Supporting Information for "Influence of dynamic ozone dry deposition on ozone pollution"

O. E. Clifton^{1,2,3}, F. Paulot^{4,5}, A. M. Fiore^{1,2}, L. W. Horowitz⁴, G. Correa²,

C. B. Baublitz^{1,2}, S. Fares^{6,7}, I. Goded⁸, A. H. Goldstein⁹, C. Gruening⁸, A.

J. Hogg¹⁰, B. Loubet¹¹, I. Mammarella¹², J. W. Munger¹³, L. Neil¹⁴, P.

Stella¹⁵, J. Uddling¹⁶, T. Vesala^{12,17}, E. Weng^{18,19}

¹Department of Earth and Environmental Sciences, Columbia University, New York, New York, USA

²Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA

³Advanced Study Program, National Center for Atmospheric Research, Boulder, Colorado, USA

⁴National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA

⁵Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey, USA

⁶Council of Agricultural Research and Economics, Research Centre of Forestry and Wood, Rome, Italy

⁷National Research Council, Institute of Bioeconomy, Rome, Italy

⁸European Commission, Joint Research Centre, Ispra, Italy

⁹Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA

¹⁰Program in Technical Communication, College of Engineering, University of Michigan, Ann Arbor, Michigan, USA

¹¹National Institute for Agronomic Research UMR INRA/AgroParisTech ECOSYS, Université Paris-Saclay, Thiverval-Grignon,

France

¹²Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki, Finland

¹³School of Engineering and Applied Science and Department of Earth and Planetary Sciences, Harvard University, Cambridge,

Massachusetts, USA

 $^{14}\mathrm{Hemmera},$ an Ausenco company, Ontario, Canada

 $^{15}\mathrm{UMR}$ SAD-APT, Agro
ParisTech, INRA, Université Paris-Saclay, Paris, France

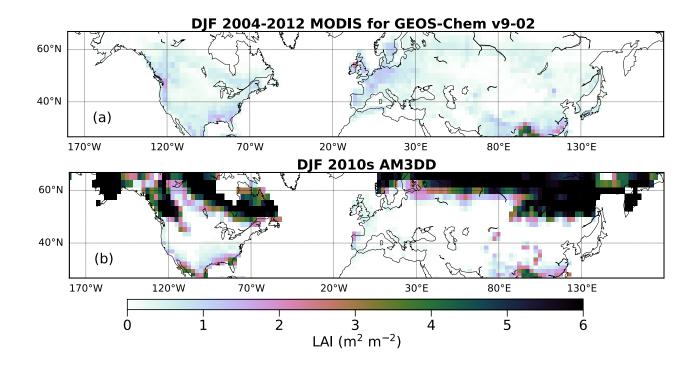
March 16, 2020, 5:55pm

 $^{16}\mathrm{Department}$ of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden

¹⁷Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, Helsinki, Finland

¹⁸Center for Climate Systems Research, Columbia University, New York, New York, USA

¹⁹NASA Goddard Institute for Space Studies, New York, New York, USA


Contents of this file

1. Figures S1 to S4

Introduction

The supporting information includes supplementary figures.

March 16, 2020, 5:55pm

Figure S1. Winter (December-February, or DJF) leaf area index (LAI) from a satellitebased (MODIS) climatology for 2004-2014 used in GEOS-Chem v9-02 and for the 2010s AM3DD dynamic simulation.

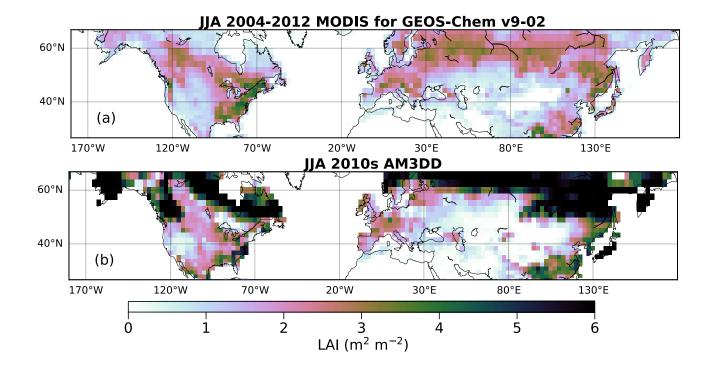


Figure S2. Summer (June-August, or JJA) leaf area index (LAI) from a satellite-based (MODIS) climatology for 2004-2014 used in GEOS-Chem v9-02 and for the 2010s AM3DD dynamic simulation.

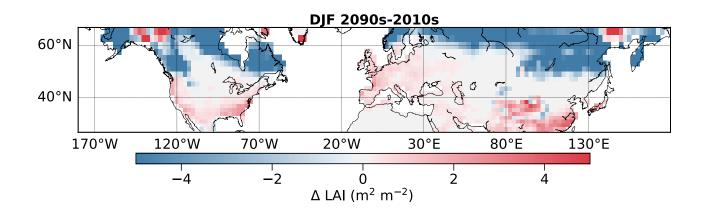
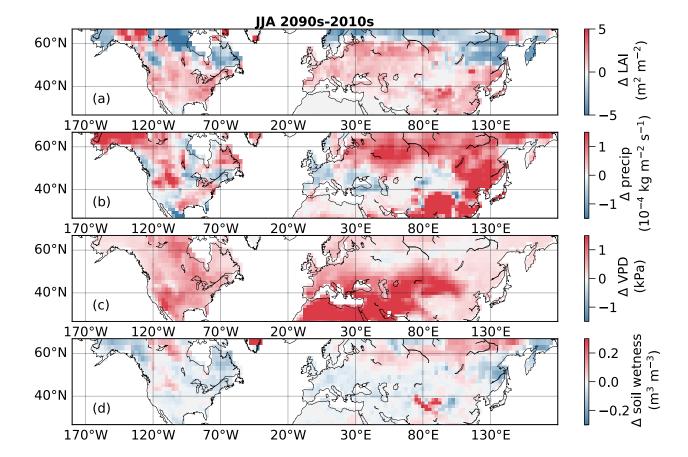



Figure S3. Winter (December-February, or DJF) change from 2010s to 2090s in leaf area index (LAI) in AM3DD (the dynamic simulations). Grid cells with less than 50% land are not shown.

Figure S4. Summer (June-August, or JJA) change from 2010s to 2090s in quantities relevant for ozone dry deposition in AM3DD (the dynamic simulations). Grid cells with less than 50% land are not shown. VPD is atmospheric vapor pressure deficit. LAI is leaf area index.