.3 2.20 

Matrix Tension, 
MT/90° 

3 11 0.244 0.00192 45.836 5322.8 2.44 

Matrix Tension, 

MT/0° 
4 9 0.336 0.00265 63.118 7329.8 3.36 

 

1.885 

Matrix Tension, 
MT/±45° 

2 23 0.192 0.00151 36.067 4188.5 1.92 

Matrix Tension, 

MT/90° 
3 5 0.220 0.00173 41.327 4799.3 2.20 

Matrix Tension, 

MT/0° 
4 5 0.320 0.00252 60.112 6980.8 3.20 

 

The equivalent applied remote force, 𝐹𝑥, versus the applied displacement, 𝑈𝑥, data from 

Table 6.23 is shown below in Fig. 6.28.  
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Figure 6.28: Equivalent applied remote force, 𝐹𝑥, versus applied displacement, 𝑈𝑥, for two axisymmetric square 

holes with 𝑟𝑐 = 2 mm. 

 

To again illustrate the connection between stress concentration location and its effect 

upon damage initiation location, the 𝜎22 stress field and the matrix tension damage variable, 𝑑𝑚𝑡, 

at 𝑇 = 1.92 seconds for the 45° lamina when 𝑑ℎ = 1.885 mm are shown below in Fig. 6.29a and 

6.29b, respectively. Similarly, the 𝜎22 stress field and the matrix tension damage variable, 𝑑𝑚𝑡, 

at 𝑇 = 3.20 seconds for the 0° lamina when 𝑑ℎ = 1.885 mm are also shown below in Fig. 6.29c 

and 6.29d, respectively. It can be seen that damage initiates in the general location of stress 

concentration, which is at points 𝐴 and 𝐺 for the 45° lamina, and points 𝐴, 𝐵, 𝐺, and 𝐻 for the 0° 

lamina. 
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Figure 6.29: Two axisymmetric square holes with 𝑑ℎ = 1.885 mm and 𝑟𝑐 = 2 mm: (a) 𝜎22 stress field depicting 

locations of stress concentration at 𝑇 = 1.92 sec in the 45° lamina, (b) matrix tension damage variable, 𝑑𝑚𝑡 , 

depicting location of damage initiation at 𝑇 = 1.92 sec in the 45° lamina, (c) 𝜎22 stress field depicting locations of 

stress concentration at 𝑇 = 3.20 sec in the 0° lamina, (d) matrix tension damage variable, 𝑑𝑚𝑡 , depicting location of 

damage initiation at 𝑇 = 3.20 sec in the 0° lamina. 

 

 The magnitude of the matrix tension damage variable for the different laminas and values 

of 𝑑ℎ at the time of damage onset (see Table 6.23) and maximum displacement (𝑇 = 4 sec, 𝑈𝑥 =

0.40 mm) are given below in Table 6.24. It can be seen that 𝑑𝑚𝑡,𝑚𝑎𝑥 increases with decreasing 

𝑑ℎ for equivalent failure modes and laminas. This is due to the increased stress concentrations at 

the hole peripheries which arise from the “hole-to-hole proximity effect”. 
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Table 6.24: Matrix damage variable at damage onset and maximum displacement for two axisymmetric square holes 

with 𝑟𝑐 = 2 mm. 

Two Axisymmetric Square Holes 

Hole Edge-to-Edge 

Distance, 𝒅𝒉 (mm) 
Failure Mode/Lamina 

ANSYS Matrix Damage 

Variable, 𝒅𝒎𝒕,𝒐𝒏𝒔𝒆𝒕 

ANSYS Matrix Damage 

Variable, 𝒅𝒎𝒕,𝒎𝒂𝒙 

        

8.467 (Equidistant) 

Matrix Tension, MT/±45° 0.0081 0.3227 

Matrix Tension, MT/90° 0.0035 0.2414 

Matrix Tension, MT/0° N/A N/A 

 

7.541 

Matrix Tension, MT/±45° 0.0057 0.4299 

Matrix Tension, MT/90° 0.0028 0.3566 

Matrix Tension, MT/0° 0.0036 0.0686 

        

3.770 

Matrix Tension, MT/±45° 0.0059 0.4958 

Matrix Tension, MT/90° 0.0103 0.4262 

Matrix Tension, MT/0° 0.0046 0.1852 

        

1.885 

Matrix Tension, MT/±45° 0.0034 0.5683 

Matrix Tension, MT/90° 0.0102 0.4921 

Matrix Tension, MT/0° 0.0091 0.2395 

 

6.7 Conclusions  

Damage initiation occurs at a lower load for the case of a single centered circular hole 

than it does for the single centered square hole with 𝑟𝑐 = 2 mm. The mode of damage initiation 

is with matrix tension (MT) failure in the ±45° lamina. The “hole-to-hole proximity effect” gives 

rise to an increased amount of damage in two square hole configurations, which occurs at an 

earlier time than for the case of single holes.  

Upon the presence of both the “hole-to-hole proximity effect” and the “edge effect” for 

the two asymmetric square holes with 𝑟𝑐 = 2 mm, damage initiation begins earlier versus two 

axisymmetric square holes with 𝑟𝑐 = 2 mm. Further, total damage occurs to a greater extent in 

the former. This would seem to indicate that the presence of the “edge effect” in the case of the 

two asymmetric square holes gives rise to an additional amount of damage, which begins sooner.  

 In general, damage initiates at the periphery of the hole (or holes) for all hole 

configurations, regardless of hole shape, hole-to-hole proximity, and hole edge-to-laminate edge 

distance. Further, damage initiation occurs in the neighborhood of the local stress concentration 
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areas, suggesting that damage initiation location is governed largely by maximum stress location 

within any particular lamina.  

For equivalent failure modes and laminas, the maximum amount of damage in the first 

two matrix failure modes is only slightly greater for the single centered square hole with 𝑟𝑐 = 2 

mm than for the single centered circular hole. In general, the single centered square hole 

experiences only a minimal increase in the amount of damage for all failure modes and laminas. 

The percentage increase in the maximum amount of damage experienced for the various failure 

modes and laminas between the single centered square hole and the single centered circular hole 

is given below in Table 6.25. 

 

Table 6.25: Matrix and fiber damage variable comparison between the single centered square hole with 𝑟𝑐 = 2 mm 

and the single centered circular hole with 𝑑 = 6.35 mm. 

Failure 

Mode/Lamina 

Single Centered Square Hole Single Centered Circular Hole 

𝒅𝒎𝒕,𝒎𝒂𝒙 % 

Increase 

𝒅𝒇𝒕,𝒎𝒂𝒙 % 

Increase 

ANSYS 

Maximum 

Matrix Damage 

Variable, 

𝒅𝒎𝒕,𝒎𝒂𝒙 

ANSYS 

Maximum 

Fiber Damage 

Variable, 

𝒅𝒇𝒕,𝒎𝒂𝒙 

ANSYS 

Maximum 

Matrix Damage 

Variable, 

𝒅𝒎𝒕,𝒎𝒂𝒙 

ANSYS 

Maximum 

Fiber Damage 

Variable, 

𝒅𝒇𝒕,𝒎𝒂𝒙 

Matrix Tension, 

MT/±45° 
0.78976 N/A 0.78321 N/A 0.84 N/A 

Matrix Tension, 

MT/90° 
0.75358 N/A 0.74726 N/A 0.85 N/A 

Matrix Tension, 

MT/0° 
0.56973 N/A 0.51409 N/A 10.82 N/A 

Fiber Tension, 

FT/0° 
N/A 0.53284 N/A 0.50898 N/A 4.69  

Fiber Tension, 

FT/±45° 
N/A 0.20493 N/A 0.19791 N/A 3.55 

 

 For the case of two asymmetric holes with 𝑑ℎ = 7.541 mm (Hole 2 centered), the 

presence of Hole 1 at the laminate edge causes a 24.62% decrease in the load required to initiate 

damage due to matrix tension in the ±45° lamina, as compared to a single centered square hole 

with 𝑟𝑐 = 2 mm. Similarly, there is a 21.65% decrease in the load required to initiate damage due 

to matrix tension in the 90° lamina, as compared to a single centered square hole with 𝑟𝑐 = 2 

mm.  

 For equivalent hole edge-to-edge distances, damage initiates sooner for two asymmetric 

square holes than for two axisymmetric square holes with 𝑟𝑐 = 2 mm. This is due to contribution 

from secondary bending as well as the “edge effect”, which serve to increase local stresses at the 
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hole periphery, thereby satisfying the Hashin failure criteria at a lower load. The percentage 

increase in the load required to initiate damage for the various failure modes and laminas 

between the two asymmetric square holes and the two axisymmetric holes is given below in 

Table 6.26.  

 

Table 6.26: Damage initiation comparison between two asymmetric square holes and two axisymmetric square holes 

with 𝑟𝑐 = 2 mm. 

Hole Edge-to-

Edge Distance, 

𝒅𝒉 (mm) 

Failure 

Mode/Lamina 

Two Asymmetric Square Holes Two Axisymmetric Square Holes 

𝑭𝒙 % 

Increase  
Displacement, 

𝑼𝒙 (mm) 

Equivalent 

Applied 

Remote Force, 

𝑭𝒙 (N) 

Displacement, 

𝑼𝒙 (mm) 

Equivalent 

Applied 

Remote Force, 

𝑭𝒙 (N) 

7.541 

Matrix Tension, 

MT/±45° 
0.196 4275.7 0.244 5322.8 24.49 

Matrix Tension, 

MT/90° 
0.228 4973.8 0.268 5846.4 17.54 

Matrix Tension, 

MT/0° 
0.324 7068.0 0.376 8202.4 16.05 

              

3.770 

Matrix Tension, 

MT/±45° 
0.188 4101.2 0.220 4799.3 17.02 

Matrix Tension, 

MT/90° 
0.216 4712.0 0.244 5322.8 12.96 

Matrix Tension, 

MT/0° 
0.292 6370.0 0.336 7329.8 15.07 

              

1.885 

Matrix Tension, 

MT/±45° 
0.168 3664.9 0.192 4188.5 14.29 

Matrix Tension, 

MT/90° 
0.192 4188.5 0.220 4799.3 14.58 

Matrix Tension, 

MT/0° 
0.276 6020.9 0.320 6980.8 15.94 

 

Similarly, for equivalent hole edge-to-edge distances, the maximum amount of damage is 

greater for two asymmetric square holes than for two axisymmetric square holes with 𝑟𝑐 = 2 

mm. This is due to contribution from secondary bending as well as the “edge effect”, which 

serve to increase local stresses at the hole periphery. The percentage increase in the maximum 

amount of damage experienced for the various failure modes and laminas between the two 

asymmetric square holes and the two axisymmetric square holes is given below in Table 6.27. 

 



201 
 

Table 6.27: Matrix damage variable comparison between two asymmetric square holes and two axisymmetric square 

holes with 𝑟𝑐 = 2 mm. 

Hole 

Edge-to-

Edge 

Distance, 

𝒅𝒉 (mm) 

Failure 

Mode/Lamina 

Two Asymmetric Square Holes Two Axisymmetric Square Holes 

𝒅𝒎𝒕,𝒎𝒂𝒙 

% 

Increase 

ANSYS Matrix 

Damage 

Variable, 

𝒅𝒎𝒕,𝒐𝒏𝒔𝒆𝒕 

ANSYS 

Maximum 

Matrix Damage 

Variable, 

𝒅𝒎𝒕,𝒎𝒂𝒙 

ANSYS Matrix 

Damage 

Variable, 

𝒅𝒎𝒕,𝒐𝒏𝒔𝒆𝒕 

ANSYS 

Maximum 

Matrix Damage 

Variable, 

𝒅𝒎𝒕,𝒎𝒂𝒙 

  

7.541 

Matrix 

Tension, 

MT/±45° 

0.0065 0.5539 0.0057 0.4299 28.84 

Matrix 

Tension, 

MT/90° 

0.0080 0.4695 0.0028 0.3566 31.66 

Matrix 

Tension, 

MT/0° 

0.0038 0.2205 0.0036 0.0686 221.43 

  

3.770 

Matrix 

Tension, 

MT/±45° 

0.0117 0.5843 0.0059 0.4958 17.85 

Matrix 

Tension, 

MT/90° 

0.0123 0.5060 0.0103 0.4262 18.72 

Matrix 

Tension, 

MT/0° 

0.0005 0.3126 0.0046 0.1852 68.79 

  

1.885 

Matrix 

Tension, 

MT/±45° 

0.0075 0.6370 0.0034 0.5683 12.09 

Matrix 

Tension, 

MT/90° 

0.0107 0.5715 0.0102 0.4921 16.13 

Matrix 

Tension, 

MT/0° 

0.0021 0.3674 0.0091 0.2395 53.40 

 

It is worth recognizing the large percentage increase between the two asymmetric square 

holes and the two axisymmetric square holes for the 0° lamina when 𝑑ℎ = 7.541 mm. Again, 

this is due to the additional presence of the “edge effect” in the two asymmetric square holes 

configuration. In general, there exists a decreasing percentage increase in the maximum amount 

of damage for decreasing hole edge-to-edge distance, 𝑑ℎ, for all matrix failure modes and 

laminas. This is due to the increase in stress concentration at the hole peripheries which arises 

from the “hole-to-hole proximity effect”. This increase in stress concentration results in a greater 

amount of total damage at maximum displacement (𝑈𝑥 = 0.40 mm).  
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CHAPTER 7: CONCLUSIONS 

 

 The conclusion to the thesis is given, followed by recommendations for future work. 

 

7.1 Conclusions 

The primary research problem was to understand the effect of multiple holes upon stress 

concentrations within a quasi-isotropic composite laminate using finite element analysis (FEA). 

The effects of hole shape, corner radius size, hole edge-to-edge proximity, and hole edge-to-

laminate edge proximity upon stress concentrations are taken into consideration.  

The second research problem was to gain insight into the damage initiation caused by the 

stress concentrations due to multiple holes (also using the finite element analysis approach). 

Local damage initiation due to the “hole-to-hole proximity effect”, hole shape, and the “edge 

effect” are explored.  

The maximum 𝜎11 stress in the laminate is always found in the 0° lamina for any given 

single or multiple hole configuration and corner radius, 𝑟𝑐. The largest SCF is always found in 

the ±45° lamina for any given single or multiple hole configuration and corner radius, owing to 

division by the lower value of the applied lamina stress found in the ±45° laminas with no hole. 

 For an offset hole, its distance from the central axis of the lamina or laminate creates an 

eccentricity of the applied tensile load, which induces secondary bending. This effect increases 

the magnitude of the maximum stresses in both circular holes and square holes, irrespective of 

corner radius size. The presence of the laminate edge gives rise to marked increases in maximum 

𝜎11 stress, most notably in the 0° lamina.  

 The location of the maximum 𝜎11 stress in the 0° lamina is always found in the 

neighborhood of the rounded corners for any given single or multiple square hole configuration 

and corner radius.  

 Symmetry conditions are present in all fiber orientations for a single centered square hole 

with rounded corners for any given corner radius, which are reduced as the hole moves away 

from the central axis. Similarly, symmetry conditions are present in all fiber orientations for two 
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axisymmetric square holes with rounded corners for any given corner radius, which remain 

constant for all hole-to-hole spacings. Symmetry conditions are present in the 0° and 90° fiber 

orientations for two asymmetric square holes with rounded corners for any given corner radius, 

which remain constant for all hole spacings. 

 For the transition of the single square hole with rounded corners to a circular hole there is 

a decreasing-increasing behavior found in the maximum 𝜎11 stress and consequent SCF for the 

0° laminas and for the laminate, and thus a minimum value of corner radius exists for which 

there is a corresponding minimum 𝜎11,𝑚𝑎𝑥 and SCF. This behavior is also found in both types of 

the two offset square hole configurations. Further, for all single and multiple hole configurations, 

corner radii exist which elicit a lower SCF than that of a circular hole of equivalent size. 

 In terms of damage initiation and evolution, hole-to-hole proximity governs the initiation 

time and extent of local damage for both the two asymmetric and two axisymmetric square hole 

configurations. Multiple square holes with rounded corners (𝑟𝑐 = 2 mm) which are within 

sufficient distance of one another give rise to premature damage initiation and accelerated 

damage evolution, as compared to a single square hole of equal geometry. The additional 

presence of the “edge effect” elicits an even greater amount of total damage, which initiates 

sooner than for hole configurations without its presence. In general, damage initiates at the 

periphery of the hole (or holes) for all hole configurations, regardless of hole shape, hole-to-hole 

proximity, and hole edge-to-laminate edge distance. Further, damage initiation occurs in the 

neighborhood of the local stress concentration areas, suggesting that damage initiation location is 

governed largely by maximum stress location within any particular lamina.  

In terms of failure modes, the laminate fails in the ±45° lamina due to matrix tension, 

regardless of single or multiple hole configuration. For the single centered square hole and single 

centered circular hole, damage within the laminate always initiates with the same lamina/failure 

mode sequence, albeit at different displacements. In general, damage within the laminate initiates 

with the same lamina/failure mode sequence for all hole configurations.  

 The findings of this work indicate that the “hole-to-hole proximity effect” and the “edge 

effect” can have considerable influence upon maximum stress concentration, damage initiation, 

and damage evolution found within a quasi-isotropic laminate. The “stacking” of multiple effects 

can quickly increase the maximum stress found in the laminas and laminate, resulting in high 

stress magnification regions. These local regions of high stress concentration lead to premature 
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damage initiation, and result in a greater total amount of damage in the laminas, as compared to 

hole configurations which do not possess the same type, or severity of effects. For these reasons, 

it is critical that such phenomena be taken into consideration when designing components 

manufactured from such types of laminates.  

In a general sense, knowledge of maximum 𝜎11 stress locations based upon fiber and 

central axis symmetry relationships provide insight into the exact locations of laminate damage 

initiation. Local regions of intense stress field magnification are of primary concern to initial 

design efforts, an understanding of which provides a more accurate means of predicting laminate 

damage initiation, subsequent evolution, and ultimate laminate failure. 

 In terms of stress concentration, to mitigate the “hole-to-hole proximity effect”, holes 

should be spaced such that they possess a hole edge-to-edge distance of 𝑑ℎ > 3.770 mm. 

Similarly, to mitigate the “edge effect”, holes should have a hole edge-to-laminate edge distance 

of 𝑑𝑒 > 3.969 mm.  

With regard to damage initiation time and damage extent, to mitigate the “hole-to-hole 

proximity effect”, holes should be spaced such that they possess a hole edge-to-edge distance of 

𝑑ℎ > 3.770 mm. In general, the presence of multiple simultaneous effects such as the “edge 

effect” and the “hole-to-hole proximity effect” accelerates the damage initiation time and extent 

of total damage. Consequently, one should seek to avoid situations where multiple effects are 

present, as they work in tandem to greatly increase maximum stresses.  

Ideally, holes would be spaced such that there is never concern for these effects, however 

design efforts may warrant tightly spaced holes or hole patterns, or closeness to a component 

edge/boundary. Additionally, machining errors may produce components with holes which are 

out of tolerance. When such occurrences become unavoidable, the above guidelines are a good 

general rule of thumb, however, one must bear in mind that no two manufactured laminates are 

perfectly identical. Micro-defects in composite manufacturing can produce local regions of fiber-

rich or matrix-rich areas, or air voids (among other defects) which can lead to a difference in the 

stress behavior from specimen to specimen.  

The SCF findings of this study can also be applied to any isotropic material, as the quasi-

isotropic laminate behaves identically in-plane. However, these results can only be applied to 

another finite width plate of equivalent dimensions, and holes of equal dimension.  
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With further regard to design efforts, it is perfectly acceptable to place a hole, or holes, 

within some general proximity of an edge or to each other. The findings of this work should not 

dissuade the designer from such an occurrence. However, what remains critical is knowledge of 

the applied load to the component, as the SCFs will dictate the maximum stress realized within 

the component. Further, the inherent strength of the fiber, matrix, and laminate will ultimately 

govern the time of damage initiation and failure of the laminas, and laminate. When designing 

for failure, one should endeavor to minimize the stress or stresses that dictate the failure mode of 

interest. Since the low strength of the matrix is what gives rise to initial damage, one should 

either choose a matrix with a higher strength (if possible), or seek to minimize the 𝜎22 and 𝜏12 

stresses.  

 

7.2 Recommendations 

 The opportunity for much additional work exists in this particular area. The scope for this 

thesis was originally so large that a great deal was removed (much to the dismay of the author) 

due to time constraints. Multiaxial loading, both tensile (or compressive) and bending moment, 

have not been considered, nor were hygrothermal effects. Configurations beyond two holes were 

not considered, nor were additional layup sequences. Laminates which are not flat plates (i.e. 

possessing some degree of curvature) were also not investigated. Optimal hole relief patterns 

were not examined. Hole size effects were not explored, nor were other hole geometries. Also, 

stress distributions, maximum stress locations, and SCFs due to 𝜎22 and 𝜏12 stresses were not 

studied. Laminates of varying overall dimension were also not explored. All of these are topics 

to be recommended for future work.
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