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14 ABSTRACT

15 Purpose: Gadoxetic acid uptake rate (k1) obtained from DCE MRI (Dynamic, Contrast Enhanced MRI) is 

16 a promising measure of regional liver function. Clinical exams are typically poorly temporally 

17 characterized, as seen in a low temporal resolution (LTR) compared to high temporal resolution (HTR) 

18 experimental acquisitions. Meanwhile, clinical demands incentivize shortening these exams. This study 

19 develops a neural network based approach to quantification of k1, for increased robustness over current 

20 models such as the linearized single-input, two-compartment (LSITC) model. 

21 Methods: 30 Liver HTR DCE MRI exams were acquired in 22 patients with at least 16 minutes of post-

22 contrast data sampled at least every 13 seconds. A simple neural network (NN) with 4 hidden layers was 

23 trained on voxel-wise LTR data to predict k1. LTR data was created by subsampling HTR data to contain 

24 6 time points, replicating the characteristics of clinical LTR data. Both the total length and the placement 

25 of points in the training data was varied considerably to encourage robustness to variation. A GAN 

26 (Generative Adversarial Network) was used to generate arterial and portal venous inputs for use in data 

27 augmentation based on the dual-input, two-compartment, pharmacokinetic model of gadoxetic acid in the 

28 liver. The performance of the NN was compared to direct application of LSITC on both LTR and HTR A
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29 data. The error was assessed when subsampling lengths from 16 to 4 minutes, enabling assessment of 

30 robustness to acquisition length.

31 Results: For acquisition lengths of 16 min NRMSE (Normalized Root-Mean-Squared Error) in k1 was 

32 0.60, 1.77, and 1.21, for LSITC applied to HTR data, LSITC applied to LTR data, and GAN augmented 

33 NN applied to LTR data, respectively.  As the acquisition length was shortened, errors greatly increased 

34 for LSITC approaches by several folds. For acquisitions shorter than 12 minutes the GAN augmented NN 

35 approach outperformed the LSITC approach to a statistically significant extent, even with HTR data. 

36 Conclusions: The study indicates that data length is significant for LSITC analysis as applied to DCE 

37 data for standard temporal sampling, and that machine learning methods, such as the implemented NN, 

38 have potential for much greater resilience to shortened acquisition time than directly fitting to the LSITC 

39 model.

40 Keywords: Liver Function, Quantitative Imaging, GAN

41 1 INTRODUCTION

42 Gadoxetic acid enhanced dynamic MRI has been shown to have promising applications in the assessment 

43 of liver function 1–6 and diagnosis of various pathologies in the liver 7–12. Gadoxetic acid provides utility 

44 as a hepatobiliary contrast, allowing interrogation of the uptake of contrast into the hepatocytes as well as 

45 liver perfusion parameters. Various pharmacokinetic parameters have been used as a measure of regional 

46 liver function 1,13–15 with gadoxetic acid uptake rate being among the most direct due to its 

47 correspondence with the number of functioning hepatocytes, making it a reasonable quantitative measure 

48 of regional liver function 6,16. Quantification of regional liver function is important in functional 

49 avoidance therapy, where radiation therapy is optimized to spare highly functional regions of the liver 

50 17,18. Many models exist for the analysis of contrast kinetics in MRI19–22. Fewer models are specifically 

51 applicable for determining gadoxetic acid uptake rate in the liver, including the dual-input, two-

52 compartment (DITC) model of gadoxetic acid kinetics, and the DITC derived linearized single-input, 

53 two-compartment model (LSITC) 3,23. Most models are applicable to the high temporal resolution (HTR) 

54 dynamic, contrast enhanced (DCE), scans that collect volumes regularly enough to well characterize the 

55 concentration across time in the relevant regions, typically sampling every 5 to 15 seconds. However, the 

56 most common clinical gadoxetic acid enhanced MRI exams do not sample this comprehensively. Clinical 

57 multiphase scans are obtained for metastases detection and diagnosis. These clinical exams typically have 

58 low temporal resolution (LTR), with as few as 6 volumes irregularly sampling 20 minutes of contrast 

59 kinetics. It should also be noted that clinical demands inevitably incentivize shortening exams. If 

60 quantification accuracy can be maintained or improved while shortening total acquisition time and 
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61 eliminating the need for constant acquisition (e.g. LTR style acquisitions), the patient can be given 

62 equivalent care with less inconvenience and discomfort, and minimal change to common clinical 

63 workflows.

64 This motivates the development of methods for accurate quantification of regional liver function from 

65 short and poorly characterized DCE MRI exams in a robust manner. This study develops an artificial 

66 neural network (NN) approach to predict k1 from LTR data. Furthermore, this approach uses data 

67 augmentation from a generative adversarial network (GAN) implemented to allow realistic and varied 

68 simulation of gadoxetic acid dynamics from the DITC model of gadoxetic acid kinetics in the liver. These 

69 approaches are compared to least squares fitting of the LSITC model3  as applied to both HTR and LTR 

70 data. We hypothesize that the new NN approach allows faster and more convenient acquisition without a 

71 sacrifice to the accuracy of functional maps sufficient to compromise treatment guidance.

72 2 METHODS

73 A NN based approach is developed to predict k1 from LTR data derived from DCE scans. To counter the 

74 inherent granularity of the underlying input functions a GAN is used to generate input functions for the 

75 augmentation of NN training. The NN based approaches are compared to LSITC analysis for both well 

76 characterized HTR data, and the more limited LTR data with varied acquisition duration to assess 

77 robustness of the approaches.

78 2.1 Models

79 The dual-input, two-compartment (DITC) model (Figure 1) of gadoxetic acid in the liver describes the 

80 contrast concentration dynamics in the liver at a given time as determined by the uptake rate (k1), 

81 distribution volume (vdis), arterial rate (ka), portal venous rate (kpv), and the respective portal venous and 

82 arterial blood arrival delays (Tpv and Ta) 3,23. This allows simulation of concentration for any given set of 

83 parameters and inputs, or fitting of the observed output to find the likely input parameters. 

84

85 If prediction of uptake is of chief interest, a simpler linearized single-input, dual-compartment (LSITC) 

86 model can fit to the observed data. This LSITC model is derived from the DITC model, but allows for 

87 more robust and rapid analysis over more limited datasets. Whereas fitting the DITC model involves 6 

88 tunable parameters, with appropriate assumptions it collapses to the LSITC model described by the 

89 following 2 parameter linear equation3.

90 (1)
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91 where Ct is the measured contrast concentration in the region of interest, Ca is the concentration in the 

92 arterial blood supply, k1 is the contrast uptake rate, vdis is the volume-normalized volume of distribution, 

93 and Hct is the hematocrit. Since Ct, Ca and Hct can be measured or estimated, the parameters to fit are k1 

94 and vdis. This model applies after some point in time t0 when the model assumptions hold.  Thus, after t0, 

95 k1 and vdis can be easily computed through a linear regression of the relevant data formulated as the 

96 vectors x and y. 

97 2.2 Data acquisition

98 In order to assess error across analysis types and data characteristics, 3D volumetric DCE MRI of the 

99 liver were acquired during the intravenous injection of a single standard dose of gadoxetic acid using a 

100 Golden-Angle Radial sampling VIBE sequence on a 3T scanner (Skyra, Siemens Healthineer) in a 

101 prospective protocol approved by University of Michigan Institutional Review Board. 30 exams were 

102 acquired over a set of 22 patients (Age: 50 to 82 years, 6 female) with hepatocellular carcinoma. The 3D 

103 free-breathing DCE images of the liver were acquired using a 3D golden-angle radial stack-of-stars VIBE 

104 sequence.  This sequence over-samples the center of k-space, and allows greater resilience to motion 

105 effects than other sequences24.  The time-series images were co-registered within the liver VOI using an 

106 over-determined, rigid-body transformation approach25. All acquisitions continued for 16-20 minutes after 

107 injection of a single-dose gadoxetic acid contrast and had temporal resolutions of at least 5 samples per 

108 minute. 

109 The acquired HTR data was subsampled to produce corresponding LTR data (Figure 2). This was done by 

110 interpolating (1) a pre-contrast volume, (2) 3 volumes spaced 25 seconds apart designed to capture the 

111 arterial and portal venous phases, and (3) two volumes at the end and midpoint of the acquisition (roughly 

112 20 and 10 min, respectively). 

113 Ca, Cpv, and Ct were obtained as described in a prior study3. In brief, the arterial concentration (Ca) was 

114 defined by the mean 100 voxels with the maximum value just prior to the arterial peak, and selected from 

115 the three inches of aorta just prior to the aortic split to the liver. 

116 The portal venous concentration (Cpv) was defined analogously based on a contour of the portal vein. In 

117 both cases relative enhancement was used to create the input functions:

118 (2)C(iT) ∝  
SIi

SIprecontrast
-1

119 where  is the relevant concentration at time point i, given a sampling interval of T, and SIi and C(iT)

120 SIprecontrast are the average signal intensities in the given region at time point i, and prior to contrast 
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121 enhancement respectively. The same calculation was performed for each voxel in the liver to obtain the 

122 tissue concentration (Ct). 

123 2.3 Least squares fitting of LSITC model

124 LSITC analysis involved linear regression for the best fit to equation (1). For HTR data t0 was selected to 

125 maximize the linearity of the time range being fit, as described in prior work3. In the analysis of the 

126 synthetic LTR data, t0 was chosen 75 seconds after the initial upswing of the arterial peak. In both cases 

127 the resulting estimate of the k1 was the intercept normalized slope of the least squares linear fit from t0 to 

128 the final point. This allowed the linear fit to incorporate 3 points for the LTR data.

129 2.4 Neural network – rationale and implementation

130 Given a reasonable set of patients with k1 estimated from HTR data, a machine learning approach is a 

131 natural means for creating a prediction from a subset of that data, e.g., multiphase LTR data. To this end, 

132 a simple fully connected neural network (NN) with 4 hidden layers (10,10, 5 and 5 neurons) was trained 

133 on voxel-wise LTR data to predict k1 (Figure 3). Both the total acquisition length and the placement of 

134 points in the training data were varied considerably to encourage robustness to variation.  This was 

135 performed by having the arterial and portal venous phase points sampled uniformly 15 to 50 seconds 

136 apart, with uniformly distributed perturbation up to 10% of the sampling period. The endpoint tend was 

137 randomly selected from a uniform distribution from 5 minutes after the arterial upswing until the end of 

138 the acquisition. The midpoint sample was selected from a uniform distribution from 0.25tend to 0.75tend. 

139 Each voxel then consisted of 5 pairs of values representing the x and y vectors calculated from equation 

140 (1) based on 5 post-contrast time points (as in the right panel of Figure 2).

141 Training was performed by randomly selecting 3 million voxels in the livers from 30 exams, holding 

142 3/5ths for training, 1/5th for validation, and 1/5th for testing. Training and validation data did not have 

143 patients that overlapped with the patients in the data held for testing. 

144 2.5 GAN

145 2.5.1 GAN - rationale

146 No matter how many voxels are used for training, if we have only a pool of 30 exams, and 22 patients, 

147 each voxel will come from one of 30 categories defined by the precise input functions that corresponded 

148 to that exam. This inspires data augmentation for the set of input functions to ensure the training data is 

149 better spread across the reasonable space of input functions. A GAN is a reasonable choice for this 

150 generative task. This approach trains both a generator and a discriminator, who act as adversaries to one 

151 another. The generator seeks to generate artificial input functions that are in the space of real input 

152 functions. The discriminator attempts to discriminate between the real examples and those generated 
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153 artificially. Eventually, the generated examples should be essentially indistinguishable from examples 

154 drawn from the true dataset. GANs have been applied in a number of circumstances, involving both 

155 temporal biological signal26 and  medical image 27,28 generation, including generation for data 

156 augmentation 29. Here we use a generative adversarial neural network to generate arterial and portal 

157 venous input functions for gadoxetic acid dynamics in the liver. 

158 2.5.2 GAN design and implementation

159 The GAN consisted of a simple network for conversion of a random vector (length 20) into outputs 

160 corresponding to arterial (Ca) and portal venous (Cpv) input functions (two vectors of length 100) along 

161 with an indicator of the sampling period T. The network architecture can be seen in figure 4.

162 The generated input functions are then used as to create tissue concentration curves (Ct) using the DITC 

163 model. 

164 2.5.3 NN augmentation from GAN data

165 Training using the GAN generated data serves a dual purpose – firstly it acts as a confirmation that the 

166 GAN generated data is actually representative of the real Ca and Cpv curves, secondly, it could improve 

167 prediction accuracy with comparatively minimal chance of overfitting, based on the increased variability 

168 in Ca and Cpv for the training data. This dataset then has ground truth DITC defined uptake rates with 

169 input functions replicating the variation observed empirically. This data can be used to augment the real 

170 data in training neural models to determine uptake from restricted datasets.

171 In order to train a network to generated Ca and Cpv curves from a random vector, training data was created 

172 by first generating 1 million random Ca and Cpv pairs with corresponding T. This was performed for 5 

173 holdout groups of patients corresponding to the training holdout groups described in 2.4 to ensure the 

174 learned sets were not influenced by testing patients’ own data. For each of these sets of Ca and Cpv curves, 

175 k1 and vdis values were randomly selected from the relevant patient set (excluding holdout patients), while 

176 ka, kpv, Ta and Tpv were randomly selected from roughly physiologically reasonable ranges (see table 1). 

177 Ct curves were then generated from the DITC model using the GAN generated Ca and Cpv functions along 

178 with the random parameters described in table 1 as inputs to the model. Finally, gaussian distributed noise 

179 was added such that the measured SNR would be 40 dB.

180 2.5.4 LSITC optimization from GAN data

181 Finally, consideration was given to minimize the error in LSITC analysis. The two obvious “tunable” 

182 parameters are t0 and sampling time. The parameter t0 refers to the first time point considered to satisfy 

183 the conditions of the LSITC model and thus used as the first point in the linear fit of the model. This is 

184 currently selected through a maximization of linearity as calculated by the ratio of singular values 3. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Hepatic Function from Neural Network

This article is protected by copyright. All rights reserved

185 Determination of the sampling times is more complex, particularly if we implement irregular sampling as 

186 in LTR collection. This study uses the GAN simulated data to optimize t0 and the sampling times, 

187 discretized in 30 second increments, for the LSITC analysis. Optimization is performed using a genetic 

188 algorithm to search for t0 and sampling times. Breaking the signal into 30 seconds intervals increased the 

189 tractability of the problem for this discrete genetic algorithm. This resulted in each of the sampling points 

190 being chosen from 32 intervals of 30 seconds in the 16 minute datasets, where the first and last points are 

191 required. This was performed for 1 to 10 additional points, where the choice of points was optimized to 

192 minimize MSE error in a set of GAN based DITC generated synthetic voxels.

193 2.6 Error metric for evaluation of analysis methods and acquisition paradigms

194 For each method and dataset used to estimate k1, the error was measured as NRMSE with the results of 

195 least squares fitting of the LSITC model for the full length (16-21 min) HTR dataset as the reference. 

196 NRMSE is defined here as RMSE normalized on an exam by exam basis by the interquartile range of the 

197 reference values as: 

198 (3)����� =
����������������� �����

199 Mean NRMSE is merely the mean across all exams analyzed. 

200 The reference values were restricted to the values with a relative uncertainty below the 75th percentile. 

201 This minimizes the likelihood of performing the comparison with outliers and artifacts, such as those seen 

202 on some edges, but will also tend to decrease the denominator in the NRMSE calculation.

203 Relative uncertainty was measured as the expected standard deviation in k1 estimation for the fit in a 

204 given voxel divided by the predicted k1 for that voxel.  Here the variance in k1 is estimated by the Taylor 

205 expansion of the variation of K1/vdis (where K1 is the slope in equation 1) as:

206  (4)���(�1) = ���(
�1����) ≈ µ�1

2/µ����2(
��12

µ�12 ― 2���(�1,����)
µ�1µ���� +

�����2

µ����2)

207 where 

208  (5)��1
=  

∑�: �� = �0(��― ��)2(� ― 2)∑�: �� = �0(��― ��)2

209  (6)����� =  (1�)∑�: �� = �0(��)2

210 Where  and  are the respective standard deviations and means of any given measure a. x and y are �� µ�
211 defined in equation 1.
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212 All results from five methods and datasets were compared to the k1 estimated by fitting the LSITC model 

213 for HTR data at maximum length (at least 16 minutes and no more than 21 minutes), which are 

214 summarized in table 2.

215 3 RESULTS

216 3.1 Fitting of LSITC model

217 As expected, directly fitting the LSITC model to HTR data yielded more accurate k1 values than fitting to 

218 LTR data. For both datasets the errors grew rapidly with a decrease in the acquisition length of the data 

219 (see figure 5). At full acquisition length (16 minutes), LSTIC-HTR and LSITC-LTR resulted in an 

220 average NRMSE across exams of 0.60 (SD 0.38) and 1.77 (0.99), respectively. At an acquisition length of 

221 10 min the average NRMSE increased to 2.59 (1.34) and 3.09 (1.54) for HTR and LTR datasets, 

222 respectively, as seen in table 3. A visual comparison at 10 minutes can be seen in figure 6.

223 3.2 NN model

224 The NN model yielded significantly reduced error rates in k1 estimation over direct fitting of the LSITC 

225 model to the LTR data at all tested acquisition lengths (4-20 min). When the acquisition length was less 

226 than 14 min, the NN model applied to the LTR data resulted in the errors less than directly fitting of the 

227 LSITC model to the HTR data. This difference became significant for acquisitions of 10 minutes or less.  

228 The errors yielded by the NN model increased slowly with the acquisition length reduction, suggesting 

229 the NN model was resilient to data length.  In contrast, direct fitting of the LSITC model yielded quickly 

230 increased errors with the data length reduction, regardless of the temporal resolution of the data (figure 5). 

231 3.3 GAN augmented NN model

232 On visual inspection randomly selected curves generated by the trained GAN seemed to replicate the 

233 basic features of the measured curves without being direct copies of individual examples. For randomly 

234 selected GAN generated Ca curves, the nearest normalized neighbor was found from the measured set of 

235 input curves. Three examples are shown in figure 7. In each column the top plot is a randomly selected 

236 generated Ca and Cpv pair, and the bottom plot is the real Ca and Cpv pair whose normalized Ca curve is the 

237 nearest neighbor to the generated Ca curve based on a sum of squares difference. The comparisons did not 

238 show evidence of direct replication of the specifics of particular measured curves.

239 In addition to visual inspection, the distribution created by the GAN was assessed by producing 

240 histograms approximating the probability distribution of the pairwise Euclidean differences between 

241 examples within the measured data, as well as the pairwise differences in data generated by each GAN. 

242 Figure 8 displays these distributions of pairwise differences for each GAN, superimposed over the 

243 distribution of pairwise differences for the measured data. The difference between the mean distance for 
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244 each GAN and the measured data is shown, along with the earth-movers-distance (EMD) to better 

245 represent the differences between distributions. In all cases the distribution of differences in GAN data 

246 visually mirrors that of the full dataset, with the smoothing we would expect from a larger number of 

247 samples from a similar dataset.

248 Augmentation with GAN generated data gave mixed results. Training on only synthetic data resulted in 

249 improvement over prediction error from training only on real data (figure 5). With a statistically 

250 significant improvement in error over LSITC HTR for all datasets of length 12 minutes or less, and no 

251 significant drop in error up to 15 minutes. However, combining the real data with additional synthetic 

252 data did not meaningfully improve the prediction error. The results of augmented NN model trained by 

253 synthetic data only are shown in figure 5 and table 3 (Augmented NN-LTR).

254 3.4 Optimization of time points for the LSITC model fitting

255 When selecting the optimum sampling points for the LSITC model fitting, as additional points were 

256 selectively added to the set, optimization yielded a t0 of 3 minutes in every case, without any sampling 

257 point prior to t0. The sampling times chosen tended to group just after t0, and near the end of the dataset. 

258 The error leveled off near 8 points in the simulated data, as seen in figure 9. As a result, 8 points were 

259 used when testing this approach, apart from the pre-contrast and final points.

260 Implementation of the GAN data for LSITC optimization (OPT-LSITC LTR) yielded errors significantly 

261 lower than direct fitting of the LSITC model to HTR data with acquisition lengths of 12 min or less, and 

262 lower than NN models for data lengths greater than 10 minutes (figure 5).  This suggests that optimization 

263 of the time of data point acquisition could improve the performance of the LSITC model, but the NN 

264 model with non-optimized data still could perform better at a short acquisition length.

265 A further test of the optimal t0 (3 min) was performed with full HTR data.  As seen in figure 5, the LSITC 

266 model fitting to HTR with a dynamic t0 (LSITC-HTR) and an optimal t0  (LSITC-HTR t0=OPT) yielded 

267 similar results, but worse results than the LSITC model fitting to the optimal 8-point LTR data (OPT 

268 LSITC LTR), indicating that the robustness of performance of the optimized LSITC is not merely due to 

269 the choice of t0 but due to the particular set of points selected.

270 4 DISCUSSION

271 In this study, we developed NN models for estimation of k1 and compared the results of the NN models to 

272 those from direct fitting of the LSITC model for various acquisition lengths and temporal resolutions of 

273 Gadoxetic acid enhanced dynamic MRI of the liver.  Overall, the NN models are more resilient to the 

274 acquisition length reduction.  The augmented input functions using GAN can further improve the 

275 performance of the NN models. For direct fitting of the LSITC model, ten optimized time points in the 
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276 Gadoxetic acid enhanced dynamic data can significantly out-perform the HTR data (5-10 sec per volume) 

277 for acquisition lengths of 12 minutes or less, and the NN method for acquisition length not shorter than 8 

278 minutes.  Our study suggests that the NN approach can be used to enhance the performance of k1 

279 estimation and optimize the data acquisition.

280 A key element of modeling liver pharmacokinetics is obtaining arterial and portal venous input functions. 

281 These input functions have been estimated using combinations of exponentials and other simplifications, 

282 but this involves either profound simplification or the development of models of increased complexity 

283 without a guarantee of successfully capturing the relevant features of the input functions. Use of measured 

284 input functions has notable advantages in capturing the true empirical characteristics of these input 

285 functions. However, when employing data driven methods this will practically limit the researcher to a 

286 relatively small number of example cases. When machine learning methods are applied to millions of 

287 voxels but the guiding input functions consist of a few dozen examples, we may fear overlearning these 

288 limited underlying examples, rather than a more useful learning of the underlying relationships between 

289 our relevant parameters and input functions in general. Addition of noise or variation in sampling time 

290 may make this underlying granularity less starkly memorable. However, a more ideal solution would be 

291 the construction of arbitrary or random input functions from the feature space the input functions inhabit. 

292 A promising means for this generative task is a generative adversarial neural network. 

293 One difficulty in generative networks, where the network is not cyclic (generating corresponding 

294 examples in another space rather than arbitrary or random examples in the desired space) is assessment of 

295 the quality of the generative model. One approach is the usage of these examples as augmentation data for 

296 a relevant learning task. If the augmentation helps, it is more reasonable that the generative model is 

297 representing the variation in the underlying set appropriately, or at least in a way that helps the trained 

298 network to better understand the relevant relationships. Here we used a generative adversarial neural 

299 network to generate arterial and portal venous input functions for gadoxetic acid kinetics in the liver. 

300 The augmented NN that was trained only on GAN generated data resulted in superior results as compared 

301 to the NN trained using any fraction of the measured data with HTR-LSITC as the reference. There are 

302 various possible causes of the decrease in performance with the addition of real data. It is likely that the 

303 very few input functions were not useful in further generalizing the solution over the training from the 

304 GAN and DITC generated data. It may also have skewed the solution towards those measured input 

305 functions. It should be noted that since the GAN itself is trained from measured data, the generated 

306 examples will include characteristics caused by sampling noise, movement and other variations in the 

307 data. Because of this the input to the DITC model generated from this GAN has variation that would not 

308 be expected in the underlying input functions in reality. 
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309 In addition to the already mentioned benefits, the GAN derived data and DITC model defined reference 

310 values allowed the simulated dataset to be used to evaluate independent models relative to the DITC 

311 model. This allowed us to use references of not only our best estimate (whether DITC or LSITC) to 

312 complete (16+ min) real datasets, but also to the ground truth inputs to the DITC model without fitting 

313 error in the reference k1 values. This helps quantify possible error in these estimates and gives a parallel 

314 reference measure for restricted methods. This is of particular interest when attempting to assess 

315 optimum, or at least improved, acquisition times for the image volumes used to estimate k1. Use of these 

316 model defined input parameters made this optimization less susceptible to a mere reproduction of the 

317 linear fit of the LSITC model (along with any limitations or errors in this method), and helped to assess 

318 the best timing (giving the variability observed in the input functions) to acquire points for LSITC 

319 without bias to the timing used in the measured reference set.

320 The optimal sampling points for OPT-LSITC LTR essentially followed the expected weights for a linear 

321 regression, in that points near the end were preferred, with successive trials adding points closer to the 

322 center as those at the ends were already included. The selection of t0 is perhaps more salient, indicating 

323 that the addition of a point near the 3 min mark would aid LSITC accuracy when applied to LTR data. 

324 This time roughly corresponds to the equilibrium phase 30, which would logically initiate the portion of 

325 the data where the assumptions of the LSITC model hold true. This approach resulted in lower error than 

326 even LSITC applied to HTR data from 15.5 to 8 min, for the real dataset, even though the reference was 

327 used HTR data with a variable t0. This also casts doubt on the use of 75 seconds as t0 in LTR data. If 3 

328 minutes is the location of the equilibrium phase, then voxel-wise LSITC analysis of most LTR data has 

329 only 2 data points to work with, since none of the arterial or portal venous phase points will fall after that 

330 point. Without an overdetermined fit the error rates will likely be large, and concurrent error 

331 quantification will rely on assumptions regarding the similarity of nearby points. However, the selection 

332 of t0 was not the primary factor in the improvement over other LSITC methods. This is apparent from the 

333 small difference between LSITC-HTR and LSITC-HTR where t0 = OPT. This indicates that the specific 

334 selection of points was helpful in improving the fit. It is possible that some of the improvement came 

335 from selecting no points prior to t0. This does not change which points are fit, but does change the x and y 

336 vectors since the integral of Ca will differ in equation 1. It may be that the discrepancy of Ca from Cpv 

337 increases the error in datasets that include pre-t0 sampling points.

338 Regardless of the method used the error was greater for shorter datasets. Data length was especially 

339 significant for LSITC analysis, for both LTR and HTR data. With a fixed best t0 and careful choice of 

340 sampling points this was reduced somewhat, perhaps making acquisitions as short as 12 minutes practical. 

341 Below this level the NN methods worked best, showing relatively little change in error with data length in 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Hepatic Function from Neural Network

This article is protected by copyright. All rights reserved

342 time. This indicates that the underlying information is sufficient for a comparatively accurate prediction 

343 even with relatively short collection time used by the NN. However, the results did not outperform 

344 LSITC-HTR for long datasets. In each of these cases it is important not to interpret the error in absolute 

345 terms, particularly near the maximum length. Remember that the error measures will be impacted by error 

346 in the results of LSITC applied to HTR.

347 Use of the LSITC model as the reference allowed rapid analysis and comparison with regard to k1, even 

348 for LTR data. In a previous study, k1 values estimated from the LSITC and DITC have been compared 

349 and the results are very similar3.  However, this model does omit parameters present in the DITC model, 

350 notably ka and kpv. Previous studies have correlated portal venous perfusion to liver function13 and arterial 

351 perfusion to tumor presence23. Theoretically, simultaneous quantification of k1, ka and kpv from a single 

352 dynamic MRI acquisition using the DITC is advantageous.  Practically, there are some limitations.  The 

353 FDA approved standard dose of Gadoxetic acid only contains a quarter of the Gadolinium in a standard 

354 dose of Gd-DTPA or Multihance.  This results in a weak contrast enhancement and a low signal-to-noise 

355 ratio in the arterial phase signals, thereby challenging reliable quantification of arterial perfusion.   

356 Therefore, in practice, if tumor diagnosis and assessment are the primary interest, Gd-DTPA or 

357 Multihance is used.  If liver function measurement is the primary interest, Gadoxetic acid is used.  If both 

358 tumor assessment and liver function are of interest, a trade-off has to be made.  Compared to the DITC 

359 and LSITC models, the Tofts model only considers the contrast transport between the intra-vascular and 

360 the extra-cellular space, which can only be applied for an extra-cellular contrast agent, but not an intra-

361 cellular agent, like Gadoxetic acid. 

362 5 CONCLUSIONS

363 Data length is significant for LSITC analysis as applied to DCE data for standard temporal sampling. 

364 With a fixed best t0 and careful choice of sampling points this can be reduced somewhat, particularly for 

365 acquisitions at least 12 minutes in length. Below this level the NN worked best, indicating that NN 

366 methods may be helpful in improving the robustness of uptake analysis in temporally short datasets. 

367 Combination of a GAN with DITC model created data contributed to the training of the NN, indicating 

368 the variation in input functions was being appropriately represented. Further work should assess the 

369 impact on functional avoidance therapy dependent on the means used to create functional maps.
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460 Figure 1. A dual-input two-compartment pharmacokinetic model of gadoxetic acid in the liver. 

461 Figure 2. Illustration of characteristics of densely sampled high temporal resolution (HTR – left) and more 

462 sparsely sampled low temporal resolution (LTR - right) datasets. HTR data is regularly sampled at 5-10 s 

463 intervals for the duration of 16-20 min. LTR data involves the acquisition of three post contrast samples 

464 uniformly spaced at intervals of 15 to 35 seconds, followed by two points, one at roughly 10 min and another 

465 at roughly 20 min post contrast. LTR data is the clinical norm.

466 Figure 4. The design of the GAN used for generation of Ca and Cpv curves. Parenthetical values represent the 

467 dropout rate for dropout layers, the gradient of the leaky Relu, and the number of size for all other layers.

468 Figure 5. Errors of estimated k1 values with varied acquisition lengths for the tested methods.

469 Figure 6. The k1 maps created using the HTR and LTR data truncated at 10 min both from directly fitting 

470 the LSITC model (second and third columns) and from the NN and GAN augmented NN models (fourth and 

471 fifth columns respectfully). The first column displays the reference k1 images by fitting the LSITC model to 

472 full length HTR data acquired over approximately 20 min.

473 Figure 7.  Examples of generated (top row) and nearest neighbors from the measured (bottom row) Ca and 

474 Cpv curve pairs. Nearest neighbors were calculated based on the sum of squared differences in Ca alone.

475 Figure 8.  For each of the 5 GANs used, the probability distributions for L2 norm of the distance between 

476 randomly selected Ca and Cpv curves for GAN generated data is shown in red. The probabilities for the 

477 measured data are shown in blue as reference.

478 Figure 9. The errors in simulated and real data as a function of the number of optimum sampling points 

479 using a procedure derived from the genetic algorithm.  Note that error in the data leveled off after 8 points.A
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Table of abbreviations appearing in text with corresponding definitions. 

Abbreviation Definition 

3D Three-dimensional 

DCE  Dynamic, Contrast Enhanced 

DITC  Dual-Input, Two-Compartment  

EMD Earth Mover’s Distance 

GAN Generative Adversarial Network 

Hct Hematocrit 

HTR High Temporal Resolution 

LTR Low Temporal Resolution 

LSITC Linearized Single-Input, Two-Compartment 

MRI Magnetic Resonance Imaging 

MSE  Mean Squared Error 

NN Neural Network 

NRMSE Normalized Root Mean Squared Error 

SD Standard Deviation 

SNR Signal to Noise Ratio 
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Table 1. The values used for the generation of training data using the dual-input, two-compartment model. 

Note that U(a,b) is the uniform distribution from a to b, and N(µ,σ2) is the normal distribution about µ with 

standard deviation σ. In this case the normal distribution was truncated to remove results outside the range 

[0,1]. 

Parameter Distribution  

k1,vdis Randomly drawn from patient set  mL/100mL/min, 

mL/mL 

kpvp+ kap U(50,300) mL/100mL/min 

kpvp N(0.75, (1/16)2)(kpvp+ kap),  mL/100mL/min 
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Table 2. The abbreviations used for each method and data pairing evaluated along with a description of the 

relevant method and data. 

Method/Data Abbreviation Method Description Input Data Description 

LSITC-HTR Fitting of LSITC model with t0 

chosen to maximize linearity 

HTR data, with the data length 

truncated to a maximum length of 4 

to 16 minutes 

LSITC-LTR Fitting of LSITC model with t0=75 

seconds 

LTR data, with the data length 

truncated to a maximum length of 4 

to 16 minutes. The initial points 

spaced at 25 second intervals. 

NN-LTR Application of the NN model 

trained by k1 resulting from LSITC-

HTR for full HTR datasets 

LTR data, with the data length 

truncated to a maximum length of 4 

to 16 minutes. The initial points 

spaced at 25 second intervals. 

Augmented NN-LTR Application of the NN model LTR data, with the data length 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

trained by DITC based data using 

input functions generated by GAN. 

truncated to a maximum length of 4 

to 16 minutes. The initial points 

spaced at 25 second intervals. 

OPT LSITC-LTR Fitting of LSITC model with 

algorithmically chosen sampling 

times and t0 

8 points selected algorithmically to 

minimize error in augmented 

dataset. Truncated to a maximum 

length of 8 to 16 minutes. 

LSITC HTR t0 = OPT Fitting of  LSITC model with HTR 

data but t0 set to the optimum found 

in OPT LSITC-LTR 

HTR data, with the data length 

truncated to a maximum length of 4 

to 16 minutes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Error rates (NRMSE) for each method as function of data length. Statistically significant 

improvements in NRMSE over LSITC HTR are indicated by an asterisk (*). Statistically significant increases 
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in error are indicated by a negated asterisk (-*). Significance was estimated based on a two sample t-test with 

a significance level of 0.05, except for the Max row, where a single sample t-test was used. 

Series 

Duration 

(min) 

NRMSE - mean (standard deviation) 

LSITC HTR LSITC LTR NN LTR 
Augmented 

NN LTR  

OPT LSITC 

LTR  

LSITC HTR 

t0 = OPT 

4 7.17 (4.39) 7.21 (3.93) 2.44 (2.06)* 2.15 (1.78)*  14.64 (9.44) -* 

5 5.86 (3.47) 6.21 (3.24) 2.21 (1.79)* 1.91 (1.43)*  7.78 (4.58) 

6 4.68 (2.72) 5.01 (2.95) 2.04 (1.52)* 1.82 (1.16)*  5.27 (3.18) 

8 3.27 (1.79) 4.02 (2.35) 1.71 (1.15)* 1.52 (0.85)* 1.97 (1.39)* 3.05 (1.78) 

10 2.59 (1.34) 3.09 (1.54) 1.54 (0.93)* 1.41 (0.75)* 1.38 (0.72)* 2.23 (1.17) 

12 1.81 (1.08) 2.57 (1.39) -* 1.44 (0.79) 1.32 (0.67)* 1.07 (0.57)* 1.60 (0.99) 

14 1.31 (1.01) 2.05 (1.27) -* 1.32 (0.71) 1.24 (0.62) 0.90 (0.53) 1.14 (0.90) 

15 0.92 (0.61) 1.79 (1.07) -* 1.28 (0.68)-* 1.24 (0.63)  0.86 (0.62) 

15.5 0.78 (0.52) 1.80 (1.02) -* 1.25 (0.64) -* 1.20 (0.58) -*  0.76 (0.54) 

16 0.60 (0.38) 1.77 (0.99) -* 1.22 (0.69) -* 1.21 (0.66) -* 0.77 (0.42) 0.68 (0.50) 

Max 0.00 (0.00) 1.39 (0.80) -* 1.14 (0.58) -* 1.06 (0.56) -* 0.72 (0.33) -* 0.42 (0.26) -* 
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