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Abstract 

Satellite observations of the total column dry-air CO2 (XCO2) are expected to support the quantification 

and monitoring of fossil fuel CO2 (ffCO2) emissions from urban areas. We evaluate the utility of the 

Orbiting Carbon Observatory 2 (OCO-2) XCO2 retrievals to optimize whole-city emissions, using a 

Bayesian inversion system and high-resolution transport modeling. The uncertainties of constrained 

emissions related to transport model, satellite measurements, and local biospheric fluxes are quantified. 

For the first two uncertainty sources, we examine cities of different landscapes: “plume city” located in 

relatively flat terrain, represented by Riyadh and Cairo; “basin city” located in basin terrain, 

represented by Los Angeles (LA). The retrieved scaling factors of emissions and their uncertainties 

show prominent variabilities from track to track, due to the varying meteorological conditions and 

relative locations of the tracks transecting plumes. To explore the performance of multiple tracks in 

retrieving emissions, pseudo data experiments are carried out. The estimated least number of tracks 

required to constrain the total emissions for Riyadh (<10% uncertainty), Cairo (<10%), and LA (<5%) 

are 5, 8, and 7, respectively. Additionally, to evaluate the impact of biospheric fluxes on derivation of 

the ffXCO2 enhancements, we conduct simulations for Pearl River Delta metropolitan area. Significant 

fractions of local XCO2 enhancements associated with local biospheric XCO2 variations are shown, 

which potentially lead to biased estimates of ffCO2 emissions. We demonstrate that satellite 

measurements can be used to improve urban ffCO2 emissions with a sufficient amount of 

measurements and appropriate representations of the uncertainty components. 
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1 Introduction 

The global atmospheric CO2 concentration has increased by more than 40% since the pre-industrial 

era to more than 400 ppm in recent years and remains the main driver to current and future climate 

changes (Le Quéré et al., 2018). The increase in CO2 concentration predominantly originates from 

anthropogenic CO2 emissions by combustion of fossil fuels such as coal, petroleum, and natural gas 

(Andres et al., 2012; Ciais et al., 2013; Rotty, 1983). In order to foster the mitigation and management 

of anthropogenic CO2 emissions, the international community has pursued treaties and agreements in 

the recent decades, such as the Kyoto Protocol (United Nations, 1998) and the Paris Agreement 

(UNFCCC, 2015).  

A large percentage of the anthropogenic CO2 is emitted from urban areas. About 40% as estimated 

by production-based figures (i.e. adding up emissions from entities located within cities), and as high as 

60-70% with a consumption-based method (i.e. adding up emissions resulting from the production of 

all goods consumed by urban residents) (International Energy Agency, 2008; UN-Habitat, 2011; 

Satterthwaite, 2008). Given their significant contributions to fossil fuel CO2 (ffCO2), cities can perform 

as leading entities in implementing emission reduction plans. Comprehensive, accurate, and 

comparable emission quantifications are crucial for transparent monitoring of ffCO2 emissions from 

urban areas and implementing effective mitigation schemes (Duren and Miller, 2012; Gurney et al., 

2015; Pacala et al., 2010).  

Emission inventory compilations with two methods referred to as “bottom‐up” and “downscaling” 

are generally used to quantify ffCO2 emissions. However, urban emissions usually bear large 

uncertainties, due to the missing socio-economic information and inaccurate emission conversion 

factors, which are critical elements affecting the quality of emission inventories at the urban scale 

(Gately and Hutyra, 2017). For example, urban energy consumption and industrial activity data needed 

for “bottom-up” method are reported on a voluntary basis, or under climate action activities in only a 

few cities, e.g., those participating the Global Covenant of Mayors 

(http://www.globalcovenantofmayors.org/), and are usually spatially inexplicit, incomplete and 
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unverified (Hutyra et al., 2014). Similarly, for inventories developed by disaggregating (“downscaling”) 

national or regional emissions at fine scales, the uncertainty is large at high spatial and temporal 

resolutions caused by the disaggregation methods (Janssens-Maenhout et al., 2012; Kurokawa et al., 

2013; Oda and Maksyutov, 2011), resulting in significant discrepancies among different emission 

inventories (Ackerman and Sundquist, 2008; Denier van der Gon et al., 2012; Gurney et al., 2012, 2019; 

Hogue et al., 2016; Oda et al., 2018; Oda and Maksyutov, 2011; Turnbull et al., 2011a). The two-sigma 

uncertainties of national annual ffCO2 emissions are estimated to be 2~4% for countries with well-

developed energy statistics and inventories (Rypdal and Winiwarter, 2001), and are at a possible order 

of 10% for countries with less well-developed energy data systems (IPCC, 2006). Nevertheless, urban-

scale emission inventories can exhibit large differences (50-250%) compared to other downscaled 

datasets at local scales (Gately and Hutyra, 2017). The large uncertainties in ffCO2 emissions not only 

impose difficulties on evaluating the effects of emission reduction strategies, but also would lead to 

significant biases in the regional carbon budget estimations (Corbin et al., 2010). It is reported by ESA 

(2015) that, accuracies of inferred emissions in the order of 10% of the total would be needed for 

providing constraints that allows emission inventories to be evaluated at the time of an overpass. For 

cities that do not have inventories, an accuracy of 20% is already an important gain in information.  

     Atmospheric observations-based methods are becoming important ways to objectively obtain ffCO2 

emission estimates, allowing existing emission inventories to be improved. Some attempts have been 

made to derive local-scale emissions for the urban areas by utilizing the inverse modeling method 

(Bousquet, 2000; Ciais et al., 2010) with ground-based observations (Bréon et al., 2015; Lauvaux et al., 

2016; McKain et al., 2012; Staufer et al., 2016; Wunch et al., 2009), or by the mass-balance approach 

with aircraft measurements (Cambaliza et al., 2014). However, one of the key limitations of these 

approaches is the unavailability of direct, continuous, and high-frequency atmospheric CO2 

measurements representing CO2 enhancement in urban areas (Bréon et al., 2015), as only a handful of 

cities, mostly in Europe and North America, are instrumented with networks of CO2 sensors (Bréon et 

al., 2015; Davis et al., 2017; McKain et al., 2012; Miles et al., 2017; Verhulst et al., 2017).  
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      In recent decades, space-based satellite measurements of column-averaged CO2 dry air mole 

fractions (XCO2) have been highly recommended for quantification and monitoring of urban ffCO2 

emissions, especially for cities where ground-based observations are sparse or unavailable (Duren and 

Miller, 2012; Kort et al., 2012; McKain et al., 2012; Schneising et al., 2013). Initial attempts have been 

made to relate satellite XCO2 measurements to ffCO2. Based on the retrievals from Scanning Imaging 

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on ENVISAT (2002-2012) 

(Bovensmann et al., 1999; Buchwitz et al., 2005), regional XCO2 enhancements over the industrial areas 

in Germany were revealed to be correlated with yearly increase of anthropogenic CO2 emissions 

(Schneising et al., 2008, 2013). In addition, with the launch of Greenhouse gases Observing SATellite 

(GOSAT) in 2009 (Kuze et al., 2009; Morino et al., 2011), discernible XCO2 contrasts between the 

emission and background regions (Janardanan et al., 2016; Keppel-Aleks et al., 2013), as well as local 

XCO2 enhancements over megacities (Kort et al., 2012) have been reported. However, due to coarse 

spatial resolution (∼ 60 km × 30 km) and relatively low sensitivity (4~8 ppm) of the SCIAMACHY 

instrument, applications of its data are limited to large and intense emission regions. For the GOSAT 

instrument, the major limitation is its low sounding density, with a single 85-km2 measurement per 250 

km, resulting in fewer than 1000 cloud-free soundings each day (Eldering et al., 2017b). Hence, these 

datasets are insufficient to enable accurate assessment of ffCO2 urban emissions at high spatial and 

temporal resolutions.  

NASA’s Orbiting Carbon Observatory 2 (OCO-2) satellite mission (Crisp, 2008; Crisp et al., 2004) 

has been providing continuous and global retrievals of XCO2 since September 2014 (Crisp, 2015). 

Although the OCO-2 mission is primarily developed for assessing regional carbon sources and sinks, 

its unique characteristics allow for detection of XCO2 enhancements over cities at fine scales. The OCO-

2 measurements have a higher spatial resolution than GOSAT and SCIAMACHY and collects more 

data per day. In particular, the small nadir footprint (~1.29 km × 2.25 km) helps to maximize the 

detectability of local emissions and increase the probability of cloud-free observations in the presence 

of patchy clouds. In addition, the high spectral resolution of OCO-2 enables high precision of XCO2 

with single sounding random errors of 0.5~1 ppm (Eldering et al., 2017a), which will greatly help to 
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detect the small anthropogenic XCO2 signals from the large background driven by biospheric sources 

and sinks and large scale atmospheric transport (Keppel-Aleks et al., 2013; Turnbull et al., 2016). 

There have been some studies to examine XCO2 imprints linked to anthropogenic emissions with the 

OCO-2 data. For example, spatial enhancements have been reported over the Northern Hemisphere 

regionally (Hakkarainen et al., 2016) and across the Los Angeles basin (Schwandner et al., 2017). For 

local-scale emissions and point sources, atmospheric transport modeling approach is applied to 

disentangle ffCO2 emissions from background. Wu et al. (2018) developed a Lagrangian model to 

interpret the XCO2 retrievals and constrain emissions from some cities in the Middle East. Nassar et al. 

(2017) presented the capability of quantifying ffCO2 emissions from individual power plants by 

utilizing a Gaussian plume model.  

Although the abovementioned studies have demonstrated the utility of OCO-2 XCO2 on revealing 

ffCO2 emissions, the emission estimation has not been carried out with high-spatial-resolution forward 

transport modeling so far, which has an advantage in capturing the fine-scale structure of ffCO2 plume. 

Meanwhile, it is essential to evaluate the uncertainty in emission estimate related to atmospheric 

transport model error with the high-resolution plume simulations, which has been identified as a major 

source of uncertainty in inverse modeling (Gerbig et al., 2003; Houweling et al., 2010; Lauvaux et al., 

2012; Lauvaux and Davis, 2014; Lin and Gerbig, 2005; Miller et al., 2015; Pacala et al., 2010). 

Additionally, the uncertainty in biosphere XCO2 at local scale increases the difficulty of unambiguously 

disentangling fossil-fuel emission signals in XCO2 from the observations for cities in vegetated areas, 

which has not been evaluated in respect of space-based total column observations.  

The previous studies were focused on cases using individual OCO-2 tracks. However, from the 

perspective of tracking ffCO2 emissions for global cities on a regular basis, the potential of OCO-2 

retrievals has yet to be investigated, which will be helpful to provide regular and policy-relevant 

references in support to improving the emission reduction strategies. Given current limitations in 

remote sensing that create a trade-off in sampling coverage and measurement precision, OCO-2 was 

designed as a sampling mission to provide measurements at high precision, but only samples a small 
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fraction of the globe each day (Eldering et al., 2017b), with a narrow swath (~10.3 km) and a long 

revisit cycle (~16 days). These features enable a small percentage of local emissions to be detected in 

each cycle (Pacala et al., 2010). Moreover, because the OCO-2 sampling locations vary among 

different observation modes (nadir, glint, and target), and the atmospheric transport condition changes, 

overpasses that happen to detect fossil-fuel XCO2 enhancements across a certain city are limited. For the 

cities examined in this work, about 5-15% of nearby OCO-2 tracks show detectable urban plumes, 

based on 15 months of OCO-2 data (September 2014 to November 2015). Hence, it would be still 

difficult to regularly monitor emissions by using individual overpasses. Despite these limitations, there 

is a potential to constrain fossil fuel emissions regularly by utilizing data collected along multiple 

tracks over one or more revisit cycle(s), which could enable tracking emission variations, although at a 

lower temporal resolution.  

In this paper, we present the utility of OCO-2 XCO2 data to constrain ffCO2 emission estimations for 

urban areas. Several sources of uncertainty in emission estimate are evaluated, including the transport 

model errors, measurement errors, and variations in local biospheric carbon fluxes. High-resolution 

forward simulations are performed using the Weather Research and Forecast (WRF) model, which is 

capable of capture fine-scale variability in XCO2 distributions caused by transport and emission 

processes at urban scales. We first evaluate the emission estimate uncertainty related to transport model 

errors and measurement errors for three selected cities with different topographic influences and 

negligible impact of variations in local biospheric fluxes, i.e. Riyadh and Cairo, classified as “plume 

cities” located in relatively flat terrain, and Los Angeles as a “basin city”. Based on these simulations, 

we carried out Observing System Simulation Experiments (OSSEs) to evaluate the potential of tracking 

urban emissions regularly by utilizing XCO2 data from multiple OCO-2 tracks. We also evaluated the 

uncertainty induced by local biospheric fluxes variability for the Pearl River Delta metropolitan area. 

We discuss additional uncertainty sources in the inverse emission estimates, e.g. the prior emission 

error correlations and the daytime-only sampling, and conclude with the implications for utilizing 

future satellite observations to monitor urban emissions.  
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 2 Data and Method 

2.1 OCO-2 XCO2 observations 

The OCO-2 Lite files (version 7r) from September 2014 to November 2015 are used in this study 

(obtained online at https://co2.jpl.nasa.gov). The OCO-2 satellite operates in a sun-synchronous polar 

orbit at the altitude of about 705 km and crosses the equator nominally at 13:36 LT (Local Time). It 

provides high-resolution spectroscopic measurements at eight adjacent 2.25 km long footprints within a 

narrow swath every 0.333 s, with a cross-track resolution of 0.1~1.3 km (Crisp, 2008; Eldering et al., 

2017a).The XCO2 data are retrieved from the spectroscopic observations of reflected sunlight in near-

infrared CO2 and O2 bands near midday, using the Atmospheric CO2 Observations from Space (ACOS) 

algorithm (O’Dell et al., 2012). We used the bias-corrected XCO2 data and filter them with 

“xco2_quality_flag” (QF) equals to zero, which is an indicator of data passing the internal quality 

check. The bias correction and data quality assessment have been detailed in the OCO-2 documentation 

(Mandrake et al., 2015). In addition, we analyzed each individual track over the selected cities for 

possible interferences by complex terrain, aerosols, and clouds. Some tracks were excluded due to 

contaminations by aerosols or clouds, as confirmed with the Cloud-Aerosol Lidar with Orthogonal 

Polarization (CALIOP) data (Winker, 2016). The OCO-2 XCO2 data are averaged over time windows of 

1 s, consisting of 24 consecutive soundings (at most) representing ~10.32 km (cross track) × 6.75 km 

(along track) in area. Note that we only derive 1-s average XCO2 when there are at least 5 soundings (at 

most 24) in that time window passing the data selection criteria.  

The measurement error of each XCO2 sounding consists of two parts: a random error related to noise, 

and a systematic error that is in principle bounded by the calculated interference error owing primarily 

to aerosol optical depth, surface albedo, and surface pressure (Boxe et al., 2010). For the random error, 

the OCO-2 data products include an estimate of the uncertainty on XCO2, which is generally smaller 

over water than the land surface, and larger at the extreme latitudes (Eldering et al., 2017a). However, 

this estimation is a lower bound (Connor et al., 2016). Worden et al. (2017) evaluated the OCO-2 

uncertainty by examining the XCO2 variability within small neighborhoods of ∼100 km × 10.5 km, in 
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which natural CO2 variability is expected to be small. It is shown that the random error in the data 

product over land (~0.36 ppm) is smaller than the empirically derived XCO2 random error (~0.75 ppm) 

by a factor of approximately 2. Conservatively, we consider a random error for each XCO2 sounding 

with the standard deviation of 1 ppm, which leads to 0.20~0.45 ppm for the 1-s average data calculated 

with 5~24 soundings.  

For the systematic error, as we used the bias-corrected data, some biases have been removed, e.g. 

systematic footprint-to-footprint differences, mode-to-mode differences, and systematic differences that 

appear to be correlated to other retrieval variables (Mandrake et al., 2015). However, as validated using 

the Total Carbon Column Observing Network (TCCON) XCO2 measurements by Wunch et al., (2017), 

residual biases remain in the OCO-2 retrievals after bias correction, with the absolute median 

differences <0.4 ppm and RMS differences <1.5 ppm. These biases appear to depend on latitude, 

surface properties, and scattering by aerosols. We note that for OCO-2 nadir and glint modes, these 

biases are evaluated using aggregated XCO2 data within a box centered around the TCCON station that 

spans 5̊ in latitude (~555 km) and 10̊ in longitude (~1100 km) on the same day as a TCCON 

measurement. As we examine the variability in XCO2 at a smaller spatial scale (~200-300 km, see Table 

1 for the domain sizes), these biases in background can be removed when we extract local XCO2 

enhancements associated with fossil fuel emissions (ffXCO2) by subtracting the background XCO2. Due 

to the lack of an accurate representation of aerosol contamination in the current retrieval algorithm, we 

assume that the effects of urban aerosols on XCO2 retrievals are negligible. Hence, the local ffXCO2 

derived from OCO-2 observations are assumed to be unbiased in this paper. Details of the derivation of 

background XCO2 can be found in section 2.2.  

2.2 Background XCO2  

     We extract ffXCO2, i.e. XCO2 enhancements caused by ffCO2 emissions, by subtracting background 

XCO2 from the OCO-2 XCO2 retrievals. A typical method to derive ffCO2 from in-situ CO2 

measurements is to calculate the difference between CO2 at an upwind site and a downwind site (e.g. 

Bréon et al., 2015; Super et al., 2017; Lauvaux et al., 2016). The best application condition of this 
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constant background method is when the wind vector is aligned with the stations. Similarly, when the 

wind is aligned with the orbit, we could get background XCO2 by averaging the measurements in the 

upwind region of a city. However, the alignment is very rare for OCO-2 (Nassar et al., 2017). In 

previous studies, a constant background is often used for XCO2 retrievals collected over a time period, 

which is calculated as the median XCO2 over a latitudinal band (Hakkarainen et al., 2016) or the average 

XCO2 in a “background area”, e.g. the desert located close to Los Angeles (Kort et al., 2012). However, 

for a single overpass, a constant background would not represent the spatial variability of the 

background concentrations. Thus, for each single overpass across a city of interest, we derived a 

“background line”, as shown with the black lines in Figs. 4, 5, and 7. The “background line” is derived 

by a two-step linear regression. We firstly decompose the XCO2 data into two parts, i.e. 

XCO2=XCO2_trend+XCO2_local, where the XCO2_trend is the non-local trend represented using a linear 

function: XCO2_trend=a·x+b. Here x is latitude, a and b are the slope and interception derived by linear 

regression. With the standard deviation of XCO2_local (σlocal) representing the local-scale variability, we 

filtered the XCO2 samples with XCO2 < XCO2_trend + 0.5σlocal. These filtered data are chosen as 

“background samples” (the black triangles in Figs. 4, 5, and 7), as they have lower spatial variability at 

local scales compared to the samples affected by urban ffCO2 emissions. Then we recalculate the linear 

regression line, i.e. the “background line”, based on the “background samples”. This “background line” 

method allows considering the spatial trend in the background.  

2.3 Cities of interest  

Four cities/urban areas are selected in this work considering the availability of OCO-2 data, 

topography, and vegetation coverage to highlight different sources of uncertainty in the emission 

estimates. To explore the impact of transport model errors, three different cities are chosen according to 

the following criteria: i) distant isolation from other large anthropogenic emission sources nearby, ii) 

large fossil-fuel carbon emissions, iii) low cloud cover and relatively preferable data availability, and iv) 

weak contribution of biospheric signals. Cities are categorized into two different types based on the 

impact of local topography on dispersion: “plume cities” located in relatively flat terrain, and “basin 
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cities” located in complex terrain trapping the dispersion. In this paper, Riyadh, Saudi Arabia with a 

population of 6.2 million, and Cairo, Egypt with 18.4 million are chosen as typical “plume cities”, 

which are characterized by ffXCO2 enhancements distributed as plumes. The Los Angeles metropolitan 

area (referred to as LA hereafter) with a population of more than 13 million is chosen as a characteristic 

“basin city”. The LA basin presents large elevation gradients from the sea surface to the top of Mount 

Wilson to the north. The strong enhancements in XCO2 are mainly due to air masses trapped in the basin, 

which has been referred to as “urban dome” (Idso et al., 1998), albeit we do not adopt this terminology 

in this work due to the potential confusion with actual accumulation of CO2.  

 To evaluate the impact of uncertainties in biospheric fluxes on the emission estimate, the Pearl 

River Delta (PRD) region of China is selected, where an agglomeration of several cities is located, 

including Guangzhou, Hong Kong, Shenzhen, Zhuhai, Dongguan, and Zhongshan. The PRD region is 

one of the largest metropolitan area in the world with about 45 million people. The cities are less 

vegetated compared to their surrounding area, leading to a distinctive contrast in the Net Ecosystem 

Exchange (NEE) in the urban area and surrounding rural area (see Fig. S2 and section 2.4.3).  

2.4 Model setup 

2.4.1 Atmospheric transport model 

The spatial heterogeneity of emissions and intense point sources (e.g. power plants) lead to 

complex spatial structures of urban emissions, resulting in complex CO2 plume combined with local 

atmospheric dynamics (e.g. Feng et al., 2016). In order to capture the fine-scale variations, we simulate 

the ffXCO2 using the Weather Research and Forecasting model (V3.6.1) with chemistry (WRF-Chem) 

(Grell et al., 2005; Skamarock et al., 2008), coupled to CO2 emissions and biospheric fluxes using the 

passive tracer mode (Lauvaux et al., 2012). Model grids are configured with 51 vertical (eta) levels. 

The 6-hourly NCEP FNL (Final) Operational Global Analysis data on 0.5°×0.5° grids are used as the 

initial and boundary conditions of meteorological and land surface fields. The boundary condition of 

CO2 concentration for the outermost is 390.0 ppm. The simulations are initiated every 4 days at 12:00 
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UTC with an integration time of 108 hours, including a spin-up time of 12 hours and producing hourly 

outputs.  

One-way nested domains with resolutions of 27, 9, 3, and 1 km are used for Riyadh and Cairo, 36, 

12, and 4 km for LA, and 36, 12, 4, and 1.333 km for the PRD region. The innermost domains and 

distributions of ffCO2 emission for the selected cities are shown in Fig. S3. For Riyadh, Cairo, and 

PRD, the innermost domains are used as the domains of interest to filter the OCO-2 observations. Note 

that for LA, the domain of interest is set to 119.0° W~116.3°W, 32.2°N~35.7°N, which is smaller than 

the innermost domain, and the spatial resolution is coarser than others. As reported by Feng et al. 

(2016), the 1.3 km run does not show significant improvement compared to the 4 km run at the surface, 

even though it resolves the vertical gradient of horizontal winds and PBL better. Given that aggregated 

ffXCO2 along track is used to compute the scaling factor of a priori emissions, we compared the 

aggregated ffXCO2 using 4-km and 1.3-km runs, and they also present similar results owing to ffXCO2 

mostly being trapped within the basin during daytime. Therefore, we used 4-km resolution for LA in 

this study.  

A summary of the simulations performed in this study is shown in Table 1. The fossil-fuel CO2 

emission data and NEE data are detailed in sections 2.4.2 and 2.4.3. Note that the simulations for 

tracers imposed by NEE are only conducted for the PRD region. Moreover, an ensemble of modeling 

based on model physics parameterizations is deployed to represent the transport model errors in the 

simulated ffXCO2 over LA (see section 2.5.1). 

2.4.2 Fossil-fuel CO2 emissions  

The Open-source Data Inventory for Atmospheric Carbon dioxide (ODIAC) version 2015a (Oda et 

al., 2017, 2018; Oda and Maksyutov, 2011, 2015) is used in this paper for emissions from each cities of 

interest. The ODIAC emission product provides 1 km ×1 km gridded global and monthly fossil fuel 

CO2 emissions. It is developed based on country-level fossil fuel CO2 emission estimates, fuel 

consumption statistics, satellite-observed nightlight data, and point source information (geographical 
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locations and emission intensities) from the CARbon Monitoring for Action (CARMA) power plant 

database (Oda et al., 2018).  The global nightlight data were used as a geo-referenced, spatial proxy to 

determine the spatial extent of anthropogenic emissions from the line and diffused (area) sources (e.g. 

road traffic, residential or commercial fuel consumption). The ODIAC gridded emission fields defined 

on a global rectangular (latitude × longitude) coordinate are remapped to meet the grid resolutions for 

each simulation domain. Note that temporal variability of emissions at diurnal and weekly scales is not 

included in the modeling and the pseudo data experiments. We remapped the monthly emission 

distributions for the time periods investigated in our simulation. The ffCO2 emission distributions are 

shown in Fig. S3. All ffCO2 is released at the ground surface.  

2.4.3 Biogenic CO2 fluxes 

The Net Ecosystem Exchange (NEE) fluxes in the PRD region are provided by the 15 different 

global Terrestrial Biogeochemical Models (0.5°×0.5°) in the Multi-scale Synthesis and Terrestrial 

Model Intercomparison Project (MsTMIP) (Huntzinger et al., 2013). In order to better characterize the 

diurnal variability and spatial distribution of biogenic fluxes, a 3-hourly dataset for global biogenic 

fluxes (Fisher et al., 2016) is used, which is temporally downscaled from the monthly global models. 

Furthermore, we spatially downscale the 3-hourly NEE from the original MsTMIP grid (0.5°×0.5°) (e.g. 

Fig. 1a) to the WRF domains (36-, 12-, 4-, and 1.333-km resolutions) using the Green Vegetation 

Fraction (GVF), with the assumption that vegetation productivity and respiration scales linearly with 

canopy coverage in each grid cell. We note that using this method, besides plant productivity and 

respiration, soil respiration is also downscaled by GVF, which could lead to some misrepresentation of 

soil respiration although the impact on the results would be small. The GVF is defined as the fraction 

of the grid cell for which midday downward solar insolation is intercepted by a photosynthetically 

active green canopy. A robust relationship between canopy cover and biomass was observed in Boston, 

which supports the use of GVF as a proxy for biomass, and hence as a scaling parameter for biogenic 

fluxes (Briber et al., 2013; Raciti et al., 2012). The NEE can be downscaled as follows:  

Ewrf, i, j= (Eblin, i, j /GVFblin, i, j)×GVFwrf, i, j                                                               (2.1) 
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where the subscripts i and j represent the coordinates of a WRF grid cell, Ewrf  the NEE at WRF grid 

(e.g. Fig. 1c), and Eblin the bilinear interpolated NEE from the original 0.5°×0.5° grids to WRF grid (e.g. 

Fig. 1b). GVFblin is interpolated using MODIS climatological GVF (e.g. Fig. 1d) in the same way of 

deriving Eblin (e.g. Fig. 1c), ensuring the same spatial representativeness of GVFblin and Eblin, and 

GVFwrf (e.g. Fig. 1e) is the GVF projected to the WRF grid. The GVF data used in this study are based 

on MODIS climatological observations from 2001 to 2010, which is available in the geographic data 

since WRF v3.6. The uncertainties in biogenic XCO2 are represented by the spread of simulated 

biogenic XCO2 using the NEE from the 15 member models in MsTMIP.  

2.5 Representation of transport model errors  

The impact of transport model errors in wind speed and wind direction on the uncertainty of 

emission estimates is considered in the inversions. In this section, we introduce the methods to 

propagate the transport model errors to the modelled ffXCO2 fields across different types of cities. The 

method applied for plume city and basin city are explained in section 2.5.1 and 2.5.2, respectively.   

2.5.1 Plume city: transformation of plumes 

For a “plume city”, the transport model errors are propagated by transformation of the modeled 

ffXCO2 plume. More detail of this method is included in the supporting information (Text S1.1). The 

errors for the “plume city” are assumed to be unbiased based on the previous study on Indianapolis 

(Deng et al., 2017). For a random error (𝜃) in wind direction, we rotate the simulated plume 𝑐̅(𝑥, 𝑦, 𝑡) 

at a given time (t) by an angle 𝜃 about the emission center (𝑥0, 𝑦0) to get 𝑐𝑟� (𝑥𝑟, 𝑦𝑟, 𝑡). Then the rotated 

plume is transformed to incorporate random wind speed error (𝜀) as: 

𝑐𝑟′����(𝑥𝑟′, 𝑦𝑟′, 𝑡) =  𝑐𝑟� (𝑥𝑟, 𝑦𝑟, 𝑡),                                                      (2.2) 

where 

𝑥𝑟′ = 𝑢�+𝜀
𝑢�

(𝑥𝑟 − 𝑥0) + 𝑥0,  𝑦𝑟′ = 𝑦𝑟,  𝑧𝑟′ = 𝑧𝑟, 𝑐𝑟′���� =  𝑐𝑟�
𝑢�

𝑢�+𝜀
.                            (2.3) 

Since the ffCO2 is confined within the planetary boundary layer (PBL) and well mixed during the 

daytime, we used the domain average wind speed within the PBL and its typical error statistics for 
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𝑢� 𝑎𝑛𝑑 𝜀. The errors are assumed to follow normal distributions of N(0, 1.0) (unit: ms-1) for wind speed 

and N(0, 15) (unit: °) for wind direction, respectively. The selection of the error ranges are consistent 

with the model error statistics in the lower troposphere (< 2 km) from model evaluation studies, e.g. 

Indianapolis (Deng et al., 2017), Los Angeles (Feng et al., 2016), and more generally over the US 

Upper Midwest (Diaz-Isaac et al., 2018). 

      Examples of transformed plumes using this method are shown in Fig. 2 based on a simulated 

ffXCO2 plume over Riyadh at about 10:00 UTC 29 December 2014. The impacts of positive and 

negative wind speed errors are represented by transformation (Figs. 2b and 2c), rescaling the plume 

along the domain average wind direction. The impact of a wind direction error is represented by a 

rotation of the plume (Fig. 2d).  

To obtain the transport model uncertainty in the modeled ffXCO2, we transform the modeled plume 

by multiple times (here 104) with random wind speed and wind direction errors, and extract the 

uncertainty spread of ffXCO2 by using the 25th and 75th percentiles. The transformation method is a 

tradeoff between running a simplified model (e.g. a Gaussian plume model) and running an ensemble 

of simulations. With this method, we can retain the complexity of XCO2 plume structures while 

exploring the transport error impact at low computational costs. Note that this method is derived under 

the assumption of spatially uniform wind errors, which is generally valid within a few tens of 

kilometers from the emission center.  

 

2.5.2 Basin city: model physics-based ensemble simulation 

For Los Angeles, a typical basin city, the transport model errors are represented by an ensemble of 

WRF simulations with different PBL and urban canopy physics parameterizations, following Feng et al. 

(2016). This method is suitable for transport conditions with the dispersion of CO2 trapped by local 

topography. Four different PBL parameterizations are used, i.e. the Mellor-Yamada-Nakanishi-Niino 

(MYNN) 2.5 (Nakanishi and Niino, 2004) scheme, the Mellor-Yamada-Jancic (MYJ) scheme (Janjić, 

1994), and the Bougeault and Lacarrère (BouLac) (Bougeault and Lacarrere, 1989) scheme. For the 

land surface processes in urban canopy, the single-layer urban canopy model (UCM) (Kusaka and 
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Kimura, 2004) and the multi-layer Building Environment Parameterization (BEP) (Martilli et al., 2002) 

are used. The ensemble of simulations with different combinations of the model physics schemes 

(Table 2) can represent the model uncertainties in wind field, PBL structure, as well as PBL height. 

In order to evaluate the performance of the ensemble on representing the model-observation 

mismatches, the modeling results of wind speed and wind direction are compared with surface wind 

observations. Surface observations of wind speed and wind direction at 43 synoptic weather stations 

located within the 4-km domain covering Los Angeles were used, derived from the global hourly 

Integrated Surface Data (ISD) and accessible at the National Centers for Environmental Information 

(NCEI) 

(https://gis.ncdc.noaa.gov/geoportal/catalog/search/resource/details.page?id=gov.noaa.ncdc:C00532).  

For each observation time, the mean absolute error (MAE) of modeling result is calculated to 

evaluate the magnitude of the model error. We compared the ensemble spread presented by two 

approaches: 1) the standard deviation (STD) of the ensemble results, and 2) semi-full range of the 

ensemble results (half of the difference between the maximum and minimum values). As shown in Fig. 

3, both of the approaches based on the simulation results of the 6 members exhibit a somewhat lower 

ensemble spread of wind speed compared to the observed MAE, suggesting an underestimation of the 

transport uncertainty (Figs. 3a and 3b). When taking the model results at ±1 h relative to the 

observation time into account (Figs. 3c and 3d with the ensemble size of 18 members), the ensemble 

spread is found to be enlarged, suggesting a better agreement with the observed MAE. The ensemble 

spreads for wind speed and wind direction both show better agreement with the MAE. It can also 

notable that the semi-full range yields a better representation of the model uncertainty compared to the 

STD (Figs. 3c and 3d). Hence, for LA we use the 18 ensemble members and the semi-full range to 

estimate transport model uncertainty spread in the simulated ffXCO2.  

For the systematic errors in the transport model, we compared the ensemble mean surface wind 

speed to the observations. The result shows a positive bias of 0.48 ms-1. Similarly, Angevine et al. 

(2012) found a wind speed bias of 1.1±2.7 ms-1. Feng et al. (2016) reported a slightly smaller bias of 

~1.0 ms-1 for LA, and showed larger biases near mountainous sites owing to complex topography. We 
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note that the wind speed error is evaluated at surface in this work. The wind speed bias varies at 

different altitudes through the PBL, with usually larger value near the surface (Feng et al., 2016).  

The wind speed bias can result in systematic error in emission estimates. In order to represent the 

impact of wind speed bias in the pseudo modeling data in the OSSEs, we apply a factor (k) to the 

simulated ffXCO2 (pseudo truth), where:  

𝑘 = 𝑢�
𝑢�+∆

,                                                                  (2.4) 

𝑢� is the average wind speed over the domain, and ∆ is the corresponding bias (in ms-1). This factor 

assumes a single ratio over the entire domain but allows to increase/decrease the ffXCO2 to represent 

the impact of negative/positive wind speed bias. 

2.6 Emission optimization method 

A Bayesian inversion method similar to that used by Pillai et al. (2015) is implemented, which 

optimizes parameters of ffCO2 emissions with observational constraints to obtain the best consistency 

between modelled and observed ffXCO2 enhancements. Specifically, we optimize the emissions by 

adjusting a scaling factor (λ) upon the a priori emissions from the entire city, without modifying the 

spatial distribution. The integrated ffXCO2 signals along a latitudinal range of interest of OCO-2 tracks 

is used as the observational constraint, which can be represented as:  

𝑦o = ∫ ffXCO2,o
lat2
lat1 , 𝑦m = ∫ ffXCO2,m

lat2
lat1                                             (2.5) 

where yo and ym are the observed and modelled results, respectively. Here, ffXCO2,o is derived by 

subtracting the background XCO2 from observations, and ffXCO2,m is derived by interpolating the 

modeling results of the tracer tagged with fossil fuel emissions at the coincident geolocations of the 

observations. Compared to deriving the scaling factor with the least square error method using all the 

soundings, the integral ffXCO2 shows less sensitivity to wind direction error (Fig. S2 and Text S1.2). 

      For n pairs of observations and modeling results obtained with n OCO-2 tracks, the integrated 

enhancements can be represented as 

yo = ym·λ + εo                                                                    (2.6) 
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Here the state vector has been simplified as a scaler, i.e. the scaling factor λ, and the Jacobian matrix 

that represents the sensitivity of the observations to the state vector is given by a vector ym. The term εo 

is an observational error vector, including errors in the OCO-2 measurements, forward model, and 

model parameters. It is assumed to follow the Gaussian distribution described with the error covariance 

matrix So. As the observation errors are assumed to be uncorrelated for different tracks, So is a diagonal 

matrix with the main diagonal entries representing the error variance of the observation (σ2
o) for each 

track. As the measurement and model uncertainty are unbiased and not correlated, we estimate σ2
o by 

adding the error variances: 

σ2
o = σ2

measurement + σ2
model.                                                              (2.7) 

where σ2
measurement is the measurement error variance, and σ2

model is the forward model error variance. 

The estimations of these two terms are detailed in sections 2.1 and 2.5, respectively.  

      The posterior estimate of λ is derived by minimizing the cost function (J): 

J(λ) = (yo – ymλ)T So
-1

 (yo – ymλ) + (λ- λa)2σa
-2                                        (2.8) 

where σa
2 is the error variance of the prior estimate, λa. The prior estimate λa is set to unity. The prior 

emission uncertainty is set up based on reported estimations in literature, as the ODIAC 2015a data 

product did not provide uncertainty estimates. At annual scales, Gurney et al. (2019) investigated the 

difference between the ODIAC data and a high-resolution bottom-up estimate product (Hestia) in four 

U.S. urban areas, showing the differences of whole-city emissions ranging from -1.5% to +20.8%. Oda 

et al. (2019) found differences of about 40% by comparing a satellite-derived annual emissions product 

to a gridded national inventory at 25-km resolution. However, the uncertainty would become larger at a 

smaller time scale. Considering the variability in anthropogenic activities, e.g. different power demand 

on weekdays and weekends, weather-related events, domestic heating, and air conditioning, the day-to-

day variability of 20 to 50% can be found in emission inventories. As most of the temporal patterns in 

current emission products are prescribed, and based on recent publications at different timescales, we 

suggest uncertainties of 50% at the daily timescale is a lower bound. As this work focuses on 

quantifying the whole-city emissions, we conservatively set the prior flux uncertainty σa to 20% for LA, 

since the emissions from the U.S. megacities are relatively well characterized. For Riyadh and Cairo, 
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the prior uncertainty is set to 40%, as the fuel consumptions are expected to have higher uncertainties 

than over the U.S.  

      By solving the minimum of J, the optimal estimate of scaling factor, λ�, and the posterior error 

variance, 𝜎�2 can be obtained as: 

λ� = (ym
TSo

-1ym + σa
-2)-1 (ym

TSo
-1yo + σa

-2 λa)                                           (2.9) 

σ�2 = (ym
TSo

-1ym + σa
-2)-1.                                                         (2.10) 

 

2.7 OSSEs: emission optimization using multiple tracks under different meteorological conditions 

 Given the limited amount of real OCO-2 overpasses and the observation geometry, OSSEs are 

implemented to examine the potential of using multiple OCO-2 tracks to constrain urban ffCO2 

emissions in a statistical prospective, which allows examining the performances under different 

atmospheric transport conditions. Specifically, we examine the relation between the number of 

available tracks and the emission estimate uncertainty.  

      For each city, we use a specified and typical OCO-2 ground track in nadir observation mode to 

extract the pseudo observations and pseudo modelling data, based on the hourly modeled ffXCO2. We 

avoided random selection of tracks across the domain, as OCO-2 tracks repeat over time without major 

variations. As the OCO-2 overpasses are available only during daytime, we selected the modeling 

results during 09:00-15:00 LST with domain averaged surface wind speed ≥ 2 ms-1. Additionally, for 

Riyadh and Cairo, in order to ensure that plume transections exist, the simulation results are also 

filtered with the angle from a plume axis to the typical track ≥ 10° and ≤ 170°. 

      The prior emissions, i.e. the ODIAC data, are set as the true emissions in the OSSEs. Hence, 

pseudo observations of ffXCO2 are obtained by sampling from the modeled ffXCO2 at the locations of 

the 1-s averaged soundings along the typical track. The pseudo observations are assumed to be 

unbiased relative to the truth. A random error per sample has been added, following a Gaussian 

distribution with the standard deviation of 0.2 ppm representing the lower bound of the measurement 

errors (section 2.1).  
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      The pseudo modeling data of ffXCO2 along the typical tracks are obtained in different ways for 

different cities. For Riyadh and Cairo, the pseudo modeling data are set directly to the modeled ffXCO2 

sampled along the typical track. Thus, the posterior emission estimate would be unbiased, and the truth 

of scaling factor would be unity. For LA, as the positive wind speed bias has been seen with the 

comparison to surface observations, we apply a factor to the simulated ffXCO2 to represent the impact of 

wind speed bias on the pseudo modeling ffXCO2 (see equation 2.4), which lead to a biased posterior 

scaling factor as will be shown in the results. The transport model uncertainty is estimated with the 

same methods detailed in section 2.5. We note that the uncertainty in background XCO2 is not included 

in the observation errors. 

The impact of numbers of available tracks (N = 1, …, 20) on emission estimate uncertainty is 

evaluated by a Monte-Carlo approach. For each number of tracks (N), we randomly select N pairs of 

tracks of pseudo observation and modeling data. The scaling factor is derived with the same inversion 

method (section 2.6) as used for the real tracks analyses. Probability distributions of scaling factor and 

the associated posterior uncertainty are obtained by repeating the random selection procedure.   

3 Results 

3.1 Local fossil fuel XCO2 enhancement (ffXCO2) 

      The ffXCO2 enhancement, defined as the enhancement in XCO2 associated with local fossil fuel 

emissions relative to the background concentration, is used to constrain emissions in this study. In this 

section, the ffXCO2 enhancements are shown for Riyadh, Cairo, and LA, estimated by the simulations of 

ffCO2 tracers tagged with the ODIAC emissions. The results are compared to the observed 

enhancements derived from the OCO-2 XCO2 data, in order to evaluate the magnitude of ffXCO2, i.e. to 

assess whether the signals of local emissions are robust and detectable. Note that the whole-city 

emissions from these three cities in the months of the selected tracks are about 3.1 Mt C mo-1, 2.5~2.7 

Mt C mo-1, and 4.5~4.7 Mt C mo-1 based on the ODIAC data (see Table 3). The OCO-2 tracks shown 

in this section are chosen by examining the observed XCO2 and the simulated plumes, to ensure that the 

satellite overpasses are downwind of the city with XCO2 signals attributable to local emissions.  
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3.1.1 Comparison of modeled and observed ffXCO2 

Figure 4 shows the ffXCO2 enhancements derived over Riyadh on 27 and 29 December 2014. 

Overall, the modeled enhancements over this domain are pronounced and can be up to about 6 ppm 

(Figs. 4c and 4d), indicating signals that can be unambiguously detected from space, given the 

precision and accuracy of the OCO-2 observations. The modeled ffXCO2 distributions are characterized 

by elongated and non-Gaussian plume structures, mostly due to complex horizontal wind fields (Figs. 

4c and 4d). By examining the simulated ffXCO2 at one hour earlier and one hour later, rapidly changing 

fine-scale structures can be seen (Fig. S4), indicating notable variations in the distributions of ffXCO2 

over a few hours. It is also noteworthy that, to examine the impact of domain resolution on the 

simulated ffXCO2, we compared the results of 1-km, 3-km, and 9-km spatial resolutions. Lower and 

smoother peaks can be seen for the coarser resolutions (see Fig. S5), which is expected given the larger 

aggregation errors of the emissions at the lower spatial resolution, particularly for intense point sources. 

This result suggests the necessity of using a high spatial resolution to reproduce the complex plume 

structures for the “plume cities”.    

Figures 4a and 4b show the modeled and observed XCO2 along the two tracks. Note that the 

simulated XCO2 shown in these plots is derived as the sum of background line derived with the OCO-2 

data and the simulated ffXCO2. The observed ffXCO2 enhancements reach ~1.5 ppm and ~2.0 ppm for 

these two tracks. The magnitudes of modeled ffXCO2 are generally in agreement with the observations, 

although there is a prominent spatial displacement of ~0.3° in latitude (~33.4 km, Fig. 4a) between the 

observed and simulated peaks on 27 December, and the modeled peak on 29 December is narrower 

than observed. The large spatial offset might be due to the satellite track transecting the edge of the 

plume in a nearly parallel way, so that the modeled ffXCO2 values are very sensitive to errors in 

horizontal wind field.  

For Cairo, the local ffXCO2 enhancements are examined for five tracks on 28 February, 18 March, 

19 May, 15 July, and 16 August 2015, respectively. As shown Fig. 5, the modeled ffXCO2 

enhancements over Cairo are mostly < 3.0 ppm over the simulation domain, with some hotspots located 
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close to some intense sources (Fig. S3). In comparison to Riyadh, the ffXCO2 enhancements are overall 

smaller, as expected given the lower total ffCO2 emission. Compared to the simulated ffXCO2, the 

observed local enhancement peaks are mostly higher and narrower, especially for the tracks on 19 May 

and 15 July 2015, while the modeled enhancements are smoother and diffuser. Spatial displacements in 

the signals are also seen for the tracks on 28 February and 16 August 2015.  

It is notable that the background XCO2 values represented with the background lines exhibit higher 

latitudinal gradients for most of the selected tracks over Cairo (Figs. 5a and 5b) compared to over 

Riyadh. The background line method used here provides likely reasonable estimations of the 

background XCO2, as general agreements are seen between the observed and modeled results of the 

integrated ffXCO2 enhancements along the satellite track within the domain of interest, which can be 

seen in the inverse estimates of total emission scaling factors (see section 3.2). Hence, this result 

indicates the advantage of the background line method in deriving background XCO2 for satellite 

observations analyzed at a spatial scale relevant to constraining local emission sources. Neglecting the 

latitudinal gradients in background XCO2 could lead to biases in ffXCO2, as well as in emissions derived 

from observations. 

In respect of LA, the ffXCO2 enhancements on 6 July, 15 July, 7 August, 16 August, 10 October, 

and 12 October 2015 are examined with the OCO-2 data and modeled ffXCO2. As shown in Fig. 6, the 

ffXCO2 over the domain can be up to ~3.0 ppm and varies notably depending on meteorological 

conditions, as well as variations in the emissions. In comparison to the ffXCO2 distributions over Riyadh 

and Cairo characterized by elongated plumes and rapid changing structures, the ffXCO2 distributions 

over LA are more spread and composed of multiple plumes, mostly trapped in the basin during daytime 

owing to the onshore winds and local terrain. The study by Hedelius et al. (2017) demonstrated 

persistent differences of ~0.8 ppm in XCO2 between two locations only 9 km apart within the LA basin 

induced by the steep terrain near the basin. Hence, topography plays a critical role in the distributions 

of ffXO2. 
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Figure 7 shows the comparison of the modeled and observed XCO2 over LA. Note that the OCO-2 

XCO2 retrievals north to the northern edge of the desert are excluded in the analysis, in order to avoid 

using the soundings with high warn levels owing to complex topography and high albedo of the desert 

area, as can be seen in Fig. S6. The thresholds for latitude are 35.21° N, 35.05° N, 35.20° N, 34.90° N, 

35.25° N, and 35.01° N, respectively, determined by examining the observations along with terrain 

height. Again, the background line has been added to the modeled ffXCO2 to present the total values, i.e. 

the ffXCO2 can be seen by the increments above the background lines. Overall, the modeled ffXCO2 are 

smaller than observed, which is likely owing to the positive biases in the modeled wind speeds, and the 

possible underestimation of the emissions. Similar to Cairo, prominent latitudinal gradients in the 

background are seen for some tracks, e.g. on 15 July and 12 October 2015. 

3.1.2 Transport model uncertainty of modeled ffXCO2 

The uncertainty in ffXCO2 related to the transport model error is an important source of uncertainty 

in inverse emission estimate. Here we evaluate the impact of transport model error for the above-

mentioned OCO-2 tracks. Note that different error estimation methods are used for the “plume cities” 

and the “basin city”.  

For Riyadh and Cairo, the transport model uncertainty in ffXCO2 has been shown with the light red 

shadings in Figs. 4a, b and Figs. 5a, b, estimated with the plume transformation method, as detailed in 

section 2.5.1. Specifically, for each track the simulated plume is perturbed 104 times with random 

errors in wind speeds and wind directions. Due to the non-Gaussian nature of the simulated plumes, as 

well as the non-linearity of the sampling process, the perturbed plumes are also non-Gaussian. Hence, 

we used the interquartile range (difference between the 25th and the 75th percentiles) as the uncertainty 

spread. Note that the uncertainty spread near the domain border is not shown because of the large 

portion of missing data after transforming the plume, which can also be seen in Fig. 2. The uncertainty 

in the modeled ffXCO2 over Cairo is up to 0.5 ppm, and up to 1.2 ppm over Riyadh. Given that the same 

probability distribution estimations of wind speed and wind direction errors are used for both cities, the 

smaller transport model uncertainty in ffXCO2 over Cairo can be mostly attributed to its lower total 
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emission leading to both the smaller ffXCO2 signals and the lower uncertainty spread. Another reason 

could be the relative locations of the tracks against those plumes they transect.  

To evaluate the transport model errors in the modeled ffXCO2 over LA, an ensemble of simulations 

has been carried out as described in section 2.5.2. The result has been shown by the light red shadings 

in Fig. 7. Note that this uncertainty spread is related to the random transport model error, therefore it is 

independent of the systematic negative bias of the modeled ffXCO2 mentioned above. As represented by 

the range between the minimum and maximum ffXCO2 among the ensemble members, the uncertainty 

spread is larger where the ffXCO2 is stronger, with the maximum uncertainty for each track ranging 

from 0.32 to 0.93 ppm. The uncertainty spread is found to be overall smaller compared to over Riyadh 

and comparable to over Cairo. Given that the whole-city emission is the largest for LA among these 

three cities, this result is likely related to the effect of local terrain trapping the ffCO2 within the LA 

basin and making the uncertainty decrease, as well as differences in the uncertainty spreads of wind 

fields.  

3.1.3 Integral ffXCO2 enhancement  

In this work, we optimize the whole-city emissions using the latitudinal integral ffXCO2 

enhancements. Hence, in this section we present the modeled integral ffXCO2 for each OCO-2 tracks 

shown in the above section, and reveal how the integral ffXCO2 relates to transport model errors.  

      Figure 8 shows the probability distributions of the simulated integral ffXCO2 for the tracks over 

Riyadh and Cairo. The distribution for each track are derived by sampling the plumes perturbed with 

random transport errors 104 times. The distributions are mostly non-Gaussian, due to the non-linearities 

in sampling transformed plumes at a specified track. To isolate the impact of transport model errors, we 

also show the normalized uncertainty spread, represented by the ratio between the interquartile range 

and the median. For Riyadh, the result shows bimodal distributions with normalized spread of 1.47 and 

0.73 (Fig. 8a). In comparison, the results for Cairo show narrower, less skewed, and unimodal 

distributions of the modeled integral ffXCO2 (Fig. 8b). The narrowest distribution is seen for the track 

on 18 Mar 2015 with the smallest integral ffXCO2 among the five tracks. The normalized uncertainty 
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spreads range from 0.17 to 0.38, smaller compared to Riyadh. This result is consistent with what has 

been shown along the tracks (Figs. 4 and 5).  

      The large uncertainty spread over Riyadh can be attributed to the relative location of the track 

against the plume and structure of the plume. For example, on 27 December 2014, the large uncertainty 

spread is likely due to high sensitivity of the simulated ffXCO2 to transport errors, since the transection 

is at the edge of the plume. For the track on 29 December, strong ffXCO2 enhancements (>5.0 ppm) are 

found downwind of the track due to local accumulation. Those enhancements can be sampled if the 

wind speed is lower, corresponding to the peak centered at ~24 ppm in Fig. 8a. Hence, the uncertainty 

spread also turned out to be large. Thus, it can be concluded that, the transport model uncertainty in the 

integral ffXCO2 is related to combined impacts of the magnitude of prior emissions, errors in winds, 

transection location relative to a plume, and the plume structure. 

      For LA, the modeled integral ffXCO2 for each selected track are shown in Fig. 9, based on the 18 

ensemble members. The normalized uncertainty spread ranges between 0.06 ~ 0.28, smaller than the 

results over Riyadh and Cairo. This confirms the results shown earlier for the transport model 

uncertainty in ffXCO2 along tracks in section 3.1.2, suggesting again that the trapped dispersion by 

local terrain can make the transport model uncertainty in ffXCO2 smaller.  

3.2 Emission estimates and uncertainty 

In this section, we show the results of inverse emission estimates obtained by using the OCO-2 

tracks shown in the above section for Riyadh, Cairo, and LA. Different sources of uncertainties are 

taken into consideration, including measurement errors and transport model errors. The inversions are 

preformed to derive scaling factors of total emissions over each of the selected cities. Note that the 

fluxes that can be retrieved or viewed from the XCO2 measurements vary from track to track, due to 

temporal variations in wind fields and emissions (Pillai et al., 2015). For example, if we consider an 

OCO-2 XCO2 sounding collected at 50 km downwind of the center of an urban emission area, it takes 

about 5 hours for air parcels to arrive travelling with a velocity of 3 m s-1. In other words, the ffXCO2 

obtained over or near an urban emission area can be determined by the emissions during several hours 
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ahead of the time of the overpass (Pillai et al., 2015). Given the overpass time of the OCO-2 in early 

afternoon (with the equatorial crossing time at 13:30 local time), the emission estimates constrained by 

the OCO-2 XCO2 measurements of each track could represent the emissions during morning to early 

afternoon on the date of the overpass. These should be taken into consideration when analyzing the 

results. The potential biases caused by the OCO-2 satellite observation strategy has been discussed in 

section 4.  

The inversions are firstly implemented separately for every track among the selected ones. The 

inverse estimates of the emission scaling factor have been shown in Table 3, as well as the 

measurement and transport model uncertainties of the integral ffXCO2, which are estimated with the 

methods described earlier in sections 2.1 and 2.5, respectively. Note that the prior scaling factor 

uncertainty, σa for LA has been set to a smaller value than those over Riyadh and Cairo, as in general 

there is a better knowledge of the emissions over the megacities in the U.S. (see also section 2.6).  

The posterior scaling factors range between 0.92~0.83, 0.70~1.18, and 0.66~1.84 for the selected 

tracks over Riyadh, Cairo, and LA, respectively (Table 3), indicating notable temporal variations in the 

emission estimates from case to case. As has been explained, here the estimations represent emissions 

during a time period of several hours ahead of the time of overpass depending on the meteorological 

conditions. The posterior uncertainties, σ� of the scaling factors for the three cities are found to range 

between 0.17~0.24, 0.10~0.25, and 0.11~0.16. The posterior scaling factor uncertainty has been shown 

overall larger for Riyadh and Cairo, compared to over LA.  

With specified prior emission uncertainty for each city, the posterior uncertainty is related to both 

the measurement and transport model errors. The relative contribution of transport model uncertainty, 

σmodel, and measurement uncertainty, σmeasurement, are found to be different over the three cities. The 

σmodel values are for Riyadh are larger than the σmeasurement by a factor of about 2 for the two tracks 

shown here (Table 3). By contrast, the σmodel for Cairo is generally smaller than the σmeasurement, 

consistent with what has been demonstrated in section 3.1.1. For LA, the relative magnitude of σmodel 

and σmeasurement varies. The results show a larger σmodel than σmeasurement for four among the six tracks 
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analyzed here. The spread of transport model uncertainty in ffXCO2 over LA is relatively smaller 

compared to over Riyadh, owing to likely the trapped dispersion within the basin, which is consistent 

with what has been shown earlier. It can be seen that, the transport model uncertainty is closely 

associated with the magnitude of urban emissions, relative location of plume and satellite track 

transection, transport model performance, and local topography. Variations of these factors lead to the 

temporal variability of the posterior emission uncertainty from track to track. 

Although the inversion results of whole-city emissions have been demonstrated for each track 

separately, the sparseness of nearby OCO-2 tracks for many cities is still one of the main limitations to 

quantify emissions on a regular basis, as well as to track the temporal variations in emissions 

objectively from space. The numbers of useful tracks that have been analyzed in the above sections are 

two, five, and six over Riyadh, Cairo, and LA, respectively, which are chosen by examining the OCO-2 

data during September 2014 to November 2015. Hence, we investigated the effect of using XCO2 data 

from two or more tracks on the inverse emission estimates. Given that there is no correlation between 

the observation uncertainties for any two tracks on different days, the ffXCO2 enhancement obtained 

from one track can not affect the emission on another day. Therefore, in order to investigate the effect 

of incorporating observations on different days, we derive one single scaling factor for all the days of 

the useful overpasses, as shown in Table 3. Note that the resulting scaling factor for each city would 

represent the best estimate of emission during several hours before the general time of local overpasses.  

The resulting scaling factors (± 1σ uncertainty) are 0.85±0.16, 0.83±0.074 for Riyadh and Cairo 

(see Table 3), suggesting overestimation of emissions over those time periods the observations can 

represent by the prior emissions, i.e. the monthly ODIAC product. While for LA, the scaling factor (± 

1σ uncertainty) is 1.36±0.074, indicating underestimation of the prior emission. As expected, the 

posterior uncertainty of scaling factor decreases substantially by using all the selected tracks over each 

city compared to the results with each track separately. The posterior uncertainties of the constrained 

whole-city emissions are reduced to about 19%, 9%, and 5% for the three cities, with the OCO-2 tracks 

obtained over about 1, 7, and 4 months, respectively. This result indicates the potential to obtain the 
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emission estimate with a lower uncertainty by utilizing OCO-2 tracks over a longer time period. As 

explained earlier, the inversion result is closely dependent on meteorological conditions and relative 

location of urban plume and satellite transection. Hence, we further investigate the performance of 

utilizing multiple OCO-2 tracks by the OSSEs (section 3.3).  

3.3 Potential of constraining the emissions with multiple tracks  

      In this section, we explore the effect of multiple tracks of XCO2 measurements on constraining the 

ffCO2 emissions. OSSEs are carried out for Riyadh, Cairo, and LA to examine the performance of 

OCO-2 like observations from a number of tracks (N) ranging from 2 to 20. In order to take scenes with 

meteorological conditions into consideration, we extract the pseudo observation and pseudo modeling 

data using all the hourly ffXCO2 modeling results in daytime for each city, rather than using only the 

modeling results close to the actual overpassing time. In this way we derived 217, 140, and 420 hours 

of ffXCO2 data in total, from which the tracks of pseudo data are generated accordingly (see section 2.7 

for details). Note that the random error term used to generate pseudo observation ffXCO2 represent a 

lower bound of measurement uncertainty, and only the times with domain averaged surface wind speed 

≥ 2 ms-1
 are included. For Riyadh and Cairo, the pseudo data are further filtered with a criterion of the 

relative location of satellite transection upon ffXCO2 plume (see also section 2.7).  

      For a specific number of tracks (N), we randomly chose N tracks from the filtered pseudo data, and 

derive the scaling factor with these N tracks. It is assumed that, these N satellite tracks were collected 

over a time period during which there was no bias in the prior emissions. We use a Monte Carlo 

method to evaluate the general performance of multiple tracks by repeating the selection and inversion 

process for 103 times. Two tests T01 and T02 are defined here. For T01, only measurement error is 

applied to the pseudo data, and for T02 both measurement errors and transport model errors are 

included.  

      The posterior scaling factors retrieved with different numbers of tracks (N) are shown in Figs. 10a, 

11a, and 12a for the three cities respectively. For Riyadh and Cairo, the median and average values are 

very close to the truth, i.e. one, for both T01 and T02, which can be expected given that the transport 
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model and measurement errors are assumed to be unbiased. While for LA, the median and average 

values are around 1.1, suggesting an overestimation by about 10% relative to the truth. This can be 

attributed to the overall underestimation in ffXCO2 due to the positive bias in the modeled wind speed. 

Variability of the retrieved scaling factors for different scenes and a specified N can be seen from the 

height of each box, i.e. the interquartile range, and the range between whiskers extending to the most 

extreme value that is not an outlier. Consistently for the three cities, the spread is found to be not 

obviously affected by the model errors, but mainly related to the random measurement errors. The 

spread becomes less and less with N increasing from 2 to 20, indicating that the measurement errors 

tend to have less impact of biasing the emission estimate when we have more data to constrain the 

emission.  

      Additionally, the posterior uncertainty of scaling factor is found to become smaller when the 

number of tracks increases (see Figs. 10b, 11b, and 12b). As expected, the posterior uncertainty is 

overall larger for T02 in comparison to T01, suggesting the prominent contribution of the transport 

model errors. For each box, 75% of data are lower than the top edge, i.e. the 3/4 quartile. The top 

whisker corresponds to about 3.275σ if the data are normally distributed, with more than 99.85% 

coverage below it. Hence for Riyadh, to retrieve the scaling factor with uncertainty <=0.1 (i.e. 10% 

uncertainty of total emission) with both the measurement and transport model errors considered, 5 or 8 

tracks are needed at a confidence level of 75% or more than 99.85% (Fig. 10b). For Cairo the numbers 

are found to be lower, i.e. 3 or 5 at the two confidence levels (Fig. 11b), owing to the smaller transport 

errors that have been also shown for the inversions based on real tracks. For LA, we consider a lower 

threshold of posterior uncertainty of 5%, given that the knowledges prior emissions from the U.S. 

megacities are generally better, and the prior scaling factor uncertainty has already been set to 0.2. As 

shown in Fig. 12b, 5 or 7 tracks are needed to obtain the goal of 5% uncertainty at the two above-

mentioned confidence levels. Note that in the OSSEs we have assumed no spatial correlation in the 

observation uncertainty. The number of tracks required to reduce the uncertainty would increase 

accordingly with the spatial correlation considered.  
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3.4 Impact of local biospheric CO2 variations on the interpretation of local XCO2 enhancements 

Forward simulations are carried out to investigate the influence of biospheric carbon fluxes on the 

interpretation of local XCO2 variation and the associated uncertainties. Two cases over the PRD region 

are analyzed using the simulation results and OCO-2 XCO2 obtained on January 15 and August 4, 2015, 

with the results shown in Fig. 13. These two cases correspond to conditions of fast atmospheric 

transport (i.e. high wind speeds) and weak transport (i.e. stagnant winds). The coastal circulation 

contrasts with the continental wind regimes, with fast winds over the sea on January 15 and near-zero 

wind speed on August 4, opposite to the inland circulation patterns. Because the ffCO2 emissions come 

from several cities located in the PRD region, the modeled ffXCO2 are characterized by features of 

multiple overlapping plumes extending downwind from the major sources across the region.  

To demonstrate the impact of local biospheric CO2 variations on local XCO2 enhancements, we 

derive the local XCO2 enhancement (referred to as ΔXCO2) from the simulated total XCO2 by subtracting 

the minimum value of the simulated results along a track. The constant background is valid for the 

simulation results, as the spatial gradient in the background concentration is negligible due to a 

constant boundary condition is used in the simulations. The observed ΔXCO2 is extracted using the same 

method as the preceding sections. As can be seen in Fig. 13, overall the simulated local enhancements 

including biospheric XCO2 signals are larger than the simulated ffXCO2, and show a better agreement 

with the observed ΔXCO2. Imposed by NEE from 15 MsTMIP biospheric models, the spread of 

simulated ΔXCO2 indicates the uncertainty in the local enhancement associated with the uncertainty in 

biospheric fluxes. Considering the tracks shown in Fig. 13, , the biogenic XCO2 variability at local 

scales account for ~32±27% (1σ) and ~24±18% (1σ) of the latitudinally integrated local enhancement, 

respectively. In other words, if the biospheric signal is not separated from the local ffXCO2 

enhancements, the total emissions would be overestimated by about 47±37% and 32±22% for the two 

cases examined here.  

For Riyadh and Cairo, the biospheric contribution is negligible compared to the local fossil fuel 

signals, since the local spatial gradient of NEE is much smaller than the ffCO2 emission. Therefore, 

simulations for the two cities are not shown. But we note that biogenic fluxes for Cairo (Nile River 
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delta) might be underestimated by the vegetation models. For LA, there are two reasons for not 

implementing a simulation like the PRD. First, the default MODIS-based GVF climatological maps in 

WRF shows nonrealistic values compared with the real-time MODIS-based GVF maps derived by 

Vahmani and Ban-Weiss (2016) (Fig. S7). Second, NEE is downscaled assuming a constant vegetation 

productivity within a single NEE grid cell (0.5°×0.5°). However, LA has a variety of climate zones 

because of its proximity to the Pacific Ocean and the nearby mountain ranges, where a variety of 

vegetation species exist with different growth patterns (McPherson et al., 2008). Thus, it could be 

unreasonable to assume a constant productivity. Also, a study based on in-situ flask observations in LA 

of 14CO2 indicated about 25% biogenic contributions to the mid-day CO2 enhancement (Miller et al., 

2017), in agreement with Newman et al. (2016), but poorly simulated by vegetation model (Feng et al., 

2016). More comprehensive data and method are needed to fulfill the estimation of biospheric 

contribution. 

4 Discussion  

4.1 Challenges for other cities 

In this paper, typical cities with different local topography features are examined, which are 

selected following the criteria in section 2.3. The simulations over Riyadh and LA demonstrate ffXCO2 

enhancements overall larger than 1.0 ppm and up to about 6.0 ppm, greater than the uncertainty of 

retrievals over land (~1 ppm) (Eldering et al., 2017a). However, for Cairo the ffXCO2 values are mostly 

< 3.0 ppm with some hotspots near the large emission sources. For some smaller cities, it would be 

even challenging to optimize their emissions from space due to limited detectability of fossil-fuel 

imprints. The factors limiting the detectability would include: i) large cloud coverage obscuring the 

sensor; ii) occasional high anthropogenic aerosol loading leading to larger measurement uncertainty; iii) 

overlapping enhancements from other cities or point sources nearby; and iv) low ffCO2 emission. To 

obtain a bigger chance of unambiguously detecting plumes from cities, an imaging satellite with a 
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wider swath and sufficient precision like the concept of CarbonSat (Buchwitz et al., 2013; ESA, 2015) 

would be helpful. 

Another challenge for many cities is to interpret and distinguish local XCO2 variations introduced by 

the biospheric fluxes and fossil fuel emissions. In this work, the variations resulting from the 

inhomogeneity of local biospheric fluxes have been evaluated by the simulations in section 3.4. 

Similarly, Dayalu et al. (2017) showed equivalent magnitudes of the vegetation and the anthropogenic 

signal with the Vegetation, Photosynthesis, and Respiration Model (VPRM) simulations at a surface 

observation site in Northern China. We note that the NEE data used in this work still need further 

verification for regions and seasons. In addition, the downscaling of NEE data is based on the 

assumption of uniform local vegetation productivity, while some studies have reported impact of 

human interventions on urban vegetation (Hutyra et al., 2014). For example, fertilization is likely to 

increase both Gross Primary Productivity (GPP) and respiration of ecosystems in urban areas compared 

to their natural counterparts. Given the limitation in biosphere models, many observational data have 

been used to extract ffCO2 signals against the large and varying background, e.g. measurements of co-

emitted components such as CO and NOx (Reuter et al., 2014; Silva et al., 2013; Turnbull et al., 2011b) 

with efforts to determine the emission ratios accurately. Additionally, the radiocarbon content of CO2 

(14CO2) (Turnbull et al., 2015, 2016) has been used, although existing technology limits 14CO2 

measurement to laboratory-based analysis of individual samples at low sampling resolution. These data 

could provide more constraints of ffCO2 emissions when assimilated in the inversion system jointly.  

4.2 Insights from results of the OSSEs 

The performance of multiple tracks on retrieving the scaling factor of whole-city emission has been 

evaluated by the OSSEs, with transport model errors and measurement errors considered. The results 

suggest the potential of obtaining emission estimates at a lower uncertainty level and over a longer time 

window. At a confidence level of more than 99.85%, the estimated least number of tracks required to 

constrain the total emissions for Riyadh (<10% uncertainty), Cairo (<10%), and LA (<5%) are 5, 8, and 

7, respectively. As the pseudo tracks represent different meteorological conditions, the OSSEs’ results 
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can indicate the potential of OCO-2 data in the long run. For example, we examined the number of 

available tracks over the three cities by counting the tracks located downwind of city and captured 

peaks in XCO2 using OCO-2 data and surface horizontal wind data in NCEP FNL during September 

2014 to November 2015, i.e. 15 months in total. There are 8 (13, 17) tracks over Riyadh (Cairo, LA) 

matching the criteria, corresponding to about one track per 1.75 (1.08, 0.82) months. Therefore, the 

general time it takes to collect the above-mentioned number of tracks would be about 14, 5, and 6 

months over the three cities. It takes the longest time for Riyadh, which can be likely owing to the 

relatively larger emission than Cairo, and the less complex terrain than LA. With some other satellite 

missions being planned and carried out, a shorter time can be expected to retrieve emissions at the 

uncertainty of policy-relevant level.  

Positive bias in the emission scaling factor is found for LA, while the estimates are centered at the 

truth for Riyadh and Cairo. We suspect that the emission bias resulted from mostly the propagation of 

the positive wind speed bias in the WRF atmospheric model over LA, as the wind speed bias has been 

considered when constructing the pseudo modeling data. In comparison, the WRF simulations over 

plume cities located in flat terrain show better results of wind speed and direction, e.g. wind speed 

errors of <1 m/s are reported for modeling results without data assimilation over Indianapolis (Deng et 

al., 2017), and <0.8 m/s around Paris (Lac et al., 2013). Data assimilation systems are proven to be 

useful to significantly improve model performances with decreased systematic errors (<0.5 m/s) (Deng 

et al., 2017), which can be an effective way of reducing the wind biases for basin cities (Ware et al., 

2016).  

4.3 Remaining error components in the inverse emission estimates 

In addition to the uncertainties in transport model, OCO-2 measurements, and biospheric fluxes, 

there are several sources of errors remaining to be considered. First, the measurement errors of OCO-2 

data are assumed to be non-correlated spatially, as the correlations are yet to be characterized at high 

resolution at present. Additionally, the nonlinearities in the retrievals and the random components of 

interference errors (Connor et al., 2016) and imperfection in cloud screening especially for low clouds 
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(Taylor et al., 2016) could also introduce large errors in the retrievals. We note that in the OSSEs, the 

measurement uncertainty has been evaluated using a lower bound of the uncertainty.  

For the emission inversion system, the prior emissions have been assumed to be perfectly 

distributed and optimized with a whole-city scaling factor. As noted by Pillai (2015), the flexibility to 

capture the true spatial variation of fluxes is more limited in the inversion system with one scaling 

factor for entire city, compared to in pixel- or parameter-wise inversions. However, the pixel-level 

emission uncertainties would be significantly larger than those of the whole-city emissions. Assessment 

of prior emissions errors in gridded field is difficult (Andres et al., 2016), which is usually done by 

comparing emission inventories at an aggregated spatial resolution (Hutchins et al., 2017; Oda et al., 

2015). The ODIAC data have been compared to the Hestia emission product (Gurney et al., 2019), 

which is one of the most accurate and complete emission inventories at the scale of buildings and street 

segments as evaluated against in situ tower measurements (Lauvaux et al., 2016).  At 1 km × 1 km 

spatial scale, the result reveals a low‐emission limit in ODIAC driven by saturation of the nighttime 

light spatial proxy, and the median difference ranging between 47 to 84%. The largest discrepancies 

were found for large point sources and the on‐road sector. More studies on emission comparisons 

would allow us to realistically constrain the emissions at sector and pixel levels.  

Additionally, we note that the temporal representation of emission estimates by OCO-2 

measurements can be limited given the sampling strategy. As the satellite measurements are only 

available in daytime clear-sky scenes, XCO2 can not be evenly sampled in time. This makes it difficult 

to quantify the diurnal variability in the emissions. It is suggested that XCO2 retrievals must be taken 

into inversion modeling at the original temporal and spatial representativity (Corbin and Denning, 

2006), since the clear-sky sampling biases the XCO2 if they are used as daily values or averaged over a 

longer time period. To estimate the effect of sampling bias, we calculated the daily emission from 

Indianapolis by using data during daytime hours (09:00-14:00 LST) and clear-sky daytime hours, based 

on the hourly emission of the Hestia product (Gurney et al., 2012) for a full year and cloud cover data 

from a surface synoptic observation site nearby. The average daily emission for daytime hours has a 
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+14% bias compared to the actual Hestia emissions estimate including all hours. In addition, the bias 

increases to +28% when sampling only days with clear-sky conditions. Therefore, the retrieved 

emissions using OCO-2 measurements would be overall larger than the daily average. As another 

estimation, we examined the diurnal variability pattern of emissions estimated by Nassar et al. (2013). 

For Riyadh, Cairo and LA, the ratios between emission at about the satellite overpassing time against 

the monthly average value are about 1.195, 1.127 and 1.288, corresponding to biases of about +19.5%, 

+12.7% and +28.8% by only sampling in daytime compared to the monthly total emissions. More 

space observation missions including the Geostationary Carbon Cycle Observatory (GeoCarb) (Moore 

et al., 2018), OCO-3 (Eldering et al., 2017b), and MicroCARB 

(https://microcarb.cnes.fr/en/MICROCARB/GP_mission.htm) will further enhance the uniform 

sampling over urban areas.  

5 Conclusions 

In this paper, we presented the potential of using XCO2 observations from OCO-2 to optimize the 

ffCO2 emission from urban areas. High-resolution forward modeling of the atmospheric transport has 

been implemented to reproduce fine-scale structures of ffXCO2 plumes, as well as to link emissions with 

observed XCO2. The contributions of transport model errors, measurement errors, and local variability 

of biospheric fluxes on the inverse estimates of whole-city emissions have been evaluated. 

We used a Bayesian inversion approach to optimize the ffCO2 emissions from three cities (Riyadh, 

Cairo, and Los Angeles), using the OCO-2 tracks with detectable enhancements collected between 

September 2014 to November 2015, namely 15 months in total. The retrieved scaling factors ranged 

between 0.92~0.83, 0.70~1.18, and 0.66~1.84 for the three cities, indicating notable temporal 

variations in the inverse emissions from day to day. The posterior uncertainties were largest for Riyadh, 

mostly due to the transport model uncertainty. Prominent variability of posterior scaling factor 

uncertainties for the individual tracks was also due to varying meteorological conditions and locations 

of satellite tracks relative to city plumes. By incorporating all the selected tracks for each city, the 
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posterior uncertainty of scaling factor was found to decrease substantially, corresponding to about 19%, 

9%, and 5% uncertainty of the posterior emissions. This indicates a potential to improve current 

emissions estimates by utilizing OCO-2 tracks over a time period, since the frequency of nearby OCO-

2 measurements is limited for each city.  

We evaluated the potential of using multiple OCO-2 tracks by performing pseudo-data experiments 

based on the high-resolution forward simulation results for the real cases analyzed above, taking the 

impacts of both measurement errors and transport model errors into account. For a certain number of 

tracks, it’s assumed here that those satellite tracks were collected over a time period, during which 

there was no bias in the prior emissions. As revealed by the experiments, to obtain posterior uncertainty 

<=0.1 (i.e. 10% uncertainty of total emission), 5 or 8 (3 or 5) tracks are needed for Riyadh (Cairo), at a 

confidence level of 75% or more than 99.85%. For LA, we consider a lower threshold of the posterior 

uncertainty of 5%, and 5 or 7 tracks are needed to achieve this goal at 75% or 99.85% confidence level.  

The impact of local variability in biospheric fluxes on spatial XCO2 variations is evaluated, with the 

uncertainty of the biospheric fluxes represented by using downscaled fluxes from the 15 biosphere 

models adopted in the MsTMIP inter-comparison. Despite the large ffCO2 emissions from the Pearl 

River Delta, significant fractions, i.e. 32±27% (1σ) and 24±18% (1σ) for the two cases shown, of the 

local XCO2 enhancements are driven by the local biogenic fluxes. This would lead to overestimation of 

total emissions by about 47±37% and 32±22%. For cities with biospheric fluxes of comparable 

magnitude but smaller fossil-fuel emissions, the contribution is expected to be larger than the values 

shown above. Therefore, for the cities in mid-latitudes and the equatorial areas with prominent local 

and regional biospheric fluxes, the biospheric contribution is essential for appropriate interpretation of 

the XCO2 retrievals. 

For future improvements of the quantification and monitoring of urban ffCO2 emissions with OCO-

2 data or other polar-orbit measurements, temporal and spatial correlations in prior emissions errors 

will likely be critical terms to be considered, which are not included in the inversions here. Given the 

limited satellite overpasses owing to cloud cover, retrieval issues, sampling geometry, and satellite 
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revisiting cycle, etc, the information on prior emissions error correlations will allow us to retrieve the 

temporal variations and spatial structures of emissions in a more effective way, compared to using one 

scaling factor for the entire city. In that case, the appropriate number of tracks to constrain urban 

emissions will depend on the granularity, i.e. the spatio-temporal resolutions of emissions in a target 

city, as well as the precision level required to inform policy decisions.  

In addition, compared to the long-term trends in emissions that are more easily detectable, biases in 

retrieved emissions due to daytime-only sampling are somewhat difficult to be recovered with 

observations similar to OCO-2 data. Fortunately, with the continuing OCO-2 observations during its 

extended mission and space-based CO2 measurement missions being deployed and planned with 

geostationary observations or targeting strategy over cities, the CO2 records will be extended to 

potentially allow us to achieve emissions with a better temporal representativity. Our results in this 

work indicate a promising potential of measurements from OCO-2 or similar missions to constrain 

urban emissions for cities with robust ffXCO2 enhancements, by using high-resolution transport 

modeling and the inversion approach. It can be expected that, the OCO-2 data would be more 

effectively used to improve the accuracy and precision of urban fossil fuel carbon fluxes, in 

combination with observations from other platforms to support emission reduction strategies. 
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Table 1. Summary of the simulations carried out for the selected cities  

City type 

City/ 

Metropolitan 

region 

Land cover (% innermost 

domain) * 

Transport 

error 

propagation 

method 

Innermost 

domain size 

and 

resolution 

Simulation time 

Plume city 

Riyadh Barren or sparse (92.2%) 
Perturbed 

plume 

201×201 

(1 km) 

1-16 November 2014 

17 December 2014 – 

5 January 2015 

27-30 January 2015 

Cairo 
Barron or sparse (57.4%) 

Croplands (32.8%) 

Perturbed 

plume 

201×201 

(1 km) 

4-7 October 2014 

16-19 March 2015 

17-20 May 2015 

13-16 July 2015 

14-17 August 2015 

Basin city 

Los Angeles 

(LA) 

metropolitan 

region 

Water (45.2%) 

Open shrublands 

(34.9%)  

Barren or sparse (6.1%) 

Woody savannas (3.6%)  

Croplands (2.9%) 

Ensemble 

simulation 

207×150** 

(4 km) 

3 July – 20 August 

2015 

6-19 October 2015 

Multi-city 

Pearl River 

Delta (PRD) 

metropolitan 

region 

Water (26.7%) 

Croplands (26.2%) 

Evergreen broadleaf 

(20.0%) 

Woody savannas 

(10.1%)  

Urban (8.6%) 

Perturbed 

plume 

240×240 

(1.333 km) 

12-15 January 2015 

1-4 August 2015 

*Land cover is based on MODIS IGBP 21-category data. The land cover types accounting for more than 90% of 

the innermost domain in aggregate are listed.  

**The domain of interest for LA is set to 119.0° W~116.3°W, 32.2°N~35.7°N, which is smaller than the 

innermost domain of simulations. 
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Table 2. WRF model configurations of the ensemble of simulations conducted for Los Angeles 

Ensemble 

member 

PBL scheme Surface layer scheme Urban Canopy 

model 

MYJ MYJ Eta similarity (Janjić Eta) None 

MYJ_UCM MYJ Eta similarity (Janjić Eta) Noah UCM 

MYNN MYNN Nakanishi and Niino None 

MYNN_UCM MYNN Nakanishi and Niino Noah UCM 

BouLac_BEP BouLac Eta similarity (Janjić Eta) BEP 

BouLac_UCM BouLac Eta similarity (Janjić Eta) Noah UCM 
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Table 3. Inversion results of scaling factors of the whole-city emissions for the selected cities using 

OCO-2 XCO2 data. The scaling factors and their posterior uncertainties are shown for each individual 

track, as well as for integrating the information from all the selected tracks. Uncertainty components 

are listed for each track, including the prior uncertainty of scaling factor, and the measurement and 

transport uncertainties of the integral ffXCO2 (the larger value between these two is shown in bold).  

City 
Date of OCO-

2 track 

Prior total 

emission 

(MtC mo-1) 

Prior 

total 

emission 

uncertain

ty (σa) 

Measurement 

uncertainty 

(σmeasurement, 

units: ppm) 

Transport 

model 

uncertainty 

(σmodel, units: 

ppm) 

scaling factor (λ) ± 

posterior uncertainty 

(σ�) 

Riyadh 
Dec 27, 2014 3.08 

40% 
1.34 2.80 0.92±0.24 

0.85±0.16 
Dec 29, 2014 3.08 1.30 2.83 0.83±0.17 

Cairo 

Feb 28, 2015 2.52 

40% 

1.07 0.71 0.79±0.15 

0.83±0.074 

Mar 18, 2015 2.70 0.55 0.31 1.18±0.25 

May 19, 2015 2.48 1.18 0.36 0.95±0.11 

Jul 15, 2015 2.62 1.08 0.16 0.70±0.13 

Aug 16, 2015 2.61 0.94 0.54 0.81±0.10 

Los 

Angeles 

Jul 6, 2015 4.68 

20% 

1.48 2.99 1.00±0.15 

1.36±0.074 

Jul 15, 2015 4.68 2.11 1.62 1.84±0.16 

Aug 7, 2015 4.74 1.11 1.35 1.17±0.15 

Aug 16, 2015 4.74 1.93 3.03 1.43±0.14 

Oct 10, 2015 4.49 1.20 1.08 1.64±0.15 

Oct 12, 2015 4.49 1.40 2.70 0.66±0.11 
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Figure 1. Example of biogenic carbon fluxes (Net Ecosystem Exchange, NEE) downscaling in PRD 

region. Top panels show the NEE from 3-hourly MsTMIP data at 12:00 LT January 12, 2010 on (a) the 

original 0.5°×0.5° grid, (b) WRF grid (1.333×1.333 km), derived by bilinear interpolation of original 

NEE, and (c) WRF grid (1.333×1.333 km), derived by scaling the interpolated NEE. Bottom panels 

show the green vegetation fraction (GVF) in January on (d) the 0.5°×0.5° grid, (e) WRF grid (1×1 km) 

by bilinear interpolation of GVF in (d), and (f) WRF grid (1×1 km).  See section 2.4.3 for further 

details.  
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Figure 2. (a) Local ffXCO2 derived from OCO-2 data (colored dots) at about 10:00 UTC 29 December 

2014 by subtracting the background concentration and the simulated ffXCO2 enhancement (color 

shading) using ODIAC emissions, which is the truth in the OSSEs. Panel (b) and (c) show the rescaled 

plumes of panel (a) with wind speed error of 1.0 ms-1 and -1.0 m s-1. Panel (d) shows the rescaled 

plume with wind direction error of 5.0°.  
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Figure 3. Comparison of the modeling uncertainty and mean absolute error (MAE) of 10-m wind 

speeds and wind directions over 43 surface sites located in the 1.333-km resolution domain for LA. The 

modeling random uncertainty is calculated as the standard deviation (STD, blue scatters) and semi-full 

range of the modeling results, i.e. half of the difference between maximum and minimum values among 

the ensemble members (red scatters). The top two panels show results for the original six members, and 

the bottom two panels for the 18 members with modeling results at ±1 h included. The red and blue 

crosses in each panel stand for average points of the scatters in the corresponding colors.  
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Figure 4. Comparisons of modeled and observed ffXCO2 enhancements by the OCO-2 data on 27and 29 

December 2014 at about 10:00 UTC over Riyadh. Panels (a) and (b) show the OCO-2 XCO2 (black dots) 

and simulated XCO2 (red dotted line, sum of ffXCO2 and the background concentrations) along the two 

tracks. The OCO-2 retrievals are filtered with Quality Flag (QF=0) and are 1-s averaged. The blank 

triangles represent the data used for the derivation of background concentrations (black solid line) by 

linear regression with these data versus latitude. The uncertainty in the simulated ffXCO2 related to 

transport model errors are shown by the light red shading. Panels (c) and (d) show the simulated ffXCO2 

and the observed ffXCO2 obtained from the OCO-2 data, filtered with QF=0 only. The background XCO2 

concentrations have been subtracted. The vectors represent 10-m wind with the reference vector 

standing for the wind speed of 5 m s-1.  
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Figure 5. Similar to Fig. 4, but for the OCO-2 tracks over Cairo on (a and f) 28 February, (b and g) 18 

March, (c and h) 19 May (d and i) 15 July, and (e and j) 16 August 2015 at about 11:00 UTC.  
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Figure 6. Comparisons of the simulated ffXCO2 (color shading) and observed ffXCO2 enhancements 

(colored dots, background concentration subtracted) derived from the OCO-2 data collected at about 

21:00 UTC over LA. The observation dates are labeled in each panel. The OCO-2 data are filtered by 

quality flag of zero (QF=0). The vectors represent 10-m wind, with the reference vector standing for 

the wind speed of 5 m s-1.  
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Figure 7. Similar to Figs. 4 (a, b), but for OCO-2 XCO2 measurements over LA and the corresponding 

simulated results at about 21:00 UTC on (a) July 6, (b) July 15, (c) August 7, (d) August 16, (e) 

October 10, and (f) October 12, 2015. 
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Figure 8. Probability distributions of the modeled integral ffXCO2 enhancements (ffXCO2, m) for the 

OCO-2 tracks on 27 and 29 December 2014 over Riyadh (left) and 28 February, 28 March, 19 May, 15 

July, and 16 August 2015 over Cairo (right). The total number of samples is 104 for each track. The 

distributions represent the uncertainty related to random transport model errors in wind speed and wind 

direction. Note that the y-axis limits of the two plots are different. The numbers in the parentheses are 

the ratios of the interquartile range (q3 − q1) and the median (q2). 
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Figure 9. Box plot of the modeled integral ffXCO2 enhancements (ffXCO2, m) for the selected OCO-2 

tracks over LA on the dates labeled at the x-axis. For each box, the central line indicates the median 

(q2), and the bottom and top edges of the box indicate the 25th and 75th percentiles (q1 and q3), 

respectively. The whiskers extend to the maximum and the minimum. The numbers are the ratios of the 

interquartile range (q3 − q1) versus the median (q2).    
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Figure 10. Box plot of the inverse estimates of (a) whole-city emission scaling factor and (b) the 

posterior uncertainty for Riyadh, derived by the OSSE for different number of OCO-2 tracks (N). The 

number of repetition times of inversion with each specified value of N is 103. For each box, the central 

line indicates the median, the circle represents the average, and the bottom and top edges of the box 

indicate the 25th and 75th percentiles (q1 and q3), respectively. The outliers are plotted with “x”, which 

are greater than q3 + 2× (q3 – q1) or less than q1 – 2× (q3 – q1). The whiskers extend to the most extreme 

value that is not an outlier.  
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Figure 11. Similar to Fig. 10, but for the OSSE results for Cairo.  
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Figure 12. Similar to Fig. 10, but presents the OSSE results for LA.  
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Figure 13. Simulated ffXCO2 over the PRD region and the 10-m wind vectors in the 1.333-km resolution 

domain at (a) 05:00 UTC January 15, 2015, and (b) 05:00 UTC August 4, 2015. The reference vector 

stands for wind speed of 5 ms-1. The colored dots represent the OCO-2 data at about 05:00 UTC over 

this domain, filtered with quality flag of zero (QF=0). The background has been subtracted from the 

OCO-2 data. The black dots in (c) and (d) show the 1-s average observations in the two tracks, with the 

modeled ffXCO2 and ΔXCO2 (owing to both fossil fuel and biogenic fluxes) represented by the red and 

blue dotted lines, respectively. The bunch of blue lines represent the results using NEE from the 15 

biospheric models.  
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