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Abstract 

Fecal contamination is a wide-spread impairment to riverine and near-shore environments 
across the state of Michigan. Where fecal contamination is present, harmful human pathogens are likely 
to exist, potentially resulting in infectious diseases such as giardia, hepatitis, cholera, and other 
gastrointestinal upsets. Fecal contamination may also carry with it contaminants such as nutrients, 
pharmaceuticals, endocrine disruptors, and toxic compounds that cause adverse disruptions to aquatic 
ecosystems. Water quality indicators, such as Escherichia coli (E. coli), are used by state and local 
governments to characterize the extent of fecal contamination. While E. coli water quality standards have 
laid the groundwork for monitoring fecal contamination, they are limited by the poor timeliness between 
E. coli sampling and lab analysis results. Additionally, wet-weather monitoring of E. coli requires 
substantial personnel availability and poses safety risks for those sampling. However, emergent 
technologies present a potential solution to these restrictions. Particularly, optical signals such as 
tryptophan-like-fluorescence (TLF) and optical brighteners (OB), along with nephelometric turbidity, 
have been correlated with fecal contamination in previous studies. These parameters can be monitored 
more easily than E. coli, and in a continuous fashion to provide high volumes of data.  

My research demonstrates the applicability of optical sensors for real-time indication of fecal 
contamination and provides specific recommendations for using this technology in the Clinton River 
Watershed. In this study, a team of researchers conducted a six-month pilot study to evaluate the validity 
and practicality of using these parameters across various hydrologic conditions at three unique 
monitoring locations. I tested the predictive ability of TLF, OB, and turbidity to detect the magnitude of 
fecal contamination by correlating these parameters with discrete E. coli samples enumerated through 
culture-based methods. I demonstrated that all three parameters were significant predictors of E. coli 
concentration across hydrograph phases, and prediction strength was strongest using data from the 
ascending limb of the hydrograph. Turbidity and TLF demonstrated either linear or log-linear regression 
relationships with E. coli in all models. The relationship between OB and E. coli was best fit for a cubic 
curve using data from the ascending limb of the hydrograph, yet the model for the descending limb was 
linear. Using TLF and turbidity as predictor variables, values for correlation strength were comparable 
with previous studies. Correlation strength using OB was highest among all parameters (r = 0.77). Model 
fit was relatively weak and highly dependent on sample size, demonstrating the need for additional data 
from multiple storms in the same season. Hydrology patterns influenced seasonal ranges for all three 
parameters. Additionally, strong diurnal patterns demonstrated the need for instrument-specific 
temperature correction algorithms.  

In addition to validating the predictive ability of TLF, OB, and turbidity to detect E. coli, I 
provide extensive “lessons-learned” on the practicality of using optical sensors for continuously 
detecting fecal contamination. This study demonstrated noteworthy constraints associated with long-term 
deployments, compelling practitioners to optimize deployment configurations, maintenance plans, and 
data post-processing protocol in future applications. Despite these constraints, this study reveals how 
optical sensors could be used to provide a rapid indication of microbial pollution, and aide practitioners 
in source tracking of fecal contamination.  
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 - Introduction 

Fecal Contamination Impacts to Surface Waters 

Fecal contamination is a wide-spread impairment to riverine and near-shore environments across 

the State of Michigan. Where fecal contamination is present, harmful human pathogens are likely to exist, 

resulting in infectious diseases and gastrointestinal upsets. Common disease-causing pathogenic 

organisms include Vibrio cholera (bacterium causing Cholera) and Salmonella typhimurium (bacterium 

causing typhoid), which are endemic across the world and cause up to 143,0001 and 223,0002 annual 

deaths, respectively. In the United States, the former diseases are of historical importance, while Giardia 

lambia (causing beaver fever) and Cryptosporidium parvum today pose a greater concern. Exposure to 

fecal contamination in surface waters comes from a variety of pathways, including ingestion via partial 

and total body contact in recreational waters, contamination of drinking water sources, and consumption 

of contaminated seafood (primarily bivalves). Antibiotic-resistant bacteria are now being found in natural 

waters3, an ominous prelude to the future effectiveness of antibiotics and disease prevention.  

Fecal contamination from wastewater often comes alongside contaminants such as nutrients, 

pharmaceuticals, endocrine disruptors, microplastics, and toxic compounds that cause adverse disruptions 

to aquatic ecosystems. Contaminants at a specific stream or river site depend on the source of wastewater. 

For instance, domestic wastewater often contains detergents, fat sources, and trace pharmaceuticals. 

Agricultural wastewater may carry with it salts, pesticides, and fertilizers. Urban wastewater from 

combined sewers and storm drains often transports petrochemicals from roadways. Industrial wastewater 

contains a wider range of pollutants including those previously listed, and are also known to contain acids 

and radioactive materials. 

Bacteria and other organisms living in wastewater streams consume oxygen to metabolize the 

sewage they accompany. For this reason, sewage is deemed an oxygen-demanding material. The 
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consumption of dissolved oxygen (DO) poses a threat to aquatic life forms. When DO levels drop below 

critical levels for various species, hypoxic “dead zones” can form and mortality ensues.  

Sources of Fecal Contamination 

Fecal contaminants can enter aquatic ecosystems from either point or nonpoint sources, and are 

typically associated with human or animal feces. Wastewater treatment plants and combined sewer 

overflows are the most significant point sources of human fecal contamination. Other point sources 

include illicit connections of sanitary lines to storm sewers, and the illegal dumping of waste material. 

Nonpoint sources vary depending on the predominant land-use type in a given watershed. Nonpoint 

sources from urban areas include leaky sewer lines, pet waste, wildlife, and urban litter. In agricultural 

areas, fecal contamination tends to stem from failing septic systems, confined animal feeding operations 

(CAFOs), and the application of manure as fertilizer4.  

Management Policies 

In an attempt to address the detrimental impacts of fecal contamination, public lawmakers 

developed measures to assist communities in remediating fecal contamination from surface waters in the 

United States (and worldwide). The Federal Clean Water Act Section 303(d)5 outlines the processes used 

to address water quality standard exceedances in surface waters. This act authorizes the Environmental 

Protection Agency (EPA) to assist states, territories, and authorized tribes in listing impaired waters and 

developing Total Maximum Daily Loads (TMDLs) for these water bodies. A TMDL establishes the 

maximum amount of a pollutant allowed in a waterbody and serves as the starting point or planning tool 

for restoring water quality. 

Water quality indicators, such as Escherichia coli (E. coli), are used by state and local 

governments to characterize the extent of fecal contamination. In Michigan, state water quality standards 

(WQS) were developed for E. Coli to protect overall human health and recreational water use. The Lower 

Clinton River does not meet the current WQS for E. coli6, and thus the Michigan Department of 

Environment, Great Lakes, and Energy (EGLE) developed a TMDL requirement as a tool to restore water 
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quality in the watershed. The TMDL requirement for E. coli is a flow-based approach, setting load targets 

based on a location’s flow duration curve and assigning load allocations to various point and non-point 

sources. Point source discharges are addressed through discharge permits (US EPA NPDES), while 

nonpoint sources are left to be addressed by watershed managers and local stakeholders. 

Monitoring Techniques 

To effectively reduce the harmful side effects of fecal contamination to waterways, watershed 

managers across the globe use monitoring techniques to track down resources and prioritize remediation 

efforts. In the United States, the principal indicators for waterborne pathogens are total coliform, fecal 

coliform, enterococci, and E. coli bacteria. Of the four, E. coli is the most numerous member of the 

coliform group found in the feces of warm-blooded animals. Historical efforts were made to develop a 

more sensitive way to discern fecal contaminated water (a fecal contamination index) in the late 19th 

century by Theodore Escherich of Germany, and a presumptive test using lactose-based fermentation tube 

tests in 1891 was developed by the New York Department of Health7. Work performed under the United 

States Public Health Service (USPHS) in Cincinnati demonstrated that E. coli measurements could be 

used to estimate Salmonella typhimurium in sewage latent waters8. Further research demonstrated that E. 

coli were resistant to disinfection as compared to other bacterial pathogens9 and therefore, this 

measurement technique became solidified as a method for determining fecal contamination in water 

resources.  

Method refinement to the traditional E. coli test is constantly evolving as questions have surfaced 

concerning the suitability of E. coli as a bacterial indicator of sewage-contaminated waters. In tropical 

and subtropical climates, the suitability of E. coli as a sewage indicator has been questioned as some E. 

coli populations can be naturally present in the environment10–13. Enterococcus 14 and Clostridium 

perfringes 15 have been used as alternatives indicators to address these issues. Despite method 

refinements, the detection of these indicators via culture-based methods provides relative abundance, but 

little information related to the origin of the contamination (human versus non-human). For water quality 
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managers, this can further complicate remediation efforts. Microbial source tracking (MST) methods 

surfaced to detect host-associated DNA markers and identify different sources of fecal contamination, 

including humans, cows, gulls, and dogs16–21. MST methods are now available as quantitative polymerase 

chain reaction (qPCR) tests, enabling the rapid quantification of sources and providing information more 

quickly than traditional culture-based methods.   

Even still, surface water monitoring of bacterial pathogens is limited by the poor timeliness 

between sampling and lab analysis, thereby hindering the availability of results and the ability to capture 

target conditions (e.g. peak E. coli levels) for use in early warning systems. Peak E. coli levels in riverine 

systems often occur during the “first-flush” when rapid changes in water quality occur in the early phases 

of a storm event (ascending limb of the hydrograph). Wet-weather monitoring of E. coli (throughout the 

storm and associated stream flood) requires substantial personnel availability, particularly when the aim is 

to characterize how multiple sites respond to the same storm. In extremely flashy runoff events with 

short-term peak flows, periodic discrete grab sampling of E. coli has a low probability of identifying 

microbial concentrations that indicate human health risk. Even when characterization is successful, the 

effort poses safety risks to those sampling through exposure to fecal contamination and the risk of 

drowning in floodwaters, among other hazards.  

However, emergent technologies using fluorescence spectrophotometry present a potential 

solution to these restrictions. The use of submersible fluorometers is emerging as an alternative to 

traditional fecal contamination monitoring. Modern fluorometers are capable of continuously measuring 

sewage-associated fluorophores, and transmitting data remotely when coupled with telecommunication 

devices. Surface waters laden with fecal contamination exhibit optical characteristics that can be detected 

in specific regions of the fluorescence and absorbance spectra. That is, an Excitation-Emission-Matrix 

(EEM) can be created by simultaneously scanning of excitation and emission wavelengths through an 

aqueous sample. Each fluorophore (a fluorescent chemical compound that can re-emit light upon light 

excitation) in the sample is said to have an excitation-emission pair, and appears on the EEM as a peak or 

series of peaks associated with the excitation-emission pair. The most common fluorophores in natural 
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surface waters are humic-like, derived from plant material decay (peaks C and A). “Tryptophan-like-

fluorescence” (TLF or peak T at 280 nm excitation/360 nm emission wavelength) has been shown to 

relate to the microbial activity in natural surface waters, showing strong correlations with BOD5 22 and 

fecal contamination associated with E. coli, which is typically associated with warm-blooded animals. 

Cumberland et al.23 demonstrated positive correlations between enumerated total coliforms, E. coli, and 

heterotrophic bacteria; and TLF (R2=0.78, 0.72, and 0.81, respectively) from uncultured samples of 

diluted river water and sewage networks with a portable fluorometer. Sorenson et al.24 demonstrated the 

use of in-situ fluorometers targeting TLF as a rapid indicator of the presence or absence of thermotolerant 

fecal coliforms found in groundwater-derived potable water supplies.  

Another fluorophore, associated with a class of compounds called optical brighteners (OB), 

boasts promise as a surrogate for detecting fecal contamination. These fluorescent whitening agents are 

added to most laundry detergents25,  and emit light in the blue range (415-445 nm). Signal peaks in this 

range may thus indicate the presence of domestic wastewater streams. The measurement of OB with 

fluorometers is gaining popularity as a method for source tracking applications to indicate human-derived 

fecal contamination. Several studies have demonstrated that high fluorometric readings of OB are 

indicative of high fecal indicator bacteria counts26–28. Yet, this was not the case for pioneer studies29,30, 

where it is thought that unidentified chemicals that absorb and emit light at similar wavelengths to that of 

OB (organic matter and aromatic compounds) led to false detection. In this way, the validity of OB in 

detecting fecal contamination from residential sewage sources seems to be dependent on the site-specific 

water quality conditions. Therefore, it is necessary to validate the relationship between E. coli and OB at 

specific monitoring sites before it is employed in a continuous fashion.  

Additionally, turbidity is becoming increasingly popular as an indicator of microbial water 

quality in both riverine31,32 and near-shore33,34 environments. Watersheds impacted by development 

exhibit higher levels of suspended solids and associated turbidity during storm events relative to 

unimpaired watersheds. Fecal-associated microorganisms are often transported during surface runoff 

events, although this occurrence depends on land use and stormwater infrastructure35. Therefore, the 
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association of turbidity with fecal contamination is specific to catchment conditions and local stormwater 

management practices.  

Turbidity, OB, and TLF can be monitored continuously with in-situ water quality sondes, and in 

real-time using cellular telemetry, to overcome the challenges of traditional field sampling methods. 

Continuous data collection also generates greater quantities of data than discrete sampling, and can 

provide insight on how fecal contamination levels vary with flow conditions. This could greatly improve 

monitoring efforts and subsequent management actions with respect to TMDL regulations. Real-time data 

availability can help guide the timing of grab samples by providing visual confirmation of spikes in 

fluorescence intensity during wet-weather events. Together, these indicators can help assess inputs of 

fecal contamination.  

Study Rationale 

Despite the potential for TLF and OB to serve as effective, continuous, and real-time indicators of 

fecal contamination, limited studies exist that demonstrate their effectiveness at high-resolutions through 

the progression of stormflow events. Correlation strength between these fluorophores and fecal indicator 

bacteria (such as E. coli) has yet to be evaluated in this scenario. Understanding these relationships is 

paramount for managing fecal contamination in stormwater runoff. Does flow magnitude influence the 

strength of these correlations? Are there flow magnitude thresholds? How do these relationships vary with 

other water quality parameters, such as turbidity, temperature, and specific conductance? Do other 

fluorophores (e.g. dissolved organic matter) interfere with the signals of TLF and OB?  

I sought to answer these research questions as applied to a specific study area, the Clinton River 

Watershed. My primary objective was to evaluate the validity of different fecal contamination monitoring 

indicators, including fluorescence from TLF and OB, across various hydrologic conditions. We tested the 

ability of these parameters to predict the magnitude of fecal contamination by correlating continuous 

TLF, OB, and turbidity data with discrete E. coli samples enumerated through culture-based methods. 

Monitoring data were collected over a six-month monitoring campaign at the mouths of three different 
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tributaries to the Clinton River, each with a distinct flow regime. Additionally, I performed a preliminary 

exploration of the full excitation-emission spectrum at each site to determine if other signals may be 

stronger indicators of fecal contamination, and if signal interference among fluorophores was present. My 

second objective was to explore the practicality of using in-situ optical sensors to monitor fecal 

contamination in the riverine environment. This pilot study will provide information to practitioners on 

the “lessons learned” of working with these emergent technologies. My final study objective was to 

characterize the water quality patterns at each monitoring location through descriptive statistics. This 

information will allow practitioners to understand the flow-driven behaviors of local water quality 

impairments, aside from fecal contamination, for improved restoration and management efforts.  
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 - Study Locations 

Historical Context 

The Clinton River Watershed, located north of Detroit in Southeast Michigan, is the focus of 

water quality restoration efforts due to contamination problems that stem from industrial pollution and 

rapid urbanization. The Lower Clinton River and two tributaries, the Red Run Drain, and Bear Creek do 

not meet the Michigan WQS for E. coli, and thus the Michigan Department of Environment, Great Lakes, 

and Energy (EGLE) developed Total Maximum Daily Load (TMDL) requirements for both tributaries as 

tools to restore water quality6,36. The numeric targets for the TMDL are based on the Total Body Contact 

(TBC) and Partial Body Contact (PBC) beneficial uses for recreational waters. Exceedances are either 

determined by a daily maxima or 30-day geometric mean limitation. The daily maxima for TBC is 300 E. 

coli per 100 mL, and 1,000 E. coli per 100 mL for PBC. The 30-day geometric mean is 130 E. coli per 

100 mL. By not meeting the WQS, these beneficial uses are determined to be “impaired”. In the Lower 

Clinton River TMDL assessment, the highest 30-day geometric means reached 1,778 E. coli per 100 mL 

in the Harrington Drain tributary, and the highest daily maxima for E. coli reached 32,166 E. coli per 100 

mL following a minor rainfall event of 0.09 inches6.  

The TMDL requirement for E. coli is a flow-based approach, setting load targets based on a site’s 

annual flow duration curve and assigning load allocations during lower and higher flows that relate to 

various point and non-point sources. Point source discharges are addressed through discharge permits (US 

EPA NPDES), while non-point sources are left to be addressed by watershed managers and local 

stakeholders. Addressing the E. Coli TMDL requirement is a primary concern for the watershed managers 

in the area, and the state has led numerous efforts to fund E. coli source tracking and infrastructure 

improvements, including a comprehensive illicit discharge elimination program37. Much of the funding 

for remediation comes through the U.S. EPA Great Lakes Restoration Initiative (GLRI). The U.S. EPA 
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designated the Clinton River as one of thirty-one U.S. Areas of Concern (AOC) under the 1987 Great 

Lakes Water Quality Agreement. This designation allows local watershed managers to apply for project 

funding through the GLRI to remediate priority water quality impairments, namely heavy metals, 

polychlorinated biphenyls, and conventional pollutants including oil and grease, nutrients, total dissolved 

solids, and fecal coliform bacteria. With GLRI support, an assemblage of local watershed managers and 

stakeholders have undertaken a sophisticated modeling and monitoring effort.  My study was to explore 

how TLF and OB indicators might help with this larger effort.  

The most likely sources of fecal contamination in the Clinton River Watershed are of non-point 

source origins, including stormwater runoff from urban areas, failing septic systems, sediment 

resuspension related to altered hydrology, sanitary sewer overflows, wildlife, pet waste, illegal dumping 

of waste material, and illicit connections to the storm sewer system38. However, the degree to which any 

source contributes to the overall load is specific to each subwatershed and related tributary.  Additionally, 

each subwatershed presents varying streamflow regimes based on surficial geology, topography, 

catchment size, land use, and other human alterations. It is reasonable to hypothesize that the relationship 

between flow and the degree of contamination, and thus the validity of fecal contamination indicators, 

will vary in tune with the local flow regime. Therefore, three sites with varying source contributions and 

flow regimes within the Clinton River Watershed were selected for my pilot study. 

Geography 

The Clinton River drains approximately 763 square miles of Southeast Michigan, emptying into 

Lake St. Clair. The main stem of the river receives flow from 260 miles of major tributaries. The physical, 

chemical, and biological characteristics of the Clinton River vary considerably from the headwaters to the 

mouth of the river. The river can be divided into five valley segments with different flow regime drivers; 

the headwaters, the middle segment, the upper segment, the lower segment, and the mouth segment 

(Figure 2-1)39.  
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Three monitoring stations were selected for this pilot study, all three were in the lower river 

segment (Figure 2-2). Monitoring stations were near the mouths of tributaries that each drained distinctive 

sub-watershed landscapes; these were the North Branch Clinton River, the Middle Branch Clinton River, 

and the Red Run Drain. Selection criteria for stations within these tributaries included access and safety, 

deployment feasibility, opportunities for vandalism, representation of water quality in each subwatershed, 

availability of surface-water discharge data, and prior fecal contamination monitoring. The North Branch 

monitoring station is located at the M-59 (Hall Road) crossing, approximately 3.8 miles upstream of the 

confluence with the Clinton River main stem. The Middle Branch monitoring station is located at the 

crossing with Romeo Plank Road, approximately 9.5 miles upstream of the main stem. The Red Run 

Drain station is located at the 14-mile road crossing, approximately 3.1 miles upstream of the main stem.  

Geology 

Glaciation during the Pleistocene Epoch was the major driver of Michigan’s landscape and 

geology (Figure 2-3)39. The far west end of the watershed is characterized by “kettle hole” geology 

(Jackson Interlobate) due to rapid glacial retreat, forming numerous lakes and wetlands. End moraines 

(Ann Arbor Moraines) structured the hilly landscape in the mid-section of the Clinton River, whereas the 

eastern side formed from flat-lying former lacustrine deposits (Maumee Lake Plain). All three of the 

monitoring stations rest within the Maumee Lake Plain formation. The North Branch subwatershed 

begins on glacial outwash sand and gravel, and crosses into medium-textured till from end moraines; 

however the majority drains lacustrine deposits of sand, clay, and silt. 

Above the surficial geology, fine-textured lacustrine soils define much of the poor infiltration 

capacity of the subwatersheds. The Red Run Drain stations drains a lacustrine clay and silt subwatershed, 

while the Middle Branch subwatershed soils are slightly coarser lacustrine sand and gravel (Figure 2-4)39. 

Finer soils with reduced hydraulic capacity are likely to yield more run-off than coarser soils, which we 

expect to be reflected in the hydrologies of the various tributaries. 
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Figure 2-1: Valley Segments of the Clinton River. Maps are modified images from the Michigan DNR 
Fisheries Division, Special Report 39, Clinton River Assessment39. 
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Figure 2-2: Water quality monitoring stations within the Clinton River Watershed, shown with active 
discharge and flow depth gages from the USGS, flow depth sensors from the University of Michigan Real-
Time Water Systems Lab, and streams with active TMDL requirements. 
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Land use 

North Branch Subwatershed 

Land use type is an important factor influencing the physical conditions in the watershed, 

primarily in that it determines the amount of low-permeability and impervious surfaces that drive 

stormwater runoff. Impervious area routes fast-moving stormwater runoff into collection systems, and in 

many areas of the subwatershed this flow is routed directly into streams from stormwater outfalls. Of the 

200 acres in the North Branch Subwatershed, nearly half (99 acres) is cultivated land (agricultural). The 

next major classifications include residential development (29 acres), open space (21 acres), urban 

development (8 acres), or woodland area (25 acres), with the remainder comprising of open water or areas 

without data. Together, the varying land use types yield an estimated impervious area coverage of 6.5%, 

as determined by the Clinton River North Branch Subwatershed Management Plan40. Likely sources of 

fecal contamination associated with large areas of cultivated land are failing drainage tile systems, 

pastured animals with direct stream access, and groundwater contamination of surface waters where 

animal waste is allowed to accumulate near surface waters. Additional sources linked to residential land 

use in this subwatershed are failing septic systems, wildlife and pet waste, and illicit connections (either 

directly to surface waters or storm sewers)6.  

Middle Branch Subwatershed 

Development patterns in the Middle Branch Subwatershed fall somewhere between the other two 

stations in terms of impervious area coverage. Of its 41.6 acres, the primary land uses are residential 

development (18.36 acres) and cultivated land (15.88 acres), followed by woodland and wetlands (2.82 

acres), commercial uses (1.77 acres), and the remainder is spread across, industrial, institutional, 

transportation, and open water uses. The combined land use types yield an estimated impervious cover of 

13.5%, as determined by the Clinton River East Subwatershed Management Plan 38. Similar to the North 

Branch, illicit connections, wildlife and pet waste, and failing septic systems are sources of concern in 

this subwatershed, with agricultural resources to a lesser degree6  



14 

Red Run Drain Subwatershed 

Of the three subwatersheds, the Red Run Subwatershed is by far the most urbanized and 

impervious, yielding much higher runoff rates than the other two stations. Of the 91 acres of drainage 

area, more than half is residential development (54 acres), succeeded by industrial uses (11 acres), 

commercial uses (11 acres), institutional spaces (5 acres), active construction (3 acres), followed by 

limited areas of open space, woodland and wetlands, open water, and cultivated land41. The combined 

land use types yield an estimated impervious area coverage of 34.1%. Given that majority of the 

watershed is in a highly populated urban area, the most likely sources of E. coli are from human-derived 

sources. During dry-weather, illicit connections of wastewater to storm sewers are a primary concern. 

Several illicit connections, including subdivision drains, business parks, public schools, and an apartment 

complex, were confirmed in the 2006 TMDL. Leaking septic or sanitary sewers may also contribute to 

contamination during dry-weather. During wet-weather, fecal contamination is mobilized throughout the 

subwatershed. Surface run-off carries wildlife and pet waste. High flows can overwhelm the sewer 

system, with excessive infiltration into leaky sewers driving sanitary sewer overflows (SSOs). In areas 

with combined sewers, excessive stormwater quantity can lead to combined sewer overflows (CSOs), and 

discharges from the City of Warren Wastewater Treatment Plant (WWTP)36. 
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Figure 2-3: Extent and classifications of landscape ecosystems (Maumee Lake Plain, Sandusky Lake 
Plain, Ann Arbor Moraines, and Jackson Interlobate) of the Clinton River Watershed, shown based on 
surficial geology (top) and topography (bottom). Maps are modified images from the Michigan DNR 
Fisheries Division, Special Report 39, Clinton River Assessment39. 
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Figure 2-4: Surface Geology of the Clinton River Watershed. Maps are modified images from the 
Michigan DNR Fisheries Division, Special Report 39, Clinton River Assessment39 
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Hydrology 

North Branch Clinton River 

The North Branch of the Clinton River drains approximately 200 square miles, running nearly 

forty-three miles from the headwaters in Almont and Bruce Townships to the confluence with the main 

stem. It has the largest of the three subwatersheds in this study. Somewhat coarse glacial materials in a 

small portion of the northwest region of the subwatershed allow for positive groundwater flow, and the 

potential for groundwater/surface water interactions. However, lacustrine deposits throughout the 

remainder of the subwatershed limit these interactions, causing poor infiltration throughout the majority 

of the watershed. Therefore, surface runoff dictates much of the flow variation in this tributary. Monthly 

mean flows for 2018 peaked in February at 453 cfs, in stark contrast with the minimum mean flows in 

September at 19.5 cfs, indicating that the flow regime is quite variable and heavily influenced by 

seasonality. Over the period of record at the USGS gaging station (04164500) that sits adjacent to the 

North Branch monitoring station, the maximum discharge reached 6,400 cfs and the minimum dropped to  

0.09 cfs42. In comparison to undeveloped watersheds of similar surficial geology and slope, the North 

Branch likely provides much higher storm flows since the hydrologic response is influenced by land use 

changes. Increasing hydrologic response is expected with the development that has occurred across the 

subwatershed over the past forty years. Types of development that may contribute to the increase 

hydrologic response over time may include residential development, and the collection of precipitation by 

drainage tiles that would otherwise be evaporated, infiltrated, or absorbed40. 

Middle Branch Clinton River 

The Middle Branch drains approximately 19.4 acres, beginning at the Village of Romeo and 

Bruce Township, then moving downstream through Washington, Ray, Shelby, and Macomb Townships 

and into Clinton Township where it enters into the North Branch of the Clinton River upstream of Cass 

Ave. The steady and cool baseflow here is fed by a valley of lacustrine sand and gravel. Despite this 

seemingly stable input of groundwater, this station still experiences great variability in the seasonal flows 
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and rapid hydrologic response to storm events. Monthly mean flows for 2018 reached their maximum in 

February at 89.5 cfs, and dropped to a low in July at 8.16 cfs, constituting an order of magnitude in 

difference42. Impervious area coverage falls between that of the North Branch and the Red Run Drain, yet 

infiltration rates are also driven by coarse-textured surficial geology (sand and gravel lacustrine deposits). 

In comparing the flow duration curves between the North Branch and the Middle Branch stations, it’s 

clear that both stations exhibit steep curves, indicating flashy flow regimes (Figure 2-5). Yet, the Middle 

Branch station produces a higher baseflow yield due to steady seepage from groundwater storage. 

Red Run Drain 

Insufficient data exist to characterize the hydrology at the Red Run Drain monitoring station. 

Fluvial geomorphology indicators (incised stream banks, large-scale channelization, streambank erosion, 

etc.), flood event records, and land use patterns in the subwatershed suggest the system is extremely 

responsive to rainfall41. Analyzing flow trends at this station is complicated by drainage system 

modifications, including the George W. Kuhn combined sewer system, which drains a significant portion 

of the subwatershed. This flow is routed to the Detroit Water Sewer District, Wastewater Treatment Plant, 

unless combined sewer overflows discharge portions of it back into the Red Run Drain. The City of 

Warren Wastewater Treatment Plant continuously releases treated effluent discharge approximately 0.9 

miles upstream of the monitoring station, providing the majority of baseflow in summer months.   
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Figure 2-5: Comparison of flow duration curves for the Middle Branch and North Branch monitoring 
stations.  
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 - Methods 

Field Study Scheme 

Continuous Water Quality Sampling 

A team of researchers worked together to deploy water quality monitoring stations at three 

stations in the Clinton River Watershed (Figure 2-2) between May, 23rd, 2019, and October 31st, 2019. 

Data were collected at each station using two multi-parameter instruments: the EXO2 Multi-Parameter 

Water Quality Sonde (YSI Inc., Yellow Springs, OH) and the C3™ Water Quality Sonde (Turner 

Designs, Sunnyvale, CA) (submersible fluorometer). Collected parameters from the EXO2 included pH, 

specific conductance, turbidity, and temperature; while the C3™ collected TLF and OB fluorescence 

intensity measured in raw fluorescence blank (RFUb) subtracted mode.  

The research team selected station configurations based on access, deployment feasibility, power 

demand, and cost. Two monitoring stations, at the Red Run Drain and the Middle Branch stations, were 

configured as pump and flow-through cell monitoring systems with the EXO2 and C3™ connected in 

series and housed inside a shelter. Reinforced vinyl intake tubing was placed perpendicular to streamflow, 

approximately six inches off the bed of the stream to prevent dry out and avoid entraining sediments from 

the bed. PeriMax PM 600 peristaltic pumps (24 VDC) (Simply Pumps, Westmoreland City, PA) were run 

continuously to deliver surface water samples to the sondes. The North Branch monitoring station was 

configured as an in-situ deployment, with the EXO2 and C3™ housed in protective PVC piping. 

Instruments were situated perpendicular to streamflow with sensors heads approximately six inches off 

the bed. Photographs of both monitoring configurations are shown in Figure 3-1. 

In all deployment configurations, we used communication cables to deliver monitoring data from the 

sondes to an X2 Environmental Data Logger (NexSens Technology, Fairborn, OH) at ten-minute 

intervals, and utilized cellular telemetry to send monitoring data to a viewing platform, WQ Data Live 
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(NexSens Technology, Fairborn, OH). The Red Run Drain and Middle Branch stations were powered 

through AC Power connections, while the North Branch station utilized solar power.  

  
Figure 3-1: Comparison of pump and flow-through cell (left) versus in-situ deployment (right) monitoring 
configurations. Pump and flow-through cell configuration includes a peristaltic pump, bringing surface 
water in series through the YSI EXO 2 and Turner Designs C3™ water quality sondes, and outflow back 
into the stream, as well as power and telemetry devices. The in-situ deployment includes both water 
quality sondes deployed directly in-stream and protective PVC housing with flow openings (power and 
telemetry devices are not shown). 

 

Continuous Discharge and Water Depth Sampling 

We deployed water quality monitoring stations alongside USGS stream discharge gaging stations 

at the Middle Branch (04164800), and the North Branch (04164500), with readings collected at fifteen-

minute intervals. Prior to this study, surface water discharge data was unavailable in the Red Run Drain. 

Therefore, water depth data were collected with an Open Storm43 sensor node and used as a surrogate for 

discharge at this station, with readings collected at fifteen-minute intervals. Sensor nodes include an 
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ultrasonic depth sensor pointed at the stream surface, and a low-power embedded computer with wireless 

communication capabilities. Depth readings were calibrated with depth-to-bed measurements periodically 

throughout the season.  

Discrete E. coli Sampling 

To assess the suitability of using turbidity, TLF, and OB as effective indicators of fecal 

contamination, a research team of up to seven personnel collected discrete surface water quality samples 

for E. coli enumeration in conjunction with the aforementioned parameters. Three instances of wet-

weather sampling occurred, where the team was deployed in shifts to take periodic grab samples during 

different hydrograph stages (baseflow, ascending hydrograph limb, descending hydrograph limb, post-

storm) at each station. Samples from event #1 were taken between 6/13-6/15/2019, samples from event #2 

were taken on 10/02/2019, and samples from event # 3 were taken between 10/22-10/24/2019. Samples 

were collected in sterilized 100 mL polystyrene bottles with sodium thiosulfate to prevent decay from 

chlorine residuals in the surface water. Unfiltered samples were stored on ice and transported to the 

Huron to Erie Alliance for Research and Training (HEART), Freshwater Center Field Station at Lake St. 

Clair Metro Park within six hours of collection. Here, enumeration of E. coli was conducted by 

researchers from Oakland University using Colilert-18 (IDEXX, Westbrook, Maine) methods and 

reported in Most Probable Number (MPN). This reporting metric refers to the approximate number of 

viable cells per 100 mL volume sample. During the first storm event, dilutions were not applied and 

several samples with E. coli concentrations above the Colilert-18 threshold limit (2,500 MPN) were 

compromised. Methods were adapted to accommodate high E. coli concentrations during the second and 

third events, with serials dilutions (10X and 100X) applied at both Middle Branch and Red Run Drain 

stations.  

Detection of Additional Optical Signatures 

In search of additional optical signals that may either interference with TLF and OB detection, I 

performed a preliminary assessment of the optical signal peaks at all stations during baseflow conditions. 
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Signal peaks were identified through fluorescence spectra recording using EEMs and “peak-picking” by 

identifying optical signatures based on maximum intensity associated with excitation and emissions pairs. 

EEMS represent fluorescence contours maps of relative fluorescence intensity, which comprise a series of 

repeated emission scans recorded in a range of excitation wavelengths. 

Conditions were assessed during a single sampling event on 11/24/2019. Samples were collected 

at all three monitoring stations, plus the influent and effluent streams on a wastewater treatment plant 

within the Red Run Drain subwatershed. Separate samples were taken for E. coli enumeration and full 

spectra fluorescence scans, with E. coli enumeration samples handled and processed in the same way as 

was conducted for wet-weather sampling. Full spectra scans were stored on ice in 100 mL glass amber 

bottles and shielded from light degradation in coolers for no greater than four hours, then transferred to 

refrigerators for no more than 24-hours. Full spectra scans were performed using an Agilent 1260 Infinity 

II Fluorescence Detector, and visualized using isoplots of relative fluorescence intensity. Samples were 

excited at 10 nm intervals from 0-600 nm. Emissions were measured at the same frequency and range. 

The companion software application to the fluorescence detector required axes adjustment to change the 

color scale of the legend, and thus axes are variable between isoplots.  

Data Analyses 

I analyzed all monitoring data, including surface water discharge, water depth, continuous water 

quality, and discrete E. coli data, using either R version 3.6.1 or Microsoft Excel 2016 version 

16.0.4966.1000.  

Application of Temperature and Turbidity Correction Algorithms 

Fluorophores are known to be sensitive to a wide variety of interferences, including signal 

amplification or signal quenching. To account for signal interference, I applied temperature and turbidity 

correction algorithms to both TLF and OB monitoring data. Details on the process for correction factor 

development, selection, and application are covered in Chapter 6- "Compensating for the effects of 

temperature and turbidity on tryptophan-like-fluorescence and optical brighteners". While other 
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interferences from solution pH and color are relatively well understood44,45, accounting for these 

interferences was infeasible given the capacity and resource availability for this study.  

Assessment of Continuous Water Quality Patterns 

To assess the strength of turbidity, TLF, and OB as fecal contamination indicators across various 

flow conditions, I organized water quality time series data into three distinct baseflow seasons, and 

further baseflow and stormflow events. This process entailed reviewing the entire surface water discharge 

or water depth dataset, and determining ranges of stable baseflow. Baseflow seasons varied in exact date 

by station, but generally were distinguished by transitions between late spring high flows, summer low 

flows, and fall intermediate flows. Within each baseflow season, tables of timestamps for baseflow and 

stormflow periods were used to organize the data. Stormflow periods were distinguished by the first sign 

of hydrologic response to the return to baseflow values. In situations of consecutive storms when 

discharge levels did not return to baseflow, these time spans were considered the same stormflow period. 

Each distinct period of baseflow or stormflow received a unique identifier to use in data grouping. The 

final datasets were plotted on normalized time axes to visualize patterns in water quality. In addition to 

time series visualization, descriptive statistics were visualized with box plots to better understand the 

expected range for each parameter. 

Characterization of Turbidity, TLF, and OB relationships with E. coli 

I developed box plots to visualize descriptive statistics for E. coli measurements across baseflow 

and stormflow periods, and to better understand the expected range for each station under different flow 

scenarios. I examined the relationships between turbidity, TLF, and OB with E. coli using Ordinary Least 

Squares (OLS) regression. Separate models were developed using (i) the entirety of the E. coli dataset, (ii) 

isolated datasets to the ascending limb of the hydrograph, and (iii) isolated data to the descending limb of 

the hydrograph. For all models, transformations were applied to predictor and dependent variables to meet 

linearity assumptions and improve model fit. 
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 - Results  1 

Summary of Patterns in Discharge and Water Depth Data 2 

Seasonal variations in baseflow discharge and water depth data were apparent at all three 3 

monitoring stations (Figure 4-1), typical of regional trends. For most stations, flow magnitude followed a 4 

pattern of high spring flows (expected with snowmelt and spring rains), low summer dry-season flows, 5 

and intermediate fall flows. Hydrological response at the North Branch station was much slower than the 6 

other two stations. During the spring baseflow season, flows rarely returned to baseflow conditions before 7 

the next precipitation event. This monitoring station also demonstrated the most drastic difference 8 

between high spring flows and low summer flows. The apparent transition between seasonal baseflow 9 

levels occurred in late June over approximately 230 hours of dry weather conditions. The Middle Branch 10 

and Red Run Drain stations experienced similar transitions, but to a lesser degree. Unlike the other two 11 

stations, the Red Run Drain continued to decrease mean flow values into the fall, however, the decrease in 12 

median gage height between the two seasons was marginal (0.042 FT). Noteworthy diurnal fluctuation 13 

patterns in flow at the Red Run Drain station indicate what is likely to be nightly effluent discharges from 14 

the upstream City of Warren WWTP. These discharges provide a consistent baseflow to the Red Run 15 

Drain, and explain the limited seasonal variation between summer and fall flows.  16 

Seasonal variation in median discharge and water depth for stormflow conditions mirrored that 17 

for baseflow conditions. Maximum stormflow values peaked in the spring at the North Branch station, 18 

whereas the highest stormflow values for the Middle Branch were seen in the fall. Water depth values at 19 

the Red Run Drain station reached a maximum of 11.4 FT in both spring and fall, demonstrating the 20 

upper limit of the ultrasonic depth sensor. In these cases, the sensor was submerged underwater and 21 

therefore, true maxima are unknown. A summary of descriptive statistics for discharge and water depth 22 

data can be seen in Table 4-1. 23 
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1 

 2 

Figure 4-1: Variation in the distribution of discharge (cfs) or gage height (ft) values across monitoring stations. Boxplots are organized by 3 

stormflow or baseflow conditions, and then by baseflow season. Baseflow season #1 (S1) represents high spring flows, baseflow season #2 (S2) 4 

represents summer low flows, and baseflow season # 3 (S3) represents intermediate fall flows. 5 
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Table 4-1: Descriptive statistics for surface discharge and water depth data collected at the North Branch (NB), Middle Branch (MB), and Red 1 

Run Drain (RR) monitoring stations in the Clinton River Watershed over three baseflow seasons (S1, S2, S3). “ND” indicates “no data 2 

available”. 3 

Monitoring 
Station 

Season Discharge (cfs)  Water Depth (FT) 

  Median SD Max Min  Median SD Max Min 
Baseflow 

NB 

S1 154 11.8 162 127  ND ND ND ND 

S2 16 24.6 111* 2.0  ND ND ND ND 

S3 20.0 5.90 32.0 13.0  ND ND ND ND 

MB 

S1 15.0 9.68 43.0 7.00  ND ND ND ND 

S2 5.00 1.94 11.0 2.00  ND ND ND ND 

S3 14.0 2.90 26.0 10.0  ND ND ND ND 

RR 

S1 ND ND ND ND  0.765 0.100 1.03 0.580 

S2 ND ND ND ND  0.537 0.0898 0.872 0.349 

S3 ND ND ND ND  0.495 0.0787 0.731 0.367 

Stormflow   

NB 

S1 297 127 600 112  ND ND ND ND 

S2 20.0 15.1 76.0 2.00  ND ND ND ND 

S3 40.0 83.3 343 5.00  ND ND ND ND 

MB 

S1 47.0 49.7 337 11.0  ND ND ND ND 

S2 13.0 46.1 438 2.00  ND ND ND ND 

S3 28.0 90.8 542 7.00  ND ND ND ND 

RR 

S1 ND ND ND ND  1.47 2.75 11.4** 0.580 

S2 ND ND ND ND  0.836 1.42 8.02 0.393 

S3 ND ND ND ND  0.844 1.49 11.4** 0.435 

* Maxima representative of transitional baseflow between season 1 and season 2 ** Maxima representative of ultrasonic depth sensor limit (i.e. sensor submerged) 4 
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Summary of Patterns in Continuous Water Quality Parameters 1 

Temperature data varied by station, and were generally warmest during low summer flows and 2 

coolest during intermediate fall flows for both baseflow and stormflow conditions. Diurnal fluxes in 3 

temperature were apparent during baseflow, and most pronounced during the lower summer flows. The 4 

Red Run Drain displayed the highest diurnal flux in temperature (approximately 10℃ shift in temperature 5 

per day). Diurnal fluxes were also present in turbidity, TLF, and OB during baseflow conditions, although 6 

peaks in these parameters were variably aligned with peaks in temperature (Figure 4-2). At all stations, 7 

diurnal flux occurred during certain stormflow conditions, yet these patterns were muted once flows 8 

exceeded roughly 400 cfs.  9 

Turbidity, specific conductance, TLF & OB data all exhibited low signal-to-noise ratios. Stations 10 

configured with pump and flow-through cell systems showed the most noise. Of these parameters, 11 

turbidity presented the highest standard deviations relative to the mean for all seasons and flow 12 

conditions. Diurnal fluxes in turbidity were apparent during baseflow conditions. The anticipated spike in 13 

turbidity that is characteristic of the “first flush” phenomena was seen during larger storms. Flow 14 

thresholds for this occurrence varied by station; North Branch spikes occurred above 70 cfs; Middle 15 

Branch spikes occurred above 50 cfs, and; Red Run Drain spikes occurred at depths above 1 FT. Overall, 16 

no one station consistently showed the highest or lowest turbidity level. However, the highest means 17 

recorded over the field season were at the Red Run Drain during fall stormflow. 18 

Baseflow levels of specific conductance were consistently highest at the Red Run Drain station 19 

across the seasons, yet seasonal patterns for this parameter were not apparent during baseflow or 20 

stormflow conditions. At all stations, a pattern of dilution was apparent during nearly all stormflow 21 

events, with specific conductance levels showing an initial small spike, followed by levels dropping as 22 

flow increased. 23 

24 
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 1 

Figure 4-2: Diurnal fluctuation in temperature, turbidity, TLF, and OB during selected baseflow periods in the summer low flow seasons. 2 

Representative TLF data from the summer low flow season was unavailable. 3 
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The Red Run Drain displayed the highest levels of TLF for baseflow and stormflow conditions 1 

across the seasons, with the exception of stormflow conditions in season #2 (led by the Middle Branch 2 

station). Diurnal patterns were also apparent during baseflow, indicating temperature compensation 3 

algorithms were likely insufficient for this study. Seasonal patterns demonstrated higher levels of TLF 4 

during spring and summer flows at the Red Run Drain and Middle Branch stations, as compared to fall 5 

levels. TLF levels at the North Branch station demonstrated little seasonal variation. Storm response 6 

patterns in TLF were dependent on flow magnitude. In instances of smaller storms, a spike in TLF 7 

characteristic of the “first flush” was shown. However, during larger storms TLF levels presented 8 

dilutions patterns similar to those seen with specific conductance. There were no clear flow thresholds for 9 

this occurrence, and more monitoring data are needed to tease out the drivers for these two patterns. 10 

Strong seasonal variation in the concentration of OB was apparent, with the highest levels in the 11 

summer across baseflow and stormflow conditions. Extremely low outliers were seen during the fall 12 

season at the Red Run Drain. No one station consistently demonstrated the highest values of OB. Storm 13 

response patterns were similar to specific conductance and TLF, in that strong dilution patterns were seen 14 

during large storms.  15 

As previously described, the distribution of each continuous water quality parameter varied 16 

seasonally, and across flow conditions (Figure 4-2 through Figure 4-7). 17 

18 
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Figure 4-3: Variation in the distribution of observed temperature (℃) values across monitoring stations. Boxplots are organized by stormflow or 3 

baseflow conditions, and then by baseflow season. Baseflow season #1 (S1) represents high spring flows, baseflow season #2 (S2) represents 4 

summer low flows, and baseflow season # 3 (S3) represents intermediate fall flows. 5 
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Figure 4-4: Variation in the distribution of observed turbidity (NTU) values across monitoring stations. Boxplots are organized by stormflow or 3 

baseflow conditions, and then by baseflow season. Baseflow season #1 (S1) represents high spring flows, baseflow season #2 (S2) represents 4 

summer low flows, and baseflow season # 3 (S3) represents intermediate fall flows. 5 
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Figure 4-5: Variation in the distribution of specific conductance (µS/cm) values across monitoring stations. Boxplots are organized by stormflow 3 

or baseflow conditions, and then by baseflow season. Baseflow season #1 (S1) represents high spring flows, baseflow season #2 (S2) represents 4 

summer low flows, and baseflow season # 3 (S3) represents intermediate fall flows. 5 
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Figure 4-6: Variation in the distribution of TLF (ppm) values across monitoring stations. Boxplots are organized by stormflow or baseflow 3 

conditions, and then by baseflow season. Baseflow season #1 (S1) represents high spring flows, baseflow season #2 (S2) represents summer low 4 

flows, and baseflow season # 3 (S3) represents intermediate fall flows. 5 



7 

1 

 2 

Figure 4-7: Variation in the distribution of OB (ppm) values across monitoring stations. Boxplots are organized by stormflow or baseflow 3 

conditions, and then by baseflow season. Baseflow season #1 (S1) represents high spring flows, baseflow season #2 (S2) represents summer low 4 

flows, and baseflow season # 3 (S3) represents intermediate fall flows.  5 
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Summary of E. coli Data  1 

Relationships between E. coli and discharge varied across stations and sampling events (Figure 2 

4-8). While the intent was to sample during wet-weather events, in some cases storms dissipated earlier 3 

than anticipated. Hydrological response was greatest during the first event, very limited during the second 4 

event, and only responsive at the Red Run Drain during the third event. With the exception of the Red 5 

Run Drain, monitoring data from the second and third events were not significantly different from 6 

baseflow. Sampling at the North Branch was abandoned during the second event due to a lack of 7 

hydrologic response to precipitation. When hydrological response to precipitation was present, a typical 8 

E.coli-flow hysteresis curve was apparent, with an initial pulse of E.coli during the ascending limb of the 9 

hydrograph, followed by decreasing concentrations after towards baseline levels.  10 

During the first (and largest) storm event, the North Branch demonstrated the highest median E. 11 

coli concentration (although the previously mentioned dilution limits should be taken into consideration). 12 

Median levels reached 1046 MPN, almost 3.5× the daily geometric mean Michigan WQS for surface 13 

waters with TBC recreational usage (300 E. coli per 100 mL). Median levels at the Middle Branch and 14 

Red Run Drain reached concentrations greater than 2.75× the Michigan WQS. Even during the second 15 

event, when flow values were near baseflow, concentrations reached 750 MPN at the Middle Branch and 16 

1334 MPN at the Red Run Drain. During the last storm event, with moderate levels of hydrologic 17 

response at the Red Run Drain, maximum E. coli concentration peaked at more than an order of 18 

magnitude above the Michigan WQS (4106 MPN). A noteworthy limitation to these results is the failure 19 

to apply serial dilutions to samples collected during the first wet-weather monitoring event. As a result E. 20 

coli concentrations reached an upper limit of 2420 MPN (the maximum possible value using the Colilert-21 

18 method) during and beyond the hydrograph peak at all three stations. Even so, it is clear from the 22 

available wet-weather monitoring data that harmful levels of fecal contamination are mobilized into 23 

surface waters even during events with even limited hydrological response. A summary of E. coli data 24 

from the three monitoring events is shown in Table 4-2. 25 
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 1 

Figure 4-8: Variation in the distribution of E. coli (MPN) values across monitoring stations. Boxplots are organized by sampling event. Sampling 2 

event #1 (ST1) represents sampling that occurred between 6/13 and 6/15/2019, sampling event #2 (ST2) represents sampling that occurred on 3 

10/02/2019, and sampling event #3 (ST3) represents sampling that occurred between 10/22 and 10/24/2019. The red dashed line indicates the 4 

upper detection limit for E. coli using Colilert-18, as was pertinent during ST1 when many samples breached this limit.  5 
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Table 4-2: Summary of E. coli data collected at the North Branch (NB), Middle Branch (MB), and Red 1 

Run Drain (RR) monitoring stations in the Clinton River Watershed over three storm sampling events 2 

(ST1, ST2, ST3). “MPN” indicates the maximum-probable-number of viable cells per 100 mL.  3 

Monitoring Station Storm Event E. coli (MPN) 
  Median SD Max Min 

NB 

ST1 1046 630 2420* 387.3 

ST2 ND ND ND ND 

ST3 292 131 706 148 

MB 

ST1 866 459 2420* 517 

ST2 310 159 750 100 

ST3 146 61.2 52.0 310 

RR 

ST1 980 381 2420* 548 

ST2 865 331 1334 94.0 

ST3 2000 935 4106 332 

* Representative of the upper detection limit of Colilert-18 test, indicating that true concentrations are higher than the reported value.  4 

 5 

Characterization of Turbidity, TLF, and OB relationships with E. coli 6 

As previously mentioned, during sampling events with significant hydrological response, the 7 

relationship between E. coli and flow showed a hysteresis pattern that is typical of pollutant loading. 8 

However, the relationships between turbidity, TLF, and OB and flow varied and were dependent upon the 9 

degree of hydrological response (see Summary of patterns in continuous water quality parameters). In 10 

turn, the relationships between the three fecal contamination indicators and E. coli varied across the three 11 

sampling events, and hydrograph phases. Flow-dependent patterns in fecal contamination indicators 12 

showed varied responses across sampling events (Figure 4-9 through Figure 4-11). Flow-dependent 13 

variation in fecal contamination indicators was observed; the first event demonstrates a typical response 14 

in fecal contamination indicators during high flow events, the second demonstrates responses during near 15 

baseflow levels, while the last event shows responses during low-to-intermediate flows.  16 
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Turbidity and TLF demonstrated either linear or log-linear regression relationships with E. coli in 1 

all models (full dataset, ascending limb, descending limb; Figure 4-12 and 4-13, respectively). For both 2 

these parameters, the relationship with E. coli was positive. The relationship between OB and E. coli was 3 

best fit for a cubic curve using the full dataset and the ascending limb, yet the model for the descending 4 

limb was linear (Figure 4-14).  5 

In all regressions, the significance of the predictor variables reflected sample size. With the full 6 

turbidity dataset, p-value = 2.02e-12 (n = 178, 95% confidence interval); including only data from the 7 

ascending limb, p-value = 3.76e-9 (n = 151); for the descending limb, p-value = 0.0288 (n = 27). Models 8 

for other predictor variables followed the same pattern, except for TLF from the ascending limb data, 9 

which showed similar predictor variable significance as with the full dataset.  10 

Model fits were weaker than expected, and highly variable among hydrograph phases for all 11 

predictor variables (Table 4-3). Models of turbidity and E. coli performed better for the ascending limb 12 

(R2 = 0.21) as compared to the descending limb (R2 = 0.18). The opposite was true for TLF and OB. For 13 

the ascending limb with TLF, R2 = 0.33; and with OB, R2 = 0.40. For the descending limb with TLF, R2 = 14 

0.58; and with OB, R2 = 0.60. The latter was the best measure of fit for all models that were assessed.  15 

I tested assumptions of the OLS regression for all models, and assumption failures occurred in 16 

certain circumstances. I decided to move forward with the regressions, with intentions to address failures 17 

in future project phases. All models displayed a positive temporal autocorrelation, as evaluated through 18 

Auto Correlation Function plots and the Durbin-Watson Test. Homoscedasticity of the errors was present 19 

in all models, as evaluated using a Non-Constant Error Variance (NCV) Test and plots of the residuals 20 

versus fitted values, except for the OB-E.coli model using the full dataset. Normality of the errors was 21 

present in all models, with the exception of the turbidity-E. coli model, as evaluated with Quantile-22 

Quantile (Q-Q) plots. 23 
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 1 

Figure 4-9: Patterns in fecal contamination indicators, including E. coli (MPN), turbidity (NTU), TLF 2 

(ppm), and OB (ppm) in response to discharge (cfs) at the North Branch monitoring station during two 3 

separate discrete E. coli sampling events. Flow-dependent variation in fecal contamination indicators is 4 

exhibited. The numbering of events is consistent with other stations, and sampling during event # 2 was 5 

abandoned due to a lack of hydrologic response to precipitation at the North Branch monitoring station.6 
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 1 

Figure 4-10: Patterns in fecal contamination indicators, including E. coli (MPN), turbidity (NTU), TLF (ppm), and OB (ppm) in response to flow 2 

at the Middle Branch monitoring station during three separate discrete E. coli sampling events. OB data was unavailable during sampling events 3 

#2 and #3 due to sensor failure. Flow-dependent variation in fecal contamination indicators is exhibited. 4 
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 1 

Figure 4-11: Patterns in fecal contamination indicators, including E. coli (MPN), turbidity (NTU), TLF (ppm), and OB (ppm) in response to flow 2 

(gage height (ft) serves as proxy) at the Red Run Drain monitoring station during three separate discrete E. coli sampling events. Flow-dependent 3 

variation in fecal contamination indicators is exhibited. 4 



15 

 1 

Figure 4-12: Relationships between turbidity (NTU) and E. coli (MPN) with 95% confidence intervals using the entirety of the field sampling 2 

dataset (left), data isolated to the descending limb of the hydrograph (center), and data isolated to the descending limb of the hydrograph (right).  3 
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 1 

Figure 4-13: Relationships between TLF (ppm) and E. coli (MPN) with 95% confidence intervals using the entirety of the field sampling dataset 2 

(left), data isolated to the ascending limb of the hydrograph (center), and data isolated to the descending limb of the hydrograph (right). 3 



17 

 1 

Figure 4-14: Relationships between OB (ppm) and E. coli (MPN) using the entirety of the field sampling dataset (left), data isolated to the 2 

ascending limb of the hydrograph (center), and data isolated to the descending limb of the hydrograph (right) with 95% confidence intervals.3 
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Table 4-3: OLS regression model equations, coefficients, and metrics of model performance for correlations between E. coli and turbidity, TLF, or 1 

OB over different hydrograph phases, including data isolated to the ascending limb (AL), the descending limb (DL), and the full dataset (FD).  2 

Parameter Hydrograph 
Phase Equation Coefficient(s) n p-value R2 RMSE 

Turbidity 

FD log(y) = β1 log(x) + β0 
β0 = 4.57 
β1 = 0.841 178 2.025e-12 0.25 0.88 

AL log(y) = β1 log(x) + β0 
β0 = 8.12 
β1 = -0.05 151 3.761e-09 0.21 0.87 

DL log(y) = β1 x + β0 
β0 = 4.70 
β1 = 0.73 27 0.0288 0.18 0.41 

TLF 

FD log(y) = β1 x + β0 

β0 = 4.81 
β1 = 24.20 178 2.20e-16 0.37 0.81 

AL log(y) = β1 x + β0 
β0 = 4.930 
β1 = 21.08 151 8.30e-16 0.33 0.80 

DL y = β1 x + β0 
β0 = -1392 
β1 = 41603 27 2.27e-5 0.58 430 

OB 

FD y = β1 x + β2 x2  + β3 x3  + β0 

β0 = 2698 
β1 = -1820 
β2 = 406.4 
β3 = -23.32 

178 2.20e-16 0.47 669 

AL y = β1 x + β2 x2  + β3 x3  + 
β0 

β0 = 2771 
β1 = -1929 
β2 = 434.5 
β3 = -25.05 

151 2.10e-11 0.40 696 

DL y = β1 x + β0 β0 = 515 
β1 = 205 27 1.34e-5 0.60 419 

3 
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Investigation of Additional Optical Signatures 1 

Full spectra analysis of baseflow conditions revealed several optical signals with higher 2 

fluorescence intensity than TLF or OB (Figure 4-15 through Figure 4-19. Namely, fluorescence intensity 3 

was centered around peak signal A (excitation at 260 nm, emission at 400-500 nm) and peak signal LA 4 

(excitation at 240 nm, emission at 440 nm) for all samples collected at surface water monitoring stations 5 

(North Branch, Middle Branch, and Red Run Drain) and wastewater treatment effluent. Peak signal A and 6 

LA are associated with the fluorescence of organic matter in wastewater streams, and are also common in 7 

natural and engineered water systems. Fluorescence intensity recorded from the wastewater influent 8 

sample was centered on the excitation range of 220-240 nm and the emission range of 310-350 nm. To 9 

my knowledge, there is no commonly accepted signal peak name associated with fluorescence in this 10 

region.  11 

  12 
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 1 

Figure 4-15: Excitation-emission matrices recorded from surface water samples at the North Branch 2 

Monitoring Station during baseflow conditions. Letters represent peak signal names associated with 3 

excitation and emission pairs. Coloration indicates relative fluorescence intensity within the sample, 4 

increasing from cool to warm colors. High intensities on the diagonal are indicative of light scattering 5 

associated with identical excitation and emission wavelengths, and should be ignored.  6 
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 1 

Figure 4-16: Excitation-emission matrices recorded from surface water samples at the Middle Branch 2 

Monitoring Station during baseflow conditions. Letters represent peak signal names associated with 3 

excitation and emission pairs. Coloration indicates relative fluorescence intensity within the sample, 4 

increasing from cool to warm colors. High intensities on the diagonal are indicative of light scattering 5 

associated with identical excitation and emission wavelengths, and should be ignored. 6 
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 1 

Figure 4-17: Excitation-emission matrices recorded from surface water samples at the Red Run Drain 2 

Monitoring Station during baseflow conditions. Letters represent peak signal names associated with 3 

excitation and emission pairs. Coloration indicates relative fluorescence intensity, increasing from cool 4 

to warm colors. High intensities on the diagonal are indicative of light scattering associated with 5 

identical excitation and emission wavelengths, and should be ignored. 6 
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 1 

Figure 4-18: Excitation-emission matrices recorded from surface water samples from the wastewater 2 

treatment plant influent during baseflow conditions. Letters represent peak signal names associated with 3 

excitation and emission pairs. Coloration indicates relative fluorescence intensity within the sample, 4 

increasing from cool to warm colors. High intensities on the diagonal are indicative of light scattering 5 

associated with identical excitation and emission wavelengths, and should be ignored. 6 
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 1 

Figure 4-19: Excitation-emission matrices recorded from surface water samples from the wastewater 2 

treatment plant effluent during baseflow conditions. Letters represent peak signal names associated with 3 

excitation and emission pairs. Coloration indicates relative fluorescence intensity within the sample, 4 

increasing from cool to warm colors. High intensities on the diagonal are indicative of light scattering 5 

associated with identical excitation and emission wavelengths, and should be ignored. 6 
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 – Discussion and Conclusions 1 

In this study, I explored the use of novel, optical indicators of fecal contamination, turbidity, TLF 2 

and OB, in the Clinton River Watershed to determine the practicality of their use in water quality 3 

monitoring. I developed regression models to measure the correlation strength between these indicators 4 

and E. coli, a widely used fecal indicator bacteria, over various stages of the flow regime. I compared the 5 

correlation strength of these indicators with that of turbidity, another emerging indicator of fecal 6 

contamination. The results of these regressions are indicative of the potential to use turbidity, TLF, and 7 

OB as surrogate indicators of fecal contamination, and perhaps shift the needle towards using 8 

continuously collected monitoring data to gain detailed insight on water quality patterns and the sources 9 

of fecal contamination. By collecting this information in tandem with other water quality parameters, I 10 

was able to observe families of response patterns that inform guidelines for appropriate usage. In this 11 

section, I elaborate on response patterns and regression models from the study results, justify appropriate 12 

use guidelines, and provide “lessons learned” in field monitoring to aid in the development of future 13 

deployment schemes.  14 

Patterns in Fecal Contamination Indicators 15 

Diurnal Patterns 16 

Temperature data demonstrated diurnal patterns during baseflow across all study stations, 17 

mirroring ambient air temperature. Increasing temperatures are known to attenuate the readings of other 18 

water quality parameters, particularly in fluorometry where temperature quenches fluorescence46 (i.e. 19 

fluorescence readings are lower than “true” values at high temperatures). Although temperature 20 

compensation was either applied directly by internal correction with water quality sondes (in the case of 21 

turbidity) or in post-processing (as applied to TLF and OB data), diurnal fluxes in these parameters during 22 
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baseflow conditions were apparent at all stations. This condition was most obvious during baseflow 1 

season #2 (summer low flows). However, diurnal fluxes were not always timed as would be expected if a 2 

lack of temperature compensation caused this issue. With temperature quenching, I would expect to see a 3 

decline in observed values of fluorescent parameters with increasing temperature. At all three stations, 4 

diurnal turbidity peaks were aligned with temperature peaks at baseflow (Figure 4-1). At the Red Run 5 

Drain, the same was true for TLF and OB, and the peaks of all three parameters aligned with the negative-6 

peaks of flow (daily minima) At other stations, the temporal alignment of diurnal peaks for TLF & OB 7 

were less apparent.  8 

I’ve considered two theories to explain these observations; either the algorithms used to correct 9 

for temperature overcompensate at higher temperatures, or diurnal peaks in TLF, OB, and turbidity are 10 

more dependent on diurnal flow patterns than diurnal temperature patterns. The latter seems to be true of 11 

the Red Run Drain, where baseflow discharge levels peaked between 02:00-04:00 AM EST from what I 12 

hypothesize to be a treated wastewater effluent pulse from the City of Warren WWTP. This daily pulse of 13 

relatively clean baseflow may temporarily dilute pollutants, and when flows return to negative-peak flow 14 

levels, concentrations rise again. However, the timing of diurnal fluxes at other stations is likely 15 

indicative of insufficient temperature compensation algorithms, and thus the need to generate instrument-16 

specific models. Khamis et al.24 made the case for instrument-specific models, and for the aforementioned 17 

reasons I recommend generating such models for all instruments measuring fluorescent parameters in 18 

future studies. Although, diurnal fluxes in fluorescent parameters were strongest during low baseflows at 19 

relatively high seasonal temperatures, and are unlikely to impact the usage of fecal contamination 20 

monitoring during wet-weather events.  21 

Seasonal Patterns 22 

Seasonal variation in hydrology informed the seasonal patterns observed in both TLF and OB. At 23 

the Red Run Drain and the Middle Branch stations, both TLF and OB reached maximum levels during the 24 

summer low flow seasons. Several theories may explain the seasonal spike in fecal contamination 25 
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indicators. The increase could be indicative of an ideal temperature range for fecal indicator bacteria 1 

during the summer. Perhaps concentrations of fecal matter are greater in lower baseflows, or loading is 2 

higher during summer flows with land application of manure (application of manure in spring and 3 

summer is not recommended, yet not outlawed in the state of Michigan47). Alternatively, monitoring 4 

station configurations may have affected TLF concentrations at the Red Run Drain and Middle Branch 5 

stations. That is, the intake tubing for the pump-and-flow through cell configurations at these stations was 6 

replaced in September due to biofilm accumulation inside the tubing. Samples collected at the intake and 7 

effluent of the tubing confirmed E. coli growth inside the tubing, which led to a biased high readings of E. 8 

coli. While the tubing was replaced and routinely cleaned for the remainder of the field season (see 9 

“Lessons learned in field monitoring”), it is possible that microbial activity inside the tubing led to 10 

increased TLF concentrations before the establishment of this maintenance protocol. The North Branch 11 

station showed limited seasonal variation in TLF, and this monitoring station was configured as an in-situ 12 

(without intake tubing). Despite these considerations, I predict the seasonal variation in TLF is 13 

representative of stream conditions and a product of the low flow conditions, given that OB also exhibited 14 

the same seasonal increase during summer months. Future field monitoring campaigns over multiple 15 

years will aid in validating the seasonal patterns in these parameters, particularly if improved maintenance 16 

activities are implemented at stations configured with pump-and-flow through cells.  17 

Flow-dependent Patterns 18 

As hypothesized, the predictive power of the analyzed fecal contamination indicators is flow-19 

dependent under wet-weather conditions. In characterizing the relationships between our predictor 20 

variables (turbidity, TLF, and OB) and E. coli under different flow conditions, I was able to provide a 21 

preliminary understanding of when their use is most promising. Predictor variables were significant in all 22 

cases, and this significance was greater in models when data was isolated to the ascending limb of the 23 

hydrograph as compared with data isolated to the descending limb. The significance of the correlation (as 24 

measured by the p-value) between turbidity and E. coli was comparable with previous studies by 25 
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Lawrence et al in the Chattahoochee River between 2000 and 200831, and by Huey et al. in 2010 the 1 

Upper Pecos River Basin 32. For TLF, correlation strength by comparison of the R2 values was 2 

comparable with studies by Baker et al. in the Kwazulu-Natal, South Africa in 201548, but much weaker 3 

than previous studies by Cumberland et al. in West Midlands, United Kingdom in 201223. Prior studies by 4 

McDonald et al in 200627 and Dickerson et al in 200728 used OB to detect human-sourced fecal 5 

contamination with microbial source tracking to determine the presence or absence of human-associated 6 

Enterococci. To my knowledge, no comparable studies exist that use simple regression analyses to 7 

determine the predictive ability of OB for E. coli. 8 

Model fit was relatively weak across all regressions, and highly variable with each hydrograph 9 

phase. I anticipated poor model fit given the relatively small number of storms sampled, and that data 10 

were collected across only three different storms, at three different stations, and during two different 11 

baseflow seasons (late spring high flows and fall intermediate flows). Ideally, the analysis would be 12 

performed with considerably more data from multiple storms in the same season to make confident 13 

predictions about the predictive strength of these indicators. It is clear from the regression plots that data 14 

are clustered, and data availability is limited in the descending limb of the hydrograph.  15 

There is also great variability in the response behavior of TLF to flow across the sampling events. 16 

In instances of smaller storms, a pulse in TLF is seen with increasing flow and increasing E. coli levels. In 17 

contrast, larger storms seem to dilute TLF after an initial small spike, in which case TLF levels decreased 18 

as E. coli levels increased. OB exhibited a strong dilution response during large and small storms, where 19 

OB levels dropped with increasing flow and then rebounded back to baseflow levels. This response 20 

behavior typically occurred while E. coli levels were still increasing. The combination of these two 21 

response behaviors help explain the cubic shape of the relationship between OB and E. coli in models 22 

using the full dataset and data isolated to the ascending limb. For the models in this study, data were not 23 

separated based on their response behavior to flow, and instead were organized by hydrograph phase. I 24 

expect improvements in model can be achieved by sampling a wider range of storm events, and by 25 

separating data from fecal contamination indicators into response patterns.  26 
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Additional limitations include the significant temporal autocorrelation of the errors across all 1 

models. This is expected with times series data, where a regression model fails to effectively capture 2 

time-series trends. In such a case, the random errors in the model are often positively correlated over time, 3 

and therefore any given error is more likely to be correlated to the previous error than random errors 4 

independent of each other. Time-series forecasting models such as ARIMA can be used to predictive 5 

seasonality in the data and account for temporal autocorrelation. However, the limited amount of data 6 

collected in this study are unsuitable for ARIMA models. To understand seasonal variation in the 7 

predictive ability of the fecal contamination indicators, continued studies of this nature at consistent 8 

monitoring stations and over longer time spans are needed.  9 

Investigation of Optical Signatures 10 

From the preliminary exploration of fluorescence spectra at baseflow conditions, I discovered 11 

additional optical signatures that are present are higher fluorescence intensities than those exhibited by 12 

TLF or OB. In the case of wastewater influent samples (associated with high levels of human feces and 13 

microbial abundance), EEMs were centered on the excitation range of 220-240 nm and the emission range 14 

of 310-350 nm. While there is no associated peak signal name with this region, several studies have 15 

indicated potential fluorophores of industrial and domestic wastewater origins in this region. Determann 16 

et al.49 identified indole as a fluorophore associated with peaks from excitation at 230 nm and emissions 17 

between 330-350 nm. This substance is a metabolite of tryptophan. It occurs in coal tar and human feces, 18 

yet it’s also a synthetic constitute of many flower-scented perfumes. A study from del Olmo et al50 19 

demonstrated that fluorescence from cresol is associated with peaks from excitation ranges of 210-285 nm 20 

and excitation ranges of 290-310 nm. Cresol is a type of phenol, and its origin in wastewater streams can 21 

be from pharmaceutical, fossil fuel, or pesticide manufacturing industry effluents.  22 

For all samples collected from surface water monitoring stations, EEMS were centered on peak 23 

signal A (excitation at 260 nm, emission from 400-500 nm) and peak signal LA (excitation at 240 nm, 24 

emission at 440 nm). A 2016 review of fluorescent spectroscopy applications for wastewater monitoring 25 
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indicated that peak signal A is often associated with naturally occurring microbial activity and the decay 1 

of organic matter derived from terrestrial and aquatic ecosystems51. Domestic wastewater streams with 2 

high microbial abundance are often characterized by intense peaks from signals with emission < 380 nm, 3 

especially peak signal T (i.e. TLF), and significantly lower intensities from peak signal A and peak signal 4 

C (excitation at 300-350 nm and 400-500 nm, respectively)44,52,53. However, other studies showed higher 5 

intensities with peak signal A and peak signal C, as compared to peak signal T in wastewater effluent 6 

streams54,55. Similarly, the fluorescence of animal wastewater streams is known to be generally dominated 7 

by peak signal T56–58.  8 

It’s possible that the high fluorescence intensities around peak signal A from the samples I 9 

collected indicate the presence of domestic wastewater. From this anecdotal investigation, I could 10 

postulate that peak signal T (i.e. TLF) and OB are inappropriate signatures at these stations for 11 

wastewater monitoring at baseflow. I believe it is more likely these samples are showing signatures of 12 

organic matter decomposition associated with natural ecosystem processes, based on evidence in the 13 

literature. One sampling event is not enough to characterize the fluorescence spectra of these stations. I 14 

recommend future studies compare EEMs across multiple seasons and flow conditions in conjunction 15 

with microbial indicators of fecal contamination, before determining if other optical signatures should be 16 

used. 17 

Lessons Learned in Field Monitoring 18 

Upon undertaking the challenge of applying a novel technology, I anticipated setbacks from 19 

unforeseen circumstances. This study exceeded my expectations for obstacles and tested my ability to 20 

maintain optimism. In this section, I will draw on my experiences to provide lessons learned in the field 21 

monitoring of optical parameters in hopes that future researchers may avoid such difficulties and add to 22 

the findings of this study.  23 
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Advantages and Disadvantages to Monitoring System Configuration 1 

The team of researchers designing the field monitoring study selected monitoring system 2 

configurations based on site-specific constraints to station configuration. At the time of study design, we 3 

researched the benefits of both in-situ and flow-through cell monitoring configurations. While the general 4 

advantages and disadvantages of monitoring system configuration are well documented59, in the case 5 

study the primary considerations were protection from vandalism, access to power sources, and shelter 6 

from the elements during station visits for calibration and sampling. These considerations led to the 7 

prioritization of flow-through cell configurations. However, in my experience there are considerable 8 

disadvantages associated with flow-through cell configurations that should direct future researchers to 9 

deploy in-situ configuration whenever possible.  10 

Two primary disadvantages include the heightened maintenance costs and low signal-to-noise 11 

ratios associated with flow-through cell configurations. In both stations operating under flow-through cell 12 

configurations, failures in pump operation led to substantial losses in data. Certain failures were attributed 13 

to the continuous operation of the pump, leading to the premature degradation of peristaltic tubing, loss of 14 

suction, and ultimately system overheat. To reduce strain on the peristaltic tubing, I recommend using a 15 

programmable pump and employing intermittent pumping at sampling intervals. Through discussion with 16 

other researchers in the field of continuous water quality monitoring, a programmable pump can easily be 17 

employed to overcome these frustrations60.  18 

In addition, intake tubing often became clogged with coarse debris or coated with biofilm, 19 

necessitating the weekly flushing of the intake tubing to ensure influent wasn’t compromised. An 20 

investigation of E. coli levels directly adjacent to the intake tubing and downstream of the water quality 21 

sondes showed that biofilm may have concentrated E. coli. Without accounting for this issue, there is 22 

potential for biased interpretations of the degree of fecal contamination.  23 

None of these issues were of concern in in-situ deployments, as pumps were not utilized and 24 

biofouling was limited using a wiper blade. With this deployment, turbidity, specific conductance, TLF & 25 

OB data all exhibited low signal-to-noise ratios. In contrast, stations configured with pump and flow-26 
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through-cell intakes showed considerable noise. Being that turbidity readings yielded the highest standard 1 

deviations relative to the mean for all seasons and flow conditions, I postulate that stations with flow-2 

through cell intermittently pumped in “slugs” of sediment with attached pollutants (i.e. samples were less 3 

homogenized). High noise levels led to additional post-processing to reveal signals, adding time to the 4 

overall analysis.  5 

Reporting Units for TLF and OB 6 

Monitoring stations were configured to allow for water quality sondes to transmit data through 7 

communication cables to a data logger, then to a web-based data viewing platform with a cellular 8 

network. The optical parameters were monitored using a Turner Designs C3™ Submersible Fluorometer 9 

with converts fluorescence intensity measured in raw fluorescence blank (RFUb) to parts-per-million 10 

(ppm) of tryptophan-like-fluorescence and optical brighteners using an internal calibration curve. 11 

Initially, data were transmitted from the C3™ to four significant digits, yet the web-based platform only 12 

recorded to two significant digits, leading to a loss in the resolution of data. Because data were not 13 

preserved outside of the data viewing platform, this resolution was lost. Later in the field season, the 14 

research team discovered that additional resolution could be provided by reporting directly in units of 15 

RFUb, and using calibration curves to convert data to units of ppm in post-processing. With these 16 

findings, I recommended that future researchers ensure congruency in units across sondes, data loggers, 17 

and data-viewing or storage platforms and report in RFUb to achieve the highest data resolution available. 18 

However, it is noteworthy that calibration curves are highly variable between different sensors, and over 19 

time within the same sensor, thus frequent and sensor-specific calibration is necessary. 20 

Logistical Constraints of Discrete E. coli Monitoring during Wet-Weather Events 21 

To fully characterize patterns of E. coli during wet-weather events, it was paramount to collect 22 

samples at high frequencies so critical hydrograph phases were not missed. With this came substantial 23 

logistical considerations in the configuration of the monitoring team. A minimum of six personnel (two 24 

per station for safety considerations) were necessary, and team deployments were timed with site-specific 25 
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time-to-peaks to ensure sampling occurred during the first flush. Teams were on-call for storm events at 1 

all hours of the night, often with capricious weather forecasts that drew limited hydrological response. To 2 

ensure full staff availability when the ideal storm arrives, it is recommended that a large group of back-up 3 

personnel are available. This can lead to uncertainties in the budget of the project, due to variations in 4 

staffing rates, etc. All these considerations reinforce the need to improve continuous and remote water 5 

quality monitoring techniques for fecal contamination, as is the primary objective of this study. 6 

Conclusions 7 

This study sought to investigate the validity and practicality of using fluorescence 8 

spectrophotometry to measure fecal contamination across various hydrological conditions. Validity was 9 

measured by the ability of the fluorescent parameters to predict E. coli at different hydrograph phases. 10 

Results from the regressions models indicate that turbidity, TLF, and OB are significant in their predictive 11 

ability at all hydrograph phases, yet model fits were poor due to data clustering. The response of each 12 

indicator varied considerably with flow conditions, yet clear flow thresholds are not yet discernible. This 13 

indicates a need to build site-specific regressions with storms of varying magnitude across longer time 14 

spans to gain confidence in the predictive ability of these parameters. Rather than isolating data strictly by 15 

hydrograph phases, future studies should explore the organization of regression models by patterns in 16 

indicator responses (for example, pulse spikes, dilution effects, and stable baseflow).  17 

To practically use fluorometry for the continuous detection of fecal contamination, practitioners 18 

will need to optimize deployment configurations, maintenance plans, and post-processing protocol. The 19 

use of fluorometry for the detection of fecal contamination is often praised as being a low-cost option for 20 

watershed managers, particularly in reference to the use of hand-held fluorometers for spot testing. This 21 

study demonstrated noteworthy constraints associated with long-term deployments, which added 22 

unforeseen labor costs to the initial deployment plan. In-situ deployment of water quality sondes can 23 

reduce these costs, and managers should elect to deploy in this configuration where station conditions are 24 

appropriate.  25 
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Despite these constraints, the application of fluorometry to measure fecal contamination has the 1 

potential to provide rapid indications of microbial pollution, without the need to wait for results from 2 

culture-based approaches. Additionally, continuous data collection can provide watershed managers with 3 

high-density datasets over longer time frames and greater spatial scales than is possible with discrete 4 

sampling. In turn, they may discern detailed relationships between discharge and fecal contamination at 5 

sites targeted for water quality restoration efforts, and the effects of restoration efforts can be more easily 6 

monitored. This is particularly applicable to the development of TMDL regulations where high volumes 7 

of fecal contamination data are needed in conjunction with flow data. While current U.S. EPA guidelines 8 

suggest the use of E. coli or Enterococcus for the development of TMDLs, studies are limited by discrete 9 

samples over relatively short periods (1-2 years) to estimate pollutant loads.  10 

With continued research and improvements to prediction ability, this technology can aid 11 

practitioners in improving source tracking of pollution. The use of OBs allows managers to detect fecal 12 

contamination associated with residential sewage. Microbial source tracking can also be used to detect 13 

human-specific enteric microorganisms, yet the expense of microbial source tracking techniques is often 14 

prohibitive for use at watershed scales. Using submersible fluorometers to detect OBs in combination 15 

with TLFs is more cost-effective than microbial source tracking techniques, and can provide similar 16 

results.  17 

Water quality impairment from fecal contamination is a widespread problem throughout the 18 

world, and especially in the State of Michigan. The recent publication of Michigan’s Statewide E. coli 19 

TMDL indicated that 9,000 miles of streams with the TBC designated use are currently impaired due to 20 

fecal contamination, and that number is expected to grow to about half of Michigan’s stream miles 21 

(37,000) as more monitoring is conducted61. To achieve the goal of being delisted from TMDL regulation, 22 

communities must employ innovative strategies for the source tracking and management of fecal 23 

contamination. It is my hope that the use of continuous fecal contamination indicators will continue to 24 

improve and become a practical tool to aid water resources managers in achieving water quality goals.   25 

 26 



35 

 - Compensating For The Effects of Temperature and Turbidity on Tryptophan-like-1 

Fluorescence and Optical Brighteners 2 

Background 3 

The use of TLF and OB could provide water resources managers with advanced utility in 4 

monitoring fecal contamination. However, the environmental conditions of riverine systems are highly 5 

dynamic, thus monitoring fluorescence may be subject to instrument interference. Fluorescent compounds 6 

(fluorophores) are known to be sensitive to a wide variety of interferences, known as signal amplifiers or 7 

quenchers62–64. Before fluorescence measurements are interpreted, compensation techniques for 8 

fluorescence quenching and signal amplification should be considered. Fluorescent compounds are known 9 

to be influenced by higher temperature46, as higher temperatures increase collisional quenching and 10 

dampen the fluorescent signal with increasing temperature. Diurnal temperature fluctuations in riverine 11 

systems are a key driver of uncorrected fluorescent observations, particularly in streams with low summer 12 

baseflows that are greatly influenced by diurnal swings in ambient air temperature. Suspended particles 13 

create an additional challenge, as they can cause increased light scattering leading to signal amplification 14 

or attenuation depending on the degree of interference65. Without correction, deriving the fluorescent 15 

signals of surface water pollution can be extremely challenging and misleading. To account for 16 

environmental interferences while monitoring TLF and OB as indicators of fecal pollution contamination, 17 

compensation techniques were either collected from the available literature or derived in laboratory 18 

experiments. In this chapter, I provide an overview of the development and application of temperature 19 

and turbidity compensation techniques used in this study.  20 
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Methods 1 

Temperature and Turbidity Corrections for Tryptophan-like-Fluorescence  2 

The interference of environmental factors on fluorophore detection has long been studied. As this 3 

phenomenon pertains to TLF, Khamis et al 24 quantified the effects of temperature quenching and 4 

turbidity interference specific to the Cyclops 7™ (Turner Designs, Sunnyvale, CA) sonde and other 5 

fluorometers containing the same sensors used in this study under different housing configurations. 6 

Following the technique for temperature compensation in carbon dissolved organic material (CDOM) 7 

used by Watras et al66, they developed compensation algorithms for temperatures ranging from 5-35 ℃. 8 

Results indicated that a linear model provided the best fit for the Cyclopes 7™ TLF sensor leading to the 9 

compensation technique provided in equation 6.1.  10 

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

1 +  𝜌𝜌�𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟�
  (6.1) 11 

Where TLF is the concentration of TLF (ppb), T is temperature (℃) and the subscripts mes and 12 

ref refer to the measured and reference values, respectively. Given that the calibration of the fluorometer 13 

was performed at 20℃, I used this temperature for Tref and calculated TLFref as the true value of TLF at 14 

20℃. The temperature compensation coefficient, ρ, is the ratio of the slope : intercept of the OLS 15 

regression modeling the relationship between temperature and the measured TLF concentration, which 16 

was shown to be relatively constant regardless of fluorophore reference standard concentration. This 17 

temperature compensation algorithm was applied to the TLF signal data for in-situ measurements 18 

collected in this study. 19 

For suspended particles, Khamis et al.24 evaluated both clay- and silt-dominated matrices and 20 

found varying effects depending on the sediment type and degree of turbidity. Both silt- and clay-21 

dominated matrices were evaluated and signal amplification of TLF was apparent in <150 NTU for clay 22 

particles and <650 NTU for silt particles. Of the two matrices evaluated, silt-dominated particle size 23 

distributions are most similar to the conditions observed at the monitoring stations of this study. While 24 
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determining the exact particle size distribution would be most ideal, conducting these types of analyses 1 

was outside the scope of this study. Thus, I applied the compensation algorithm derived for silt-dominated 2 

matrices to the TLF signal data from in-situ measurements collected in this study (equation 6.2).  3 

𝑐𝑐𝑐𝑐 = 𝑎𝑎 + 𝑎𝑎𝑎𝑎 + 𝑎𝑎2 +  𝑎𝑎2𝑏𝑏2 +  𝑏𝑏3 +  𝑎𝑎3𝑏𝑏2 (6.2)  4 

Temperature and Turbidity Correction for Optical Brighteners  5 

In contrast to the studies of environmental interference with TLF24, relatively little is known 6 

about similar interferences with OB in laboratory or field settings. I found only one study evaluating the 7 

effects of OB readings at stable temperatures67. However, as it is known that fluorescent compounds 8 

display high sensitivity to environmental conditions, the need to evaluate the effects of temperature and 9 

turbidity on OB signals became paramount. Therefore, I conducted a study to quantify the effects of 10 

temperature and turbidity interference on OB fluorescence for the Cyclops 7™.  11 

Reference Standard Solution Preparation and Instrument Calibration 12 

I prepared reference standard solutions for calibrations with a commercial laundry detergent, Tide 13 

2X Original Scent Powdered Detergent (Tide, Procter & Gamble, Cincinnati, OH) and deionized water. 14 

Then, I used stock solutions of 100 ppm OB to create serial dilutions ranging from 0.25-50 ppm. Standard 15 

solutions were prepared in a dark room inside acid-washed (HCl 5%) Erlenmeyer flasks wrapped in a foil 16 

to prevent photo decay. Standard solutions were prepared at room temperature and refrigerated for a 17 

maximum of 48 hours reaching a stable temperature of 5 ℃ confirmed with a thermistor. Temperature 18 

measurements were stabilized over thirty seconds for all measurement runs. To convert observed 19 

fluorescence measurements to concentration values at a given reference temperature, I calibrated the 20 

fluorometer prior to the temperature and turbidity effects assessment. The calibration curves of two 21 

reference temperatures (10 and 20 ℃) were evaluated to represent the relationship between reference 22 

standard concentration and observed fluorescence for both the temperature effects and turbidity effects 23 

analyses.  24 
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Assessment of Temperature Effects on Optical Brighteners 1 

To evaluate the instrument-specific effect of temperature on OB readings, I measured 2 

fluorescence over a warming cycle from 5-35℃ for seven standard solutions (0.25, 2.5, 6.25, 12.5, 25, 3 

and 50 ppm). Standard solutions were cooled to 5℃ overnight and transferred directly to a heated mixing 4 

plate (Corning PC-351, Corning, New York) and constantly stirred. Stirring speeds were maintained at a 5 

threshold low enough to prevent foaming of the detergent to ensure a homogenized solution. Thermistors 6 

were submerged centrally inside the flask at the mid-point of the height of the solution and taped to the 7 

flask to maintain their placement. For each standard solution, temperatures were gradually increased to 8 

35℃ over 30 minutes. Temperatures were monitored and readings with fluorescence readings taken at 9 

5℃ (± 1℃) intervals. Once the desired temperature was achieved, readings were recorded with the 10 

fluorometer submerged centrally inside the flask at the mid-point of the height of the solution. 11 

Assessment of Turbidity Effects on Optical Brighteners 12 

To evaluate the instrument-specific effect of turbidity on OB readings, I added incremental 13 

portions of a silt standard (Ward’s Science, Rochester, NY) to standard solutions to create a turbid media. 14 

Silt (versus clay) was selected based on visual observation of the dominant particle sizes at the selected 15 

monitoring stations. Standard solutions were cooled to 10℃ overnight and transferred into volumetric 16 

flasks placed directly onto a mixing plate (Corning PC-351, Corning, NY). Stirring speeds were 17 

maintained at a threshold low enough to prevent foaming of the detergent, yet fast enough to maintain 18 

sediment suspension to ensure a homogenized solution. Fluorescence was measured over a series of 19 

sediment additions to give a range of turbidity (0-1000 FNU) for four standard solutions (2.5, 6.25, 12.5, 20 

and 50 ppm). For every incremental addition of silt, turbidity was measured with a YSI EXO optical 21 

turbidity sensor (599101-01, YSI Incorporated, Yellow Spring, OH) housed in the YSI EXO 2 Multi-22 

parameter Water Quality Sonde. Fluorescence readings were recorded after a stabilization of ±1 FNU was 23 

achieved with the fluorometer submerged centrally inside the flask at the mid-point of the height of the 24 
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solution. Temperature was measured periodically to ensure temperatures did not vary throughout 1 

experimental runs.  2 

Development of Optical Brightener Concentration Prediction Models 3 

I took several approaches to derive prediction models for the OB concentration given observed 4 

fluorescence, temperature, and turbidity. Initially, I attempted using OLS regression (equation 36) for 5 

temperature compensation as performed by Khamis et al.24 and Watras et al.66 for TLF and CDOM, 6 

respectively. A key assumption of this technique is the consistency of the ratio between the slope : 7 

intercept (ρ) for each reference standard in order to use the average ρ value for the model including all 8 

trial runs. To evaluate this assumption, I performed individual regressions and determined ρ ± the 9 

standard error. The temperature of the instrument during calibration was used as the reference 10 

temperature, in this case 20℃. 11 

I attempted additional approaches to model the prediction of the OB concentration given the 12 

observed fluorescence, temperature, and turbidity while considering the interaction effects of these 13 

parameters. First, a Generalized Linear Model (GLM) (Gaussian distribution) including all predictor and 14 

modifier variables was applied, including the interaction of the observed fluorescence with turbidity and 15 

temperature (equation 6.3). Then, two separate GLMs were performed were developed to include 16 

observed fluorescence and either temperature or turbidity as a predictor variable and the interaction of 17 

observed fluorescence with either temperature or turbidity as the respective modifier variables (equations 18 

6.4 and 6.5, respectively). 19 

 I performed two additional stepwise GLMs to account for the non-linear relationship between the 20 

reference standard concentration and the observed fluorescence. Initially, a natural logarithmic 21 

transformation of both the reference standard concentration and the observed fluorescence was 22 

performed, and included with temperature and turbidity as both predictor and interaction terms. Then, I 23 

created additional stepwise GLM to include the square of the observed fluorescence as a predictor 24 

variable, including temperature and turbidity as both predictor and interaction terms. I evaluated multiple 25 
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different equations forms for prediction models for temperature or turbidity compensations, and compared 1 

metrics of model performance (AIC and RMSE) and fit (R2).  2 

Results and Discussion 3 

Calibration Response 4 

Calibration results displayed highly significant and positive linear relationships (R2 > 0.95, P < 5 

0.0005) between the log-transformed reference standard concentrations and the log-transformed observed 6 

fluorescence for both calibrations performed at 10 and 20 ℃ (Table 6-1). The need for log transformation 7 

to derive a linear relationship raises important concerns about the accuracy of calibration at higher 8 

concentrations (>25 ppm). Although concentrations at higher ranges are easier to detect, they are less 9 

likely to be encountered in field settings. 10 

 11 

Table 6-1: Calibration equations and measures of fit of laboratory trials based on reference standard 12 

solutions of OBs prepared with commercial laundry detergent in deionized water 13 

 14 

Optical Brightener Concentration Prediction Models 15 

Temperature Response 16 

For all reference standard concentrations, observed fluorescence values were negatively related to 17 

temperature, with mean OLS slopes ranging from -0.0155 ± 0.0026 (0.25 ppm) to -1.28 ± 0.29 (50 ppm) 18 

(Figure 6-1). Slope values increased with higher reference standard concentrations, indicating that 19 

perhaps the quenching effect of temperature is more apparent at higher concentrations. Temperature 20 

Calibration 

Temperature 
Calibrated Relationship Adjusted R2 P-value RMSE 

10 ℃ 𝑦𝑦 = 101.1 log(𝑥𝑥)−1.22 0.97 0.0002 1.13 

20 ℃ 𝑦𝑦 = 101.1 log(𝑥𝑥)−0.91 0.97 0.0003 0.83 
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correction coefficients varied negligibly between reference standard concentrations (ρ = -0.023, α = 1 

0.046) (Figure 6-2). Changes in observed fluorescence with increasing temperature observed in this study 2 

are less than those reported by Khamis et al24 with TLF using the same instrument model (ρ = -0.039, α = 3 

0.036), yet they fall within the range of values from those studying the fluorescence quenching from 4 

temperature on DOM composition (ρ = -0.009 to -0.025)45,66,68. The similarity in ranges highlight the need 5 

to consider CDOM interference from OB signals when correcting field data.  6 

Turbidity Response 7 

The relationship between turbidity and the observed fluorescence values was non-linear and 8 

exhibited high spread. Yet, some consistencies in the shape of the signal were apparent across the range 9 

of reference standards concentrations (Figure 6-3). For the highest three standards (50, 12.5, 6.25 ppm), 10 

the observed fluorescence rapidly increased to a maximum and then gradually decreased at turbidity 11 

levels near 1000 FNU. The lowest reference standard (2.5 ppm) did not exhibit the same gradual 12 

decrease, rather the fluorescence signal exhibited a change in slope direction around 500 FNU and 13 

increased as turbidity values approached 1000 FNU.  14 

The range of turbidity values where the rapid increase in fluorescence was apparent was different 15 

across reference standards, with maximum fluorescence values ranging between 10-100 FNU. The 16 

increase in the observed fluorescence at low turbidity somewhat conforms with the experimental findings 17 

of Khamis et al.24 who reported similar results on the maxima of TLF signals at low to moderate (100-300 18 

FNU) turbidity. However, Downing et al45 and Saraceno et al65 both reported attenuation of CDOM at 19 

low and high turbidity ranges from clay-loam sediments, in line with the pattern seen for the same three 20 

reference standards. 21 

It is possible that an organic coating on the silt particles used in this study could have caused the 22 

increased fluorescence intensity signal at lower turbidities, as the silt had not undergone standard 23 

disinfection procedures (typically performed with hydrogen peroxide). Further studies with additional 24 

trial runs on lower reference standard concentrations are necessary to show repeatable results and 25 
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distinguish between trends across reference standard concentrations. However, the ability to perform 1 

repeat experiments was not available in this study and therefore compensation algorithms were derived 2 

using the available data.  3 

Correction Model Evaluation 4 

Prediction models varied in measures of model skill and fit, and models incorporating logarithmic 5 

and squared transformations of predictor variables outperformed linear models (Table 6-2). Temperature 6 

correction using equation 6.3 as applied by Khamis et al24 and Watras et al66 yielded negative bias for 7 

higher concentrations (12.5, 25, 50  ppm) and negative bias for low concentrations (0.25 and 2.5 ppm). 8 

The technique yielded fair model fit (R2 = 0.81, RMSE = 5.12), leading to the desire to explore additional 9 

techniques in developing interaction models considering both the effects of turbidity and temperature as 10 

moderator variables.  11 

The model including all predictor and modifier variables without parameter transformations 12 

(Equation 6.4) provided even lower measurements of model fit (R2 = 0.63, RMSE = 10.47). Attempts to 13 

create models excluding either temperature (equation 6.5) or turbidity (equation 6.6) as predictor and 14 

moderator variables fared moderately better (R2 = 0.65, RMSE = 10.30 and R2 = 0.82, RMSE = 7.02, 15 

respectively). Yet, with these models came high RMSE values relative to the reference concentrations.  16 

In reviewing raw data trends, it was clear that the non-linear relationship between the reference 17 

standard concentration and the observed fluorescence required data transformations. Models using log-18 

linear (equation 6.7) and squared (equation 6.8) transformations of these parameters outperformed the 19 

prior models significantly (R2 = 0.87, RMSE = 0.49 and R2 = 0.90, RMSE = 0.42, respectively).  20 

Based on the comparison of skill and fit metrics, the model described by equation 6.8 was 21 

selected for application to field study data. Despite the measurements of model fit, the bias in the 22 

prediction using this technique varies with reference standard concentration. That is, the model tends to 23 

underpredict with lower concentration reference standards and over predict with higher concentration 24 
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reference standards (Figure 6-4). In earlier chapters of this work, interpretations of OB field study data 1 

were made with consideration of this model bias. 2 

3 
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  1 

Figure 6-1: Temperature quenching effect on OB fluorescence at six reference standard concentration (50, 25, 12.5, 6.25, 2.5, 0.25ppm).  2 
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 1 

 2 

Figure 6-2: Comparison of temperature compensation coefficient estimation for individual OLS 3 

regressions for a series of known reference standard solutions of OB.  4 

5 
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1 

Figure 6-3: Turbidity inference effects on OB Fluorescence for four reference standards (2.5, 6.25, 12.5, and 50 ppm). 
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Table 6-2: Form of equations for OB concentration (ppm) prediction models with temperature and turbidity correction compensation showing 
evaluated (E) and selected (S) parameters with coefficients, along with measures of model skill and fit.  

         AIC R2 RMSE 

E 𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  
𝑂𝑂𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚

1 +  𝜌𝜌(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟)
 (8.3) 

250 0.81 5.12 
S 𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  

𝑂𝑂𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚
1 + −0.019(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 20℃) 

 

E 𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 +  𝛽𝛽2𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽3𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  +  𝛽𝛽12𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽13𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  (8.4) 
545 0.63 10.47 

S 𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = −2.84 + 3.44𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚  +  4.45 × 10−5𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 +  1.08 × 10−2𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚   

E 𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 +  𝛽𝛽2𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽12𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  (8.5) 
256 0.65 10.30 

S 𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  −5.05 + 0.13𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 + + 1.57 × 10−4𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚   

E 𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 +  𝛽𝛽3𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽13𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  (8.6) 
264 0.82 7.02 

S 𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = −5.51 + 0.13𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 +  0.0093𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚   

E ln (𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = 𝛽𝛽0 + 𝛽𝛽1ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ) + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽3𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽12ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 )𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽13ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 )𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝛽𝛽23𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  

(8.7) 

104 0.87 0.49 

S ln (𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = −3.36 + 1.07ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ) +  0.0077𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 +  0.058𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 −  7.0 × 10−4 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚   

E ln (𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = 𝛽𝛽0 + 𝛽𝛽1ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ) + 𝛽𝛽2𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽3𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽4ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 )2 + 𝛽𝛽12ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 )𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽13ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 )𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝛽𝛽23𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  +  𝛽𝛽42ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 )2𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽43ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 )2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 

(8.8) 

93 0.90 0.42 S ln (𝑂𝑂𝑂𝑂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = −2.25 + 0.52ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ) +  0.034𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 +  0.024𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 0.053ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 
2)

− 0.012ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 )𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 −6.57 × 10−4𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  +  0.0012ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 
2) 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

+  0.0025ln (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 
2)𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  
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Figure 6-4: Reference standard concentrations versus predicted concentrations using a generalized 
linear model with both log-linear and squared transformation of predictor variables, including 
temperature and turbidity as interaction terms. Diagonals are presented to show the idealized prediction 
model (m = 1, β0 = 0) and deviations in bias with reference standard concentration.  
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