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PREFACE 

Lithium-ion batteries are used in a wide variety of consumer devices and are the 

dominant form of mobile energy storage. But the production of Li-ion batteries negatively 

impacts the environment and imposes a substantial cost on the consumer. Extending the lifetime 

of Li-ion batteries can reduce both the environmental and monetary cost of battery production. 

This thesis explores the factors that limit battery lifetime, and provides guidance for extending 

lifetime. It also evaluates how companies, whose devices contain Li-ion batteries, explain these 

factors to users. This work has been published under the same title in the Journal of Energy 

Storage with the following citation: 

 

M. Woody, M. Arbabzadeh, G.M. Lewis, G.A. Keoleian, A. Stefanopoulou, Strategies to limit  

degradation and maximize Li-ion battery service lifetime – Critical review and guidance 

for stakeholders, J. Energy Storage. 28 (2020). doi:10.1016/j.est.2020.101231. 
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ABSTRACT 

 

The relationship between battery operation and their degradation and service life is complex and 

not well synthesized or communicated. There is a resulting lack of awareness about best practices that 

influence service life and degradation. Battery degradation causes premature replacement or product 

retirement, resulting in environmental burdens from producing and processing new battery materials, as 

well as early end-of-life burdens. It also imposes a significant cost on the consumer, as batteries can 

contribute to over 25% of the product cost for consumer electronics, over 35% for electric vehicles, and 

over 50% for power tools. We review and present mechanisms, methods, and guidelines focused on 

preserving battery health and limiting degradation. The review includes academic literature as well as 

reports and information published by industry. The goal is to provide practical guidance, metrics, and 

methods to improve environmental performance of battery systems used in electronics (i.e., cellphones 

and laptops), vehicles, and cordless power tools to ultimately better inform users as well as battery 

designers, suppliers, vehicle and device manufacturers, and material recovery and recycling 

organizations. 
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1. Introduction 

Lithium-ion batteries (LIBs) are currently the most widely applied technology for mobile 

energy storage, and are commonly used in cellphones, computers, power tools, and electric 

vehicles (EVs). Battery degradation occurs both over time (calendar aging) and with use (cycling 

aging), and is related to battery chemistry, environmental conditions, and use patterns. Limiting 

degradation has been identified as one of the green principles for responsible battery 

management [1], as extending battery lifetime decreases costs and environmental burdens 

associated with the production of new batteries, including material consumption, mining impacts, 

and greenhouse gas (GHG) emissions [2]. As the mobile electronics and EV industries continue 

to grow [3], even small improvements in lifetime extension will have significant environmental 

benefits. Understanding the operating principles and degradation mechanisms of LIBs helps 

elucidate behaviors that can extend battery lifetime. From this review of academic literature, 

these degradation mechanisms and relevant variables are identified. These variables are then 

compared with user guides, user manuals, and publicly available battery information provided by 

manufacturers, highlighting areas of agreement and disagreement. Finally, through the 

distillation of these sources, we develop and present a list of best practices for battery lifetime 

extension.  

The remainder of section 1 describes the operation of and most common materials used in 

LIBs. Section 2 shows mechanisms by which LIBs degrade and section 3 illustrates the impact 

different conditions or variables have on degradation. In section 4, information provided by 

companies about battery degradation is reviewed. Section 5 details how degradation is managed, 

by battery management systems (BMSs), and by users. Here the information in previous sections 

is synthesized to create a list of best practices for battery lifetime extension. This list is intended 
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to guide users and is presented alongside information showing that currently users either do not 

know or do not follow many of the behaviors that can extend battery lifetime. Educating the 

public on these best practices is a primary motivation for this work.  

A battery cell consists of positive and negative electrodes and an electrolyte that reacts 

with each electrode. When a battery is discharging, the negative electrode (anode) is oxidized by 

the electrolyte, freeing electrons from the anode material. Electrons from the anode flow through 

an external circuit powering a device, to the positive electrode (cathode). At the cathode, the 

metal oxide is reduced, gaining electrons from the external circuit. Charge is conserved at both 

electrodes by the flow of lithium ions from the anode to the cathode. These ions intercalate into 

the lattice of each electrode. The electrolyte is ionically conductive but insulating to the flow of 

electrons, to ensure the electrons flow through the external circuit, preventing self-discharge. A 

porous separator physically separates the positive and negative electrodes to prevent short 

circuits, while allowing the flow of ions. This process is shown in Figure 1. To charge the 

battery, a voltage is applied to the circuit, and the process moves in the opposite direction. 

Material choice is a key variable in battery cost, performance, and function, and a variety 

of materials are currently used. The positive current collector is typically aluminum coated with 

cathode material. The negative current collector is typically copper coated with anode material. 

The separator is typically a polyolefin plastic, such as polypropylene (PP) or polyethylene (PE), 

though ceramic blends have also been used [4,5].  



3 

 

 

Figure 1. Flow of electrons and lithium ions and reactions at each electrode during battery discharge. As 

the battery discharges, Li in the anode (x) decreases and Li in the cathode (y) increases. X corresponds to 

the battery state of charge and the relationship between x and y depends on the ratio of active material 

between anode and cathode. Different metal oxides (MOz) are used as cathode material. 

 

The cathode is typically a metal oxide. The choice of cathode material, along with anode 

material choices, will impact nominal voltage, cycle life, self-discharge rate, specific energy, 

specific power, energy density, power density, operating temperature range, and cost [6]. 

Commercially available cathodes are lithium cobalt oxide (LCO), lithium manganese oxide 

(LMO), lithium iron phosphate (LFP), lithium nickel cobalt aluminum oxide (NCA), and lithium 

nickel manganese cobalt oxide (NMC), and composite blends of these materials [7,8].  

Anodes are typically some form of carbon, usually graphite. One emerging anode 

material is lithium titanate (LTO). Compared to carbon anodes, LTO has low energy density but 

high power density. Though it is currently a more expensive option, it has a higher cycle life and 

can operate at lower temperatures than traditional carbon anodes [7]. Lithium metal alloys, 

including lithium-tin and lithium-silicon, have a much higher theoretical capacity than graphite, 

but large volume changes when cycling have impeded commercialization of these technologies 

[9]. 
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A binder such as polyvinylidene fluoride (PVDF) is used to bind the particles within each 

electrode to a conductive additive, ensuring the entire electrode is conductive [10]. The cathode 

and anode are immersed in a gel or liquid electrolyte, consisting of a lithium salt dissolved in a 

mixture of organic solvents. The most common lithium salt is lithium hexafluorophosphate 

(LiPF6), though lithium tetrafluoroborate (LiBF4), lithium hexafluoroarsenate (LiAsF6), and 

lithium perchlorate (LiClO4) have been used [11]. Common solvent mixtures include ethylene 

carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), 

and ethylmethyl carbonate (EMC) [12]. Cathode, anode, and electrolyte materials are all active 

areas of research, with battery lifetime as one of many performance metrics that can be improved 

[13]. The most common commercially available battery materials are shown in Table 1. 

 

Table 1. Common materials used in Li-ion batteries. 

Cathode Anode Electrolyte 

Salt 

Electrolyte 

Solvent 

Separator Binder Current 

Collectors 

Conductive 

Additives 

LCO C LiPF6 EC PP PVDF Al (cathode) black carbon 

LMO LTO LiBF4 DMC PE SBR Cu (anode)   

LFP   LiAsF6 DEC ceramics   Al (LTO anode)   

NCA   LiClO4 EMC         

NMC     PC         

 

2. Lithium-ion Battery Degradation 

2.1 Characterization 

There are two main forms of battery degradation: capacity fade and power fade. Capacity 

fade is a decrease in the amount of energy a battery can store. It is measured as a battery’s 

capacity (amp-hours) relative to when the battery was new, expressed as a percentage. For most 
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products, 20% capacity fade (80% of initial battery capacity) is considered the battery’s end of 

life (EoL) [14]. The rate of capacity loss is significantly dependent on charging/discharging 

conditions, including maximum voltage, depth of discharge (DoD), current and load profiles, and 

temperature [15]. Power fade is a decrease in the amount of power a battery can provide due to 

an increase in the battery’s internal impedance (resistance - measured in ohms). Capacity fade 

and power fade can occur simultaneously. To understand the precise mechanisms that lead to 

these forms of degradation, both in-situ (including in-operando) and ex-situ (post-mortem) 

characterization techniques are used [16]. These include atomic force microscopy (AFM) [17], 

electrochemical impedance spectroscopy (EIS) [18], focused ion beam scanning electron 

microscopy (FIB-SEM) [19,20], Fourier transform infrared spectroscopy (FTIR) [21], Raman 

spectroscopy [22] , transmission electron microscopy (TEM) [23], X-ray diffraction (XRD) [24], 

and a wide range of combinations of these methods and emerging techniques [25]. 

 

2.2 Modes and Mechanisms 

The aging mechanism and cycle life depend on the battery’s cathode and anode material 

[26]. Battery degradation is complex, as different factors from environmental conditions to 

product utilization patterns interact to generate different aging effects [27]. Degradation can also 

take place during rest periods, when energy is not being drawn from the battery [28].  

The major degradation modes in LIBs are loss of lithium inventory (LLI) and loss of 

active material (LAM) [26]. Loss of lithium inventory is a decrease in the amount of cyclable 

lithium in the battery. As lithium is consumed in side reactions, it is no longer available to 

intercalate into the electrodes, decreasing battery capacity. Loss of active material results from 

degradation of electrodes, reducing the number of sites available for lithium intercalation. This 
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leads to both capacity fade and power fade, and occurs at both the anode and cathode [29]. 

Capacity fade from LLI and from LAM are not additive; the overall degradation is a function of 

the dominant mechanism. Conversely, power fade is the summation of the impact from LLI and 

LAM [30].  

Degradation impacts every part of a battery. In addition to the active materials, inactive 

components (e.g., binder, current collectors, separator) all degrade with time and use. There are 

many processes contributing to the degradation of each component, and it is a challenge to study 

these processes individually, as they occur on similar time scales and interact with one another 

[31]. Nevertheless, there have been many experimental studies on each of these degradation 

processes, focusing on both mechanisms by which they degrade the battery, and variables that 

influence the degradation. 

 

2.2.1 Anode Degradation 

The major mechanisms for anode degradation are solid electrolyte interphase (SEI) 

formation, metallic lithium plating, and loss of active material. Batteries are assembled in a 

discharged state, since lithiated carbon is not stable in air [32]. Therefore all of the lithium ions 

are initially in the electrolyte or intercalated in the cathode [33]. When the battery is cycled for 

the first time, lithium ions from the cathode along with organic compounds from the electrolyte 

solvent react with the graphite anode creating a thin film called the SEI [33]. The creation of the 

SEI irreversibly consumes lithium, decreasing the lithium inventory available for cycling, and 

reducing battery capacity [34]. SEI formation happens during the first several cycles coating the 

graphite electrode with a film tens to hundreds of angstroms thick [32]. This film consists of 

organic salts, inorganic salts, and trapped gas molecules [35]. Approximately 10% of the initial 
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capacity is irreversibly consumed in SEI formation [33]. Ideally, once the SEI is created, the 

graphite electrode is fully coated and the reaction cannot continue. The SEI protects the anode 

from further reacting with the solvent, is electrically insulating, and has high selective 

permeability for lithium ions. A robust SEI layer is critical to good battery performance. 

However, SEI growth is difficult to control because it is highly dependent on the type of 

graphite, graphite morphology, electrolyte composition and concentration, electrochemical 

conditions, and cell temperature [33]. 

The SEI slowly corrodes with time. SEI dissolution exposes the graphite to the 

electrolyte, leading to additional SEI growth and thus additional capacity loss [34]. Increased 

temperature increases the dissolution rate, and at high temperatures, increasing voltage becomes 

a significant factor as well [36]. The ideal SEI is only permeable for Li+ cations, however anions, 

electrons, solvated cations, solvents, and impurities can diffuse through the SEI to the electrode 

[31]. This can result in solvent co-intercalation, creating mechanical stress within the electrode 

lattice. Also, electrolyte reduction within the electrode can create gases which will increase 

pressure and stress [31,32]. When the battery is cycled and the graphite structure is lithiated and 

de-lithiated, its volume expands and contracts by approximately 10% [37]. The mechanical 

stresses created by each of these mechanisms can lead to graphite exfoliation via particle 

cracking. This will decrease the amount of available active material, as well as creating 

additional sites for SEI growth. Lastly, these stresses can fracture and isolate electrode particles 

from the bulk of the material, further reducing the available active material. 

When a battery is at a high SoC, the anode is highly lithiated and the potential at the 

anode is low  [38]. If the potential at the anode surface is below 0 Volts vs Li/Li+, lithium 

deposition on the anode becomes thermodynamically possible. At such potentials, some lithium 
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ions will be deposited on the surface of the electrode as metallic lithium rather than intercalated 

into the anode during charging [39]. To help prevent such lithium deposition, batteries are 

typically designed with 10% higher anode capacity than cathode capacity (N/P ratio > 1.1), so 

the anode is never fully lithiated [39]. Despite this precaution, lithium plating from overcharge 

can still occur if the initial mass ratio of lithium is higher than expected (N/P lower than 

expected), or if the initial LLI due to SEI growth was smaller than expected [11]. Even with 

properly designed ratios, high charge rates can induce lithium plating if the charge rate is greater 

than the rate of lithium diffusion into the graphite [29]. Low temperatures slow ion diffusion in 

the anode and/or the electrolyte, allowing more lithium plating and dendrite growth to occur 

[31]. Deposited lithium forms its own SEI layer, leading to further LLI and increased internal 

resistance [28,40–42]. 

When lithium ions are de-intercaled during discharge, metallic lithium is stripped from 

the anode. If electrical contact between lithium and the anode is lost, this lithium becomes “dead 

lithium” and is a source of capacity loss [39]. SEI can form on this dead lithium, which is an 

additional capacity loss mechanism [39]. 

 

2.2.2 Cathode Degradation 

There is greater variation in cathode degradation, since cathode aging is highly material 

dependent and there is a wider variety of cathode chemistries currently in use [31]. Major 

cathode degradation mechanisms include loss of active material and SEI growth. 

Loss of active material can occur when transition metals (Ni, Mn, Co, Fe) in the cathode 

dissolve in the electrolyte [43], in a process aptly named transition metal dissolution (TMD). 

This is accelerated at high temperatures. Additionally, trace amounts of water in the battery can 
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undergo hydrolysis with the LiPF6 salt to form hydrofluoric acid (HF), which will cause TMD 

[42]. Finally, TMD can occur when the electrode is fully discharged, most significantly for 

cathodes containing manganese [31]. The dissolved transition metals can then deposit on the 

anode SEI, increasing conductivity and leading to additional SEI growth [42,43], as well as 

forming dendrites and decreasing the available active cathode material [31]. 

Like the anode, the cathode has an SEI layer, though it is much smaller than the anode 

layer due to the high voltage at the cathode, and is harder to measure and characterize [44,45]. 

Exposing the cathode to the electrolyte results in loss of lithium inventory as the cathode and 

electrolyte react. Lithiation and delithiation lead to volume changes and mechanical stress, which 

can cause cracking, creating additional reaction sites. Unlike the anode, inhomogeneous 

lithiation can also induce structural phase transitions in the cathode structure, such as Jahn-Teller 

distortion, further reducing the amount of lithium ions the cathode can accept [31]. Low state of 

charge (SoC) can increase this effect, but various dopants can be used to stabilize the structure 

[31]. These structural changes can decrease the available active material in the cathode, as well 

as expose the cathode to the electrolyte. 

Cracking can also be caused by gas generation. This can come from oxygen loss from the 

metal oxide at high temperatures, or from electrolyte decomposition at high voltages [11,42]. 

Overcharge can also cause point defects in the lattice where oxygen or transition metals take the 

spaces in the structure where lithium would otherwise be intercalated [46]. 

At elevated temperatures (150°C to 310°C depending on the material), the cathode itself 

can decompose, leading to loss of active material, releasing of gas, and thermal runaway [46]. 
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2.2.3 Inactive Material Degradation 

Inactive battery components, including the binder, current collectors, and separator, are 

also subject to degradation. Binder materials can decompose at elevated temperatures or 

voltages. These materials can also react with the charged anode forming products like LiF, 

increasing mechanical stress. The current collectors can corrode if they come in contact with the 

electrolyte, reducing their conductivity, leading to power fade [31]. The anode current collector 

is vulnerable to overdischarge, which can lead to copper dissolution resulting in free copper 

particles suspended in the electrolyte. Internal short circuits can occur if enough copper is 

dissolved and copper dendrites grow [44]. The cathode current collector is vulnerable to 

overcharge, leading to pitting corrosion of the aluminum. This increases cell impedance, but 

unlike copper dissolution will not lead to catastrophic failures [44]. The separator is vulnerable 

to mechanical damage from dendritic growth. Dendrites could form because of lithium plating, 

transition metal dissolution, or copper dissolution from the current collector. These dendrites can 

puncture the separator and lead to internal short circuits [44]. Internal short circuits may also be 

caused by the separator material melting at high temperatures or tearing due to mechanical 

damage. Regardless of cause, internal short circuits can lead to thermal runaway, fires, and 

explosions [47]. Finally, mechanical or electronic contact loss between many of a battery’s 

components can lead to higher cell impedance and power fade. Contact loss between particles in 

each electrode has already been discussed, but there can also be contact loss between electrodes 

and binders, binders and current collectors, and electrodes and current collectors [31]. A 

summary of major degradation mechanisms and their related conditions is presented in Figure 2. 
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2.2.4 Higher Order Degradation 

All the degradation mechanisms mentioned in sections 2.2.1-2.2.3 occur at the individual 

cell level. There are also degradation mechanisms external to the cell that could affect the 

terminals or casing. Additionally, for any battery with more than one cell, there are battery pack 

dynamics and pack level degradation to account for. If cells in a module or pack are not 

balanced, they are vulnerable to overcharge, overdischarge, and overheating [48]. Active and 

passive balancing techniques are used by the BMS, yet as shown by Zheng et al, pack capacity 

will always fade more critically than cell capacity. Battery packs therefore always have a shorter 

lifetime than their individual cells [49]. This is primarily explained by unavoidable differences 

between cells due to inconsistent manufacturing or different operating and environmental 

conditions [49].   
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Figure 2. Degradation mechanisms in Li-ion batteries. 
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3. Key Degradation Variables 

The aging process can lead to increased self-discharge rate and resistance as well as 

reduced capacity [28,50]. The various degradation mechanisms cited in section 2 depend on 

complex and interacting mechanisms relating to cell chemistry and storage as well as charging 

and discharging conditions such as temperature, cycle depth, frequency of cycling, change in 

state of charge (ΔSoC), charge and discharge current magnitude , and elevated voltage exposure 

[27,51]. Battery degradation has a large impact on product performance. In EVs, for example, 

capacity fade influences range capability and fuel consumption, while power fade impacts 

driving performance, including acceleration, gradeability, and maximum charging rate during 

regenerative braking or charging [52,53]. In addition to factors such as the temperature 

distribution within the battery, DoD, SoC, and driving and charging conditions, the user’s 

demands for power and energy also determine the operating conditions of the battery and the 

stress factors that influence the rate of aging [52,54]. The variables impacting degradation can be 

put into three main categories: temperature, state of charge, and current (C-rate) [55]. 

 

3.1 Temperature 

Many studies have demonstrated the impact of temperature on LIBs both in storage and 

while in use. In an examination of two LFP batteries, Dubarry et al. showed that the resistance of 

a battery tested at 60°C was five times greater than the battery operated at 25°C [56]. Hannan et 

al. argued that LIBs should be charged between 15°C and 50°C [41]. . In another study, Pesaran 

et al. defined 15–35°C as the desired operating temperature for LIBs in PHEVs. They also 

showed that lower battery degradation rate enables a smaller and lower cost battery [57]. 
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Smith et al. applied a semi-empirical model of NCA/graphite chemistry in PHEVs to 

investigate calendar aging in various environments with different ambient temperatures and solar 

radiation [58].  Their modeling showed a two year difference in battery lifetime between the 

ambient temperature model and ambient plus solar radiation model in Phoenix, AZ, showing the 

large impact of parking in the sun or the shade.  

Serrao et al. showed that temperatures above 25°C accelerated battery aging in Hybrid 

Electric Vehicles (HEVs) [59]. Hatzell et al. concluded that temperatures below -30°C led to 

considerably increased cell impedance, temperatures above 60°C led to severe capacity loss, and 

at temperatures above 85°C the SEI layer decomposed, which can cause rapid degradation and 

thermal runaway [60]. Ramadass et al. cycled Sony 18650 LCO cells, revealing that cells at 25°C 

and 45°C lost about 31% and 36% of their initial capacity after 800 cycles, while cells at 50°C 

lost more than 60% capacity after 600 cycles and cells at 55°C lost 70% after 500 cycles [61]. 

Ren et al. showed that the temperature at which thermal runaway begins also varies with the 

battery cell configuration and pressure relief design [62]. 

 

3.2 State of Charge 

Overcharge, overdischarge, and high depth of discharge lead to the fast decay of battery 

life [28,50,63]. Overcharge is one of the most serious problems, and can result in thermal 

runaway because external energy is being directly added into the battery. On the other hand, 

overdischarged cells experience irreversible capacity loss and changes in stability, which can 

affect tolerance to abuse conditions and increase the likelihood of safety issues [50]. Also, the 

coupling of high SoC and high temperature accelerates degradation [27]. Faria et al. recommend 

a cool environment with SoC around 40% to reduce the calendar aging during a long storage 
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period [28]. They also argue that partial discharge cycles result in lower capacity loss than full 

discharge cycles. Capacity fade in LIBs as a result of cycling resembles the fatigue of materials 

subjected to cyclic loading. The accumulated stress of each cycle contributes to the loss of 

battery lifetime [64].  

Zhang et al. showed that a typical laptop battery stored at 25°C and 100% SoC will 

irreversibly lose 20% of its capacity each year [15].  

Ortega-Vazquez shows that the impact of cycling characteristics also depends on battery 

chemistry. For example, the capacity of LFP batteries is sensitive to the total number of cycles 

that the battery undergoes, while NCA batteries are sensitive to the total number of cycles and to 

the DoD of the cycles [65].   

Amiri et al. conclude that smaller changes in SoC during increases battery lifetime [66]. 

Millner specifies that the battery lifetime can be kept in an acceptable range for Plug-in Hybrid 

Electric Vehicles (PHEVs) by avoiding deep cycles (>60% DoD), high temperatures (>35°C), 

and high average SoC(>60%)[67]. Marano and Madella show that to reach 10 year/150,000 mile 

PHEV lifetime,  overcharging and operation above 95% SoC should be avoided. They also show, 

efficiency and performance degradation if LIBs are discharged or operated at lower than ~25% 

SoC [54]. 

Hoke et al. argue that if battery temperature and charge-discharge cycling are kept 

constant, minimizing time spent at high SoC minimizes degradation [68]. If the next day’s 

energy requirement is known, the battery can be charged to the minimum required level, rather 

than to the conventional full charge [68]. Trippe et al. define 60% to 97% SoC as the safe 

window to preserve battery health [40]. 
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Lunz et al. show that battery lifetime can be increased by reducing the target SoC to 

lower values, or by minimizing rest periods at high SoC. Therefore, battery charging should 

occur immediately before departure [69]. Because standby times dominate battery operation, 

there is a large opportunity to increase battery lifetime by adjusting the time and frequency of 

charging (smart charging).  

For PHEV batteries, Smith et al. suggest several strategies to reduce calendar aging from 

high SoC. These include reducing time spent at high SoC by just-in-time (delayed) charging, and 

intentional partial-depletion of the battery from vehicles parked in hot environments (e.g., by 

running the cooling system) until an appropriate SoC is reached [58].  

 

3.3 C-Rate 

In addition to temperature and DoD/SoC, battery aging also depends on accumulated 

charge transfer in and out of the battery (amp-hour throughput), and the current magnitude 

relative to battery size (C-rate) [54]. Higher charging and discharging current rates can accelerate 

cell degradation due to an uneven distribution of current, temperature, and material stress, where 

Li-ion intercalation and diffusion speed are the limiting factors. These unevenly distributed 

conditions can lead to uneven ageing, including deposition of metallic lithium, and SEI growth at 

certain parts of the electrodes[70]. High-rate discharge means a short period of time for Li-ion 

transfer. In such conditions, ions are not fully de-intercalated, which results in capacity fade and 

lithium dendrite formation. Higher current rates also lead to higher internal temperature, 

encouraging side reactions that increase the loss of active material. There is always capacity fade 

and accelerated aging during high-rate discharge [50]. In an experimental study with post-

mortem analyses, Mussa et al. show that the dominant degradation mechanisms may depend on 
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C-rates [71]. For example, 3 C charging resulted in additional lithium plating, while 4 C charging 

resulting in graphite exfoliation and gas evolution [71]. Wang et al. note that different charging 

protocols perform best at different cycling temperatures, and that there is no one ideal charging 

protocol for all batteries [72]. 

Illustrating some of these degradation mechanisms, Figure 3 shows that lithium ions are 

able to diffuse homogeneously throughout the electrode lattice at low current. With high 

charging current, the ion diffusion rate is slower than the charging rate, leading to an 

inhomogeneous distribution of ions throughout the lattice. This can cause lithium plating on the 

surface of the electrode, as well as stress-induced cracking and loss of active material.  

 

Figure 3. Comparison between a low charging/discharging current and a high discharging/charging 

current, showing 1) lithium plating, and 2) particle cracking.  

 

A selection of recent experimental studies showing the extent to which each one of these 

variables degrades the battery is shown in Table 2. Significant differences can be seen in the 

severity of degradation depending on the battery chemistry, the specific test conditions, and the 

extent to which other degradation variables are simultaneously affecting the battery. 

Nevertheless, the cycling temperature, SoC, and charge rate, as well as the storage temperature 

each have a significant impact on battery degradation rate. 
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Table 2. Recent experimental literature regarding Li-ion battery degradation in response to key 

variables including temperature, state of charge, and charging rate. 
Key 

Variable  

Experiment 

Type  

Cell 

Characteristics 

Key Results Study 

T
em

p
er

a
tu

re
 

 

Cycling 

 

 

 

(constant 

cycling at 1 C 

rate) 

40 Ah, pouch, 

NMC/graphite 

At 23 C, 2600 cycles to reach 80% capacity 

At 45 C, 2000 cycles to reach 80% capacity 

At 45/65 C (charge/discharge), 800 cycles to 

reach 80% capacity 

Jalkanen et 

al. 2015 

[73] 

1.5 Ah, 18650, 

1:1 NMC + 

LMO/graphite 

At 25 C, 65+ days to reach 80% capacity 

At 50, 60, 70 C, it took 50, 35, 22 days 

respectively  

At 0, -10, -20 C, it took 22, 10, 7 days 

respectively 

Waldmann 

et al. 2018 

[39] 

Storage 

(stored at 100% 

SOC) 

 

(stored at 50% 

SOC) 

2.85 Ah, 26650, 

LFP/graphite 

At 10, 15 C, 3.7% loss in 230 days, at 25 C, 4.6 

% in 230 days, at 35 C, 5.0% in 150 days, at 45 

C, 5.9 % in 100 days, at 55 C, 7.0% in 70 days 

Schimpe et 

al. 2018 

[74] 

2.15 Ah, 18650, 

NMC + 

LMO/graphite 

After one year, stored at 25 C had 99% initial 

capacity, stored at 45 C had 93 % initial capacity, 

stored at 60C had 70% initial capacity 

Wu et al. 

2017 [75] 

S
ta

te
 o

f 
C

h
a

rg
e 

Cycling 

(depth of 

cycling) 

 

(average SOC) 

 

1.5 Ah, pouch, 

LCO/graphite 

 

Cycling 0%-100%, 800 equivalent full cycles 

retained 82% of initial capacity 

Cycling 20%-80%, 800 equivalent full cycles 

retained 90% of initial capacity 

Saxena et 

al. 2016 

[76] 

 

Cycling 40% to 100%, 750 equivalent full cycles 

retained 89% initial capacity 

Cycling 20% to 80%, 750 equivalent full cycles 

retained 91% initial capacity 

Cycling 0% to 60%, 750 equivalent full cycles 

retained 97% initial capacity 

Storage 

(stored at 45 C) 

 

 

(stored at 25 C) 

 

 

(stored at 40 C) 

 

 

(stored at 55 C) 

2.85 Ah, 26650, 

LFP/graphite 

In 235 days, the battery stored at 0% lost 1.5% 

capacity; 25% lost 4.4% capacity; 50% lost 5.6 % 

capacity; 75% lost 6.2% capacity; 100% lost 

8.0% capacity 

Schimpe et 

al. 2018 

[74] 

1.06 Ah, 18650, 

LFP/graphite 

Stored for 10 months. 30% SOC had 99% initial 

capacity, 60% SOC had 97% initial capacity, 

100% SOC had 95% initial capacity 

Zheng et al.  

2015 [77] 

Stored for 10 months. 30% SOC had 94% initial 

capacity, 60% SOC had 92% initial capacity, 

100% SOC had 88% initial capacity 

Stored for 10 months. 30% SOC had 85% initial 

capacity, 60% SOC had 79% initial capacity, 

100% SOC had 75% initial capacity 

C
h

a
rg

in
g

 r
a

te
 

 

Cycling 
(CCCV) 

 

1.25 Ah, 18650, 

LMO + 

NMC/graphite 

80% capacity was reached at 900 cycles (1A), 

750 cycles (3A), 550 cycles (5A) 

Keil & 

Jossen 

2016 [78] 

 1.1 Ah, 18650, 

NMC + 

LCO/graphite 

80% capacity was reached at 1050 cycles (1A), 

1000 cycles (3A), 975 cycles (5A) 

1.1 Ah, 18650, 

LFP/graphite 

At 1200 cycles, 98% capacity remaining (1A), at 

1200 cycles 96% capacity remaining (3A), at 750 

cycles, 70% capacity remaining (5A) 

2.4 Ah, 18650, 

LCO/graphite 

At 0.5C, reached 85% in 900 cycles; 0.8C, 

reached 85% in 800 cycles; 1C, reached 85% in 

630 cycles; 1.2 C, reached 85% in 500 cycles; 

and 1.5 C, reached under 80% in 300 cycles. 

Gao et al. 

2017 [79] 
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4. Battery Manufacturer Recommendations 

In addition to the academic literature, publicly available information from a variety of 

companies was surveyed for instructions, guidance, warnings, or tips regarding the use and 

maintenance of LIBs in the company’s products. These companies include 10 cellphone 

manufacturers, 10 laptop manufacturers (3 companies produce both phones and laptops), 4 

power tool manufacturers, and 10 EV manufacturers. The majority of companies provide battery-

specific information in an owner’s manual/user guide, as well as on a product support website.  

 

4.1 Cellphones 

Apple, Google, HTC, Huawei, LG, Motorola, Nokia, Samsung, Sony, and ZTE all 

provide product manuals that include information for safely operating and effectively managing 

batteries in their phones, and 7 of the 10 also have a customer support website offering additional 

battery information. Four common strategies relate to high temperature, low temperature, 

moisture, and mechanical damage. High temperatures are identified as a cause of degradation 

and potential safety issues across the board, although some [80–87] do not cite specific 

temperatures. When specific temperatures are cited, different temperatures are usually given for 

cycling and storage. For cycling, maximum temperatures of 35°C [88–91] and 45°C [92] are 

given, though for optimal performance temperature should not be above 25°C [93]. When not in 

use, below 45°C is the most common restriction [88–90]. For low temperatures, a minimum 

required temperature for charging is 0°C [88–90,92] or 5°C [91], though above 15°C is 

recommended for optimal performance [93]. When in storage, above -20°C is the most 

commonly recommended temperature [88–90]. Every company includes a warning about safety 

risks and battery damage due to water [81,83,84,87,89–94], and mechanical damage from 
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bending, puncturing, crushing, shredding, or incinerating the battery. To help prevent these 

safety hazards, users are instructed to never attempt disassembling or dismantling their battery 

[84,89,91,93]. 

Other recommendations appearing in product manuals or customer support pages are less 

universal. For instance, Samsung and LG suggest that their phones should not be allowed to 

discharge fully, and should be recharged starting at 20% [80] or at 10%-15% [82]. Others 

mention a reduced battery life if high-drain features (gaming, simultaneously running many 

applications) are used frequently [83,85]. Nokia and Sony mention potential damage if the 

device is left charging after reaching 100% charge [93,95]. Nokia instructs that charging should 

never last over 12 hours [93]. Sony offers a feature that detects the user’s charging patterns, 

including typical unplugging time, and adjusts the charging rate so the battery will reach 100% 

shortly before then [95,96].  

 

4.2 Laptop Computers 

Acer, Apple, Asus, Dell, HP, Lenovo, LG, Microsoft, Samsung, and Toshiba laptops 

each come with user guides, and the majority of these companies also have a support page with 

battery information. Every one of these companies provides information or warnings about high 

temperatures, low temperatures, water damage, and mechanical damage. While in use (including 

charging) the maximum temperature is 35°C [88,97–107]. When not in use, maximum 

recommended temperatures include 40°C [105], 45°C [88,108], 60°C [98,109], and 65°C [103]. 

However an ideal temperature, both for storage and use, is no more than 25°C [110] or 30°C 

[108,111]. The lowest temperatures recommended for charging are 0°C [103,104,106,108], 5°C 

[98,100,101,107], and 10°C [88,99,102,105]. When in storage temperatures can be as low as -
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5°C [105], - 20°C [88,98,100,101], or -40°C [103]. Ideally the computer would be operated 

above 15°C [106]. And below certain temperatures, the computer’s BMS may limit the charging 

current to preserve the battery [105]. In addition to acceptable temperature ranges, many 

companies give acceptable humidity ranges for their products, and every company warns users to 

never allow batteries to get wet [97–99,102,103,105,106,109,112,113]. All ten companies 

include standard language about never puncturing, disassembling, or incinerating the battery 

[94,98,99,102,105–107,109,110,112,114], and some include more rare circumstances including 

“Never hit the battery with a hammer” [98] and “Keep the battery from being chewed by pets” 

[105].  

Most laptop manufacturers also caution users against overdischarge of their batteries, 

reminding them to partially charge batteries before storing the laptop, and to recharge the 

batteries every several months while stored [88,97,99,106,110,113,115]. Others instruct users to 

avoid fully discharging the battery [116] and to begin recharging at 20% [113]. Companies also 

caution against leaving the laptop plugged in after it has completed charging [106]. In most 

laptops, the BMS will cease charging once the laptop has reached 100% SoC, and will not 

resume charging until the laptop has reached 95% SoC [97,99,105,110,115] to preserve battery 

health [97,99,115]. Still, it is recommended that users avoid leaving the battery at a high SoC for 

extended periods of time [88,105,111,117]. When using the laptop, HP notes that more intense 

uses, such as 3D graphics, will degrade the battery more quickly than other tasks [110]. The 

power saving modes that many companies offer, [88,97,98,100,102,104,105,113,117,118] 

though primarily intended to extend battery life (time between charging events), have the side 

effect of extending battery lifetime. Finally, many laptop manufacturers (as well as cellphone 

manufacturers) recommend that the battery should be allowed to fully discharge, to be followed 
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by a full charge, at least once every month [82,97,102,104,110,111]. This is done to calibrate the 

BMS and not to preserve battery health. 

 

4.3 Power Tools 

Bosch, DeWalt, Makita, and Milwaukee Tool provide guidance on batteries in their 

cordless tools. Bosch, Makita, and Milwaukee all provide owner’s manuals for their products, 

while DeWalt offers a website on battery use. The only instructions offered by all four 

companies involve avoiding high and low temperatures. For charging, these companies 

recommend a maximum temperature of 40°C [119] or 45°C [120,121]. For storage, the 

recommended maximum temperature is 45°C [121], 49°C [120], or 50°C [122]. Makita allows 

for a discharging temperature of up to 60°C [121]. For charging, a minimum recommended 

temperature is 0°C [120,121] or 4°C [119]. Many chargers include protections that do not allow 

the battery to be charged until a minimum (or maximum) temperature is met [122,123]. For 

storage or discharging, temperatures as low as -20°C may be appropriate [121].  

While every power tool company included information about appropriate temperatures 

for their batteries, additional information was offered by some of the companies, including don’t 

store the battery in the charger [120], don’t run down the battery completely [119], and that in 

very high current draw scenarios (high torque, stalling) the battery pack may turn itself off [122]. 

Lastly, each company made safety recommendations, including to avoid charging in rain or snow 

[120,122,123], and to avoid damage by dropping, bending, crushing, puncturing, disassembling, 

or intentionally shorting the battery [120–122]. 
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4.4 Electric Vehicles 

BMW, Chevrolet, Ford, Fiat, Honda, Hyundai, Kia, Mercedes-Benz, Nissan, and Tesla 

all include information about batteries in their owner’s manuals. The most commonly identified 

sources of degradation are (in order): high temperature [124–133], low temperature [124–

127,129–133], overdischarge [124,125,127–132], and fast charging [125,127,129,130].  Every 

manufacturer includes a warning about high temperatures, though different strategies are 

suggested, ranging from avoiding parking in the sun on hot days [131], to plugging in the car 

anytime it is hot, thereby allowing the battery cooling system to run as needed [124,126]. When 

the vehicle is running or charging, the BMS will regulate the temperature of the batteries, so it is 

most important to be aware of high battery temperatures when the vehicle is parked while not 

charging. Most companies do not cite a specific high temperature to avoid; those that do use 

either 50°C [133] or 60°C [124].  

Low temperatures are also cited by almost all EV owner’s manuals. As with high 

temperatures, plugging in the vehicle when it is cold is recommended, so the battery heating 

system can run on grid power. Nissan explains that the battery warmer will automatically 

activate below a certain temperature, unless the battery is both not plugged in and under 15% 

charge (to avoid overdischarge) [127].  Additionally, when the vehicle is plugged in, the BMS 

will measure the temperature and take the appropriate warming or cooling action before charging 

begins [124–127,131], and may disable fast charging capabilities [130]. Mercedes-Benz 

emphasizes that extremely low temperatures for extended periods of time may cause irreversible 

damage necessitating battery replacement [132]. The lower temperature limit for batteries is 

cited as -25°C [127,132] or -30°C [124,131]. 
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Overdischarge will typically not occur during operation. The BMS will turn off the car 

and cease operation before serious degradation will occur. However, if the ‘empty’ battery is 

then left for an extended period of time without being recharged, the battery can enter an 

overdischarge state due to the slow self-discharge that occurs even when the battery is not 

operating. Some manufacturers are very specific, instructing owners not to leave the vehicle 

parked for more than 2 weeks with a low battery [124,132]. Others are more general, simply 

advising that the battery not be run all the way down, or left idle for extended periods of time 

[128–131]. 

The majority of manufacturers do not include information in their manuals explaining 

that fast charging can lead to accelerated battery degradation. Those that do, say that use of fast 

chargers should be minimized to maximize battery lifetime [125,127,130,131]. Specific 

recommendations made by companies of each device type are highlighted in Table 3. 
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Table 3. Examples of advice, instructions, or warnings offered in industry sources regarding Li-

ion battery storage and operation, sorted by key degradation variable. 
Key 

Variable 

Device 

Type 

Recommendation Company 

T
em

p
er

a
tu

re
 

Cellphone 0 C to 35 C when cycling, -20 C to 45 C when in storage Apple [88] 

Use between 15 C and 25 C for optimal performance Nokia [93] 

Laptop Charge between 10 C and 35 C Lenovo [99] 

Operating 0 C to 35 C, storage -40 C to 65 C Dell [103] 

Power Tool Charge between 0 C and 45 C Bosch [120] 

Store 20 C to 45 C, charge 0 C to 45 C, discharge -20 C to 60 C Makita [121] 

EV Keep between -30 C and 60 C, plug in when warm or cold Tesla [124] 

Plug in when below 0 C Chevrolet [126] 

On hot sunny days, avoid parking under direct sunlight Honda [131] 

S
ta

te
 o

f 
C

h
a

rg
e 

Cellphone It’s best not to let your battery go under 20% Samsung [80] 

Continuous charging should not exceed 12 hours Nokia [93] 

Laptop Avoid having your surface plugged in 24/7 Microsoft [134] 

Lifespan is adversely affected by constantly charging the 

battery/device when already at full capacity 

Acer [106]  

Power Tool Completely running down a battery may damage it DeWalt [119] 

Don’t store the battery in the charger Bosch [120] 

EV Do not leave the vehicle parked for longer than 14 days with a  

high voltage battery below 20% state of charge 

Mercedes-Benz 

[132] 

If allowed to discharge too much, the battery may become 

damaged 

Honda [131] 

C
u

rr
e
n

t 

Cellphone Battery lifespan may decrease if you keep many apps and 

functions running simultaneously and continuously 

LG [83] 

Laptop More intense uses (ex. 3D gaming) will degrade battery more 

quickly 

HP [110] 

EV Repeated use of this charging method [DC Charging] could 

have a long term effect on the battery 

Ford [125] 

Use of fast charge should be minimized in order to help prolong 

high voltage battery life 

Hyundai [129] 

Minimize use of public Fast Charge or Quick Charger Nissan [127] 

O
th

er
 

Cellphone Don’t expose your phone to liquids Google [89] 

Do not disassemble, open, crush, bend, deform, puncture, shred, 

or submerge the battery 

Motorola [92] 

Laptop Avoid storing batteries in damp environments Asus [113] 

Do not crush, drop, mutilate, or penetrate the battery Dell [115] 

Batteries should be calibrated once every two to three months HP [110] 

Power Tool Do not charge battery pack in rain, snow, damp or wet 

conditions 

Milwaukee Tool 

[122] 

EV Battery should not be serviced by the owner BMW [128] 

 Never inspect, remove, or disassemble an of the high voltage 

components in your vehicle 

Kia [130] 

 

4.5 Comparing Manufacturer Instructions and Academic Literature 

The different audiences for academic literature and manufacturer instructions necessitate 

differences in how information is presented. While academic studies often give very specific 
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insights about battery performance in response to one or occasionally two key variables, 

manufacturer instructions give broad and actionable information to users. Despite the differences 

in granularity and specificity of the information presented, the underlying information given 

should be the same. However, we have found that this is not true in all cases. In Figure 4, 

variables affecting battery degradation, identified from both academic literature and 

manufacturer guidance, are compared with the percentage of companies making a 

recommendation related to that variable.  

 

Figure 4. Percentage of surveyed companies warning users against exposure to certain conditions for a) 

all companies surveyed, and b-e) by manufacturer of each device type surveyed. 
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Figure 4a shows the comparison in total, while Figure 4b-e shows industry 

recommendations for each device type. Electric vehicles (Figure 4e) exemplify some of the 

insights that can be drawn from such data. No EV companies recommend against keeping the 

battery at 100% state of charge. This is because keeping the vehicle plugged in allows the BMS 

to control battery temperature using power from the grid, which is deemed more important, as 

well as potentially more palatable, than telling users to leave their vehicle less than fully charged. 

In contrast, only 40% of EV companies include warnings that fast charging can cause faster 

battery degradation, and in this case there is no lifetime benefit (like controlling temperature 

from grid power) for excluding this information. This information may be excluded because the 

EV manufacturers are very confident that their fast charging protocols can minimize degradation, 

that they don’t believe users will use fast chargers often enough to necessitate such a warning, or 

that including such information would hurt the sales or marketing of the vehicle.  

Recommendations may also not be included depending on the device’s expected 

replacement time. Cellphones (Figure 4b) include fewer warnings against high and low state of 

charge than laptops (Figure 4c). This may be because users often replace cellphones before the 

degradation becomes significant (replacement cycle length of 2.8 years in the US), while users 

expect longer lifetimes from their laptops (replacement cycle length of 6.9 years in the US) 

[135].  

Lastly, some recommendations are not included because the variables are outside of the 

user’s control, and therefore the company has no reason to provide behavioral advice in that area. 

For example, a laptop (Figure 4c) or a power tool (Figure 4d) with a single charging protocol 

predetermined by the manufacturer would not need to provide a warning about degradation from 

fast charging. 
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5. Battery Lifetime Improvement 

Maximizing battery lifetime has environmental and economic benefits; but to maximize 

lifetime, one must avoid storage and use conditions that accelerate degradation. Avoiding these 

adverse conditions is the responsibility of a device’s BMS and user actions.  

5.1 Benefits of Battery Lifetime Improvement 

The environmental benefit of LIB lifetime extension is due to reduced demand for and 

production of new and replacement batteries. For example, manufacturing a single Dell laptop 

battery (<1 kg) results in 10 kg of CO2e emissions [136] . In general, manufacturing has a 

dominant share in CO2e emissions of average cellphones, tablets, and laptops [137]. A report by 

Green Alliance claims that extending the lifetime of a cellphone by 1 year reduces by 1/3 the 

lifetime CO2e impact of the device [137]. Along with energy use and resulting emissions, battery 

production also contributes to ozone depletion, photo oxidation formation, particulate matter 

formation, terrestrial, freshwater, and marine eutrophication, freshwater and marine toxicity, 

terrestrial acidification, and the human health impacts of each of these [138].  

In addition to environmental benefits, there are clear economic incentives for users to 

extend battery lifetime. For Apple devices, battery replacement cost (out of warranty) is a 

substantial percentage of total device cost, at 5%-9% for phones [139], 12%-30% for tablets 

[140], and 7%-15% for laptops [141]. For power tools this can be even more extreme. Depending 

on the battery and tool, a battery could cost twice as much as the tool itself [142–144]. And a 

BEV battery pack represents 35%-50% of the total price of the vehicle [145]. Though EV battery 

costs have fallen dramatically in recent years, the U.S. Department of Energy goal of $125/kWh 

production cost by 2020, if met, results in a production cost of $7,500 for a 60 kWh battery to 

$12,500 for a 100 kWh battery, which remains a substantial percentage of vehicle cost [146].  
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5.2 The role of Battery Management Systems and State of Health Monitoring 

Failure of LIBs can cause hazardous problems including fire and explosions, in addition 

to inducing additional costs for repair or replacement 

[15,147]. The status and health of LIBs need to be checked and controlled regularly in 

order to detect faults, correct them, and predict remaining useful life, while addressing safety 

issues [15]. To ensure battery safety, the BMS includes battery fault diagnosis functions and 

gives early warnings and reports about unhealthy conditions as well as battery aging information 

[147].  

To improve the performance of battery systems, the BMS protects against deep 

charge/discharge and accurately estimates the functional status of the battery including SoC, 

state-of-health (SoH), state-of-function (SoF), and state-of-safety (SoS)  based on measurable 

outputs like temperature, voltage, and current [26,148]. For example, in EVs, it becomes critical 

to protect the battery during deep charges/discharges when traveling a long distance involves 

discharge of up to 80% or more [148]. Thermal management is also critical in an EV battery 

pack as it includes thousands of series and parallel cells, and therefore keeping temperature 

within the range of 30-40 °C will lead to increased battery efficiency [148].The models used by 

BMS include adaptive algorithms and data driven estimation methods, which are compared with 

direct and indirect experimental analyses [149]. Use of large data sets and machine learning is 

being explored as a tool to improve these models [150,151]. It is also important to minimize the 

computational burden of models, so that they can be used on-board vehicles in real time [152]. 

Lastly, models are only as good as the experimental data on which they are based, so minimizing 

errors through implementing experimental control methods is critical [153]. 
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The tasks performed by the BMS (at cell, module, and pack levels) include: preventing 

damages to cells and battery packs, ensuring proper operational voltage and temperature ranges, 

balancing SoC differences between cells, guaranteeing safe operation, extending battery service 

life as long as possible, and maintaining batteries in a healthy condition that will fulfill the 

vehicle requirements [147,148]. BMS inputs include current, voltage, and temperature sensors, 

vehicle control (in case of EVs) and digital inputs [147]. Outputs consist of thermal management 

modules including fans and electric heaters, and balancing modules including capacitors and 

switch arrays to equalize batteries, and manage voltage [147]. There are also digital outputs such 

as charging indicators and failure alarms [147].   

 

5.3 User Behaviors 

Based on the academic literature and information provided in owner’s manuals, user 

guides, and customer support websites, a list of behaviors was developed to illustrate nine keys 

to maximizing Li-ion battery lifetime, shown in Table 4 and explained in more detail below. 

These keys are general in nature, and written for the end users of products with LIBs. Every key 

will not apply to every battery, as operating requirements and the role of the BMS vary between 

devices.  

 

Table 4. Best practices for maximizing the lifetime of Lithium-ion batteries. 

1. Minimize exposure to high temperatures, in storage and use Temperature 

recommendations 2. Minimize exposure to low temperature, especially when charging 

3. Minimize time spent at 100% state of charge State of charge 

recommendations 4. Minimize time spent at 0% state of charge 

5. Avoid using fast charging  Current 

recommendations 6. Avoid discharging device more quickly than is needed 

7. Avoid use or storage in high moisture environments 
Additional 

Recommendations 
8. Avoid mechanical damage 

9. Follow manufacturer’s calibration instructions 
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5.3.1 Temperature Recommendations 

Elevated temperatures can accelerate degradation in almost every component of LIBs. 

This impact is greatest when combined with high voltages, but can occur regardless of the SoC 

[27]. Furthermore, elevated temperatures can lead to significant safety risks, as gas may form 

within the battery increasing pressure to the point of explosion. Recommended high temperature 

limits are stricter when in use than when in storage. Typically, if a device is noticeably hot when 

charging, it should be unplugged. However, most EV manufacturers recommend that vehicles 

should be plugged in when the ambient temperature is hot, so the vehicle’s battery cooling 

system can operate directly from grid electricity. 

When a battery is cycled at low temperatures it is more susceptible to lithium plating, 

which can lead to internal short circuits irreparably damaging the battery, and potentially causing 

safety issues. For power tools and EVs, chargers will not begin charging until the device has 

reached an appropriate temperature, and for EVs this may include the use of a battery heating 

system. If a heating system is in place, most EV manufacturers recommend leaving the vehicle 

plugged in when it is cold. 

 

5.3.2. State of Charge Recommendations 

There are two main strategies to minimize time spent at 100% SoC. First, devices can be 

partially charged, unless a full charge is needed. For example, if 30% of a battery’s capacity is 

needed on a given day, cycling from 80%-50% places less stress on the battery than 100%-70% 

[76,154]. Second, devices should be unplugged once they reach 100% SoC.  

Just as high SoC places stress on a battery, so too does low SoC. A device’s BMS will 

shut down a device before it reaches true 0%, to avoid overdischarge, which can permanently 
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damage the battery. Despite this precaution, a device will still reach overdischarge if it is not 

charged for a long period of time. 

Battery users do not have a good understanding of the impact of extreme states of charge 

on their battery. Results from a 2017 survey, displayed in Figure 6, show roughly equal numbers 

of people agreeing and disagreeing with statements that ask whether high or low states of charge 

can damage a battery [155]. Furthermore, this study showed that the most common charging 

behavior for cellphones was charging on a fixed routine (for example overnight) and for laptops 

was leaving the device plugged in whenever possible [155]. Androulidakis found that 45% of 

cellphone users charge their phones overnight, and only 10% do partial battery charges [156]. 

Ferreira has found that even as more charging opportunities become available over time, users 

still prefer a fixed charging schedule, frequently overnight [157]. 

 

 

Figure 5. Results from a survey conducted by Saxena (2017) [155] illustrating that users do not have a 

good understanding of behaviors that can decrease battery lifetime. 
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5.3.3 Current Recommendations 

Fast charging is convenient, but it comes with a trade-off. Repeated use of fast chargers 

will degrade a battery more quickly than standard charging. Discharging a battery too quickly 

leads to battery degradation through many of the same mechanisms as fast charging. One way to 

determine if a battery is discharging too quickly is if it is noticeably hot. Discharging currents 

can be controlled by the user to various degrees depending on the device. For cellphones and 

laptops, lowering screen brightness, turning off location services, and quitting high power using 

applications can help. For power tools, choosing a tool with sufficient power output for the task 

at hand is important. And for EVs, driving habits, such as limiting sudden starts and stops, will 

impact the battery pack’s discharging current. 

 

5.3.4 Additional Recommendations 

Unless a battery pack is specifically designed to be fully waterproof, the possibility of 

trace amounts of water entering the pack exists. Water inside a battery pack can form an external 

short circuit for cells within the pack, and water within the cell itself will lead to side reactions 

and gas formation, damaging the battery. These situations are most likely to occur if water comes 

in contact with batteries that have been mechanically damaged.  

Mechanical damage to a battery covers a wide range of things. This includes puncturing 

the battery, severely bending the battery, or directly connecting the leads of the battery. 

Mechanical damage to the battery’s interior structure can also occur if the battery is dropped or 

crushed. Anything that short circuits the battery will render it inoperable, and result in safety 

risks. Finally, due to the risk of explosion, batteries should never be incinerated.  
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Often manufacturers will recommend that devices (particularly phones and laptops) be 

fully discharged and then fully charged at least once a month. Though this contradicts other 

recommendations, this process is important to calibrate the battery management system. A full 

discharge-charge cycle allows the device to measure its own capacity, so that it displays the 

remaining battery life accurately. Note that this calibration does not actually have a significant 

impact on battery lifetime, and is different than battery conditioning, which is often required for 

chemistries other than Li-ion. It simply improves the accuracy of battery state estimations. 

Improving the accuracy of SoH estimations is an active research area, with new methods 

continually being developed [158]. 

 

6. Conclusion 

Lithium-ion batteries inevitably degrade with time and use. Almost every component of 

the battery is affected, including the anode, cathode, electrolyte, separator, and current collectors. 

A wide variety of mechanisms contribute to degradation, and these mechanisms are sensitive to 

storage conditions and use patterns, including temperature, SoC, and charging/discharging rate.  

By minimizing exposure to the conditions that accelerate degradation, batteries can last 

longer. This has a positive environmental impact, as battery production is a source of GHG 

emissions and many other pollutants. Additionally, there are significant financial incentives for 

users to avoid adverse conditions, as the cost of batteries can range from 5% to over 50% of a 

product’s total cost. Despite these clear benefits, user understanding of proper battery 

management is lacking and guidance provided through product manuals and company websites 

often is scattered, contradictory, or non-existent. 
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Additionally, there is a significant lack of knowledge regarding how users operate 

batteries. Limited research has shown user knowledge of battery health issues to be poor, but 

further survey data are needed to establish actual battery use patterns to quantify the net impact 

of user behavior on battery lifetime. Identifying areas in which user knowledge and behavior 

differ will be important for designing battery management systems and practices that preserve 

lifetime.  

We present a review of mechanisms that lead to degradation of active and inactive 

materials and shortened lifetime of Li-ion batteries. We also investigate the recommendations 

provided by industry regarding preserving battery health in cellphones, laptops, power tools, and 

EVs. Then, based on the academic literature and publicly available information, a list of nine 

best practices for extending Li-ion battery lifetime is developed. The first six practices are 

related to three main variables that impact battery health: temperature, state of charge, and 

current. The rest are more general guidelines to reduce damage to the device. Improving user 

awareness of these best practices is an important step towards responsible battery management. 
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