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Abstract
Background: Respiratory syncytial virus (RSV) infection is epidemiologically linked to 
asthma. During RSV infection, IL‐33 is elevated and promotes immune cell activation, 
leading to the development of asthma. However, which immune cells are responsible 
for triggering airway hyperreactivity (AHR), inflammation and eosinophilia remained 
to be clarified. We aimed to elucidate the individual roles of IL‐33‐activated innate 
immune cells, including ILC2s and ST2+ myeloid cells, in RSV infection‐triggered 
pathophysiology.
Methods: The role of IL‐33/ILC2 axis in RSV‐induced AHR inflammation and eosino‐
philia were evaluated in the IL‐33‐deficient and YetCre‐13 Rosa‐DTA mice. Myeloid‐
specific, IL‐33‐deficient or ST2‐deficient mice were employed to examine the role of 
IL‐33 and ST2 signaling in myeloid cells.
Results: We found that IL‐33‐activated ILC2s were crucial for the development of 
AHR and airway inflammation, during RSV infection. ILC2‐derived IL‐13 was suffi‐
cient for RSV‐driven AHR, since reconstitution of wild‐type ILC2 rescued RSV‐driven 
AHR in IL‐13‐deficient mice. Meanwhile, myeloid cell‐derived IL‐33 was required for 
airway inflammation, ST2+ myeloid cells contributed to exacerbation of airway in‐
flammation, suggesting the importance of IL‐33 signaling in these cells. Local and 
peripheral eosinophilia is linked to both ILC2 and myeloid IL‐33 signaling.
Conclusions: This study highlights the importance of IL‐33‐activated ILC2s in mediat‐
ing RSV‐triggered AHR and eosinophilia. In addition, IL‐33 signaling in myeloid cells is 
crucial for airway inflammation.
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1  | INTRODUC TION

Respiratory syncytial virus (RSV) causes lower respiratory tract in‐
fection and breathlessness, leading to the hospitalization of infants 
and immunocompromised adults.1,2 The wheeziness pertaining to 
RSV infection has been correlated to the predisposition of atopy.3 
Subjects with RSV bronchiolitis in their infancy are more likely to 
develop asthma and atopic symptoms in the early adulthood.4 
Immunologically, greater numbers of polymorphonuclear cells and 
lymphocytes and elevated levels of leukotrienes and prostaglan‐
dins have been observed.1 RSV infection also induces a wide spec‐
trum of pro‐inflammatory cytokines such as IL‐6,5,6 which have 
been suggested to contribute to the pathogenesis of RSV‐induced 
bronchiolitis.7,8

In murine models, early‐life RSV infection leads to sensitization 
against multiple allergens and development of type 2 immune re‐
sponses, including acute eosinophilia in the lungs.9‐11 Th2 cytokines, 
such as IL‐5 and IL‐13, are elevated in the bronchoalveolar lavage 
fluid (BALF) of RSV‐infected children,12,13 suggesting a role for these 
cytokines in RSV pathogenesis. Notably, RSV strains such as A214 
and L1915 can boost Th2 cytokines, mucus production or AHR with‐
out the need of allergen predisposition. On the other hand, long 
strain can boost AHR and eosinophilia but not Th2 cytokine pro‐
duction in the absence of allergen predisposition.11 Interestingly, A2 
strain exacerbates AHR in mice when infected after OVA sensitiza‐
tion, but suppresses AHR and lung eosinophilia when the infection 
precedes OVA sensitization.16 Since AHR typically develops within 
the first week after RSV infection in long and L19 strains,11,15 the 

innate immunity likely contributes to the initiation of airway inflam‐
mation during the acute phase.17

Innate lymphoid cells (ILCs) are a group of non‐B, non‐T lympho‐
cytes that do not undergo antigen receptor rearrangement during 
their development. Group 2 innate lymphoid cells (ILC2s) are a mem‐
ber of the ILC family, which require GATA3 for their development 
and function18 and play prominent roles in helminth expulsion,19 
airway inflammation,20 and atopic dermatitis.21 ILC2s are activated 
by epithelial‐derived cytokines, IL‐25, IL‐33, and thymic stromal 
lymphopoietin (TSLP) through their cognate receptors, IL17RB, ST2, 
and TSLPR, respectively, and produce copious amounts of the Th2 
cytokines IL‐13 and IL‐5.22 Previous study has demonstrated that 
viral infection expands ILC2 population23 and that they are the major 
source of IL‐524 and IL‐1325 contributing to the development of eo‐
sinophilia and AHR, respectively.

IL‐33 is a nuclear cytokine that is constitutively expressed in 
structural cells like type 2 pneumocytes in mice and lung epithelial 
cells in humans26 and can be induced in hematopoietic cells.27 IL‐33 
is released from cell upon tissue damage and binds to its receptor, 
ST2.26 Yet, the role of IL‐33 in RSV infection remains controversial. 
Qi et al28 demonstrated that IL‐33 plays a pivotal role in RSV‐driven 
airway inflammation in mice. However, Stier et al found IL‐33 to be 
dispensable for AHR onset and IL‐13 production by ILC2 during in‐
fection.29 Moreover, although myeloid cell lines have been shown to 
produce IL‐33 after infection,30 the physiological relevance of my‐
eloid‐derived IL‐33 is still undefined.

In current study, we investigated the role of myeloid‐derived 
IL‐33 in the acute phase of RSV‐driven airway inflammation. First, 

G R A P H I C A L  A B S T R A C T
Respiratory syncytial virus induces ILC2 to produce IL‐5 and IL‐13 through IL‐33, which is crucial for the development of airway 
hyperreactivity and airway inflammation. Myeloid cell‐derived IL‐33 and suppression of tumorigenicity 2‐positive myeloid cells contribute 
to cytokine production and cellular inflammation in airway. Both ILC2 and myeloid cell IL‐33 signaling contribute to local and peripheral 
eosinophilia.
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we found that ILC2 expansion, AHR, and subsequent eosinophilia 
are mediated by IL‐33. We also demonstrated that myeloid‐de‐
rived IL‐33 and myeloid‐dependent ST2 signaling are required for 
RSV‐driven neutrophilic infiltration and IL‐6 production. Although 
myeloid‐specific depletion of IL‐33 or ST2 did not affect AHR and 
IL‐13 level, IL‐5 and eosinophilia were markedly reduced. Overall, 
this study offers new insight into the regulatory roles of IL‐33 and 
its downstream innate cells during the acute phase of RSV‐induced 
AHR, airway inflammation, and peripheral eosinophilia.

2  | MATERIAL S AND METHODS

Please refer to the Appendix S1 for further methodological details.

2.1 | RSV infection

Human RSV strain line 19 (L19) was propagated in Hep‐2 cells main‐
tained in Eagle's MEM containing 5% heat‐inactivated FBS as pre‐
viously described.15 Mice were inoculated under light anesthesia 
(isoflurane) by intranasal instillation of 106 PFU of purified virus in 
75 μL endotoxin‐free PBS unless otherwise stated. Sham‐infected 
animals were inoculated with lysed HEp2 cells under identical 
conditions.

2.2 | Measurement of airway responsiveness (AHR) 
in the mouse model

Mice were anesthetized with 100 mg/kg pentobarbital. Mice were 
tracheostomized, intubated, and mechanically ventilated at a tidal 
volume of 0.2 mL and a frequency of 150 breath/min, as previously 
described.31 Lung function was determined by measuring airway re‐
sistance (RL) in response to increasing doses (0.125 to 40 mg/mL) of 
aerosolized acetyl‐β‐methylcholine chloride (Sigma‐Aldrich) via the 
FinePointe RC system (Buxco Research Systems).

2.3 | Collection and analysis of bronchoalveolar 
lavage fluid

Mice were euthanized and the lungs were lavaged twice with 0.5 mL 
of PBS, and the fluid was pooled. Cells were spun onto glass slides 
by CYTO‐TEK® Cytocentrifuge and stained with Diff‐Quick solution 
(Sysmex). Cells in BALF were counted and analyzed, as previously 
described.32

2.4 | Flow cytometry

Single cell suspensions were preincubated with Fixable Viability Dye 
and anti‐Fcγ blocking mAb (2.4G2) and then washed before stain‐
ing with surface antibodies. For intracellular staining, single cell 
suspensions were incubated with 5 ng/mL phorbol 12‐myristate 
13‐acetate (PMA), 500 ng/mL ionomycin, and 2 μmol/L Golgi stop A 
(BD Biosciences) for 6 hours prior to surface staining. After surface 

staining, cells were fixed and permeabilized with Cytofix/Cytoperm 
solution (BD Biosciences), and further stained intracellularly with 
the appropriate antibodies. Flow cytometry was performed on 
a LSRII flow cytometer (BD Biosciences), and data were analyzed 
using FlowJo 10 software (Tree Star, Inc). Refer to Table S1 for the 
full list of flow cytometry antibodies used in the study.

2.5 | RT‐qPCR and ELISA

Refer to Appendix S1 for details. See Table S2 for the list of primers 
used for qPCR in lung samples.

2.6 | Adoptive transfer of ILC2

Lung ILC2s (CD45+ Lineage‐ ST2+) were sorted from donor mice re‐
ceiving IL‐33 (1 μg) intranasally and sacrificed five days later. Sorted 
lung ILC2s were adoptively transferred to Il13−/− recipients (105 cells/
mouse) through the intratracheal route 1 hour prior to RSV infection.

2.7 | Statistical tests

All data were analyzed using Prism 6 (GraphPad Software Inc) and 
presented as means ± SEM. Statistical significance between groups 
was determined by two‐way ANOVA or unpaired student's t tests 
(two‐tailed) unless specified otherwise, where P < .05 was consid‐
ered significant.

3  | RESULTS

3.1 | RSV infection prompts the onset of IL‐33‐
dependent AHR and mucus production

To recapitulate RSV‐driven wheezing illness, mice were infected with 
RSV (L19) and the resulting airway resistance was measured 6 days 
post‐infection (d.p.i.). We showed that RSV infection‐triggered AHR 
in mice (Figure 1A). To determine the extent of leukocyte infiltra‐
tion, BALF cell content was analyzed. BALF neutrophil infiltration 
preceded eosinophil accumulation and was observed as early as day 
6 post‐infection. Eosinophils, on the other hand, emerged on day 9 
(Figure 1B). To ascertain the presence of eosinophils in the lungs fol‐
lowing RSV infection, we performed flow cytometry and observed 
that similar to BALF, lung eosinophil numbers increased on day 9 
(Figure 1C,D). Meanwhile, the mRNA level of Gob5, a mucus‐associ‐
ated gene, was greatly increased in RSV‐infected lungs (Figure 1E). 
The results were consistent with previous findings.15,33 Taken to‐
gether, the model of RSV‐driven airway resistance was established.

Previous evidence suggests that IL‐33 can be produced in the 
lungs upon RSV infection, both in adults29 and in neonatal mice,34 
but the necessity of IL‐33 in adult mice has not been addressed. We 
found that IL‐33 in BALF peaked on day 3 following RSV infection 
and slightly declined by 6 d.p.i. in adult mice (Figure 1F). We fur‐
ther examined the role of IL‐33 in RSV‐induced airway inflamma‐
tion in adult Il33−/− mice. In comparison with wild‐type (WT) mice, 
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F I G U R E  1   Respiratory syncytial virus (RSV) infection induces airway hyperreactivity (AHR) and mucus production in an interleukin 
(IL)‐33‐dependent manner. (A) Changes in lung resistance (RL) of BALB/c mice infected with RSV line 19 (L19) (106 PFU/mouse) or mock 
and sacrificed on day 6 post‐infection (d.p.i.). n = 7‐9. (B) Cellular composition in the bronchoalveolar lavage fluid (BALF) of BALB/c mice 
on day 6 or day 9 post‐infection. n = 7‐8. (C‐D) BALB/c mice were infected with RSV L19 (106 PFU/mouse) and sacrificed on indicated time 
point. (C) Representative flow cytometry plot showing lung eosinophils (CD45+ CD11c− SiglecF+), assessed by FACS. (D) Total numbers of 
lung eosinophils. n = 6‐7. (E) Gob5 mRNA expression in the lungs of BALB/c mice infected with RSV L19 or mock, analyzed by RT‐qPCR on 6 
d.p.i. n = 5. (F) IL‐33 in BALF from BALB/c mice under RSV infection at indicated time points. n = 5‐8 (G‐K) Il33−/− and WT littermates were 
infected with RSV L19 and sacrificed 6 d.p.i.. (G) Changes in lung resistance (RL). n = 6. (H) Cellular composition in the bronchoalveolar lavage 
fluid (BALF) n = 6. (I) IL‐5 in BALF (left) and lung (right) and (J) IL‐13 level in lung homogenates, assessed by ELISA. (K) Gob5 mRNA expression 
in the lungs, quantified by RT‐qPCR. n = 6‐8. d.p.i, days post‐infection; Eos, eosinophil; IL, interleukin; Lym, lymphocyte; Mac, macrophage; 
Neu, neutrophil. Data were pooled from 2 independent experiments. *P < .05, **P < .01, ***P < .001, and ****P < .0001
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Il33−/− mice developed lower AHR (Figure 1G) and neutrophil infiltra‐
tion in BALF (Figure 1H). Also, we found that IL‐33 deficiency atten‐
uated IL‐5 and IL‐13 production (Figure 1I,J), and Gob5 expression 

(Figure 1K) in response to RSV infection. Overall, our results demon‐
strated that IL‐33 is crucial for RSV‐driven airway inflammation in 
adult mice.
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3.2 | RSV infection‐initiated ILC2 expansion is 
IL-33-dependent

To substantiate the role of IL‐33 in ILC2 activation in the lungs, we 
isolated murine lung ILC2s (CD45+ Lineage– ST2+) (Figure S1A) and 
stimulated them with IL‐33 in vitro. As expected, IL‐33 induced 
IL‐5 and IL‐13 production by ILC2s at the mRNA (Figure S1B) and 
protein (Figure S1C,D) levels. Also, Sca‐1 expression can be found 
in IL‐33‐activated ILC2 (Figure S1E). To ascertain that IL‐33 sign‐
aling is ST2‐dependent in lung ILC2s, we treated St2−/− mice with 
IL‐33. No significant differences in the percentages (Figure S1F) and 
total numbers (Figure S1G) of lung ILC2s were observed between 

mock‐ and IL‐33‐treated St2−/− mice. In short, IL‐33 can induce ILC2s 
to express IL‐5 and IL‐13 in the lungs in an ST2‐dependent manner.

To test if RSV infection can expand pulmonary ILC2s, we analyzed 
ILC2 population (CD45+ Lineage− ST2+ Sca1+ c‐Kit+) in the lungs by flow 
cytometry 6 d.p.i. The expression of both GATA3 and Thy1.2 from ILC2 
agrees with previous studies (Figure 2A).18 RSV infection increased the 
frequencies and number of ILC2s in lungs (Figure 2A,B). Also, both IL‐5 
and IL‐13 production were increased in ILC2s after RSV infection, as‐
sessed by intracellular staining (Figure 2C,D). Notably, the ILC2 accu‐
mulation and the induction of IL‐5 and IL‐13 in ILC2s required IL‐33, 
given that total ILC2 as well as IL‐5+ and IL‐13+ ILC2s were reduced in 
Il33−/− mice comparing to WT after RSV infection (Figure 2E‐G).

F I G U R E  3   ILC2‐derived IL‐13 is sufficient for respiratory syncytial virus (RSV)‐driven AHR, lung inflammation, and eosinophilia. (A‐B) 
Il13−/− and wild‐type (WT) mice were infected with RSV or mock and sacrificed 6 d post‐infection (d.p.i.). (A) Changes in lung resistance (RL) 
n = 5‐8. (B) Cellular composition in the BALF of mice after infection. n = 3‐5. (C) mRNA levels of Gob5 in the lungs of Il13−/− and WT mice 
infected with RSV. n = 5‐6. (D‐G) YetCre‐13 Rosa‐DTA and WT littermates were infected with RSV or mock and sacrificed. (D) IL‐5 in BALF 
(left) and lung homogenate (right) were determined on 6 d.p.i. n = 5‐8. (E) Representative flow cytometry plot (left panel) and total numbers 
(right panel) of lung eosinophils (CD45+ CD11c− SiglecF+), assessed by FACS on 9 d.p.i. n = 5‐8. (F‐G) Levels of Gob5 and Muc5ac mRNA 
in the lungs of mice on 6 d.p.i. n = 5‐8. (H‐I) Rag2−/− ILC2s (CD45+ Lin− ST2+) were adoptive transferred into Il13−/− mice (105 cells/mouse) 
intratracheally, followed by RSV or mock infection. Mice were sacrificed 6 d post‐infection. (H) Changes in lung resistance (RL). n = 3‐4. (I) 
Cellular composition in the BALF. n = 3‐5. Eos, eosinophil; Lym, lymphocyte; Mac, macrophage; n.d., not detectable; Neu, neutrophil. Data 
were pooled from 2 independent experiments. *P < .05, **P < .01, ***P < .001, and ****P < .0001

(A) (B) (C) (D) 

(E) (F) (G) 

(H) (I) 
G
ob
5

(r
el

at
iv

e
ex

pr
es

si
on

)

0.000

0.001

0.002

0.003

0.004

RSV – + – +

WT Il13–/–

* *

Methacholine (mg/mL)

R
L(

%
ba

se
lin

e)

0 10 20 30 40
100

200

300

400 WT-mock
WT-RSV
Il13–/–

–/–
mock

Il13 RSV

****

Methacholine (mg/mL)

R
L(

%
ba

se
lin

e)

0 10 20 30 40
100

150

200

250

300 WT ILC2 Il13 mock
WT ILC2 Il13 RSV
Il13 mock
Il13 RSV

****

C
el

ln
um

be
r(

×1
03 )

0

200

400

600

800 WT-mock
WT-RSV
Il13–/–

–/–
mock

Il13 RSV

Mac Neu Eos Lym

***

***
n.d.

C
el

ln
um

be
r(

×1
03 )

0

100

200

300

400
WT ILC2 Il13–/–

–/–

–/–

–/–

–/–
–/–

–/–
–/–

mock
WT ILC2 Il13 RSV
Il13 mock
Il13 RSV

Mac Neu Eos Lym

n.d.

***

****

****

1.13 1.08

1.82 3.57

0
3

10
3

10
4

10
5

0
3

10
3

10
4

10
5

CD11c

S
ig

le
cF

mock RSVLung

Littermate

YetCre13
Rosa-DTA

G
ob
5

(re
la

tiv
e

ex
pr

es
si

on
)

0.00

0.01

0.02

0.03

0.04

Littermate

RSV – + – +
YetCre13
Rosa-DTA

*** ****

**

M
uc
5a
c

(re
la

tiv
e

ex
pr

es
si

on
)

0.000

0.001

0.002

0.003

0.004

0.005

Littermate

RSV – + – +
YetCre13
Rosa-DTA

* **
Eo

si
no

ph
il

nu
m

be
r(

×1
03 )

0

100

200

300

400 ****

Littermate

RSV – + – +
YetCre13
Rosa-DTA

IL
-5

(p
g/

m
L)

– + – +
0

10

20

30

Littermate YetCre13
RosaDTA

**** ****

RSV

IL
-5

(p
g/

m
g

t.p
.)

– + – +
0

10

20

30

40

50

Littermate YetCre13
RosaDTA

**** ***

RSV

–10
–10

→
→

→
→



824  |     WU et al.

3.3 | ILC2‐derived IL‐13 is sufficient for RSV‐driven 
AHR, airway inflammation, and eosinophilia

Although several studies have demonstrated the importance of IL‐13 
in RSV‐driven airway inflammation, the role of ST2+ ILC2s in RSV‐
driven AHR is still uncertain.14,29 Thus, we planned to determine 
whether IL‐13 expression by ILC2s is sufficient to cause symptoms 
associated with RSV infection. First, to prove that RSV‐induced air‐
way resistance and inflammation are mediated by IL‐13, we meas‐
ured AHR, BALF cellularity, and expression of Gob5 in Il13−/− mice. 
IL‐13‐deficient mice showed reduced AHR (Figure 3A), BALF leuko‐
cyte infiltration (Figure 3B), and Gob5 expression (Figure 3C) on 6 
d.p.i. To clarify the involvement of ILC2s, we used the YetCre‐13 mT/
mG mice, which provides fate‐mapping of IL‐13‐positive cells under 
RSV infection. We showed that ILC2 is the major cellular source 
of IL‐13 in the lungs (Figure S2A). Accordingly, the percentage of 
IL‐13‐producing ILC2s increased after RSV infection (Figure S2B). 
Although mast cells also produced certain level of IL‐13 in mock‐
treated mice, RSV infection did not further increase its production. 
Meanwhile, CD4 T cells and basophils did not produce IL‐13 after 
RSV infection. (Figure S2B). Additionally, we used the YetCre‐13 
Rosa‐DTA mice, which selectively depletes IL‐13‐producing cells.35 
Upon IL‐33 treatment, the population of lung ILC2s were markedly 
lower in YetCre‐13 Rosa‐DTA mice compared to their WT littermates 
(Figure S2C). Meanwhile, RSV‐infected YetCre‐13 Rosa‐DTA mice 
showed diminished lung IL‐5 and eosinophilia on day 6 and 9 post‐
infection, respectively, (Figure 3D,E), as well as reduced Gob5 and 
Muc5ac mRNA levels in the lungs (Figure 3F,G). To prove that ILC2‐
derived IL‐13 is sufficient to drive AHR under RSV infection, we iso‐
lated IL‐33‐stimulated ST2+ ILC2s from Rag2−/− mice and adoptively 
transferred these lymphocytes into the lungs of Il13−/− mice. We 
found that WT ILC2 reconstitution restored both AHR (Figure 3H) 
and leukocyte infiltration (Figure 3I) driven by RSV infection.

3.4 | Myeloid cell‐derived IL‐33 contributes to the 
onset of airway inflammation in the lungs in an ST2-
dependent manner

To verify the expression profile of IL‐33 under RSV infection, we 
performed CD11b and IL‐33 co‐staining in lung tissue sections. We 
found co‐localization of IL‐33 with both CD11b+ myeloid cells and 
SP‐C+ type‐2 pneumocytes. Both CD11b+ and SP‐C+ cells showed 
greater IL‐33 expression after RSV infection (Figure 4A,B). Notably, 
total IL‐33+ cells also increased after infection (Figure 4B). To un‐
cover the source of IL‐33 during the initial stage of RSV infection, 
we analyzed the cellular profile of IL‐33 expression in the lungs on 
day 1 post‐infection using flow cytometry. Our results showed that 
IL‐33 expression in airway epithelial cells (CD45− EpCAM+ CD31−) 
was induced after RSV infection (Figure 4C,D). Additionally, IL‐33‐
expressing lung myeloid cells, including alveolar macrophages (AM), 
interstitial macrophages (IM), and dendritic cells (DC), increased in 
both percentages (Figure 4C,E) and numbers (Figure 4E) after infec‐
tion. To support the experimental observations above, we examined 

the mRNA level of IL‐33 in BMDC and alveolar macrophage cell line 
MH‐S after RSV infection and observed similar induction in both cell 
types (Figure 4F,G).

Since myeloid cells are pivotal instigators of inflammation, we 
examined their role in RSV‐induced inflammation by using myeloid 
cell‐specific IL‐33 knockout (Il33f/fLysMCre) mice on 6 d.p.i.. Indeed, 
IL‐33 expression in myeloid cells but not structural cells was abol‐
ished in Il33f/fLysMcre mice (Figure S3A). The IL‐33 protein level in 
BALF was also reduced in these mice (Figure 4H). Although AHR 
response and Il13 expression in the lungs of Il33f/fLysMCre were in‐
duced to similar levels as their Il33f/f littermates after RSV infection 
(Figure 4I,J), airway inflammation was attenuated, as evidenced by 
reduced neutrophil numbers in BALF (Figure 4K). To confirm that 
the observed reduction is not due to impaired neutrophil response, 
given that LysMcre locus is also expressed in neutrophils,36 we treated 
these mice with IL‐33‐independent stimuli IL‐1β and IL‐23 and found 
that neutrophils responded similarly between WT, Il33‐/‐, and Il33f/

fLysMcre mice (Figure S3B).
Additionally, IL‐5 in both BALF and lung was partially reduced in 

Il33f/fLysMcre mice on 6 d.p.i. compared to Il33f/f littermate (Figure 4L). 
Similar to IL‐5, Il33f/fLysMcre had lower eosinophil numbers in the 
lungs on 9 d.p.i. compared to their littermates (Figure 4M). Notably, 
IL‐33 is known to drive the production of IL‐6, an inflammatory cy‐
tokine associated with asthma, in multiple cell types.37 We there‐
fore examined whether myeloid‐derived IL‐33 is required for IL‐6 
production under RSV infection. Accordingly, both IL‐6 mRNA and 
protein expression was reduced in Il33f/fLysMcre mice (Figure 4N,O). 
Likewise, the lung mRNA level of goblet cell marker Gob5 was re‐
duced in Il33f/fLysMCre mice (Figure 4P).

To investigate the importance of ST2 signaling on myeloid 
cells, we generated myeloid‐specific ST2‐deficient mice (St2f/fLy‐
sMcre). The efficiency and specificity of knockout was confirmed 
by flow cytometry. As expected, ST2 expression was diminished 
in myeloid but not lymphoid cells (Figure S3C). Targeting ST2 in 
myeloid cells did not impair the level of AHR (Figure 5A), but par‐
tially suppressed airway inflammation in terms of reduced mac‐
rophage and neutrophil numbers in BALF (Figure 5B). Although 
the mRNA and protein levels of IL‐6 were reduced in these mice 
(Figure 5C,D), Il13 (Figure 5E) and Gob5 (Figure 5F) levels were 
unaffected. Hence, myeloid cell‐derived IL‐33 contributes to cyto‐
kine production and cellular infiltration in the airway but not AHR, 
and ST2+ myeloid cells are required for the production of IL‐6 in 
response to RSV infection.

Next, we examined whether IL‐33 expression is linked to TSLP 
expression, another cytokine previously reported to be important in 
RSV‐driven airway inflammation.29 We found that the mRNA level 
of Tslp was not affected by global knockout (Figure S4A) or myeloid 
cell‐specific knockout (Figure S4B) of IL‐33. Of note, RSV replication 
was independent of IL‐33 as no significant differences in the level of 
viral mRNA was observed between Il33−/−, Il33f/fLysMCre mice, and 
their respective WT littermates after infection (Figure S4C,D). Taken 
together, IL‐33 produced by lung myeloid cells contributes to cellular 
infiltration but not AHR under RSV infection.
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To correlate the occurrence of cell death to RSV infection, we 
performed TUNEL assay on lung tissue sections from mock‐ and 
RSV‐infected mice. As expected, we observed an increase in DNA 

fragmentation after infection (Figure S5A,B). Annexin V staining of 
lung cells revealed increased frequencies of annexin V+ CD45− struc‐
tural cells (Figure S5C) and CD45+ leukocytes (Figure S5D). These 
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results suggest a positive correlation between RSV infection and 
lung cell death.

3.5 | RSV‐driven pulmonary IL‐33 evokes circulating 
eosinophilia through ILC2s

Peripheral blood eosinophil count during RSV bronchiolitis is a pre‐
dictive factor of wheezing illness.38 Nevertheless, how RSV trig‐
gers circulating eosinophilia remains uncharacterized. To this end, 
we first analyzed the blood eosinophil profile of RSV‐infected mice 
(Figure 6A,C). We found that the percentages of blood eosinophils 

peaked on day 9 post‐RSV infection, but declined on day 14. Notably, 
blood eosinophilia was impaired in Il33f/fLysMCre, Il33‐/‐, and YetCre‐13 
Rosa‐DTA mice on day 9 post‐infection (Figure 6B,C). Taken together, 
these results suggest that RSV infection drives circulating eosinophilia 
in mice, and myeloid IL‐33 and ILC2s contribute to this phenomenon.

4  | DISCUSSION

In this study, we demonstrated that IL‐33 exerted diverse func‐
tions under RSV infection. RSV could trigger IL‐33 production from 

F I G U R E  4   Myeloid‐derived IL‐33 contributes to RSV‐induced airway inflammation, but not AHR. (A‐B) Wild‐type mice were 
infected with RSV L19 (106 PFU) or mock and sacrificed 1 d post‐infection. Lung sections were subjected to CD11b, SP‐C, and IL‐33 
immunofluorescence staining. Counter staining was performed using DAPI nuclear staining. (A) Representative immunofluorescence images. 
Scale bars: 50 μm. n = 5. (B) Total numbers of IL‐33+ cells with the proportion of CD11b+ and SP‐C+ cells. n = 5. (C‐E) Wild‐type mice were 
infected with RSV (106 PFU) or mock and sacrificed 24 hours later. (C) Representative flow cytometry plot showing IL‐33+ epithelial cells 
(CD45− EpCAM+ CD31−) and IL‐33+ myeloid cells such as alveolar macrophages (AM; CD45− F4/80+ CD11c+), interstitial macrophages (IM; 
CD45− F4/80+ CD11c−), and dendritic cells (DCs; CD45− F4/80− CD11c+). (D) Percentages of IL‐33+ epithelial cells, assessed as in (C). n = 5. 
(E) Percentage (upper panel) and total number (lower panel) of IL‐33+ AM, IM, and DCs, assessed as in (C). n = 5. (F) Level of Il33 mRNA in 
bone marrow‐derived dendritic cells (BMDC) after 6‐hour infection with RSV L19 (MOI = 1), n = 6. (G) Level of Il33 mRNA in murine alveolar 
macrophage (MH‐S) cells after 6‐hour infection with RSV L19 (MOI = 1), n = 6. (H‐P) Il33f/fLysMcre, Il33f/f, or littermate mice were infected 
with RSV or mock and sacrificed 6 d post‐infection (except mice in (L) were sacrificed on 9 d.p.i.). (H) IL‐33 in BALF were determined by 
ELISA, n = 6. (I) Changes in lung resistance (RL), n = 5‐6. (J) Il13 in mRNA in lung was determined by qPCR, n = 6‐7 (K) Cellular composition 
in the BALF. Eos, eosinophil; Lym, lymphocyte; Mac, macrophage; Neu, neutrophil, n = 6‐8. (L) IL‐5 in BALF (left) and lung (right) were 
determined by ELISA, n = 6 (M) Lung eosinophil (CD45+ CD11c− SiglecF+) numbers were assessed by flow cytometry as in Figure 1C, n = 6‐8. 
Level of (N, O) Il6 mRNA and IL‐6 protein in lung and (P) Gob5 mRNA in the lungs were assayed by qPCR and ELISA, respectively. n = 6‐8. 
Data were pooled from 2 independent experiments. F4/80: adhesion G‐protein‐coupled receptor E1. SP‐C: Surfactant protein C. *P < .05, 
**P < .01, ***P < .001 and ****P < .0001

F I G U R E  5   Myeloid cells facilitate RSV‐induced airway inflammation in a ST2‐dependent manner. St2f/fLysMcre and St2f/f littermate mice 
were infected with RSV or mock and sacrificed 6 d post‐infection. (A) Changes in lung resistance (RL) n = 4‐6. (B) Cellular composition in the 
BALF (Eos, Eosinophil; Lym, Lymphocyte; Mac, Macrophage; Neu, Neutrophil) of mice after infection. n = 5‐8. (C‐F) mRNA expression of (C) 
Il6, (D) IL‐6 protein, (E) Il13, and (F) Gob5 in the lungs of mice after infection. n = 5‐6. Data were pooled from 2 independent experiments. 
*P < .05, **P < .01, and ***P < .001
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multiple sources, including lung structural cells and myeloid cells. 
Global knockout of IL‐33 resulted in reduced Th2 cytokine produc‐
tion from ILC2s, supporting the role of ILC2 in IL‐13 production and 
AHR. We also showed that IL‐33 produced by myeloid cells was re‐
quired for IL‐6 production in the lungs and airway neutrophilia in 
the respiratory tract during RSV infection. Lastly, both IL‐33 derived 
from myeloid and structural cells contributed to eosinophilia in the 
lung and periphery. Collectively, our study suggests a differential, 
but complementary roles of IL‐33 from different sources in driving 
airway inflammation during RSV infection.

IL‐33 is a cytokine that can boost airway inflammation, mucus 
production, and Th2 cytokine production in the lungs under in‐
fluenza virus, RSV, and rhinovirus infection.25,39‐41 By disrupting 
IL‐33 signaling through deletion, we found that IL‐33 is indispens‐
able for AHR and BALF cellularity driven by RSV infection. This is 
in agreement with a previous study showing that anti‐ST2 antibody 

treatment suppressed RSV‐induced Il5 and Il13 mRNAs in the 
lungs and BALF.40 Nevertheless, there are conflicting reports on 
the importance of IL‐33 during RSV infection. For instance, Stier 
et al demonstrated that TSLP, but not IL‐33, is the major cytokine 
that triggers type‐2 response through ILC2 under RSV infection.29 
Additionally, Saravia et al showed that IL‐33‐ILC2 axis is activated 
in neonates but not adults.34 One possible explanation for this dis‐
crepancy is the different RSV strains used. Stier et al used 01/2‐20 
strain and found that only IL‐13, but not IL‐5, was induced in the lung. 
In our study, we used L19 strain, which was previously shown to in‐
duce IL‐13.15 Here, we further demonstrate that IL‐5 can be induced 
in the lungs by L19 strain. Furthermore, L19 strain induces robust 
Th2 inflammation characterized by AHR and mucus hypersecretion 
compared to other strains of the same antigenic subgroup like A2 
and Long strains.15,42 Therefore, different RSV strains could exert 
different signaling mechanism that affects the overall inflammatory 

F I G U R E  6   RSV‐driven pulmonary IL‐33 is required to evoke systemic eosinophilia. (A) Wild‐type mice were infected with RSV (L19, 106 
pfu), and blood samples were harvested at the indicated time points. (B) Il33f/fLysMcre, Il33−/−, and YetCre‐13 Rosa‐DTA were infected with 
RSV, and blood samples were harvested on 9 d.p.i.. (A‐B) Representative flow cytometry plot showing blood eosinophils (CD45+ CD11c− 
SiglecF+). (C) Percentage of blood eosinophils in previously described mice. Data were merged data from 2 independent experiments n = 6‐8. 
*P < .05, ***P < .001, ****P < .0001
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phenotype. Above all, we showed the cause‐effect relationship be‐
tween IL‐33‐ILC2 axis and L19‐mediated type‐2 inflammation.

Although previous study has implicated type‐2 pneumocytes and 
other structural cells as the major producers of IL‐33 in the lungs,43 
other studies have detected IL‐33 in myeloid cells under various al‐
lergen challenge and during viral infection.25,28,44 Moreover, a re‐
cent study in Il33‐driven citrine reporter mice have demonstrated 
that CD45+ cells expressed low levels of IL‐33 at steady‐state, and 
allergen exposure augmented its expression.45 In the present study, 
we observed that RSV‐induced IL‐33 expression in both myeloid and 
lung structural cells. We further investigated the pathological roles 
of myeloid cell‐derived IL‐33 and ST2 signaling by using myeloid cell‐
specific knockout mice. We observed RSV‐induced lower neutrophilia 
in both myeloid‐specific IL‐33‐deficient (Il33f/fLysMCre mice) and ST2‐
deficient (St2f/fLysMCre mice) mice, compared to their WT littermates, 
suggesting that myeloid cell‐derived IL‐33/ST2 signaling is critical for 
RSV‐induced airway neutrophilia. Nevertheless, it was worth noting 
that AHR, the expression levels of Il13 and the associated Gob5 were 
unaffected in the St2f/fLysMCre mice, suggesting that unlike ILC2s, ST2+ 
myeloid cells are dispensable for RSV‐induced AHR. Taken together, 
myeloid cell‐derived IL‐33 contributes to RSV‐driven pathogenesis, 
and the ST2+ myeloid cells are responsible for airway neutrophilia.

In line with airway neutrophilia, RSV‐induced IL‐6 production 
was also suppressed when myeloid IL‐33 or ST2 was depleted. 
Indeed, IL‐33 has been shown to drive IL‐6 production by various 
myeloid cells, such as macrophages, mast cells, and DC, contribut‐
ing to tissue inflammation.46 Moreover, studies have shown that IL‐6 
signaling can induce neutrophil recruitment to the lungs under vari‐
ous stimulation including allergen47 and endotoxin.48 IL‐6 can boost 
neutrophil numbers through various ways, including suppression of 
apoptosis49 and sensitizing neutrophils toward chemokine cues like 
IL‐8.50 Therefore, the observed reduction in airway neutrophilia in 
our study could be a direct consequence of reduced IL‐6 production 
due to impaired IL‐33 production and ST2 signaling in myeloid cells. 
Nevertheless, the mechanism by which IL‐6 affects neutrophilia 
during RSV infection warrants further investigation.

Pulmonary eosinophilia and elevated lung IL‐5 levels are fea‐
tures of RSV infection, with some studies suggesting that they are 
required for airway inflammation in murine models.23,51 Clinically, 
BALF IL‐5 positively correlates to eosinophil level in PBMC.12 RSV‐
driven eosinophil activity positively correlates to wheezing illness 
in patients.38,52 In addition, increased systemic eosinophil activity 
has been reported in RSV‐infected patients after discharge,53 al‐
though the immunoregulatory mechanism is unclear. In accordance 
with these findings, we observed eosinophil infiltration in the BALF, 
lungs, and periphery after RSV infection. Kinetically, eosinophilia 
was induced after the onset of AHR, in agreement with the afore‐
mentioned studies. Importantly, we also found that both myeloid‐
derived IL‐33 and ILC2 were necessary for RSV‐driven IL‐5 induction 
and peripheral eosinophilia. Depletion of IL‐13‐producing cells, 
predominantly ILC2, also reduced IL‐5 and circulating eosinophilia. 
These results suggest that IL‐33‐ILC2 axis is crucial for RSV‐driven 
type‐2 inflammation.

In summary, we highlighted the importance of IL‐13 produced by 
IL‐33‐activated ILC2s in triggering RSV‐driven airway inflammation 
and the possible role of IL‐5 in eliciting eosinophilia in the periphery 
under local IL‐33 stimuli. These findings may explain how RSV trig‐
gers airway inflammation in the early phase of infection, before the 
initiation of adaptive immunity. Taken together, our results confirmed 
the pivotal role of myeloid IL‐33 and ILC2 in RSV‐driven IL‐5 and eo‐
sinophilia. In addition, we found a novel mechanism by which myeloid 
cell‐derived IL‐33 and ST2 signaling contribute to IL‐6 production, 
leading to the development of airway inflammation (Figure S6).
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