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The statistical practice of modeling interaction with two linear main effects and a
product term is ubiquitous in the statistical and epidemiological literature. Most
data modelers are aware that the misspecification of main effects can potentially
cause severe type I error inflation in tests for interactions, leading to spurious
detection of interactions. However, modeling practice has not changed. In this
article, we focus on the specific situation where the main effects in the model are
misspecified as linear terms and characterize its impact on common tests for sta-
tistical interaction. We then propose some simple alternatives that fix the issue of
potential type I error inflation in testing interaction due to main effect misspec-
ification. We show that when using the sandwich variance estimator for a linear
regression model with a quantitative outcome and two independent factors,
both the Wald and score tests asymptotically maintain the correct type I error
rate. However, if the independence assumption does not hold or the outcome
is binary, using the sandwich estimator does not fix the problem. We further
demonstrate that flexibly modeling the main effect under a generalized additive
model can largely reduce or often remove bias in the estimates and maintain the
correct type I error rate for both quantitative and binary outcomes regardless of
the independence assumption. We show, under the independence assumption
and for a continuous outcome, overfitting and flexibly modeling the main effects
does not lead to power loss asymptotically relative to a correctly specified main
effect model. Our simulation study further demonstrates the empirical fact that
using flexible models for the main effects does not result in a significant loss of
power for testing interaction in general. Our results provide an improved under-
standing of the strengths and limitations for tests of interaction in the presence
of main effect misspecification. Using data from a large biobank study “The
Michigan Genomics Initiative”, we present two examples of interaction analysis
in support of our results.
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1 INTRODUCTION

The scientific notion of interaction between two factors tries to capture the phenomenon that the effect of one factor is
different in the presence or absence of another factor.1 This could be of the nature that one factor is activated/silenced
only in the presence of another factor, thus exhibiting a complete synergistic or antagonistic effect. It could also be more
subtle in terms of modification of the strength of association of one factor with the outcome when the other factor is set at
two different levels. This definition does not assume any particular structure of the joint response surface determined by
the two factors, except that under the hypotheses of no-interaction, the implied marginal response surfaces of one factor
are simple constant shifts when the other factor is fixed at two different levels. Interaction is often statistically assessed by
fitting a regression model for a quantitative or binary outcome by including two linear main effects and products between
the two factors. However, missing a quadratic term (say) in one variable that truly exists can lead to the detection of
spurious interactions in a linear model as the cross-product term then tries to mimic/approximately capture the second
order features of the model. There exists some literature on this topic in statistics, genetics, and epidemiology.2-8 For
longitudinally measured quantitative outcomes main effect misspecification is discussed in He et al.9

In this article, we consider a specific scenario related to the effect of misspecification of main effect structure on tests
for statistical interaction: when the true underlying main effect is nonlinear but a linear model is specified for the main
effects. When such main effect misspecification is present, then, in general, the standard statistical tests (eg, the Wald
or score test based on model-based SE) will lead to an invalid test of interaction and potentially severe type I error rate
inflation. Under certain conditions, the type I error inflation may be fixed by using robust inference (eg, using sandwich
variance estimator) and this phenomenon has been empirically observed by, for example, Voorman et al10 and Cornelis
et al,6 and formally studied by Tchetgen Tchetgen and Kraft,5 He et al,9 and Sun et al.8 This problem has also been
discussed recently in analyzing treatment and biomarker interaction as it is natural to assume independence of treatment
with other covariates in a randomized clinical trials.11,12

We show that for quantitative outcomes when a linear regression model is applied, and the two factors are indepen-
dent, both the usual Wald and score tests, when modified by the sandwich variance estimator asymptotically maintain cor-
rect type-1 error. However, if the independence assumption does not hold or the outcome is binary and analyzed by a logis-
tic regression model, using the sandwich estimator does not fix the problem. We further demonstrate that flexibly mod-
eling the main effect under a generalized additive model (GAM) using a flexible nonparametric term can reduce bias in
the estimates and maintain correct type-1 error for both quantitative and binary outcomes regardless of the independence
between the two factors. We show, under the independence assumption and for a continuous outcome, overfitting and
flexibly modeling the main effects does not lead to power loss asymptotically relative to a correctly specified main effect
model. Our simulation studies indicate by flexibly modeling the main effect we do not lose power significantly for testing
interaction in general. Using data from the Michigan Genomics Initiative, a large ongoing biobank study at the University
of Michigan, we illustrate our theoretical and simulation results as they pertain to two examples on interaction analysis.

This article contributes to the current literature by considering both quantitative and binary outcomes, proposing and
studying two general ways of handling main effect misspecification (ie, robust inference and flexible modeling of main
effects), and studying the advantages and disadvantages of each method in terms of both type I error control and power
under different assumptions regarding independence. Our results provide an improved understanding of the strengths
and limitations of each method, in both finite samples and large samples, for interaction tests in the presence of main
effect misspecification.

2 METHODS

2.1 Tests for statistical interaction

We are interested in evaluating the interaction effect between two variables X1 and X2 on the outcome Y , which can be
quantitative or binary, based on a study with n individuals. The observed data are denoted by (X1i, X2i, Y i) for i = 1, … ,
n. Denoting 𝜇i = E(Y i| X1i,X2i), we suppose the test of interaction is based on the following regression model,

g(𝜇i) = 𝛽0 + 𝛽1X1i + 𝛽2X2i + 𝛽3X1iX2i, (1)

where 𝛽 = [𝛽0, 𝛽1, 𝛽2, 𝛽3]T are unknown regression parameters, and g(𝜇) is a link function. Specifically, we assume a linear
regression model is used for quantitative outcomes and a logistic regression model is used for binary outcomes, that is,
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g(𝜇i) = 𝜇i for quantitative outcomes and g(𝜇i) = logit(𝜇i) ≡ log
(

𝜇i
1−𝜇i

)
for binary outcomes. The parameter 𝛽3 measures

the magnitude of a linear statistical interaction between X1 and X2. Based on the regression model, to test the interaction
between X1 and X2, one can test the hypothesis H0: 𝛽3 = 0 vs H1 : 𝛽3 ≠ 0. We first describe two commonly used tests,
namely, the Wald test and score test, and inferential procedures using the model-based SE and the empirical sandwich SE.

2.1.1 Wald test

The Wald test is one of the most commonly used methods for testing unknown parameters in a parametric regression
model. It is constructed using the maximum likelihood estimate of the parameter of interest and its SE. Considering
model,1 let 𝛽 denote the usual maximum likelihood estimate of 𝛽. For both linear and logistic regression models, it is the
solution to the estimating equation ∑

i
Xi{Yi − g−1(XT

i 𝛽)} = 0,

where Xi = [1, X1i, X2i, X1iX2i]T . Two methods can be used to estimate the variance and covariance matrix of 𝛽. In
model-based inference, the variance estimate is obtained by assuming the specified linear/logistic regression model is
correct. Alternatively, one can obtain the empirical estimate of variance without assuming the corresponding mean regres-
sion model is correctly specified using the so-called sandwich variance estimate. See Appendix for details. We denote the
predictions and residuals as 𝜇i = g−1(XT

i 𝛽) and 𝜖i = Yi − 𝜇i respectively. For a linear regression model with a quantitative
outcome, the model-based and sandwich variance estimates of 𝛽 are

V̂model(𝛽) =
1

n − p

(∑
i
𝜖2

i

)(∑
i

XiXT
i

)−1

,

V̂sandwich(𝛽) =
n

(n − p)

(∑
i

XiXT
i

)−1 (∑
i

XiXT
i 𝜖

2
i

)(∑
i

XiXT
i

)−1

,

respectively, where p is the dimension of Xi. For a logistic regression model with a binary outcome, the model-based and
sandwich variance estimates of 𝛽 are

V̂model(𝛽) =
n

n − p

{∑
i

XiXT
i 𝜇i(1 − 𝜇i)

}−1

,

V̂sandwich(𝛽) =
n

(n − p)

{∑
i

XiXT
i 𝜇i(1 − 𝜇i)

}−1 (∑
i

XiXT
i 𝜖

2
i

){∑
i

XiXT
i 𝜇i(1 − 𝜇i)

}−1

,

respectively. Under H0, if the model for main effects (ie, effects of X1 and X2) is correct, then asymptotically the Wald test
statistic 𝛽2

3∕V̂model(𝛽3) with model-based variance estimate and its sandwich version 𝛽2
3∕V̂sandwich(𝛽3) follow a Chi-square

distribution with 1◦ of freedom. For a level 𝛼 test, we reject H0 : 𝛽3 = 0 when the test statistic is greater than 𝜒2
1, 𝛼 , where

𝜒2
1,𝛼 satisfies P(𝜒2

1 > 𝜒2
1,𝛼) = 𝛼.

2.1.2 Score test

Unlike the Wald test which is based on fitting a full model including both main effects of X1 and X2 and their interaction
term, the score test is based on the score statistics of a model under the null hypothesis. Specifically, under the null
hypothesis, model1 reduces to the model with only main effects:

g(𝜇i) = 𝛽0 + 𝛽1X1i + 𝛽2X2i, (2)
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where 𝛽 = [𝛽0, 𝛽1, 𝛽2]T are unknown parameters in the null model. Let 𝛽 be the maximum likelihood estimate of 𝛽 under
this null model and 𝛽 is the solution to the estimating equation

∑
i

Xo,i{Yi − g−1(XT
o,i𝛽)} = 0,

where Xo, i = [1, X1i, X2i]T . We denote the predictions and residuals from model2 as 𝜇i = g−1(XT
o,i𝛽) and 𝜖i = Yi − g−1(XT

o,i𝛽)
respectively. The score statistic with respect to 𝛽3 is

S = 1
n
∑

i
X1iX2i(Yi − 𝜇i).

For a linear regression model for a quantitative outcome, the model-based and sandwich variance estimate
of S are

V̂model(S) =
1

n2(n − p)

(∑
i
𝜖2

i

)
Ã

(∑
i

XiXT
i

)
ÃT ,

V̂sandwich(S) =
1

n(n − p)
Ã

(∑
i

XiXT
i 𝜖

2
i

)
ÃT ,

respectively, where Ã =
[
−
(∑n

i=1 X1iX2iXT
o,i

)(∑n
i=1 Xo,i XT

o,i

)−1
, 1
]

and p is the dimension of Xo,i. For a logistic regression

model for binary outcomes, the model-based and sandwich variance estimate of S are respectively,

V̂model(S) =
1

n(n − p)
B̃

(∑
i

XiXT
i 𝜇i(1 − 𝜇i)

)
B̃T ,

V̂sandwich(S) =
1

n(n − p)
B̃

(∑
i

XiXT
i 𝜖

2
i

)
B̃T ,

where B̃ =
[
−
{∑n

i=1 X1iX2i𝜇i(1 − 𝜇i)XT
o,i

}{∑n
i=1 𝜇i(1 − 𝜇i)Xo,i XT

o,i

}−1
, 1
]
. Under H0, if the model for main effects is cor-

rect, both model-based score test statistic S2∕V̂model(S) and its sandwich version S2∕V̂sandwich(S) follows a Chi-square
distribution with 1◦ of freedom. We reject H0 : 𝛽3 = 0 when the test statistics are sufficiently large.

2.2 Misspecification of main effects

So far, we have discussed four tests (Wald and score tests with a model-based variance estimate, Wald and score tests with
a sandwich variance estimate). When the main effects for X1 and X2 are correctly specified, all four tests lead to correct
type I error rates. However, the underlying model is often unknown, and X1, X2 or both likely have a nonlinear effect.
Misspecifying the main effects may lead to spurious findings.

To remedy the type I error inflation due to misspecification of main effects one solution is to replace the
usual model-based statistical inference by the robust inference based on sandwich variance estimation. An alterna-
tive solution is to use a GAM13 to model the main effect of X1 more flexibly. GAM extends a generalized linear
model to include smooth functions of explanatory variables with the smoothness determined by a parameter that
either directly controls the smoothness of the curve or the estimated predictive accuracy. We consider two types
of GAMs:
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GAM1∶ g(E(Yi|X1i,X2i)) = 𝛽0 + 𝛽1s1(X1i) + 𝛽2X2i + 𝛽3X1iX2i

GAM2∶ g(E(Yi|X1i,X2i)) = 𝛽0 + 𝛽1s1(X1i) + 𝛽2s2(X2i) + 𝛽3X1iX2i

where sj(x), j = 1, 2,are smooth functions using thin plate splines.14 Although GAM is a common method to model nonlin-
ear effects, it has not been recognized and well discussed in interaction analysis to address main effect misspecification.
The strategy here is to try to model the main effect of X1 and X2 correctly using nonparametric models where only a mild
smoothness assumption is made to achieve type I error control. Modeling the main effect correctly and flexibly (or approx-
imately so) can lead to an improvement in power relative to a robust sandwich inference based on an incorrectly specified
main effect model, as demonstrated in our simulation studies. Moreover, a flexible main effect model, even unnecessary,
does not result in power loss under the independence assumption for continuous outcomes, relative to a correctly spec-
ified main effect model as we discuss later. A similar phenomenon is discussed and proved in He et al9 in the setting of
testing for gene-environment interaction for repeated measurements. However, note that we are still considering the true
interaction term to be linear.

In this article, we focus on testing interaction alone, that is, testing for 𝛽3 = 0. In Tchetgen Tchetgen and Kraft,4
they considered the joint test of one factor (eg, genetic factor) and its interaction with another factor (eg, environ-
mental factor), that is, testing for 𝛽2 = 0 and 𝛽3 = 0 jointly. They showed that when assuming gene-environment
independence for a binary outcome modeled using logistic regression, a joint test using a Wald or score test com-
bined with the sandwich variance estimator leads to the correct type I error rate even when one of the main
effects is misspecified. As our results will show, for logistic regression, robustness against main effect misspecifica-
tion using a sandwich variance estimator does not hold in general for testing for interaction alone. Such robust-
ness will only hold under the additional assumption that the true 𝛽2 is zero, as commented by Tchetgen Tchetgen
and Kraft.5

2.3 Simulation design

We conducted simulation studies under misspecification of main effects to evaluate the performance of the methods
mentioned above based on 500 replicates: (a) Wald test with model-based variance estimate; (b) Wald and score tests
with sandwich variance estimate; (c) Wald test with model-based variance estimate but using GAM to model the pos-
sibly nonlinear main effect. Additionally, when the outcome is quantitative, we also compare these methods with the
rule ensemble method of Friedman and Popescu15 for testing interaction, where the form of the interaction is com-
pletely arbitrary. We refer to this method by RuleFit (Predictive Learning via Rule Ensemble) and we implemented it
using the R-package pre.16 The details on implementation of the RuleFit are given in the Supporting Information. We
simulated four continuous and binary outcome models with a linear, quadratic, log or exponential main effect for X1
as follows,

g(𝜇) = 𝛽0 + 𝛽1X1 + 𝛽2X2 + 𝛽3X1X2

g(𝜇) = 𝛽0 + 𝛽1(X1 + 2X2
1 ) + 𝛽2X2 + 𝛽3X1X2

g(𝜇) = 𝛽0 + 𝛽1 log(X1) + 𝛽2X2 + 𝛽3X1X2

g(𝜇) = 𝛽0 + 𝛽1 exp(X1) + 𝛽2X2 + 𝛽3X1X2

where 𝜇 = E(Y | X1, X2); g(𝜇) = 𝜇 for continuous outcomes; g(𝜇) = logit(𝜇) for binary outcomes. The two factors X1 and
X2 are both continuous variables generated from normal/log-normal distributions, and we consider settings where they
are independent or dependent, as detailed in Supporting Information Tables S1 and S2. For continuous outcomes, we
consider sample size n = 500, (𝛽0, 𝛽1, 𝛽2) = (1, 2, 3) and, for binary outcomes, we consider n = 2000, (𝛽1, 𝛽2) = (1, 2), and
𝛽0 are chosen such that the marginal prevalence of Y is 0.2. We vary 𝛽3 to evaluate type I error rate (𝛽3 = 0) and power
(𝛽3 > 0). We present the results in Figures 1 and 2. Additionally, we evaluated the type I error rate (𝛽3 = 0) under greater
sample size up to 10 000 and present the results in Figures 3 and 4. The exact numerical values can be found in Supporting
Information Tables S3-S6.
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F I G U R E 1 Evaluation of model-based Wald test,
sandwich Wald test, sandwich score test, GAM1, and
GAM2 and Rulefit for a continuous outcome. Each
curve presents the empirically estimated power against
the magnitude of interaction effect (type I error rate is
equivalent to power curve when true coefficient is
zero). The sample size is 500. Both factors of interest are
continuous. The left panel presents results when two
factors are independent, whereas the right panel
presents results when two factors are dependent. From
top to bottom, each row corresponds to linear,
quadratic, log, and exponential main effect of factor 1.
See Table S1 for details on data generating models
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 2 Evaluation of model-based Wald test,
sandwich Wald test, sandwich score test, GAM1, and
GAM2 for a binary outcome. Each curve presents the
empirical estimate of power against the magnitude of
interaction effect (type I error rate is equivalent to power
curve when true coefficient is zero). The sample size is
2000. Both factors of interest are continuous. The left
panel presents results when two factors are independent,
whereas the right panel presents results when two
factors are dependent. From top to bottom, each row
corresponds to linear, quadratic, log, and exponential
main effect of factor 1. See Table S2 for details on data
generating scenario [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 3 Empirical type I error curves based on
500 Monte Carlo replicates of model-based Wald test,
sandwich Wald test, sandwich score test, GAM1, and
GAM2, under different sample size for a continuous
outcome. Both factors of interest are continuous. The
left panel presents results when two factors are
independent, whereas the right panel presents results
when two factors are dependent. From top to bottom,
each row corresponds to linear, quadratic, log, and
exponential main effect of factor 1. See Table S1 for
details on data generating models [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 4 Empirical type I error curves based on
500 Monte Carlo replicates of model-based Wald test,
sandwich Wald test, sandwich score test, GAM1, and
GAM2, under different sample size for a binary
outcome. Both factors of interest are continuous. The
left panel presents results when two factors are
independent, whereas the right panel presents results
when two factors are dependent. From top to bottom,
each row corresponds to linear, quadratic, log, and
exponential main effect of factor 1. See Table S2 for
details on data generating models [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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3 RESULTS

3.1 Analytical results: Main effect misspecification and independence assumption

3.2 Result 1 (Wald test)

For quantitative outcomes, under the null hypothesis (ie, there is no interaction between X1 and X2 in the true model)
and under the assumption of independence of X1 and X2, if a linear regression model is used, then regardless of whether
the main effects for X1and X2 are correctly specified or not, 𝛽3 converges in probability to 0, and

√
n 𝛽3 converges in

distribution to a normal distribution. The asymptotic variance can be consistently estimated by the empirical sandwich
variance estimator.

3.3 Result 2 (score test)

For quantitative outcomes, under the null hypothesis (ie, there is no interaction between X1 and X2 in the true model)
and under the assumption of independence of X1 and X2, if a linear regression model is used and both X1 and X2 are
centered, then regardless of whether the main effects for X1 and X2 are correctly specified or not, the score for testing
the interaction of X1 and X2, that is, S = 1

n

∑
iSi(𝛽) = 1

n

∑
i{Xi1Xi2(Yi − 𝛽Xi1 − 𝛽2Xi2)}, is unbiased for zero and 1√

n

∑
iSi(𝛽)

converges in distribution to a normal distribution. The asymptotic variance can be consistently estimated by the empirical
sandwich variance estimator.

The detailed proofs for results 1 and 2 are in Appendices A and B. We refer to the assumption that X1 and X2 are inde-
pendent as the independence assumption. The results show that in the interaction analysis of a quantitative trait based on
a linear regression model, under the independence assumption, the type I error inflation caused by main effect misspecifi-
cation can be corrected by replacing the model-based variance estimator with the empirical sandwich variance estimator.

However, for binary traits modeled using logistic regression with g(𝜇) = logit(𝜇), this robustness property against
main effect misspecification does not hold for testing 𝛽3 = 0 unless, additionally, one of X1 or X2 has no main effect, say
𝛽2 = 0. An explanation of why robustness does not hold for logistic regression models is given in Appendix B. The lack of
robustness for logistic regression follows from a general result studied by Tchetgen Tchetgen.4 As a result, the Wald test
and score test cannot be corrected by only changing the variance estimation. In general, for binary outcomes modeled
using logistic regression, the simple correction using the empirical sandwich variance estimation only works for jointly
testing 𝛽2 = 𝛽3 = 0. We have provided codes for implementing the tests mentioned above at https://github.com/youfeiyu/
GbyEtests.

In summary, with respect to type I error control, inference based on the empirical sandwich variance estimation offers
a simple solution to main effect misspecification in the setting where the outcome is quantitative, a linear regression
model is used, and the independence assumption holds. In other settings (eg, binary outcomes, independence assumption
is violated), a correct specification of the main effect is often required to guarantee correct type I error at the nominal
level. In addition to type I error control, another consideration of importance in testing for interaction is power. Correct
specification of the main effect offers an advantage in terms of power by reducing the residual variance even when robust-
ness against main effect misspecification in terms of type I error control holds. In general, overfitting the main effects but
not the interaction term using models will not reduce power asymptotically relative to a correct specification of the main
effect. In particular, flexibly modeling the main effects using GAM will not lead to power loss asymptotically under the
independence assumption. This result is shown in Appendix C.

3.4 Simulation results

Because model-based score tests behave similarly to the model-based Wald test, we omit results on model-based score
tests in our figures and tables. Figure 1 presents empirical power curves of various methods for testing 𝛽3 = 0 when
the outcome is continuous and the sample size is 500. Note that the point in each power curve corresponding to 𝛽3 = 0
is the empirical type I error rate. We observe that when there is no misspecification of main effects, model-based and
sandwich Wald and score tests all maintain the type I error rate at nominal levels regardless of whether X1 and X2

https://github.com/youfeiyu/GbyEtests
https://github.com/youfeiyu/GbyEtests
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are independent (Figure 1A,E) and have similar power. When the true main effect of X1 is nonlinear but is mistak-
enly modeled using a linear form, model-based Wald test leads to inflated type I error rates, regardless of whether X1
and X2 are independent (Figure 1B-D,F-H). When X1 and X2 are independent, Figure 1B,D shows that both the sand-
wich Wald test and the sandwich score test can fix the type I error inflation and maintain type I error rate at the
nominal level of 0.05 when the main effect of X1 is quadratic or exponential, while, for example, the corresponding
model-based Wald test leads to a type I error rate of 0.37 when the main effect of X1 is quadratic. When the main effect
of X1 is a logarithmic function (Figure 1C), sandwich Wald and score tests still exhibit type I error inflation (0.11 and
0.07, respectively) even when X1 and X2 are independent. However, this inflation decreases as sample size increases
(Figure 3). When sample size >2000, sandwich score test achieves type I error rate at the nominal level of 0.05, while
sandwich Wald test requires even larger sample size (>105) to achieve the type I error rate at the nominal level of
0.05 (Supporting Information Table S3). When X1 and X2 are dependent and the true main effect of X1 is nonlinear,
all model-based and sandwich tests assuming a linear main effect exhibit severe type I error inflation when the true
main effect of X1 is nonlinear (Figure 1F-H). For example, the level 0.05 sandwich score test leads to a type I error
rate ranging from 0.12 to 0.83 in Figure 3F-H. Wald tests using GAM to flexibly model the main effect (GAM1 and
GAM2) lead to a well-controlled type I error rate in all scenarios considered here regardless of whether X1 and X2 are
independent.

We have shown that when X1 and X2 are independent, then overfitting the main effect in a linear model will not lead to
power loss asymptotically. Based on our empirical results, Wald tests using GAM for main effects have good performance
in terms of power even when the independence assumption is not met. They are almost as powerful as tests based on
a correctly specified main effect model (Figure 1A,E). Additionally, they are significantly more powerful than sandwich
Wald and score tests based on a misspecified main effect model when the corresponding type I error rate is also well
controlled (Figure 1B-D), that is, when X1 and X2 are independent. For example, as shown in Figure 1B, when 𝛽3 = 0.2,
both GAM1 and GAM2 have power 0.99 whereas sandwich Wald and Score tests have power 0.11 and 0.08, respectively.
This result is observed because the nonparametric modeling can correctly approximate the main effect therefore reducing
the residual variance and improving power. Because the true effect of X2 is linear in this setting, modeling the main effect
of X2 using a nonparametric function as in GAM2 is not necessary. However, we see that power curves for GAM1 and
GAM2 are almost indistinguishable, indicating there is little or no loss of efficiency empirically for testing interaction by
using a flexible model, even when unnecessary, to model the main effect in linear regression. Finally, we note the very
flexible RuleFit method leads to severe inflated type I error and undesirable power in almost all scenarios considered here.
The type I error inflation is likely due to the method not being able to evaluate the null distribution of the test statistics well
since no analytic null distribution is available. One explanation for the power loss is the unnecessary flexible modeling
of the interaction term. Based on our experience, overfitting the interaction often leads to severe power loss as it changes
the null distribution and degrees of freedom used for evaluating significance, which is in contrary to overfitting the main
effects.

Figure 2 presents empirical power curves of tests for interaction when the outcome is binary and the sample size
is 2000. As before, all model-based and sandwich Wald and score tests can control the type I error rate at the nominal
level and have similar power when main effects are correctly modeled (Figure 2A,E). However, we observe that, when
the main effect is misspecified, the sandwich Wald and score tests are not able to maintain the type I error rate at the
nominal level even when X1 and X2 are independent and the type I error inflation persists even as sample size increases
(Figure 4). For example, the sandwich Wald and score tests have a type I error rate of 0.83 when the main effect of X1 is
quadratic. The tests using GAM for main effects considerably improve type I error control and the type I error rates
achieve the nominal level except for the scenario where the main effect of X1 is exponential (eg, Figure 2D, 0.19 and
0.18 for GAM1 and GAM2, respectively). We comment that this is a rather extreme case, and in this case, the type I
error rates of other methods are almost 1.00. The type I error inflation decreases as sample size increases, which allows
GAM to approximate the exponential function better (Figure 4). Compared with a parametric model for a binary out-
come with correctly modeled main effects, we note that flexibly modeling the main effects using GAM when unnecessary
leads to some loss of efficiency as shown in Figure 2A,E and that GAM2 leads to slightly more loss of power compared
to GAM1.

In summary, these results show that for continuous outcomes in a linear model, when X1 and X2 are independent,
replacing the model-based variance estimate with the sandwich estimate in Wald and score tests can reduce or remove
type I error inflation. However, this does not hold for binary outcomes in a logistic regression model. Using GAM to
flexibly model main effects appears to be a simple and appropriate solution for main effect misspecification in terms of
both type I error rate and power.
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4 DATA APPLICATION: INTERACTION ANALYSIS IN THE MICHIGAN
GENOMICS INITIATIVE

We illustrate our observations regarding the type I error inflation due to main effect misspecification and power enhance-
ment by flexibly modeling the main effect respectively using two data examples. The first example is a genome-wide
gene-environment interaction study that investigated the effect of interaction between body mass index (BMI) and sin-
gle nucleotide polymorphisms (SNP) on chronic ulcer of skin across the genome. A nonlinear relationship between the
log-odds of having skin ulcer and BMI is noted here. The second example examined a series of models for BMI as the
outcome of interest, modeled as a function of age and sex, and interaction between age and sex. In the second example,
a quadratic relationship between age and BMI is observed. The data corresponding to both examples came from the
Michigan Genomics Initiative (MGI), an electronic health record (EHR)-linked biobank at the University of Michigan
that started in 2012. More detailed descriptions regarding the recruiting criteria, description of the study cohort, and the
enrollment procedure in MGI can be found in Fritsche et al.17

4.1 Example 1: Type I error inflation due to misspecified main effects

This example included 38 162 unrelated individuals of recent European ancestry with genotyped data, 2186 (5.5%) of
whom had a “chronic ulcer of the skin” in their records. The analytic dataset is 47.5% male and has a mean age of 54.5
(range = [18.0, 102.3]) and a mean BMI of 29.8 (range = [12.3, 91.1]). Age and BMI data came from the subjects' EHR
and age at the time of BMI measurement was used. We first inspected the functional form of the relationship between
the chronic ulcer of skin (D, say) and BMI by fitting the following GAM

logit{P(D = 1BMI,X)} = 𝛼0 + s(BMI) + 𝛼X X ,

where D denotes the disease status (1 being a case) and X contains age, sex, genotyping array, and the first four principal
components obtained from the principal component analysis of the genotyped markers. Both BMI and age were centered
before analysis. The results from the model described above revealed a nonlinear relationship between chronic ulcer of
skin and (centered) BMI (Supporting Information Figure S1A).

We then investigated the SNP-BMI interactions as risk factors for chronic ulcer of skin. We tested the interaction
effects between BMI and 272 672 genotyped variants with minor allele frequency ≥ 1% using PLINK 1.9. For each SNP
considered in this analysis we fitted the model

logit{P(D = 1SNP,BMI,X)} = 𝛽0 + 𝛽𝑆𝑁𝑃 SNP + s(BMI) + 𝛽X X + 𝛽𝑆𝑁𝑃×𝐵𝑀𝐼SNP × BMI

where the notations are defined in the same way as in Model (3) and the nonlinear relationship as observed in Figure S1
was modeled using GAM through the smooth function s(BMI). We also fitted a model with a linear main effect term of
BMI to explore the impact of incorrectly specifying the main effect on testing for the SNP×BMI interaction and then
tested the interaction using both model-based and sandwich Wald tests.

Models were fitted using the full cohort (2186 cases and 35 976 controls) as well as in a more balanced cohort with a
1:3 case-control ratio (2186 cases and 6558 randomly selected controls). For both cohorts, model-based Wald tests show
an inflation of type I error (Figure 5), as the observed distribution of interaction P-values deviates from the expected
distribution under the null hypothesis. The deviation was much more pronounced in the unbalanced full cohort than
in the 1:3 case-control cohort, showing that the problem with misspecification is further amplified when coupled with
unbalanced case-control ratios. The sandwich variance-based Wald tests also show some degree of type I error inflation,
especially in the full cohort. The inflation was remedied after we modeled the main effect of BMI flexibly using GAM.
This example shows that main effect misspecification can lead to inflated type I error.

4.2 Example 2: Power gain due to more accurate modeling of main effects

We looked at the relationship between two continuous variables, age (independent variable) and BMI (outcome), and
whether there is an interaction of age with sex on BMI. We used all 38 162 individuals from the same cohort described in
the previous example.
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F I G U R E 5 Example 1:
Q-Q plots of P-values by
model-based and sandwich
robust variance-based Wald tests
with linear main effect of BMI,
Model based Wald test from
Generalized additive models
(GAM) with spline term on BMI
[Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 1 Example 2: Comparing models for BMI as functions of age and sex

Models

Variables 0 1 2 3

Age 0.018 (2.46 × 10−16) 0.026 (5.71 × 10−16) – –

Sex 0.230 (1.37×10−3) 0.233 (1.21 × 10−3) 0.096 (1.76 × 10−1) 0.100 (1.59 × 10−1)

Age-sex interaction – −0.015 (8.53 × 10−4) [5.14 × 10−4] – −0.020 (5.52 × 10−6)

MSE 48.403 48.390 47.087 47.063

Note: Sex variable is coded as an indicator for female sex. P-values less than 0.05 are bolded. P-values in parentheses and brackets are computed
using model-based and sandwich variance, respectively.
Model 0: BMI = 𝜷0 + 𝜷AAge+ 𝜷SSex+ 𝝐

Model 1: BMI = 𝜷0 + 𝜷AAge+ 𝜷SSex+ 𝜷ASAge*Sex+ 𝝐

Model 2: BMI = 𝜷0 + s(Age)+ 𝜷SSex+ 𝝐

Model 3: BMI = 𝜷0 + s(Age)+ 𝜷SSex+ 𝜷ASAge*Sex+ 𝝐.

A GAM for BMI as a nonlinear function of age revealed a nonlinear relationship (Supporting Information Figure
S2A). We then constructed a series of generalized linear models (described in Table 1) for BMI using age and sex to
explore the impact of accounting and not accounting for the nonlinearity of the main effect on the test of interaction.
Table 1 reports estimates of coefficients and P-values associated with the terms included in each model. Supporting
Information Figure S3 plots BMI by age groups, stratified by sex to visually depict the interaction structure. Figure S3
shows an apparent sex and age interaction as the effect of age on BMI was larger for males than for females for individu-
als with age less than 65. The model-based Wald test with a linear main effect for age leads to a P-value of 8.53× 10−4 and
the sandwich variance-based Wald test leads to a P-value of 5.14× 10−4. Both tests are statistically significant. The Wald
test based on a model where the main effect of age is modeled using GAM leads to a much smaller P-value (5.52× 10−6).
It is not possible to know the “truth” in any given data analysis, thus, our explanation cannot be proven and alternative
explanations cannot be ruled out. If interaction truly does not exist, it is still possible to see a significant P-value from
the model-based Wald test with a linear main effect due to type I error inflation. However, if this were the case, it will be
unlikely to observe a highly significant P-value from the GAM-based method as this method does not have inflated type
I error. Therefore, the considerably smaller P-value from GAM-based method is most likely due to increased power by
modeling the main effect flexibly and reducing the residual error. This example demonstrates that when the interaction
effect is non-null, flexible specification of main effect can offer enhanced power in detecting interaction effect, though
there are more parameters in the model to estimate.

5 DISCUSSION

We consider the specific problem of main effect misspecification as linear terms when they are truly nonlinear and it
is potential to lead to possibly severe type I error inflation in testing the interaction between two factors. We evaluated
two simple strategies for addressing the problem with main effect misspecification. Namely, robust inference based on

http://wileyonlinelibrary.com
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sandwich variance estimates and flexibly modeling the main effect using nonparametric methods such as GAM, using
asymptotic theory and simulation studies. Our results show that for a linear regression model with a continuous outcome
and two independent factors, replacing the model-based variance estimate with the sandwich variance estimate can lead
to a valid test for interaction asymptotically. This result holds regardless of whether the main effects are correctly spec-
ified. However, this type of robustness using sandwich variance estimate does not hold in general for binary outcomes
modeled using a logistic regression model, even under the assumption of independence of the two factors. Results from
simulation studies are consistent with our asymptotic results. Further, based on our simulation results, the sandwich
score test converges faster than the sandwich Wald test as sample size increases and has better finite sample performance.
The two examples from the Michigan Genomics Initiative further substantiate our points with actual data.

Using the sandwich variance estimate in a Wald or score test offers a simple solution for robust inference against main
effect misspecification under the independence assumption for a continuous outcome. However, when the independence
assumption does not hold or when the outcome is binary, this strategy will not be able to control the type I error rate.
Moreover, even when these conditions are met and the sandwich method can control the type I error rate, it is still advan-
tageous to try to model the main effects correctly or flexibly. We see that a Wald test combined with GAM for main effects
can control the type I error rate in all settings considered here except one extreme case. In the case it does not completely
control the type I error rate, it still considerably reduces type I error inflation and the performance improves as sample
size increases. We note that the GAM method requires less sample size to control the type I error rate relative to the sand-
wich method when it works (Figure 1C). The strategy of flexibly modeling main effects using GAM is also appealing in
terms of power, especially when the outcome is continuous. When the outcome is continuous, our simulation studies
show that the GAM method leads to almost no power loss compared to a parametric model with correctly specified main
effects in the settings considered here. Additionally, the GAM method is considerably more efficient than the sandwich
method when type I error rate is controlled. When the outcome is binary, there is not a substantial loss of power relative to
a correctly specified parametric main effect model. We comment that although we focused on Wald tests combined with
GAM in our simulation studies, the strategy of using GAM or other nonparametric methods to model main effects flexibly
can also be used with score test. Overall, the strategy to use GAM to model main effects flexibly offers an attractive and

T A B L E 2 Guidelines for choosing method for interaction analysis under misspecification of main effects

Outcome: Continuous Outcome: Continuous Outcome: Binary Outcome: Binary
Method Factors independent Factors correlated Factors independent Factors correlated

Wald model
based

Type 1 error: Inflated Type I error: Inflated Type I error: Inflated Type I error: Inflated

Power comparison not valid Power comparison not valid Power comparison not valid Power comparison not valid

Wald
sandwich

Type 1 error: Nominal Type I error: Inflated Type I error: Inflated Type I error: Inflated

Power: Loss of power
depending on the degree of
misspecification

Power comparison not valid Power comparison not valid Power comparison not valid

Score
sandwich

Type I error: Nominal Type I error: Inflated Type I error: Inflated Type I error: Inflated

Power: loss of power
depending on the degree of
misspecification

Power comparison not valid Power comparison not valid Power comparison not valid

GAM1
Type I error: Nominal if

main effect of X2 is linear
Type I error: Nominal if

main effect of X2 is linear
Type I error: Nominal if

main effect of X2 is linear
Type I error: Nominal if

main effect of X2 is linear

Power: almost as powerful
as the correct model if
main effect of X2 is linear

Power: almost as powerful
as the correct model if
main effect of X2 is linear

Power: some loss of power
relative to the correct
parametric model

Power: some loss of power
relative to the correct
parametric model

GAM2 Type I error: Nominal Type I error: Nominal Type I error: Nominal Type I error: Nominal

Power: almost as powerful
as the correct model

Power: almost as powerful
as the correct model

Power: more loss of power
relative to GAM1 when
the extra smooth term is
unnecessary

Power: more loss of power
relative to GAM1 when
the extra smooth term is
unnecessary

Note: We bold the method that is preferred under each scenario. First two rows are obtained from a linear main effect and linear interaction model. GAM1
uses flexible smoothing term on one main effect and GAM2 uses smoothing terms on both the main effects.
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straightforward solution to robust and efficient testing of interaction under potential main effect misspecification. We have
summarized our findings in a summary table (Table 2) as a useful guide for practitioners pursuing interaction analysis.

Our study complements previous work on main effect misspecification and tests of interaction. Among those, the most
recent and closely related work is Sun et al.7 Sun et al7 focus on theoretically identifying conditions under which valid
tests can be obtained by using the sandwich estimator and further proposes to use a bootstrap inference with a corrected
sandwich estimator to improve finite sample performances. Their simulation studies focus on Wald tests and scenarios
where the robust inference can lead to valid inference asymptotically. Moreover, Sun et al7 only focus on type I error rate
without considering power. However, a robust inference procedure can only solve the issue of main effect misspecification
under somewhat restrictive conditions. Not all type I error inflation due to main effect misspecification can be fixed this
way (eg, generally, if independence does not hold for linear outcomes or if outcomes are binary). Our study considers
both situations where the usual tests can and cannot be fixed by using a robust statistical inference. Further, it provides a
solution that performs well in terms of both type I error rate and power for situations where valid tests cannot be obtained
by using a robust inference. We consider the finite sample performance and the large sample properties of both Wald test
and Score tests. In addition to the type I error rate, we focus on the power of various solutions under various situations as
well. We provide an overall picture and improved understanding of various methods for tests of interaction when main
effects may be possibly misspecified and provide practical guidance for data analysts. We also comment that the robustness
property of the usual tests as shown in our results 1 and 2 can be viewed as a special case of the general results studied by
Vansteelandt et al2 and Tchetgen Tchetgen4 on multiply robust inference from the perspective of semiparametric theory.
For if the test of interaction is robust to misspecification of the main effects, it must asymptotically be equivalent to the
class of test statistics that are multiply robust.

Several limitations and possible extensions of this study exist. First, we focus on the setting where one does not adjust
for other covariates in the model. Similar results and insights from our study can apply to the case when covariates
adjustment is needed under additional assumptions. For example, He et al8 show a similar robustness property as our
results 1 and 2 under the assumption that other covariates can be divided into two parts and each part is correlated with
either X1 or X2 but not both. In Sun et al,8 a similar condition for covariates is assumed. However, we comment that the
robustness as in results 1 and 2 does not hold in general under the assumption of independence of X1 and X2 conditional on
other covariates. Second, our results show that sample size is an important factor in type I error inflation. For continuous
outcomes, although n = 500 is usually considered relatively large for a model with four parameters when the model
is correctly specified, it may not be large enough for robust inference using the sandwich variance estimate when the
model is severely misspecified. Usually, the sandwich variance-based score test has better finite sample performance
than the corresponding Wald test and extremely large (>105) sample size may be needed for some extreme cases for the
sandwich Wald test to work well. So small sample modification, for example, the Bootstrap Inference with Corrected
Sandwich (BICS) procedure proposed in Sun et al8 may be necessary in practice. Third, the strategy of using GAM is quite
appealing in terms of power when outcome is continuous and is almost as powerful as the ideal case where main effects
are correctly specified in a parametric model. However, when the outcome is binary, there is still room for improvement
in power, representing an important direction for future research. Forth, our simulation study only considers interaction
between two variables. When the number of variables in the model increases to, for example, three, the inference on
interaction becomes more challenging. The performance of tests on interactions among multiple variables is unknown.
Finally, misspecification of the interaction effect needs to be considered in addition to main effect misspecification.
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APPENDIX A

Proof of result 1
Suppose we are interested in testing the interaction between X1 and X2 based on data (Y i, X1i, X2i), i = 1, … , n, iid across
i,where Y i is the quantitative outcome for subject i,and X1i and X2i are independent variables. Without loss of generality,
we suppose Y i, X1i, X2i are all centered. Suppose under the null hypothesis, the true model is

Yi = h1(X1i) + h2(X2i) + 𝜖i,
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where h1 and h2 are unknown functions, ei is an error term with mean 0 and independent of X1i and X2i. Suppose instead
we assume the following working model

E(YiX1i,X2i) = 𝛽0 + 𝛽1X1i + 𝛽2X2i + 𝛽3X1iX2i,

and we test the null hypothesis of no interaction by testing H0 : 𝛽3 = 0.
Consistency: The ordinary least square estimator 𝛽 = [𝛽0, 𝛽1, 𝛽2, 𝛽3]T satisfies the estimating equation:

1
n
∑

i
{[1,X1i,X2i,X1iX2i]T(Yi − 𝛽0 − 𝛽1X1i − 𝛽2X2i − 𝛽3X1iX2i)} = 0. (A1)

Under standard regularity conditions and by a standard M-estimation (also referred to as Z-estimation) theory (Boos
and Stefanski18; van der Vaart19), 𝛽 converges in probability to 𝛽∗ = [𝛽∗0 , 𝛽

∗
1 , 𝛽

∗
2 , 𝛽

∗
3 ]

T , which satisfies the “population”
version of this last estimating equation, that is,

E{[1,X1,X2,X1X2]T(Y − 𝛽∗0 − 𝛽∗1 X1 − 𝛽∗2 X2 − 𝛽∗3 X1X2)} = 0. (A2)

We can derive, by solving the above equation, that 𝛽∗0 = 0, 𝛽∗1 = E(X1Y )
E(X2

1 )
, 𝛽∗2 = E(X2Y )

E(X2
2 )
, and 𝛽∗3 = E(X1X2Y )

E(X2
1 X2

2 )
. Regarding the

numerator of 𝛽∗3 , note that

E(X1X2Y ) = E[X1X2{h1(X1) + h2(X2) + 𝜖}]
= E{X1h1(X1)X2} + E{X1X2h2(X2)} + E(X1X2𝜖)

= E{X1h1(X1)}𝐸𝑋2 + 𝐸𝑋1E{X2h2(X2)} + E(X1X2)E(𝜖)
= 0

where the second equality is due to independence of X1 and X2, and the last equality is due to EX1 = EX2 = 0 because of
centering. Therefore, 𝛽3 converges in probability to 𝛽∗3 = 0.

Asymptotical normality: Asymptotical normality follows as a standard result from M-estimation theory. Let
Xi = [1, X1i, X2i, X1iX2i]T be the covariate vector for the i-th subject, i = 1, … , n. Equation (A1) can be written as

1
n
∑

i
Xi(Yi − XT

i 𝛽) = 0.

By a Taylor expansion of the left hand side of the above equation around 𝛽*, we have

1
n
∑

i
Xi(Yi − XT

i 𝛽
∗) − 1

n
∑

i
XiXT

i (𝛽 − 𝛽∗) + op(1) = 0.

Rearranging terms leads to

√
n(𝛽 − 𝛽∗) =

(
1
n
∑

i
XiXT

i

)−1
1√
n

∑
i

Xi(Yi − XT
i 𝛽

∗) + op(1).

By Central Limit Theorem, 1√
n

∑
i{Xi(Yi − XT

i 𝛽
∗)} converges in distribution to a normal distribution with mean

E{Xi(Y i − 𝛽*TXi)} = 0 and variance

E {XiXT
i (Yi − XT

i 𝛽
∗)2}.

By Slutsky Theorem,
√

n(𝛽 − 𝛽∗) converges in distribution to Normal (0, Σ),where

Σ = {E(XiXT
i )}

−1E {XiXT
i (Yi − XT

i 𝛽
∗)2}{E(XiXT

i )}
−1 ,

and Σ can be consistently estimated by

Σ̂ =

(
1
n
∑

i
XiXT

i

)−1 {
1

n − p
∑

i
XiXT

i (Yi − XT
i 𝛽)

2

}(
1
n
∑

i
XiXT

i

)−1

,
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where p is the dimension of Xi. Therefore, the asymptotic variance of 𝛽 can be consistently estimated by Σ
n

, which

equals V̂sandwich(𝛽) = n
(n−p)

(∑
iXiXT

i

)−1
(∑

i
XiXT

i 𝜖
2
i

)(∑
iXiXT

i

)−1 defined in the Methods section. Regardless of whether

the model is correctly specified or not, under the null hypothesis, the Wald test statistic with the empirical sandwich
variance estimate 𝛽2

3

V̂sandwich(𝛽3)
∼ 𝜒2

1 , where V̂sandwich (𝛽3) is the diagonal element of V̂sandwich(𝛽) corresponding to 𝛽3.

APPENDIX B

Proof of result 2
Unbiasedness of score: The score corresponding to 𝛽3 is S = 1

n

∑
i

Si(𝛽) = 1
n

∑
i
{X1iX2i(Yi − 𝛽0 − 𝛽1X1i − 𝛽2X2i)}, where

𝛽 = [𝛽0, 𝛽1, 𝛽2]T is the ordinary least squares estimator under the null working model:

E(YiX1i,X2i) = 𝛽0 + 𝛽1X1i + 𝛽2X2i.

Specifically, 𝛽 = [𝛽0, 𝛽1, 𝛽2]T satisfies the estimating equation

1
n
∑

i
{[1,X1i,X2i]T(Yi − 𝛽0 − 𝛽1X1i − 𝛽2X2i)} = 0,

and under standard regularity conditions, by M-estimation theory, it converges in probability to 𝛽# = [𝛽#0 , 𝛽
#
1 , 𝛽

#
2 ]

T , which
satisfies the “population” version of the last equation,

E{[1,X1i,X2i]T(Yi − 𝛽#0 − 𝛽#1 X1i − 𝛽#2 X2i)} = 0.

Solving the equation, we have 𝛽#0 = 0, 𝛽#1 = E(X1Y )
E(X2

1 )
, 𝛽#2 = E(X2Y )

E(X2
2 )

. It follows that, by law of large numbers and under
regularity conditions, the score S converges in probability to

E{X1X2(Y − 𝛽#0 − 𝛽#1 X1 − 𝛽#2 X2)}
= E[X1X2{h1(X1) − 𝛽#1 X1}] + E[X1X2{h2(X2) − 𝛽#2 X2}] + E(X1X2𝜖)

= E[X1{h1(X1) − 𝛽#1 X1}]𝐸𝑋2 + 𝐸𝑋1E[X2{h2(X1) − 𝛽#1 X1}] + E(X1X2)E(𝜖) = 0. (A3)

Therefore, the score is unbiased for zero.
Asymptotic normality: By a Taylor expansion around 𝛽#, we have

1√
n

∑
i

Si(𝛽) =
1√
n

∑
i

Si(𝛽#) −
1√
n

(∑
i

X1iX2i Xo,i

)
(𝛽 − 𝛽#) + op(1) (A4)

where Xo, i = [1, X1i, X2i]T . By an argument similar to that in the proof for result 1, we have

√
n(𝛽 − 𝛽#) =

(
1
n
∑

i
X0,i XT

0,i

)−1
1√
n

∑
i

Xo,i(Yi − XT
o,i𝛽

#) + op(1),

and substituting this into (A4) we have 1√
n

∑
i

Si(𝛽)

= 1√
n

∑
i

Si(𝛽#) −

(
1
n
∑

i
X1iX2i XT

o,i

)(
1
n
∑

i
Xo,i XT

o,i

)−1
1√
n

∑
i

Xo,i(Yi − XT
o,i𝛽

#) + op(1)

= 1√
n

∑
i

X1iX2i(Yi − XT
o,i𝛽

#) − E(X1iX2iXT
o,i){E(Xo,i XT

o,i)}
−1 1√

n

∑
i

Xo,i(Yi − XT
o,i𝛽

#) + op(1)
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= 1√
n

∑
i
[−E(X1iX2iXT

o,i){E(Xo,i XT
o,i)}

−1, 1]Xi(Yi − XT
o,i𝛽

#) + op(1),

where Xi = [1, X1i, X2i, X1iX2i]T as defined before. By Central Limit Theorem, 1√
n

∑
i

Si(𝛽) converges to a normal distribu-

tion with mean 0 because E{X1iX2i(Yi − XT
o,i𝛽

#)} = 0 as shown above and E{Xo,i(Yi − XT
o,i𝛽

#)} = 0 by definition of 𝛽#, and
with variance

A E{XiXT
i (Yi − XT

o,i𝛽
#}2}AT ,

where A = [−E(X1iX2iXT
o,i){E(X0,iXT

0,i)}
−1, 1]. The variance can be consistently estimated by the empirical variance estima-

tor Ã
{

1
n−p

∑
iXiXT

i (Yi − XT
o,i𝛽)

2
}

ÃT , where

Ã =
⎡⎢⎢⎣−

( n∑
i=1

X1iX2iXT
o,i

)( n∑
i=1

Xo,i XT
o,i

)−1

, 1
⎤⎥⎥⎦ .

Therefore, regardless of whether the model for the main effect of X1 and X2 is correctly specified or not, the score test
statistic S2∕V̂sandwich(S) follows a 𝜒2

1 distribution asymptotically, when conditions stated in result 2 are satisfied.
Comment: For a logistic regression for binary outcomes, the score converges to E{X1X2expit(Y − 𝛽o − 𝛽1X1 − 𝛽2X2)}

for some 𝛽 = [𝛽0, 𝛽1, 𝛽2]T , where expit (𝜇) = exp(𝜇)/{1+ exp(𝜇)},and without making further assumptions we can-
not separate expit(Y − 𝛽1X1 − 𝛽2X2) into terms that involve only X1 or X2 as in (A3) above. As a result, in general
E{X1X2expit(Y − 𝛽0 − 𝛽1X1 − 𝛽2X2)} is not equal to zero when the main effect model is misspecified even under the
assumption of independence. Therefore, for a logistic regression model, the score test lacks the robustness against main
effect misspecification. Although not as obvious, the reason for nonrobustness of the Wald test is similar. As a result,
under the null hypothesis when main effects are misspecified, the estimator of 𝛽3 does not converge to 0 without mak-
ing further assumptions on main effects. Therefore, for logistic regression the robustness of testing for interaction against
main effect misspecification does not hold.

APPENDIX C

Effect of overfitting the main effects
We provide some intuition and explanation for why the use of flexible GAM to model main effects of X1 and/or X2 does
not reduce power under the independence assumption of X1 and X2 for continuous outcomes. The result is not spe-
cific to the use of GAM and methods other than GAM can be used to model main effect flexibly. This phenomenon
is due to a general result that (informally) overfitting the main effect does not reduce power asymptotically under
the independence assumption. Taking a simple setting as an example, we show this explicitly. Specifically, suppose
the true model for a continuous outcome is Yi = 𝛽0 + 𝛽11X1i + 𝛽12X2

1i + · · · + 𝛽1pXp
1i + 𝛽2X2i+𝛽3X1iX2i + 𝜖i, where vari-

ance of 𝜖i is 𝜎2. Instead one tests interaction using a Wald test based on an overfitted main effect model, specified as
Yi = 𝛽0 + 𝛽11X1i + 𝛽12X2

1i + · · · + 𝛽1qXq
1i + 𝛽2X2i+𝛽3X1iX2i + 𝜖i, where q> p such that the main effect of X1i includes unnec-

essary higher order polynomial terms. Directly applying results in Appendix A, it is easy to check that the estimator for
𝛽, denoted by 𝛽, based on the overfitted model solves the estimating equation

1
n
∑

i
{[1,X1i,… ,Xq

1i,X2i,X1iX2i]T(Yi − 𝛽0 − 𝛽11X1i −…− 𝛽1qXq
1i − 𝛽2X2i − 𝛽3X1iX2i)} = 0.

We denote the limit of 𝛽 by 𝛽* and it satisfies the population version of the above equation. As in Appendix A, it is easy
to check that 𝛽∗3 = E(X1X2Y )

E(X2
1 X2

2 )
= 𝛽3, which is nonzero if the alternative hypothesis is true. In addition,

√
n(𝛽 − 𝛽∗) converges

to a normal distribution with variance equal to

Σ = {E(XiXT
i )}

−1E {XiXT
i (Yi − XT

i 𝛽
∗)2}{E(XiXT

i )}
−1,
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where Xi = [1,X1i,… ,Xq
1i,X2i,X1iX2i]T . By the independence of X1 and X2 and assuming Y , X1, X2 are cen-

tered, we can show that E(XiXT
i ) = 𝑑𝑖𝑎𝑔 (A,E(X2

1 X2
2 )) for some matrix A because it is easy to check that

E(X1X2),E(X2
1 X2),… ,E(Xq+1

1 X2) all equal to zero. Therefore, {E(XiXT
i )}

−1 = 𝑑𝑖𝑎𝑔
(

A−1, 1
E(X2

1 X2
2 )

)
. The middle term

of Σ,E {XiXT
i (Yi − XT

i 𝛽
∗)2} = 𝜎2E(XiXT

i ). Therefore, Σ = σ2𝑑𝑖𝑎𝑔 (A−1, 1
E(X2

1 X2
2 )

). It follows that
√

n(𝛽3 − 𝛽3) converges
to a normal distribution with mean zero and variance 𝜎2∕E(X2

1 X2
2 ). The asymptotically distribution is exactly the

same as the one based on a correctly specified model without overfitting and the same as the one had the true
main effect been known without having to estimate it. Therefore, the Wald tests based on the overfitted model
and the true model have the same asymptotic distribution and therefore lead to the same power. When one uses
GAM to flexibly model the main effect of X1 (and/or X2), the basis functions used to approximate the main effect
are not polynomial functions but linear spline terms. However, regardless it still holds that E(l(X1)X2) = 0 and
E(l(X2)X1) = 0, where l is an arbitrary function. Therefore, the argument above still applies. Specifically, when X1
is modeled using Y i = 𝛽0 + 𝛽1X1i + 𝛽11(X1i − 𝜏1)+ +… + 𝛽1p(X1i − 𝜏p)+ + 𝛽2X2i+𝛽3X1iX2i + 𝜖i using penalized regres-
sion, where (X1i − 𝜏k)+, k = 1, … , p, are linear spline terms, then the estimator for 𝛽 = (𝛽0, 𝛽1, 𝛽11,… , 𝛽1p, 𝛽2, 𝛽3)T

has variance and covariance matrix proportional to 𝜎2 {E(XiXT
i ) + 𝜆2D}−1 E(XiXT

i ){E(XiXT
i ) + 𝜆2D}−1, where

Xi = (1, X1i, (X1i − 𝜏1)+,… , (X1i − 𝜏p)+, X2i, X3), 𝜆 is a tuning parameter for roughness, and D is a diagonal matrix where
the diagonal terms corresponding to the linear spline terms are one and the other terms are zero. Using results that
E(l(X1)X2) = 0 and E(l(X2)X1) = 0 and similar arguments as above, it can be checked that the asymptotic variance of 𝛽3
is again 𝜎2∕E(X2

1 X2
2 ).

The above derivations and arguments provide an explicit and intuitive explanation for why overfitting the main effect
model does not reduce power for continuous outcomes under the independence assumption of X1 and X2. However, this
result does not hold in general without the independence assumption, although our simulation studies show that the
impact on power is small. Finally, we comment that in general overfitting the interaction term usually does significantly
affect power.


