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ABSTRAC

tion of both climate and human behavior, including individual and societal
actions. Fo ason, there is a need to incorporate both human and climatic components in
models of . This study simulates behavioral influences on the evolution of community
ferent future climate scenarios using an agent-based model (ABM). The
objective is to understand better the ways, sometimes unexpected, that human behavior,
stochastic!oods, and community interventions interact to influence the evolution of flood risk.
One histori

study locati

mitigation @

e scenario and three future climate scenarios are simulated using a case
argo, North Dakota. Individual agents can mitigate flood risk via household
oving, based on decision rules that consider risk perception and coping

perception. ommunity can mitigate or disseminate information to reduce flood risk.
Results sh gent behavior and community action have a significant impact on the
evoluti isk under different climate scenarios. In all scenarios, individual and

communit' actio?generally resultin a decline in damages over time. In a lower flood risk
scenario, ne is primarily due to agent mitigation, while in a high flood risk scenario

communit ion and agent relocation are primary drivers of the decline. Adaptive
behaviors offset e of the increase in flood risk associated with climate change, and under an

extreme climate fenario, our model indicates that many agents relocate.
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1.INTRO

Annual flo have increased globally from $7 billion in the 1980s to $24 billion in years

2001 thro 2 (adjusted for inflation) (Kundzewicz et al., 2014). Flood losses have
continued\o incrgase despite the presence of both protective structures and insurance

programs ( , Daly, Travis, Wilhelmi, & Klein, 2015), primarily because of expanding
exposure @f agsetS\(Kundzewicz et al,, 2014). Future flood risk is expected to continue to
increase d h climatic and socioeconomic drivers (deBruin, Wong-Parodi, & Morgan,

2014; Alfieni , & Di Baldassarre, 2016). However, the increase in expected damages and
population at riskitan potentially be compensated for through combinations of mitigation
measures etal., 2016). Because flood risk is so highly dependent on the combination of

climate a behavior, in the form of individual and societal actions, there is a need to
incorpora uman and climatic components in models of flood risk.

H e both causing climate change and adapting to the changing climate (Palmer
& Smith, mcietal context dramatically affects vulnerability, and behavior shapes
exposure, sensitivity and adaptive capacity. Institutions can help mediate the impacts of climate
ormal approaches like regulations and information campaigns and through
s like customs and cultural norms. Adaptation decisions, both on an
societal level, are influenced by risk perceptions, and risk perceptions that differ
from the reality of risk can result in over- or under-investment in adaptation. Furthermore,
adaptation decisions can have unintended consequences for the system they are meant to
protect anSor the surrounding ecosystem (Dilling et al., 2015).

arth-system models should capture human-climate dynamics and human-
i ractions. Agent-based modeling (ABM) is one tool that is useful in this regard
(Palmer & Smiith, 2014). This study aims to simulate behavioral influences on the evolution of
communitgtlood risk under different future climate scenarios. The objective is to evaluate the
useful -based modeling for this purpose and to better understand the ways,
sometimeggunexpgcted, that human behavior, stochastic floods, and community interventions
(both S'Md nonstructural) interact to influence the evolution of flood risk. The intent
isnottob cise model of flood risk in an actual location but to enhance understanding of
E community level behavior may influence flood risk in a future climate. The
ior work that evaluates the use of ABM for simulating the evolution of

how indivi

work builds on
i d risk under historic climate conditions (Tonn & Guikema, 2018), and serves as
for simulating behavioral influences on flood risk in a future climate. The prior
ferent formulations of the historic climate ABM, while this work simulates
behavioral responses to future climate scenarios and their varying flood frequencies and
magnitudes.
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Section 2 provides background on behavioral responses to flooding and agent-based
modeling. Section 3 describes methods and data. Section 4 provides results and Section 5
concludes.

S

2. BACKG

2.1. Behahsponse to flooding

|
Decisions Qlood risk management often involve engineering models and structural
solutions. m, it is also vital to consider the behavioral component of flood risk. Individual
s

mitigation s are often better predicted by subjective or perceptual factors than by
objective ni sment. For effective flood risk management, it is essential to consider how
people think and féel about flood risk and about mitigation measures (Fox-Rogers, Devitt,
O’Neill, Br , & Clinch, et al. 2016). There are various strategies for dealing with increasing
flood risk, g sharing the loss, bearing the loss, modifying the events, preventing the
effects, or ing location (Burton, Kates, & White, 1993). In other words, flood risk can be

reduced by insuring, increasing protection, reducing the hazard, reducing vulnerability, or
relocatingf{fZ et al., 2016). Mitigation aims to lessen the financial impacts of floods on

individual nities, and society as a whole (Kick, Fraser, Fulkerson, McKinney, & DeVries,
2011) ge effective individual and community mitigation action, it is important to
consider individuals react to flood hazards, to community policies, programs, and
informatio community mitigation measures.

Individuals react to the occurrence of floods, be it repeat flooding or lack thereof.
Experiencing a flood has a large negative impact on an individual’s subjective well-being
(Hudson, zen, Poussin, & Aerts, 2017). Mitigation decisions of individuals that have
withstood past flood damage are not totally rational, but are based on reasoned ideas about
costs, risks nd place, considering perceived costs and risks of being flooded again. Risk
awarenes ed by class, prior flood experience, and length of residence (Kick et al., 2011).
Floods are ionally important and heighten flood risk awareness, and perceptions of
concrete weather events like floods generally do not vary by political affiliation like climate
change (deBruin et al., 2014).

in!waua's also react to community policies, programs, and information dissemination.

One role o ent is to trigger collective action, and governance can be an important
driver for individd¥al adaptation decision making (Adger et al., 2009). Individuals feel enabled to

act responsibly

potentially to mitigate if the community has programs that encourage
onsider the environmental and social aspects of their behavior and provide a
ironment for individual and community decision-making (Burton et al., 1993).
Buyouts and mitigation incentives also tend to come from the government. Sharing of tangible
opinions by experts and other community members is a powerful influencer of mitigation action
(Kick etal., 2011). Flood risk communication campaigns can increase individuals’ perceived
ability to implement risk mitigation strategies and willingness to take action (Fox-Rogers et al.,
2016; Haer, Botzen, & Aerts, 2016).
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The presence or addition of engineered flood mitigation also impacts individual risk
perception and behavior. Infrastructure changes undertaken by the government may lessen
flood risk, but may also create a false sense of security (Kick et al., 2011), thereby reducing

“eption and incentive to mitigate. Incremental flood protection measures
asibility of future retreat from flood prone areas (Hino, Field, & Mach, 2017).
Both strud @ l nonstructural flood mitigation measures are typically used to manage flood
risk, but n6 iral measures are becoming preferred over structural (Buss 2005;
Cumm1!ther & Rundquist, 2012). Some modes of structural flood protection reduce
the frequeficy of small floods but do not protect against rare large floods, thus exposing the
community to catastrophic impacts (Alfieri et al.,, 2016). Furthermore, structural flood
mitigationf€an indiease exposure when land protected by the mitigation measure is developed
or otherwiSeni oved (Dilling et al., 2015).

2.2. Beha:sponse to severe climate change

Floods arefaffected by various characteristics of a climatic system, including precipitation and
temperat ns along with drainage basin conditions, urbanization, and hydraulic

individ
may reduce e

S

structures. p, it is likely that more regions of the U.S. have experienced statistically
significantiin Ses in the number of heavy precipitation events versus statistically significant
decreases dZzcwicz, 2002; Kundzewicz et al., 2014; Janssen, Wuebbles, Kunkel, Olsen, &
Goodm owever, there is strong regional and sub-regional variation in climate
change imp recipitation. Anthropogenic climate change has been detected in some
variable ect the hydrologic cycle, including mean precipitation, heavy precipitation, and
snowpaer ature plays a significant role in climates where snow storage and melting

significantly affect annual runoff, with resulting changes in the timing of spring peak flows.
Without adaptation, future climate change will lead to increased flood losses in many regions
(Kundzew 52014).

M4 btreat is a type of transformational adaptation and is a deliberate
interventio plving the abandonment of land or relocation of assets (Hino et al., 2017).
Relocatio munity or portion of a community can be considered when vulnerability and

risks are sizeable, as may be the case with the substantial increase in flood risk that climate
change may cause_ in some areas (Kates, Travis, & Wilbanks, 2012). Relocation can improve the
physicaHironmental, and economic resilience of flood threatened rural communities
(Cummin 012), but often is infeasible or impractical for more urban areas. Barriers to
transformational Adaptation such as managed retreat are substantial and include uncertainties
about risk ptation benefits, perceived costs, and behavioral biases that tend towards
ates et al,, 2012). Other barriers to relocation or retreat from flood prone

roperty rights, development interests, and distorted financial interests. Local

the status g

governments O
be forced or voluntary, and motivation for relocation often involves relocation programs,
financial incentives, and awareness of high risk (Cheong, 2011). Government flood protection
tends to involve incremental change instead of transformational change (Kates et al., 2012), so
that construction of structural mitigation measures may lessen the drive for relocation.

g shy away from relocation due to fear of losing their tax base. Relocation can
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Given the impracticality and barriers to transformational adaptation for non-rural areas,
this study focuses on individual behavior and decisions around voluntary individual mitigation
and relocation versus relocation of an entire community. Haer, Botzen, and Aerts (2019) find
that hm“el adaptation may provide more important risk reduction in the short term

: fforts. Voluntary relocation usually happens after a catastrophic flood, and is
¥ economic evaluations (Alfieri et al,, 2016). In a future climate, in locations
ds"become more frequent and severe, both high perceived risks and economic and
emotio ] @& oONs of future flood prospects may lead more individuals to consider
relocations a 1Hreferred alternative for flood risk management. Decisions about mitigation and
e

relocation i: f ly dependent on an individual’s perception of flood risk and their perceived

coping appraisal. Werceived risk is influenced by an individual’s views of vulnerability
(probabili everity (consequences). Perceived coping appraisal is an individual’s
evaluatio to avoid a particular risk, and is influenced by perceived efficacy of
mitigation suges, self-efficacy, and response cost (Bubeck, Botzen, Kreibich, & Aerts, 2012).

2.3. Agent® Modeling

C

An Agent- del (ABM) is a simulation model that includes both decision-making entities,
S,
e

called age tochastic elements (Bonabeau, 2002; Evans & Kelly, 2004; Epstein, 2006).
The agents erogeneous, spatially-explicit, and autonomous, and can interact with other
agents ir environment. Agents can experience stochastic elements such as floods,
and can ma isions and take action. They have learning rules and decision rules which can
vary by #The learning rules describe how they incorporate new information occurring in
their e and messages from other agents. The decision rules specify actions they can

choose and how they make their choices. An ABM allows simulation of how individual behavior
impacts OSer individuals and a community as a whole over time. While ABMs are generally

intended t rather than predict, they can be used to simulate the emergence of system-
level outc ooks & Heppenstall, 2012; Berglund, 2015).

AB seful tools for examining systems in which individual behavior is an
important f collective outcomes in ways that cannot be easily modeled by more

aggregate Wodels. ABMs have been used to examine coastal flooding by Dawson, Peppe, and
a focus on real-time management of a coastal flooding event, not on the
that this study focuses on. A precursor to this study focused on the longer
time horiz ietal changes (e.g.,, land use change and household level mitigation decisions)
that impact the eSlution of flood risk over time (Tonn & Guikema, 2018). Another study

pacts of household flood risk mitigation decisions using different economic

investigat
decision aer, Botzen, Moel, & Aerts, 2017). Our study employs an ABM to simulate
how in behavior influences flood risk over time under future climate scenarios.
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3. METHODS AND DATA

3.1. Overview

and comm% e'occurring annually. First, a climate scenario is selected from four choices:
historid®]faeead three future climate scenarios. Then, the first simulation year begins, with
an initializs'on Bhase consisting of two elements. Vacant parcels are randomly populated and a
flood elevatipn is sampled. Next, the agent simulation occurs, with the flood elevation for each
agent calcfllated based on the agent’s elevation and the sampled flood elevation. Damage is
calculated agent, and the agent’s risk and coping perception values are calculated. If
riskand c ception values exceed thresholds, the agent may decide to move out, elevate
their hom their mechanical equipment, or complain to the community. The next phase
is the community simulation. Based on total agent damage and total agent complaints, the
community decid®s to undertake a mitigation project and/or an information campaign or
chooses t action. After the community simulation occurs, agent and community
damage a s are recorded, and the simulation proceeds to the next simulation year. This
is repeatedifor a total of 50 simulation years.

US

g

50 igations were run for each climate scenario, and results were recorded. This
was determin be an adequate number of replications based on convergence calculations on
the average'la e in the first five simulation years and total damage over the entire
simula Further details regarding the convergence calculations are presented in
Tonn and (2018).

Author M
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Fig. 1. Agent-Based Model Framework

r |

3.2.Case S ocation

O

Flood risk y depends on locational characteristics, and this study uses a case study
approaghsi fa simulated location. The city of Fargo, North Dakota was selected as the
case studyglocatiom. Fargo is situated along the Red River of the North and is prone to
significant¥repetitive flooding. An area of the city located adjacent to the Red River consisting of
2,124 lan was chosen as the case study area and is illustrated in Figure 2. Extensive

GIS data f i a were obtained from the City of Fargo, including data on parcel boundaries
cteristics. Parcel elevations within the case study area vary within a 10 foot
arcel elevations are low enough that each parcel is susceptible to flooding. While
roach was used, effort was made to produce methods and results that are

er locations.

th

U

generalizable to
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O Fig. 2. Case study location with agent (parcel) boundaries
3.3. Floo&ievations: historic climate

In the hist ate model, flood elevations are sampled from a dataset that was generated
usmg pea ood elevations from U.S. Geological Survey (USGS) gauge 05054000 (Red
Fargo), years 1942-2013. This stream gauge is situated close to the midpoint
in the study area. Data were available for this gauge from years 1902 to 2013.
on a study by Villarini, Serinaldi, Smith, and Krajewski (2009) and on
parameter codes 1h the data set, it is evident that there was a change in the data set starting in
year 1942. Therefore, only data from 1942 to 2013 were included in the study, resulting in a
total of 72 years of record.
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A weibull distribution was fit to this dataset, and the 100-year (0.01 annual chance)
flood elevation was estimated to be 902.5 feet, which is comparable to the Federal Emergency
Management Agency’s (FEMA'’s) 100-year elevation for this location. The maximum flood
elevati aset is 903.5 feet, and to enable the simulation of a greater magnitude flood,

0 add a higher flood elevation to the dataset. A 500-year (0.002 annual

chance) fl¢ @ ation was generated from the weibull distribution, with an elevation of 905.1
feet. The o ai'data set includes 72 years of record, and to generate around 500 years of
record,hiS"@E¥aSet was replicated 7 times (72x7=504). Then the generated 500-year flood
elevation Wias added to the dataset, for a total of 505 flood elevation data points to sample from.
So that the tlood elevation sample set would mimic real world values, this process was selected
instead of g a fully synthetic data set. While floods of 100-year or greater magnitude
would likel¥

e both pluvial and fluvial flooding, the scope of this analysis is limited to
fluvial (rivesi ooding associated with the Red River of the North.

3.4. Flood elevati)ns: future climate

Future cliCxarios are based on a U.S. Army Corps of Engineers (USACE) report (Alberto,
Banitt, Fabg giing, & Foley, 2015) entitled “Red River of the North at Fargo, North Dakota,
Pilot Studyj Imipadt of Climate Change on Flood Frequency Curve.” The report includes tables
and figures'ShowWing the estimated climate change impact on the frequency curve for the periods

it was nece,

2011-2 070, and 2071-2100. The historic (1950-1999) annual peak frequency curve
is provide ith the median peak flow rate curve for each time range and the 10% and
90% confi interval limits. The 2041-2070 time range estimates were chosen for use in
this pr . e in the report provides the median, 10%, and 90% limits of the frequency

curve values for this time range.

Baule peak flow rate report values, we computed a percent change from historic

climate flowssf@imeach of the return periods for the median, 10%, and 90% estimates, as shown
in Table I. @ e calculated a set of flow values for the median, 10%, and 90% scenarios,
based on the oric flow values from USGS gauge 05054000 and the percent change values for

each scen ent change values for each flow rate were interpolated based on the percent
change Vases specified for the return periods. In other words, sets of flow values were
generated for the median, 10%, and 90% scenarios. Using the stage-discharge rating curve for

the gau & as available from the USGS, flood elevations were estimated for each of these

flow value e cases, the flow values exceeded the maximum flow on the rating curve.
The upper portiomjof the rating curve is nearly linear, and we assumed that the linear trend

continued the maximum value on the rating curve. This linear equation was used to

estimat%/ations for flows above the maximum flow value.
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Table I Period 2041-2070 future climate percent change from historic climate flow rates

Exceedance Return % Change % Change % Change
wability Period 10% 90%
Median

Qo.s 2-yr 13% -22% 58%

[ _0.1 10-yr 5% -17% 35%
L0.02 50-yr 4% -23% 56%

‘ ').01 100-yr 6% -24% 63%
0.005 200-yr 9% -28% 70%

S

Given tha@ithe future climate scenarios were provided for a range of years and

iderable, we opted to model future climate as a set of scenarios rather than a
gradually data set. This allowed for a level of simplicity and makes sense given that
annual pedk floods are stochastic occurrences which do not gradually increase at a static rate
over time. Future work could incorporate more in-depth climate modeling with a gradually

d values to sample from.

u

uncertain

7

changing

d

3.5.Agen e and Behavior

\Y

A percent damage value is calculated for each agent in each simulation year using depth-damage
curves frofli FEMA’s HAZUS program, in conjunction with structure characteristics and flood

f

depth. Str aracteristics are based on City of Fargo GIS data, and the flood depth is
calculated the sampled annual flood elevation versus the agent’s elevation. The
agent’s pe age value is multiplied by the agent’s property value to estimate damage at
the agent level.

h

Risk perception and coping perception values are calculated for each agent in each
simulationgyear. agent will consider taking action to reduce flood risk if the risk perception
and cop tion values in a given year exceed specified thresholds. Risk perception and
coping pe calculations are based on seven factors identified through extensive
literature review, 1) Flood experience: how many floods has the agent experienced in prior
years (Ludy olf, 2012; Lin, Shaw, & Ho, 2008; Siegrist & Gutscher, 2008)? 2) How many
near-mis S has the agent experienced in prior years (Dillon & Tinsley, 2008; Dillon,

; in, 2011)? 3) Has the community previously completed mitigation (Ludy &
Kondolf, 2017Z; eck etal,, 2013; Birkholz, Muro, & Smith, 2014)? 4) Has the agent previously
completed mitigation (Bubeck et al., 2013)? 5) Did the community disseminate information in
the previous year (Poussin, Botzen, & Aerts, 2014)? 6) How many floods have the agent’s
neighbors experienced in prior years (Hudson et al., 2017)? 7) How many near-miss events
have the agent’s neighbors experienced in prior years (Dillon et al., 2011; Tinsley, Dillon, &

i

U

Tinsle
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Cronin, 2012)? Due to the small size of the study area, all agents are considered neighbors to
each other for calculation purposes. Each factor value is multiplied by a beta value and summed
to generate a total risk perception value. The positive or negative sign of the beta value is based
on whe or tends to increase or decrease perceived risk. Beta values were set to

reflect bot pagnitude and the relative weight of the factors. More explicit discussion of
each of thé @ s and their beta values is included in Tonn and Guikema (2018).

The siskgielerance threshold, which is the risk perception level at or above which an agent
will consic;r taking action, was set at 60 based on professional judgment. Possible values of the

risk perce ors were analyzed to identify the likely limit at which agents would perceive
the risk asfitigh éRpugh to consider mitigation action. Each agent was randomly assigned a risk

tolerance aghj nt factor between 0.8 and 1.2 and the risk threshold was multiplied by this
factor to reflectzagent heterogeneity in risk tolerance. In addition to the risk threshold for agent
action, th%k threshold for agents to move out. If the risk reaches this high threshold,
the agent mbBVe out, and the parcel becomes vacant. The threshold is set at 90 and is also
multiplied gent risk tolerance factor.

Copi eption is calculated similarly to risk perception. The following five factors are
included. oping perception: A random base value is assigned to each agent for
heterogen@ity. 2) Home value: A value is assigned based on the agent’s property value and

serves as a proxy for socioeconomic factors (Poussin et al., 2014; Bubeck et al., 2013; Lin et al,,

2008).3) § Sent mitigation: Has the agent previously completed mitigation (Bubeck et al.,
2013)74) ion: Did the community disseminate information in the previous year
(Bubec ; Tinsley et al., 2012)? 5) Neighbor mitigation: How many of the agent’s
neighbo completed mitigation in prior years (Poussin et al., 2014; Ludy & Kondolf,
2012)?

ach of the coping factors are weighted equally and have a value from 0 to 20, and the
maximum possible coping perception value is 100. Based on an analysis of possible values and
professior§ I’udﬁment, the coping threshold is set at 30. Regardless of the agent’s risk
perception value, an agent will not take action unless their coping perception meets or exceeds

Agentactions include complaining to the community (requesting community action),
elevating cal equipment, and elevating the house. In each year, if the agent’s coping and
risk pe i th meet the specified thresholds, the agent complains to the community.
Furthermare, when the coping and risk perceptions both meet the specified thresholds, the
agent C(Migation. The agent’s decision to elevate mechanical equipment, elevate the
whole houSFg, do nothing, is based on the lowest cost option using a utility function that
includes mitigatigh cost and expected reduction in damage. For purposes of this analysis, the
ipment elevation and for whole house elevation are used for each agent, and
itis ass at equipment or house elevation is feasible for each agent. The cost used for
whole h vation assumes that houses are constructed on masonry foundations and are
elevated with co

same costs for e

es of masonry block.
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3.6. Community Action

As noteMv , 1T an agent’s risk and coping perceptions meet or exceed the threshold values in
ayear, the ain” to the community. If 5% or more of the agents in the community
complain i ar, the community will implement an information campaign. The USACE
provides flood risk and mitigation information to communities on a regular basis, as was
indicate conversations with a USACE staff member. However, communities do not always
implemeank information campaigns unless prompted in some way to do so. Agents are
more likelweive a higher risk of flooding and to undertake mitigation when they receive

flood risk lformgfion from the authorities (Lindell & Hwang, 2008; Ludy & Kondolf, 2012).

To unity flood damage for each year is calculated by summing the agent damage
for that ye@r.Af tgfal community damage exceeds $10 million in a given year, the community
will implement a flood mitigation project. To establish the community damage threshold, an
overall co@ depth-damage curve was generated, and $10 million was selected as the
pointont in which damage begins to increase rather sharply. This corresponds to the

flood elevgre damage could be considered substantial enough to justify community

action. Un@ler community mitigation conditions, the flood elevation sample set is adjusted to

reflect flo ons as impacted by the mitigation measure. Mitigation is simulated as a
levee, and j med that the levee will not fail over the duration of the simulation period.
Thereforefon munity mitigation occurs, the flood elevation sample set is adjusted by

replacing all data points below the mitigation elevation with zero flood elevation.

5.2% parcels in the study area are vacant at the beginning of the simulation
period. art of each simulation year, there is a probability that each vacant parcel will be
occupi agent. If there is no community mitigation in place, the probability that a
vacant parcel will be occupied in a given year is 0.01. If community mitigation is in place, the

probabilitShat a vacant parcel will be occupied is increased to 0.1, reflecting a decrease in
perceived :

3.7. Sensiti alysis

ho

Because ofgthe sujective nature of key parameters in the study, sensitivity analysis was

{

performedfon those parameters. Prior work using a historic climate scenario included

on risk perception threshold, coping perception threshold, agent complaint
ity damage threshold, risk threshold for moving, the probability of a vacant
ied without community mitigation, and the probability of a vacant parcel
ied with community mitigation. These prior results indicated greatest

k and coping perception thresholds and much less sensitivity to the other
parameters. As Stch, sensitivity analysis was performed for these two parameters for each of
the four climate scenarios. For the sensitivity analysis, a single parameter was adjusted at a
time, with 500 replications run for each adjustment. Changes in damage in early, middle, and
late simulation years as well as changes to total damage were reviewed. Impacts to the

sensitivit
threshold,
parcel being oc

u

numbers of agents mitigating and the occurrence of community mitigation were also reviewed.
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4. RESULTS

4.1. Damage
The ABM nder the historic and future climate scenarios. Table II and Figure 3 show
average d ch climate scenario. The average damage is the sum of agent damage for

the givéh yEEPOESimulation range averaged across 500 replications. Damage under the 10%
climate scé8ario was well below the historic and median climate scenarios, while damage under
the 90% climatescenario was nearly an order of magnitude higher than the historic scenario.
Damage d{lines i’mrply (61 to 79%) between the early and middle simulation years for all
scenarios. e declines less significantly (19 to 33%) between the middle and late
simulatio he decline in damage can be attributed to agent and community mitigation
measureche vulnerability. For the historic climate scenario, damage actually increases

in the later years, most likely due to vacant parcels being occupied.

Whi ture climate scenarios are uncertain, some interesting results are evident
from these scenarios. The median climate scenario has higher average annual damage than the
historic clifhate scenario in the early years. However, in the later years (years 47 to 51), the
median cli age is lower than the historic climate damage. This indicates that in some
cases, clima h
community m
This finding¥s

ge may result in increased risk perception and increased agent and

dtion, resulting in lower total damage than under historic climate scenarios.
ne with the results of Haer et al. (2019), which indicate that adaptation

decisio ly offset the increase in flood risk due to climate change.
In Y these results indicate that moderate increases in flood heights due to changes
in clim anaged through agent and community action. Very large increases in flood

heights result in extremely high damage values, despite agent and community efforts to
mitigate, apd damage remains high despite large percentages of agents moving out of at-risk
areas. Un 0% climate scenario, damage is significantly less than under the historic

ith lower flood heights, damage declines over time, primarily due to individual
gt high-risk parcels.

climate. Even
agent mitiga

able II Average and total damage under climate scenarios ($ millions)

H Historic ~ Median 10% 90%

Climate
Climate Climate Climate

Avgddamage (Yrs. 2-6) $4.83 $6.45 $1.80  $47.32
g. Damage (Yrs. 21-25) $1.87 $2.41 $0.53  $10.01
Avg. Damage (Yrs. 47-51) $2.10 $1.62 $0.36 $8.11

Total Damage $23.40 $26.13 $7.01 $144.01
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Fig. 3 Av nual damage over time: a) all climate scenarios, b) historic, 10% and median
climate scenarios

Table III p
the overall g
study arealin

er capita damage under historic and future climate scenarios. In comparing
¢ values to the per capita damage values, the role of movement out of the

ing damages starts to become evident. Under the 10% climate scenario,
movement® e study area is extremely limited, and the percentage change in damage and
per ca across the early, middle, and late simulation years is identical. Under the
historic cli nario, the percent change in damage and per capita damage vary minimally.
For the imate scenario, the per capita percent change in damage is less than the
overall nge in damage for the early to middle years. In the middle to late years, the
per capita percent change is greater than the overall percent change. The same trend is
apparent dnd magnified for the 90% climate scenario. The role of movement out of the area is
considere in Section 4.4.

11

W

f

ble III Average and total per capita damage under climate scenarios ($)

Historic Median 10% 90%

Climate Climate Climate Climate

Avg. Damage (Yrs. 2-6)  $2,438  $3,275 $897  $27,669

Avg. Damage (Yrs. 21-25)  $1,012  $1,363 $267  $17,701

Avg. Damage (Yrs. 47-51)  $1,124 $917 $178 $6,515

Autho

Total Damage $12,510 $14,553  $3,501 $213.,546
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Figure 4 provides maps of total damage over the 50-year simulation period as a percentage of
property value for each agent. The lowest elevation agents, which are not all located adjacent to

the river, ieneralli experience the highest percent damage. In the 10% climate scenario, most

agents damage only equating to 1% or less of the property value while some lower
elevation ag experience more significant damage. A greater number of agents experience
damage ed @ 0 5 to 50% of the property value for the historic scenario. Mapped results
look simild

edian climate, with more agents suffering damage in the 10 to 50% of
proper& valle afge. Under the 90% climate scenario, nearly all agents experience damage
equivalent®p at least 10% of their property value.
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Fig. 4 average total damage: a) historic climate, b) 10% climate, c) median climate, d)

90% climate
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4.2. Agent Mitigation

Household on, either in the form of equipment elevation or home elevation, is

undertake By agents in some simulations. Figure 5 shows the percentage of the 500
simulatfo IS H¥RICch the agent implemented household mitigation, either elevation of
equipmen®gyr of the entire structure. In the 10% climate scenario, agent mitigation is limited
and aligns well with the higher damage agents illustrated in Figure 4. Agent mitigation is more
significantlinder the historic and median climate scenarios, with many agents implementing

household ig@tion in at least 50% of the simulation runs. Under the 90% climate scenario,
most agen te in at least some simulation runs. However, no agents mitigate in 50% or
more sim n_gns under the 90% climate scenario. Under this scenario, community

mitigation often happens early on due to very damaging flood events. This reduces agents’

perceived risk, wsch results in fewer agents installing household mitigation.

Agent Mitigation (Historic Climate) Agent Mitigation (10% Climate)
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Fig. 5 Map of agent mitigation: a) historic climate, b) 10% climate, c) median climate, d) 90%
climate
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4.3. Community Mitigation

When d n a simulation exceeds the damage threshold, the community implements
communit sation. The percentage of simulations with community mitigation varies
dramatica @A on climate scenario, as illustrated in Table IV. Under the historic climate,

20% of ;eilications include community mitigation, with the mitigation occurring in year 20 on

average. er the median climate scenario, 63% of replications include community mitigation,
the average year of mitigation. Under the 10% climate scenario, community
t occur in any replication due to the lack of widespread damage. Under the
90% clim io, community mitigation happens in 99% of replications, with the average
year of mitigdtion being 11. In 38% of replications under this climate scenario, more than one

communi gdtion occurs, meaning the height of the community flood mitigation is
increased egifent to initial installation.

with year
mitigation

Table IV Summary of community mitigation

-
C Historic =~ Median 10% 90%
Climate Climate Climate Climate
mgﬁons with community mitigation 98 314 0 494 (99%)
(20%) (63%)
AVEM of first community mitigation 20 16 N/A 11

Number of replications with more than one 4 (1%) 14 (3%) 0 191 (38%)
mitigation

#

In the mo @ rone climate scenarios, community mitigation plays a significant role in
damage red¥@i® over time, while agent mitigation is more significant in the scenarios that

includefe flooding.
4.4. Vaca*y

t movement out of the study area has a strong influence under some of the
scenarios. Table V provides a summary of vacancy rates in the simulations. The
ate in the models is 5.2%. Under historic climate, average vacancy over the

u@
starting vacad
simulation period is 12%. Vacancy rates are slightly higher under the median climate scenario,

and substantially increased under the 90% climate scenario, with average vacancy rates of 68%
over the 50 year simulation period.

future ¢l#i
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Table V Average vacancy rates for future climate scenarios”

Historic Median 10% 90%

H Climate Climate Climate Climate

Q.VacancyRate(Yrs.z-@ 6.7%  73%  55%  19.5%

m g Vacancy Rate (Yrs. 21-25) 13.3% 16.6% 5.8%  73.4%

. Vacancy Rate (Yrs. 46-51) 12.2% 17.2% 5.3% 85.8%

g. Vacancy Rate (Yrs. 2-51) 11.9% 15.5% 5.6% 68.2%

Gl

se Vacancy Rate = 5.2%

S

Further review offyacancy rates indicates that for the historic, median, and 10% climate
scenarios, rates generally do not differ substantially amongst most replications. Under
the 90% c ere is much variation in vacancy rates in the middle simulation years,
followed by consistently high vacancy in the later simulation years. An individual’s decision to
prone area is often heavily influenced by the availability of incentives or
buyout fu increasing vacancy of neighboring parcels is also a significant influence.
While thesg.fa ﬁ 5 are not included in this study, it is clear that under certain future climate
scenarios, vacancy can have a significant impact on flood risk.

nul

move out

a

M

4.5.Se alysis

1

Sensitivi was run to understand the impact of the subjective risk and coping
threshold gatrameters on model results, as described in Section 3.7. Figures 6 and 7 illustrate
the perce @ ces in damage, agent mitigation, and community mitigation associated with
changes in the risk and coping thresholds. Total damage is sensitive to variations in these
parameter§ and tends to increase as the values of these parameters increase. Atthe lowest
value ofigi old, damage is low and agent mitigation is high. Community mitigation is
low du r damage and agent mitigation. Damage in the later simulation years is
more sensitive to changes in the risk threshold than damage in the early years of the simulation.
The 10% clima enario results are most impacted by a decrease in risk threshold, while the
median a i c scenarios show greatest sensitivity to increases in risk threshold.

th

t

A
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Avg. Damage Yrs. 2-6 Avg. Damage Yrs. 21-25 Avg. Damage Yrs. 47-51
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Fig. 6 Sensitivity Analysis, Risk Threshold
Total da omewhat more sensitive to changes in coping threshold than to changes in risk
thresh ry high values of coping threshold (greater than 30% increase) no agent

mitigation occurs, and community mitigation increases sharply. The 10% climate scenario
exhibits t];!least sensitivity to changes in the coping threshold. The median climate scenario
damage e e greatest sensitivity to this parameter, particularly to increases in the
threshold. ariations point to the importance to better understand the role of coping
perceptio ing to climate risk and to better quantify this parameter for improved
simulation of'@daptation to climate risk. It also highlights the importance of programs like
communi ation campaigns and of neighbor influence on overall community adaptation
to clim
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Fig. 7. Sensitivity Analysis, Coping Threshold
5. CONCL

Evolving fl@od risk was simulated under historic climate conditions and three future climate
an agent-based model. The agent-based simulation included an initialization
compone nt action component, and a community action component. Each simulation
represente year period, and 500 replications were completed for each climate scenario.
Results, including damage, population, and agent and community actions, were recorded for
each year @f each simulation, and for each replication. The results demonstrate how flood risk
can evd munity based on the occurrence of flood events and individual and

commugigaciio

Un edian climate scenario, total damage was generally higher than under the
historic scenari owever, in some cases, damage under the median scenario was actually
lower as the hi

scenarios using

flood elevations triggered higher agent risk perception values and

and community mitigation. The 10% and 90% climate scenarios are somewhat
both cases, individual and community action result in a decline in damages over
time. In the 1 enario, the decline in damage over time is due to agent mitigation, while in
the 90% scenario, community mitigation and agent relocation are primary drivers of the
decline. This makes sense, because in less severe flooding, a limited number of agents are
impacted, and the problem can most efficiently be dealt with at the agent level. For more
pronounced flooding, community level efforts and individual relocation are more practical.
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Under an extreme climate scenario with more frequent and severe floods, our model suggests
that many agents move out of the study area.

resents a method for considering individual behavior in assessing flood risk
under future climate scenarios. Individual actions, including the choice to install household
es, to request community action, and to vacate a high-risk area have a
pod risk in a community over time. Individual perceptions of the risk and
of thein@bidiiggte@ddress the risk play an important part in community flood risk. ABM clearly
can help illastrate, analyze, and understand these behavioral facets of flood risk. Behavioral
rules in thhere based on an extensive literature review and on professional judgement.
Further st onmndividual and community behaviors, specifically regarding risk perception,
coping pe io# and mitigation action, will allow for more precise quantification of agent

decision rules uagfuture work.
Th is limited in its use of four static climate scenarios. While this is appropriate

to test the ﬁf using ABM as a tool to simulate climate adaptation, future studies would

benefit from simullation of additional climate scenarios and gradually changing climate
condition er, the study is limited in its evaluation of flood risk based solely on residential
damage amtion atrisk. To enable more holistic decision-making, total societal costs
could be stulated in future flood risk ABMs. Future work will include a detailed behavioral
insurance rnment policies and incentives also significantly affect individual decisions
on how to flood risk, and can have a substantial impact on community flood risk over

time. T, f policies, insurance, and incentives will be incorporated into future versions
of them M can help understand, illustrate, and analyze these behavioral facets of flood

survey to gain additional information to refine the individual decision rules in this study. Flood

risk.
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