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28 * Correspondence author: veronica.cral@gmail.com ABSTRACT

29 1. Recovery of Mediterranean forests after field abandonment is a slow process, even 

30 without propagule limitations. This is mainly due to stressful conditions for seedling 

31 establishment. In this context, shrubs play a critical role in facilitating tree recruitment, 

32 but how this process unfolds after field abandonment is not entirely known. We 

33 evaluated the long-term dynamics of facilitation by the nurse shrub Retama 

34 sphaerocarpa in the recruitment of two ecologically contrasting oaks, the evergreen 

35 Quercus ilex and the deciduous Quercus faginea.

36 2. Thirty years after field abandonment, we dated shrubs and oak established in an old 

37 field to estimate the annual recruitment rates and investigate temporal recruitment 

38 patterns. For oaks, we differentiated recruitment at each microsite (i.e., open or under 

39 shrub). To assess how nurse shrubs modulated environmental stressors, we modelled 

40 oak recruitment as a function of climatic variables. For the evergreen oak, we assessed 

41 these effects within each microsite. Finally, we estimated the annual interaction index 

42 between shrubs and oak juveniles as a function of climatic conditions. 

43 3. Each species showed different recruitment pulses during colonization. Recruitment 

44 rate was the highest for the shrub, followed by the evergreen oak. Oak colonization 

45 under shrubs was appreciable 20 years after field abandonment, when shrub cover 

46 reached 2.2%,  and concentrated under medium and large shrubs older than seven 

47 years.  Shrubs not only accelerated evergreen oak colonization but also attenuated the 

48 fluctuations of recruitment pulses. For the evergreen oak, the interaction index 

49 indicated facilitation dominance in years with more arid summers (precipitation < 47 

50 mm and heat waves longer than eight days) and competition in wetter summers. 

51 4. Synthesis. Oak colonization in Mediterranean abandoned fields progressed slowly, and 

52 only two decades after abandonment pioneer shrub population grew to a level in size 

53 and number that could effectively trigger facilitation and accelerate tree recruitment. 

54 The shrub nurse effect was unbalanced between oak species, only benefiting the 

55 evergreen oak, and it was more prevalent in arid years. Our study illustrates the build-

56 up of shrub facilitation during forest recolonization and the varying nature of this 

57 process among climatically different years and ecologically distinct species. This 

58 information provides insights for assessing and managing Mediterranean forest 

59 recovery.
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62 INTRODUCTION

63 Plants have to overcome several abiotic environmental filters to establish (Harper, 1977; Lortie 

64 et al., 2004). The balance of positive and negative biotic interactions, particularly of facilitation 

65 and competition, modulates the effect of such filters (Connell & Slatyer, 1977; Pulsford, 

66 Lindenmayer, & Driscoll, 2016). In forest succession, plant colonizers can facilitate the 

67 establishment of mid- and late-successional plant species into the community through 

68 environmental modifications (e.g., Butterfield et al., 2010). Generally, the importance of 

69 facilitation increases with environmental stress (the so-called Stress Gradient Hypothesis; 

70 Bertness & Callaway, 1994). However, competition can prevail in plant-plant interactions if 

71 environmental conditions become very stressful and the abiotic stress is resource driven (e.g., 

72 by water shortage or light competition; Maestre, Callaway, Valladares, & Lortie, 2009; 

73 Maestre, Valladares, & Reynolds, 2005). 

74 In arid and semi-arid ecosystems such as those found in Mediterranean-climate areas, high 

75 irradiance and drought are the main abiotic factors affecting early plant establishment (Joffre, 

76 Rambal, & Damesin, 2007; Sánchez-Gómez, Valladares, & Zavala, 2006), constraining spring 

77 seedling emergence and first-summer survival (Mendoza, Zamora, & Castro, 2009; Rolo, 

78 Plieninger, & Moreno, 2013). Semi-arid ecosystems also show high inter-annual climatic 

79 variation that can cause irregular recruitment pulses (Giorgi & Lionello, 2008; Kouba, 

80 Camarero, & Alados, 2012; Pérez-Ramos, Padilla-Díaz, Koenig, & Marañón, 2015; Pugnaire, 

81 Luque, Armas, & Gutiérrez, 2006). Thus, chronic water stress and inter-annual climatic 

82 variation slow down forest recovery after disturbance (Rey Benayas, Martínez-Baroja, Pérez-

83 Camacho, Villar-Salvador, & Holl, 2015).

84 Under stress conditions, shrubs can ameliorate environmental stressors at low competitive 

85 costs (Gómez-Aparicio, 2009), facilitating the establishment of mid- and late-successional 

86 woody species (Smit, Díaz, & Jansen, 2009; Smit, Ouden, & Díaz, 2008). Nurse shrubs can 

87 ameliorate climatic constraints and promote soil fertility (i.e., direct facilitation; Gómez-

88 Aparicio, Zamora, Castro, & Hódar, 2008; Prieto, Padilla, Armas, & Pugnaire, 2011; Pugnaire et 

89 al., 1996), but also attract seed dispersers and reduce herbivory or competition with other 

90 plants (i.e., indirect facilitation; Cuesta, Villar-Salvador, Puértolas, Rey Benayas, & Michalet, 

91 2010; Perea, López-Sánchez, & Dirzo, 2017). The facilitative effect of shrubs have been related 

92 to specific functional attributes such as plant size (Alday, Zaldívar, Torroba-Balmori, Fernández-

93 Santos, & Martínez-Ruiz, 2016; Navarro-Cano, Goberna, Valiente-Banuet, & Verdú, 2016), the 

94 root architecture (Prieto, Kikvidze, & Pugnaire, 2010; Prieto et al., 2011; Rolo et al., 2013) and 
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95 the ability to fix nitrogen into the soil (Gómez-Aparicio, Zamora, Gómez, Hódar, & Castro, 

96 2004).

97 The presence of nurse shrubs could be particularly relevant in facilitating the recruitment of 

98 less stress tolerant and more palatable species (Gómez-Aparicio et al., 2008; Liancourt, 

99 Callaway, & Michalet, 2005), expanding their ecological niche and allowing the coexistence of 

100 ecologically distinct species (Bruno, Stachowicz, & Bertness, 2003). In Mediterranean forests, 

101 like our study system, evergreen and deciduous oaks frequently co-occur (Madrigal-González 

102 et al., 2017). Evergreen oaks have more robust leaves with more leaf mass per area and less N 

103 concentration than deciduous oaks (Castro-Díez, Villar-Salvador, Pérez-Rontomé, Maestro-

104 Martínez, & Montserrat-Martí, 1997; Gil-Pelegrín, Peguero-Pina, & Sancho-Knapik, 2017). 

105 These traits are usually linked to high drought tolerance and low palatability in oak species 

106 (Corcuera, Camarero, & Gil-Pelegrín, 2002; Quero, Villar, Marañón, & Zamora, 2006). Thus, we 

107 could expect evergreen oaks establishing earlier than deciduous oaks during forest succession 

108 in open environments, and deciduous oaks being more dependent on nurse shrubs for their 

109 recruitment.

110 Most research on facilitation has been addressed by short-term studies. However, some 

111 studies have focused on the shifts of facilitation over ontogenetic stages of the nurse shrub or 

112 of the benefactor (Alday et al., 2016; Moreno-Gutiérrez, Battipaglia, Cherubini, Delgado 

113 Huertas, & Querejeta, 2015; Navarro-Cano et al., 2016; Rousset & Lepart, 2000; Torroba-

114 Balmori, Zaldívar, Alday, Fernández-Santos, & Martínez-Ruiz, 2015), and on the covariation of 

115 seedling and shrub abundance (Ramírez & Díaz, 2008), while others have assessed the effect of 

116 inter-annual climatic variations on facilitation (Butterfield et al., 2010). Despite these efforts, 

117 as far as we know, a long-term and holistic approach evaluating how facilitative effects change 

118 after field abandonment has never been addressed. This knowledge gap hinders our 

119 understanding of the dynamics associated with facilitation in plant community recovery 

120 (Bertness & Callaway, 1994; Maestre et al., 2005). For example, we know little about how long 

121 after field abandonment the nurse shrub community takes to start facilitating recruitment of 

122 other species, how the effects of facilitation vary among competing beneficiary species, and 

123 how these effects vary with environmental conditions. 

124 To investigate the dynamics of nurse shrub facilitation we studied colonization dynamics of a 

125 Mediterranean oak forest over 30 years after field abandonment. Specifically, we assessed the 

126 effect of the nurse shrub Retama sphaerocarpa (L.) Boiss. on the long-term recruitment of the 

127 evergreen Quercus ilex L. and the deciduous Quercus faginea Lam. Our objectives were to: (1) 

128 compare the long-term recruitment dynamics of the nurse shrub and the oaks after field 

129 abandonment; (2) quantify the time lag between field abandonment and the observed nurse 
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130 shrub facilitative effect on oak colonization; and (3) evaluate the effects of the nurse shrub on 

131 the recruitment patterns of the oaks and the climatic constraints that limit their recruitment. 

132 We hypothesised that: (1) recruitment patterns follow temporal pulses that differ among 

133 pioneer nurse shrubs and mid- or late successional oaks; (2) there is a time lapse between field 

134 abandonment and the acceleration of oak recruitment linked to shrub size and the 

135 development of shrub population; and (3) oak recruitment under nurse shrubs is decoupled 

136 from recruitment in open sites due to buffering of harsh climate conditions. Understanding 

137 how climate and the facilitation-competition balance drive the temporal patterns of oak 

138 recruitment will allow for more informed assessment of future forest recovery and a better 

139 design of restoration efforts.

140

141 METHODS

142 Study area

143 The studied abandoned fields are located on two flat fluvial terraces of the Jarama river in 

144 Uceda, Central Spain (700-750 m a.s.l., UTM X: 462 830; UTM Y: 4 524 000; ETRS89 30N; Figure 

145 1). The area has a continental Mediterranean climate, with a mean annual temperature of 13 

146 °C that ranges between 23 and 4 °C in the hottest and coldest months, respectively. The 

147 annual rainfall is 500 mm, being c. 60 mm during the summer (Tornero Sánchez, 1998). Soils 

148 are mainly alfisols and inceptisols, with sandy loam to sandy clay loam textures (Peñuelas-

149 Rubira et al., 1996). Agricultural use ceased in c. 1984, although occasional sheep and goat 

150 grazing has remained in the area. Currently, seedling mortality by herbivory represent less 

151 than a quarter of mortality by desiccation (unpublished data). Since 1985, the fields have 

152 progressively changed to a shrubland dominated by R. sphaerocarpa, a leguminous shrub and 

153 a paradigmatic nurse species in the Mediterranean basin (Andivia, Villar-Salvador, Tovar, 

154 Rabasa, & Rey-Benayas, 2017; Cuesta et al., 2010; Pugnaire et al., 1996; Rolo et al., 2013). The 

155 abandoned fields are adjacent to mixed forests dominated by Q. ilex and Q. faginea in 

156 different proportions (Table S1.1). Quercus faginea acorn dispersal is earlier than Q. ilex’s 

157 (Castro-Díez & Montserrat-Martí, 1998). In 2017, when our fieldwork took place, the density of 

158 Q. ilex and Q. faginea juveniles were 45 ± 49 and 15 ± 31 individual ha-1 (mean ± sd), 

159 respectively (Kruskal-Wallis 2 = 9.17; p = 0.002). A
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160

161 Figure 1. Location of the study area and the 20 transects where Retama sphaerocarpa (retama) and 

162 oak recruitment were sampled. 

163

164 Field work and oak recruitment dating

165 In the abandoned fields of the study site, we surveyed 20 rectangular transects (20 x 60 m) 

166 perpendicular to the forest border (Figure 1). In the adjacent forest, the diameter at breast 

167 height (d.b.h.) of each oak species was measured in one 20 × 35 m plot next to each transect. 

168 In each plot, the basal area was calculated using individuals with d.b.h. > 8 cm. The location of 

169 transects was selected to sample a wide range of shrub cover and abundance of the two oak 

170 species that are representative of the adjacent forest (Table S1.1). 

171 In each transect, we located and harvested all juvenile oaks (namely 105 evergreen oaks and 

172 36 deciduous oaks) during early spring of 2017. To harvest the juveniles, we excavated the 

173 ground around the upper part of the tap root and cut a transversal section at the root collar, 

174 i.e., slightly below the ground level (Figure S2.1a). The microsites where oak juveniles grew 

175 were recorded as "open" or "under shrub". We then used a dendrochronological approach to 

176 date the year of oak recruitment (details in Appendix S2) and reconstruct the R. sphaerocarpa 

177 shrubland structure along time using allometric models (details in Appendix S3). To ensure 

178 that we assigned the right microsite during recruitment, some records under shrub were 

179 corrected to open if 1) the oak was older than the shrub (15 cases in 7 transects – 25% of all 

180 records -), or 2) the shrub was < 5 years older than the oak and the distance between the oak 

181 and shrub stems was less than the predicted crown radius of the shrub in the oak recruitment 

182 year (5 cases in 3 transects – 8% of all records -).

183

184 Climate data

185 We downloaded daily weather data for the study period (1985 to 2014) from nine 

186 meteorological stations close to our study area 
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187 (http://www.aemet.es/es/datos_abiertos/AEMET_OpenData; Figure S1.1). We interpolated 

188 the maximum temperature and the precipitation to our study area using the meteoland 

189 package (De Cáceres, Martin, Granda, & Cabon, 2018) in R 3.4.3 (R Core Team, 2017). This 

190 method interpolates climatic data to a specific area by correcting the original data according to 

191 the proximity and elevation differences between the meteorological station and the target 

192 area. For each year, we calculated spring precipitation as the sum of April and May 

193 precipitation, the summer precipitation as the sum of July, August and September 

194 precipitation, and the length of heat waves as the maximum number of consecutive days with 

195 maximum temperature ≥ 33 °C.

196

197 Data analysis

198 Long-term dynamics of Retama sphaerocarpa and oak recruitment

199 We calculated recruitment rate (no. recruits transect-1 year-1) of R. sphaerocarpa, evergreen 

200 and deciduous oaks from 1985 to 2014. We used a generalized additive model and the 

201 recruitment rate of each species to analyse recruitment patterns over time. For the evergreen 

202 oak we differentiated between microsites, open and under shrub. We could not account for 

203 microsite differences for the deciduous oak due to the low number of recruits under shrubs. 

204 We choose a Poisson error distribution and the smoothing spline method to fit the models 

205 with the gam package (Hastie, 2018) in R 3.4.3 (R Core Team, 2017).  We used the Akaike 

206 Information Criterion (AIC; Burnham & Anderson, 2002) to compare models adjusted with 

207 different number of knots (i.e. data division points), and we selected the number of knots 

208 resulting in minimum AIC (e.g. in Thorson, Punt, & Nel, 2012). 

209

210 Oak colonization in relation to nurse shrub structure 

211 We analysed the relationship between oak recruitment and the structure of the R. 

212 sphaerocarpa shrubland (i.e. density and size structure of shrubs) with a three-step analysis. 

213 First, we adjusted generalized additive models for the accumulated recruitment (total and per 

214 microsite) of both oak species (recruits transect-1), using the year as explanatory variable and 

215 the model details (i.e. error distribution, algorithms and number of knots) described in the 

216 previous section. Second, we identified change points over the fitted curves (i.e. the first year 

217 of a new regime of variance of accumulated recruitment) using the cpt.var function of the 

218 changepoint package (Killick, Haynes, & Eckley, 2016). The change point was identified with 

219 the PELT method and the penalty set manually based on the elbow plot criterion (Figure S1.2). 

220 Change points represented acceleration in the recruitment when they separated curve 

221 segments of increasing slope. Third, we compared the change years of the accumulated oak 
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222 recruitment with the change years in each microsite to assess if the acceleration of the oak 

223 recruitment was due to recruitment under shrub (i.e. facilitated recruitment). Then, we 

224 described the density and size structure of the shrubland when facilitated recruitment 

225 occurred. 

226 To study the relationship between oak recruitment and R. sphaerocarpa size, we compared (1) 

227 the maximum branch diameter of nurse shrubs (i.e. with oaks recruited under their canopies) 

228 and of shrubs without recruits using a Kruskal-Wallis test; and (2) the size structure of the R. 

229 sphaerocarpa populations with and without recruited oaks. For those comparisons, we only 

230 used the data of years and transects with oak recruitment under shrubs.

231

232 Shrub modulation of the climatic effects on oak recruitment 

233 To assess the effect of climatic variables on the evergreen oak recruitment rates, and how the 

234 nurse shrubs might have influenced this process, we used the annual oak recruitment rates 

235 estimated since 2005, which was the recruitment year of the oldest oak found under shrub. 

236 The deciduous oak had not enough recruits under shrub to make this analysis, so we assessed 

237 only the effect of the climate in total recruitment. We focused on climatic conditions during 

238 spring and summer, the most limiting periods for seedling survival (Gómez-Aparicio et al., 

239 2004; Mendoza, Gómez-Aparicio, Zamora, & Matías, 2009). We selected climatic variables that 

240 drive spring emergence (spring precipitation in mm, SpPreci) and summer survival (summer 

241 precipitation in mm, SuPreci; length of heat waves in no. days, HtWavesi). To control for 

242 differences on seed availability among transects, we included the basal area of each target oak 

243 species in the adjacent forest (BAi, m
2 ha-1). We also considered the year of recruitment as a 

244 random variable (YRE) to account for likely temporal processes such as masting, and included 

245 an intercept term for each transect to, again, account for differences among transects. For 

246 each transect i and year y the observed number of recruits per microsite (Counti,y,microsite) was 

247 analysed as:  

248 Likelihood: Counti,y,microsite ~ Poisson (λi,y,microsite) 

249 Process model:

250  ln (��,�,���������) = �� + � ∙ ��� + �1���������·������� + �2��������� ∙ �������
251 Eq. 1+ �3��������� ∙ �������� + ���� + ��,�
252 We also included an error term  to account for over-dispersion in the recruitment rates (i.e., ��,�
253 the variance of the number of recruits was higher than the mean; Kéry, 2010). 

254 We estimated the parameters in Eq. 1 with a Bayesian approach and non-informative 

255 hyperparameter values (Simpson, Rue, Martins, Riebler, & Sørbye, 2015). We used the rjags 

256 package (Plummer, 2016) in R 3.4.3 (R Core Team, 2017) and simultaneously ran three Markov 
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257 chains with a burn-in period of 500000 iterations and a sampling period after convergence of 

258 100000 iterations, during which we recorded the parameter thinning every 100th iteration (see 

259 Table S1.2 for results of convergence diagnosis). 

260 To assess if the effect of the shrub on oak recruitment varied across years as a function of 

261 climatic conditions, we estimated the intensity of shrub facilitation or competition on 

262 evergreen oak establishment with an interaction index. This index was estimated as the 

263 difference between oak recruitment under shrub and recruitment in open sites, in years and 

264 transects when at least one oak recruited (Gómez-Aparicio et al., 2004). We could not 

265 calculate the interaction index for the deciduous oak due to the lack of recruitment under 

266 shrub. We then run linear mixed models to ascertain the extent of the interaction index; we 

267 used quadratic and linear variants, as a function of each climatic variable (i.e., spring 

268 precipitation, summer precipitation or length of heat waves, all standardized). We used lmer 

269 function of lme4 package in R 3.4.3 to fit the models, with a Gaussian error distribution (Bates 

270 et al., 2017; R Core Team, 2017). To account for the higher chances of recruiting under a shrub 

271 with increasing shrub cover, we included shrub abundance (i.e., the sum of the basal area of 

272 each shrub’s widest branch, m2 ha-1, standardized) as a covariate in the models. We also 

273 included transect as a random effect to account for fine grain environmental heterogeneity 

274 related to the clustered nature of our sampling. 

275

276 RESULTS

277 Dynamics of Retama sphaerocarpa and oak recruitment

278 All species showed two pulses of recruitment that varied in amplitude (i.e., maximum 

279 recruitment rate) and length (i.e., duration of the pulses; Figure 2, Table S4.1). Species 

280 recruitment pulses occurred at different years, in 2001 and 2013 for R. sphaerocarpa, 1994 

281 and 2008 for the evergreen oak, and 1999-2000 and 2008 for the deciduous oak. The second 

282 pulse was higher than the first pulse for the three species (Figure 2). The amplitude and length 

283 of R. sphaerocarpa recruitment pulses were remarkably higher than those of oak species 

284 (Figure 2a). Pulses of deciduous oak recruitment were less ample and more episodic than 

285 pulses of the evergreen oak (Figure S4.1, violin plots in Figure 2b,c). Specifically, the deciduous 

286 oak had many years with no recruitment at all between 1985 and 1996 and its recruitment 

287 became more regular after 1997 but at a lower rate than the recruitment of the evergreen 

288 oak.

289 The observed recruitment of evergreen oaks under shrub started in 2005 (Figure 2b), 20 years 

290 after field abandonment. After that year, evergreen oak recruitment density was 1.5 times 

291 greater under shrub than in open areas. This recruitment under shrub represented 38% of 
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292 total evergreen oak recruitment in the studied period (1985-2014). After the peak recruitment 

293 in 2008, recruitment rates remained constant under the shrub but considerably decreased in 

294 the open areas (Figure 2b). There were only three recruits of the deciduous oak under shrub 

295 (i.e. 9% of total deciduous oak recruitment), all of them in 2008.

296

297 Figure 2. Predicted (lines) and observed (violin plots) recruitment rate over time of: (a) the nurse 

298 shrub Retama sphaerocarpa (retama); (b) Quercus ilex (evergreen oak); and (c) Quercus faginea 

299 (deciduous oak). For the evergreen oak, predicted recruitment rates in open and under shrub 

300 microsites are also shown. Note that the scale of recruitment rate differs among species and that all 

301 violin plots are represented with the same maximum width. (d) Spring and summer precipitation and 

302 length of heat waves along the study period.

303

304 Oak colonization in relation to nurse shrub structure 

305 The change point analysis revealed that total oak recruitment accelerated twice during the 

306 study period, between 1991 and 1992 and between 2004 and 2005 (black line in Figure 3a, 

307 Table S4.2). While the first change coincided with an acceleration of oak recruitment in open 

308 areas, the second change coincided with the beginning and acceleration of oak recruitment 

309 under shrub (2005-2006; Figure 3a). By 2005, the estimated R. sphaerocarpa shrubland density 

310 was 276 ± 246 [0-1108] shrubs ha-1 (mean ± sd [min-max]), and R. sphaerocarpa canopy cover 
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311 was 2.21 ± 1.80% [0-7.16%]. Most of the shrubs were small (branch diameter < 10 mm) or 

312 medium (branch diameter 10-40 mm, Figure 3b).

313

314 Figure 3. a) Accumulated recruitment over time (lines) for both oak species together and cover of the 

315 nurse shrub Retama sphaerocarpa (retama) each year (bars). The dots on lines represent change 

316 points in the temporal series of oak recruitment (i.e. acceleration in the recruitment rate when the 

317 curve has an increasing slope). The arrows represent the years selected to show the size structure of 

318 R. sphaerocarpa shrubland in panel b. The black arrow represents the change point when oak 

319 recruitment under shrub started. b) Size structure of R. sphaerocarpa (retama) shrubland in the 

320 abandoned fields for the selected years. 

321 Retama sphaerocarpa shrubs with recruited oaks underneath were larger (25.4 [8.2-65.1] mm 

322 of branch diameter and 168.6 [75.4-329.2] cm of crown diameter; mean [min-max]) than 

323 shrubs without oaks (14.5 [0.6-76.0] mm and 112.9 [12.4-367.4] cm, respectively; Kruskal-

324 Wallis 2 = 25.4; p < 0.001). Oak recruitment only took place in a small fraction of the R. 

325 sphaerocarpa population (3.1% [0.5-9.1]), but this fraction was higher when only big (branch 

326 diameter > 40 mm) or medium R. sphaerocarpa shrubs were considered (15% [0-100] and 5.4% 

327 [0-16.7], respectively). Oak recruits were recorded only under R. sphaerocarpa shrubs that 

328 were at least 7-8 years old with branch and crown diameters > 8 mm and 74 cm, respectively 

329 (dashed vertical line in Figure 4). Most of the R. sphaerocarpa shrubs that contained oaks 

330 under their canopy were medium-sized (85.7%; shaded area in Figure 4), which represented 

331 57.9% of all the R. sphaerocarpa shrubs. In contrast, small and big shrubs contained only 5.7% 

332 and 8.6% of the oak recruits, respectively, and represented 39.3% and 2.8% of the shrubs, 

333 respectively.

334
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335

336 Figure 4. Size class distribution of Retama sphaerocarpa (retama) population (line). The filled bar 

337 portion represents the fraction of R. sphaerocarpa individuals with Quercus ilex (evergreen oak) and 

338 the unfilled portion represents the fraction of individuals with Quercus faginea (deciduous oak). The 

339 dashed line represents the minimum R. sphaerocarpa size with an oak underneath. The shaded area 

340 represents the medium size R. sphaerocarpa individuals.

341

342 Shrub modulation of the climatic effects on oak recruitment 

343 The results of the model of Eq. 1 indicated that there were no statistically significant effects of 

344 the climatic variables on recruitment rate of evergreen oaks in any of the two microsites 

345 (Figure 5a, model parameters in Table S4.3). Collinearity among explanatory variables in Eq. 1 

346 was low (-0.27 ≤ ρ ≤ 0.34; VIF ≤ 1.20; Dormann et al., 2013), and the fit of the model (R2) was 

347 0.94 (Figure S1.3). There were not statistically significant effects of the climatic variables on 

348 recruitment rate of deciduous oaks either (Figure 5b, model parameters in Table S4.3).
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349  

350 Figure 5. Standardised coefficients (parameter × variable mean) of the climatic variables in the model 

351 of Quercus ilex (evergreen oak) recruitment (a; Eq. 1 in Data analysis section) and in the model of 

352 Quercus faginea (deciduous oak) recruitment (b). Whiskers represent 95% of the credible interval of 

353 the estimated standardized coefficient, and bold whisker segments represent 75% of the credible 

354 interval.

355

356 The linear models for the interaction index between R. sphaerocarpa and evergreen oak 

357 recruitment had the best fit (AIC in Table S4.4). Spring precipitation did not have a significant 

358 effect on the interaction index (Table S4.5). However, the interaction index was inversely 

359 related to summer precipitation and directly related to the length of heat waves (Figure 6, 

360 Table S4.5). The effect of the nurse shrub become predominantly negative (i.e., recruitment 

361 under shrubs was lower than in open areas; Figure S4.2) when summer precipitation was > 47 

362 mm or the heat waves lasted < 8 days (Figure 6). Precipitation > 47 mm or heat waves shorter 

363 than 8 days occurred in 30% of the studied years each one (see climate from 2005 to 2014 in 

364 Figure 2d).
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365

366 Figure 6. Fitted linear model of the relationship between the interaction index of Retama 

367 sphaerocarpa and Quercus ilex (evergreen oak) and a) summer precipitation or b) the length of heat 

368 waves. The dots are the mean interaction index observed in the 20 transects per precipitation and 

369 length of heat waves level and the whiskers represent the standard errors of the means. Positive 

370 values of the index mean facilitation and negative values mean competition. 

371

372 DISCUSSION

373 Under stressful conditions, the facilitation of nurse shrubs is critical to ensure tree 

374 colonization, especially in areas that lack woody vegetation like abandoned fields. Despite 

375 their relevance in forest recovery, we know little about the dynamics of these effects. Our 

376 analysis of long-term colonization dynamics of oaks showed that their recruitment accelerated 

377 when oaks started recruiting under shrubs. It took the 20 years of secondary succession to get 

378 to this point, likely when shrub cover and size were large enough to provide a facilitative 

379 effect. Our results also showed that evergreen oaks recruited more than deciduous oaks and, 

380 against our expectation, only the evergreen species benefited from recruiting under the nurse 

381 shrub. Facilitation was more pronounced in years with more arid summers, and the prevailing 

382 interaction between the nurse shrub and the evergreen oak switched to competition in wet 

383 and mild summers. Our study documented facilitation dynamics for oak recruitment at a single 
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384 site, but these results could be likely general in the Mediterranean forest context. Still further 

385 studies at wider spatial scales with long temporal information would be necessary to 

386 corroborate how the nuances of this temporal perspective change.

387

388 Long-term dynamics of forest expansion reveal different recruitment pulses of the nurse 

389 shrub and oak species 

390 In accordance with our first hypothesis, the temporal trends in pulses of recruitment that we 

391 documented indicate distinct regeneration dynamics for the shrub and the two oak species. 

392 Retama sphaerocarpa – a pioneer shrub species - was the earliest colonizer, presumably due 

393 to its high dispersion capacity and drought tolerance (Haase et al., 1996; Haase, Pugnaire, 

394 Clark, & Incoll, 1999; Padilla & Pugnaire, 2007). Since most seedlings mortality occurs during 

395 the first summer in Mediterranean forests (Mendoza, Zamora, et al., 2009; Rey Benayas, 

396 Navarro, Espigares, Nicolau, & Zavala, 2005; Rolo et al., 2013), the large pulse of R. 

397 sphaerocarpa recruitment towards the end of the studied period is likely due to the beginning 

398 of seed production by already established shrubs, as observed for other plant species (Harper, 

399 1977). The oak recruitment pulses were probably caused by a combination of masting cycles 

400 (Koenig, Knops, Carmen, & Pearse, 2015; Pérez-Ramos et al., 2015), competition with pre-

401 existing plants (herbs in our study; Rey Benayas et al., 2015), and availability of nurse shrubs 

402 (Navarro-Cano et al., 2016; Perea et al., 2017). The increase in oak recruitment over time could 

403 also be attributed to the greater activity of acorn dispersers and to soil improvement after field 

404 abandonment (i.e., increase of C:N ratio, organic matter or aggregate stability; Hooker & 

405 Compton, 2003; Rey-Benayas, Galván, & Carrascal, 2010; Robledano-Aymerich et al., 2014). In 

406 particular, the facilitative effects of the shrubs started 20 years after abandonment. 

407 The two oaks also showed differences in their recruitment dynamics, in agreement with 

408 hypothesis 1. In consonance with other studies, the evergreen oak recruited more abundantly, 

409 and during longer time windows, than the deciduous oak (Gómez-Aparicio et al., 2004; Perea 

410 et al., 2017). Differential drought resistance between these species could be the main cause 

411 (Gil-Pelegrín et al., 2017; Montserrat-Martí et al., 2009). Specifically, sensitivity of stomatal 

412 conductance to water stress is lower for the evergreen oak than for the deciduous oak 

413 (Acherar & Rambal, 1992; Mediavilla & Escudero, 2004). Moreover, acorn production and 

414 dispersion of the evergreen oak is usually higher than those observed for the deciduous oak 

415 (Del Arco, Beltrán, & Martínez-Ruiz, 2018; Pons & Pausas, 2007a, 2007b; Rodríguez-Estévez, 

416 García, Perea, Mata, & Gómez-Castro, 2007), and shoots of deciduous oaks are preferred by 

417 browsers over shoots of evergreen oaks (Espelta, Habrouk, & Retana, 2006).
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418 Our results show that after 30 years of succession the evergreen oak (more stress-tolerant) 

419 had higher recruitment under the nurse shrub, while most deciduous oak juveniles (less stress-

420 tolerant) recruited in open microsites (91% of recruited deciduous oak). This unexpected trend 

421 (i.e., the more stress-prone species benefits less from facilitation) has also been documented 

422 by  Plieninger, Rolo, & Moreno (2010) and Torroba-Balmori et al. (2015). The difference 

423 between the recruitment microsites of evergreen and deciduous oak does not support our 

424 third hypothesis and contradicts a previous study that found similar occurrence of juveniles 

425 under shrub and in open areas for both evergreen and deciduous oaks (Perea et al., 2017), as 

426 well as the notion that facilitation benefits more the low stress-tolerant and herbivory-prone 

427 species (Costa et al., 2017; Madrigal-González, García-Rodríguez, & Zavala, 2014; Soliveres et 

428 al., 2014). The abundance and location patterns of evergreen oak recruitment could be due to 

429 the preference of the main dispersers, Garrulus glandarius (European jay) and Apodemus 

430 sylvaticus (wood mice), for the evergreen acorns (Del Arco et al., 2018; Pons & Pausas, 2007a, 

431 2007b), and also to their preference for caching acorns under the shrub (Gomez, 2003; Gómez, 

432 Puerta-Piñero, & Schupp, 2008; Morán-López, Alonso, & Díaz, 2015). The lack of recruitment of 

433 deciduous oaks under shrubs could be also due to strong competition between the R. 

434 sphaerocarpa and the deciduous oak or to insufficient facilitation effect (Alday et al., 2016; 

435 Plieninger et al., 2010). Future experiments should further assess the underlying mechanisms 

436 of the recruitment differences between these two oak species.

437 For the evergreen oak, the recruitment under shrub was sustained over time in comparison to 

438 the pulse patterns observed in open areas. These dynamics may indicate that facilitation can 

439 increase the window of opportunity for evergreen oak colonization, which is probably due to 

440 both direct and indirect facilitation mediated by R. sphaerocarpa (Cuesta et al., 2010; Prieto et 

441 al., 2011). However, we could not quantify which proportion of the recruitment under shrub 

442 through time was due to the lower extension of open areas. The facilitation of the evergreen 

443 oak together with the low recruitment of deciduous oaks observed suggest a more likely future 

444 dominance of evergreen oaks in Mediterranean abandoned fields (Perea et al., 2017). 

445

446 Relationship between retama population structure and oak facilitation 

447 It is likely that direct and indirect facilitative mechanisms increase with nurse size and 

448 abundance (Allegrezza et al., 2016; Cuesta et al., 2010; Gómez et al., 2008; Navarro-Cano et al., 

449 2016). Our results document the lagged facilitation effect associated with the shrub size and 

450 population structure (hypothesis 2). This hypothesis coincides with the acceleration of Q. ilex 

451 recruitment after 15 year of abandonment and its positive relationship with the cover of a 

452 leguminous shrub found by Ramírez & Díaz (2008). The R. sphaerocarpa canopy cover was in 
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453 average 2.21% at the beginning and acceleration of oak recruitment under shrub, which 

454 highlights the high facilitative capacity of this species.

455 Retama sphaerocarpa started effectively facilitating oak recruitment 20 years after shrubland 

456 recovery, and shrubs reached a threshold size of 74 cm in crown diameter, reaching the 

457 maximum recruitment rate at intermediate shrub sizes. The predominance of medium-sized 

458 individuals among the nurse shrubs suggests that facilitation under the shrub peaks and levels 

459 off once the shrub attains certain size (Navarro-Cano et al., 2016). At this point, the 

460 microclimatic conditions under the shrub canopy may be more moderate than outside, the soil 

461 may be specially enriched and structured, or the shrub could attract disperser for acorn 

462 caching and hiding (Gomez, 2003; Gómez et al., 2008; Pugnaire et al., 1996). Shrubs older than 

463 21 years frequently had irregular and open canopies linked to branch senescence (V. Cruz-

464 Alonso personal observation). This canopy opening could deteriorate the microclimate under 

465 the shrub and the physical protection against browsers (Schöb, Armas, Guler, Prieto, & 

466 Pugnaire, 2013), reducing the facilitation capacity of the older and/or larger shrubs. The R. 

467 sphaerocarpa size threshold for oak facilitation was reached when they were 7-8 years old, but 

468 the first oak recorded under shrub occurred 20 years after field abandonment. The lag 

469 between reaching a shrub structure able to facilitate oak recruitment and the effective 

470 facilitation suggests that recovery of other general ecosystem properties, further than the 

471 microenvironment created by the shrubs, such as soil structure and organic matter after 

472 agriculture ceased (Robledano-Aymerich et al., 2014), may also be needed for oak recruitment 

473 under nurse shrubs.

474

475 Climate modulates the facilitative effect on oak recruitment 

476 We could not find a clear support for the hypothesis that R. sphaerocarpa buffers the climate 

477 effect on oak recruitment since this effect did not differ between microsites. However, our 

478 analysis showed that the facilitative effect of R. sphaerocarpa on the evergreen oak was 

479 stronger (i.e., the interaction index was more positive) in years with more arid summers 

480 whereas competition prevailed in wet and mild summers. These results support the Stress 

481 Gradient Hypothesis (Bertness & Callaway, 1994; He, Bertness, & Altieri, 2013). The herb 

482 community that usually dries out in summer could grow longer under the R. sphaerocarpa 

483 shade in milder summers, and thus increase competition with oak seedlings (Tielborger & 

484 Kadmon, 2000). Surprisingly, we did not find any significant effects of spring precipitation or 

485 summer conditions on oak recruitment. The lack of a climatic effect could be due to limitations 

486 of our study, which might need additional data and not take into account other processes that 

487 might affect recruitment, such us mortality in later years (Debussche & Lepart, 1992). 
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488 Moreover, modelling results may be affected by the non-inclusion of variables such as acorn 

489 production, abundance of dispersers and soil features which vary from year to year (Koenig et 

490 al., 2013; Rey-Benayas et al., 2010; Robledano-Aymerich et al., 2014).

491

492 CONCLUSIONS

493 Long-term forest recovery in the studied Mediterranean abandoned fields exhibited 

494 differential pulses of species recruitment. Despite being closely related, oaks with contrasting 

495 leaf traits (evergreen vs. deciduous) and drought tolerance showed different patterns of 

496 recruitment. The R. sphaerocarpa shrubland buffered Q. ilex recruitment pulses, i.e. 

497 recruitment rate under the nurse was maintained during periods of low recruitment in open 

498 microsites. Q. faginea had lower recruitment than the evergreen oak during the first 30 years 

499 of forest succession and we could not document a positive effect of R. sphaerocarpa on 

500 recruitment of this deciduous oak. The nurse shrub population developed for 20 years before 

501 facilitating oak establishment and oak recruits appeared preferably in medium and big shrubs, 

502 always older than 7 years. The facilitative effect of R. sphaerocarpa increased with summer 

503 aridity. These results suggest a potential dominance of evergreen oaks in restored secondary 

504 forests in the mid-term under more arid climate scenarios and show that less stress tolerant 

505 species do not necessarily benefit more from facilitative interactions.
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