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Abstract 
 

Eukaryotic cells contain a cytoskeleton that forms the structural framework for 

fundamental cellular processes including cell division, cell motility, intracellular 

trafficking, and cilia function. The functional output of the microtubule cytoskeleton 

depends on a family of molecular motor proteins called kinesins. Genetic analysis has 

indicated that the human genome encodes for over 45 kinesin motor proteins belonging 

to 19 different families. All kinesins share a highly-conserved catalytic motor domain 

that converts the chemical energy of ATP hydrolysis into the mechanical outputs of 

force generation and directed “stepping” along microtubule tracks. How individual 

kinesins have adapted this basic enzymatic output for their specific functional roles in 

cells is an outstanding question in the field.   

Previous work has largely focused on characterizing kinesin motility (e.g. 

velocity, run length) under single-motor, unloaded conditions using in vitro assays.  

However, in the crowded cellular environment, kinesins work in teams to transport 

membrane-bound cargos along a complex network of microtubules. Therefore, although 

we have a better understanding of the functional diversity of the kinesin motor domain 

under single molecule conditions, how divergent motility properties lead to emergent 

mechanisms of transport in cells is not clear. To bridge this gap, I adapted artificial 

cargo transport assays in cells to correlate how changes in a motor’s single molecule 

properties impact their ability to collectively drive transport under physiological 

conditions.  

Recent theoretical, biophysical, and computational studies predict that a motor’s 

behavior under force is a critical parameter that dictates transport in cells. Generation of 

force by kinesin motors involves ATP-induced docking of the neck linker (NL) along the 

motor’s core; however, the contributions of the proposed substeps of NL docking are 

unclear. Furthermore, whether sequence changes that modulate NL docking is a 

strategy to tune the functional output of a motor in cells has not been addressed.  



 xiii 

In this dissertation, I first present work that uses a combination of techniques 

(computational, biophysical, and cellular) to address how NL docking impacts the 

functional output of kinesin-1 motors. Surprisingly, I find that motors with weakened NL 

docking are faster and more processive but at a cost to their force production. 

Furthermore, motors with weakened NL docking are crippled in their ability to drive 

transport of high-load cargo in cells, providing the first evidence that a power-stroke 

mechanism of force generation is critical for multi-motor driven transport under 

physiological conditions (Chapter 2). I further extend these results to other kinesin 

family members (Chapter 3).  

Although biophysical studies have led to a better understanding of how family-

specific sequence divergence within the kinesin superfamily tunes motility, how single 

residue changes implicated in disease impacts the functional output of a motor can be 

difficult to predict. We find that a majority of disease-associated mutations cluster in 

elements of the motor domain important for microtubule binding, force generation, and 

nucleotide binding/hydrolysis. We characterized the effect of two mutations predicted to 

impair NL docking in the kinesin-3 motor KIF1A under different load regimes to provide 

insight into how these mutations manifest in disease (Chapter 4). Collectively this work 

confirms the proposed role of the NL as a mechanical element important for force 

generation by kinesin motors and drives our understanding of how kinesins adapted this 

feature for their functional roles in the cell.  



 1 

Chapter 1: Introduction 

1.1 Introduction: the cytoskeleton builds the framework of a cell 
Eukaryotic cells are highly complex. Their cellular contents can undergo dramatic 

reorganization and their overall structural organization can change to drive their 

movement. For instance, during cell division, chromosomes dynamically align and are 

pulled to opposite sides of the cell, ensuring proper inheritance of genetic material by 

each daughter cell. In highly polarized cells such as neurons, proteins and vesicles in 

the cell body move hundreds of microns to axon terminals within minutes (Craciun, 

Brown, & Friedman, 2005; Smith & Simmons, 2001). Finally, at the site of injury in a 

tissue, cells surrounding a wound undergo dramatic movement and constriction to 

promote closure of the wound (Rothenberg & Fernandez-Gonzalez, 2019). Although 

diffusion is responsible for many biochemical processes within a cell, it is unlikely that 

this type of motion could drive such dynamic, coordinated movements on a short time 

scale (Craciun et al., 2005; Fulton, 1982; Kristensson & Olsson, 1973) 

 Instead, to facilitate this complex set of cellular behaviors, eukaryotic cells evolved a 

dynamic network of cytoskeletal filaments that build the foundational framework of the 

cell. Specifically, actin and microtubules are polarized cytoskeletal filaments that are 

built from smaller subunits. Their disassembly and assembly into filaments is dependent 

on the ATP- or GTPase activity of their individual subunits (Erickson & O'Brien, 1992; R. 

Li & Gundersen, 2008). In cells, the slow-growing ends of microtubules (minus-ends) 

are typically anchored at the centrosome near the nucleus of the cell and their fast-

growing ends (plus-ends) extend outwards in a radial array to span a large portion of 

the cell. Similarly, the pointed ends of actin (minus-ends) are oriented towards the 

center of the cell while the barbed ends (plus-ends) are directed outwards toward the 

cell periphery (Fletcher & Mullins, 2010). 

The functional output of cytoskeletal filaments depends on their inherent 

dynamics and also on three major classes of molecular motors: microtubule-based 

kinesin and dynein motors and actin-based myosin motors. Specifically, motor proteins 
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convert the chemical energy of ATP hydrolysis into mechanical outputs of force 

generation and directed movement along cytoskeletal tracks (Schliwa & Woehlke, 2003; 

Vale, 2003). How the collective function of molecular motors drives such distinct, 

dynamic processes such as cell division, neuronal transport, and cell migration has 

been a longstanding question in cell biology and will provide fundamental insight into 

how disruption of cellular organization can manifest in disease (Hirokawa, Niwa, & 

Tanaka, 2010; Yu & Feng, 2010). This chapter will review what is known about how 

sequence conservation and divergence of the kinesin motor domain tunes its 

mechanical output as single motors, and how distinct single-molecule motility properties 

can manifest in functionally distinct outputs by groups of motors in a physiological 

context.  

1.2 Molecular motors: diverse strategies for cellular organization 
Although the dynamic nature of chromosomes and organelles has been noted as 

early as the late 1700s, technological advances in microscopy and fluorescent protein 

design in the 1980s led to a revolution of single-molecule techniques to study 

fundamental mechanisms of movement by cytoskeletal motor proteins (Allen et al., 

1982; Ashkin et al., 1986; Axelrod, 1981; Brady, Lasek, & Allen, 1982; Kozminski et al., 

1993). All three classes of motors have a globular motor domain that has ATPase 

activity and filament binding capabilities. Two catalytic motor domains are typically 

oligomerized through a coiled-coil element and a tail domain located at the end of the 

molecule specifies cargo binding (Schliwa & Woehlke, 2003; Vale, 2003). Changes in 

how motor proteins couple the energy of ATP hydrolysis to mechanical output and 

“stepping” along cytoskeletal filaments, allows motors to orchestrate a striking number 

of fundamental tasks in the cell, including intracellular transport, cytoskeletal 

organization, cell division, cilia function, and cell motility. 

Kinesin and myosin motors each comprise two large superfamilies of motor 

proteins that typically walk to plus-ends of microtubules (Hirokawa et al., 2009; Verhey 

& Hammond, 2009) or actin filaments, respectively (Hartman & Spudich, 2012; 

Syamaladevi, Spudich, & Sowdhamini, 2012). The catalytic core of kinesin and myosin 

motors are composed of a similar set of structural elements (G-protein Ras-like fold), 

suggesting that they share a common ancestor and therefore similarities in how 
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nucleotide binding and hydrolysis are coupled to their mechanical output (Kull & Endow, 

2013; Kull, Sablin et al., 1996; Kull, Vale, & Fletterick, 1998). Initially, the core motor 

domain of kinesin or myosin was predicted to impart the same mechanical output for all 

motors within each superfamily. Instead, the tail domain was thought to be the critical 

determinant for their distinct functions in cells. However, careful biophysical 

characterization of different kinesin and myosin motors suggest that subtle sequence 

divergence within each protein superfamily imparts distinct motility properties to a given 

motor (Hirokawa et al., 2009; Verhey & Hammond, 2009; Woolner & Bement, 2009). 

Dynein (dynein heavy chain) is a member of the AAA+ superfamily, with a 

characteristic hexameric ring complex that is important for ATP hydrolysis and 

microtubule-based movement (Snider, Thibault, & Houry, 2008; Vale & Milligan, 2000). 

Unlike kinesin or myosin motors, where gene duplication events and sequence 

divergence resulted in a large number of motor proteins with distinct motility properties, 

there is only one dynein isoform that is responsible for microtubule minus end-directed 

transport in the cytoplasm of the cell [cytoplasmic dynein 1, (Paschal, Shpetner, & 

Vallee, 1987; Paschal & Vallee, 1987; Pazour, Dickert, & Witman, 1999; Porter et al., 

1999)]. Instead, recent single-molecule work found that a number of proteins associate 

with dynein and can modulate its mechanical output to suit different functional 

requirements in the cell (Reck-Peterson et al., 2018).  

Although prokaryotic organisms have tubulin- and actin-related proteins, new 

functional pressures faced by eukaryotic organisms led to the evolution of a “toolbox” of 

cytoskeletal motor proteins. Specifically, genomic analysis across a diverse number of 

eukaryotic organisms including fungi, parasites, plants and animals has revealed 

dramatic differences in their cytoskeletal motors and the cellular tasks they orchestrate 

(Vale, 2003). For instance, plants lack genes encoding for the dynein motor and instead 

have an expanded group of kinesin motors responsible for microtubule minus-end 

directed transport (Nebenfuhr & Dixit, 2018). Additionally, in Saccharomyces cerevisiae, 

the typical canonical transport kinesin-1 is lost and instead many transport events are 

driven along actin filaments by myosin motors (Bertrand et al., 1998; Catlett et al., 2000; 

Reck-Peterson et al., 2000). How diversification of the cytoskeletal “toolbox” leads to 
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distinct strategies to modulate the functional output of the cytoskeletal network across 

the eukaryotic kingdom is an exciting and open question in cell biology.       

1.3 The kinesin superfamily: design principles of a motor protein 
Shortly after the purification and characterization of conventional kinesin (kinesin-

1) from squid axoplasm (Svoboda & Block, 1994; Vale & Fletterick, 1997; Vale, Reese, 

& Sheetz, 1985; Vale et al., 1985), many additional kinesin motors across the eukaryotic 

kingdom, including fungi, plants, and animals were identified. Genetic analysis now 

indicates that the human genome encodes for over 45 kinesin proteins belonging to 19 

different families (Hirokawa et al., 2009; Lawrence et al., 2004; Miki, Okada, & 

Hirokawa, 2005; Verhey & Hammond, 2009).  

All kinesins have a highly typical architectural structure. They have a conserved 

core motor domain (~40-60% sequence identity) with signature sequences for binding 

nucleotide and microtubules. Kinesins are grouped according the position of the motor 

domain in the protein: the motor domain is located at the amino-terminal end in N-

kinesins, the carboxy-terminal end in C-kinesins, and in the middle of the protein for M-

kinesins (Hirokawa et al., 2009). Following the core motor domain is a short, flexible 

element called the neck linker [NL, (Hariharan & Hancock, 2009; Kozielski et al., 1997)] 

and a coiled-coil sequence responsible for dimerizing the two motor domains. The 

coiled-coil stalk contains stretches of uncoiled hinges that enable the motor to fold into 

an autoinhibited conformation, preventing the motor domain from interacting with the 

microtubule track and futile consumption of ATP (Cai et al., 2007; Coy, Wagenbach, & 

Howard, 1999; Friedman & Vale, 1999; Verhey & Hammond, 2009). Finally, a divergent 

globular tail domain is responsible for facilitating interaction with a variety of cargoes 

including membrane-bound organelles and vesicles, mRNA, protein complexes, or 

microtubules. Different adaptor proteins associate with kinesins, providing additional 

mechanisms to regulate motor activity and cargo specificity in cells (Akhmanova & 

Hammer, 2010; Hirokawa & Noda, 2008; Kamal & Goldstein, 2002; Verhey & 

Hammond, 2009).  

Since the discovery of the first kinesin motor, the molecular mechanism 

responsible for its ability to move along microtubules has been of great interest. The first 

hints towards a mechanism of transport came from classical biochemical experiments 
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that found that (1) kinesin-1 motors co-sediment with microtubules in the presence of a 

non-hydrolyzable ATP analog (AMPPNP) and (2) purified kinesin motors drive fast, 

long-range transport of latex beads in an ATP-dependent manner (Block, Goldstein, & 

Schnapp, 1990; Howard, Hudspeth, & Vale, 1989; Svoboda & Block, 1994; Svoboda et 

al., 1993; Vale et al., 1985).  

Soon after, electron paramagnetic resonance (EPR) spectroscopy and 

fluorescence resonance energy transfer (FRET) studies found that the NL undergoes 

considerable conformational changes (Rice et al., 1999; Rosenfeld, Jefferson, & King, 

2001). In addition, structural studies reveal that the NL is docked along the motor 

domain when in the ATP-bound state (Kozielski et al., 1997; Kull et al., 1996; Sack et 

al., 1997). Collectively, this led to the prediction that the NL serves as a mechanical 

element important for processive stepping and force generation. Indeed, deletion or 

mutation of the NL severely compromised directed, plus-end movement of kinesin-1 

motors (Case et al., 1997; Case et al., 2000).  

Substantial work since these seminal observations have led to a detailed 

mechanism of how kinesin-1 motors step along microtubules. Specifically, the NL 

undergoes a transformation from being flexible in both the ADP-bound and nucleotide-

free states to being docked along the core motor domain in the ATP-bound state 

(Asenjo, Weinberg, & Sosa, 2006; Gigant et al., 2013; Rice et al., 1999; Rosenfeld et 

al., 2001; Shang et al., 2014; Sindelar et al., 2002; Sindelar & Downing, 2010; Skiniotis 

et al., 2003; Wade & Kozielski, 2000). Thus, in a dimeric kinesin motor, NL docking of 

the leading motor domain positions the lagging motor domain forward along the 

microtubule track, thereby specifying direction of motility (Figure 1.1). Moreover, high-

resolution tracking of kinesin-1 motors demonstrate that they step in a foot-over-foot 

manner, taking one 8 nm step per hydrolysis of one molecule of ATP (Asbury, Fehr, & 

Block, 2003; Coy et al., 1999; Schnitzer & Block, 1997; Svoboda & Block, 1994; Yildiz et 

al., 2004). 

Strikingly, under single-molecule conditions, kinesin-1 motors can take over a 

hundred steps along the microtubule track before dissociating, which suggests that the 

activity of each motor domain is somehow coupled to one another. Indeed, studies 

where the orientation of the NL was carefully manipulated using an optical trap indicate 
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that the docked versus undocked state of the NL is responsible for coordinating the 

ATPase cycles of the two motor domains. Tight coupling between the ATPase activity of 

the motor and force generation ensures that one domain always remains bound to the 

microtubule as the other steps forward (Case et al., 2000; Clancy et al., 2011; Dogan et 

al., 2015; Hahlen et al., 2006; Isojima et al., 2016; Liu et al., 2017; Tomishige & Vale, 

2000; Yildiz et al., 2008). Collectively, this work explains the mechanochemical model 

for kinesin motility, where the motor’s biochemical activities are tightly coupled to its 

mechanical movement (Figure 1.1).  
   

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
Figure 1.1. Kinesin mechanochemical cycle.  

The nucleotide state of each motor domain (yellow and orange) is tightly coupled to the motor’s affinity to the microtubule (light 

purple α-tubulin, dark purple β-tubulin). (1) Microtubule binding causes the release of ADP and strong microtubule binding (apo, 

orange). (2) ATP binding and causes conformational changes across the motor domain resulting in cover-neck bundle formation and 

neck linker docking along the motor domain (orange). Neck linker docking causes forward stepping of the lagging head to the next 

binding site along the microtubule (yellow) (3) ATP is hydrolyzed in the now lagging head (orange) to ADP and Pi. (4) The now 

leading head (yellow), binds to the microtubule, releases ADP, and binds tightly to the microtubule. The lagging head (orange) 

eventually releases Pi and detaches from the microtubule track. The motor is then poised for the next hydrolysis cycle. Continued 

coordination of alternating ATPase cycles of each motor domain results in processive stepping along the microtubule.  



 7 

1.4 Design principles of a kinesin motor 
Given the high sequence and structural conservation of the kinesin motor 

domain, the biological significance for why organisms require a large number of kinesins 

is an important question in cell biology. Indeed, knock out or known down of specific 

motors across the kinesin superfamily in a variety of model organisms suggest that 

motors serve unique, specialized roles in fundamental mechanisms of a cell and play 

important roles at the multicellular level during development (Hirokawa et al., 2009). 

One possibility is that the divergent tail domain is important for defining the specificity of 

a motor in a biological context. Strikingly, studies where the catalytic core of a kinesin 

was replaced by one from a different kinesin motor, found that the chimeric motor was 

not functionally equivalent (Kim, Fonseca, & Stumpff, 2014; Ravindran et al., 2017). 

Thus, in addition to the functional specificity imparted by the tail domain, the catalytic 

core and NL are also important for specifying the mechanical output of a motor to best 

suit its function in cells. 
Although much of what we know about kinesin mechanochemistry is based on 

biophysical and biochemical studies of kinesin-1 (velocity, run length, landing rate, force 

generation, sensitivity to detaching from the microtubule track under force), in the past 

10 years the motility properties of other kinesin families have been characterized to 

provide insight into their functional diversity in cells. Many kinesin motors are 

processive, meaning they can take many steps along the microtubule track before 

detaching [kinesin-1 (Howard et al., 1989); kinesin-2 (Muthukrishnan et al., 2009); 

kinesin-3 (Soppina & Verhey, 2014); kinesin-5 (Valentine et al., 2006); kinesin-7 

(Yardimci et al., 2008); kinesin-8 (Varga et al., 2006)]. Processive motors typically serve 

important roles driving intracellular transport or movement of microtubules during cell 

division (Hirokawa et al., 2009). Surprisingly, there are a number of kinesin motors that 

are non-processive, taking only a few steps before detaching from the microtubule, or 

immotile and are unable to step [kinesin-4; (He et al., 2014; Yue et al., 2018); kinesin-10 

(Cochran et al., 2009); kinesin-14 (Furuta et al., 2013; Jonsson et al., 2015)]. Kinesin 

motors can also influence microtubule dynamics [kinesin-4 (Yue et al., 2018); kinesin-5 

(Chen et al., 2019; Chen & Hancock, 2015); kinesin-8 (Locke et al., 2017); kinesin-13 
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(Helenius et al., 2006; Hunter et al., 2003)]. How the highly conserved motor domain 

imparts striking diversity in the mechanical output of a kinesin motor is not clear.  

Much like how the engine of a car is built to reach high speeds in a matter of 

seconds or to generate enough power to pull large loads, how the kinesin motor domain 

is built is thought to tune its mechanical output to best meet its functional needs in cells. 

Almost 10 years after the discovery of conventional kinesin, the first structure of the 

kinesin motor domain was solved by x-ray crystallography (Kozielski, et al., 1997; Kull et 

al., 1996; Sack et al., 1997). Since then, over 100 kinesin structures across a number of 

different kinesin families have been deposited on the Protein Data Bank, revealing that 

the topology of the kinesin motor domain is highly conserved. Specifically, the kinesin 

motor domain consists of eight central beta-sheets (β1-β8, purple) surrounded by six 

alpha helices (α1- α6, yellow) that are connected by flexible loop regions [(Cao et al., 

2014), cyan, Figure 1.2].  Notably, there are many family-specific sequence variations 

within the flexible loop elements. At the N- and C-terminus of the motor domain are 

short mechanical elements called the coverstrand (CS) and neck liker [NL, (Hariharan & 

Hancock, 2009; Hwang, Lang, & Karplus, 2008; Khalil et al., 2008; Nitta, Okada, & 

Hirokawa, 2008)].  
 

 
Figure 1.2. Conserved topology of the kinesin motor domain 

(A) Cartoon ribbon representation of the kinesin-1 (RnKIF5C) motor domain in ATP-bound state (PDB 4HNA). Secondary structure 

elements are indicated: α-helix (yellow), β-sheet (purple), loop (cyan). Left image shows the neck linker (NL) docked along the motor 

domain; Right image shows the motor domain rotated 90o to show the nucleotide-binding pocket.  

(B) Diagram of secondary structure topology of the kinesin motor domain. β-sheets are depicted as triangles, α-helixes as circles, 

and loops as lines. Secondary elements are colored as in (A). 
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Structural elements of the kinesin motor domain can be grouped according to 

their functional roles in motility, such as microtubule binding, nucleotide 

binding/hydrolysis, and stepping/force generation. Thus, sequence divergence within 

these elements or sequence changes in other regions of the motor domain that 

influence the coupling between these functional elements may have a substantial 

impact on whether a motor functions as a transporter, cytoskeletal tether, and/or 

regulator of microtubule dynamics in cells. Below I will review what is known about how 

sequence divergence of the kinesin motor domain modulates its functional output. 

1.4.1 The Nucleotide-binding pocket is highly conserved across the kinesin 
superfamily  

Surprisingly, the first structures of the kinesin motor domain revealed that the 

nucleotide-binding pocket is highly similar to the nucleotide-binding pocket of myosin 

motors and G-proteins [P-Loop containing proteins with a Walker fold; (Kull et al., 1998; 

Walker et al., 1982)]. There are four motifs that make up the nucleotide-binding pocket: 

P-Loop, Switch1, Switch2, and N4-α0 (Figure 1.3). These elements are important for 

ATPase activity and for communication with microtubule binding and force generating 

elements. For instance, kinetic and structural studies reveal that the P-Loop 

(GXXXXGKT/S, Loop4) and N4-α0 are critical for tight nucleotide binding, making 

important interactions with α- and β-phosphates and the purine base of the nucleotide, 

respectively (Kull et al., 1996; Sablin et al., 1996; Sack et al., 1997). 

Switch1 (NXXSSR, β6-Loop9) and Switch2 (DXXGXE, β7-Loop11-α4) of the 

nucleotide-binding pocket undergo considerable conformational changes throughout the 

ATPase cycle of the motor domain and serve a critical role in coupling microtubule 

binding and force generation to the nucleotide state of the motor domain. Specifically, 

collision of the ADP-bound motor domain with the microtubule results in elongation of 

Loop11-α4 in Switch2 allowing the motor to strongly bind to the microtubule. The 

conformational change in Loop11-α4 is relayed to the nucleotide-binding pocket and 

ADP is exchanged for ATP. Thus, the conformation of Switch2 plays a critical role in 

stimulating ATPase activity of the motor domain in the presence of microtubules 

(Atherton et al., 2014; Gigant et al., 2013; Shang et al., 2014).  
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In addition, the conformation of Switch1 and 2 (open or closed) is tightly coupled 

to elements important for generating force. Specifically, closure of Switch1 and 2 when 

ATP binds results in extension of α6 to position the NL into the docking pocket for force 

generation [Figure 1.5, (Atherton et al., 2014; Gigant et al., 2013; Shang et al., 2014)]. 

Recent kinetic studies suggest that docking of the NL locks the motor domain in a 

hydrolysis competent state (nucleotide-binding pocket is closed). Thus, in addition to 

playing a role in force generation, NL docking regulates ATPase activity of the motor 

domain (Cao et al., 2014; Geeves & Holmes, 1999; Hahlen et al., 2006; Parke et al., 

2010). Once ATP is hydrolyzed and phosphate is released, Loop11-α4 of Switch2 

shortens and the motor domain detaches from the microtubule (Atherton et al., 2014; 

Gigant et al., 2013; Shang et al., 2014). Collectively, for a motor to step processively, 

Switch2 must stimulate ADP release upon binding to the microtubule, and closure of 

Switch1 and 2 after ATP binding must drive stepping and ATP hydrolysis. Tight coupling 

of these two steps would enable one motor domain to remain attached the microtubule 

as the next head steps forward (Muretta et al., 2015; Muretta et al., 2018).  

Sequence alignment of the elements important for nucleotide binding show 

considerable conservation, highlighting a common mechanochemical strategy for 

ATPase activity across the kinesin superfamily (Figure 1.3). Single amino acid residue 

changes in elements of the nucleotide-binding pocket of processive, transport kinesins 

abolishes their ATPase activity or decouples communication between the nucleotide-

binding pocket with elements important for microtubule binding and force generation 

(Auerbach & Johnson, 2005; Brendza et al., 1999; Cao et al., 2017; Jennings et al., 

2017; Song & Endow, 1998; Yun et al., 2001).  

Kinesin motors that do not step processively have subtle sequence changes in 

elements important for nucleotide binding and hydrolysis or sequence changes that 

decouple microtubule binding with nucleotide binding and hydrolysis. For example, 

kinesin-10 NOD, kinesin-6 MKLP2, and kinesin-13 motor MCAK have 2 amino acid 

residue changes in N4-α0 that are predicted to destabilize nucleotide binding to cause 

slow catalytic activity (Atherton et al., 2017; Cochran et al., 2009). Strikingly, non-motile 

kinesin-4 motor KIF7 fails to release ADP when it binds to a microtubule (Yue et al., 

2018), consistent with structural studies that find Loop11 of Switch2 is elongated and 
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adopts a strong microtubule binding conformation independent of the nucleotide status 

of the motor domain (Jiang et al., 2019). Decoupling microtubule binding from 

nucleotide binding results in a motor that binds strongly to a microtubule independent of 

the nucleotide state of the motor, potentially allowing this motor to serve as a 

cytoskeletal tether rather than a canonical transport motor.  
 

 
Figure 1.3. Nucleotide-binding pocket of the kinesin motor domain 

(A) The kinesin-1 motor domain in the ATP-bound, post-power stroke state is shown as a cartoon ribbon representation (PDB 

4HNA). Secondary structure elements of the nucleotide-binding pocket are colored: α0 (cyan), PL (P-Loop, cyan), Switch1 (S1, 

blue), Switch2 (S2, dark blue).  (B) Sequence alignment of secondary elements that make up the nucleotide-binding pocket of 

human kinesin-1, -2, -3, -4, -5, and -6 families. Secondary elements colored as in (A).  
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In addition, sequence changes or point mutations in elements outside the 

nucleotide-binding pocket can also impact nucleotide binding and hydrolysis. 

Specifically, kinesin-5 motors contain a unique sequence insertion in Loop-5, which is 

located above the nucleotide-binding pocket. Loop5 is predicted to regulate ATP binding 

and closure of Swich1 and 2, interfering with coupling between NL docking and ATPase 

activity (Cochran et al., 2005; Sindelar & Downing, 2010; Yun et al., 2001). Loose 

coupling between closure of the nucleotide binding pocket and force generation creates 

a situation where the motor domain remains bound to the microtubule track for some 

time after it generates a power stroke. This may be favorable for motors to resist 

detachment from the microtubule track under high forces, consistent with Eg5’s role in 

sliding microtubules during cell division (Muretta et al., 2015; Muretta et al., 2018). 

1.4.2 Microtubule-binding footprint 
As a dimer in solution, the kinesin motor domain is bound to ADP and has a low 

affinity for the microtubule. However, collision of the motor domain with the microtubule 

results in the release of ADP and the motor domain consequently adopts a strong 

microtubule-binding state. When bound to the microtubule, α4 of the kinesin motor 

domain sits at the intradimer cleft of an αβ-tubulin dimer and Loop2, Loop7, Loop8, 

Loop11, Loop12, α5, and the N-terminus of α6 of the kinesin motor domain make 

important electrostatic interactions with α- and β-tubulin (Figure 1.4). Previous work 

comparing the sequence of elements that make up the microtubule binding interface 

across eleven kinesin family members identified a conserved set of positively charged 

residues (R161, K166, K237, R278, K281, and R284; residue number with respect to 

kinesin-1 KIF5C) that are predicted to be critical for binding to negatively charged 

residues of α- and β-tubulin. However, there are also family-specific differences in the 

electrostatic properties of the microtubule-binding interface and family-specific 

sequence insertions that change the way the motor domain binds to a microtubule. 

Collectively, this suggests that different kinesins have tuned their ability to interact with 

microtubules to best meet their functional needs in the cell [Figure 1.4; (Grant et al., 

2011)]. 
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For processive kinesins, sequence changes in elements important for binding to 

the microtubule can impact the ability for the motor to associate with the microtubule to 

start a processive run (landing rate) and also the distance a motor travels along the 

microtubule before it detaches (processivity, run length). For instance, kinesin-3 motor 

KIF1A is known for its high landing rate and superprocessivity. Sequence alignment of 

the motor domain reveals a family-specific insertion of positively charged lysine 

residues in Loop12 (K-loop) of the motor domain (Figure 1.4). Structural and biophysical 

studies reveal that the K-loop tethers the motor domain to negatively-charged glutamate  

 
Figure 1.4 Sequence alignment of microtubule-binding elements of the kinesin motor domain 

(A) The kinesin-1 motor domain in the ATP-bound, post-power stroke state is shown as a cartoon ribbon representation (PDB 

4HNA). Left image shows the neck linker docking pocket, right image is a 90o rotation to view the nucleotide-binding pocket. 

Secondary structure elements important for microtubule binding are colored in cyan.  (B) Sequence alignment of secondary 

elements important for microtubule binding of human kinesin-1, -2, -3, -4, -5, and -6 families. Secondary elements colored as in (A). 
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residues in the C-terminal tail of tubulin (E-Hook), enhancing the motor’s initial 

interaction with the microtubule (Kikkawa, Okada, & Hirokawa, 2000; Okada & 

Hirokawa, 1999, 2000; Soppina & Verhey, 2014). Furthermore, recent molecular 

dynamics simulations that compared KIF1A and KIF5C (kinesin-1) binding to tubulin find 

that KIF1A has a unique set of positively-charged residues within Loop8, Loop11, and 

α6 that make important interactions with negatively-charged residues in α- and β-tubulin 

throughout the ATPase cycle. Mutation of these residues in biophysical experiments 

has attributed these residues to be important for endowing KIF1A motors with 

superprocessivity (Nitta et al., 2004; Scarabelli et al., 2015; Soppina & Verhey, 2014; 

Uchimura et al. , 2010). A high landing rate and superprocessivity would assure that 

vesicles containing only a few KIF1A motors will associate with the microtubule to begin 

transport and once associated will ensure that cargoes will reach their destination. This 

may be critical in neurons, where cargoes are transported long distances over a short 

period of time (Hall & Hedgecock, 1991; Okada et al., 1995; Otsuka et al., 1991). 

Unlike processive kinesin motors that couple tight and weak microtubule binding 

to the nucleotide state of the motor domain, there are kinesins whose affinity to the 

microtubule is not tightly coupled to the nucleotide state of the motor domain and are 

non-processive or non-motile (Atherton et al., 2017; Cochran et al., 2009; Yue et al., 

2018). These “non-canonical” motors tend to have sequence changes within nucleotide-

binding elements that decouple nucleotide and microtubule binding (1.4.1) as well as 

striking differences in elements important for binding to the microtubule. For instance, 

kinesin-6 motor MKLP2 has a sequence insertion of positively charged residues in 

Loop12 as well as a net increase in positively charged residues that make up the 

microtubule-binding interface that collectively are predicted to allow for strong binding to 

the microtubule independent of the nucleotide state of the motor domain. Furthermore, 

large sequence insertions in Loops 2 and 8 alter the way the motor domain interacts 

with the microtubule and may be important to specify the motor’s preference for a 

subset of microtubules within the spindle (Atherton et al., 2017). Furthermore, recent 

structural studies of a non-motile kinesin-4 motor KIF7 find that the net negative charge 

of the microtubule-binding interface of the motor domain changes the way the motor 

domain interacts with the microtubule to specify motor binding to GTP tubulin at the tips 
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of microtubules (Jiang et al., 2019). However live imaging experiments characterizing 

the motor’s localization along microtubules in cells combined with mutational analysis is 

needed to confirm this prediction. Collectively, striking differences in how MKLP2 and 

KIF7 interact with the microtubule may reflect an important requirement for motors to 

serve as cytoskeletal tethers in specific cellular compartments (midbody or cilia) for 

proper signaling or cell division.  

Finally, kinesin motors can alter microtubule dynamics. Electron micrographs 

suggest that microtubule plus-ends undergoing growth or catastrophe consist of curved 

bundles of protofilaments (McIntosh et al., 2018; Pyles & Hastie, 1993; Rice, 2018). 

Thus, growth requires tubulin at the plus-end to undergo a curved to straight transition, 

a conformation compatible for incorporation into the lattice by lateral contacts with 

neighboring tubulin. However, if tubulin at the plus-end is stabilized in a curved 

conformation, tubulin is unable make lateral contacts with neighboring tubulin and 

eventually the plus end depolymerizes (Arellano-Santoyo et al., 2017; Benoit, Asenjo, & 

Sosa, 2018; Wang et al., 2016). Thus, a motor’s preference to bind (1) curved versus 

straight tubulin, and (2) tubulin polymers at the ends of microtubules versus tubulin 

incorporated into the lattice is predicted to determine whether a motor can impact 

microtubule dynamics (Chen et al., 2019). Indeed, a sequence insertion in Loop2 of 

kinesin-13 motor MCAK is important for the motor’s ability to bind tubulin curls at 

microtubule plus ends and promote depolymerization (Asenjo et al., 2013; Friel & 

Howard, 2011; Ogawa et al., 2004; Shipley et al., 2004). 

A number of recent biophysical studies have found that Loop11 of the kinesin 

motor domain, which sits at the interface of α- and β-tubulin (Figure 1.4), confers unique 

abilities for processive kinesins to recognize and/or change the conformation of tubulin 

at microtubule plus-ends. Specifically, kinesin-8 motor Kip3 walks processively and 

accumulates at the plus-ends of microtubules (Locke et al., 2017; Wang et al., 2016). At 

the microtubule plus-end, Loop11 specifies binding of Kip3 to curved tubulin to promote 

disassembly (Arellano-Santoyo et al., 2017). In contrast, α4-Loop11 of kinesin-5 motor 

Eg5 encourages straightening of curved tubulin to promote assembly at microtubule 

plus-ends (Chen et al., 2019; Chen & Hancock, 2015). This is consistent with α4-

Loop11 of kinesin-1 motor KIF5C imparting preference for the motor to bind GTP-like 
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tubulin in the microtubule lattice (straight tubulin) (Shima et al., 2018). Notably, binding 

of KIF5C to a GDP-compacted lattice can drive lattice expansion by driving 

straightening of tubulin dimers (Peet, Burroughs, & Cross, 2018; Shima et al., 2018). 

Collectively, these results suggest subtle sequence changes in Loop11 not only specify 

a motor’s preference to a specific population of tubulin but can also confer structural 

changes to tubulin and alter microtubule dynamics. We are just starting to understand 

the nuances of how kinesin motors bind to microtubules and/or free tubulin. Additional 

biophysical and structural studies are needed to assess whether this is a conserved 

strategy to shed light on functional differences across members of the kinesin 

superfamily. 

1.4.3 Elements important for stepping and force generation have subtle sequence 
changes that are predicted to impact kinesin motility  

Although the roles of the NL for specifying stepping directionality and processivity 

are better understood (1.3), the role of the NL in force generation has been 

controversial. Optical trapping studies find that single kinesin-1 motors can step against 

5-7 pN of force (Svoboda & Block, 1994). However, how conformational changes in a 

short, flexible element are responsible for robust force production was unclear 

(Astumian & Derenyi, 1999; Block, 2007; Kikkawa et al., 2001; Mather & Fox, 2006). 

Recent studies combining single-molecule assays and molecular dynamics simulations 

have provided insight into how ATP-dependent NL docking drives stepping against load 

by kinesin-1 motors. Specifically, NL docking involves distinct interactions of the two β-

strands that comprise the NL, β9 and β10 (Figure 1.5A). The first half of the NL, β9, 

pairs with another β-strand, the coverstrand (CS or β0), located at the opposite end of 

the core motor domain. The zippering of β9 of the NL with β0 of the CS forms a 2-

stranded β-sheet, termed the cover-neck bundle (CNB), to provide the power-stroke for 

force generation [Figure 1.5A, (Budaitis et al., 2019; Hwang et al., 2008; Khalil et al., 

2008)]. After CNB formation, the C-terminal segment of the NL (β10) docks along the 

surface of the core motor domain. In particular, an asparagine residue between β9 and 

β10 begins the process of docking β10 of the NL onto β7 of the motor core (Figure 

1.5A). This asparagine residue (N334) serves as a latch (the N-latch) to hold the docked 
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NL along the core motor domain and coordinate stepping under load (Budaitis et al., 

2019; Hwang et al., 2008). 

1.4.3.1 Conservation of the cover-neck bundle  
Although CNB formation has been observed structurally for other kinesin motors 

(Atherton et al., 2014; Atherton et al., 2017; Gigant et al., 2013; Hesse et al., 2013; Ren 

et al., 2018), a mechanical role in force generation has only been tested for kinesin-1 

(Budaitis et al., 2019; Hesse et al., 2013; Khalil et al., 2008). For kinesin-1, zippering of 

the CS and β9 of the NL to form the CNB is initiated by C-terminal residue (CTR) I9 of 

the CS and N-terminal residue (NTR) I327 of β9. Indeed, the CTR and NTR of all 

kinesins are hydrophobic residues that have a high propensity to form a β-sheet (Kim & 

Berg, 1993).  However, the remaining residues of the CS are highly variable in length 

and sequence (Figure 1.5B).   

Notably, point mutations to weaken CNB of kinesin-1 increased the speed and 

processivity of single motors but at the cost to generating a strong power stroke and 

transporting continuously under load (Budaitis et al., 2019; Khalil et al., 2008). Thus, it is 

tempting to predict that differences in CNB formation in other processive kinesins may 

be a strategy to fine-tune motility. It is interesting that kinesin-3 motors have the shortest 

coverstrand (4-6 residues compared to 9-10 residues for kinesin-1, Figure 1.5B) and are 

predicted to have weak, dynamic CNB formation (Ren et al., 2018). It is possible that 

kinesin-3 motors evolved to have a short coverstrand for fast processive, transport of 

presynaptic vesicles over long distances in neurons, where high force production may 

not be required (Hall & Hedgecock, 1991; Okada et al., 1995; Otsuka et al., 1991). 

Future work characterizing the behavior of kinesin-3 motors with sequence changes to 

lengthen CNB formation under load will be important to test this possibility.  

Unlike kinesin-1 motors that slow and stall under load [stall force 5-7 pN; 

(Svoboda & Block, 1994)] the kinesin-5 motor Eg5 has a tendency to abruptly detach 

from the microtubule track [detachment force 1.5 pN – 4.6 pN, (Korneev, Lakamper, & 

Schmidt, 2007; Lakamper et al., 2010; Muretta et al., 2018; Valentine et al., 2006)]. 

Particularly, Eg5 has a proline residue in β9 of the NL that is predicted to shorten CNB 

formation and therefore the motor is predicted to have a reduced power stroke and a 
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Figure 1.5 Sequence Alignment of Elements Important for Stepping and Force Generation 

(A) The kinesin-1 motor domain in the ATP-bound, post-power stroke state is shown as a cartoon ribbon representation (PDB 

4HNA). Secondary structure elements are colored: coverstrand (CS, blue), α1-β3 (cyan), β7 (cyan), Loop13 (L13, cyan), β8 (cyan), 

neck linker (NL, β9-β10, blue).  (B) Sequence alignment of elements important for stepping and force generation from human 

kinesin-1, -2, -3, -4, -5, and -6 families. Secondary elements colored as in (A). 

 

sensitivity to detaching from the microtubule under load. However, increased 

electrostatic interactions between β9 of the NL and Loop13 of the docking pocket are 

predicted to help lock β9 along the motor domain to compensate for poor CNB 

formation and enable the motor to step under moderate forces (Hesse et al., 2013). A 

number of other kinesin motors (kinesin-2, -3, -4) have a proline residue in of β9 of the 

NL (Figure 1.5B), although its impact on the force output of these motors is not clear. 

Unlike many kinesins that processively step along microtubules, many non-

processive or immotile kinesins have large N-terminal extensions (>40 residues long). 

CNB 

NL Latching 
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These N-terminal extensions are predicted to form a globular structure and bind to 

cytoskeletal elements or signaling components [kinesin-3 KIF14, (Arora et al., 2014; S. 

Rice, 2014); kinesin-5 Cut7 (Edamatsu, 2016), BimC (Stock, Chu, & Hackney, 2003); 

kinesin 6 MKLP2 (Atherton et al., 2017), KIF20B (Das et al., 2018), MKLP1 (Guan et al., 

2017); kinesin-10 NOD (Cochran et al., 2009)]. It is possible that these motors are 

unable to form a typical CNB to generate a power stroke and therefore step like kinesin-

1 motors. Unfortunately, the impact of large N-terminal extensions on motility properties 

to these motors is not clear as many structural, biochemical, and biophysical studies 

remove this region. Therefore, studies of non-truncated motors are required to 

understand the effects of N-terminal extensions on the ATPase activity and stepping 

behavior of these motors to better understand how this sequence divergence is 

functionally advantageous.     

1.4.3.2 Conservation of neck linker latching  
For kinesin-1, an asparagine residue between β9 and β10 begins the process of 

docking β10 of the NL onto β7 of the motor core (Figure 1.5). This asparagine residue 

(N334) serves as a latch (the N-latch) to hold the docked NL along the core motor 

domain and coordinate stepping under load (Budaitis et al., 2019; Hwang et al., 2008). 

The asparagine residue involved in N-latch formation is highly conserved across 

processive kinesins, suggesting that N-latch formation may be a conserved feature for 

kinesin force generation (Figure 1.5B). However, whether N-latch formation and docking 

of β10 along the core motor domain play important roles beyond kinesin-1 remains to be 

investigated.  

A number of kinesin motors lack the N-latch and/or have an extended NL (>20 

residues [orphan kinesin PAKRP2 (Gicking et al., 2019); kinesin-6 MKLP2 (Atherton et 

al., 2017), KIF20B (Das et al., 2018), MKLP1 (Guan et al., 2017); kinesin-4 KIF7 and 

KIF27 (Yue et al., 2018), kinesin-10 NOD (Cochran et al., 2009)]. Extension of the NL is 

predicted to prevent coordination of the two motor domains in a dimeric motor and 

compromise processivity. Although single-molecule studies where extension of the NL 

in transport kinesin-1, -2, and -3 families disrupts stepping (Kutys, Fricks, & Hancock, 

2010; Shastry & Hancock, 2010, 2011), kinesins with an extended NL display a 

surprising diversity in their motility properties. For example, PAKRP2 in plants has an 
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extended NL but is surprisingly highly processive as single motors. High-resolution 

tracking of PAKRP2 motility reveals that its ability to sidestep paired with the slow ATP 

hydrolysis rate of the motor head results in tight mechanochemical coupling required for 

processive motility (Gicking et al., 2019). In addition, kinesin-6 motor MKLP1 that plays 

an important role in organization of the central spindle during cytokinesis (White & 

Glotzer, 2012), has an extended NL [75 residues, (Guan et al., 2017)]. It predicted that 

the extended NL allows the motor to bind to microtubules in a two-head bound state, 

important for its cross-linking and bundling activity. In addition, the NL contains a 

binding site for a Rho-GTPase. Binding of MgcRacGAP (Rho-GTPase) is predicted to 

“zip” up the NL and allow for slow, plus-end motility (Glotzer, 2005; Nishimura & 

Yonemura, 2006). Thus, depending on the functional demands of the cell, MKLP1 may 

uniquely serve as a microtubule tethering element, a microtubule organizer, or a 

transport motor.  

Finally, kinesin-4 motor KIF7 that plays an important role in hedgehog signaling 

has an extended NL and is immotile (Yue et al., 2018). NL swapping studies suggest 

that the inability for KIF7 to move along microtubules is not due to reduced 

mechanochemical coupling between motor domains but instead a result of properties of 

the catalytic core, consistent with recent structural studies (Jiang et al., 2019; Yue et al., 

2018). Why KIF7 has a long NL and whether it serves an important role for binding to 

the microtubule in a two-headed bound state or serves as an important region for 

binding to signaling elements is not clear.  

Collectively, kinesins have unexpected strategies to achieve processive motility 

and this highlights the importance of not assuming a motor’s motility properties solely 

based on sequence comparison to the kinesin-1 motor domain.   

1.5 Limitations of in vitro, single-molecule assays 
Development of a number of in vitro motility assays [microtubule gliding assays, 

single-molecule total internal reflection fluorescence (TIRF) microscopy assays, and 

bead/optical trap transport assays; (Block et al., 1990; Funatsu et al., 1995; Howard et 

al., 1989; Sheetz & Spudich, 1983; Svoboda & Block, 1994; Vale, Schnapp, et al., 

1985)] led to remarkable insights into the mechanism of how kinesin-1 motors move 

along microtubules. Building off of our understanding of the mechanochemical cycle of 
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kinesin-1 motors, there has been extensive characterization of the motility properties of 

other kinesin families (velocity, run length, landing rate, force generation, sensitivity to 

detaching under load).  Although in vitro motility assays allow for high spatial and 

temporal tracking of motors, revolutionizing our understanding of diversity in the 

functional output of kinesin motors, this simplified approach does not always reflect the 

physiological environment of the cell that kinesins were evolved to function under. 

Therefore, how different single-molecule motility properties adapt a motor for its 

specialized functions in cells is not well understood.   

1.5.1 Single-molecule total internal reflection fluorescence (TIRF) microscopy 
assays 

In standard single-molecule TIRF assays, the motility of single motors is tracked 

along taxol-stabilized microtubules. However, in cells, the microtubule network is 

dynamic, dense, decorated by a number of different microtubule-associated proteins 

(MAPs), and often carries posttranslational modifications (Amos & Schlieper, 2005; 

Magiera & Janke, 2014; Yu, Garnham, & Roll-Mecak, 2015). Therefore, how kinesin 

motors respond to this complexity or have adopted different strategies to overcome this 

complexity to carry out their functions in cells is difficult to predict.  To address this, a 

number of groups have built complexity into in vitro assays to more closely resemble the 

environment of the cell. For instance, characterization of kinesin motility along dynamic 

microtubules, posttranslationally-modified microtubules, microtubules decorated by 

MAPs and other road blocks, or transport across microtubule intersections have 

provided substantial insights into the behavior of kinesin motors in cells. Specifically, 

kinesin-1 motors are likely to pause at roadblocks or microtubule intersections while 

kinesin-2 and -3 motors can sidestep or detach from and reattach to the microtubule 

track and continue to drive transport. In addition, kinesin motors have different 

preferences for posttranslational modifications or MAPs, which may dictate the tracks of 

microtubules they can drive transport along in cells. This is predicted to play a critical 

role dictating transport and organization in neurons (Bergman et al., 2018; Hoeprich et 

al., 2017; Kaul, Soppina, & Verhey, 2014; Lessard et al., 2019; Ross et al., 2008; 

Schneider et al., 2015).  
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Single-molecule TIRF assays are used to characterize a motor’s unloaded 

motility properties. However, in cells, motors may be tasked with driving transport of 

cargoes that require high force production. Standard optical trapping studies show that 

single kinesin-1 motors can continuously step against high forces [5-7 pN (Svoboda & 

Block, 1994)], while kinesin-2 motor KIF3AB tends to detach from the microtubule track 

when subjected to low forces [1 pN, (Andreasson et al., 2015)]. Therefore, although 

both motors are fast and processive under unloaded conditions, their ability to drive 

transport against high load is strikingly different and suggests they have different 

functional requirements for their tasks in cells.  Surprisingly, highly related kinesin-2 

motors, KIF3AB and KIF17, exhibit very different behaviors under load (Andreasson et 

al., 2015; Milic et al., 2017). Thus, despite high sequence conservation between motors 

within a family, subtle sequence changes can lead to dramatic differences in their 

motility and suggests that the behavior of a family of motors cannot be assumed based 

on biophysical properties of one motor [consistent with the diverse motility properties of 

the kinesin-4 family, (Yue et al., 2018)]. 

1.5.2 Optical trap and bead assays 
For optical trap assays, a recent study demonstrates the importance of 

considering assay geometry, bead size, and tether length when characterizing the 

behavior of kinesin motors under load. Specifically, in a standard optical trap assays, 

single kinesin motors are likely to detach from the microtubule due to interactions 

between the bead and the microtubule. This effect is more dramatic the larger the bead 

size (Pyrpassopoulos, Shuman, & Ostap, 2020; Spudich, 2011). Thus, differences in the 

size of a bead used to measure the force output of single kinesin motors may lead to 

different conclusions about the motor’s maximum force generation or sensitivity to 

detachment under load.  

Changing the geometry of the assay, such that motors only experience forces 

parallel to the microtubule (three bead optical trap assay), kinesin-1 is found to stall at 

higher force and for longer periods of time (Pyrpassopoulos et al., 2020). In cells, 

kinesin motors may be required to withstand different components of horizontal and 

vertical force depending on their microtubule-based task (intracellular transport versus 

microtubule sliding). Therefore, careful characterization of the load-bearing capacity 
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(vertical versus horizontal force components) of kinesin motors from different families 

may reveal novel behaviors that adapt them to serve specific tasks in cells.  

Lastly, in bead assays the manner that motors are attached to a bead is different 

from how motors are associated with endogenous cargo in cells. Specifically, motors 

are statically immobilized on the surface of a bead in in vitro assays. However in cells, 

motors on the surface of a vesicle can diffuse through a lipid membrane as they drive 

transport. In a multi-motor situation, theoretical studies predict that the cooperative 

behavior of a group of motors is related to whether motors are tightly (static bead 

attachment) or loosely coupled [lipid membrane, (Grover et al., 2016)].  Furthermore, in 

vitro studies demonstrate that loosely coupled kinesin-1 motors are able to drive gliding 

of microtubules at faster speeds than tightly coupled kinesin-1 motors (Grover et al., 

2016). Efforts characterizing motor transport of lipid-coated beads, lipid droplets, and 

purified cargoes from cells have provided a better understanding of this (Barak et al., 

2013; Bartsch et al., 2013; Hendricks, Goldman, & Holzbaur, 2014).  

1.5.3 Methods of preparing protein for single-molecule assays 
Motors used for in vitro assays are mass-produced and purified from mammalian 

cells, insect cells, or bacteria. Therefore, motors are made and their motility is 

characterized under conditions that may be very different than the physiological context 

they normally function under. A number of studies have found that kinesin motors 

behave similar in cells and in vitro [single molecule velocity and run lengths, (Cai et al., 

2009; Courty et al., 2006)]. However, a recent study identified a cell cycle-dependent 

posttranslational modification of the kinesin-5 motor Eg5 that changes its force output 

and cooperative behavior to slide microtubules during cell division (Muretta et al., 2018). 

Thus, whether a motor’s motility measured from in vitro assays represents the full scope 

of its activity in cells is unclear. A number of other kinesin motors are predicted to be 

posttranslationally modified and how this impacts their motility properties is not well 

understood (Bickel et al., 2017; DeBerg et al., 2013; Guse, Mishima, & Glotzer, 2005; 

Hornbeck et al., 2015; Liu et al., 2014). 

Overall, although in vitro, single molecule studies have led to greater 

understanding of the movement of motors along cytoskeletal filaments, one must be 
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careful directly assuming a motor’s function in cells based solely off of its single-

molecule motility properties.  

1.6 How does a motor’s single-molecule motility properties lead to emergent 
mechanisms of transport in cells?  

Characterization of the motility of single motors using in vitro assays has led to a 

number of properties we use to define the function of a motor, including velocity, run 

length, landing rate, force generation, and sensitivity to detachment under load.  

However, how these properties collectively contribute to distinct mechanisms of 

transport in cells is unclear. Early electron microscopy studies revealed that vesicles in 

a cell are tethered to a microtubule by many cargo-microtubule cross bridges. These 

unknown cross-bridges were predicted to be cytoskeletal motors (Ashkin et al., 1990; 

Hirokawa et al., 1989; Miller & Lasek, 1985), suggesting that motors work in teams to 

drive transport. More recent work carefully characterized populations of motors on 

membrane-bound cargoes in cells and find that they have between 1-7 associated 

kinesin, myosin, and/or dynein motors. For example, lipid droplets in Drosophila 

embryos have 1-2 kinesin-1 motors (Shubeita et al., 2008), endosomes in Dictyostelium 

have 4-8 dynein motors and one kinesin motor (Soppina et al., 2009), neuronal vesicles 

in mice have 1-5 dynein motors and 1-4 kinesin-1 or -2 motors (Hendricks et al., 2010), 

and early endosomes in Ustilago maydis have 1 dynein motor and 4-5 kinesin-3 motors 

(Schuster et al., 2011). Diversity in the number and classes of motors associated with a 

cargo has motivated groups to address how teams of motors coordinate their activities 

and how is this is functionally advantageous in cells.  

As expected, increasing the number of motors associated with a cargo permits 

transport over longer distances compared to transport driven by single motors.  

Specifically, if one motor disengages from the track as a result of a MAP, microtubule 

crossing, or roadblock in the crowded cellular environment, other cargo-associated 

motors can replace this motor and continue to drive transport (Beeg et al., 2008; Coy et 

al., 1999; Klumpp & Lipowsky, 2005; Kunwar et al., 2008; Lakadamyali, 2014; Mallik et 

al., 2005; Seitz & Surrey, 2006). However, a number of studies characterizing transport 

driven by groups of motors that are artificially linked by protein or DNA scaffolds or by 
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teams of motors coupled through a lipid membrane in cells have revealed surprising 

emergent transport behaviors by teams of motors.   

1.6.1 A motor’s processivity as a single motor does not always predict its ability 
to drive transport as a team in cells. 

All kinesin motors form stable dimers or dimerize at the surface of a cargo 

(Hirokawa et al., 2009; Huo et al., 2012; Soppina et al., 2014; Tomishige, Klopfenstein, 

& Vale, 2002) leading to the assumption that the dimerization of two motor domains to 

form a motor capable of stepping processively is a critical parameter to drive transport 

at a low copy number in cells.  Indeed, kinesin-1, -2, and -3 families that drive transport 

of membrane-bound vesicles, protein complexes, or mRNA in cells are processive 

motors. Notably, kinesin-3 motor KIF1A is a highly processive motor with a high-

microtubule-landing rate (Soppina & Verhey, 2014). In neurons, KIF1A motors are 

tasked with transporting presynaptic vesicles to axons terminals, hundreds of microns 

away from the cell body, within a matter of minutes (Hall & Hedgecock, 1991; Okada et 

al., 1995; Otsuka et al., 1991). Therefore, a high microtubule-landing rate will guarantee 

that vesicles containing only a few motors will engage with the track to begin transport. 

Its enhanced processivity will ensure that cargoes will reach their destination once 

engaged with the track.  

However, a number of dimeric kinesin motors are non-processive under single-

molecule conditions, taking only one or a few steps before detaching from the 

microtubule track. Therefore, how these motors contribute to intracellular transport and 

whether they can drive directed movement of cargo in cells is unclear. Furuta et al. 

found that as single motors, minus-end directed kinesin-14 Ncd is nonprocessive. 

However, Ncd motors linked as a team using an artificial DNA-scaffold were able to 

generate force and move longer distances along microtubules (Furuta et al., 2008; 

Furuta et al., 2013). Thus, despite uncoordinated foot-over-foot stepping as single 

motors, as a team, multiple Ncd motors can bind to the microtubule to keep cargo 

tethered to the cytoskeletal track as motors stochastically step forward (Hackney, 1996; 

Leibler & Huse, 1993). Moreover, there are a number of other cytoskeletal motors that 

are non-processive, including myosin-2 and flagellar dynein motors, which are also 

required to work as teams to drive cytoskeletal-based movement.  
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There are a number of myosin motors that function as a monomer in cells. 

Surprisingly, teams of monomeric myosin motors can drive cargo transport at similar 

speeds as dimeric myosin motors in cells (Sivaramakrishnan & Spudich, 2009). 

Theoretical studies predict that monomeric motors can act as “rowers,” where collective 

transient interactions with the cytoskeletal track can generate forward directed 

movement (Hackney, 1996; Leibler & Huse, 1993). Recent work extends this model to 

kinesins, where teams of monomeric kinesin motors can drive transport of peroxisomes 

in cells (Schimert et al., 2019). 

Why has the cell evolved a strategy for non-processive dimers or monomeric 

motors to drive movement in cells? Although non-processive motors may seem like a 

disadvantage, it is possible that grouping non-processive motors together may provide 

sensitive regulation of transport. Controlling the number of motors associated with a 

cargo may impact the speeds and distances a cargo is transported or sensitize a cargo 

to switch direction of transport by modulating the force opposing motors must compete 

against.   

1.6.2 A motor’s sensitivity to slowing down and stalling versus abruptly 
detaching from the microtubule track is an important parameter dictating 
transport in cells.  

Biophysical and computational studies predict that a motor’s response to load is 

a key parameter that underlies emergent mechanisms of microtubule-based transport in 

cells (Arpăg et al, 2014; Norris et al., 2014; Ohashi et al., 2019). This is consistent with 

previous theoretical studies that predict that a motor’s sensitivity to slowing down versus 

detaching under force is an important determinant for whether motors are able to 

productively cooperate (Driver et al., 2011; Jamison, Driver, & Diehl, 2012; Uppulury et 

al., 2012). Below I will discuss three scenarios where differences in the composition of 

teams of motors on a cargo can lead to differences in transport as a result of their 

behaviors under force.  

1.6.2.1 Teams of motors with the same mechanical output 
 Numerous groups have found that the motility of single kinesin-1 motors is 

largely insensitive to load, and at high forces it slows and eventually stalls while 
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remaining bound to the microtubule track (Budaitis et al., 2019; Khalil et al., 2008; 

Svoboda & Block, 1994). In a multi-motor scenario where two kinesin motors are 

attached to a bead, optical trapping studies find that motors do not generate additive 

forces if they are transporting against loads lower than their stall force. However their 

forces can be additive when subjected to loads higher than their stall force (Bieling et 

al., 2008; Hunt, Gittes, & Howard, 1994; Jamison et al., 2010; Vershinin et al., 2007). 

Therefore, in cells, kinesin-1 motors are predicted to work independently of each other 

when driving low-load transport. Indeed, varying the number of kinesin-1 motors at the 

surface of peroxisomes does not affect transport to the cell periphery (Efremov et al., 

2014). This suggests that kinesin-1 motors may have evolved to work at limiting 

concentrations, to drive robust transport in cells.  

Unlike kinesin-1, kinesin-3 family member KIF1A has a tendency to detach from 

the microtubule track when subjected to low loads (Arpăg et al., 2014; Norris et al., 

2014; Tomishige et al., 2002). Teams of KIF1A motors drive fast, long-range transport 

of presynaptic vesicles in neurons (Hall & Hedgecock, 1991; Okada et al., 1995; Otsuka 

et al., 1991). As presynaptic vesicles are small membrane-bound organelles (diameter ~ 

50 nm), it is likely that teams of KIF1A motors do not have to collectively generate large 

forces to drive transport (Efremov et al., 2014). Furthermore, as a team of motors drive 

transport, individual motors experience assistive (pulling) and resistive (pushing) forces 

as neighboring motors step (Nelson, Trybus, & Warshaw, 2014). Under this low-load 

transport regime, it may be advantageous for KIF1A motors to abruptly detach. 

Specifically, if motors experiencing higher forces at the leading edge were to slow or 

stall, the overall speed of transport may be compromised. Instead, additional cargo-

associated KIF1A motors can continue to drive transport, replacing a recently detached 

motor without a cost to speed. An increased detachment frequency of individual motors 

may also help navigate obstacles, allowing for fast, continuous transport. Collectively, 

this mechanism of transport may be critical in highly polarized cells like neurons, when 

KIF1A motors are required to drive transport over hundreds of microns on the time scale 

of a few minutes (Hall & Hedgecock, 1991; Okada et al., 1995; Otsuka et al., 1991).  

Conversely, myosin Va motors slow and stall under low force [stall force 1 pN, 

(Purcell, Sweeney, & Spudich, 2005; Uemura et al., 2004)]. Thus, myosin Va motors will 
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slow and remain bound to actin filaments even under minimal loads creating a situation 

where actin-bound motors can share load. Efremov et al. found that increasing the 

concentration of myosin Va motors at the surface of a peroxisome leads to higher force 

production and faster transport speeds as a result of coopertivity between motors 

(Efremov et al., 2014). Thus, myosin Va motors are likely required to work as a team in 

cells, where regulation of the number of associated myosin Va motors on a cargo can 

lead to large differences in transport speed and force production, a strategy that would 

allow tight regulation of cargo distribution in cells.   

1.6.2.2 Teams of motors with the same directionality but different mechanical 
output 

In cells, teams of kinesin motors with different mechanical outputs often drive 

transport of membrane-bound cargoes. As teams driving transport, individual kinesin 

motors experience assistive (pulling) and resistive (pushing) forces as neighboring 

motors step. In gliding assays of mixed populations of kinesin motors, kinesins display 

different sensitivities to detaching under load [least sensitive Kinesin-1 > 7 > 5 > 2 > 3; 

(Arpăg et al., 2014)]. Therefore, kinesins that resist detachment from the microtubule 

track can dominate transport driven by mixed populations of motors (Arpăg et al., 2014; 

Norris et al., 2014; Ohashi et al., 2019) and lead to distinct mechanisms of transport in 

cells.  

Teams of kinesin-1 and -3 motors drive the transport of vesicles in neurons, 

however the transport speed of vesicles is most comparable to the speed of kinesin-1 

motors. Knock out of kinesin-1 in neurons results in an increase in transport speeds of 

vesicles, consistent with the prediction that the sensitivity for kinesin-3 motors to detach 

from the microtubule track results in kinesin-1 motors dominating transport of vesicles 

that contain both kinesin-1 and -3 motors (Arpăg et al., 2014; Encalada et al., 2011; 

Norris et al., 2014). Why cells use a strategy of two plus-end directed kinesins with 

different motility characteristics to drive transport is not clear. One possibility is that 

different kinesin motors have different preferences for microtubules with 

posttranslational modifications or associated MAPs, and therefore tunes the types of 

tracks a cargo is transported along to ensure specific subcellular localizations in 

neurons. Indeed, kinesin-1, -2, and -3 motors have different abilities to walk along 
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microtubules decorated with tau and MAP2 (Chaudhary et al., 2019; Dixit et al., 2008; 

Monroy et al., 2018) and different preferences and/or motility properties when walking 

along acetylated or polyglutamylated microtubules (Cai et al., 2009; Kaul et al., 2014; 

Lessard et al., 2019; Monroy et al., 2018). Collectively this may highlight a combination 

of strategies that the cell utilizes to tightly control transport and subcellular localization 

of contents.  

In addition, heterodimeric kinesin-2 motor KIF3AB and homodimeric kinesin-2 

motor KIF17 motor transport IFT particles in cilia. Despite high sequence conservation, 

they behave differently under single molecule conditions. KIF3AB motors are slow and 

sensitive to detaching from the microtubule track under low loads [detachment force 1 

pN, (Andreasson et al., 2015)], while KIF17 motors are fast and less likely to detach 

from the microtubule track [stall force 6 pN, (Milic et al., 2017)]. Whether these motors 

cooperate and how their cooperativity is important to drive IFT transport has been an 

interest of many groups (Evans et al., 2007; Milic et al., 2017; Ou et al., 2005; Pan et 

al., 2006; Prevo et al., 2015; Snow et al., 2004). In worms, once IFT trains are localized 

in the cilium, KIF3AB motors drive slow IFT transport along doublet microtubules. 

However, once IFT trains reach singlet microtubules, KIF17 motors are predicted to 

dominate to drive fast transport while the few remaining associated KIF3AB motors are 

likely to detach from the microtubule track and contribute little to transport (Evans et al., 

2007; Milic et al., 2017; Ou et al., 2005; Pan et al., 2006; Prevo et al., 2015; Snow et al., 

2004). The functional advantage for this mechanism of transport and why this is not a 

conserved mechanism of IFT transport in other organisms is not clear. 

1.6.2.3 Teams of motors with different directionalities 
Live-cell imaging experiments reveals that many intracellular transport events 

exhibit dynamic back-and-forth movements along microtubules, where cargo 

localization is specified by the overall net directionality (Ally et al., 2009; Gross, 2003; 

Welte, 2004). Indeed, many membrane-bound cargo in cells have associated dynein 

and kinesin motors (Hendricks et al., 2010; Schuster et al., 2011; Shubeita et al., 2008; 

Soppina et al., 2009), however what dictates net directionality of transport has been 

controversial.  
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One possibility is that both minus-end and plus-end cargo-associated motors are 

active, such that they are engaged in a tug-of-war. In this scenario, the direction of 

movement is dictated by a motor’s ability to remain bound to the microtubule track and 

to generate high force. Kinesin-1 and fully active dynein (dynein-dynactin-BicD2, DDB) 

have equivalent force outputs (Belyy et al., 2016) and therefore the number of active 

kinesin-1 or DDB motors engaged in transport are expected to determine the direction 

of transport (Ohashi et al., 2019). Conversely, kinesin-2 motors are sensitive to even 

small opposing loads [1 pN, (Andreasson et al., 2015; Arpăg et al., 2014)], thus many 

kinesin-2 motors are required to match the force output of one DDB (Andreasson et al., 

2015; Arpăg et al., 2014; Ohashi et al., 2019). Furthermore, recent work has identified 

proteins that bind to dynein and modulates its behavior under force. For instance, Lis1 

binds to dynein and enhances its ability to remain attached to the microtubule track 

under load (McKenney et al., 2010). Overall, different combinations of dynein and 

kinesin motors that differ in their force generation or sensitivity to detaching from the 

microtubule track are predicted to finely tune directionality and distribution of cellular 

contents. 

Another instance where the balance of forces between opposing cytoskeletal 

motors is important is in the spindle during cell division. A number of plus-end and 

minus-end microtubule-based motors play an important role in establishing and 

maintaining spindle architecture to ensure proper segregation of chromosomes (Dynein, 

Kinesin-4, -5, -6, -7, -8, -10, -12, -13, and -14 families; Titus and Wadsworth, 2012). 

Inhibiting the activity of Eg5 leads to collapse of the bipolar spindle (Kapoor et al., 

2000), highlighting its important contribution to balance forces in the spindle. Although 

single Eg5 motors are sensitive to slowing down and detaching under moderate forces, 

as a team, the ability for Eg5 motors to slow in response to load leads to a situation 

where motors share load (Kunwar et al., 2008; Mallik et al., 2005). This load-sharing 

behavior is predicted to allow ensembles of Eg5 motors to serve as a breaking force 

during separation of centrosomes or to resist opposing forces generated by dynein 

motors in the spindle during cell division. Furthermore, a cell cycle-specific 

posttranslational modification of α2 in the Eg5 motor domain has allosteric effects on 

elements important for coupling ATPase activity and force generation, resulting in 
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motors that are more likely to stall, leading to even better opposition to force (Muretta et 

al., 2018).  

Although many multi-motor in vitro experiments can recapitulate bidirectional 

motion in cells (Blehm et al., 2013; Hendricks et al., 2010; Kapitein et al., 2010; Soppina 

et al., 2009), knockout or inhibition of kinesin or dynein motors found that impairing 

transport in one direction also impaired transport in the opposite direction. Therefore, 

another possible way to control net directionality of transport is by regulating the 

activities or abilities of cargo-associated motors to engage with the cytoskeleton and 

drive transport (Barkus et al., 2008; Brady et al., 1982; Encalada et al., 2011; Goldberg, 

1982; Martin et al., 1999; Waterman-Storer et al., 1997). Indeed, there are many cargo-

adaptor proteins and motor-binding proteins that can specifically impact the activity of 

kinesin and dynein motors (Blasius et al., 2007; Egan, Tan, & Reck-Peterson, 2012; 

Hammond et al., 2009; Xu et al., 2012; Yamada, Hanada, & Chishti, 2007). It is likely 

that the cell has evolved to use both strategies to fine-tune transport.  

Collectively a quantitative understanding of both a motor’s single-molecule 

motility properties and their collective behavior in cells is critical to better understand 

how different kinesin motors across the kinesin superfamily are functionally distinct from 

one another.  

1.7 References 
Akhmanova, A., & Hammer, J. A., 3rd. (2010). Linking molecular motors to membrane 

cargo. Curr Opin Cell Biol, 22(4), 479-487. doi:10.1016/j.ceb.2010.04.008 

Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T., & Gilbert, S. P. (1982). Fast axonal 

transport in squid giant axon. Science, 218(4577), 1127-1129. 

doi:10.1126/science.6183744 

Ally, S., Larson, A. G., Barlan, K., Rice, S. E., & Gelfand, V. I. (2009). Opposite-polarity 

motors activate one another to trigger cargo transport in live cells. J Cell Biol, 

187(7), 1071-1082. doi:10.1083/jcb.200908075 

Amos, L. A., & Schlieper, D. (2005). Microtubules and maps. Adv Protein Chem, 71, 

257-298. doi:10.1016/S0065-3233(04)71007-4 



 32 

Andreasson, J. O., Shastry, S., Hancock, W. O., & Block, S. M. (2015). The 

Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load. Curr Biol, 

25(9), 1166-1175. doi:10.1016/j.cub.2015.03.013 

Arellano-Santoyo, H., Geyer, E. A., Stokasimov, E., Chen, G. Y., Su, X., Hancock, W., 

Rice, L. M., Pellman, D. (2017). A Tubulin Binding Switch Underlies Kip3/Kinesin-

8 Depolymerase Activity. Dev Cell, 42(1), 37-51 e38. 

doi:10.1016/j.devcel.2017.06.011 

Arora, K., Talje, L., Asenjo, A. B., Andersen, P., Atchia, K., Joshi, M., Sosa, H., 

Allingham, J. S., Kwok, B. H. (2014). KIF14 binds tightly to microtubules and 

adopts a rigor-like conformation. J Mol Biol, 426(17), 2997-3015. 

doi:10.1016/j.jmb.2014.05.030 

Arpăg, G., Shastry, S., Hancock, W. O., & Tuzel, E. (2014). Transport by populations of 

fast and slow kinesins uncovers novel family-dependent motor characteristics 

important for in vivo function. Biophys J, 107(8), 1896-1904. 

doi:10.1016/j.bpj.2014.09.009 

Asbury, C. L., Fehr, A. N., & Block, S. M. (2003). Kinesin moves by an asymmetric 

hand-over-hand mechanism. Science, 302(5653), 2130-2134. 

doi:10.1126/science.1092985 

Asenjo, A. B., Chatterjee, C., Tan, D., DePaoli, V., Rice, W. J., Diaz-Avalos, R., 

Silvestry, M., Sosa, H. (2013). Structural model for tubulin recognition and 

deformation by kinesin-13 microtubule depolymerases. Cell Rep, 3(3), 759-768. 

doi:10.1016/j.celrep.2013.01.030 

Asenjo, A. B., Weinberg, Y., & Sosa, H. (2006). Nucleotide binding and hydrolysis 

induces a disorder-order transition in the kinesin neck-linker region. Nat Struct 

Mol Biol, 13(7), 648-654. doi:10.1038/nsmb1109 

Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a single-

beam gradient force optical trap for dielectric particles. Opt Lett, 11(5), 288. 

doi:10.1364/ol.11.000288 

Ashkin, A., Schutze, K., Dziedzic, J. M., Euteneuer, U., & Schliwa, M. (1990). Force 

generation of organelle transport measured in vivo by an infrared laser trap. 

Nature, 348(6299), 346-348. doi:10.1038/348346a0 



 33 

Astumian, R. D., & Derenyi, I. (1999). A chemically reversible Brownian motor: 

application to kinesin and Ncd. Biophys J, 77(2), 993-1002. doi:10.1016/S0006-

3495(99)76950-X 

Atherton, J., Farabella, I., Yu, I. M., Rosenfeld, S. S., Houdusse, A., Topf, M., & Moores, 

C. A. (2014). Conserved mechanisms of microtubule-stimulated ADP release, 

ATP binding, and force generation in transport kinesins. Elife, 3, e03680. 

doi:10.7554/eLife.03680 

Atherton, J., Yu, I. M., Cook, A., Muretta, J. M., Joseph, A., Major, J., Sourigues, Y., 

Clause, J., Topf, M., Rosenfeld, S. S., Houdusse, A., Moores, C. A. (2017). The 

divergent mitotic kinesin MKLP2 exhibits atypical structure and 

mechanochemistry. Elife, 6. doi:10.7554/eLife.27793 

Auerbach, S. D., & Johnson, K. A. (2005). Kinetic effects of kinesin switch I and switch II 

mutations. J Biol Chem, 280(44), 37061-37068. doi:10.1074/jbc.M502985200 

Axelrod, D. (1981). Cell-substrate contacts illuminated by total internal reflection 

fluorescence. J Cell Biol, 89(1), 141-145. doi:10.1083/jcb.89.1.141 

Barak, P., Rai, A., Rai, P., & Mallik, R. (2013). Quantitative optical trapping on single 

organelles in cell extract. Nat Methods, 10(1), 68-70. doi:10.1038/nmeth.2287 

Barkus, R. V., Klyachko, O., Horiuchi, D., Dickson, B. J., & Saxton, W. M. (2008). 

Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport 

that facilitates retrograde transport of neuropeptides. Mol Biol Cell, 19(1), 274-

283. doi:10.1091/mbc.e07-03-0261 

Bartsch, T. F., Longoria, R. A., Florin, E. L., & Shubeita, G. T. (2013). Lipid droplets 

purified from Drosophila embryos as an endogenous handle for precise motor 

transport measurements. Biophys J, 105(5), 1182-1191. 

doi:10.1016/j.bpj.2013.07.026 

Beeg, J., Klumpp, S., Dimova, R., Gracia, R. S., Unger, E., & Lipowsky, R. (2008). 

Transport of beads by several kinesin motors. Biophys J, 94(2), 532-541. 

doi:10.1529/biophysj.106.097881 

Belyy, V., Schlager, M. A., Foster, H., Reimer, A. E., Carter, A. P., & Yildiz, A. (2016). 

The mammalian dynein-dynactin complex is a strong opponent to kinesin in a 

tug-of-war competition. Nat Cell Biol, 18(9), 1018-1024. doi:10.1038/ncb3393 



 34 

Benoit, M., Asenjo, A. B., & Sosa, H. (2018). Cryo-EM reveals the structural basis of 

microtubule depolymerization by kinesin-13s. Nat Commun, 9(1), 1662. 

doi:10.1038/s41467-018-04044-8 

Bergman, J. P., Bovyn, M. J., Doval, F. F., Sharma, A., Gudheti, M. V., Gross, S. P., 

Allard, J. F., Vershinin, M. D. (2018). Cargo navigation across 3D microtubule 

intersections. Proc Natl Acad Sci U S A, 115(3), 537-542. 

doi:10.1073/pnas.1707936115 

Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H., & Long, R. M. 

(1998). Localization of ASH1 mRNA particles in living yeast. Mol Cell, 2(4), 437-

445. doi:10.1016/s1097-2765(00)80143-4 

Bickel, K. G., Mann, B. J., Waitzman, J. S., Poor, T. A., Rice, S. E., & Wadsworth, P. 

(2017). Src family kinase phosphorylation of the motor domain of the human 

kinesin-5, Eg5. Cytoskeleton (Hoboken), 74(9), 317-330. doi:10.1002/cm.21380 

Bieling, P., Telley, I. A., Piehler, J., & Surrey, T. (2008). Processive kinesins require 

loose mechanical coupling for efficient collective motility. EMBO Rep, 9(11), 

1121-1127. doi:10.1038/embor.2008.169 

Blasius, T. L., Cai, D., Jih, G. T., Toret, C. P., & Verhey, K. J. (2007). Two binding 

partners cooperate to activate the molecular motor Kinesin-1. J Cell Biol, 176(1), 

11-17. doi:10.1083/jcb.200605099 

Blehm, B. H., Schroer, T. A., Trybus, K. M., Chemla, Y. R., & Selvin, P. R. (2013). In 

vivo optical trapping indicates kinesin's stall force is reduced by dynein during 

intracellular transport. Proc Natl Acad Sci U S A, 110(9), 3381-3386. 

doi:10.1073/pnas.1219961110 

Block, S. M. (2007). Kinesin motor mechanics: binding, stepping, tracking, gating, and 

limping. Biophys J, 92(9), 2986-2995. doi:10.1529/biophysj.106.100677 

Block, S. M., Goldstein, L. S., & Schnapp, B. J. (1990). Bead movement by single 

kinesin molecules studied with optical tweezers. Nature, 348(6299), 348-352. 

doi:10.1038/348348a0 

Brady, S. T., Lasek, R. J., & Allen, R. D. (1982). Fast axonal transport in extruded 

axoplasm from squid giant axon. Science, 218(4577), 1129-1131. 

doi:10.1126/science.6183745 



 35 

Brendza, K. M., Rose, D. J., Gilbert, S. P., & Saxton, W. M. (1999). Lethal kinesin 

mutations reveal amino acids important for ATPase activation and structural 

coupling. J Biol Chem, 274(44), 31506-31514. doi:10.1074/jbc.274.44.31506 

Budaitis, B. G., Jariwala, S., Reinemann, D. N., Schimert, K. I., Scarabelli, G., Grant, B. 

J., Sept, D., Lang, M. J., Verhey, K. J. (2019). Neck linker docking is critical for 

Kinesin-1 force generation in cells but at a cost to motor speed and processivity. 

Elife, 8. doi:10.7554/eLife.44146 

Cai, D., Hoppe, A. D., Swanson, J. A., & Verhey, K. J. (2007). Kinesin-1 structural 

organization and conformational changes revealed by FRET stoichiometry in live 

cells. J Cell Biol, 176(1), 51-63. doi:10.1083/jcb.200605097 

Cai, D., McEwen, D. P., Martens, J. R., Meyhofer, E., & Verhey, K. J. (2009). Single 

molecule imaging reveals differences in microtubule track selection between 

Kinesin motors. PLoS Biol, 7(10), e1000216. doi:10.1371/journal.pbio.1000216 

Cao, L., Cantos-Fernandes, S., & Gigant, B. (2017). The structural switch of nucleotide-

free kinesin. Sci Rep, 7, 42558. doi:10.1038/srep42558 

Cao, L., Wang, W., Jiang, Q., Wang, C., Knossow, M., & Gigant, B. (2014). The 

structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement. 

Nat Commun, 5, 5364. doi:10.1038/ncomms6364 

Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L., & Vale, R. D. (1997). The 

directional preference of kinesin motors is specified by an element outside of the 

motor catalytic domain. Cell, 90(5), 959-966. doi:10.1016/s0092-8674(00)80360-

8 

Case, R. B., Rice, S., Hart, C. L., Ly, B., & Vale, R. D. (2000). Role of the kinesin neck 

linker and catalytic core in microtubule-based motility. Curr Biol, 10(3), 157-160. 

doi:10.1016/s0960-9822(00)00316-x 

Catlett, N. L., Duex, J. E., Tang, F., & Weisman, L. S. (2000). Two distinct regions in a 

yeast myosin-V tail domain are required for the movement of different cargoes. J 

Cell Biol, 150(3), 513-526. doi:10.1083/jcb.150.3.513 

Chaudhary, A. R., Lu, H., Krementsova, E. B., Bookwalter, C. S., Trybus, K. M., & 

Hendricks, A. G. (2019). MAP7 regulates organelle transport by recruiting 



 36 

kinesin-1 to microtubules. J Biol Chem, 294(26), 10160-10171. 

doi:10.1074/jbc.RA119.008052 

Chen, G. Y., Cleary, J. M., Asenjo, A. B., Chen, Y., Mascaro, J. A., Arginteanu, D. F. J., 

. . . Hancock, W. O. (2019). Kinesin-5 Promotes Microtubule Nucleation and 

Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin. Curr Biol, 

29(14), 2259-2269 e2254. doi:10.1016/j.cub.2019.05.075 

Chen, Y., & Hancock, W. O. (2015). Kinesin-5 is a microtubule polymerase. Nat 

Commun, 6, 8160. doi:10.1038/ncomms9160 

Clancy, B. E., Behnke-Parks, W. M., Andreasson, J. O., Rosenfeld, S. S., & Block, S. M. 

(2011). A universal pathway for kinesin stepping. Nat Struct Mol Biol, 18(9), 

1020-1027. doi:10.1038/nsmb.2104 

Cochran, J. C., Gatial, J. E., 3rd, Kapoor, T. M., & Gilbert, S. P. (2005). Monastrol 

inhibition of the mitotic kinesin Eg5. J Biol Chem, 280(13), 12658-12667. 

doi:10.1074/jbc.M413140200 

Cochran, J. C., Sindelar, C. V., Mulko, N. K., Collins, K. A., Kong, S. E., Hawley, R. S., 

& Kull, F. J. (2009). ATPase cycle of the nonmotile kinesin NOD allows 

microtubule end tracking and drives chromosome movement. Cell, 136(1), 110-

122. doi:10.1016/j.cell.2008.11.048 

Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G., & Dahan, M. (2006). Tracking 

individual kinesin motors in living cells using single quantum-dot imaging. Nano 

Lett, 6(7), 1491-1495. doi:10.1021/nl060921t 

Coy, D. L., Wagenbach, M., & Howard, J. (1999). Kinesin takes one 8-nm step for each 

ATP that it hydrolyzes. J Biol Chem, 274(6), 3667-3671. 

doi:10.1074/jbc.274.6.3667 

Craciun, G., Brown, A., & Friedman, A. (2005). A dynamical system model of 

neurofilament transport in axons. J Theor Biol, 237(3), 316-322. 

doi:10.1016/j.jtbi.2005.04.018 

Das, A., Cesario, J., Hinman, A. M., Jang, J. K., & McKim, K. S. (2018). Kinesin 6 

Regulation in Drosophila Female Meiosis by the Non-conserved N- and C- 

Terminal Domains. G3 (Bethesda), 8(5), 1555-1569. doi:10.1534/g3.117.300571 



 37 

DeBerg, H. A., Blehm, B. H., Sheung, J., Thompson, A. R., Bookwalter, C. S., Torabi, S. 

F., Schroer, T. A., Berger, C. L., Lu, Y., Trybus, K. M., Selvin, P. R. (2013). Motor 

domain phosphorylation modulates kinesin-1 transport. J Biol Chem, 288(45), 

32612-32621. doi:10.1074/jbc.M113.515510 

Dixit, R., Ross, J. L., Goldman, Y. E., & Holzbaur, E. L. (2008). Differential regulation of 

dynein and kinesin motor proteins by tau. Science, 319(5866), 1086-1089. 

doi:10.1126/science.1152993 

Dogan, M. Y., Can, S., Cleary, F. B., Purde, V., & Yildiz, A. (2015). Kinesin's front head 

is gated by the backward orientation of its neck linker. Cell Rep, 10(12), 1967-

1973. doi:10.1016/j.celrep.2015.02.061 

Driver, J. W., Jamison, D. K., Uppulury, K., Rogers, A. R., Kolomeisky, A. B., & Diehl, 

M. R. (2011). Productive cooperation among processive motors depends 

inversely on their mechanochemical efficiency. Biophys J, 101(2), 386-395. 

doi:10.1016/j.bpj.2011.05.067 

Edamatsu, M. (2016). Molecular properties of the N-terminal extension of the fission 

yeast kinesin-5, Cut7. Genet Mol Res, 15(1). doi:10.4238/gmr.15017799 

Efremov, A. K., Radhakrishnan, A., Tsao, D. S., Bookwalter, C. S., Trybus, K. M., & 

Diehl, M. R. (2014). Delineating cooperative responses of processive motors in 

living cells. Proc Natl Acad Sci U S A, 111(3), E334-343. 

doi:10.1073/pnas.1313569111 

Egan, M. J., Tan, K., & Reck-Peterson, S. L. (2012). Lis1 is an initiation factor for 

dynein-driven organelle transport. J Cell Biol, 197(7), 971-982. 

doi:10.1083/jcb.201112101 

Encalada, S. E., Szpankowski, L., Xia, C. H., & Goldstein, L. S. (2011). Stable kinesin 

and dynein assemblies drive the axonal transport of mammalian prion protein 

vesicles. Cell, 144(4), 551-565. doi:10.1016/j.cell.2011.01.021 

Erickson, H. P., & O'Brien, E. T. (1992). Microtubule dynamic instability and GTP 

hydrolysis. Annu Rev Biophys Biomol Struct, 21, 145-166. 

doi:10.1146/annurev.bb.21.060192.001045 



 38 

Evans, B. A., Shields, A. R., Carroll, R. L., Washburn, S., Falvo, M. R., & Superfine, R. 

(2007). Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett, 

7(5), 1428-1434. doi:10.1021/nl070190c 

Fletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature, 

463(7280), 485-492. doi:10.1038/nature08908 

Friedman, D. S., & Vale, R. D. (1999). Single-molecule analysis of kinesin motility 

reveals regulation by the cargo-binding tail domain. Nat Cell Biol, 1(5), 293-297. 

doi:10.1038/13008 

Friel, C. T., & Howard, J. (2011). The kinesin-13 MCAK has an unconventional ATPase 

cycle adapted for microtubule depolymerization. EMBO J, 30(19), 3928-3939. 

doi:10.1038/emboj.2011.290 

Fulton, A. B. (1982). How crowded is the cytoplasm? Cell, 30(2), 345-347. 

doi:10.1016/0092-8674(82)90231-8 

Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., & Yanagida, T. (1995). Imaging of 

single fluorescent molecules and individual ATP turnovers by single myosin 

molecules in aqueous solution. Nature, 374(6522), 555-559. 

doi:10.1038/374555a0 

Furuta, K., Edamatsu, M., Maeda, Y., & Toyoshima, Y. Y. (2008). Diffusion and directed 

movement: in vitro motile properties of fission yeast kinesin-14 Pkl1. J Biol 

Chem, 283(52), 36465-36473. doi:10.1074/jbc.M803730200 

Furuta, K., Furuta, A., Toyoshima, Y. Y., Amino, M., Oiwa, K., & Kojima, H. (2013). 

Measuring collective transport by defined numbers of processive and 

nonprocessive kinesin motors. Proc Natl Acad Sci U S A, 110(2), 501-506. 

doi:10.1073/pnas.1201390110 

Geeves, M. A., & Holmes, K. C. (1999). Structural mechanism of muscle contraction. 

Annu Rev Biochem, 68, 687-728. doi:10.1146/annurev.biochem.68.1.687 

Gicking, A. M., Wang, P., Liu, C., Mickolajczyk, K. J., Guo, L., Hancock, W. O., & Qiu, 

W. (2019). The Orphan Kinesin PAKRP2 Achieves Processive Motility via a 

Noncanonical Stepping Mechanism. Biophys J, 116(7), 1270-1281. 

doi:10.1016/j.bpj.2019.02.019 



 39 

Gigant, B., Wang, W., Dreier, B., Jiang, Q., Pecqueur, L., Pluckthun, A., Wang, C.,  

Knossow, M. (2013). Structure of a kinesin-tubulin complex and implications for 

kinesin motility. Nat Struct Mol Biol, 20(8), 1001-1007. doi:10.1038/nsmb.2624 

Glotzer, M. (2005). The molecular requirements for cytokinesis. Science, 307(5716), 

1735-1739. doi:10.1126/science.1096896 

Goldberg, D. J. (1982). Microinjection into an identified axon to study the mechanism of 

fast axonal transport. Proc Natl Acad Sci U S A, 79(15), 4818-4822. 

doi:10.1073/pnas.79.15.4818 

Grant, B. J., Gheorghe, D. M., Zheng, W., Alonso, M., Huber, G., Dlugosz, M., 

McCammon, J. A., Cross, R. A. (2011). Electrostatically biased binding of kinesin 

to microtubules. PLoS Biol, 9(11), e1001207. doi:10.1371/journal.pbio.1001207 

Gross, S. P. (2003). Dynactin: coordinating motors with opposite inclinations. Curr Biol, 

13(8), R320-322.  

Grover, R., Fischer, J., Schwarz, F. W., Walter, W. J., Schwille, P., & Diez, S. (2016). 

Transport efficiency of membrane-anchored kinesin-1 motors depends on motor 

density and diffusivity. Proc Natl Acad Sci U S A, 113(46), E7185-E7193. 

doi:10.1073/pnas.1611398113 

Guan, R., Zhang, L., Su, Q. P., Mickolajczyk, K. J., Chen, G. Y., Hancock, W. O., Sun, 

Y., Zhao, Y., Chen, Z. (2017). Crystal structure of Zen4 in the apo state reveals a 

missing conformation of kinesin. Nat Commun, 8, 14951. 

doi:10.1038/ncomms14951 

Hackney, D. D. (1996). The kinetic cycles of myosin, kinesin, and dynein. Annu Rev 

Physiol, 58, 731-750. doi:10.1146/annurev.ph.58.030196.003503 

Hahlen, K., Ebbing, B., Reinders, J., Mergler, J., Sickmann, A., & Woehlke, G. (2006). 

Feedback of the kinesin-1 neck-linker position on the catalytic site. J Biol Chem, 

281(27), 18868-18877. doi:10.1074/jbc.M508019200 

Hall, D. H., & Hedgecock, E. M. (1991). Kinesin-related gene unc-104 is required for 

axonal transport of synaptic vesicles in C. elegans. Cell, 65(5), 837-847. 

doi:10.1016/0092-8674(91)90391-b 

Hammond, J. W., Cai, D., Blasius, T. L., Li, Z., Jiang, Y., Jih, G. T., Meyhofer, E.,  

Verhey, K. J. (2009). Mammalian Kinesin-3 motors are dimeric in vivo and move 



 40 

by processive motility upon release of autoinhibition. PLoS Biol, 7(3), e72. 

doi:10.1371/journal.pbio.1000072 

Hariharan, V., & Hancock, W. O. (2009). Insights into the Mechanical Properties of the 

Kinesin Neck Linker Domain from Sequence Analysis and Molecular Dynamics 

Simulations. Cell Mol Bioeng, 2(2), 177-189. doi:10.1007/s12195-009-0059-5 

Hartman, M. A., & Spudich, J. A. (2012). The myosin superfamily at a glance. J Cell Sci, 

125(Pt 7), 1627-1632. doi:10.1242/jcs.094300 

He, M., Subramanian, R., Bangs, F., Omelchenko, T., Liem, K. F., Jr., Kapoor, T. M., & 

Anderson, K. V. (2014). The kinesin-4 protein Kif7 regulates mammalian 

Hedgehog signalling by organizing the cilium tip compartment. Nat Cell Biol, 

16(7), 663-672. doi:10.1038/ncb2988 

Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S., & Howard, J. (2006). The 

depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule 

ends. Nature, 441(7089), 115-119. doi:10.1038/nature04736 

Hendricks, A. G., Goldman, Y. E., & Holzbaur, E. L. (2014). Reconstituting the motility of 

isolated intracellular cargoes. Methods Enzymol, 540, 249-262. 

doi:10.1016/B978-0-12-397924-7.00014-5 

Hendricks, A. G., Perlson, E., Ross, J. L., Schroeder, H. W., 3rd, Tokito, M., & Holzbaur, 

E. L. (2010). Motor coordination via a tug-of-war mechanism drives bidirectional 

vesicle transport. Curr Biol, 20(8), 697-702. doi:10.1016/j.cub.2010.02.058 

Hesse, W. R., Steiner, M., Wohlever, M. L., Kamm, R. D., Hwang, W., & Lang, M. J. 

(2013). Modular aspects of kinesin force generation machinery. Biophys J, 

104(9), 1969-1978. doi:10.1016/j.bpj.2013.03.051 

Hirokawa, N., Niwa, S., & Tanaka, Y. (2010). Molecular motors in neurons: transport 

mechanisms and roles in brain function, development, and disease. Neuron, 

68(4), 610-638. doi:10.1016/j.neuron.2010.09.039 

Hirokawa, N., & Noda, Y. (2008). Intracellular transport and kinesin superfamily 

proteins, KIFs: structure, function, and dynamics. Physiol Rev, 88(3), 1089-1118. 

doi:10.1152/physrev.00023.2007 



 41 

Hirokawa, N., Noda, Y., Tanaka, Y., & Niwa, S. (2009). Kinesin superfamily motor 

proteins and intracellular transport. Nat Rev Mol Cell Biol, 10(10), 682-696. 

doi:10.1038/nrm2774 

Hirokawa, N., Pfister, K. K., Yorifuji, H., Wagner, M. C., Brady, S. T., & Bloom, G. S. 

(1989). Submolecular domains of bovine brain kinesin identified by electron 

microscopy and monoclonal antibody decoration. Cell, 56(5), 867-878. 

doi:10.1016/0092-8674(89)90691-0 

Hoeprich, G. J., Mickolajczyk, K. J., Nelson, S. R., Hancock, W. O., & Berger, C. L. 

(2017). The axonal transport motor kinesin-2 navigates microtubule obstacles via 

protofilament switching. Traffic, 18(5), 304-314. doi:10.1111/tra.12478 

Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., & Skrzypek, E. 

(2015). PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic 

Acids Res, 43(Database issue), D512-520. doi:10.1093/nar/gku1267 

Howard, J., Hudspeth, A. J., & Vale, R. D. (1989). Movement of microtubules by single 

kinesin molecules. Nature, 342(6246), 154-158. doi:10.1038/342154a0 

Hunt, A. J., Gittes, F., & Howard, J. (1994). The force exerted by a single kinesin 

molecule against a viscous load. Biophys J, 67(2), 766-781. doi:10.1016/S0006-

3495(94)80537-5 

Hunter, A. W., Caplow, M., Coy, D. L., Hancock, W. O., Diez, S., Wordeman, L., & 

Howard, J. (2003). The kinesin-related protein MCAK is a microtubule 

depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol 

Cell, 11(2), 445-457. doi:10.1016/s1097-2765(03)00049-2 

Huo, L., Yue, Y., Ren, J., Yu, J., Liu, J., Yu, Y., Ye, Y., Xu, T., Shang, M., Feng, W. 

(2012). The CC1-FHA tandem as a central hub for controlling the dimerization 

and activation of kinesin-3 KIF1A. Structure, 20(9), 1550-1561. 

doi:10.1016/j.str.2012.07.002 

Hwang, W., Lang, M. J., & Karplus, M. (2008). Force generation in kinesin hinges on 

cover-neck bundle formation. Structure, 16(1), 62-71. 

doi:10.1016/j.str.2007.11.008 



 42 

Isojima, H., Iino, R., Niitani, Y., Noji, H., & Tomishige, M. (2016). Direct observation of 

intermediate states during the stepping motion of kinesin-1. Nat Chem Biol, 

12(4), 290-297. doi:10.1038/nchembio.2028 

Jamison, D. K., Driver, J. W., & Diehl, M. R. (2012). Cooperative responses of multiple 

kinesins to variable and constant loads. J Biol Chem, 287(5), 3357-3365. 

doi:10.1074/jbc.M111.296582 

Jamison, D. K., Driver, J. W., Rogers, A. R., Constantinou, P. E., & Diehl, M. R. (2010). 

Two kinesins transport cargo primarily via the action of one motor: implications 

for intracellular transport. Biophys J, 99(9), 2967-2977. 

doi:10.1016/j.bpj.2010.08.025 

Jennings, S., Chenevert, M., Liu, L., Mottamal, M., Wojcik, E. J., & Huckaba, T. M. 

(2017). Characterization of kinesin switch I mutations that cause hereditary 

spastic paraplegia. PLoS One, 12(7), e0180353. 

doi:10.1371/journal.pone.0180353 

Jiang, S., Mani, N., Wilson-Kubalek, E. M., Ku, P. I., Milligan, R. A., & Subramanian, R. 

(2019). Interplay between the Kinesin and Tubulin Mechanochemical Cycles 

Underlies Microtubule Tip Tracking by the Non-motile Ciliary Kinesin Kif7. Dev 

Cell, 49(5), 711-730 e718. doi:10.1016/j.devcel.2019.04.001 

Jonsson, E., Yamada, M., Vale, R. D., & Goshima, G. (2015). Clustering of a kinesin-14 

motor enables processive retrograde microtubule-based transport in plants. Nat 

Plants, 1(7). doi:10.1038/NPLANTS.2015.87 

Kamal, A., & Goldstein, L. S. (2002). Principles of cargo attachment to cytoplasmic 

motor proteins. Curr Opin Cell Biol, 14(1), 63-68. doi:10.1016/s0955-

0674(01)00295-2 

Kapitein, L. C., Schlager, M. A., van der Zwan, W. A., Wulf, P. S., Keijzer, N., & 

Hoogenraad, C. C. (2010). Probing intracellular motor protein activity using an 

inducible cargo trafficking assay. Biophys J, 99(7), 2143-2152. 

doi:10.1016/j.bpj.2010.07.055 

Kapoor, T. M., Mayer, T. U., Coughlin, M. L., & Mitchison, T. J. (2000). Probing spindle 

assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic 

kinesin, Eg5. J Cell Biol, 150(5), 975-988. doi:10.1083/jcb.150.5.975 



 43 

Kaul, N., Soppina, V., & Verhey, K. J. (2014). Effects of alpha-tubulin K40 acetylation 

and detyrosination on kinesin-1 motility in a purified system. Biophys J, 106(12), 

2636-2643. doi:10.1016/j.bpj.2014.05.008 

Khalil, A. S., Appleyard, D. C., Labno, A. K., Georges, A., Karplus, M., Belcher, A. M., . . 

. Lang, M. J. (2008). Kinesin's cover-neck bundle folds forward to generate force. 

Proc Natl Acad Sci U S A, 105(49), 19247-19252. doi:10.1073/pnas.0805147105 

Kikkawa, M., Okada, Y., & Hirokawa, N. (2000). 15 A resolution model of the 

monomeric kinesin motor, KIF1A. Cell, 100(2), 241-252. doi:10.1016/s0092-

8674(00)81562-7 

Kikkawa, M., Sablin, E. P., Okada, Y., Yajima, H., Fletterick, R. J., & Hirokawa, N. 

(2001). Switch-based mechanism of kinesin motors. Nature, 411(6836), 439-445. 

doi:10.1038/35078000 

Kim, C. A., & Berg, J. M. (1993). Thermodynamic beta-sheet propensities measured 

using a zinc-finger host peptide. Nature, 362(6417), 267-270. 

doi:10.1038/362267a0 

Kim, H., Fonseca, C., & Stumpff, J. (2014). A unique kinesin-8 surface loop provides 

specificity for chromosome alignment. Mol Biol Cell, 25(21), 3319-3329. 

doi:10.1091/mbc.E14-06-1132 

Klumpp, S., & Lipowsky, R. (2005). Active diffusion of motor particles. Phys Rev Lett, 

95(26), 268102. doi:10.1103/PhysRevLett.95.268102 

Korneev, M. J., Lakamper, S., & Schmidt, C. F. (2007). Load-dependent release limits 

the processive stepping of the tetrameric Eg5 motor. Eur Biophys J, 36(6), 675-

681. doi:10.1007/s00249-007-0134-6 

Kozielski, F., Sack, S., Marx, A., Thormahlen, M., Schonbrunn, E., Biou, V., Thompson, 

A., Mandelkow, E. M., Mandelkow, E. (1997). The crystal structure of dimeric 

kinesin and implications for microtubule-dependent motility. Cell, 91(7), 985-994. 

doi:10.1016/s0092-8674(00)80489-4 

Kozielski, F., Schonbrunn, E., Sack, S., Muller, J., Brady, S. T., & Mandelkow, E. 

(1997). Crystallization and preliminary X-ray analysis of the single-headed and 

double-headed motor protein kinesin. J Struct Biol, 119(1), 28-34. 

doi:10.1006/jsbi.1997.3872 



 44 

Kozminski, K. G., Johnson, K. A., Forscher, P., & Rosenbaum, J. L. (1993). A motility in 

the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A, 

90(12), 5519-5523. doi:10.1073/pnas.90.12.5519 

Kristensson, K., & Olsson, Y. (1973). Diffusion pathways and retrograde axonal 

transport of protein tracers in peripheral nerves. Prog Neurobiol, 1(2), 87-109.  

Kull, F. J., & Endow, S. A. (2013). Force generation by kinesin and myosin cytoskeletal 

motor proteins. J Cell Sci, 126(Pt 1), 9-19. doi:10.1242/jcs.103911 

Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J., & Vale, R. D. (1996). Crystal structure 

of the kinesin motor domain reveals a structural similarity to myosin. Nature, 

380(6574), 550-555. doi:10.1038/380550a0 

Kull, F. J., Vale, R. D., & Fletterick, R. J. (1998). The case for a common ancestor: 

kinesin and myosin motor proteins and G proteins. J Muscle Res Cell Motil, 

19(8), 877-886. doi:10.1023/a:1005489907021 

Kunwar, A., Vershinin, M., Xu, J., & Gross, S. P. (2008). Stepping, strain gating, and an 

unexpected force-velocity curve for multiple-motor-based transport. Curr Biol, 

18(16), 1173-1183. doi:10.1016/j.cub.2008.07.027 

Kutys, M. L., Fricks, J., & Hancock, W. O. (2010). Monte Carlo analysis of neck linker 

extension in kinesin molecular motors. PLoS Comput Biol, 6(11), e1000980. 

doi:10.1371/journal.pcbi.1000980 

Lakadamyali, M. (2014). Navigating the cell: how motors overcome roadblocks and 

traffic jams to efficiently transport cargo. Phys Chem Chem Phys, 16(13), 5907-

5916. doi:10.1039/c3cp55271c 

Lakamper, S., Thiede, C., Duselder, A., Reiter, S., Korneev, M. J., Kapitein, L. C., 

Peterman, E. J., Schmidt, C. F. (2010). The effect of monastrol on the processive 

motility of a dimeric kinesin-5 head/kinesin-1 stalk chimera. J Mol Biol, 399(1), 1-

8. doi:10.1016/j.jmb.2010.03.009 

Lawrence, C. J., Dawe, R. K., Christie, K. R., Cleveland, D. W., Dawson, S. C., Endow, 

S. A., Goldstein, L. S. B., Goodson, H. V., Hirokawa, N., Howard, J., Malmberg, 

R. L., McIntosh, R. J., Miki, H., Mitchison, T. J., Okada, Y., Reddy, A. S. N., 

Saxton, W. M., Schliwa, M., Scholey, J. M., Vale, R. D., Walczak, C. E., 



 45 

Wordeman, L. (2004). A standardized kinesin nomenclature. J Cell Biol, 167(1), 

19-22. doi:10.1083/jcb.200408113 

Leibler, S., & Huse, D. A. (1993). Porters versus rowers: a unified stochastic model of 

motor proteins. J Cell Biol, 121(6), 1357-1368. doi:10.1083/jcb.121.6.1357 

Lessard, D. V., Zinder, O. J., Hotta, T., Verhey, K. J., Ohi, R., & Berger, C. L. (2019). 

Polyglutamylation of tubulin's C-terminal tail controls pausing and motility of 

kinesin-3 family member KIF1A. J Biol Chem, 294(16), 6353-6363. 

doi:10.1074/jbc.RA118.005765 

Li, R., & Gundersen, G. G. (2008). Beyond polymer polarity: how the cytoskeleton builds 

a polarized cell. Nat Rev Mol Cell Biol, 9(11), 860-873. doi:10.1038/nrm2522 

Liu, D., Liu, X., Shang, Z., & Sindelar, C. V. (2017). Structural basis of cooperativity in 

kinesin revealed by 3D reconstruction of a two-head-bound state on 

microtubules. Elife, 6. doi:10.7554/eLife.24490 

Liu, Z., Wang, Y., Gao, T., Pan, Z., Cheng, H., Yang, Q., Cheng, Z., Guo, A., Ren, J., 

Xue, Y. (2014). CPLM: a database of protein lysine modifications. Nucleic Acids 

Res, 42(Database issue), D531-536. doi:10.1093/nar/gkt1093 

Locke, J., Joseph, A. P., Pena, A., Mockel, M. M., Mayer, T. U., Topf, M., & Moores, C. 

A. (2017). Structural basis of human kinesin-8 function and inhibition. Proc Natl 

Acad Sci U S A, 114(45), E9539-E9548. doi:10.1073/pnas.1712169114 

Magiera, M. M., & Janke, C. (2014). Post-translational modifications of tubulin. Curr 

Biol, 24(9), R351-354. doi:10.1016/j.cub.2014.03.032 

Mallik, R., Petrov, D., Lex, S. A., King, S. J., & Gross, S. P. (2005). Building complexity: 

an in vitro study of cytoplasmic dynein with in vivo implications. Curr Biol, 15(23), 

2075-2085. doi:10.1016/j.cub.2005.10.039 

Martin, M., Iyadurai, S. J., Gassman, A., Gindhart, J. G., Jr., Hays, T. S., & Saxton, W. 

M. (1999). Cytoplasmic dynein, the dynactin complex, and kinesin are 

interdependent and essential for fast axonal transport. Mol Biol Cell, 10(11), 

3717-3728. doi:10.1091/mbc.10.11.3717 

Mather, W. H., & Fox, R. F. (2006). Kinesin's biased stepping mechanism: amplification 

of neck linker zippering. Biophys J, 91(7), 2416-2426. 

doi:10.1529/biophysj.106.087049 



 46 

McIntosh, J. R., O'Toole, E., Morgan, G., Austin, J., Ulyanov, E., Ataullakhanov, F., & 

Gudimchuk, N. (2018). Microtubules grow by the addition of bent guanosine 

triphosphate tubulin to the tips of curved protofilaments. J Cell Biol, 217(8), 2691-

2708. doi:10.1083/jcb.201802138 

McKenney, R. J., Vershinin, M., Kunwar, A., Vallee, R. B., & Gross, S. P. (2010). LIS1 

and NudE induce a persistent dynein force-producing state. Cell, 141(2), 304-

314. doi:10.1016/j.cell.2010.02.035 

Miki, H., Okada, Y., & Hirokawa, N. (2005). Analysis of the kinesin superfamily: insights 

into structure and function. Trends Cell Biol, 15(9), 467-476. 

doi:10.1016/j.tcb.2005.07.006 

Milic, B., Andreasson, J. O. L., Hogan, D. W., & Block, S. M. (2017). Intraflagellar 

transport velocity is governed by the number of active KIF17 and KIF3AB motors 

and their motility properties under load. Proc Natl Acad Sci U S A, 114(33), 

E6830-E6838. doi:10.1073/pnas.1708157114 

Miller, R. H., & Lasek, R. J. (1985). Cross-bridges mediate anterograde and retrograde 

vesicle transport along microtubules in squid axoplasm. J Cell Biol, 101(6), 2181-

2193. doi:10.1083/jcb.101.6.2181 

Monroy, B. Y., Sawyer, D. L., Ackermann, B. E., Borden, M. M., Tan, T. C., & Ori-

McKenney, K. M. (2018). Competition between microtubule-associated proteins 

directs motor transport. Nat Commun, 9(1), 1487. doi:10.1038/s41467-018-

03909-2 

Muretta, J. M., Jun, Y., Gross, S. P., Major, J., Thomas, D. D., & Rosenfeld, S. S. 

(2015). The structural kinetics of switch-1 and the neck linker explain the 

functions of kinesin-1 and Eg5. Proc Natl Acad Sci U S A, 112(48), E6606-6613. 

doi:10.1073/pnas.1512305112 

Muretta, J. M., Reddy, B. J. N., Scarabelli, G., Thompson, A. F., Jariwala, S., Major, J., 

Venere, M., Rich, J. N., Willard, B., Thomas, D. D., Stumpff, J., Grant, B. J., 

Gross, S. P., Rosenfeld, S. S. (2018). A posttranslational modification of the 

mitotic kinesin Eg5 that enhances its mechanochemical coupling and alters its 

mitotic function. Proc Natl Acad Sci U S A, 115(8), E1779-E1788. 

doi:10.1073/pnas.1718290115 



 47 

Muthukrishnan, G., Zhang, Y., Shastry, S., & Hancock, W. O. (2009). The processivity 

of kinesin-2 motors suggests diminished front-head gating. Curr Biol, 19(5), 442-

447. doi:10.1016/j.cub.2009.01.058 

Nebenfuhr, A., & Dixit, R. (2018). Kinesins and Myosins: Molecular Motors that 

Coordinate Cellular Functions in Plants. Annual Review of Plant Biology, Vol 69, 

69, 329-361. doi:10.1146/annurev-arplant-042817-040024 

Nishimura, Y., & Yonemura, S. (2006). Centralspindlin regulates ECT2 and RhoA 

accumulation at the equatorial cortex during cytokinesis. J Cell Sci, 119(Pt 1), 

104-114. doi:10.1242/jcs.02737 

Nitta, R., Kikkawa, M., Okada, Y., & Hirokawa, N. (2004). KIF1A alternately uses two 

loops to bind microtubules. Science, 305(5684), 678-683. 

doi:10.1126/science.1096621 

Nitta, R., Okada, Y., & Hirokawa, N. (2008). Structural model for strain-dependent 

microtubule activation of Mg-ADP release from kinesin. Nat Struct Mol Biol, 

15(10), 1067-1075. doi:10.1038/nsmb.1487 

Norris, S. R., Nunez, M. F., & Verhey, K. J. (2015). Influence of fluorescent tag on the 

motility properties of kinesin-1 in single-molecule assays. Biophys J, 108(5), 

1133-1143. doi:10.1016/j.bpj.2015.01.031 

Norris, S. R., Soppina, V., Dizaji, A. S., Schimert, K. I., Sept, D., Cai, D., 

Sivaramakrishnan, S., Verhey, K. J. (2014). A method for multiprotein assembly 

in cells reveals independent action of kinesins in complex. J Cell Biol, 207(3), 

393-406. doi:10.1083/jcb.201407086 

Ogawa, T., Nitta, R., Okada, Y., & Hirokawa, N. (2004). A common mechanism for 

microtubule destabilizers-M type kinesins stabilize curling of the protofilament 

using the class-specific neck and loops. Cell, 116(4), 591-602. 

doi:10.1016/s0092-8674(04)00129-1 

Ohashi, K. G., Han, L., Mentley, B., Wang, J., Fricks, J., & Hancock, W. O. (2019). 

Load-dependent detachment kinetics plays a key role in bidirectional cargo 

transport by kinesin and dynein. Traffic, 20(4), 284-294. doi:10.1111/tra.12639 



 48 

Okada, Y., & Hirokawa, N. (1999). A processive single-headed motor: kinesin 

superfamily protein KIF1A. Science, 283(5405), 1152-1157. 

doi:10.1126/science.283.5405.1152 

Okada, Y., & Hirokawa, N. (2000). Mechanism of the single-headed processivity: 

diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. 

Proc Natl Acad Sci U S A, 97(2), 640-645. doi:10.1073/pnas.97.2.640 

Okada, Y., Yamazaki, H., Sekine-Aizawa, Y., & Hirokawa, N. (1995). The neuron-

specific kinesin superfamily protein KIF1A is a unique monomeric motor for 

anterograde axonal transport of synaptic vesicle precursors. Cell, 81(5), 769-780. 

doi:10.1016/0092-8674(95)90538-3 

Otsuka, A. J., Jeyaprakash, A., Garcia-Anoveros, J., Tang, L. Z., Fisk, G., Hartshorne, 

T., Franco, R., Born, T. (1991). The C. elegans unc-104 gene encodes a putative 

kinesin heavy chain-like protein. Neuron, 6(1), 113-122. doi:10.1016/0896-

6273(91)90126-k 

Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R., & Scholey, J. M. (2005). Functional 

coordination of intraflagellar transport motors. Nature, 436(7050), 583-587. 

doi:10.1038/nature03818 

Pan, X., Ou, G., Civelekoglu-Scholey, G., Blacque, O. E., Endres, N. F., Tao, L., 

Mogilner, A., Leroux, M. R., Vale, R. D., Scholey, J. M. (2006). Mechanism of 

transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II 

and OSM-3 motors. J Cell Biol, 174(7), 1035-1045. doi:10.1083/jcb.200606003 

Parke, C. L., Wojcik, E. J., Kim, S., & Worthylake, D. K. (2010). ATP hydrolysis in Eg5 

kinesin involves a catalytic two-water mechanism. J Biol Chem, 285(8), 5859-

5867. doi:10.1074/jbc.M109.071233 

Paschal, B. M., Shpetner, H. S., & Vallee, R. B. (1987). MAP 1C is a microtubule-

activated ATPase which translocates microtubules in vitro and has dynein-like 

properties. J Cell Biol, 105(3), 1273-1282. doi:10.1083/jcb.105.3.1273 

Paschal, B. M., & Vallee, R. B. (1987). Retrograde transport by the microtubule-

associated protein MAP 1C. Nature, 330(6144), 181-183. doi:10.1038/330181a0 



 49 

Pazour, G. J., Dickert, B. L., & Witman, G. B. (1999). The DHC1b (DHC2) isoform of 

cytoplasmic dynein is required for flagellar assembly. J Cell Biol, 144(3), 473-

481. doi:10.1083/jcb.144.3.473 

Peet, D. R., Burroughs, N. J., & Cross, R. A. (2018). Kinesin expands and stabilizes the 

GDP-microtubule lattice. Nat Nanotechnol, 13(5), 386-391. doi:10.1038/s41565-

018-0084-4 

Porter, M. E., Bower, R., Knott, J. A., Byrd, P., & Dentler, W. (1999). Cytoplasmic 

dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol 

Biol Cell, 10(3), 693-712. doi:10.1091/mbc.10.3.693 

Prevo, B., Mangeol, P., Oswald, F., Scholey, J. M., & Peterman, E. J. (2015). Functional 

differentiation of cooperating kinesin-2 motors orchestrates cargo import and 

transport in C. elegans cilia. Nat Cell Biol, 17(12), 1536-1545. 

doi:10.1038/ncb3263 

Purcell, T. J., Sweeney, H. L., & Spudich, J. A. (2005). A force-dependent state controls 

the coordination of processive myosin V. Proc Natl Acad Sci U S A, 102(39), 

13873-13878. doi:10.1073/pnas.0506441102 

Pyles, E. A., & Hastie, S. B. (1993). Effect of the B ring and the C-7 substituent on the 

kinetics of colchicinoid-tubulin associations. Biochemistry, 32(9), 2329-2336. 

doi:10.1021/bi00060a026 

Pyrpassopoulos, S., Shuman, H., & Ostap, E. M. (2020). Modulation of Kinesin's Load-

Bearing Capacity by Force Geometry and the Microtubule Track. Biophys J, 

118(1), 243-253. doi:10.1016/j.bpj.2019.10.045 

Ravindran, M. S., Engelke, M. F., Verhey, K. J., & Tsai, B. (2017). Exploiting the 

kinesin-1 molecular motor to generate a virus membrane penetration site. Nat 

Commun, 8, 15496. doi:10.1038/ncomms15496 

Reck-Peterson, S. L., Provance, D. W., Jr., Mooseker, M. S., & Mercer, J. A. (2000). 

Class V myosins. Biochim Biophys Acta, 1496(1), 36-51. doi:10.1016/s0167-

4889(00)00007-0 

Reck-Peterson, S. L., Redwine, W. B., Vale, R. D., & Carter, A. P. (2018). The 

cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell 

Biol, 19(6), 382-398. doi:10.1038/s41580-018-0004-3 



 50 

Ren, J., Zhang, Y., Wang, S., Huo, L., Lou, J., & Feng, W. (2018). Structural Delineation 

of the Neck Linker of Kinesin-3 for Processive Movement. J Mol Biol, 430(14), 

2030-2041. doi:10.1016/j.jmb.2018.05.010 

Rice, L. M. (2018). A new look for the growing microtubule end? J Cell Biol, 217(8), 

2609-2611. doi:10.1083/jcb.201807036 

Rice, S. (2014). Structure of kif14: an engaging molecular motor. J Mol Biol, 426(17), 

2993-2996. doi:10.1016/j.jmb.2014.06.008 

Rice, S., Lin, A. W., Safer, D., Hart, C. L., Naber, N., Carragher, B. O., Cain, S. M., 

Pechatnikova, E., Wilson-Kubalek, E. M., Whittaker, M., Pate, E., Cooke, R., 

Taylor, E. W., Milligan, R. A., Vale, R. D. (1999). A structural change in the 

kinesin motor protein that drives motility. Nature, 402(6763), 778-784. 

doi:10.1038/45483 

Rosenfeld, S. S., Jefferson, G. M., & King, P. H. (2001). ATP reorients the neck linker of 

kinesin in two sequential steps. J Biol Chem, 276(43), 40167-40174. 

doi:10.1074/jbc.M103899200 

Ross, J. L., Shuman, H., Holzbaur, E. L., & Goldman, Y. E. (2008). Kinesin and dynein-

dynactin at intersecting microtubules: motor density affects dynein function. 

Biophys J, 94(8), 3115-3125. doi:10.1529/biophysj.107.120014 

Rothenberg, K. E., & Fernandez-Gonzalez, R. (2019). Forceful closure: cytoskeletal 

networks in embryonic wound repair. Mol Biol Cell, 30(12), 1353-1358. 

doi:10.1091/mbc.E18-04-0248 

Sablin, E. P., Kull, F. J., Cooke, R., Vale, R. D., & Fletterick, R. J. (1996). Crystal 

structure of the motor domain of the kinesin-related motor ncd. Nature, 

380(6574), 555-559. doi:10.1038/380555a0 

Sack, S., Muller, J., Marx, A., Thormahlen, M., Mandelkow, E. M., Brady, S. T., & 

Mandelkow, E. (1997). X-ray structure of motor and neck domains from rat brain 

kinesin. Biochemistry, 36(51), 16155-16165. doi:10.1021/bi9722498 

Scarabelli, G., Soppina, V., Yao, X. Q., Atherton, J., Moores, C. A., Verhey, K. J., & 

Grant, B. J. (2015). Mapping the Processivity Determinants of the Kinesin-3 

Motor Domain. Biophys J, 109(8), 1537-1540. doi:10.1016/j.bpj.2015.08.027 



 51 

Schimert, K. I., Budaitis, B. G., Reinemann, D. N., Lang, M. J., & Verhey, K. J. (2019). 

Intracellular cargo transport by single-headed kinesin motors. Proc Natl Acad Sci 

U S A, 116(13), 6152-6161. doi:10.1073/pnas.1817924116 

Schliwa, M., & Woehlke, G. (2003). Molecular motors. Nature, 422(6933), 759-765. 

doi:10.1038/nature01601 

Schneider, R., Korten, T., Walter, W. J., & Diez, S. (2015). Kinesin-1 motors can 

circumvent permanent roadblocks by side-shifting to neighboring protofilaments. 

Biophys J, 108(9), 2249-2257. doi:10.1016/j.bpj.2015.03.048 

Schnitzer, M. J., & Block, S. M. (1997). Kinesin hydrolyses one ATP per 8-nm step. 

Nature, 388(6640), 386-390. doi:10.1038/41111 

Schuster, M., Kilaru, S., Fink, G., Collemare, J., Roger, Y., & Steinberg, G. (2011). 

Kinesin-3 and dynein cooperate in long-range retrograde endosome motility 

along a nonuniform microtubule array. Mol Biol Cell, 22(19), 3645-3657. 

doi:10.1091/mbc.E11-03-0217 

Seitz, A., & Surrey, T. (2006). Processive movement of single kinesins on crowded 

microtubules visualized using quantum dots. EMBO J, 25(2), 267-277. 

doi:10.1038/sj.emboj.7600937 

Shang, Z., Zhou, K., Xu, C., Csencsits, R., Cochran, J. C., & Sindelar, C. V. (2014). 

High-resolution structures of kinesin on microtubules provide a basis for 

nucleotide-gated force-generation. Elife, 3, e04686. doi:10.7554/eLife.04686 

Shastry, S., & Hancock, W. O. (2010). Neck linker length determines the degree of 

processivity in kinesin-1 and kinesin-2 motors. Curr Biol, 20(10), 939-943. 

doi:10.1016/j.cub.2010.03.065 

Shastry, S., & Hancock, W. O. (2011). Interhead tension determines processivity across 

diverse N-terminal kinesins. Proc Natl Acad Sci U S A, 108(39), 16253-16258. 

doi:10.1073/pnas.1102628108 

Sheetz, M. P., & Spudich, J. A. (1983). Movement of myosin-coated fluorescent beads 

on actin cables in vitro. Nature, 303(5912), 31-35. doi:10.1038/303031a0 

Shima, T., Morikawa, M., Kaneshiro, J., Kambara, T., Kamimura, S., Yagi, T., . . . 

Hirokawa, N. (2018). Kinesin-binding-triggered conformation switching of 



 52 

microtubules contributes to polarized transport. J Cell Biol, 217(12), 4164-4183. 

doi:10.1083/jcb.201711178 

Shipley, K., Hekmat-Nejad, M., Turner, J., Moores, C., Anderson, R., Milligan, R., 

Sakowicz, R., Fletterick, R. (2004). Structure of a kinesin microtubule 

depolymerization machine. EMBO J, 23(7), 1422-1432. 

doi:10.1038/sj.emboj.7600165 

Shubeita, G. T., Tran, S. L., Xu, J., Vershinin, M., Cermelli, S., Cotton, S. L., Welte, M. 

A., Gross, S. P. (2008). Consequences of motor copy number on the intracellular 

transport of kinesin-1-driven lipid droplets. Cell, 135(6), 1098-1107. 

doi:10.1016/j.cell.2008.10.021 

Sindelar, C. V., Budny, M. J., Rice, S., Naber, N., Fletterick, R., & Cooke, R. (2002). 

Two conformations in the human kinesin power stroke defined by X-ray 

crystallography and EPR spectroscopy. Nat Struct Biol, 9(11), 844-848. 

doi:10.1038/nsb852 

Sindelar, C. V., & Downing, K. H. (2010). An atomic-level mechanism for activation of 

the kinesin molecular motors. Proc Natl Acad Sci U S A, 107(9), 4111-4116. 

doi:10.1073/pnas.0911208107 

Sivaramakrishnan, S., & Spudich, J. A. (2009). Coupled myosin VI motors facilitate 

unidirectional movement on an F-actin network. J Cell Biol, 187(1), 53-60. 

doi:10.1083/jcb.200906133 

Skiniotis, G., Surrey, T., Altmann, S., Gross, H., Song, Y. H., Mandelkow, E., & 

Hoenger, A. (2003). Nucleotide-induced conformations in the neck region of 

dimeric kinesin. EMBO J, 22(7), 1518-1528. doi:10.1093/emboj/cdg164 

Smith, D. A., & Simmons, R. M. (2001). Models of motor-assisted transport of 

intracellular particles. Biophys J, 80(1), 45-68. doi:10.1016/S0006-

3495(01)75994-2 

Snider, J., Thibault, G., & Houry, W. A. (2008). The AAA+ superfamily of functionally 

diverse proteins. Genome Biol, 9(4), 216. doi:10.1186/gb-2008-9-4-216 

Snow, J. J., Ou, G., Gunnarson, A. L., Walker, M. R., Zhou, H. M., Brust-Mascher, I., & 

Scholey, J. M. (2004). Two anterograde intraflagellar transport motors cooperate 



 53 

to build sensory cilia on C. elegans neurons. Nat Cell Biol, 6(11), 1109-1113. 

doi:10.1038/ncb1186 

Song, H., & Endow, S. A. (1998). Decoupling of nucleotide- and microtubule-binding 

sites in a kinesin mutant. Nature, 396(6711), 587-590. doi:10.1038/25153 

Soppina, V., Norris, S. R., Dizaji, A. S., Kortus, M., Veatch, S., Peckham, M., & Verhey, 

K. J. (2014). Dimerization of mammalian kinesin-3 motors results in 

superprocessive motion. Proc Natl Acad Sci U S A, 111(15), 5562-5567. 

doi:10.1073/pnas.1400759111 

Soppina, V., Rai, A. K., Ramaiya, A. J., Barak, P., & Mallik, R. (2009). Tug-of-war 

between dissimilar teams of microtubule motors regulates transport and fission of 

endosomes. Proc Natl Acad Sci U S A, 106(46), 19381-19386. 

doi:10.1073/pnas.0906524106 

Soppina, V., & Verhey, K. J. (2014). The family-specific K-loop influences the 

microtubule on-rate but not the superprocessivity of kinesin-3 motors. Mol Biol 

Cell, 25(14), 2161-2170. doi:10.1091/mbc.E14-01-0696 

Spudich, J. A. (2011). Molecular motors: forty years of interdisciplinary research. Mol 

Biol Cell, 22(21), 3936-3939. doi:10.1091/mbc.E11-05-0447 

Stock, M. F., Chu, J., & Hackney, D. D. (2003). The kinesin family member BimC 

contains a second microtubule binding region attached to the N terminus of the 

motor domain. J Biol Chem, 278(52), 52315-52322. doi:10.1074/jbc.M309419200 

Svoboda, K., & Block, S. M. (1994). Force and velocity measured for single kinesin 

molecules. Cell, 77(5), 773-784. doi:10.1016/0092-8674(94)90060-4 

Svoboda, K., Schmidt, C. F., Schnapp, B. J., & Block, S. M. (1993). Direct observation 

of kinesin stepping by optical trapping interferometry. Nature, 365(6448), 721-

727. doi:10.1038/365721a0 

Syamaladevi, D. P., Spudich, J. A., & Sowdhamini, R. (2012). Structural and functional 

insights on the Myosin superfamily. Bioinform Biol Insights, 6, 11-21. 

doi:10.4137/BBI.S8451 

Tomishige, M., Klopfenstein, D. R., & Vale, R. D. (2002). Conversion of Unc104/KIF1A 

kinesin into a processive motor after dimerization. Science, 297(5590), 2263-

2267. doi:10.1126/science.1073386 



 54 

Tomishige, M., & Vale, R. D. (2000). Controlling kinesin by reversible disulfide cross-

linking. Identifying the motility-producing conformational change. J Cell Biol, 

151(5), 1081-1092. doi:10.1083/jcb.151.5.1081 

Uchimura, S., Oguchi, Y., Hachikubo, Y., Ishiwata, S., & Muto, E. (2010). Key residues 

on microtubule responsible for activation of kinesin ATPase. EMBO J, 29(7), 

1167-1175. doi:10.1038/emboj.2010.25 

Uemura, S., Higuchi, H., Olivares, A. O., De La Cruz, E. M., & Ishiwata, S. (2004). 

Mechanochemical coupling of two substeps in a single myosin V motor. Nat 

Struct Mol Biol, 11(9), 877-883. doi:10.1038/nsmb806 

Uppulury, K., Efremov, A. K., Driver, J. W., Jamison, D. K., Diehl, M. R., & Kolomeisky, 

A. B. (2012). How the interplay between mechanical and nonmechanical 

interactions affects multiple kinesin dynamics. J Phys Chem B, 116(30), 8846-

8855. doi:10.1021/jp304018b 

Vale, R. D. (2003). The molecular motor toolbox for intracellular transport. Cell, 112(4), 

467-480. doi:10.1016/s0092-8674(03)00111-9 

Vale, R. D., & Fletterick, R. J. (1997). The design plan of kinesin motors. Annu Rev Cell 

Dev Biol, 13, 745-777. doi:10.1146/annurev.cellbio.13.1.745 

Vale, R. D., & Milligan, R. A. (2000). The way things move: looking under the hood of 

molecular motor proteins. Science, 288(5463), 88-95. 

doi:10.1126/science.288.5463.88 

Vale, R. D., Reese, T. S., & Sheetz, M. P. (1985). Identification of a novel force-

generating protein, kinesin, involved in microtubule-based motility. Cell, 42(1), 

39-50. doi:10.1016/s0092-8674(85)80099-4 

Vale, R. D., Schnapp, B. J., Reese, T. S., & Sheetz, M. P. (1985). Organelle, bead, and 

microtubule translocations promoted by soluble factors from the squid giant axon. 

Cell, 40(3), 559-569. doi:10.1016/0092-8674(85)90204-1 

Valentine, M. T., Fordyce, P. M., Krzysiak, T. C., Gilbert, S. P., & Block, S. M. (2006). 

Individual dimers of the mitotic kinesin motor Eg5 step processively and support 

substantial loads in vitro. Nat Cell Biol, 8(5), 470-476. doi:10.1038/ncb1394 



 55 

Varga, V., Helenius, J., Tanaka, K., Hyman, A. A., Tanaka, T. U., & Howard, J. (2006). 

Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat 

Cell Biol, 8(9), 957-962. doi:10.1038/ncb1462 

Verhey, K. J., & Hammond, J. W. (2009). Traffic control: regulation of kinesin motors. 

Nat Rev Mol Cell Biol, 10(11), 765-777. doi:10.1038/nrm2782 

Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J., & Gross, S. P. (2007). Multiple-

motor based transport and its regulation by Tau. Proc Natl Acad Sci U S A, 

104(1), 87-92. doi:10.1073/pnas.0607919104 

Wade, R. H., & Kozielski, F. (2000). Structural links to kinesin directionality and 

movement. Nat Struct Biol, 7(6), 456-460. doi:10.1038/75850 

Walker, J. E., Saraste, M., Runswick, M. J., & Gay, N. J. (1982). Distantly related 

sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases 

and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO 

J, 1(8), 945-951.  

Wang, J., Wang, Y., Liu, X., Xu, Y., & Ma, Q. (2016). Microtubule Polymerization 

Functions in Hypersensitive Response and Accumulation of H2O2 in Wheat 

Induced by the Stripe Rust. Biomed Res Int, 2016, 7830768. 

doi:10.1155/2016/7830768 

Waterman-Storer, C. M., Karki, S. B., Kuznetsov, S. A., Tabb, J. S., Weiss, D. G., 

Langford, G. M., & Holzbaur, E. L. (1997). The interaction between cytoplasmic 

dynein and dynactin is required for fast axonal transport. Proc Natl Acad Sci U S 

A, 94(22), 12180-12185. doi:10.1073/pnas.94.22.12180 

Welte, M. A. (2004). Bidirectional transport along microtubules. Curr Biol, 14(13), R525-

537. doi:10.1016/j.cub.2004.06.045 

Woolner, S., & Bement, W. M. (2009). Unconventional myosins acting unconventionally. 

Trends Cell Biol, 19(6), 245-252. doi:10.1016/j.tcb.2009.03.003 

Xu, J., Reddy, B. J., Anand, P., Shu, Z., Cermelli, S., Mattson, M. K., Tripathy, S. K., 

Hoss, M. T., James, N. S., King, S. J., Huang, L., Bardwell, L., Gross, S. P. 

(2012). Casein kinase 2 reverses tail-independent inactivation of kinesin-1. Nat 

Commun, 3, 754. doi:10.1038/ncomms1760 



 56 

Yamada, K. H., Hanada, T., & Chishti, A. H. (2007). The effector domain of human Dlg 

tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor 

GAKIN/KIF13B. Biochemistry, 46(35), 10039-10045. doi:10.1021/bi701169w 

Yardimci, H., van Duffelen, M., Mao, Y., Rosenfeld, S. S., & Selvin, P. R. (2008). The 

mitotic kinesin CENP-E is a processive transport motor. Proc Natl Acad Sci U S 

A, 105(16), 6016-6021. doi:10.1073/pnas.0711314105 

Yildiz, A., Tomishige, M., Gennerich, A., & Vale, R. D. (2008). Intramolecular strain 

coordinates kinesin stepping behavior along microtubules. Cell, 134(6), 1030-

1041. doi:10.1016/j.cell.2008.07.018 

Yildiz, A., Tomishige, M., Vale, R. D., & Selvin, P. R. (2004). Kinesin walks hand-over-

hand. Science, 303(5658), 676-678. doi:10.1126/science.1093753 

Yu, I., Garnham, C. P., & Roll-Mecak, A. (2015). Writing and Reading the Tubulin Code. 

J Biol Chem, 290(28), 17163-17172. doi:10.1074/jbc.R115.637447 

Yu, Y., & Feng, Y. M. (2010). The role of kinesin family proteins in tumorigenesis and 

progression: potential biomarkers and molecular targets for cancer therapy. 

Cancer, 116(22), 5150-5160. doi:10.1002/cncr.25461 

Yue, Y., Blasius, T. L., Zhang, S., Jariwala, S., Walker, B., Grant, B. J., Cochran, J. C.,  

Verhey, K. J. (2018). Altered chemomechanical coupling causes impaired motility 

of the kinesin-4 motors KIF27 and KIF7. J Cell Biol, 217(4), 1319-1334. 

doi:10.1083/jcb.201708179 

Yun, M., Zhang, X., Park, C. G., Park, H. W., & Endow, S. A. (2001). A structural 

pathway for activation of the kinesin motor ATPase. EMBO J, 20(11), 2611-2618. 

doi:10.1093/emboj/20.11.2611 

Zhao, Y. C., Kull, F. J., & Cochran, J. C. (2010). Modulation of the kinesin ATPase cycle 

by neck linker docking and microtubule binding. J Biol Chem, 285(33), 25213-

25220. doi:10.1074/jbc.M110.123067 

  
 
 
 



 57 

Chapter 2: Neck Linker Docking is Critical for Kinesin-1 Force Generation in Cells 
but at a Cost to Motor Speed and Processivity 

 
 
Portions of this chapter have been adapted from the following publication 

Budaitis, B.G., Jariwala, S.*, Reinemann, D.N.*, Schimert, K.I.*, Scarabelli, G., 

Grant, B.J., Sept, D., Lang, M.J., Verhey, K.J. (2019). Neck linker docking is 

critical for kinesin-1 force generation in cells but at a cost to motor speed and 

processivity. Elife 8:e44146. 

 *Authors contributed equally, listed alphabetically 

Author contributions: 
B.G.B performed all assays except optical trapping assays and molecular 

dynamics simulations. D.N.R performed optical trapping assays, S.J. performed 

molecular dynamics, and K.I.S developed the inducible cargo dispersion assays. 

B.G.B, D.N.R, and S.J. analyzed data. B.G.B and K.J.V wrote the text and 

composed figures with input from all authors. 

2.1 Introduction 
Kinesin motor proteins are responsible for orchestrating fundamental 

microtubule-based processes including cell division, intracellular trafficking, cytoskeletal 

organization, and cilia function (Hirokawa et al., 2009; Verhey & Hammond, 2009). All 

kinesins contain a highly conserved motor domain with signature sequences for 

nucleotide and microtubule binding. How nucleotide dependent conformational changes 

in the catalytic site result in a mechanical output that drives cargo transport has been a 

fundamental question in the field. 

The two motor domains in most dimeric kinesin motors are linked via a flexible 

12–18 amino acid sequence called the neck linker [NL, (Hariharan & Hancock, 2009; 

Kozielski et al., 1997)]. The NL has been suggested to serve as a structural element 

critical for both directed motility and force generation of kinesin motors. 
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For kinesin-1, the founding member of the kinesin superfamily, structural and 

spectroscopic studies have shown that conformational changes in the NL are coupled to 

the nucleotide state of the motor domain. Specifically, the NL undergoes a 

transformation from being flexible in both the ADP-bound and nucleotide-free states to 

being docked along the core motor domain in the ATP-bound state (Asenjo et al., 2006; 

Gigant et al., 2013; Rice et al., 1999; Rosenfeld et al., 2001; Shang et al., 2014; 

Sindelar et al., 2002; Sindelar & Downing, 2010; Skiniotis et al., 2003). NL docking of 

the leading motor domain positions the lagging motor domain forward along the 

microtubule track, thereby specifying direction of motility. NL docking also coordinates 

the alternating ATPase cycles of the two motor domains to ensure processive stepping 

(Case et al., 2000; Clancy et al., 2011; Dogan et al., 2015; Hahlen et al., 2006; Isojima 

et al., 2016; Liu et al., 2017; Tomishige & Vale, 2000; Yildiz et al., 2008). Recent work 

has extended the model that nucleotide-dependent conformational change in the NL 

drive processive stepping to other members of the kinesin superfamily (Atherton et al., 

2014; Atherton et al., 2017; Cao et al., 2014; Muthukrishnan et al., 2009; Nitta et al., 

2008; Ren et al., 2018; Shastry & Hancock, 2010, 2011). 

The role of the NL in force generation has been more difficult to discern (Block, 

2007). ATP induced NL docking involves distinct interactions of the two β-strands that 

comprise the NL, β9 and β10 (Figure 2.1C,D). The first half of the NL, β9, pairs with 

another β-strand, the coverstrand (CS or β0), located at the opposite end of the core 

motor domain. The zippering of β9 of the NL with β0 of the CS forms a 2-stranded β-

sheet, termed the cover-neck bundle (CNB), to provide the power stroke for force 

generation by kinesin-1 (Hwang et al., 2008; Khalil et al., 2008). Support for the CNB as 

a mechanical element comes from optical trap assays where point mutations in the CS 

designed to hinder β-strand formation, or deletion of the entire CS, in the fly kinesin-1 

motor significantly reduced the motor’s ability to withstand load (Khalil et al., 2008). 

CNB formation may be a critical element for force generation across the kinesin 

superfamily as recent work has shown that the coverstrand (CS or β0) and NL (β9) of 

members of the kinesin-5 and kinesin-6 families engage in CNB formation in response 

to ATP binding (Atherton et al., 2017; Hesse et al., 2013). 
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 After CNB formation, the C-terminal segment of the NL (β10) is predicted to 

dock along the surface of the core motor domain. In particular, an asparagine residue 

between β9 and β10 begins the process of docking β10 of the NL onto β7 of the motor 

core. This asparagine residue (N334) is predicted to serve as a latch (the N-latch) to 

hold the docked NL along the core motor domain (Hwang et al., 2008) but its role in 

force generation has not been directly tested. The N-latch residue is conserved in most 

kinesins, particularly motors known to processively step along microtubules (Figure 

2.1C), suggesting that N-latch formation may also be a conserved feature of kinesin 

force generation. 

Whether CNB and/or N-latch formation are critical for multiple kinesin motors to 

drive transport of membrane-bound cargo under physiological conditions is not known. 

To address this, we combined molecular dynamics simulations, in vitro single-molecule 

assays, and cell-based transport assays to delineate how NL docking influences 

kinesin-1 motors cooperating in teams to transport membrane-bound cargoes in cells. 

We found that mutations that disrupt CNB formation and/or N-latch formation severely 

reduced the ability of single kinesin-1 motors to successfully transport against load in an 

optical trap. Strikingly, single mutant motors traveled faster and for longer distances 

under unloaded conditions as compared to wild type (WT) motors. These results 

indicate that mutations to the CS and N-latch of kinesin-1 can enhance processivity and 

velocity but at a cost to force production. Mutant motors with impaired CNB formation or 

N-latch formation are able to cooperate to transport low-load cargo in cells. However, 

the mutant motors are unable to effectively cooperate to transport high-load cargo in 

cells. Overall, these findings suggest that CNB and N-latch formation are required for 

transport of high-load cargoes in cells, even when kinesin-1 motors work collectively as 

a team 

2.2 Materials and Methods 
Plasmids: A truncated, constitutively active kinesin-1 [rat KIF5C(1-560)] was used (Cai 

et al., 2007). Point mutations to impair CNB and/or N-latch formation were generated 

using QuickChange site-directed mutagenesis and all plasmids were verified by DNA 

sequencing. Motors were tagged with three tandem monomeric Citrine fluorescent 

proteins (3xmCit) for single molecule imaging assays (Cai et al., 2007), a FLAG-tag for 
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optical trapping assays, and monomeric NeonGreen (mNG)-FRB for inducible cargo 

dispersion assays in cells (Kapitein et al., 2010). The peroxisome-targeting PEX3-

mRFP-FKBP construct was a gift from Casper Hoogenraad (Utrecht University). The 

Golgi targeting GMAP-mRFP-FKBP construct is described in (Engelke et al., 2016; 

Schimert et al., 2019). KIF18A(1-452) was a gift from Claire Walczak (Indiana 

University, [Weaver et al., 2011]). Constructs coding for FRB (DmrA) and FKBP (DmrC) 

sequences were obtained from ARIAD Pharmaceuticals and are now available from 

Takara Bio Inc. Plasmids encoding monomeric NeonGreen were obtained from Allele 

Biotechnology.  

 
Cell culture, transfection, and lysate preparation: COS-7 (African green monkey 

kidney fibroblasts, American Type Culture Collection, RRID: CVCL_0224) were grown 

at 37˚C with 5% (vol/vol) CO2 in Dulbecco’s Modified Eagle Medium (Gibco) 

supplemented with 10% (vol/vol) Fetal Clone III (HyClone) and 2 mM GlutaMAX (L-

alanyl-L-glutamine dipeptide in 0.85% NaCl, Gibco). Cells are checked annually for 

mycoplasma contamination and were authenticated through mass spectrometry (the 

protein sequences exactly match those in the African green monkey genome). 24 hr 

after seeding, the cells were transfected with plasmids encoding for the expression of 

motor tagged with three tandem monomeric citrines or FLAG, TransIT-LT1 transfection 

reagent (Mirus), and Opti-MEM Reduced Serum Medium (Gibco). Cells were trypsinized 

and harvested 24 hr after transfection by low-speed centrifugation at 3000 x g at 4˚C for 

3 min. The pellet was resuspended in cold 1X PBS, centrifuged at 3000 x g at 4˚C for 3 

min, and the pellet was resuspended in 50 µL of cold lysis buffer [25 mM HEPES/KOH, 

115 mM potassium acetate, 5 mM sodium acetate, 5 mM MgCl2, 0.5 mM EGTA, and 

1% (vol/vol) Triton X-100, pH 7.4] with 1 mM ATP, 1 mM phenylmethylsulfonyl fluoride, 

and 1% (vol/vol) protease inhibitor cocktail (P8340, SigmaAldrich). Lysates were 

clarified by centrifugation at 20,000 x g at 4˚C for 10 min and lysates were snap frozen 

in 5 µL aliquots in liquid nitrogen and stored at 80˚C 
 
Optical trapping assays: Tubulin was reconstituted and polymerized into microtubules 

as described previously (Reinemann et al., 2018; Reinemann et al., 2017). Tubulin 
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(bovine brain, Cytoskeleton TL238) was reconstituted in 25 µL BRB80 buffer [80 mM 

PIPES (Sigma P-1851), 1 mM EGTA (Sigma E-4378), 1 mM MgCl2 (Mallinckrodt H590), 

pH adjusted to 6.9 with KOH] supplemented with 1 mM GTP (Cytoskeleton BST06) and 

kept on ice. 13 µL PEM104 buffer (104 mM PIPES, 1.3 mM EGTA, 6.3 mM MgCl2, pH 

adjusted to 6.9 with KOH), 2.2 µL 10 mM GTP, and 2.2 µL DMSO were mixed. 4.8 µL of 

10 mg/mL tubulin were added to the mixture and allowed to incubate for 40 min at 37˚C. 

Subsequently, 2 µL of stabilization solution [STAB: 38.6 mL PEM80, 0.5 mL 100 mM 

GTP, 4.7 mL 65 g/L NaN3 (Sigma S-8032), 1.2 µL 10 mM Taxol (Cytoskeleton TXD01), 

5 µL DMSO (Cytoskeleton)] was added to the stock microtubule solution at room 

temperature. 

Optical trap assays were performed as described previously (Reinemann et al., 

2017; Reinemann et al., 2018). 0.44 mm anti-FLAG-coated beads were prepared by 

crosslinking anti-FLAG (Thermo Fisher Scientific) antibodies to carboxy polystyrene 

beads (Spherotech) via EDC chemistry. Lysates containing FLAG-tagged motors were 

diluted in assay buffer [AB: P12 buffer (12 mM PIPES (Sigma P-1851), 1 mM EGTA 

(Sigma E-4378), 1 mM MgCl2 (Mallinckrodt H590), pH adjusted to 6.9 with KOH), 1 mM 

DTT (Sigma Aldrich), 20 µM Taxol (Cytoskeleton), 1 mg/mL casein (Blotting-Grade 

Blocker, Biorad), 1 mM ATP (Sigma Aldrich)] were incubated with gently sonicated anti-

FLAG beads to allow binding for 1 hr at 4˚C on a rotator in the presence of oxygen 

scavenging reagents (5 mg/ mL b-D-glucose (Sigma Aldrich), 0.25 mg/mL glucose 

oxidase (Sigma Aldrich), and 0.03 mg/mL catalase (Sigma Aldrich). 

A flow cell that holds a volume of ~15 µL was assembled using a microscope 

slide, etched coverslips, and double-sided tape. Before assembly, etched coverslips 

were incubated in a solution of 100 mL poly-l-lysine (PLL, Sigma P8920) in 30 mL 

ethanol for 15 min. The coverslip was then dried with a filtered air line. After flow cell 

assembly, microtubules were diluted 150 times from the stock in a solution of PemTax 

(1 mL 10 mM Taxol in 500 mL P12). The diluted microtubules were added to the flow 

cell and allowed to incubate to the PLL surface for 10 min. Unbound microtubules were 

then washed out with 20 µL PemTax. A solution of casein (Blotting-Grade Blocker, 

Biorad 1706404) diluted in PemTax (1:8 mixture) was then added to the flow cell and 

allowed to incubate for 10 min to block the remainder of the surface to prevent non-
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specific binding. After the incubation, the flow cell was washed with 50 mL PemTax and 

80 mL assay buffer (AB). 20 µL of the bead/motor incubation was then added to the flow 

cell. 

Optical trapping measurements were obtained using a custom-built instrument 

with separate trapping and detection systems. The instrument setup and calibration 

procedures have been described previously (Khalil et al., 2008). Briefly, beads were 

trapped with a 1,064 nm laser that was coupled to an inverted microscope with a 

100x/1.3 NA oil-immersion objective. Bead displacements from the trap center were 

recorded at 3 kHz and further antialias filtered at 1.5 kHz. To ensure that we were at the 

single molecule limit for the motility assay, the protein-bead ratio was adjusted so that 

fewer than half of the beads trapped and tested on microtubules showed binding, 

actually having 5–10% binding the majority of the time. A motor-coated bead was 

trapped in solution and subjected to position calibration and trap stiffness Labview 

routines. Afterward, the bead was brought close to a surface-bound microtubule to allow 

for binding. Bead position displacement and force generation were measured for single 

motor-bound beads. Detachment forces are plotted as a dot plot where each dot 

indicates the maximum detachment force of an event and the mean for each construct 

is indicated by a black horizontal line. Statistical differences between the maximum 

detachment force of wild type and mutant motors were calculated by using a two-tailed 

unpaired Student’s t test. 

 
Single-molecule motility assays: Microtubules were polymerized (purified tubulin 

unlabeled and HiLyte-647-labeled tubulin, Cytoskeleton Inc) in BRB80 buffer (80 mM 

Pipes/KOH pH 6.8, 1 mM MgCl2, 1 mM EGTA) supplemented with GTP and MgCl2 and 

incubated for 60 min at 37oC. 2 µM taxol in prewarmed BRB80 was added and 

incubated for 60 min to stabilize microtubules. Microtubules were stored in the dark at 

room temperature for up to 2 weeks. Flow cells were prepared by attaching a #1.5 mm2 

coverslip (Thermo Fisher Scientific) to a glass slide (Thermo Fisher Scientific) using 

double-sided tape. Microtubules were diluted in fresh BRB80 buffer supplemented with 

10 µM taxol, infused into flow cells, and incubated for four minutes to allow for 

nonspecific absorption to the glass. Flow cells were then incubated with blocking buffer 
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[30 mg/mL casein in P12 buffer (12 mM Pipes/KOH pH 6.8, 1 mM MgCl2, 1 mM EGTA) 

supplemented with 10 µM taxol] for four minutes. Flow cells were then infused with 

motility mixture (0.5–1.0 µL of COS-7 cell lysate, 25 µL P12 buffer, 15 µL blocking 

buffer, 1.0 µL 100 mM ATP, 0.5 µL 100 mM DTT, 0.5 µL 20 mg/mL glucose oxidase, 0.5 

µL 8 mg/mL catalase, and 0.5 µL 1 M glucose), sealed with molten paraffin wax, and 

imaged on an inverted Nikon Ti-E/B total internal reflection fluorescence (TIRF) 

microscope with a perfect focus system, a 100x/1.49 NA oil immersion TIRF objective, 

three 20 mW diode lasers (488 nm, 561 nm, and 640 nm) and EMCCD camera (iXon+ 

DU879; Andor). Image acquisition was controlled using Nikon Elements software and all 

assays were performed at room temperature. 
Motility data were analyzed by first generating maximum intensity projections to 

identify microtubule tracks (width = 3 pixels) and then generating kymographs in ImageJ 

(National Institutes of Health). Only motility events that lasted for at least three frames 

were analyzed. Furthermore, events that ended as a result of a motor reaching the end 

of a microtubule were included; therefore, the reported run lengths for highly processive 

motors are likely to be an underestimation. For the Latch and CNB+Latch motors, the 

run lengths are reported as the distance moved between gaps in the runs. Run length 

and velocities were plotted as cumulative distributions in MATLAB and used for 

statistical analysis. The cumulative distributions of motor velocities were fit to a 

Gaussian cumulative distribution as previously described (Arpăg et al., 2014; Norris et 

al., 2014) and a one-way analysis of variance test was used to assess whether velocity 

distributions were significantly different between motors. The cumulative distribution of 

WT motor run lengths was fit to an exponential distribution as previously described 

(Norris et al., 2014). However, a fit to an exponential decay function was not an 

appropriate model to describe the cumulative distributions of the CNB, Latch, and CNB 

+Latch motor run lengths. Rather, the cumulative distributions of the run lengths of the 

mutant motors were well fit to a gamma distribution. The scale parameter was fixed 

(assuming a rate of 1 or 2) and the shape parameter was the only fit parameter. The 

expected mean run length was calculated by multiplying the shape and scale 

parameters. A Kuskal-Wallis one-way analysis of variance was used to assess whether 

run length distributions were significantly different between motors. For each motor 
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construct, the velocities and run lengths were binned and a histogram was generated by 

plotting the number of motility events for each bin. A corresponding Gaussian, 

exponential, or gamma distribution was overlaid on each histogram plot using rate and 

shape parameters derived from fitting the cumulative distributions. 

 
Molecular dynamics simulations: Simulation models of rat kinesin-1 (RnKIF5C) motor 

domain in complex with tubulin heterodimer were constructed for motors in the no 

nucleotide (apo) and ATP-bound states based on PDB 4LNU (Cao et al., 2014) and 

PDB 4HNA (Gigant et al., 2013), respectively. Since the motor domain in both template 

structures (PDBs 4LNU and 4HNA) is KIF5B, residues that differ were mutated to match 

the sequence of rat KIF5C (UniprotID: P56536). The tubulin dimer was left unmodified. 

Missing coordinates were modeled using MODELLER v9.18 (Sali and Blundell, 1993). 

The ATP-hydrolysis transition-state analog, ADP–AlF4, in PDB 4HNA was converted to 

ATP. The resulting systems of motor domain associated with tubulin dimer contained a 

total of ~170,000 atoms each. Models of ADP-bound wild type and CNB+Latch mutant 

motor domains (not associated with the tubulin heterodimer) were prepared from PDB 

2KIN (Sack et al., 1997). 

Energy minimization and molecular dynamics simulations were performed with 

AMBER14 (Case et al., 2005) and the ff99SB AMBER force field (Hornak et al., 2006). 

Nucleotide parameters were obtained from (Meagher, Redman, & Carlson, 2003). 

Histidine protonation states were assigned based on the their pKa values calculated by 

PROPKA (Bas, Rogers, & Jensen, 2008). Starting structures were solvated in a cubic 

box of pre-equilibrated TIP3P waters molecules, extending 12 Å in each dimension from 

the surface of the solute. Sodium ions (Na+) were added to neutralize the systems, 

followed by addition of sodium and chloride (Cl-) ions to bring the ionic strength to 0.050 

M. Energy minimization was performed in four stages, with each stage consisting of 500 

steps of steepest descent followed by 4,000 steps of conjugate gradient. First, 

minimization of solvent was performed by keeping positions of protein and nucleotides 

fixed. Second, side-chains and nucleotides were relaxed keeping the backbone 

positions fixed. Third, protein and nucleotide atoms were relaxed while keeping the 

solvent atoms fixed. Fourth, a last minimization stage was performed with no restraints. 
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The system was gradually heated to 300K over 25 ps of simulation time in constant-

volume (NVT) and periodic boundary conditions (PBC), with restraint of 20 kcal/mol/Å2 

on backbone atoms. Constant-temperature (T = 300K) and constant-pressure (p=1 bar) 

(NpT) equilibration was then performed in six stages. First, a 400 ps NpT equilibration 

was performed with restraint of 20 kcal/mol/Å2 on backbone atoms. Further stages 

involved gradually reducing restraints of 20, 10, 5, and one kcal/mol/Å2 on a carbons 

over five ns each. A final NpT equilibration was carried out without any restraints for five 

ns. Subsequent production phase molecular dynamics simulations were then performed 

under NpT and PBC with random velocity assignments for each run. Particle-mesh 

Ewald summation was adopted for treating long-range electrostatics. A 12 Å cutoff for 

energy minimization, and a 10 Å cutoff for molecular dynamics simulations was used to 

truncate non-bonded interactions. A two fs time-step was adopted for all molecular 

dynamics simulations. Hydrogen atoms were constrained using the SHAKE algorithm. 

All simulations were performed in-house on NVIDIA GPU cards with the GPU version of 

PMEMD (pmemd.cuda). Molecular dynamics simulations were started from equilibrated 

structures with four independent runs of 100 ns each. Trajectory analysis was carried 

out in R using the Bio3D v2.3–3 package (Skjaerven et al., 2014). 

 
Simulation analysis: inter-residue distances: Statistically significant residue-residue 

distance differences between apo, ATP-bound and mutant states were identified with 

ensemble difference distance matrix (eDDM) analysis routine (Muretta et al., 2018). A 

total of 400 conformations were obtained for each state under comparison by extracting 

100 equally time-spaced conformations from the last 20 ns of each simulation replicate. 

Distance matrices for each state were constructed from residue-residue distances, 

defined as the minimum distance between all heavy atoms of every residue pair in a 

given conformation. The distances matrices were processed by applying a smooth 

function to mask long distances. The significance of residue distance variation between 

apo and ATP-bound states, and between ATP-bound and mutant states, were 

evaluated with the Wilcoxon test. Residue pairs showing a p-value 1 Å were considered 

statistically significant residue-residue distance differences for further analysis.  

 



 66 

Simulation analysis: principal component analysis: A set of 17 experimental 

structures from the RCSB protein data bank, nine in ADP-like state not associated with 

the microtubule and eight in ATP-like state bound to tubulin heterodimer, were selected 

for examining the major conformational differences of the kinesin motor domain in these 

two states. Principal component analysis (PCA) is a dimensionality reduction technique 

involving orthogonal transformation of the original data into a set of linearly uncorrelated 

variables termed principal components. PCA was performed on 112 equivalent, non-

gap Ca atoms from each of the structures after superposition onto an invariant core 

comprising of structural elements β1, β2, β3, P-loop, α2, β6, β7 and α6 (Scarabelli & 

Grant, 2013). The trajectories from MD simulations of ADP-bound wild type and 

CNB+Latch mutant kinesin motor domains were projected on to the PC sub-space 

defined by the first two PCA eigenvectors to allow comparison of the conformational 

space spanned by the simulations and the experimental structures. 

 
Inducible cargo dispersion assays: Plasmids for expression of wild type or mutant 

KIF5C(560) motors tagged with monomeric NeonGreen and an FRB domain were 

cotransfected into COS-7 cells with a plasmid for expression of PEX3-mRFP-FKBP or 

GMAP210p-mRFP-2xFKBP at a ratio of 6:1 and 3:1 respectively with TransITLT1 

transfection reagent (Mirus). Eight hours after transfection, rapamycin (Calbiochem, 

Millipore Sigma) was added to final concentration of 44 nM to promote FRB and FKBP 

heterodimerization and recruitment of motor the peroxisome or Golgi surface. Cells 

were fixed with 3.7% formaldehyde (Thermo Fisher Scientific) in 1X PBS, quenched in 

50 mM ammonium chloride in PBS for 5 min, permeabilized for 5 min in 0.2% Triton-X 

100 in PBS for 5 min and blocked in 0.2% fish skin gelatin in PBS for 5 min. Primary 

and secondary antibodies were added to blocking buffer and incubated for 1 hr at room 

temperature. Primary antibodies: polyclonal antibody against cis-Golgi marker giantin 

(1:1200 PRB-114C, Covance), antibody against β-tubulin (1:2000, Developmental 

Studies Hybridoma Bank #E7). Secondary antibodies: goat anti-rabbit Alexa680-labeled 

secondary antibody (1:500, Jackson ImmunoResearch). Coverslips were mounted in 

ProlongGold (Invitrogen) and imaged using an inverted epifluorescence microscope 

(Nikon TE2000E) with a 40x/0.75 NA objective and a CoolSnapHQ camera 



 67 

(Photometrics). Only cells expressing low levels of motor-mNG-FRB were imaged and 

included in quantification, as high expression of mutant KIF5C disrupted the microtubule 

network. Cargo localization before and after motor recruitment was quantified using two 

different methods. First, the phenotype of cargo dispersion was scored as clustered, 

partial dispersion, diffuse dispersion, or peripheral dispersion based on the signal 

localization in the PEX3 (peroxisome) or giantin (Golgi) signal. Second, a distance-

based analysis using a custom ImageJ plugin was applied. Statistical differences 

between mean cargo intensity at each binned distance between wild type and mutant 

motors were calculated by using a two-tailed unpaired Student’s t test. 

2.3 Results 

2.3.1 Molecular dynamics simulations highlight residues critical for ATP-
dependent NL docking 

To test whether CNB and/or N-latch formation serve as mechanical elements for 

kinesin-1 force generation, we sought to identify critical interactions between the CS 

(β0, aa 4–9), motor core (β1-α6, aa 10–326), and NL (β9-β10, aa 327–338) that we 

could target for mutagenesis. We performed 100 ns all-atom molecular dynamics (MD) 

simulations of the rat kinesin-1 (RnKIF5C) motor domain in association with tubulin. 

Four replicate simulations were carried out for motors in the nucleotide-free (apo) state 

[PDB 4LNU (Cao et al., 2014)] and the ATP-bound state [PDB 4HNA (Gigant et al., 

2013)], similar to previous analyses of kinesin-5 (Muretta et al., 2018). We then 

compared residue-residue interactions between the apo and ATP-bound states (Figure 

2.1B) with analysis across replicates to predict statistically significant distance 

differences (p<0.05). In the apo state (Cao et al., 2014), the NL is flexible (Figure 2.1A 

top) and forms few interactions with the motor domain (Figure 2.1B) while the CS 

interacts with residues in α4 and in Loop13 (Figure 2.1B, red boxes marked CS-α4 and 

CS-L13). Specifically, the C-terminal residue (CTR) of the CS (I9) points down into a 

hydrophobic pocket called the docking pocket (Sindelar, 2011) where it contacts 

residues I266, L269, and A270 of α4 and the remaining residues of the CS contact 

Loop13 (Figure 2.2A,B). Collectively, these interactions sterically block the NL from 

accessing the docking pocket. 
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In the ATP-bound state (Gigant et al., 2013), the NL is docked along the core 

motor domain, with each half of the NL (β9 and β10) forming contacts with distinct 

structural elements (Figure 2.1A bottom, Figure 2.1C). For the N-terminal half of the NL, 

β9 forms contacts with the CS to form the cover-neck bundle (CNB) (Figure 2.1B, blue 

box marked NL-CS) as well as contacts with α4 and Loop13 (Figure 2.1B, blue boxes 

marked NL-α4 and NL-L13). These contacts are made possible by the ATP-dependent 

formation of an extra turn at the end of α6, the NL initiation sequence [NIS (Nitta et al., 

2008)], that positions β9 for insertion between the CS and α4 [Figure 2.2C,D (Lang & 

Hwang, 2010; Sindelar & Downing, 2010)]. The first residue of β9 (I327) now occupies 

the docking pocket and forms contacts with residues I266, L269, and A270 of α4 (Figure 

2.2C,D). The remaining residues of β9 interact with the CS via a series of backbone-

backbone interactions to complete CNB formation (Figure 2.2C,D). For the C-terminal 

half of the NL, β10 docks along the core motor domain through interactions with α1 and 

β7 (Figure 2.1B, blue boxes marked NL-α1 and NL-β7). Specifically, the N-latch residue 

(N334) forms interactions with residues E76 and G77 in α1 and residues S225 and 

L224 in β7 and the remaining residues of β10 provide further backbone interactions with 

β7 to complete NL docking (Figure 2.2C,E). 

Overall, the MD simulations build on previous work (Cao et al., 2014; Gigant et 

al., 2013; Hwang et al., 2008; Hwang, Lang, & Karplus, 2017; Khalil et al., 2008; Nitta et 

al., 2008) and identify several residues critical for regulating the flexible-to-docked 

transformation of the NL. First, the CTR of the CS (I9) occupies the docking pocket 

bordered by α6, α4, and L13 in the nucleotide-free state such that the NL remains 

undocked and flexible. Second, I327 of the NIS occupies this pocket in the ATP-bound 

state and begins the process of NL docking along the core motor domain. We note that 

the presence of an isoleucine or valine as the CTR and NIS residues is a conserved 

feature of most kinesin motors that undergo processive motility (Figure 2.3). This 

conservation suggests that the ability of these residues to occupy the docking pocket in 

a mutually exclusive manner may be a conserved mechanism for kinesin motility and 

force generation. Third, residue N334 interacts with both α1 and β7 to position the NL 

along the core motor domain, thereby specifying the direction of motion. As noted 

previously (Hwang et al., 2008; Khalil et al., 2008), an asparagine residue between β9  
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Figure 2.1 MD simulations identify key interactions between the kinesin-1 NL and motor domain. 

(A) Surface representation of the kinesin-1 (RnKIF5C) motor domain in the nucleotide-free (apo) state (top, PDB 4LNU) or ATP-
bound, post-power stroke state (bottom, PDB 4HNA). The neck linker (NL, light green) is represented as a cartoon and is flexible in 
the apo state and docked along the motor domain in the ATP-bound state. Additional secondary structure elements are indicated: 
coverstrand (CS, purple), α1 (dark green), β7 (yellow), Loop13 (L13, orange), β8 (teal), neck linker (NL: β9 and β10, light green). (B) 
Differences in residue-residue distances between kinesin-1 motors in the apo versus ATP-bound states as determined from MD 
simulations. The secondary structure elements are laid out along the x- and y-axes with α-helices colored in black, β-strands in grey, 
or colored according to (A). Residue-residue interactions that are significantly closer (p<0.05) in the apo state (red) or ATP-bound 
state (blue) are indicated on the graph. The magnitude of the distance change is indicated by color intensity. Interactions between 
key structural elements are labeled. (C) Sequence alignment of the kinesin-1 motor domain across species (Dm, Drosophila 
melanogaster; Rn, Rattus norvegicus; Hs, Homo sapiens). For simplicity, only secondary structure elements indicated in (A) are 
displayed; an asterisk indicates the asparagine-latch (N-Latch). (D) Schematic of key structural elements involved in CNB formation 
and NL latching in WT and mutant motors. The first-half of the NL (β9, light green) interacts with the C-terminal end of the CS 
(purple) to form the cover-neck bundle (CNB). The second half of the NL (N-Latch and β10) interacts with β7 (yellow) of the core 
motor domain for NL docking. Residue-residue contacts for NL docking are depicted as blue lines. Point mutations generated to 
disrupt CNB formation, N-latch formation, or both are shown in red text. 
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Figure 2.2 CS and NL interactions in the no nucleotide (apo) and ATP-bound, post-power stroke states of the kinesin-1 
motor domain bound to tubulin. 

(A, B) Nucleotide-free (apo) state. (A) Cartoon representation of the kinesin-1 motor domain (PDB 4LNU) in the nucleotide-free 
(apo) state. Secondary structure elements: coverstrand (CS, purple), α1 (dark green), β7 (yellow), Loop13 (orange), β8 teal, neck 
linker (NL: β9 and β10, light green). Red lines depict residue-residue distances that are significantly closer (p<0.05) in the apo state 
compared to the ATP-bound state across replicate MD simulations. The magnitude of the distance change is indicated by color 
intensity. The CS (purple) shows close interactions with Loop13 (orange) and α4 (grey). The NL (light green) is flexible and shows 
few interactions with other elements of the motor domain. (B) Enlarged view of CS interactions. The C-terminal residue of the CS 
[the coverstrand terminal residue (CTR), I9] lies in the docking pocket (dashed circle) and interacts with residues in α4 (I266, L269, 
A270), while the N-terminal residues of the CS (A5, E6, C7, S8) interact with residues in Loop13 (L292, G293, G294, N295). (C–E) 
ATP-bound state. (C) Cartoon representation of the kinesin-1 motor domain (PDB 4HNA) in the ATP-bound state. Secondary 
structure elements are colored as in (A). Blue lines depict residue-residue distances that are significantly closer (p<0.05) in the ATP-
bound state compared to the apo state across replicate MD simulations. The magnitude of the distance change is indicated by color 
intensity. The CS and N-terminal half of the NL (β9) interact to form the cover-neck bundle (CNB) and the C-terminal half of the NL 
(N-latch and β10) interacts with the core motor domain (α1 and β7) to complete NL docking. (D) Enlarged view of CNB interactions. 
The N-terminal residue of the NL (I327) now occupies the docking pocket (dashed circle) and interacts with residues in α4 (I266, 
L269, A270). The CS (A5, E6, C7, S8, I9) interacts with residues in β9 of the NL (K328, N329, T330) to form the CNB. (E) Enlarged 
view of NL docking interactions. The highly conserved asparagine residue (N-latch, N334) forms critical interactions with α1 residues 
(G77, Y78) and β7 residues (S225, G226). Interactions between subsequent residues of β10 of the NL (E336) and β7 (L224, S225) 
complete NL docking. 
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Figure 2.3 Sequence alignment of the motor domain reveals subtle sequence changes that may alter CNB formation and 
NL docking across the kinesin superfamily. 

Sequence alignment of the motor domain from kinesin-1, –2, −3, –4, −5, and –6 families across species (Dm, Drosophila 
melanogaster; Ce, Caenorhabditis elegans, Xl, Xenopus laevis; Rn, Rattus norvegicus; Hs, Homo sapiens). For simplicity, only 
secondary structure elements critical for CNB and N-Latch formation in kinesin-1 are indicated: coverstrand (CS, purple), α1 (dark 
green), β7 (yellow), Loop13 (L13, orange), β8 (teal), neck linker (NL: β9 and β10, light green). The coverstrand terminal residue 
(CTR), NL initiation sequence (NIS), and asparagine-latch (N-Latch) are indicated at the bottom in red text. 
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and β10 is a conserved feature of many kinesin motors with an N-terminal motor 

domain (Figure 2.1C asterisk, Figure 2.3). 

2.3.2 CNB and N-latch mutations severely cripple single kinesin-1 motor stepping 
under load 

To delineate the importance of CNB formation and N-latch formation for force 

generation and transport by kinesin-1 motors, we generated mutations that would 

weaken the CNB, N-latch, or both. To test the role of CNB formation, CS residues A5 

and S8 were mutated to glycine residues (Figure 2.1D, CNB mutant), which have a low 

propensity to form a β-sheet (Minor and Kim, 1993). The A5G/S8G double mutation was 

previously reported to impair force generation for single Drosophila melanogaster 

kinesin-1 motors in optical trap experiments (Khalil et al., 2008). Whether the analogous 

mutations alter the force generation and/or motility of mammalian kinesin-1 motors has 

not been tested. To test the role of the N-latch, residue N334 was mutated to an alanine 

residue (Figure 2.1D, Latch mutant). CNB mutations were also combined with the Latch 

mutation to assess the importance of CNB formation followed by NL docking in tandem 

(Figure 2.1D, CNB+Latch mutant). 

To verify the effects of the mutations, we carried out MD simulations of the Latch 

and CNB+Latch mutant motors in the tubulin- and ATP-bound state (post-power stroke) 

[PDB 4HNA (Gigant et al., 2013)]. For the Latch mutant, the simulations predict that the 

N-latch and β10 residues make fewer interactions with α1 and β7 (Figure 2.5B–D). For 

the CNB+Latch mutant, the simulations predict that mutation of the CS (A5G,S8G) 

results in intra-CS interactions (Figure 2.4D,E) rather than interactions with β9 of the NL 

(Figure 2.4A,B) and that mutation of the N-latch residue (N334A) results in interactions 

of β10 with the CS and β8 (Figure 2.4D,F) rather than with α1 and β7 (Figure 2.4A,C). 

Thus, mutations of CS and N-latch residues weaken CNB formation and NL latching, 

respectively.  

We used a custom-built optical trap apparatus with nanometer-level spatial 

resolution to assess the effect of the CNB and Latch mutations on kinesin-1’s force 

output. COS-7 cell lysates containing FLAG-tagged, constitutively-active versions of WT 

[RnKIF5C(1-560)] or mutant kinesin-1 motors were subjected to standard single-  
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Figure 2.4 MD simulations predict that CNB+Latch mutations alter CNB formation and NL docking. 

(A–F) The kinesin-1 motor domain in the ATP-bound, post-power stroke state is shown as a cartoon representation (PDB 4HNA). 
Secondary structure elements are colored: coverstrand (CS, purple), α1 (dark green), β7 (yellow), Loop13 (L13, orange), β8 (teal), 
neck liker (NL: β9 and β10, light green). Residues targeted for mutations are indicated as circles. (A, D) (A) Blue lines depict 
residue-residue distances that are significantly (p<0.05) closer in the WT motor as compared to the CNB+Latch mutant across 
replicate MD simulations. The magnitude of the distance change is indicated by color intensity. (D) Red lines depict residue-residue 
distances that are significantly (p<0.05) closer in the CNB+Latch mutant as compared to the WT motor across replicate MD 
simulations. The magnitude of the distance change is indicated by color intensity. (B, E) Enlarged view of CNB interactions. (B) 
Contacts between the CS (residues S8, C7) and the NL (β9 residues I327, K328, N329) are shorter in the WT motor, suggesting 
that CNB formation is disrupted in the CNB+Latch mutant. (E) The mutated CS makes intra-CS contacts rather than interactions 
with the NL. (C, F) Enlarged view of NL-β7 interactions. (C) The WT motor shows shorter contacts for (i) the N-latch (N334) with β7 
(L224, S225) and α1 (G77, Y78) residues, (ii) the N-terminal half of the NL (β9 residues V331, S332, V333) with the core motor 
domain (L13 residue N295 and α1 residues E76, G77, Y78), and (iii) the C-terminal half of the NL (β10 residue E336) with the core 
motor domain (β7 residues L224, S225). This suggests that NL docking is disrupted in the CNB+Latch mutant. (F) The mutated NL 
makes interactions with the CS rather than β7. 
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Figure 2.5 MD simulations predict that mutations of the N-Latch alter CNB formation and NL docking. 

(A, B) Differences in residue-residue distances between (A) WT and CNB+Latch mutant motors or (B) WT and Latch mutant motors 
based on MD simulations of tubulin-bound motors in the ATP-bound state. The secondary structure elements are laid out along the 
x- and y-axes with α- helices in black, β-strands in grey, or colored according to Figure 2.4. Distances that are significantly (p<0.05) 
shorter in the apo state (red) or ATP-bound state (blue) are displayed. The magnitude of the distance change is indicated by color 
intensity; interactions between elements are labeled. (C, D) Ribbon representation of (C) the kinesin-1 motor domain with N-latch 
mutation (PDB 4HNA) associated with tubulin in the ATP-bound state and (D) enlarged view of NL docking interactions. Secondary 
structure elements responsible for NL docking are colored; coverstrand (CS, purple), α1 (dark green), β7 (yellow), Loop13 (L13, 
orange), β8 (teal), neck linker (NL: β9 and β10, light green). Blue lines depict residue contacts that are closer in the WT motor as 
compared to the Latch mutant. The magnitude of distance change is indicated by line color intensity. Contacts between the N-latch 
(N334) with the core motor domain (β7 residues L224, S225 and α1 residues G77, Y78) and contacts between the C-terminal half of 
the NL (β10 residue E336) with the core motor domain (β7 residues L224, S225) are closer in the WT, suggesting that NL docking is 
disrupted in the Latch mutant. 
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molecule trapping assays [Figure 2.6, (Reinemann et al., 2018; Reinemann et al., 2017; 

Svoboda & Block, 1994)]. Individual WT motors were motile in the absence of load, 

stalled on the microtubule when approaching the detachment force, and detached from 

the microtubule at an average force of 4.6 ± 0.8 pN (Figure 2.6B,C), consistent with 

previous studies (Khalil et al., 2008; Svoboda and Block, 1994). In contrast, the CNB 

mutant detached from the microtubule before stalling (Figure 2.6C) and at much lower 

loads than WT motors (mean detachment force 0.91 ± 0.6 pN, Figure 2.6B), overall 

similar to the behavior of the fly kinesin-1 with identical mutations in the CS (Khalil et al., 

2008). 

 The Latch mutant was also sensitive to small opposing forces exerted by the 

trap. We found that motors with a weakened N-latch (Latch mutant) did not stall under 

load (Figure 2.6C) and detached from the microtubule when subjected to a mean force 

of 0.84 ± 0.4 pN (Figure 2.6B), similar to the CNB mutant motor. This is consistent with 

previous MD simulations where forced rupturing of the N-Latch led to the rapid 

unbinding of the entire NL from the core motor domain (Khalil et al., 2008). Thus, 

mutations that weaken either CNB or N-latch formation resulted in motors equally 

impaired in their ability to drive bead motility under load. The effects of the CNB and 

Latch mutations were not additive as individual CNB+Latch mutant motors displayed  

 
Figure 2.6 CNB and N-Latch formation are critical for force generation by single kinesin-1 motors. 

(A) Schematic of single-molecule optical trap assay. Cell lysates containing FLAG-tagged KIF5C(1-560) motors were incubated with 
beads functionalized with anti-FLAG antibodies and subjected to standard optical trapping assays. (B, C) Force generation of WT 
(black), CNB (purple), Latch (green), and CNB+Latch (yellow) motors under single-molecule conditions. (B) Detachment forces are 
plotted as a dot plot where each dot indicates the maximum detachment force of an event and the mean for each construct is 
indicated by a black horizontal line. Maximum detachment forces include motility events where single motors reached a plateau stall 
before detachment and events where the motor abruptly detached from the microtubule. N ≥ 20 events for each construct; ***, 
p<0.001, compared to the WT motor. (C) Representative traces. Black arrowheads indicate abrupt detachment events. 
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behaviors similar to the CNB and Latch motors: a tendency to detach rather than stall 

when subjected to load (Figure 2.6C) and detachment from the microtubule at low loads 

(mean detachment force 0.81 ± 0.5 pN, Figure 2.6B). These results indicate that both 

CNB formation and N-latch formation are critical for single kinesin-1 motors to generate 

a strong power stroke and transport continuously under load. 

2.3.3 CNB and latch mutants display enhanced unloaded motility properties 
We used single-molecule motility assays to examine the behavior of the CNB 

and Latch mutants under unloaded conditions. Cell lysates containing kinesin-1 

KIF5C(1-560) motors tagged with three tandem monomeric citrine fluorescent proteins 

(3xmCit) were added to flow chambers containing polymerized microtubules and their 

single-molecule motility was examined using total internal reflection fluorescence (TIRF) 

microscopy. The velocity, run length, and microtubule landing rate were determined 

from kymograph analysis with time displayed horizontally and distance vertically (Figure 

2.7A). At least 250 motility events were quantified for each motor across three 

independent trials and summarized as a histogram or dot plot (Figure 2.7B–D). 

Although weakening of the CNB, N-Latch, or both severely diminished the ability 

of the mutant motors to bear load in the optical trap assay (Figure 2.6), remarkably, all 

mutant motors were faster and more processive than the WT motor under unloaded 

conditions. CNB, Latch, and CNB+Latch motors displayed faster velocities of 0.771 ± 

0.004 µm/s, 0.761 ± 0.005 µm/s, and 0.788 ± 0.005 µm/s, respectively, compared to 

0.617 ± 0.005 µm/s for WT motors (Figure 2.7B). The mutant motors also displayed 

longer run lengths of 2.07 ± 0.057 µm, 4.27 ± 0.073 µm, and 5.332 ± 0.096 µm, 

respectively, as compared to 0.990 ± 0.039 µm for WT motors (Figure 2.7C).

 Examination of the kymographs indicated an increase in the number of motility 

events for the mutant motors. We therefore quantified how often motors landed on a 

microtubule to start a processive run (landing rate) and measured landing rates of 0.525 

± 0.01, 1.463 ± 0.03, and 2.442 ± 0.6 events/µm�nM�s, respectively, compared with WT 

motor rate of 0.172 ± 0.006 events/µm�nM�s (Figure 2.7D). Examination of the 

kymographs also indicated that the Latch and CNB+Latch mutant motors displayed 

small gaps between runs (Figure 2.7E). One possibility is that the gaps indicate the 

reattachment of motors such that multiple runs are joined into superprocessive runs. An  
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Figure 2.7 CNB and Latch mutants display enhanced motility properties under single-molecule, unloaded conditions. 

(A) Motility properties of WT or mutant motors tagged with three tandem monomeric Citrines (3xmCit) at their C-termini were 
analyzed in standard single-molecule motility assays using TIRF microscopy. Representative kymographs are shown with time 
displayed on the x-axis (bar, 2 s) and distance displayed on the y-axis (bar, 2 µm). (B–D) Quantification of motility properties. From 
the kymographs, single-motor (B) velocities, (C) run lengths, and (D) landing rates were determined and the data for each 
population is plotted as a histogram. (B, C) The mean ± SEM are indicated above each graph; N ≥ 250 events across three 
independent experiments for each construct; ***, p<0.001 as compared to the WT motor. (D) Each dot indicates the landing rate 
along a single microtubule with the mean indicated by horizontal black line; (E) Magnified view of the representative kymograph of 
the CNB+Latch mutant shown in (A) (y-axis bar, 2 µm; x-axis bar, 2 s); yellow arrowheads indicate gaps in the runs.  
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Figure 2.8 CNB+Latch mutants exhibit fast reattachment events during processive runs. 

(A) Motility properties of kinesin-1 KIF5C(1-560) CNB+Latch mutant or the highly processive kinesin-3 motor KIF1A(1-393)-LZ. The 
motors were tagged with either a HaloTag and labeled with an JF649 fluorescent dye or with monomeric Ruby3 fluorescent protein. 
Motors were analyzed in cell lysates in standard single-molecule motility assays using TIRF microscopy. Representative 
kymographs are shown with time displayed on the x-axis (bar, 2 s) and distance displayed on the y-axis (bar, 4 µm). Red boxes 
indicate magnified region displayed in bottom panels; arrow heads indicate gaps in runs. (B–D) Characterization of gaps. (B) The 
number of gaps per µm of microtubule for motors labeled with HaloTag-JF649. The data for each population is plotted as a dot plot; 
the mean ± SEM are indicated at the top of the graph; ***, p<0.001. (C) The displacement during the gap for motors labeled with 
HaloTag-JF649. The data for each population is plotted as a dot plot; the mean ± SEM are indicated at the top of the graph; ***, 
p<0.001. (D) The difference in measured versus expected displacement during the gap for motors labeled with HaloTag-JF649 or 
mRuby3. The displacement during the gaps was measured from the kymographs. The expected displacement of the motor during 
the time frame of the same gap was calculated using the measured velocity of the motor. The difference between measured and 
expected displacement for each population is plotted as a dot plot; the mean ± SEM are indicated at the top of the graph; ***, 
p<0.001 for HaloTagged compared to mRuby-tagged versions for each motor. If the gaps in the runs are due to fluorophore blinking, 
the measured displacement during the gap will be the same as the expected displacement (difference = 0, dotted black line). If the 
gaps in the runs are due to fast reattachment of the motor to the microtubule track, the measured distance during the gap will be 
shorter than the expected displacement (difference <0). 
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alternative possibility is that the mutant motors are superprocessive with the gaps in the 

runs due to blinking of the fluorescent tag. To distinguish between these possibilities, 

we compared the single-molecule motility behavior of the CNB+Latch mutant when 

tagged with a fluorescent marker that does (mRuby) or does not (HaloTag with JF549 

dye) exhibit blinking behavior (Figure 2.8A). As a control, we carried out the same 

analysis for a known superprocessive motor, the kinesin-3 motor KIF1A (Soppina et al., 

2014) (Figure 2.8A). For the CNB +Latch mutant motors, the distance moved during a 

gap was ~1 pixel less than the distance expected for a motor undergoing constant 

motility (Figure 2.8D), where KIF1A motors, the distance moved during a gap was 

nearly identical to the distance expected for a motor undergoing constant velocity 

(Figure 2.8D). These data are consistent with the idea that the gaps in the kymographs 

are due to CNB+Latch mutant motors undergoing detachment and reattachment events 

rather than constant motility. However, we cannot rule out the possibility that the gaps in 

the kymographs are due to blinking of the fluorescent markers used to track CNB+Latch 

motors given that i) the distances moved during the gaps are at the limit of resolution of 

our microscope system and ii) the fluorescent markers may behave differently when 

attached to the CNB+Latch mutant motor versus the KIF1A motor. Regardless of 

whether the gaps in the kymographs are due to reattachment events that string together 

multiple runs or due to blinking behavior during superprocessive runs, the single 

molecule motility data highlight the differences in motor behavior under unloaded and 

loaded conditions. For kinesin-1 motors, mutations that result in weakened CNB and/or 

N-latch formation lead to a decreased detachment from the microtubule track (increased 

run length) under unloaded single-molecule conditions (Figure 2.7) but a more rapid 

detachment from the microtubule when subjected to a load (Figure 2.6). 

2.3.4 MD simulations predict that modulating CNB and N-latch formation 
enhances microtubule binding and catalytic site closure 

We hypothesized that the enhanced motility properties of the mutant motors 

under unloaded conditions are due to allosteric effects of mutations designed to hinder 

NL docking on the nucleotide and microtubule binding regions of the motor domain. We 

thus re-examined the MD simulations of the Latch and CNB+Latch mutant motors 
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associated with tubulin in the ATP-bound state [PDB 4HNA (Gigant et al., 2013)] with a 

focus on residue interactions outside of the CNB and NL docking regions. 

The MD simulations revealed enhanced interactions between elements important 

for coordinating and hydrolyzing nucleotide in the CNB+Latch mutant as compared to 

the WT motor (Figure 2.9 A, B). Specifically, the residue-residue distances are shorter 

between the P-loop and α0 (Figure 2.9B, red box PL-α0; 2.10D–F). As the P-loop 

coordinates ATP in the nucleotide pocket and α0 gates ATP binding (Hwang et al., 

2017), this result suggests that modulating NL docking influences the ability to capture 

and/or hold ATP in the nucleotide-binding pocket. Shorter residue-residue distances are 

also observed between Switch 1 and α0 (Figure 2.9, red box S1-α0; Figure2.10D–F) 

and between switch 1 and Switch 2 (Figure 2.9, red box S1-S2; Figure2.10D–F). 

Enhanced interactions between residues involved in coordinating and hydrolyzing 

nucleotide are also observed in the Latch mutant (Figure 2.10G–I). As closure of the 

switch regions is necessary for ATP hydrolysis (Cao et al., 2014; Clancy et al., 2011; 

Parke et al., 2010; Turner et al., 2001), these results indicate that the Latch and 

CNB+Latch mutations result in enhanced catalytic site closure and ATP hydrolysis that 

could account for the increase in velocity of the mutant motors under single-molecule, 

unloaded conditions. 

To gain an understanding of how mutations that hinder CNB formation and/or NL 

docking can result in enhanced microtubule binding (landing rate) and processivity of 

the mutant motors, we used principle component analysis (PCA) to create a map of the 

conformational differences of the microtubule-binding surface of the kinesin-1 motor 

domain in the microtubule-free (and ADP-bound) state as compared to the microtubule-

bound (and ATP-bound) state. The structures of seventeen motor domains from five 

different kinesins were subjected to interconformer analysis with PCA. The CS and NL 

regions were excluded from the analysis due to their absence from most ADP-bound 

structures. PCA analysis revealed that the first two dimensions account for over 80% of 

the variance in atomic positional displacements of the microtubule-binding surface 

between these states (PC1 79.66%, PC2 4.95%, Figure 2.9C). Thus, PC1 and PC2 
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Figure 2.9 CNB+Latch mutations enhance microtubule binding and catalytic site closure. 

(A) Ribbon representation of the kinesin-1 motor domain in the ATP-bound, post-power stroke state (PDB 4HNA). Secondary 
structure elements critical for nucleotide binding and hydrolysis are colored as follows: Switch 1 (S1, purple), Switch 2 (S2, green), 
P-loop (yellow), and α0 (orange). Red lines depict residue-residue distances that are shorter in the CNB+Latch mutant motor versus 
WT motor (p<0.05); blue lines depict residue-residue distances that are shorter in the WT motor versus CNB+Latch mutant motor 
(p<0.05). The magnitude of the distance change is indicated by line color intensity. Note that the point of view is rotated with respect 
to previous figures. (B) Differences in residue-residue distances between WT kinesin-1 and CNB+Latch mutant motors in the ATP-
bound, tubulin-bound state in MD simulations. The secondary structure elements are laid out along the x- and y-axes with α- helices 
in black, β-strands in grey, or colored according to (A). Distances that are significantly shorter (p<0.05) in CNB+Latch (red) or WT 
(blue) motor are displayed. The magnitude of the distance changes is indicated by color intensity; interactions between structural 
elements are labeled. (C) Principle component analysis (PCA) was used to define states of the microtubule-binding surface of 
kinesin-1. The x-ray structures of seventeen motor domains from five different kinesin families in the ADP-bound or ATP-bound 
states were utilized. The position of each motor domain structure within the PCA map is indicated together with its nucleotide state 
(red, ATP; yellow, ADP-Pi; green, ADP), microtubule state (circle, no microtubule; triangle, bound to microtubule), and PDB code. 
The first two principle components (PC1 and PC2) represent over 80% of the structural variation across the microtubule-binding 
surface between the ADP-bound and ATP-bound states. PC1 represents the positioning of α4 as ‘down’ in the ADP-like state and 
‘up’ in the ATP-like state. The ability of WT versus CNB+Latch mutant motors to sample these states was then analyzed by MD 
simulations starting from the 2KIN structure in the ADP-bound and microtubule-free state. The conformational space explored by 
each motor is projected as a topographic map (WT, blue; CNB+Latch, red) onto the PCA analysis plot. 
 
provide a suitable conformational space to describe the structural dynamics of kinesin 

motor domains transitioning from an ADP-bound, microtubule-free state to an ATP-

bound, microtubule-bound state. The major conformational difference between these 

states can be described by PC1 which involves a displacement of α4, where α4 is in a 

‘down’ orientation in the ADP-like, microtubule-free structures and in an ‘up’ orientation 

in the ATP-like, microtubule-bound structures (Figure 2.9C), consistent with previous 

studies (Scarabelli & Grant, 2013). 

We then used the PCA conformational space to compare how often the WT and 

CNB+Latch motor domains could adopt the ATP-bound, microtubule-bound state from 

between the ADP-bound, microtubule-free and the ATP-bound, microtubule-bound 
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Figure 2.10 Interactions between nucleotide coordinating elements (P-Loop, Switch 1, Switch 2, and α0) in WT, CNB+Latch, 
and Latch mutant motors. 

Differences in residue-residue distances based on MD simulations between (A–C) the nucleotide-free (apo) and ATP-bound states 
of WT kinesin-1 associated with tubulin, (D–F) WT and CNB+Latch mutants associated with tubulin in the ATP-bound state, and (G–
I) WT and Latch mutants associated with tubulin in the ATP-bound state. (A,D,G) Summary of distance differences. The secondary 
structure elements are laid out along the x- and y-axes with α- helices in black, β-strands in grey, or colored according to Figure 2.9. 
Distances that are significantly (p<0.05) shorter are indicated by the color of the boxes. The magnitude of the distance change is 
indicated by intensity; interactions between elements are labeled. (B,E,H) Ribbon representations of the kinesin-1 motor domain 
(PDB 4HNA) associated with tubulin in the ATP-bound state and (C,F,I) enlarged views of PL, S1, S2, and α0 interactions. 
Secondary structure elements are indicated by color, P-loop (PL, yellow), Switch 1 (S1, purple), and Switch 2 (S2, green), α0 
(orange). (E,F) For the CNB+Latch mutant motor, enhanced interactions between S2-PL, S1-S2, α0-PL, and α0-S1 suggest 
enhanced nucleotide coordination and closure of the catalytic site. (H,I) For the Latch mutant motor, enhanced interactions between 
S1-PL, S2-PL, and S1-S2 suggest enhanced catalytic site closure. 
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states (Figure 2.10C, blue topographic lines). Starting from the same 2KIN structure, the 

CNB+Latch mutant sampled an additional conformational space closer to that defined 

by the ATP-bound, microtubule bound kinesin structures (Figure 2.10C, red topographic 

lines). Overall, this suggests that the CNB +Latch mutant has a higher degree of 

structural flexibility in its microtubule-binding regions as compared to the WT motor 

domain. This structural flexibility would enable the motor to more readily adopt a 

conformation compatible with strong microtubule binding in response to ATP in the 

nucleotide pocket and could account for the enhanced microtubule-landing rate and 

processivity observed in single-molecule assays. 

2.3.5 CNB and N-latch mutations do not affect the ability of teams of kinesin1 
motors to transport low-load cargo (peroxisomes) in cells 

Having defined the force generating properties of individual CNB, Latch, and 

CNB+Latch mutant motors, we sought to test whether the integrity of CNB formation 

followed by NL latching is a critical determinant for kinesin motors working in teams to 

drive cargo transport in cells. To do this, we used an inducible recruitment strategy 

(Kapitein et al., 2010) to link teams of motors to the surface of membrane-bound 

organelles and monitored transport to the cell periphery after 30 min (Figure 2.11A). 

Previous studies utilized single-particle tracking of peroxisomes in COS-7 cells and 

found that they exhibit sub-diffusive motion in the perinuclear region and that 2–15 pN 

of force, depending on peroxisome size, is required to move a peroxisome away from 

this region (Efremov et al., 2014). Therefore, the peroxisome can be considered a low-

load cargo [Figure 6B, (Schimert et al., 2019)] requiring teams of kinesin-1 motors to 

collectively transport against loads < 3 times greater than the force required to stall a 

single motor. 

COS-7 cells were cotransfected with a plasmid for expression of RnKIF5C(1-560) 

motors tagged with monomeric NeonGreen (mNG) and FRB domain and a plasmid for 

expression of a peroxisome targeted PEX-mRFP-FKBP fusion protein. In the absence 

of rapamycin, the PEX-RFP-FKBP fusion proteins localized to the peroxisome surface 

and the WT KIF5C-mNG-FRB proteins were diffusely localized throughout the cell 

(Figure 2.12A). Addition of rapamycin resulted in recruitment of motors to the 

peroxisome surface via dimerization of the FRB and FKBP domains and motor activity 



 84 

drove dispersion of the peroxisomes to the cell periphery (Figure 2.12A). Cargo 

dispersion before and after motor recruitment was quantified using two different 

methods. First, cargo dispersion in each cell was qualitatively scored as clustered, 

partially dispersed, diffusely dispersed, or peripherally dispersed (Figure 2.13A) with the 

data for the population of cells summarized as a stacked bar plot. Second, peroxisome 

dispersion was quantified by generating a radial profile of cargo intensity for each cell 

and converting this profile into a normalized distance distribution; the distance 

distribution across multiple cells was then averaged across all cells for each motor 

construct (Figure 2.13B). 

In the absence of rapamycin, peroxisomes were largely clustered in middle of cell 

(Figure 2.12A,E; Figure 2.11C, qualitatively 67% of cells have clustered peroxisomes; 

Figure 2.11D, quantitatively 95% of the peroxisome intensity adjacent to the nucleus). 

Thirty minutes after addition of rapamycin and recruitment of teams of WT kinesin-1 

motors, peroxisomes were transported to the periphery of the cell (Figure 2.12A,E; 

Figure 2.11C, qualitatively 94% of cells have dispersed peroxisomes; Figure 2.11D, 

quantitatively 81% of the peroxisome intensity at the cell periphery). Notably, although 

mutant motors are crippled in their ability to transport against load as single motors in 

an optical trap (Figure 2.6), as teams these motors are able to cooperate to transport 

peroxisomes to the cell periphery to a similar extent as teams of WT motors. 

Specifically, thirty minutes after addition of rapamycin and motor recruitment, teams of 

CNB, Latch, or CNB+Latch mutant motors were able to disperse peroxisomes to the 

periphery of the cell (Figure 2.12 B–E; Figure 2.11C, qualitatively 97%, 92%, and 97% 

of cells have dispersed peroxisomes, respectively; Figure 2.11D–F, quantitatively 84%, 

81%, and 79% of the peroxisome intensity at the cell periphery, respectively). Statistical 

analysis indicates that peroxisome dispersion by the mutant motors was not significantly 

different than that of the WT motor (Figure 2.11D–F). These results suggest that 

impaired force generation by weakening CNB and/or N-latch formation can be 

overcome by teams of motors for efficient transport of a low-load, membrane-bound 

cargo in cells. 
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Figure 2.11 CNB and Latch mutations do not affect transport of peroxisomes (low-load cargo) by teams of kinesin-1 
motors in cells. 

(A) Schematic of the inducible motor recruitment assay. A kinesin motor tagged with monomeric NeonGreen (mNG) and an FRB 
domain (KIF5C-mNG-FRB) is coexpressed with a cargo targeting sequence (CTS) tagged with monomeric red fluorescent protein 
(mRFP) and FKBP domain (CTS-mRFP-FKBP) in COS-7 cells. Addition of rapamycin (+Rap) causes heterodimerization of the FRB 
and FKBP domains and recruitment of motors to the cargo membrane. Recruitment of active motors drives cargo dispersion to the 
cell periphery. (B) Schematic of the inducible peroxisome dispersion assay. Peroxisomes are loosely clustered in the perinuclear 
region of COS-7 cells and are largely immotile, thus providing a low-load cargo for transport by teams of recruited motors. (C) 
Qualitative analysis of peroxisome dispersion. Peroxisome localization in individual cells was scored as clustered (black), partially 
dispersed (dark grey), diffusely dispersed (light grey), or peripherally dispersed (white) 30 min after recruitment of teams of WT, 
CNB, Latch, or CNB+Latch motors. The data for each construct is summarized as a stacked bar plot. For each construct, N ≥ 50 
cells were analyzed across three separate experiments. (D–F) Quantitative analysis of peroxisome dispersion. A radial profile of 
peroxisome intensity was generated for each cell and the data for each condition was converted to an averaged and normalized 
distance distribution across all cells. Each data point indicates the mean normalized cargo intensity ± SEM for N ≥ 50 cells across 
three separate trials. Gray dotted line: WT -Rap; Black line: WT +Rap; Purple line: CNB +Rap; Green line: Latch +Rap; Yellow line: 
CNB+Latch +Rap. Statistically significant differences in peroxisome localization comparing the mean normalized cargo intensity of 
the mutant motors to the wild type at any binned distance was determined; *, p<0.05. 
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Figure 2.12 Peroxisome dispersion (low-load cargo) by teams of WT or CNB and/or NL docking mutant motors. 

(A–D) Representative images of peroxisome dispersion before (-Rap) and after (+Rap) motor recruitment to the peroxisome 
surface. Blue lines indicate the nucleus and periphery of each cell. Blue arrowheads indicate redistribution of peroxisomes after 
addition of rapamycin (+Rap), bar 10 µm. Percentages in the upper corner indicate the percent of cells with the indicated dispersion 
phenotype: black: clustered peroxisomes; dark gray: partially dispersed peroxisomes; light gray: diffusely dispersed peroxisomes; 
white: peripherally dispersed peroxisomes. (E) Qualitative analysis of peroxisome dispersion. Cells were scored as clustered 
(black), partially dispersed (dark grey), diffusely dispersed (light grey), or peripherally dispersed (white) for N ≥ 50 cells for each 
construct across at least three trials. The data for each construct are summarized as a stacked bar plot. 
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Figure 2.13 Analysis of cargo dispersion in cells. 

(A) Qualitative analysis of cargo dispersion. Cargo localization was scored as: black: clustered (cargo is tightly clustered near the 
nucleus of the cell); dark gray: partially dispersed (cargo is loosely clustered, majority of the cargo remains near nucleus, but some 
cargo has been redistributed closer to the cell periphery); light gray: diffusely dispersed (cargo is dispersed diffusely throughout the 
cell with minimal cargo remaining in the perinuclear region); or white: peripherally dispersed (cargo is no longer clustered in the 
perinuclear region of the cell but instead accumulated at the cell periphery). (B) Quantitative analysis of cargo dispersion. To 
quantify cargo localization in a cell, (1) a custom ImageJ plugin generates a line scan from the centroid of the nucleus to the 
periphery of the cell; this is repeated every one degree for a total of 360 line scans around the cell. The fluorescence intensity along 
each line scan is determined. (2) For background subtraction, a line scan starting from the centroid of the nucleus to the cell 
periphery is generated in a region of the cell that lacks cargo and is subtracted from each line scan (scaled background subtraction). 
Distances that correspond to regions inside the nucleus are removed from each line scan, such that point 0 corresponds to the edge 
of the nuclear membrane. Oversampling of pixels in the center of the cell was corrected, following the assumption that the cell is a 
perfect circle. (3) The total distance of each line scan was normalized to itself, such that the distance of each line scan was between 
0 (nuclear membrane) and 1 (cell periphery). (4) Pixel intensities were grouped in bins by distance (width, 0.05) and only the top 200 
pixels within each bin were included in further analysis. (5) Pixel intensity was averaged for each binned distance to generate a 
dispersion profile for the cell. Dispersion profiles of all cells were averaged and plotted as mean ± SEM for each normalized distance 
bin. Cargo intensity in 0.0–0.25 normalized distance bins is in the perinuclear region of the cell while cargo intensity in 0.75–1.0 
normalized distance bins is at the periphery of the cell. 
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2.3.6 CNB and N-latch mutations impair the ability of teams of kinesin-1 motors to 
transport high-load cargo (Golgi elements) in cells 

Although CNB formation and NL latching were not required for teams of kinesin 

motors to transport peroxisomes to the cell periphery, we considered the possibility that 

NL docking may be critical under conditions where motors must generate high forces 

and work against high loads. To address how motors cooperate in teams to transport 

high-load cargo in cells, we used the inducible recruitment strategy (Figure 2.11A) to 

link teams of motors to the Golgi membrane using a GMAP210 Golgi localization 

sequence (Engelke et al., 2016; Schimert et al., 2019) and monitored cargo transport to 

the cell periphery after 30 min. The Golgi is a compact organelle and its localization 

near the nucleus is maintained by a variety of mechanisms including microtubule minus-

end directed activity of cytoplasmic dynein motors (Brownhill, Wood, & Allan, 2009). 

Using an optical trap, Guet et al. determined that over 150 pN of force is required to 

deform the Golgi network in cells (Guet et al., 2014). Therefore, the Golgi can be 

considered a high-load cargo [Figure 2.14, (Schimert et al., 2019)] as teams of motors 

driving Golgi dispersion are required to cooperate to transport against forces ~ 30 times 

greater than the force required to stall one kinesin-1 motor. 

To validate that peroxisome and Golgi dispersion represent low- and high-load 

cargoes in cells, respectively, we assessed whether teams of kinesin-8 KIF18A motors, 

previously characterized to stall at 1 pN of force (Jannasch et al., 2013), can cooperate 

to transport peroxisomes and Golgi elements. Before addition of rapamycin, both 

peroxisomes and Golgi were clustered in middle of cell (Figure 2.15A,B). Thirty minutes 

after addition of rapamycin and recruitment of teams of KIF18A motors, peroxisomes 

were dispersed to the periphery of the cell (Figure 2.15A–C, qualitatively 91% of cells 

have dispersed peroxisomes, quantitatively 80% of peroxisome intensity at the cell 

periphery). However, thirty minutes after addition of rapamycin and recruitment of teams 

of KIF18A motors to Golgi membranes, a majority of Golgi elements remained localized 

in the perinuclear region of the cell with minimal accumulation at the cell periphery 

(Figure 2.15 1D–F, qualitatively 86% of cells have clustered Golgi; quantitatively 66% of 

Golgi intensity adjacent to the nucleus). Overall these findings suggest that teams of 
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KIF18A motors are able to generate sufficient force to transport peroxisomes but not 

Golgi elements to the cell periphery. 

We thus examined the ability of teams of WT or mutant kinesin-1 motors to 

transport Golgi elements to the cell periphery. Before addition of rapamycin, the Golgi 

was clustered near the nucleus of the cell (Figure 2.16A,E; Figure 2.14B, qualitatively 

85% of cells have clustered Golgi; Figure 2.14C, quantitatively 83% of Golgi intensity 

near the nucleus). 30 min after addition of rapamycin and recruitment of teams of WT 

kinesin-1 motors to the Golgi surface, Golgi elements were efficiently dispersed to the 

cell periphery (Figure 2.14 A,E; Figure 2.14B, qualitatively 82% of cells have dispersed 

Golgi; Figure 2.14C, 50% of Golgi intensity at the cell periphery). However, hindering 

either CNB or N-latch formation resulted in motors that were crippled in their ability to 

cooperate in teams to transport Golgi elements to the cell periphery. Thirty minutes after 

addition of rapamycin and recruitment of teams of CNB or Latch mutants, a significant 

fraction of Golgi elements remained clustered in the perinuclear region rather than 

accumulated at the cell periphery (Figure 2.16B,C,E; Figure 2.14B, qualitatively only 

64% of cells have dispersed Golgi for CNB and 42% for Latch mutant; Figure 2.14C, 

quantitatively only 34% of Golgi intensity at the cell periphery for CNB and Figure 

2.14D, only 35% for Latch mutant). In this cellular assay, the effects of the CNB and N-

latch mutations were additive as teams of CNB +Latch mutants were even more 

crippled in their capacity to cooperate and transport Golgi elements than the CNB and 

Latch mutant motors. Upon recruitment of CNB+Latch mutant motors, the majority of 

the Golgi elements remained clustered in the perinuclear region of the cell (Figure 

2.16,E; Figure 2.14B, qualitatively only 13% of cells have dispersed Golgi; Figure 2.14E, 

quantitatively only 22% of Golgi intensity at the cell periphery). Statistical analysis 

indicates that there is significant impairment of Golgi dispersion to the cell periphery 

after recruitment of mutant motors compared to WT motors (Figure 2.14C–E). 

To verify that the inability of the CNB, Latch, and CNB+Latch mutant motors to 

drive Golgi dispersion was due to the increased load imposed by this cargo, we 

repeated the assay in cells where the contribution of cytoplasmic dynein to Golgi 

clustering was reduced. To do this, we overexpressed a truncated dynein intermediate 



 90 

 
2.15 Validation of peroxisome and Golgi as low- and high-load cargoes, respectively. 

(A,D) Representative images of (A) peroxisome dispersion or (D) Golgi dispersion before (-Rap) and after (+Rap) recruitment of 
teams of KIF18A motors. (A) COS-7 cells were cotransfected with plasmids encoding for the expression of KIF18A-mNG-FRB and 
peroxisome targeting PEX3-mFRP-FKBP fusion proteins. (D) COS-7 cells were cotransfected with plasmids encoding for the 
expression of KIF18A-mNG-FRB and the Golgi-targeting GMAP201p-mRFP-FKBP fusion proteins. Blue lines indicate the nucleus 
and periphery of each cell. Blue arrowheads indicate peroxisomes dispersed after addition of rapamycin (+Rap), bar 10 µm. 
Percentages in the upper corner indicate the percent of cells with the indicated dispersion phenotype: Black: clustered; Dark gray: 
partially dispersed; Light gray: diffusely dispersed; White: peripherally dispersed. (B,E) Qualitative analysis of (B) peroxisome or (E) 
Golgi dispersion. Cells were scored as clustered (black), partially dispersed (dark grey), diffusely dispersed (light grey), or 
peripherally dispersed (white) for N ≥ 40 cells for each construct across two experimental trials and results are summarized as a 
stacked bar plot. (C,F) Quantitative analysis of (C) peroxisome or (F) Golgi dispersion. A radial profile of peroxisome or Golgi 
intensity was generated for each cell and the data for each condition was converted to an averaged and normalized distance 
distribution across all cells. Each data point indicates the mean normalized cargo intensity ± SEM for N ≥ 40 cells across three 
separate trials. KIF18A, -Rap (dotted blue); KIF18A, +Rap (solid blue). 
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Figure 2.14 CNB and NL docking mutations impair transport of Golgi elements (high-load cargo) by teams of kinesin-1 
motors in cells. 

(A) Schematic of inducible Golgi dispersion assay. A variety of mechanisms, including the action of cytoplasmic dynein motors 
(black), maintain the Golgi in a compact cluster near the nucleus. Thus, the Golgi is a high-load cargo for transport by teams of 
recruited kinesin motors. (B) Qualitative analysis of Golgi dispersion. COS-7 cells were cotransfected with plasmids encoding for the 
expression of WT or mutant KIF5C-mNG-FRB motors together with the Golgi-targeting GMAP210p-mFRP-FKBP fusion protein. 
Motor recruitment was induced by addition of rapamycin (+Rap) and cells were fixed after 30 min and stained with an antibody to 
the Golgi marker giantin. Golgi localization in individual cells was scored as clustered (black), partially dispersed (dark grey), 
diffusely dispersed (light grey), or peripherally dispersed (white) after recruitment of teams of WT, CNB, Latch, or CNB+Latch 
motors. For each construct, N ≥ 30 cells were analyzed across three separate experiments. The results for each construct are 
summarized as a stacked bar plot. (C–E) Quantitative analysis of Golgi dispersion. A radial profile of Golgi intensity was generated 
for each cell and the data for each condition were converted to an averaged and normalized distance distribution across all cells. 
Each data point indicates the mean normalized cargo intensity ± SEM for N ≥ 30 cells across three separate experiments. Gray line: 
WT -Rap; Black line: WT +Rap; Purple line: CNB +Rap; Green line: Latch +Rap; Yellow line: CNB+Latch + Rap. Significant 
differences in mean normalized cargo intensity after recruitment of mutant motors as compared to WT motors are indicated for each 
distance; *, p<0.05; **, p<0.01; ***, p<0.001. 
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2.16 Golgi dispersion (high-load cargo) by teams of WT or NL docking mutant motors. 

(A–D) Representative images of Golgi dispersion before (-Rap) and after (+Rap) recruitment of teams of motors to the Golgi 
surface. COS-7 cells were cotransfected with plasmids encoding for the expression of (A) WT, (B) CNB, (C) Latch, or (D) 
CNB+Latch KIF5C-mNG-FRB motors and Golgi-targeting GMAP210p-mFRP-FKBP fusion proteins. Blue lines indicate the nucleus 
and periphery of each cell. Blue arrowheads indicate Golgi elements dispersed after addition of rapamycin (+Rap), bar 10 µm. 
Percentages in the upper corner indicate the percent of cells with the indicated dispersion phenotype: Black: clustered Golgi; Dark 
gray: partially dispersed Golgi; Light gray: diffusely dispersed Golgi; White: peripherally dispersed Golgi. (E) Qualitative analysis of 
Golgi dispersion. Cells were scored as clustered (black), partially dispersed (dark grey), diffusely dispersed (light grey), or 
peripherally dispersed (white) for N ≥ 30 cells for each construct across multiple trials. The data for each construct is summarized as 
a stacked bar plot. 
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Figure 2.17 Kinesin-1 CNB and/or Latch mutants can drive transport of reduced-load Golgi elements. 

(A) Schematic of Golgi dispersion assay with reduced-load. A truncated dynein intermediate chain (IC2), which acts as a dominant 
negative (DN) for dynein function, was expressed to interfere with dynein association with Golgi elements. In cells expressing the 
dynein DN, Golgi elements are a reduced-load for recruited kinesin-1 motors. (B–F) Representative images of reduced-load Golgi 
dispersion (in cells expressing dynein DN) before (-Rap) or after (+Rap) recruitment of teams of kinesin motors to the Golgi surface. 
COS-7 cells were cotransfected with plasmids encoding for the expression of mNG-FRB tagged motors, Golgi targeting GMAP201p-
mRFP-FKBP, and dynein DN IC2 (IC2-N237-BFP) fusion proteins. Cells were selected and Golgi dispersion scored in cells 
expressing high levels of dynein DN IC2. Blue lines indicate the nucleus and periphery of each cell. Blue arrowheads indicate Golgi 
elements dispersed after addition of rapamycin (+Rap), bar 10 µm. Percentages in the upper corner indicate the percent of cells with 
the indicated dispersion phenotype: Black: clustered Golgi; Dark gray: partially dispersed Golgi; Light gray: diffusely dispersed Golgi; 
White: peripherally dispersed Golgi. (G) Qualitative analysis of Golgi dispersion. Cells were scored as clustered (black), partially 
dispersed (dark grey), diffusely dispersed (light grey), or peripherally dispersed (white) before (- Rap) or after (+Rap) recruitment of 
teams of kinesin motors. N ≥ 16 cells for each construct across two trials. The results for each construct are summarized as a 
stacked bar plot. 
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chain 2 (IC2-N237) that acts in a dominant negative (DN) manner to block endogenous 

dynein function and causes partial dispersion of the Golgi complex [Figure 2.17A, 

(Blasius et al., 2013; King, 2003)]. In cells overexpressing the dynein DN, transport of 

Golgi elements by teams of KIF18A motors was enhanced (Figure 2.17B,D; qualitatively 

54% of cells have dispersed Golgi; quantitatively 37% of Golgi intensity at the cell 

periphery). These results indicate that cytoplasmic dynein contributes to the forces that 

teams of recruited kinesin motors must overcome to transport Golgi elements to the cell 

periphery. In cells overexpressing the dynein DN, the ability of the CNB Latch, and 

CNB+Latch mutant motors to drive Golgi dispersion was also enhanced (2.17B,E–G, 

qualitatively 96% of cells have dispersed Golgi for WT, 88% for CNB mutant, 69% for 

Latch mutant, and 64% for CNB+Latch mutant). Taken together, these results suggest 

that while weak kinesin motors can cooperate for transport of a low-load membrane-

bound cargo, they are unable to work in teams when faced with a high-load cargo in 

cells. 

2.4 Discussion 
Studies at the single motor level have led to the hypothesis that CNB formation is 

the force-generating element for kinesin motors. Here we use molecular dynamics 

simulations, optical trapping, and single-molecule assays to show that both CNB and N-

latch formation are critical for single kinesin-1 motors to transport against force. 

Weakening of either CNB or N-latch formation results in motors that do not stall under 

load and detach at low forces. Under unloaded conditions, mutant motors display 

improved motility properties due to allosteric effects of NL docking on the microtubule 

and nucleotide binding regions of the motor. We also use cellular assays to examine the 

contribution of CNB and N-Latch formation to the ability of motors to work in teams for 

transport of membrane-bound organelles. We find that both CNB formation and NL 

latching are critical for kinesin-1 motors to transport a high-load cargo in cells, even 

when the motors are working in teams. 
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2.4.1 Impact of CNB and N-latch formation on kinesin-1 force generation  
We used MD simulations to prioritize contacts whose mutation would weaken 

CNB formation (interaction of β9 with CS) and/or NL latching (interaction of N-latch and 

β10 with β7). Importantly, the ability of the CNB and/or Latch mutant motors to undergo 

processive motility was not impaired (Figure 2.7), indicating that the mutations are 

tolerated by the motor when stepping under no load. Measurements of individual motors 

in an optical trap demonstrate that disruption of either CNB or N-latch formation resulted 

in motors unable to stall under load and more likely to detach when subjected to low 

forces (average detachment force ~1 pN, Figure 2.6). The effects of the CNB and N-

latch mutations were not additive as weakening of both elements in the CNB+Latch 

mutant resulted in motors with similar behavior under load and similar detachment 

forces as the CNB and Latch mutant motors. 

These results support the model that the CS plays a critical mechanical role in 

the force generation of kinesin-1 motors (Hesse et al., 2013; Hwang et al., 2008; Khalil 

et al., 2008; Rice et al., 1999). It is interesting that mutation of the two CS residues (A5 

and S8) in our rat kinesin-1 motor resulted in an average detachment force of ~1 pN 

whereas previous work demonstrated that mutation of the same CS residues in the fly 

kinesin-1 motor resulted in an average detachment force of ~3 pN (Khalil et al., 2008). 

An intriguing possibility is that the additional residues at the N-terminus of the fly 

kinesin-1 motor (Figure 2.1C) can engage in additional interactions with the core motor 

domain and thereby partially compensate for the mutations during CNB formation. 

Our results provide the first experimental demonstration of the contribution of N-

latch formation to kinesin-1 force generation. A role for N-latch formation was previously 

implicated in MD simulations where forced breakage of the N-latch resulted in complete 

undocking of the NL (Hwang et al., 2008). Experimentally, a previous study mutated the 

N-latch of human kinesin-1 KIF5B (N332A) and found that force generation was crippled 

(Rice et al., 2003), however, the contribution of the N-latch in this study was examined 

in the context of i) mutation of the proceeding residue (V331A) predicted to be important 

for CNB formation, and ii) a cysteine-light kinesin-1 motor domain whose force 

dependence is dampened compared to WT kinesin-1 (Andreasson et al., 2015). Our 

results indicate that without N-latch formation, single kinesin-1 motors can generate a 
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power stroke via CNB formation but cannot sustain force generation (Figure 2.6). At 

present, it is unclear whether an impaired N-latch disrupts force production due to 

dissociation of the CNB, as predicted in the simulations (Hwang et al., 2008) and/or due 

to an inability to coordinate processive stepping and the out-of-phase mechanochemical 

cycles of a dimeric kinesin-1 motor. 

2.4.2 Allosteric effects of CNB and N-latch mutations on unloaded motility  
Although mutant motors with weakened NL docking underwent premature 

detachment under loaded conditions, they exhibited enhanced motility properties under 

unloaded conditions. Specifically, the CNB, Latch, and CNB+Latch mutant motors 

displayed enhanced velocity in single-molecule motility assays (Figure 2.7), similar to 

previous results with the CS mutant version of fly kinesin-1 (Khalil et al., 2008). The 

enhanced velocity is likely due to allosteric effects of NL docking on core motor regions 

that coordinate and bind nucleotide (α0, S1, S2, PL; Figure 2.9) and could result in 

enhanced catalytic site closure that would favor ATP hydrolysis in the mutant motors. 

Our findings are consistent with previous structural and enzymatic studies suggesting 

that NL docking allosterically gates ATPase activity (Cao et al., 2014; Hahlen et al., 

2006). Our findings are also consistent with previous time-resolved (TR)2 FRET studies 

of kinesin-1 and kinesin-5 motors demonstrating that NL docking is allosterically 

coupled to active site closure (Muretta et al., 2015; Muretta et al., 2018). Collectively, 

these results highlight how subtle changes in NL docking elements (CS, β9, N-

latch/β10) can act as a molecular gearshift, where speed and processivity comes at the 

cost of robust force production. 

The CNB, Latch, and CNB+Latch mutant motors also displayed longer runs and 

an increased landing rate (Figure 2.7). These results indicate that NL docking also has 

allosteric effects on the microtubule-binding surface of kinesin-1. PCA analysis 

demonstrated that the major structural difference between motors in the ADP-bound 

and microtubule-free state and motors in the ATP-bound and microtubule-bound state is 

the positioning of α4 (Figure 2.9). MD simulations of CNB+Latch mutant motors 

indicated an increased ability of this motor’s microtubule-binding surface to sample a 

conformation compatible with strong microtubule binding (Figure 2.9, α4 up). We 
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suggest that these allosteric changes can account for the mutant motors’ enhanced run 

lengths and ability to enter or re-enter a processive run. 

That weakening of CNB and N-latch formation resulted in increased detachment 

under loaded conditions but reduced detachment under unloaded conditions is 

intriguing and further work is required to understand the mechanistic basis. These 

results highlight the benefits of a simulation-guided approach to weaken single contact 

points between the NL and the core motor domain in a manner that can reveal 

mechanical features of the motor under load yet can be tolerated by the motor when 

stepping under no load. In the future, this approach can be utilized to examine how 

sequence changes in CS and NL elements across the kinesin superfamily impact the 

force generation and motility properties of these motors. 

2.4.3  Physiological relevance of NL docking and implications for multi-motor 
transport in cells  

Our results suggest that both CNB formation and NL latching are essential for 

teams of kinesin-1 motors to collectively transport high-load, but not low-load, 

membrane-bound cargoes in cells. Teams of CNB and/or N-latch mutant motors were 

impaired in their ability to transport Golgi elements to the cell periphery as compared to 

WT kinesin-1 motors (Figure 2.14) but were able to transport peroxisomes to the cell 

periphery in a manner indistinguishable from the WT motor (Figure 2.11). Notably, this 

is the first evidence that a power stroke mechanism and force generation are critical for 

multi-motor driven transport under physiological conditions. Further support for the 

conclusion that force generation by individual kinesin-1 motors within a team is required 

for transport of high-load cargoes in cells comes from two additional findings. First, the 

kinesin-8 motor KIF18A, which generates only 1 pN of force individually (Jannasch et 

al., 2013), is able to cooperate to drive peroxisome motility but is unable to drive Golgi 

dispersion (Figure 2.15). Second, single-headed kinesin motors that weakly engage 

with the microtubule track as individual motors can cooperate to drive peroxisome 

motility but are largely unable to drive Golgi dispersion (Schimert et al., 2019). Taken 

together, these results suggest that motility properties other than a power stroke-like 

mechanism can contribute to collective motility and cargo transport but only under low-

load conditions. 
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Interestingly, the CNB, Latch, and CNB+Latch mutant motors differ in their ability 

to work collectively to drive dispersion of a high-load cargo. Teams of CNB+Latch 

mutant motors were more impaired in their ability to drive Golgi dispersion as compared 

to the CNB and N-Latch mutants (Figure 2.14). This result was surprising as we 

observed similar properties under load for the CNB, Latch, and CNB+Latch mutants as 

single motors in optical trap assays (Figure 2.6). These results highlight the limitations 

of extrapolating single-molecule properties to understand motor behavior in teams 

and/or in a cellular environment. The most likely explanation for why the CNB+Latch 

mutant is more impaired in Golgi dispersion relates to differences in the assays 

themselves. The optical trap assay measures the behavior of single motors whereas the 

cargo dispersion assays report on the cooperative activity of teams of motors. In 

addition, in the optical trap assay, motors are statically attached to a bead whereas in 

the cellular assays, motors can freely diffuse in the lipid environment of the membrane-

bound organelle. 

In multi-motor assays, the motility of individual motors can be facilitated or 

hindered by other motors in the complex. For example, motors at the leading edge of a 

membrane-bound vesicle are predicted to shoulder most of the load during transport, 

and can generate assisting forces that promote the stepping of motors at the trailing 

edge (Leduc et al., 2010; Nelson et al., 2014). For kinesin-1, assisting loads as small as 

1.5 pN could restore forward stepping and processive motion of a severely crippled 

kinesin-1 motor (Khalil et al., 2008). It may be that the CNB and Latch mutants are more 

amenable to assisting forces in the Golgi dispersion assay than the CNB+Latch mutant 

motors. Other parameters that have been noted to influence the ability of motors to work 

in teams are the load-dependent detachment of the motor from the microtubule track 

(Arpăg et al., 2014; Norris et al., 2014) and the ability to rebind to the microtubule after 

detachment (Feng et al., 2018). These parameters seem less likely to explain the 

differences between the CNB, Latch, and CNB+Latch mutant motors in Golgi dispersion 

as all of the mutant motors readily detached from the microtubule as single motors 

under load (Figure 2.6) and displayed an enhanced microtubule landing rates under 

unloaded conditions (Figure 2.7). 
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Although our findings provide strong support for the hypothesis that CNB 

formation, as the mechanical element for kinesin force production, is required for high-

load cargo transport in cells, it is possible that the differences observed between the 

peroxisome and Golgi dispersion assays are due to experimental conditions rather than 

motor force generation. While experimental conditions such as kinesin expression level 

and the effectiveness of motor recruitment have minimal influence on peroxisome 

dispersion in these assays (Efremov et al., 2014; Kapitein et al., 2010; Schimert et al., 

2019), it is possible that differences in size and/or local microenvironment fluidity result 

in cargo-specific steric effects and/or drag forces that impact transport driven by the 

exogenous motors. Further work with reconstitution systems are required to examine 

these possibilities. 

2.4.4 Implications for CNB formation and NL docking in other kinesins 
The motor domain is highly conserved in both sequence and structure across the 

kinesin superfamily and many chemical and mechanical features are likely to be shared 

across all members. Formation of a CNB has also been observed structurally for 

members of the kinesin-3, kinesin-5 and kinesin-6 families (Atherton et al., 2017; Hesse 

et al., 2013; Ren et al., 2018) although a mechanical role in force generation has only 

been tested for kinesin-1 motors. Whether N-latch formation and docking of β10 along 

the core motor domain play important roles beyond kinesin-1 remain to be investigated. 

The asparagine residue involved in N-latch formation is highly conserved across 

processive kinesins with the exception of kinesin-6 family members (Figure 2.3) and 

recent work failed to resolve a docked NL conformation for the kinesin-6 motor MKLP2 

(human KIF20A) even in the ATP- and microtubule-bound state (Atherton et al., 2017). 

In the absence of ATP, formation of the CNB is prevented by occupancy of the 

docking pocket by the hydrophobic CTR [I9 in kinesin-1 KIF5C (Cao et al., 2014; Nitta et 

al., 2008; Shang et al., 2014; Sindelar & Downing, 2010)]. Structural changes induced 

by ATP binding open up this pocket to occupancy by the NIS [I327 in kinesin-1 KIF5C 

(Cao et al., 2014; Nitta et al., 2008; Shang et al., 2014; Sindelar & Downing, 2010)].  As 

an isoleucine or valine residue is found in the CTR and NIS positions across a large 

number of kinesin sequences (Figure 2.3), mutually exclusive access of the CTR and 

the NIS to the docking cleft may be a shared feature for N-kinesins that generate force 
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and processive motility. In support of this possibility, structural studies have 

demonstrated that the docking pocket is occluded by CS residues in the absence of 

ATP for kinesin-3 and kinesin-6 motors (Arora et al., 2014; Atherton et al., 2017) 

How variations in the length and sequence of the CS influence family-specific 

force and motility properties is not understood. We note that kinesin-3 motors have the 

shortest CS (Figure 2.3) and a recent study found that the kinesin-3 motor KIF13B 

forms a short CNB with weaker CS-NL interactions than kinesin-1 (Ren, et al., 2018). 

Given our results, a short CS and weak CNB could contribute to the fast and 

superprocessive motility and high landing rate observed for motors in the kinesin-3 

family (Soppina & Verhey, 2014) as well as their tendency to detach from the 

microtubule under load (Arpăg et al., 2014; Norris et al., 2014). Interestingly, a short CS 

and weak CNB formation do not appear to negatively impact force output as single 

kinesin-3 motors are capable of withstanding forces equivalent to that of single kinesin-1 

motors [~6 pN, (Huckaba et al., 2011; Tomishige et al., 2002)]. Further work on the 

force generation of kinesin-3 and other family members will provide important 

information about mechanical and structural features shared across the kinesin 

superfamily. 
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Chapter 3: Conservation of the Functional Role of the Coverstrand Across the 
Kinesin Superfamily 

 

Author contributions: 
B.G.B performed all assays except optical trapping assays and molecular dynamics 

simulations; D.N.R preformed optical trapping assays, G.S performed molecular 

dynamics simulations, B.G.B, D.N.R, and G.S analyzed data. B.G.B and K.J.V wrote the 

text and composed figures.  

3.1 Introduction 
Kinesin motor proteins are responsible for orchestrating fundamental 

microtubule-based processes including cell division, intracellular trafficking, cytoskeletal 

organization, and cilia function (Hirokawa et al., 2009; Verhey & Hammond, 2009). Here 

we investigate the motility of motors from the kinesin-1, -2, and -3 families. All three 

motor families serve critical roles in intracellular transport in many cells types, including 

neurons (Hirokawa et al., 2010; Verhey & Hammond, 2009). Under unloaded, single-

molecule conditions, kinesin-1, -2, and -3 motors are fast, processive motors with some 

degree of difference in their velocities and run lengths [velocity - KIF5C: 600 nm/s, 

KIF3AB: 400 nm/s, KIF1A: 2000 nm/s; runlength - KIF5C: 1.0 µm, KIF3AB: 1.0 µm; 

KIF1A: >20.0 µm; (Budaitis et al., 2019; Guzik-Lendrum et al., 2015; Scarabelli et al., 

2015; Soppina & Verhey, 2014)].  

However, their ability to drive transport under load is strikingly different. 

Specifically, kinesin-1 motors drive robust transport under load, eventually slowing and 

stalling along the microtubule track at high loads (Budaitis et al., 2019; Khalil et al., 

2008; Svoboda & Block, 1994). However, heterodimeric kinesin-2 motor KIF3AB and 

kinesin-3 motor KIF1A are sensitive to detaching from the microtubule track when 

subjected to small loads (Andreasson et al., 2015; Arpăg et al., 2014; Milic et al., 2017; 

Tomishige et al., 2002). Recent computational and biophysical studies predict that a 
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motor’s sensitivity to detaching under load is an important parameter that dictates the 

ability for motors to cooperate to drive transport, and therefore can lead to novel 

transport behaviors by teams of motors in cells (Arpăg et al., 2014; Norris et al., 2014; 

Ohashi et al., 2019). However, the molecular elements of the kinesin motor domain that 

modulate the force output of a motor are not well understood.   

For kinesin-1, the founding member of the kinesin superfamily, zippering of the 

first half of the NL (β9) with β0 of the coverstrand (CS) at the N-terminus of the motor 

domain, forms a 2-stranded β-sheet termed the cover-neck bundle (CNB, Figure 3.1). 

CNB formation drives the NL forward into the docking pocket along the motor domain, 

providing the power stroke for force generation (Budaitis et al., 2019; Hwang et al., 

2008; Khalil et al., 2008). After CNB formation, the second half of the NL (β10) latches 

along the surface of the core motor domain by interactions between a highly conserved 

asparagine residue (N334) in the NL and β7 of the docking pocket. NL latching is 

important for processive stepping under load [Figure 3.1; (Budaitis et al., 2019; Hwang 

et al., 2008)]. 

Structural observations of CNB formation and NL latching by other kinesins 

suggest a conserved mechanism for force generation (Atherton et al., 2014; Atherton et 

al., 2017; Hesse et al., 2013; Nitta et al., 2008; Ren et al., 2018), however their 

mechanical role in force generation has only been tested for kinesin-1 (Budaitis et al., 

2019; Hesse et al., 2013; Khalil et al., 2008). Previous work found that chimeric kinesin-

1 motors that have the CS, NL, and/or Loop13 sequences of the kinesin-5 motor Eg5 

have a reduced force output in optical trap assays, providing the first hint that 

differences in CNB formation across the kinesin superfamily may be a strategy to tune 

the force output of a motor (Hesse et al., 2013). Moreover, sequence alignment reveals 

striking differences in the length and sequence of the coverstrand across the kinesin 

superfamily (Figure 3.1).  

To qualitatively understand whether differences in the sequence and length of 

the coverstrand tune the functional output of kinesin motors, we used molecular 

dynamics (MD) simulations to predict CNB formation in kinesin-1, -2, and -3 motors. To 

understand how differences in CNB formation may modulate the function output of 

motors, we generated mutations in the CS of kinesin-1 and -2 motors and tasked 
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motors to drive transport of membrane-bound cargo in cells. Specifically, we find that 

truncation of the CS in kinesin-1 and kinesin-2 motors cripples their ability to drive 

transport of high-lad cargo in cells, supporting the proposed mechanical role of the CS 

for generating a power stroke. Notably, this is the first evidence that the CS serves an 

important role for high-load transport in a motor other than kinesin-1. Furthermore, work 

presented in this chapter provides a framework of how sequence diversity of the CS, 

NL, and docking pocket may influence a motor’s force output across the kinesin 

superfamily.  

3.2 Materials and Methods 
Detailed in the materials and methods of Chapter 2. 

3.3 Results 

3.3.1. High-load transport by teams of kinesin motors in cells 
To better understand the functional differences between kinesin families under 

physiological conditions, we tasked members from the kinesin-1, -2, -3 and -8 families 

to drive the transport of low- or high-load cargoes in cells. We used a non-inducible 

recruitment strategy to link teams of motors to the surface of peroxisomes [low-load, 2-

15 pN, (Efremov et al., 2014)] or Golgi elements [high-load, +150 pN, (Budaitis et al., 

2019)] and monitored transport to the cell periphery after 8 hours using fluorescence 

microscopy. Cargo dispersion in individual cells were qualitatively scored before and 

after motor recruitment as clustered (black), partially dispersed (dark grey), diffusely 

dispersed (light grey), and peripherally dispersed (white) (Figure 3.1) and summarized 

as a stacked bar plot.  

Specifically, COS-7 cells were transfected with a plasmid for expression of a 

constitutively-active kinesin motor tagged with monomeric citrine and fused to PEX26 or 

GMAP210p sequence to target motors to the surface of peroxisomes or Golgi elements, 

respectively (Figure 3.1A). We screened a number of kinesin motors in this assay: the 

kinesin-1 motors KIF5A, KIF5B, KIF5C, the kinesin-2 motors KIF3AB, KIF17, the 

kinesin-3 motors KIF1A, KIF13A, KIF16B, and the kinesin-8 motor KIF18A.  

In untransfected cells, peroxisomes and Golgi elements are typically clustered 

near the nucleus of the cell (82% cells have clustered peroxisomes, 84% cells have 
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clustered Golgi, Figure 3.1B,C). We find that as teams, all kinesin motors we screened 

can drive the transport of low-load cargo to the cell periphery (Figure 3.1B), however 

there are striking differences in their abilities to drive the transport of high-load cargo 

(Figure 3.1C). We find that members of the kinesin-1 family are robust transporters of 

high-load cargo, with KIF5A, 5B, and 5C driving peripheral dispersion of Golgi elements 

in 83%, 49%, and 76% of cells, respectively. We also find that kinesin-3 motors are also 

able to drive the transport of high-load cargo, with KIF1A, 13B, 16B motors driving 

peripheral dispersion of Golgi elements in 62%, 58%, and 77% of cells, respectively. 

However, members of the kinesin-2 family had striking differences in their ability to drive 

high-load transport. Specifically, we find that heterodimeric motor KIF3AB drives 

peripheral dispersion of Golgi elements in 78% cells compared to 6% of cells by 

homodimeric kinesin-2 KIF17. Finally, we find that teams of KIF18A motors, with a 

single molecule force output of 1 pN (Jannasch et al., 2013), cannot collectively  

 
Figure 3.1 Diversity in the ability of teams of kinesin motors to drive transport of high-load in cells 

(A) Schematic of the peroxisome dispersion assay (left) and Golgi dispersion assay (right). Peroxisomes are loosely clustered in the 

perinuclear region of COS-7 cells and are largely immotile, thus providing a low-load cargo for transport by teams of recruited 

motors.  However, a variety of mechanisms, including the action of cytoplasmic dynein motors (black), maintain the Golgi in a 

compact cluster near the nucleus. Thus, the Golgi is a high-load cargo for transport by teams of recruited team of kinesin 

motors. (B-C) Qualitative analysis of (B) peroxisome dispersion and (C) Golgi dispersion. Cargo localization in individual cells was 

scored as clustered (black), partially dispersed (dark grey), diffusely dispersed (light grey), or peripherally dispersed (white) 8 hours 

after recruitment of teams. The data for each construct is summarized as a stacked bar plot. 
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generate sufficient forces to drive transport of Golgi elements (4% of cells have Golgi 

dispersed to the periphery; Figure 3.1C). Thus, most kinesin motors as a team can drive 

transport of low-load cargo, however they show striking differences in their ability to 

drive the transport of high-load cargo.  

3.3.2 MD simulations predict sequence divergence in the CS and NL alters CNB 
formation 

One possible reason for differences in the ability of kinesins to drive transport of 

high-load cargo is sequence changes in the mechanical elements of the motor domain 

responsible for generation a robust power stroke [i.e. the cover-neck bundle (CNB), 

dashed box, Figure 3.2A]. Sequence alignment of the coverstrand across the kinesin 

superfamily indicates an isoleucine or valine residue is found as the C-terminal residue 

(CTR) of the coverstrand. The CTR is important for initiating CNB formation (Hwang et 

al., 2008), suggesting that CNB formation may be a shared strategy for kinesins to 

generate force. However, there is substantial variation in the length and sequence of the 

remainder of the coverstrand (Figure 3.2B).  

We used molecular dynamics (MD) simulations to investigate whether sequence 

differences in the coverstrand (CS) and neck linker (β9 of the NL) of transport kinesins 

from the kinesin-1 (KIF5C), -2 (KIF17 and KIF3AB) and -3 families (KIF1A) affect CNB 

formation. Residues that contribute to CNB formation for each of these motors are 

highlighted in Figure 3.2C. The residues in the CS or β9 of the NL are each represented 

by a row of boxes, and the y-axis of each box corresponds to the time of the simulation. 

In each box, a thin horizontal yellow line indicates each time during the simulation that 

the residue made an interaction important for CNB formation and the percent of time the 

residue contributes to CNB during the simulation is denoted. Kinesin-1 motor KIF5C has 

stable interactions between residues in the coverstrand and residues in β9 of the NL to 

form a long CNB [Figure 3.2C; (Budaitis et al., 2019; Hwang et al., 2008)]. 

There were notable differences in the length of CNB formation for kinesin-2 and 

kinesin-3 motors. Specifically, kinesin-2 motor KIF3A forms a long CNB, like kinesin-1 

KIF5C (Figure 3.2C). However, kinesin-2 motor KIF3B has a proline residue in the 

middle of β9 of the NL that is predicted to shorten CNB formation (Figure 3.2C). Thus, 

as a heterodimer, KIF3AB motors have one motor head that forms a long CNB (KIF3A) 
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and one motor head that forms a short CNB (KIF3B), providing a unique opportunity to 

study the mechanism of force generation. Conversely, the homodimeric kinesin-2 motor 

KIF17 has a short coverstrand and a proline residue in the middle of β9 of the NL that 

collectively lead to a short CNB (Figure 3.2C). Finally, the kinesin-3 motor KIF1A has a 

short coverstrand composed of mainly alanine and glycine residues (Figure 3.2B), 

which have low propensities to form a beta sheet (Kim & Berg, 1993). Our MD 

simulations suggest that residues of the CS and β9 of the NL transiently interact to form 

the CNB, suggesting weak/dynamic CNB formation (Figure 3.2C). This is consistent 

with MD simulations of another kinesin-3 motor KIF13B (Ren et al., 2018). Overall, our 

MD simulations suggest that sequence divergence in the CS and β9 of the NL lead to 

differences in CNB formation for kinesin motors within and between kinesin families.     

 
Figure 3.2 Sequence changes in the CS and NL of kinesin-1, -2, and -3 families are predicted to affect CNB formation 

(A) Cartoon representation of the kinesin-1 motor domain in the ATP-bound, post-power stroke state (PDB 4HNA). Elements 

important for CNB formation are colored in yellow. Coverstrand (CS); Neck linker (NL). (B) Comparison of the sequence of the 

coverstrand (CS) and neck linker (NL) across kinesin-1, -2, -3, -4, -5, and -6 families. (C) MD simulations of CNB formation of 

motors in the kinesin-1, -2, and -3 families. The residues in the CS or β9 of the NL are each represented by a row of boxes, and the 

y-axis of each box corresponds to the time of the simulation. In each box, a thin horizontal yellow line indicates each time during the 

simulation that the residue made an interaction important for CNB formation; the percent of time that the residue contributes to CNB 

during the simulation is denoted within each box. 
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3.3.3 Truncation of the kinesin-1 CS enhances motility of single motors under no-
load but severely cripples motility under load.  
 Notably, the length of the CS is highly variable across the kinesin superfamily. 

Deletion of the entire coverstrand was previously reported to impair force generation for 

single Drosophila melanogaster kinesin-1 motors in an optical trap (Khalil et al., 2008). 

However, whether shortening the CS and consequently the number of residues that 

contribute to CNB formation can tune rather than cripple the force output of a motor is 

not clear. To delineate the importance of the length of the CS for kinesin-1 motility, we 

generated mutations that shorten the CS by three (Δ3), six (Δ6), or nine residues (Δ9, 

Figure 3.3A) and used single-molecule motility assays to examine the behavior of the 

CS truncation mutants under unloaded and loaded conditions.  

Cell lysates containing kinesin-1 RnKIF5C(1-560) motors tagged with three 

tandem monomeric citrine (mCit) fluorescent proteins were added to flow chambers 

containing polymerized microtubules and their single-molecule, unloaded motility was 

examined using total internal reflection fluorescence (TIRF) microscopy. The velocity, 

run length, and microtubule-landing rate were determined from kymograph analysis and 

kymographs are displayed with time displayed horizontally and distance vertically 

(Figure 3.3B). Motility events were quantified for each motor and summarized as a 

histogram or dot plot (Figure 3.3C-D). Remarkably, motors with a coverstrand lacking 

three or six residues were faster (Δ3: 936± 6 nm/s and Δ6: 1033±5 nm/s) and more 

processive (Δ3: 3.0±0.2 µm and Δ6: 8.6±0.2 µm) compared to the WT motor (733±8 

nm/s, 1.2±0.07 µm, Figure 3.3C,D).  Motors with the entire coverstrand removed were 

similar speeds (Δ9: 747±14 nm/s) but were more processive (Δ9: 4.8±0.3 µm) than the 

WT motors (Figure 3.3C,D). Examination of the kymographs indicated an increase in 

the number of motility events for coverstrand truncation motors compared to WT 

motors. We therefore quantified how often Δ3, Δ6, and Δ9 motors landed on a 

microtubule to start a processive run (landing rate) and measured landing rates of 

1.06±0.01, 1.62±0.03, 0.69±0.07 events�µm−1nM−1s−1, respectively, compared with WT 

motor rate of 0.172±0.04 events�µm−1nM−1s−1. Thus, as the CS is shortened, kinesin-1 

motors become faster and more processive. This is consistent with previous studies that 
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find kinesin-1 motors with weakened CNB formation have enhanced unloaded motility 

properties (Budaitis et al., 2019; Khalil et al., 2008). 

 

 

Figure 3.3 CNB truncation mutants display enhanced motility properties under single-molecule, unloaded conditions 

(A) Cartoon ribbon representation of the kinesin-1 motor domain in the ATP-bound, post-power stroke state (PDB 4HNA). Elements 

important for force generation are colored as: coverstrand (CS, purple), β7 (yellow), neck linker (NL, green). (B) Motility properties of 

WT or mutant motors tagged with three tandem monomeric citrines (3xmCit) at their C-termini were analyzed in standard single-

molecule motility assays using TIRF microscopy. Representative kymographs are shown with time displayed on the x-axis (bar, 2 s) 

and distance displayed on the y-axis (bar, 2 µm). (C–D) Quantification of motility properties. From the kymographs, single-motor (C) 

velocities and (D) run lengths were determined and the data for each population is plotted as a histogram.  
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Figure 3.4 Single molecule properties of kinesin-1 CS truncation mutant under load 

(A) Schematic of single-molecule optical trap assay. Cell lysates containing FLAG-tagged motors were incubated with beads 

functionalized with anti-FLAG antibodies and subjected to standard optical trapping assays. (B) Force generation of WT (grey) or Δ6 

mutant motors (purple) under single-molecule conditions. Detachment forces are plotted as a dot plot where each dot indicates the 

maximum detachment force of an event and the mean for each construct is indicated by a black horizontal line. Maximum 

detachment forces include motility events where single motors reached a plateau stall before detachment and events where the 

motor abruptly detached from the microtubule. N ≥ 20 events for each construct; ***, p<0.001, compared to the WT motor. Inset 

includes representative traces.  

 

We used a custom-built optical trap apparatus with nanometer-level spatial 

resolution to assess the effect of truncating half the coverstrand (6 residues) in kinesin-

1’s force output. COS-7 cell lysates containing FLAG-tagged, constitutively-active 

versions of WT [RnKIF5C(1-560)] or the mutant version with six residues of the 

coverstrand removed (Δ6) were subjected to standard singe-molecule trapping assays 

[Figure 3.4A; (Reinemann et al., 2018; Reinemann et al., 2017; Svoboda & Block, 

1994)]. Individual WT motors were motile in the absence of load, stalled on the 

microtubule when approaching the detachment force, and detached from the 

microtubule at an average force of 4.6 ± 0.8 pN (Figure 3.4B,C), consistent with 

previous studies (Khalil et al., 2008; Svoboda and Block, 1994). In contrast, the Δ6 

mutant motors detached from the microtubule before stalling (Figure 3.4C) and at much 

lower loads than WT motors (mean detachment force 0.78 ± 0.47 pN, Figure 3.4B). 

Notably, the severity of removing 6 residues of the CS versus the entire CS on the force 

output of single kinesin-1 motors is comparable (Khalil et al., 2008) and suggests small 

changes in the length of the CS may have a dramatic impact on the force output of a 

motor. Collectively, our single-molecule motility data highlights an important mechanical 

role for the CS, where shortening the CS increases speed and processivity but at a cost 

to force production.  
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3.3.4 Truncation of the coverstrand does not affect the ability of teams of kinesin-
1 motors to transport low-load cargo 

Having defined the motility properties of individual kinesin-1 coverstrand 

truncation mutants, we sought to test whether CNB formation is critical under conditions 

where motors must drive the transport of membrane-bound cargo under physiological 

conditions. To do this, we used an inducible recruitment strategy (Kapitein et al., 2010) 

to link teams of motors to the surface of low-load [peroxisomes, 2-15 pN, (Efremov et 

al., 2014)] or high-load cargo [Golgi elements, +150 pN, (Budaitis et al., 2019; Schimert 

et al., 2019)] and monitored transport to the cell periphery after 30 minutes (Figure 

3.5A). Dispersion was quantified by generating a radial profile of cargo intensity for each 

cell and converting this profile into a normalized distance distribution (Chapter 2, 

methods); the distance distribution was then averaged across all cells for each motor 

construct.  

We first tested whether the integrity of CNB formation is a critical determinant for 

kinesin motors working in teams to drive transport of low-load cargo (peroxisomes) in 

cells. Specifically, COS-7 cells were cotransfected with a plasmid for expression of 

RnKIF5C(1-560) WT or CS mutant motor tagged with monomeric NeonGreen (mNG) 

and FRB domain and a plasmid for expression of peroxisome-targeted PEX3-mRFP-

FKBP fusion protein. In the absence of rapamycin, the PEX3-mRFP-FKBP fusion 

proteins localized to the peroxisome surface and peroxisomes clustered near the 

nucleus of the cell (Figure 3.5B, grey dashed line). The WT KIF5C-mNG-FRB proteins 

were diffusely localized throughout the cell. Thirty minutes after addition of rapamycin 

and recruitment of teams of WT kinesin-1 motors to the peroxisome surface, 

peroxisomes were efficiently dispersed to the cell periphery (Figure 3.5B, black line).  

As a team, CS truncation mutant motors are able to cooperate to transport peroxisomes 

to the cell periphery to a similar extent as teams of WT motors (Figure 3.5B, Δ3: 

magenta line, Δ9: dark purple line). These results suggest that impaired force 

generation by weakening CNB formation can be overcome by teams of motors for 

efficient transport of a low-load, membrane-bound cargo in cells, consistent with 

previous results (Budaitis et al., 2019; Schimert et al., 2019). 
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Surprisingly, peroxisomes are no longer clustered near the nucleus of the cell 

upon expression of the Δ6 mutant motors (-rap) and the motors are observed to 

decorate “filaments” throughout the cell (data not shown). Previous work demonstrates 

that loss of the microtubule network leads to dispersion of peroxisomes in COS-7 cells 

(Efremov et al., 2014). We therefore hypothesized that Δ6 truncation mutant may alter 

the microtubule network in cells. Current efforts are focused on understanding how 

binding of the motor impacts the microtubule network in cells.  

3.3.5 Coverstrand truncation mutations impair the ability of teams of kinesin-1 
motors to transport high-load cargo (Golgi elements) in cells 

Although CNB formation was not required for teams of motors to transport 

peroxisomes to the cell periphery, we considered the possibility that it may be critical 

under conditions where motors must generate high forces and work against high loads. 

To address how motors cooperate in teams to transport high-load cargo in cells, we 

used the inducible recruitment strategy (Figure 3.5A) to link teams of motors to the 

Golgi membrane using a GMAP210p Golgi-localization sequence (Budaitis et al., 2019; 

Schimert et al., 2019) and monitored cargo transport to the cell periphery after 30 min.  

Before addition of rapamycin, the Golgi was clustered near the nucleus of the cell 

(Figure 3.5C, grey dashed line). Thirty minutes after addition of rapamycin and 

recruitment of teams of WT kinesin-1 motors to the Golgi surface, Golgi elements were 

dispersed to the cell periphery (Figure 3.5C, black line). Shortening the CS crippled the 

ability of motors to transport Golgi elements to the cell periphery as a majority of the 

Golgi remained clustered near the nucleus of the cell (Figure 3.5B, Δ3: magenta line, 

Δ9: dark purple line). Collectively, this suggests that impaired force generation by 

shortening the CS (Figure 3.4) can be overcome by grouping motors as a team for 

efficient transport of low-load but not high-load membrane bound cargos. Given the 

striking effects of shortening CNB formation on the functional output of single kinesin-1 

motors and teams of kinesin-1 motors in cells, we thus hypothesized that differences in 

CNB formation predicted by our MD simulations may be responsible for differences in 

the ability kinesin-2 motors KIF17 and KIF3AB motors to drive high-load transport in 

cells (Figure 3.1). 
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Figure 3.5 Truncation of the CS in kinesin-1 cripples the ability for teams of motors to drive high-load cargo in cells 

(A) Schematic of the inducible motor recruitment assay. A kinesin motor tagged with monomeric NeonGreen (mNG) and an FRB 

domain (motor-mNG-FRB) is coexpressed with a cargo targeting sequence (CTS) tagged with monomeric red fluorescent protein 

(mRFP) and FKBP domain (CTS-mRFP-FKBP) in COS-7 cells. Addition of rapamycin (+Rap) causes heterodimerization of the FRB 

and FKBP domains and recruitment of motors to the cargo membrane. Recruitment of active motors drives cargo dispersion to the 

cell periphery. (B-C) Quantitative analysis of cargo dispersion. (B) Peroxisome dispersions (low-load) and (C) Golgi-dispersion 

(high-load).  A radial profile of cargo intensity was generated for each cell and the data for each condition were converted to an 

averaged and normalized distance distribution across all cells. Each data point indicates the mean normalized cargo 

intensity ± SEM. Gray dotted line: WT -Rap; black line: WT +Rap; magenta line: Δ3 +Rap; dark purple line: Δ9 +Rap.  

3.3.6 The ability of heterodimeric KIF3AB motors to drive high-load transport in 
cells is sensitive to changes in the length of the CS of KIF3A but not KIF3B  

Given the high sequence identity between the KIF3A and 3B motor domains 

(80% sequence identity), it is unclear how each motor domain is functionally distinct 

from one another and how pairing their activities are advantageous in cells. Notably, our 

MD simulations predict that heterodimeric KIF3AB motors have one long CNB (KIF3A) 

and one short CNB (KIF3B) and thus offer a unique opportunity to study transport under 

load (Figure 3.2). We found that teams of KIF3AB motors were robust transporters of 

high-load cargo (Figure 3.1), and therefore predicted that long CNB formation by the 

KIF3A motor imparts the ability for the heterodimeric motors to drive high-load transport. 

To test this possibility, we truncated the sequences of KIF3A and/or KIF3B motors N-
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terminal to the CS and tasked teams of mutant motors to drive transport of high-load 

cargo (Golgi) in cells. KIF3AB CS truncations are equivalent to Δ3 truncation for kinesin-

1 (Figure 3.3). 

Before addition of rapamycin, the Golgi was clustered near the nucleus of the cell 

(92% of cells have clustered Golgi, Figure 3.6B). Ten minutes after addition of 

rapamycin and recruitment of teams of WT KIF3AB motors to the Golgi surface, Golgi 

elements were efficiently dispersed to the cell periphery (80% of cells have peripherally 

dispersed Golgi, Figure 3.6B). As anticipated, truncation of the KIF3B CS did not impact 

the ability of KIF3AB motors to drive transport of high-load cargo to the cell periphery 

(86% and 80% of cells have Golgi dispersed to the cell periphery, 10 and 30 minutes 

after recruitment, respectively). However, truncation of the KIF3A CS moderately 

crippled teams of KIF3AB motors to transport high-load cargo. Specifically, it takes 

motors more time to drive peripheral dispersion of high-load cargo (56% and 86% of 

cells have peripherally dispersed Golgi 10 and 30 minutes after recruitment, Figure 

3.6B). Strikingly teams of KIF3AB motors with CS truncations in both motor domains are 

strongly crippled in their ability to drive high-load transport (24% of cells had peripherally 

dispersed peroxisomes after 10 minutes) compared to heterodimeric motor where just 

the CS of KIF3A is truncated (56% of cells had peripherally dispersed peroxisomes after 

10 minutes). These results suggest a conserved role for the CS as an important 

mechanical element for transport of high-load cargo and suggest that the KIF3A motor 

domain is critical for high-load transport. Additional studies are required to delineate 

whether truncating the sequence N-terminal to the CS impairs the stability of CNB 

formation or whether theses residues contribute to CNB formation.  

Interestingly, despite the high sequence identity between the KIF3A and KIF3B 

motor domains (>80% sequence identity), the CSs of the two motor domains differ in 

their length, sequence, and charge (Figure 3.2B). Therefore, we also swapped the CS 

of KIF3A and KIF3B and tasked chimeric motors to drive transport of high-load cargo 

(Figure 3.6C). Chimeric motors where both motor domains have a KIF3A CS were able 

to drive high-load transport comparable to WT motors (80% of cells have peripherally 

dispersed Golgi compared to 80% for WT motors 10 minutes after recruitment, Figure 

3.6D). However, chimeric motors where both motor domains have a KIF3B CS were 
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crippled in their ability to drive high-load transport (0% of cells have peripherally 

dispersed Golgi compared to 80% for WT motors 10 minutes after recruitment, Figure 

3.6D). This effect is worsened when the CSs are swapped in both motor domains (0% 

of cells have peripherally dispersed Golgi compared to 80% for WT motors 10 minutes 

after recruitment; Figure 3.6D). Thus, swapping the CS even between closely related 

motors indicates that the CSs are not functionally equivalent. It is possible that the CS 

and β9 of the NL of a motor have co-evolved to tune the mechanical output of that 

motor and therefore it may be more insightful to generate point mutations rather than 

large sequence swaps to study the functional impact of CNB formation across the 

kinesin superfamily. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6 The ability for heterodimeric KIF3AB motors to drive high-load transport is sensitive to changes in the length 
and sequence of the CS of KIF3A but not KIF3B  

(A, D) Schematic of CNB formation for WT, (A) CS truncation, and (C) CS swap mutant KIF3A and KIF3B motors. (B, D) Qualitative 

analysis of Golgi dispersion by (B) KIF3AB CS truncation mutants and (D) KIF3AB CS swap mutants. Cargo localization in 

individual cells was scored as clustered (black), partially dispersed (dark grey), diffusely dispersed (light grey), or peripherally 

dispersed (white) 10 and 30 minutes after recruitment of teams to the surface of the Golgi. The data for each construct are 

summarized as a stacked bar plot. 



 122 

3.3.7 Strengthening CNB formation does not enhance the ability for teams of 
KIF17 motors to drive high-load transport in cells 

Homodimeric kinesin-2 KIF17 motors have a short coverstrand as well as a 

proline residue in β9 that are collectively predicted to shorten the number of residues 

that contribute to CNB formation (Figure 3.2). Therefore, we generated sequence 

changes in the CS of KIF5C to make CNB formation similar to KIF17. Specifically, we 

(1) shortened the KIF5C CS to the same length as the CS of KIF17 motors (Δ4), (2) 

mutated residue V331 to a proline in β9 (V331P), and (3) combined the CS truncation 

and β9 mutation (Δ4+V331P) and tasked motors to collectively drive transport of high-

load cargo in cells (Figure 3.7A). Strikingly, either strategy cripples the ability of teams 

of kinesin-1 motors to drive transport of high-load cargo after eight hours compared to 

WT kinesin-1 (Figure 3.7B; 2%, 43%, and 81% of cells have diffusely dispersed Golgi, 

for Δ4, V331P, and WT, respectively). Combining the Δ4 CS truncation and V331P point 

mutations did not further cripple the ability for teams of motors to drive high-load 

transport (Figure 3.7B; 57% cells has dispersed Golgi). Collectively, this suggests that 

the sequence changes in KIF17 may have the potential to cripple its ability to drive the 

transport of high-load cargo in cells (Figure 3.1).  
We also generated the converse sequence changes in the CS and NL of KIF17 

to lengthen CNB formation. Specifically, we (1) swapped the KIF17 CS with the longer 

KIF5C coverstrand, (2) mutated the proline residue in β9 of the NL to a valine residue 

(P339V), or (3) combined the CS swap and β9 mutation (5C CS+P339V) and tasked 

mutant motors to drive transport of high-load cargo in cells (Figure 3.7A). Strikingly, 

elongation of the CS and removal of the proline residue in β9 of the NL of KIF17 did not 

enhance the ability of teams of motors to drive the transport of high-load cargo in cells 

(98% of cells have clustered Golgi for P339V; 97% of cells have clustered Golgi for 5C 

CS; 96% of cells have clustered Golgi for 5C CS+P339V; and 89% of cells have 

clustered Golgi for WT; Figure 3.7B). Swapping the KIF17 CS with the CS from kinesin-

2 KIF3A also had no effect (data not shown).  

To assess whether the inability of teams of KIF17 motors to drive Golgi 

dispersion was due to the increased load imposed by this cargo, we repeated the assay 

where the contribution of cytoplasmic dynein to Golgi clustering was reduced. To do 
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this, we overexpressed a truncated dynein intermediate chain 2 (IC2-N237) that acts in 

a dominant negative (DN) manner to block endogenous dynein function and causes 

partial dispersion of the Golgi complex [Figure 3.8A,B, (Blasius et al., 2013; King, 

2003)]. In cells overexpressing the dynein DN, transport of Golgi elements by teams of 

KIF17 motors was moderately enhanced compared to KIF17 motors targeted to Golgi 

elements with associated dynein motors (48% of cells have clustered Golgi, 82% of 

cells have clustered Golgi, respectively, Figure 3.8B). These results indicate that 

opposing forces generated by Golgi-associated dynein motors may partially contribute 

to the inability of teams of KIF17 motors to disperse the Golgi. However, this also 

suggests that there are effects other than the force output of KIF17 that may affect this 

motor’s ability to drive dispersion of the Golgi.   

3.4 Discussion  
 Recent optical trap studies find that kinesin motors have differences in 

their force output as single motors.  Moreover, we find that most kinesins motors are 

able to drive the transport of low-load cargo in cells but note differences in their abilities 

to drive high-load transport (Figure 3.1). Although the molecular elements important for 

kinesin-1 motors to generate force are better understood (cover-neck bundle formation 

and NL latching), whether these elements are responsible for differences in high-load 

transport by other kinesin family members is not clear. Our MD simulations suggest that 

sequence difference in the CS and NL change the length and stability of the CNB for 

other transport kinesins (kinesin-1, -2, and -3 families).  We find that truncating the CS 

in kinesin-1 and kinesin-2 motor cripples their ability to drive high-load transport in cells, 

consistent with the proposed role of the CS for generation of a power stroke. Notably, 

this is the first evidence that CNB formation is critical for high-load transport by an N-

terminal kinesin motor other than kinesin-1 and suggests that modulation of CNB 

formation may serve an important role to tune the functional output of a motor.   
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Figure 3.7 Strengthening CNB formation and NL docking does not modulate the ability for KIF17 motors to drive high-load 
transport in cells  

(A) Schematic of CNB mutations in kinesin-1 KIF5C and kinesin-2 KIF17. (B) Qualitative analysis of Golgi dispersion by KIF5C and 

KIF17 CNB mutants.  Cargo localization in individual cells was scored as clustered (black), partially dispersed (dark grey), diffusely 

dispersed (light grey), or peripherally dispersed (white) 8 hours after recruitment of teams. The data for each construct are 

summarized as a stacked bar plot. 
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Figure 3.8 Teams of KIF17 motors are moderate transporters of reduced-load Golgi  

(A) Schematic of Golgi dispersion assay with reduced-load. A truncated dynein intermediate chain (IC2), which acts as a dominant 

negative (DN) for dynein function, was expressed to interfere with dynein association with Golgi elements. In cells expressing the 

dynein DN, Golgi elements are a reduced-load for recruited kinesin-1 motors. (B) Qualitative analysis of Golgi dispersion by teams 

of KIF17.  Cargo localization in individual cells was scored as tightly clustered (black), loosely clustered (black with white dots), 

partially dispersed (dark grey), diffusely dispersed (light grey), or peripherally dispersed (white) 8 hours after recruitment of teams. 

The data for each construct is summarized as a stacked bar plot. 

 

3.4.1 CNB formation across the kinesin superfamily 
 Our results combined with previous studies of CNB formation in kinesin-1 motors 

(Budaitis et al., 2019; Hesse et al., 2013; Hwang et al., 2008; Khalil et al., 2008), 

provide a model for how differences in CNB formation may tune the force output of a 

motor.  Specifically, the (1) sequence of the CS, (2) length of the CS, and (3) 

interactions of the NL with the docking pocket are predicted to be important for 

generation of a power stroke and transport against load. Furthermore, this may serve as 

a guide to assess the contribution of CNB formation to the motility of other kinesins 

across the kinesin superfamily. 

3.4.1.1 Sequence of the CS 
Previous molecular dynamics simulations of CNB formation in kinesin-1 suggest 

that backbone-backbone interactions between the CS and β9 of the NL drives formation 

of a β-sheet called the cover-neck bundle (CNB). The C-terminal residue of the CS and 

N-terminal residue of the NL in kinesins are hydrophobic residues with high propensities 

to form a β-sheet [CTR, isoleucine or valine; NTR isoleucine; Figure 2.2; (Kim & Berg, 

1993)]. Interactions between the CTR and NTR are predicted to be important for 
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initiating formation of the CNB. The remaining residues of the CS and β9 form 

backbone-backbone interactions to lengthen the CNB. Therefore, the specific amino 

acid residues of the CS are not predicted to affect CNB formation. Indeed, the sequence 

of the CS across the kinesin superfamily is highly variable [Figure 3.2 ,(Hwang et al., 

2008)].  

Although most amino acid residues can contribute to backbone-backbone 

interactions with β9 of the NL to form the CNB, the CS of some kinesins have a number 

of residues that have poor propensities to form a β-sheet. For instance, motors in the 

kinesin-4 family have a proline residue following the CTR of the CS (Figure 3.2B) that 

and may kink β9 to break or shorten the CNB. The force output of motors in the kinesin-

4 family is not well understood, therefore whether the proline residue impacts the 

motility properties of kinesin-4 motors remains to be tested. In addition, the CS of 

kinesin-3 motors have a number of residues with low propensities to form a β-sheet 

[alanine or glycine; (Kim & Berg, 1993)]. Mutating two residues of the coverstrand of 

kinesin-1 to glycine residues dramatically compromises the force output of single motors 

in an optical trap and teams driving the transport of high-load cargo in cells (Budaitis et 

al., 2019; Khalil et al., 2008). Therefore, it is possible that alanine and glycine residues 

contribute to the reduced stability of CNB formation predicted by MD simulations 

[Figure, 3.2; (Ren et al., 2018)]. 

3.4.1.2 Length of the CS  
 Previous molecular dynamics simulations suggest that the CTR and the next 5 

residues of the CS form interactions with β9 of the NL to form the CNB (Hwang et al., 

2008). We find that removing the N-terminal half of the residues that contribute to CNB 

formation (Δ6KIF5C; Figure 3.1A) severely compromises the force output of single 

motors in an optical trap (Figure 3.4). The severity of this truncation is comparable to 

the force output of a kinesin-1 motor where the entire CS was deleted (Khalil et al., 

2008). Therefore, even small changes to compromise CNB formation can have dramatic 

effects on the force output of kinesin-1. Whether this holds true for other kinesins is not 

clear.  
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In addition, most kinesin motors have additional residues at the N-terminal end of 

the CS (Figure 3.2) and their contribution to the force output of a motor is not clear. We 

find that deleting the N-terminal portion of the CS that is not predicted to contribute to 

CNB formation in kinesin-1 (Δ3KIF5C, Figure 3.1A) compromises the ability of teams to 

transport high-load cargo in cells (Figure 3.5). Therefore, although residues N-terminal 

to the CS may not form important interactions that directly contribute to CNB, it is 

possible that this added length is important for the overall stability of the β-sheet. 

Comparable CS truncations in KIF3AB motors also cripple the ability of teams of motors 

to drive high-load transport in cells (Figure 3.6B). Although the force output of teams of 

KIF3AB motors is reduced, additional work is needed to determine whether these 

residues form important interactions with the NL to directly contribute to CNB formation.   

 Strikingly, in addition to having a number of residues with low propensities to 

form a β-sheet, motors in the kinesin-3 family lack the N-terminal sequence of the CS 

(Figure 3.2B). Our MD simulations suggest that CNB formation is shorter and less 

stable in KIF1A, consistent with previous MD simulations of the kinesin-3 motor KIF13B 

(Ren et al., 2018). Additional work is need to assess how the CS in kinesin-3 motors 

impacts their motility and whether a short, dynamic CS is responsible for the sensitivity 

of KIF1A to detach from the microtubule track under low loads (Arpăg et al., 2014; 

Norris et al., 2014). 

3.4.1.3 Interactions between β9 of the NL and the docking pocket 

 ATP-dependent CNB formation causes generation of a power stroke and 

positions the NL into the docking pocket (α1-β3, β7, Loop13-β8) of the motor domain. 

After CNB formation, the asparagine residue between β9 and β10 of the NL begins the 

process of NL latching in kinesin-1(Hwang et al., 2008). NL latching is important for 

kinesin-1 motors to transport continuously under load (Budaitis et al., 2019). However, 

in kinesin-5 motors, Loop13 of the docking pocket is predicted to interact with β9 of the 

NL so that as the CNB forms to generate a power stroke, interactions between β9 and 

the docking pocket latch the NL down to the core motor domain. This is predicted to 

reduce the likelihood of NL undocking in response to force and compensate for poor 

CNB formation, thereby enabling kinesin-5 motor to transport under moderate forces 
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(Hesse et al., 2013; Valentine et al., 2006). Conversely, previous work has implicated 

that sequences changes to Loop13 can change the conformation of the NL docking 

pocket in kinesin-1 to sterically block CNB formation and NL docking (Case et al., 2000; 

Hwang et al., 2008). It is possible that bulky residues from Loop13 or other elements 

that make up the docking pocket, may decouple CNB formation with positioning of the 

NL into the docking pocket, and therefore decouple force production and stepping. 

Although, Loop13 is highly conserved across the kinesin superfamily, there are 

sequence changes that introduce bulky residues in Loop13 of kinesin-2 and -6 motors. 

Whether this is a strategy that modulates the force output of other kinesins is not clear.   

3.4.2 Allosteric implications for CNB formation  
 Surprisingly we find that kinesin-1 motors with a short CS exhibit enhanced 

motility properties under unloaded conditions. Specifically, Δ3 and Δ6KIF5C motors 

displayed enhanced velocity (Figure 3.3). This is consistent with previous studies of 

kinesin-1 with glycine mutations to weaken CNB formation (Budaitis et al., 2019; Khalil 

et al., 2008). In CS truncation mutants, the enhanced velocity is likely due to allosteric 

effects of CNB formation and NL docking on core motor regions that coordinate and 

bind nucleotide and could result in enhanced catalytic closure that would favor ATP 

hydrolysis. Collectively, these results highlight how subtle changes in NL docking 

elements (CS, β9, N-latch/β10) can act as a molecular gearshift, where speed and 

processivity comes at the cost of robust force production. Whether this tradeoff is true 

for other kinesins family members is not clear. 

3.4.3 Other factors that may affect high-load transport 
Our molecular dynamics simulations suggest that the short length of the 

coverstrand and a proline residue in β9 of the NL reduces the number of residues that 

can contribute to cover-neck bundle formation for kinesin-2 motors KIF17 and KIF3B. 

Consistent with this prediction, teams of KIF17 motors were able to drive the transport 

of low- but not high-load cargo to the cell periphery. However, mutations predicted to 

lengthen CNB formation in KIF17 did not enhance the ability for teams of motors to 

drive high load-transport. Strikingly, recent optical trap studies demonstrate that KIF17 
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is able to continuously transport against high forces under single molecule conditions [6 

pN stall force; (Milic et al., 2017)].  

The disparity between KIF17’s single molecule motility properties and its inability 

to drive high-load transport in cells is puzzling. KIF17 is best known for its function in 

driving intraflagellar transport in primary cilia and vesicle transport in neurons (Hirokawa 

et al., 2010; Verhey, Dishinger, & Kee, 2011), situations that both have specialized 

compartments with tight regulation of transport. Therefore, it is possible that high- and 

low-load artificial cargo assays are not a good method to probe the functional output of 

KIF17. One possibility is that the activity of KIF17 is regulated in an unanticipated 

manner in the cytoplasm of cells. For instance, the functional output of KIF17 may be 

regulated by post-translational modifications or by proteins that directly bind to KIF17. 

Indeed, kinesin binding protein (KBP) was recently identified to bind to the motor 

domain of KIF1A, preventing its association with microtubules in neurons (Kevenaar et 

al., 2016).  

Another possibility is that KIF17 requires a specific subset of microtubules drive 

transport. However, increasing polyglutamylation, acetylation, or detyrosination of 

microtubules in COS-7 cells did not enhance the ability for teams of KIF17 motors to 

drive high-load transport (data not shown). Therefore, recruitment of KIF17 motors to 

cargo it’s native cellular context may be a better strategy to understand its transport 

properties in cells (Engelke et al., 2019; Franker et al., 2016).  

 Finally, it is also possible that the as a single motor, KIF17 is robust at 

transporting high-load but as a team the motors are unexpectedly unable to cooperate. 

To address this possibility, it will be important to characterize the motility properties of 

defined numbers of KIF17 motors (Derr et al., 2012; Furuta et al., 2013; Grover et al., 

2016; Norris et al., 2014) and compare this to their behavior as single motors.   
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Chapter 4: KIF1A Mutations Associated with Neurodevelopmental Disorders have 
Allosteric Effects on Motor Output  

 

This chapter is modified from the following manuscript: 
Budaitis B.G.*, Jariwala S.J*, Rao L.*, Sept, D., Verhey K.J., Gennerich A. (in 

preparation). KIF1A mutations associated with neurodevelopmental disorders have 

allosteric effects on motor output.  

*equal contribution, authors listed alphabetically 

 

Author contributions: 
B.G.B performed unloaded single-molecule TIRF assays, cellular cargo transport 

assays, and prepared protein for optical trapping assays; S.J. performed molecular 

dynamics simulations; L.R. performed optical trapping assays. B.G.B, S.J. and L.R. 

analyzed data and composed figures. B.G.B and K.J.V wrote the text with input from 

authors.  

4.1 Introduction  

The cytoskeleton of eukaryotic cells forms the structural framework for 

fundamental cellular processes including cell division, cell motility, intracellular 

trafficking, and cilia function. In most if not all processes, the functional output of the 

microtubule cytoskeleton depends on a family of molecular motor proteins called 

kinesins. Kinesins are defined by the presence of a kinesin motor domain that is highly 

conserved in both sequence and structure across the kinesin superfamily. The kinesin-3 

family is one of the largest among the kinesin superfamily and its members are largely 

involved in the anterograde transport of cargoes toward the plus ends of the 

microtubules in the periphery of the cell (Hirokawa et al., 2009). Studies have shown 

that kinesin-3 proteins have strikingly different motility properties than other kinesins as 

they are fast and superprocessive and have a dramatically higher 
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landing rate (ability to productively engage with the microtubule) than other kinesin 

motors (Hammond et al., 2009; Scarabelli et al., 2015; Soppina & Verhey, 2014).  

Genetic and microscopy studies have implicated mammalian KIF1A and its C. 

elegans homolog UNC-104 in the transport of synaptic vesicle precursors (SVPs) and 

dense core vesicles (DCVs) to the axon terminal (Barkus et al., 2008; Hall & 

Hedgecock, 1991; Okada et al., 1995; Yonekawa et al., 1998). Recently, a number of 

disease-associated genetic variants and de novo mutations have been identified in 

human KIF1A from clinical studies. These mutations have been linked to 

neurodevelopmental disorders, collectively termed KIF1A Associated Neurological 

Disorder (KAND), with a spectrum of phenotypic presentations including hereditary 

spastic paraplegias, intellectual disability, autism, microcephaly, peripheral neuropathy, 

cerebral and cerebellar atrophy, and seizures (Cheon et al., 2017; Citterio et al., 2015; 

Esmaeeli Nieh et al., 2015; Hasegawa et al., 2017; Hotchkiss et al., 2016; Iqbal et al., 

2017; Klebe et al., 2012; Lee et al., 2015; Megahed et al., 2016; Ohba et al., 2015; 

Okamoto et al., 2014; Raffa et al., 2017; Roda, Schindler, & Blackstone, 2017; Samanta 

& Gokden, 2019; Tomaselli et al., 2017; Travaglini et al., 2018; Ylikallio et al., 2015; 

Yoshikawa et al., 2019). KAND mutations span the entirety of the KIF1A protein 

sequence; the majority are located within the kinesin motor domain (aa 1-369; Figure 

4.1A) and are thus predicted to affect the motor’s motility properties whereas mutations 

located outside the motor domain are likely involved in mediating cargo binding, 

dimerization, and/or autoinhibition (Hammond et al., 2009; Ren et al., 2018; Soppina et 

al., 2014; Tomishige et al., 2002).  

Here we delineate the impact of two KAND mutations, V8M and Y89D that lie in 

regions of the KIF1A motor domain predicted to participate in force generation. Our 

understanding of how kinesin motors generate force is largely based on studies of 

kinesin-1, the founding member of the kinesin superfamily. Force generation requires 

the neck linker (NL), a flexible structural element that immediately follows the motor 

domain, to dock along the surface of the motor domain in response to ATP binding. NL 

docking occurs in two steps: “zippering” where the first half of the NL (β9) forms a short 

beta strand with β0 [the cover strand (CS)] to generate a cover-neck bundle (CNB) 

followed by “latching” where the second half of the NL (β10) interacts with surface 
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residues of α1-β3 and β7 of the docking pocket (Budaitis et al., 2019; Gigant et al., 

2013; Hwang et al., 2008; Khalil et al., 2008). In the absence of ATP, the NL’s initial 

docking site (the docking pocket) is occluded by the CS (Budaitis et al., 2019; Cao et 

al., 2014; Gigant et al., 2013; Lang & Hwang, 2010; Nitta et al., 2008; Shang et al., 

2014; Sindelar & Downing, 2010). For KIF1A, the V8M mutation is located in β1, 

immediately following the CS (Figure 4.1B) and may therefore prevent CNB formation. 

Notably, a valine in this position is highly conserved across the kinesin superfamily 

[Figure 4.2B; (Richard et al., 2016)]. The Y89D mutation is located at the α1-β3 

intersection (Figure 4.1B) and an aromatic residue (tyrosine or phenylalanine) is highly 

conserved at this position across the kinesin superfamily [Figure 4.2B; (Atherton et al., 

2017; Budaitis et al., 2019)]. These two mutations are thus likely to impact not only the 

motility properties of KIF1A but also its force output.  

We used molecular dynamics (MD) simulations to probe the impact of V8M and 

Y89D directly on NL docking as well as allosteric effects on nucleotide binding and/or 

hydrolysis. We used single-molecule assays to probe motor properties under no-load 

conditions and find that both mutations result in a decrease in speed, processivity, and 

landing rate on microtubules. In addition, motors containing the Y89D mutation display 

an increase in diffusive events. Using an optical trap assay to determine the force 

output of the motors, we find that KIF1A motors do not reach a stall force but readily 

detach from the microtubule track at 2-3 pN resisting force. The motors then quickly 

reattach to the microtubule and resume transport, leading to a characteristic saw tooth 

force pattern that is distinct from other kinesin motors to date. Both KAND mutations 

result in a decrease in motor force output but have no effect on the motor’s ability to 

rapidly re-engage with the microtubule track. We then used a peroxisome-targeting 

assay to probe the ability of wild-type and mutant motors to work in teams to drive 

organelle transport in cells. We find that mutant motors show a significant delay in 

organelle transport. Collectively our results support the proposed role for the NL as a 

mechanical element important for kinesin motors to transport against load and provide 

insight into how KAND mutations affect KIF1A transport in cells.  
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4.2 Materials and Methods 

Structural model preparation of KIF1A motor complex 
Initial coordinates of KIF1A kinesin motor domain in the ATP-bound state (ATP 

analogue, AMPPNP), in complex with the tubulin heterodimer were taken from PDB 

4UXP (Atherton et al., 2014). The kinesin motor domain sequence was HsKIF1A 

(Uniprot ID Q12756). Missing coordinates, where applicable, were modeled using 

MODELLER v9.18 (Sali & Blundell, 1993). A total of 100 models were generated with 

the following options in MODELLER: variable target function method (VTFM) was set to 

slow with associated conjugate gradient set to 150 iterations, MD with simulated 

annealing option was set to slow, and the entire optimization process was repeated 

twice. The top-scoring model was selected for MD simulations with discrete optimized 

protein energy (DOPE) score (Shen & Sali, 2006) for loop refinement.  

 

Molecular dynamics simulations of KIF1A motor complex 
Energy minimization and molecular dynamics (MD) simulations were performed 

with AMBER 18 (Case et al., 2018) and the ff99SB AMBER force field (Hornak et al., 

2006). Nucleotide parameters were obtained from (Meagher, Redman, & Carlson, 

2003). Histidine protonation states were assigned based on the their pKa values 

calculated by PROPKA (Li, Robertson, & Jensen, 2005). The simulation setup and 

procedures were adopted as described (Budaitis et al., 2019; Muretta et al., 2018). MD 

simulations were started from equilibrated structures with at least four independent runs 

of at least 200 ns each. All simulations were performed in-house on NVIDIA GPU cards 

with the GPU version of PMEMD (pmemd.cuda). We thank NVIDIA for their gift of GPU 

card through their Academic GPU seed grant. Trajectory analyses were carried out in R 

using the Bio3D v2.3-3 package (Skjaerven et al., 2014). 

 
Residue-residue distance differences 

Statistically significant residue-residue distance differences between wild-type 

(WT) and mutant ATP-bound kinesin motor domains in complex with tubulin 

heterodimer were identified with ensemble difference distance matrix (eDDM) analysis 

routine (Muretta et al., 2018). For this analysis, a total of 400 conformations were 
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obtained for each state under comparison by extracting 100 equally time-spaced 

conformations from the last 20 ns of each simulation replicate. The details of obtaining 

the distance matrices from simulation trajectories, their processing, and the method of 

selecting significantly different residue-residue distances are descried previously 

(Budaitis et al., 2019; Muretta et al., 2018). Briefly, the eDDM routine reduces the 

difference between long distances while the difference between short distances are kept 

intact. The significance of residue distance variation between ATP-bound WT and 

mutant states were evaluated with the Wilcoxon test. Residue pairs showing a p-value< 

10−5 and an average masked distance difference > 1Å were considered statistically 

significant residue-residue distance differences for further analysis. 

 
Plasmids  

A truncated, constitutively active kinesin-3 [rat KIF1A(1-393)] followed by a 

leucine zipper was used (Soppina & Verhey, 2014). Point mutations were generated 

using QuickChange site-directed mutagenesis and all plasmids were verified by DNA 

sequencing. Motors were tagged with a monomeric NeonGreen-FLAGtag, or Halo-

FLAGtag for single molecule imaging assays and a monomeric NeonGreen (mNG)-FRB 

for inducible cargo dispersion assays in cells (Kapitein et al., 2010). The peroxisome-

targeting PEX3-mRFP-FKBP construct was a gift from Casper Hoogenraad [Utrecht 

University, (Kapitein et al., 2010)]. Constructs coding for FRB (DmrA) and FKBP (DmrC) 

sequences were obtained from ARIAD Pharmaceuticals and are now available from 

Takara Bio Inc. Plasmids encoding monomeric NeonGreen were obtained from Allele 

Biotechnology.  

 

Cell culture, transfection, and lysate preparation  
COS-7 (African green monkey kidney fibroblasts, American Type Culture 

Collection) were grown at 37˚C with 5% (vol/vol) CO2 in Dulbecco’s Modified Eagle 

Medium (Gibco) supplemented with 10% (vol/vol) Fetal Clone III (HyClone) and 2 mM 

GlutaMAX (L-alanyl-L-glutamine dipeptide in 0.85% NaCl, Gibco). Cells are checked 

annually for mycoplasma contamination and were authenticated through mass 

spectrometry (the protein sequences exactly match those in the African green monkey 
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genome). 4 hr after seeding, the cells were transfected with plasmids encoding for the 

expression of motor tagged with Halo-FLAG or mNeonGreen-FLAG, TransIT-LT1 

transfection reagent (Mirus), and Opti-MEM Reduced Serum Medium (Gibco). Cells 

were trypsinized and harvested 24 hr after transfection by low-speed centrifugation at 

3000 x g at 4˚C for 3 min. The pellet was resuspended in cold 1X PBS, centrifuged at 

3000 x g at 4˚C for 3 min, and the pellet was resuspended in 50 µL of cold lysis buffer 

[25 mM HEPES/KOH, 115 mM potassium acetate, 5 mM sodium acetate, 5 mM MgCl2, 

0.5 mM EGTA, and 1% (vol/vol) Triton X-100, pH 7.4] with 1 mM ATP, 1 mM 

phenylmethylsulfonyl fluoride, and 1% (vol/vol) protease inhibitor cocktail (P8340, 

SigmaAldrich). Lysates were clarified by centrifugation at 20,000 x g at 4˚C for 10 min 

and lysates were snap frozen in 5 µL aliquots in liquid nitrogen and stored at 80˚C. 

 

TIRF single-molecule motility assays  
Microtubules were polymerized (purified tubulin unlabeled and HiLyte-647-

labeled tubulin, Cytoskeleton Inc) in BRB80 buffer (80 mM Pipes/KOH pH 6.8, 1 mM 

MgCl2, 1 mM EGTA) supplemented with GTP and MgCl2 and incubated for 60 min at 

37°C. 2 µM taxol in prewarmed BRB80 was added and incubated for 60 min to stabilize 

microtubules. Microtubules were stored in the dark at room temperature for up to 2 

weeks. Flow cells were prepared by attaching a #1.5 mm coverslip (Thermo Fisher 

Scientific) to a glass slide (Thermo Fisher Scientific) using double-sided tape. 

Microtubules were diluted in fresh BRB80 buffer supplemented with 10 µM taxol, 

infused into flow cells, and incubated for four minutes to allow for nonspecific absorption 

to the glass. Flow cells were then incubated with blocking buffer [30 mg/mL casein in 

P12 buffer (12 mM Pipes/KOH pH 6.8, 1 mM MgCl2, 1 mM EGTA) supplemented with 

10 µM taxol] for four minutes. Flow cells were then infused with motility mixture (0.5–1.0 

µL of COS-7 cell lysate, 25 µL P12 buffer, 15 µL blocking buffer, 1 mM ATP, 0.5 µL 100 

mM DTT, 0.5 µL, 0.5 µL 20 mg/mL glucose oxidase, 0.5 µL 8 mg/mL catalase, and 0.5 

µL 1 M glucose), sealed with molten paraffin wax, and imaged on an inverted Nikon Ti-

E/B total internal reflection fluorescence (TIRF) microscope with a perfect focus system, 

a 100x/1.49 NA oil immersion TIRF objective, three 20 mW diode lasers (488 nm, 561 

nm, and 640 nm) and EMCCD camera (iXon+ DU879; Andor). Image acquisition was 
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controlled using Nikon Elements software and all assays were performed at room 

temperature. 

Motility data were analyzed by first generating maximum intensity projections to 

identify microtubule tracks (width = 3 pixels) and then generating kymographs in ImageJ 

(National Institutes of Health). Only motility events that lasted for at least three frames 

were analyzed. Events that ended as a result of a motor reaching the end of a 

microtubule were included; therefore, the reported run lengths for highly processive 

motors are likely to be an underestimation. For each motor construct, the velocities and 

run lengths were binned and a histogram was generated by plotting the number of 

motility events for each bin. Motor velocities were fit to a Gaussian cumulative 

distribution as previously described (Arpăg et al., 2014; Norris et al., 2014) and a one-

way analysis of variance test was used to assess whether velocity distributions were 

significantly different between motors. A Kruskal-Wallis one-way analysis of variance 

was used to assess whether run length distributions were significantly different between 

motors.  

 

Optical trapping assay 
The polystyrene trapping beads, microtubules and slides were prepared as 

described previously (Rao et al., 2019). Briefly, polystyrene beads with an average 

diameter of 500 nm (Bangs Laboratories Inc. #PC02002) were coated with streptavidin 

and α-casein, or with an anti-GFP antibody and α-casein. Coverslips (Zeiss #474030-

9000-000) were cleaned with 25% HNO3 and 2 M NaOH, washed with ddH2O, air dried, 

and stored at 4°C. The flow chamber was assembled with a glass slide, parafilm stripes, 

and a cleaned coverslip as described (Rao, et al., 2019). Microtubules with incorporated 

biotinylated tubulin were attached to the cover glass surface via α-casein-biotin and 

streptavidin.  

Control cell lysate without KIF1A expression was tested to ensure there are no 

non-specific interactions between other endogenous motors in the lysate with the 

beads. 100 beads were tested and no force generation was observed under the same 

experimental conditions used for cell lysates containing tagged KIF1A constructs. Cell 

lysate with KIF1A was pre-diluted 50-200x. 1 µl of the predilution was incubated with 0.4 



 143 

µl beads on ice for 15 min. The lysate was pre-diluted so that less than 10% of the 

beads showed force generation. The protein-bead mixture was diluted in 40 µL assay 

buffer (60 mM HEPES, 50 mM KAc, 2 mM MgCl2, 1 mM EGTA, 1 mM DTT, 10 µM 

taxol, 2 mM ATP, 50 mM glucose oxidase, 1.25 mg/ml α-casein, 10% glycerol) and 

flowed into the slide chamber. All optical trapping experiments were performed with 

LUMICKS C-trap®, which combines optical tweezers with 3-color total internal reflection 

fluorescence (TIRF) microscopy and interference reflection microscopy (to visualize 

unlabeled MTs).   

4.3 Results 

4.3.1 KIF1A disease variants cluster within functionally distinct regions of the 
motor domain 

To provide insight into how KAND mutations may affect KIF1A motility, mutations 

(red) were mapped onto the protein sequence (Figure 4.1A) or structure [Figure 4.1B, 

PDB 4UY0, (Atherton et al., 2014)] of the KIF1A motor domain. Amino acid residues 

within the KIF1A motor domain were colored according to their role in (1) microtubule 
binding (Loop2, Loop7, Loop8, α4, Loop12, α5; α6; dark blue), (2) nucleotide binding 
and hydrolysis [α0, Loop9/Switch1, Loop11/Switch2, PLoop (PL); cyan], (3) or 
stepping and force generation [coverstrand (CS), α1-β3, Loop13, neck linker (NL, β9-

β10); blue]. A majority of KAND mutations cluster within these functional elements 

(21/31 mutations; Figure 4.1A,B, red). This is consistent with clustering of mutations 

found in other neuronal kinesins (KIF5A, KIF5C, KIF1C) linked to neurodevelopmental 

and/or neurodegenerative disorders [(Jennings et al., 2017), Figure 4.2A-C, red text 

indicates disease-associated mutations].  

KIF1A motors have a unique set of positively-charged residues within Loop8, 

Loop11, Loop12, and α6 that make important interactions with negatively-charged 

residues in α- and β-tubulin throughout the ATPase cycle [Figure 4.2C, (Atherton et al., 

2014; Nitta et al., 2004; Okada & Hirokawa, 1999)]. Indeed, many KAND mutations that 

mapped to elements important for microtubule binding [α4 (L278P); Loop12 (P305L, 

R307Q); α5 (R316W); α6 (R350G)] were loss-of-charge mutations (Figure 4.1A, B).  

Previous mutational studies have attributed these residues to be important for endowing 
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KIF1A motors with the enhanced microtubule-landing rate and/or super processivity, 

characteristics that are unique to the kinesin-3 family (Nitta et al., 2004; Scarabelli et al., 

2015; Soppina & Verhey, 2014; Uchimura et al., 2010).  

 Additionally, a number of mutations mapped to elements important for binding 

and hydrolyzing nucleotide [PLoop (T99M, 102S/D); Loop9 (Switch1; A202P, S215R/H, 

R216C, S217Y); Loop11 (Switch 2; L249Q, E253K, R254P/W/Q, A255V), Figure 4.1A, 

B] that are highly conserved across the kinesin superfamily (Figure 4.2A), myosin 

motors, and other G-proteins (Kull, Vale, & Fletterick, 1998). Biochemical and 

biophysical studies assessing the function of these residues have established their 

conserved role in the ATPase activity of the motor domain (i.e. single-molecule 

velocity). In addition, motors that harbor mutations in these elements often have a 

reduced microtubule affinity, emphasizing an important role of allosteric communication 

between the nucleotide-binding pocket with elements important for microtubule binding 

(Auerbach & Johnson, 2005; Brendza et al., 1999; Cao et al., 2014; Jennings et al., 

2017; Song & Endow, 1998; Yun et al., 2001).  

Last, there are two mutations, V8M and Y89D, located in elements important for 

kinesin-1 motors to step against force (Figure 4.1A, B). For kinesin-1, NL docking starts 

with zippering of the first half (β9) of the NL with the CS (β0) to form the cover-neck 

bundle (CNB) (Budaitis et al., 2019; Gigant et al., 2013; Hwang et al., 2008; Khalil et al., 

2008). The V8M mutation is located in β1, immediately following the CS (Figure 4.1B), 

and may therefore impact CNB formation and the force output of the motor. Notably a 

valine in this position is highly conserved across the kinesin superfamily with exception 

of the kinesin-10 family [Figure 4.2B; (Richard et al., 2016)]. Although formation of the 

CNB has been observed structurally for members of the kinesin-3, kinesin-5, and 

kinesin-6 families (Atherton et al., 2017; Hesse et al., 2013; Ren et al., 2018), its 

mechanical role in force generation has only been tested in kinesin-1 motors (Budaitis 

et al., 2019; Khalil et al., 2008).   

Following CNB formation in kinesin-1 motors, the second half of the NL (β10) 

docks along the core motor domain through interactions with α1-β3 and β7 (NL docking) 

and uses a conserved asparagine residue to “latch” these interactions [the N-latch, 

(Budaitis et al., 2019; Hwang et al., 2008)]. The KAND mutation Y89D is located at the 
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intersection between α1 and β3 (Figure 4.1B) and may therefore impact NL docking and 

the force output of the motor. In support of this possibility, recent structural studies of a 

motor domain-NL-coiled-coil construct of the kinesin-3 motor KIF13B support the idea 

that α1-β3 plays a role in NL docking and thus a conserved role in kinesin force 

generation (Ren et al., 2018).  

 
Figure 4.1 KIF1A disease variants are clustered within regions of the motor domain critical for microtubule binding, 
nucleotide binding/hydrolysis, and stepping/force generation  

(A) Cartoon representation of KIF1A disease variants (red) mapped onto the peptide sequence of the motor domain. Amino acid 

residues of the motor domain are colored in light grey and residues that compose functional elements are indicated as: microtubule 

binding (Loop2, Loop8, α4, Loop12, α5; dark blue), nucleotide binding/hydrolysis (Loop9/Switch1, Loop11/Switch2, P-Loop, α0; 

cyan), and stepping/force generation (coverstrand CS, α1-β3, β8, Loop13, neck linker NL; blue). (B) Ribbon representation of the 

KIF1A motor domain in the ADP-bound, tubulin-bound state (PDB 4UYO).  In the pre-power stroke state, the neck linker (NL, blue) 

is represented as flexible and undocked from the motor domain. Secondary structural elements are colored as in (A) and KIF1A 

disease variants are indicated as red circles.  
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Figure 4.2 Sequence alignment of functional elements of the kinesin motor domain across the kinesin superfamily 

(A-C). Sequence alignment of the human kinesin motor domains from kinesin-1, -2, -3, -4, -5, and -6 families. Secondary structural 

elements important for (A) nucleotide binding/hydrolysis, (B) force generation/stepping, and (C) microtubule binding are illustrated 

and colored according to Figure 4.1A. Red text denotes residues identified to be mutated in neurodevelopmental and/or 

neurodegenerative disorders.  
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4.3.2 Molecular dynamics simulations predict that V8M and Y89D mutations 
impact neck linker docking and closure of the nucleotide-binding pocket 

To delineate the local and global effects of the V8M and Y89D KAND mutations 

on the KIF1A motor domain, we used molecular dynamics (MD) simulations. We 

performed 100 ns all-atom MD simulations of the wild-type (WT) or KAND mutant (V8M 

or Y89D) motor domains bound to the microtubule in the ATP-bound state [post-power 

stroke, PDB 4UXP, (Atherton et al., 2014)].  Four replicate simulations were carried out 

and analysis across replicate simulations was used to predict statistically significant 

differences in residue-residue distances between the WT and KAND mutant motors 

(p<10-5, V8M Figure 4.3, Y89D Figure 4.4).  

For the V8M mutation, the MD simulations predict local changes in residue-

residue interactions important for NL-dependent motor stepping and force generation 

(Figure 4.3A, B, E). Enhanced interactions are observed between the initial residues of 

β9 of the NL and the second residue (S6) of the CS (Figure 4.3A-B, red lines; Figure 

4.3E, red box marked CS-NL). This is predicted to contribute to CNB formation and 

force output, however, reduced interactions are observed for the remainder of β9 and 

elements that position it for NL docking. In particular, reduced interactions are observed 

between β9 and residues of α4 that line the docking pocket (Figure 4.3A-B, blue lines, 

Figure 4.3E blue box marked α4-NL). Thus, the V8M mutation may position the CS such 

that it sterically alters the NL’s access to the docking pocket. The MD simulations also 

predict reduced interactions between elements important for coordinating and 

hydrolyzing nucleotide (Figure 4.3C-D blue lines; Figure 4.3E boxes marked S1-PL and 

S2-S1). As closure of the switch regions is necessary for ATP hydrolysis (Cao et al., 

2014; Hahlen et al., 2006), these results suggest that the V8M mutant motor may have 

problems coordinating and/or hydrolyzing ATP and therefore have a reduced velocity 

compared to WT motors. 

For the Y89D mutation, the MD simulations predict more severe restrictions on 

NL docking and thus a greater impact on motor stepping and force generation. 

Specifically, the MD simulations reveal reduced interactions important for positing β9 of 

the NL in the docking pocket (Figure 4.4A-B blue lines; Figure 4.4E blue box marked 

α4-NL) and for subsequent docking of β10 along the core motor domain (Figure 4.4A-B  
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Figure 4.3 Molecular dynamics simulations predict that the V8M mutation alters neck linker docking and catalytic site 
closure  

(A-D) Ribbon representation of the KIF1A motor domain in the ATP-bound, tubulin-bound state (PDB 4UXP). In the post-power 

stroke state, the neck linker (NL, green) is represented as flexible and docked along the motor domain. The motor domain is colored 

in light grey, secondary elements are indicated as: coverstrand (CS, purple), α1-β3 (dark green), β7 (yellow), β8 (teal), Loop13 (L13, 

orange), Loop9/Switch1 (L9/S1, purple), Loop11/Switch2 (L11/S2, green), P-Loop (PL, yellow), and α0 (orange). KAND mutant V8M 

(β1) is denoted as a red circle. (A,C) View of the (A) NL-docking pocket or (C) nucleotide-binding pocket. Red lines depict residue-

residue distances that are shorter in the V8M mutant motor versus WT motor; blue lines depict residue-residue distances that are 

shorter in the WT motor versus V8M mutant motor. The magnitude of the distance change is indicated by line color intensity. (B,D). 

Enlarged view of interactions important for (B) NL docking (D) closure of the nucleotide-binding pocket. (E) Differences in residue-

residue distances between WT KIF1A and V8M mutant motor in the ATP-bound, tubulin-bound state in molecular dynamics 

simulations. The secondary structure elements are laid out along the x- and y-axes with α- helices in black, β-strands in grey, or 

colored according to (A).  Residue interactions that are significantly shorter (p<10-5) in V8M mutant (red) or WT (blue) motor are 

displayed. The magnitude of the distance changes is indicated by color intensity; interactions between structural elements are 

labeled.  
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Figure 4.4 Molecular dynamics simulations predict that the Y89D mutation alters neck linker docking and catalytic site 
closure 

(A-D) Ribbon representation of the KIF1A motor domain in the ATP-bound, tubulin-bound state (PDB 4UXP). In the post-power 

stroke state, the neck linker (NL, green) is represented as flexible and docked along the motor domain. The motor domain is colored 

in light grey, secondary elements are indicated as: coverstrand (CS, purple), α1-β3 (dark green), β7 (yellow), β8 (teal), Loop13 (L13, 

orange), Loop9/Switch1 (L9/S1, purple), Loop11/Switch2 (L11/S2, green), P-Loop (PL, yellow), and α0 (orange). KAND mutant 

Y89D (α1-β3) is denoted as a red circle. (A,C) View of the (A) NL-docking pocket or (C) nucleotide-binding pocket. Red lines depict 

residue-residue distances that are shorter in the Y89D mutant motor versus WT motor; blue lines depict residue-residue distances 

that are shorter in the WT motor versus Y89D mutant motor. The magnitude of the distance change is indicated by line color 

intensity. (B,D) Enlarged view of interaction important for (B) NL docking (D) closure of the nucleotide-binding pocket. (E) 

Differences in residue-residue distances between WT KIF1A or Y89D mutant motor in the ATP-bound, tubulin-bound state in 

molecular dynamics simulations. The secondary structure elements are laid out along the x- and y-axes with α- helices in black, β-

strands in grey, or colored according to (A). Residue interactions that are significantly shorter (p<10-5) in Y89D mutant (red) or WT 

(blue) motor are displayed. The magnitude of the distance changes is indicated by color intensity; interactions between structural 

elements are labeled. 
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blue lines; Figure 4.4E blue boxes marked α1/β3-NL, L13/β8-NL). In addition, the MD 

simulations revealed mixed effects of the Y89D mutation on interactions between 

elements in the nucleotide-binding pocket. There are enhanced interactions between 

elements important for gating and capture of nucleotide [Figure 4.4C-D red lines; Figure 

4.4E red boxes marked S1-α0, (Hwang, Lang, & Karplus, 2017)], however, there are 

reduced interactions between elements important for nucleotide hydrolysis and 

exchange [Figure 4.4C-D blue lines, Figure 4.4E blue boxes marked S2-PL, S2-S1, 

(Cao et al., 2014; Clancy et al., 2011; Parke et al., 2010; Turner et al., 2001)]. 

Therefore, these results suggest that although the mutant motor may have no 

restrictions on binding ATP, it may display a reduced ability to hydrolyze ATP and 

undergo processive motility. 

4.3.3 Impact of V8M and Y89D mutations on motility properties of homodimeric 

motors under force 

To examine the effects of the V8M and Y89D mutations on the force output of the 

motors, we used an optical trap with nanometer-level spatial resolution. As the force 

generation of mammalian KIF1A has not yet been analyzed by optical trap methods, we 

first characterized the force generation of human KIF1A as compared to that of the 

widely-studied kinesin-1 KIF5C as a control. For this work, we used a truncated version 

of KIF1A that is constitutively active [KIF1A(1-393)] followed by a leucine zipper (LZ) to 

ensure the motor is in a dimeric state (Hammond et al., 2009). Lysates of COS-7 cells 

expressing biotinylated KIF5C(1-560)-Avitag or KIF1A(1-393)-LZ-Avitag motors were 

bound to beads and were subjected to standard single-molecule optical trap assays 

(Rao et al., 2019). Individual KIF5C motors were motile in the absence of load, stalled 

on the microtubule when approaching the detachment force, and detached from the 

microtubule at an average force of 4.2 pN (Figure 4.5 A, E), consistent with previous 

studies (Budaitis et al., 2019; Khalil et al., 2008; Svoboda & Block, 1994). Individual 

KIF1A motors underwent fast motility in the absence of load but in contrast to KIF5C, 

KIF1A motors did not stall but rather rapidly detached from the microtubule when 

subjected to force (Figure 4.5 B), with an average detachment force of 2.7 pN (Figure 

4.5 E). Interestingly, KIF1A shows a high on-rate towards microtubules such that after 
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detaching from the microtubule, it quickly rebinds and moves forward again. This rapid 

detachment under force and reattachment once the force has dissipated results in the 

“clustering” behavior shown in Figures 4.5 B. The number of rebinding events within a 

cluster of force-generating events is on the magnitude of 10 – 102 for KIF1A. In contrast, 

the number of rebinding events of KIF5C is 0 – 5.  

We next examined the force generation of WT and KAND mutant KIF1A(393)-LZ 

motors. Both the V8M and Y89D KAND mutant motors were sensitive to small opposing 

forces exerted by the trap. Similar to the WT motor, the V8M and Y89D motors did not 

stall under load but rather detached from the microtubule (Figure 4.5 C, D). Both mutant 

motors displayed a reduced force output as their average detachment forces (1.9 and 

1.0 pN, respectively) were significantly reduced compared to the WT motor (Figure 4.5 

E). The reduced force output of the mutant motors is consistent with our MD simulations 

that predicted that the KAND mutations would impair docking of β9 and/or β10 of the NL 

to the core motor domain (Figures 4.3 and 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5 Force generation of KIF1A  

(A-D) Examples of force generation of (A) KIF5C, (B) KIF1A, (C) V8M mutant, and (D) Y89D mutant motors. (E) Detachment forces 

of KIF5C, KIF1A, V8M mutant, and Y89D mutant. Green bar indicates the median value with quartiles. KIF5C: 4.43 [3.79, 4.86] pN 

(n = 557 events for 9 beads); KIF1A: 2.66 [2.24, 3.01] pN (n = 1912 events for 10 beads); V8M: 1.94 [1.65, 2.22] pN (n = 1343 

events for 8 beads); Y89D: 1.02 [0.87, 1.19] pN (n = 1468 events for 7 beads). Unpaired t-test between KIF1A and V8M has p-value 

< 0.0001. 
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4.3.4 Strategy for Designing Homodimeric and Heterodimeric motors 
  We used single-molecule motility assays to examine the behavior of either WT or 

KAND mutant KIF1A motors under unloaded conditions using total internal reflection 

florescence (TIRF) microscopy. For this work, we used a truncated version of KIF1A 

that is dimeric and constitutively active [KIF1A(1-393)-LZ]. Since only copy of the V8M 

and Y89D mutant gene can manifest in disease, we also wanted to examine the 

behavior of heterodimeric KIF1A motors, where one motor domain is WT and the 

second motor domain harbors a KAND mutation.  We tried two strategies to generate 

heterodimeric KIF1A motors (Figure 4.6). 

First, a synthetic heterodimerization domain sequence (SHD) was designed 

similar to previous work (Albracht et al., 2014; Guzik-Lendrum et al., 2015; Lindhout et 

al., 2004; Rank et al., 2012) and fused to the native KIF1A coiled-coil. Coiled-coil 

prediction software was used to ensure the SHD sequences were placed in register with 

the native KIF1A coiled-coil (Marcoils). One SHD sequence was tagged with three 

tandem monomeric citrine florescent proteins [KIF1A(393)-SHD1-3xmCit] and the other 

tagged with three tandem monomeric cherry proteins [KIF1A(393)-SHD2-3xmCH, 

Figure 4.6]. COS-7 lysates from cells cotransfected with plasmids coding for the 

expression of KIF1A(393)-SHD1-3xmCit and KIF1A(393)-SHD2-3xmCH motors were 

subjected to single-molecule imaging using TIRF microscopy to assess whether SHD 

sequences drive stable dimerization of KIF1A motors. Unfortunately, a majority of 

motility events were not heterodimeric (magenta/green). The few heterodimeric events 

observed were short and non-processive (Figure 4.6B), unlike the fast, super-

processive motility of stable dimeric KIF1A motors (Figure 4.6D). These results suggest 

that swapping coiled-coiled sequences from one motor to the next may not be as 

straightforward as anticipated.  

Second, we utilized the leucine zipper sequence (LZ) of GCN4 fused to the 

native KIF1A coiled-coil to drive formation of dimeric motors (Huckaba et al., 2011; 

Schimert et al., 2019; Soppina et al., 2014; Tomishige & Vale, 2000) and differential 

fluorescence tagging to distinguish heterodimeric motors. COS-7 cells were 

cotransfected with plasmids that code for the expression of KIF1A(393)-LZ tagged with 

either a red or a green flourophore, resulting in three populations of motors observed in 
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single molecule assays: green/green, green/magenta, and magenta/magenta (Figure 

4.6C) where green/magenta motility events report on the behavior of heterodimeric 

motors.   

The motility characteristics of homodimeric motors tagged with either 3xmCit and 

3xmCH behave similar under single molecule conditions, however, these fluorophores 

are dim and sensitive to photobleaching (Norris et al., 2015). For better tracking in 

single-molecule assays, mCit and mCH fluorophores were replaced with brighter, more 

photostable fluorophores, NeonGreen and Halo-tag/JF549 Halo ligand, respectively 

(Figure 4.6C).  

We examined the behavior of KIF1A(393)-LZ motors tagged with monomeric 

NeonGreen (mNG) or with Halo-tag covalently linked to its fluorescent ligand (JF552) by 

single-molecule imaging using TIRF microscopy. In general, KIF1A motors appear to be 

sticky in our experiments and decorated the imaging surface (Figure 4.7A, horizontal 

lines). To improve visualization of motor movement along microtubules, regions of 

interest were photobleached before imaging. The velocity, run length, and microtubule 

landing rate in P12 imaging buffer were determined from kymograph analysis with time 

displayed horizontally and distance vertically. The average velocity and run length of 

processive motility events of KIF1A motors tagged with mNG (2.0 ± 0.01 µm/s; 20.6 ± 

1.4 µm) was comparable to motors tagged with Halo-tag (2.1 ± 0.01 µm/s; 26.7 ± 1.4 

µm, Figure 4.7D, E). However, 67.9% of microtubule-binding events (dwell time > 400 

ms) by NG-tagged motors were diffusive (Figure 4.7A,C; P12, white arrows) compared 

to 21.2% by Halo-tagged motors (Figure 4.7A,C; P12 buffer), leading to an aberrantly 

high microtubule on-rate for motors tagged with NG (Figure 4.7B; P12 buffer).  

We therefore examined the behavior of NG- and Halo-tagged motors in different 

imaging buffers (BRB80, BRB40, PERM). Consistent with previous studies, differences 

in buffer conditions had little effect on velocity [Figure 4.7A, D, (Norris et al., 2015)].  

The percentage of diffusive events by NG-tagged motors was drastically reduced in 

higher salt buffer compared to Halo-tagged motors (Figure 4.7A, C) and the microtubule 

on-rate was comparable between NG- and Halo-tagged motors (Figure 4.7B). However,  

there were dramatic changes in the average run length of Halo-tagged motors 

compared to NG-tagged motors in BRB80 and PERM buffers (Figure 4.7A, E). 
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Collectively, these results highlight the importance of examining the behavior of a motor 

tagged with different fluorophores to ensure the motility characteristics measured are 

specific to the motor and not an effect of the fluorescent tag. Furthermore, these effects 

can be different depending on the kinesin motor under study. To ensure the fluorescent-

tag is not altering the motility properties of KIF1A, motors were imaged in BRB40 buffer.  

 
 
Figure 4.6 Strategies for designing heterodimeric motors 

(A) Schematic for the generation of heterodimeric KIF1A motors by synthetic heterodimerization (SHD) sequence. To generate 

heterodimeric motors, the KIF1A motor domain (aa. 1-369) followed by the native coiled-coil sequence (aa. 367-393) is fused to 

synthetic heterodimerization sequences (SHD1, blue or SHD2, orange).  Unlike the leucine zipper sequence of GCN4, the SHD1 

and SHD2 sequences are not expected to homodimerize (left and middle) and instead are expected to form a heterodimer (right). 

SHD1 and SHD2 sequences were tagged with three-tandem monomeric citrines (3xmCit) or three-tandem monomeric mCherry 

(3xmCH), respectively, to visualize motor dimerization states in TIRF single-molecule assays. (B) Representative kymographs of 

TIRF single-molecule assays of lysates from COS-7 cells cotransfected with KIF1A-SHD1-3xmCit and KIF1A-SHD2-3xmCH. Time 

is displayed on the x-axis (bar, 2 s) and distance displayed on the y-axis (bar, 2 µm). (C) Schematic for KIF1A dimerization by 

leucine zipper (LZ) sequence. Constructs encode for the KIF1A motor domain (aa. 1-369), followed by native coiled-coil sequence 

(aa. 367-393) fused to the LZ sequence of GCN4.  Motors were tagged with either monomeric NeonGreen (mNG) or Halo-FLAGtag 

covalently linked to fluorescent Halotag (JF552), respectively, and cotransfected into COS-7 cells. Three populations of motors are 

expected in TIRF single-molecule assays: homodimeric Halo-FLAG tagged motors, homodimeric mNG tagged motors, and 

heterodimeric Halo-FLAG/mNG tagged motors.  (D) Representative kymograph of single-molecule assays of lysates from COS-7 

cells cotransfected with plasmids encoding for the expression of KIF1A-LZ-mNG and KIF1A-LZ-Halo-FLAG. Time is displayed on 

the x-axis (bar, 2 s) and distance displayed on the y-axis (bar, 2 µm).  
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Figure 4.7 Influence of fluorescent-tag on KIF1A motility 

(A) Motility properties of KIF1A motors dimerized by a leucine zipper sequence (LZ) and tagged at their C-termini with monomeric 

NeonGreen (mNeonGreen) or Halo-FLAGtag covalently linked to fluorescent Halotag (JF552) were analyzed in standard single-

molecule motility assays using TIRF microscopy. Representative kymographs are shown with time displayed on the y-axis (bar, 4 s) 

and distance displayed on the x-axis (bar, 4 µm). White arrowheads indicate motility events scored as a diffusive. (B-E) 

Quantification of motility properties. From the kymographs, single-motor (B) landing rate, (C) percent diffusive events, (D) velocity, 

and (E) run length were determined and the data for each population is plotted as a dot plot. The mean is indicated by a horizontal 

black line and the mean ± SEM is indicated above. (B) Each dot represents the landing rate along a single microtubule. 

Quantification of landing rate accounts for motility events (diffusive and processive) with dwell times longer than 400 ms. (C) Each 

dot represents the percent of events along a single microtubule that were diffusive (rapid plus- and minus-end movement with a net 

displacement is less than 300 nm, dwell time longer than 400ms). 
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4.3.5 Impact of V8M and Y89D mutations on unloaded motility properties of 
homodimeric motors 

We used single-molecule motility assays to examine the behavior of either WT or 

KAND mutant KIF1A motors under unloaded conditions. For this work, we used a 

truncated version of KIF1A [KIF1A(1-393)] followed by a leucine zipper (LZ), a HaloTag 

for fluorescent labeling with JF552 ligand, and FLAG tag. Cell lysates containing 

KIF1A(393)-LZ-Halo-FLAG motors were added to flow chambers containing 

polymerized microtubules and their single-molecule motility properties were examined 

using total internal reflection florescence (TIRF) microscopy. The velocity, run length, 

and landing rate on the microtubule were determined from kymographs with time 

displayed vertically and distance horizontally (Figure 4.8A-B). At least 250 motility 

events were quantified for each motor across three independent trials and summarized 

as a histogram or dot plot (Figure 4.8C-G).  

As expected, the WT motor displayed fast (2.1 ± 0.009 µm/s) and 

superprocessive (19.0 ± 0.7 µm) motility with a high landing rate of 0.23 ± 0.008 

events�nm-1nM-1s-1 (Figure 4.8 A-E), consistent with previous work (Soppina, et al., 

2014). The V8M mutant motors displayed a significant decrease in overall velocity (1.3 

± 0.009 µm/s, Figure 4.8C) and processivity (5.2± 0.2 µm, Figure 4.8D, Table 4.1). The 

reduced velocity of the V8M mutant motors is consistent with the MD simulations that 

predict allosteric effects on elements of the nucleotide-binding pocket that result in 

reduced catalytic site closure and reduced ATP hydrolysis (Figure 4.3 C-E). The V8M 

motors also displayed a significant decrease in landing rate of 0.06 ± 0.001 events�nm-

1nM-1s-1 (Figure 4.8E, Table 4.1).  

The Y89D mutant motors also displayed a decrease in velocity (1.7± 0.01 µm/s, 

Figure 4.8C), processivity (2.9± 0.2 µm, Figure 4.8D), and landing rate (0.12 ± 0.04 

events/nm-1nM-1s-1, Figure 4.8E, Table 4.1) as compared to the WT motor. Further 

examination of the kymographs indicated two additional differences in the motility 

behavior of Y89D mutant motors.  First, the tracks of Y89D motility were not smooth but 

rather the motor appeared to “wobble” or move sideways as it walked along the 

microtubule track (Figure 4.8B). Second, a large number of non-productive, diffusive 

events (net displacement along microtubule < 300 nm) were observed (Figure 4.8A, 
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white arrowheads). We quantified the percentage of diffusive events with a dwell time 

great than 400 ms for each motor (Figure 4.8F). The Y89D mutant motors displayed a 

greater percentage of diffusive events (17.6 ± 0.8% of binding events) than the WT or 

V8M motors (4.0 ± 0.6% and 5.5 ± 0.4 %, respectively) (Figure 4.8F, Table 4.1) and the 

duration of the diffuse events was longer for the Y89D mutant motors (1.34 ± 0.2 s) than 

for the WT or V8M mutant motors (0.81 ± 0.01 s and 0.69 ± 0.02 s for WT and V8M, 

respectively, Figure 4.8G).  The increase in diffusive events for the Y89D mutant motors 

is consistent with the MD simulations that predict allosteric effects of the Y89D mutation 

on the motor’s ability to hydrolyze ATP (Figure 4.4C-E).  

Overall we conclude that as homodimeric motors, the V8M motor shows more 

significant impairment in velocity and landing rate than the Y89D motor whereas the 

Y89D motor shows more significant impairment in processivity and ability to engage in 

processive rather than diffusive motility.   

 
Table 4.1 Single Molecule Properties of KIF1A disease variants V8M and Y89D 

 

4.3.6 Impact of V8M and Y89D mutations on unloaded motility properties of 
heterodimeric motors 

We next examined the behavior of heterodimeric KIF1A motors, where one motor 

domain is WT and the second motor domain harbors the KAND mutation. COS-7 cells 

were cotransfected with plasmids for expression of WT KIF1A(393)-LZ-mNG motors 

and KAND mutant KIF1A(393)-LZ-Halo(JF552) motors. Lysates were added to flow 

chambers containing polymerized microtubules and single-molecule motility was 

examined using TIRF microscopy.  
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Figure 4.8 Unloaded motility properties of homodimeric V8M or Y89D mutant motors  

(A) Motility properties of WT or mutant motors tagged at the C-terminus with Halo-FLAGtag covalently linked to fluorescent Halotag 

(JF552) were analyzed in standard single-molecule motility assays using TIRF microscopy. Representative kymographs are shown 

with time displayed on the y-axis (bar, 4 s) and distance displayed on the x-axis (bar, 4 µm). White arrowheads indicate motility 

events scored as diffusive events. (B) Magnified view of the representative kymographs in (A) with x-axis bar, 2 µm and y-axis bar, 2 

s. Straight dotted white lines were overlaid on top of motility events to visualize deviation from smooth motility; white asterisks 

indicate “wobbly” motility events. (C-E) Quantification of motility properties. From the kymographs, singe-motor (C) velocities, (D) 

run lengths, and (E) landing rates were determined and the data for each population is plotted as a histogram or dot plot. C,D. The 

mean ± SEM are above each graph; N ≥ 230 events across three independent experiments for each construct; ***, p<0.001 as 

compared to the WT motor. (E) Each dot indicates motor landing rate along a single microtubule with the mean for the population 

indicated by a horizontal black line across three independent experiments for each construct; ***, p>0.001 as compared to the WT 

motor. (F,G) Quantification of diffusive motility events. From the kymographs, (F) the percent of diffusive events (dwell time longer 

than 400 ms, net displacement less than 300 um) and the (G) dwell time of diffusive events were determined and the data is plotted 

as a dot plot. Black horizontal lines indicate the mean; ***, p<0.001 as compared to WT motor.   
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The velocity (2.1± 0.009 µm/s) and run length (20.0 ± 0.7 µm) of WT/WT motors 

tagged with both mNG and Halo(JF552) fluorophores (Figure 4.9B,C,D) are comparable 

to those of KIF1A(393)-LZ-Halo-Flag motors (Figure 4.8). The presence of the V8M 

motor domain resulted in a significant reduction in velocity (1.3± 0.01 µm/s Figure 

4.9E,F) such that the heterodimeric WT/V8M motor’s velocity is comparable to that of 

homodimeric V8M/V8M mutant motors (1.3± 0.01 µm/s Figure 4.9F, Table 4.1). In 

addition, the processivity of WT/V8M motors (11.2 ± 0.7 µm, Figure 4.9E,G) was 

significantly reduced compared to WT/WT motors but was not as severely hindered as 

in the V8M/V8M motors (5.2 ± 0.2 µm Figure 4.9G, Table 4.1).  

The presence of the Y89D motor domain had minimal effects on the velocity of 

the WT/Y89D motor (1.9±0.01 µm/s, Figure 4.9H,I) as compared to the WT/WT motor 

but resulted in a significant reduction in the processivity of the motor (11.4 ± 0.6 µm 

Figure 4.9H,J) although the effects on processivity were not as severe as the 

Y89D/Y89D motors (2.9±0.1 um, Figure 4.8, Table 4.1). In addition, the WT/Y89D 

heterodimeric motors did not exhibit the diffusive behavior of the Y89D/Y89D 

homodimeric motors (Figure 4.9H). Collectively, these results suggest that when paired 

with a WT motor domain in a heterodimeric motor, both the V8M and Y89D mutations 

cripple the overall motility with greater effects on motor processivity than motor speed.  

4.3.7 Impact of V8M and Y89D mutations on the transport of membrane-bound 
organelles in cells 

We next sought to test whether these mutations impacted the ability of motors to 

work as a team to drive cargo transport in cells. To do this we used an inducible 

recruitment strategy (Khalil et al., 2008) to link teams of motors to the surface of 

membrane-bound organelles and monitored their ability to drive organelle transport to 

the cell periphery (Figure 4.10A). To assess how teams of WT or KAND mutant KIF1A 

motors drive the transport of a low-load, membrane-bound organelle (Budaitis et al., 

2019; Efremov et al., 2014; Schimert et al., 2019), motors were inducibly recruited to the 

surface of peroxisomes, and transport of peroxisomes to the cell periphery was 

monitored 5, 10, and 30 minutes later. Cargo dispersion before and after motor 

recruitment was qualitatively scored as clustered (black), partially dispersed  
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Figure 4.9 Unloaded motility properties of heterodimeric V8M or Y89D mutant motors  

(A) Schematic for the generation of mutant heterodimeric KIF1A motors. Constructs encode for the KIF1A motor domain (aa. 1-

369), followed by native coiled-coil sequence (aa. 367-393) fused to the leucine zipper (LZ) sequence of GCN4.  WT and KAND 

mutant motors were tagged with monomeric NeonGreen (mNG) and Halo-FLAGtag covalently linked to fluorescent Halotag (JF552), 

respectively, and cotransfected into COS-7 cells. Three populations of motors are expected in TIRF single-molecule assays of cell 

lysates: homodimeric WT motors tagged with mNG, homodimeric mutant motors tagged with Halo/JF552, and heterodimeric mutant 

motors tagged with mNG and Halo/JF552. (B-J) Motility properties of mutant heterodimeric KIF1A motors were analyzed in standard 

single-molecule motility assays using TIRF microscopy. (B,E,H) Representative kymographs are shown with time displayed on the 

y-axis (bar, 4 s) and distance displayed on the x-axis (bar, 4 µm). Cartoon kymographs were generated from merged kymographs to 

more clearly illustrate motile (middle) and diffusive events (right). From the kymographs, single-motor (C,F,I) velocities and (D,G,J) 

run lengths were determined and the data for each population is plotted as a histogram. The mean ± SEM are indicated above each 

graph; N ≥ 150 events across three independent experiments for each construct; ***, p<0.001 as compared to the WT motor. 
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(dark grey), diffusively dispersed (light grey), or peripherally dispersed (white; Figure 

4.10B). 

COS-7 cells were cotransfected with a plasmid for the expression of WT or 

KAND mutant KIF1A(393)-LZ motors tagged with monomeric Neongreen (mNG) and 

FRB domain and a plasmid for the expression of a peroxisome-targeted PEX-mRFP-

FKBP fusion protein. In the absence of rapamycin, the PEX-RFP-FKBP fusion proteins 

localized to the peroxisome surface and the KIF1A(393)-LZ-mNG-FRB motors 

accumulated at the periphery of the cell (93% of cells had peroxisomes clustered near 

the nucleus of the cell; Figure 4.10B). Addition of rapamycin resulted in recruitment of 

motors to the peroxisome surface via dimerization of the FRB and FKBP domains and 

motor activity drove dispersion of peroxisomes to the cell periphery after 5 minutes 

(100% of cells have peripherally dispersed peroxisomes, Figure 4.10B). Notably, 5 

minutes after recruitment of teams of V8M or Y89D mutant motors to the surface of 

peroxisomes, peroxisomes remained clustered near the nucleus of the cell (9% of cells 

have peripherally dispersed peroxisomes for V8M and Y89D, Figure 4.10B). However, 

after 10 minutes, teams of V8M or Y89D mutant motors drove peroxisome transport to 

the cell periphery, almost similar to peroxisomes dispersion by teams of WT motors 

(68% and 93% of cells have peripherally dispersed peroxisomes, respectively; Figure 

4.10B). These results suggest that despite their reduced processivity and velocity under 

single-molecule conditions, the mutant motors can drive low-load transport although 

they show a significant delay in completing the transport event.  

4.4 Discussion 

Despite the identification of an increasing number of disease-associated 

mutations in the KIF1A motor domain, how the mutations alter the mechanical output of 

the motor and manifest in disease is not clear. Here, we used a combination of 

computational and biophysical methods to characterize the effects of two KIF1A 

disease-associated variants located within elements predicted to be important for motor 

stepping and force generation. We find that, unlike conventional kinesin-1, WT 

mammalian KIF1A motors do not stall and instead have a tendency to detach from the 

microtubule track under low forces. Furthermore, the WT KIF1A motors rapidly reattach 
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to the microtubule and continue forward motion, a strategy that may enable the fast 

transport of presynaptic vesicles over long distances. We find that disease-associated 

V8M and Y89D mutations compromise the force output of single motors and result in 

decreased velocity, processivity, and landing rate via allosteric effects on regions of the 

core motor domain that coordinate and bind nucleotide. These results highlight the 

benefits of combining single-molecule assays with simulations to investigate how subtle 

sequence changes can impact the mechanical output of a motor.   

 
 
Figure 4.10 Impact of V8M and Y89D mutations on transport of membrane-bound organelles in cells 

(A) Schematic of the inducible motor recruitment assay. A kinesin motor tagged with monomeric NeonGreen (mNG) and an FRB 

domain (KIF1A-LZ-mNG-FRB) is coexpressed with a cargo targeting sequence (CTS) tagged with monomeric red fluorescent 

protein (mRFP) and FKBP domain (CTS-mRFP-FKBP) in COS-7 cells. Addition of rapamycin (+Rap) causes heterodimerization of 

the FRB and FKBP domains and recruitment of motors to the cargo membrane. Recruitment of active motors drives cargo 

dispersion to the cell periphery.  (B) Qualitative analysis of peroxisome dispersion. Cells were scored as clustered (black), partially 

dispersed (dark grey), diffusely dispersed (light grey), or peripherally dispersed (white). The data for each construct are summarized 

as a stacked bar plot. 
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4.4.1 KAND Mutations Provide Insight into a Conserved Mechanism of Kinesin 
Force Generation  

Recent structural and biochemical assays with dimeric kinesin-1 motors have 

provided strong support for the model that nucleotide-dependent conformational 

changes in the NL provide the power stroke for force generation. NL docking is initiated 

by an ATP-dependent conformational change in α6 that drives a two-step NL docking: 

zipping together of the NL’s β9 with the CS (β0) to form the CNB and then latching of 

the NL’s β10 along the surface of the core motor domain (Budaitis et al., 2019; Hwang 

et al., 2008; Khalil et al., 2008). Structural studies have determined that similar ATP-

induced changes occur to α6 and the NL in members of the kinesin-3 and kinesin-5 

families (Atherton et al., 2014; Goulet et al., 2012; Nitta et al., 2008; Ren, et al., 2018), 

supporting the hypothesis that NL docking is a force-generating mechanism utilized by 

all superfamily members. Here we directly test this model for the kinesin-3 motor KIF1A.  

We focused on two recently identified de novo KIF1A disease variants, V8M and 

Y89D mutations, based on their a) location in structural elements of the motor domain 

predicted to have roles in CNB formation and NL docking and b) occurrence in residues 

that are highly conserved across the kinesin superfamily (Figure 4.2). Our MD 

simulations predicted that the V8M and Y89D mutations would impair docking of the N-

terminal (β9) or C-terminal (β10) portions of the NL to the KIF1A motor domain, 

respectively (Figure 4.3 and Figure 4.4). Indeed, using an optical trap assay, we found 

that mutation of V8M and Y89D resulted in the detachment of mutant motors when 

subjected to low forces (Figure 4.5). Thus, our results extend the model that nucleotide-

dependent conformational changes in the NL are an important mechanical element for 

force generation by kinesin motors.  

Previous work on KIF1A by Nitta et al. examined the effects of mutations in β0, 

β9 and β10 on the output of monomeric KIF1A motors and found that while the 

mutations had minimal effects on ATPase activity, mutation of β9 resulted in a 

decreased output in microtubule gliding assays (Nitta et al., 2008). While these results 

support the idea that NL docking is critical for the power stroke, these mutations were 

examined in the context of a chimeric motor consisting of the catalytic core of KIF1A 
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fused to the NL of the kinesin-1 motor KIF5C. Thus, our work provides the first evidence 

that NL docking is critical for force generation and cargo transport by KIF1A motors.  

4.4.2 KIF1A is a weak motor but its high on-rate to the microtubule enables 
persistent transport under low-load conditions  

Previous work examining kinesin-3 motors has demonstrated that under no-load 

conditions, KIF1A motors readily engage with the microtubule and quickly move long 

distances before dissociating (Soppina & Verhey, 2014). These motor properties were 

suggested to be tuned for the long-distance axonal transport functions of this motor. 

However, a motor’s response to load is a key parameter that underlies emergent 

mechanisms of microtubule-based transport in cells (Arpăg et al., 2014; Norris et al., 

2014). Here we provide the first analysis of mammalian kinesin-3 motors under load and 

note several interesting aspects of KIF1A force generation that are likely to impact its 

cellular functions.  

First, KIF1A motors do not stall when subjected to resisting forces but rather 

rapidly detach from the microtubule track; this is in stark contrast to the ability of single 

kineisn-1 motors to resist detachment under load (Budaitis et al., 2019; Khalil et al., 

2008; Schnitzer & Block, 1997; Svoboda & Block, 1994; Yildiz et al., 2004). A high load-

dependent detachment rate is consistent with previous work showing that kinesin-3 

motors give up easily when attached to the same cargo as kinesin-1 motors (Arpăg et 

al., 2014; Norris et al., 2014). Interestingly, kinesin-2 (KIF3A/KIF3B) and kinesin-5 (Eg5) 

motors also have a tendency to detach under low to moderate forces in optical trap 

assays (Andreasson et al., 2015; Milic et al., 2017; Valentine et al., 2006) and give up 

easily in competition assays with kinesin-1 (Arpăg et al., 2014).  

Second, KIF1A motors can only sustain an average 2.7 pN of force before 

detachment from the microtubule track. The detachment of KIF1A at low forces seems 

unlikely to be related to the binding strength of the KIF1A motor domain to the 

microtubule as KIF1A has a higher microtubule affinity than kinesin-1 (Atherton et al., 

2014; Soppina & Verhey, 2014). It seems more likely that the detachment of KIF1A at 

low forces can be attributed to a mechanical feature of the motor. An intriguing 

possibility is that the length of the N-terminal extension that proceeds the CS impacts 

the strength of the CNB and thus the force output of the motor. Kinesin-3 motors lack an 
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N-terminal extension and recent structural studies and MD simulations of KIF13B 

showed that this kinesin-3 motor forms a short CNB with weaker CS-NL interactions 

than kinesin-1 (Ren et al., 2018). However, KIF1A’s C. elegans homolog, UNC-104, 

also lacks an N-terminal extension yet displays larger detachment forces [~6 pN, 

(Tomishige et al., 2002)]. This may be a species-specific adaptation as differences in 

force outputs have also been noted for across kineisn-5 orthologs and may reflect 

adaption to different functional requirements in each organism.     

 Third, after detachment, KIF1A motors rapidly reattached to the microtubule and 

again moved forward out of the trap. This behavior is consistent with the role of the 

kinesin-3-specific K-loop (Loop12), whose positively-charged residues enhance the 

affinity of the motor domain for negatively-charged tubulin subunits of the microtubule 

(Soppina & Verhey, 2014). The rapid detachment and reattachment of single KIF1A 

motors resulted in a characteristic “sawtooth” pattern for the force versus time plot. 

Taken together, these properties are likely matched to the cellular functions of 

KIF1A and are optimized for transport under physiological conditions. Teams of KIF1A 

motors drive fast, long-range transport of SVPs and DCVs in neurons (Barkus et al., 

2008; Hall & Hedgecock, 1991; Okada et al., 1995; Yonekawa et al., 1998).  It may be 

that large forces are not required for the transport of these small membrane-bound 

organelles [diameter ~ 50 nm; (Efremov et al., 2014)]. Specifically, KIF1A motors at the 

leading edge of the cargo experience higher forces and rather than reduce their speed 

or stall, they can detach and be replaced by other motors without a cost to overall speed 

of cargo movement. Additionally, axons are crowded and a rapid detachment and 

reattachment of motors may be advantageous in the context of a crowded axon. Indeed, 

we note that while team-based transport driven by V8M and Y89D motors in cells is 

delayed (Figure 4.10), they do catch up to the WT motors given enough time.  

4.4.3 Allostery between force generation and motility properties 
KIF1A motors containing V8M or Y89D mutations also exhibited changes in 

unloaded motility, consistent with the deficiencies in coordinating and/or hydrolyzing 

nucleotide predicted in the MD simulations. The mutant motors moved with reduced 

speeds, likely due to allosteric effects of NL docking on core motor regions that 

coordinate and bind nucleotide (S1-PL, S1-S2, Figure 4.3 and 4.4). These findings are 
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consistent with previous structural and enzymatic studies that suggest that docking of 

the NL gates ATPase activity in both kinesin-1 and kinesin-3 motors (Cao et al., 2014; 

Hahlen et al., 2006; Muretta et al., 2015; Muretta et al., 2018; Nitta et al., 2008).  

The mutant motors also exhibited defects in motor-microtubule interactions as 

they were less able to engage productively with the microtubules (lower on-rate) and 

moved with reduced processivity. In addition, a significant fraction of Y89D mutants 

engaged in non-productive, diffusive microtubule-binding events and those motors that 

did undergo processive motility appeared to “wobble” as they walked (Figure 4.7). This 

is consistent with allosteric effects of NL docking on core moor regions that coordinate 

and bind nucleotide (S1-PL, S1-S2, Figure 4.4). These results highlight the benefits of 

combining single molecule assays with simulations to explain how subtle sequence 

changes can have unexpected effects on the mechanical output of a motor.  In the 

future, this approach can be utilized to examine the local and global impact of other 

disease-associated mutations or family-specific sequence changes on the kinesin motor 

domain.  

4.4.4 Insight into disease 
Our computational and experimental analyses suggest that the V8M and Y89D 

disease-associated variants affect the speed, processivity, landing-rate, and force 

output of single KIF1A motors. Under physiological conditions, these altered motility 

characteristics can impact transport driven by teams of mutant motors as the mutant 

motors took a longer time to drive transport to the cell periphery than teams of WT 

motors (Figure 4.10). This effect may be even more pronounced in neurons, where the 

distances required of KIF1A-mediated transport are significantly longer. Recent work by 

Chiba et al. found that two different KAND mutations (V8M and R360) caused 

mislocalization of presynaptic vesicles in neurons and defects in neuronal function in C. 

elegans (Chiba et al., 2019).  

In KAND mutants, only one copy of the V8M or Y89D mutant gene can manifest 

in disease and the patient’s cells likely have a mixed population of homodimeric WT, 

homodimeric mutant, and heterodimeric WT/mutant motors. Our unloaded single-

molecule motility results suggest that the presence of a mutant motor domain is 

sufficient to impair the motility properties of heterodimeric WT/mutant motors (Figure 
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4.10). Studies assessing the effects of mixed populations of mutant motors or 

heterdimeric motors on a shared cargo in a physiological, disease context are lacking. A 

previous study characterized the localization of mixed populations of WT or mutant 

KIF1A motors in neuron as a readout for defects in transport, however the study was 

done with monomeric KIF1A, making it difficult to interpret to a mechanism where 

transport is drive by the foot-over-foot stepping (Cheon et al., 2017). A more careful 

dissection of multi-motor transport in neuronal like cells using fast, live cell imaging to 

quantify transport speeds, pausing events, or frequency of directional switches may 

help tease apart effects on intracellular transport.  

 In addition to mutations in the core motor domain, other mutations have been 

identified in the coiled-coil or tail domain of KIF1A (Gabrych et al., 2019). These 

mutations may alter the ability for stable dimerization of motor domains or prevent motor 

recruitment to cargo rather than affect the functional output of the motor domain. 

Another intriguing possibility is that mutations in the coiled-coil domain or tail-domain 

relieve autoinhibition, resulting in population of constitutively active motors rather than a 

loss of function effect. Indeed, KAND mutations V8M and R360 relieve KIF1A 

autoinhibition in worms and causes misaccumulation of presynaptic vesicles in neurons 

(Chiba et al., 2019). Collectively, this highlights the diverse nature of KIF1A-disease 

associated mutations that can lead to dramatic changes in the functional output of the 

motor. 
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Chapter 5: Discussion and Future Outlook 

5.1 Discussion 
In this dissertation, I first presented work that addressed a gap in our 

understanding of the mechanism for how single kinesin-1 motors generate force. We 

find an unexpected trade-off in motility properties by modulating neck linker docking in 

kinesin-1 motors, providing insight into the design principles of the kinesin motor 

domain. We then used novel artificial cargo assays to assess the impact of how 

weakening kinesin-1’s force output impacts its ability to collectively drive transport in 

cells. We provide the first evidence that a power stroke-based mechanism is required 

for teams of kinesin-1 motors to drive high-load transport under physiological conditions 

and that properties other than force generation can drive transport of low-load cargo 

[Chapter 2; (Budaitis et al., 2019)]. Our findings that weakening NL docking in kinesin-1 

motors dramatically influences their single-molecule properties and ability to drive 

transport in cells, led us to test whether is true for other kinesin families (Chapter 3) or in 

kinesin motors that harbor disease-associated mutations (Chapter 4).   

Collectively, this work provides insight into what molecular features of the kinesin 

motor domain are critical for teams of motors to drive transport in their native 

environment. Notably, this is one of the first studies where altering a motor’s single 

molecule properties is directly correlated with its ability to drive transport in a 

physiological context, bridging the gap in understanding how a motor’s single molecule 

properties dictates its function in biology. On a broader scale, this work addresses a 

common theme in biology of how subtle sequence changes can lead to large-scale 

changes in the functional output of a protein, providing insight into how sequence 

divergence in other large protein superfamilies lead to novel function.   

5.1.1 The mechanism of force generation by kinesin motors  
 Although force generation is predicted to involve ATP-induced docking of the 

neck linker (NL) along the motor’s core, the contribution of the proposed substeps [(1) 
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cover-neck bundle formation, (2) neck linker latching] is not clear. We show that CNB 

formation and NL latching are both required for single kinesin-1 motors to generate a 

power stroke and continuously transport under load. Specifically, weakening either 

substep decreases the force output of kinesin-1 motors under single molecule 

conditions (Chapter 2). 

 Recent trapping studies have revealed differences in the force output of motors 

across the kinesin superfamily [(Andreasson et al., 2015; Hesse et al., 2013; Milic et al., 

2017; Muretta et al., 2018; Tomishige, Klopfenstein, & Vale, 2002), Chapter 4)]. 

However, the molecular features of the motor domain responsible for these differences 

are not clear. One possibility is that sequence divergence within the CS, NL, and 

docking pocket across the kinesin superfamily modulates their behavior under force. 

Indeed, CNB formation is structurally observed across the kinesin superfamily (Atherton 

et al., 2014; Atherton et al., 2017; Goulet et al., 2012; Hesse et al., 2013; Nitta et al.,  

2008), yet whether family-specific variations in the length and sequence of the CS 

contributes to the diversity of motility properties across the kinesin superfamily is not 

well understood.  

Previous work suggests that kinesin-5 motor Eg5 has sequence changes in the 

NL docking pocket (Loop13) to help lock the NL along the core motor domain and 

compensate for its weak CNB, thereby enabling motors to step under moderate loads. 

To delineate the importance of these interactions, Hesse et al. generated chimeric 

kinesin-1 motors with CS, NL, and/or Loop13 sequences of Eg5 and then measured the 

force output of the chimeric motors in an optical trap. Swapping elements between 

kinesin motor domains is a common strategy in the motor field to describe a specific 

structural element’s contribution to motility (Case et al., 2000; Endow & Waligora, 1998; 

Soppina & Verhey, 2014).  Although the reduced force output of chimeric kinesin-1 

motors support the prediction that changing interactions between the CS, NL and 

docking pocket (Loop13) can change the force output of a motor, the drastically different 

catalytic properties of kinesin-1 and -5 motors make it difficult to carefully extrapolate 

these findings to Eg5 (Hesse et al., 2013). An alternate approach is to use a similar 

strategy as presented in Chapter 2. Molecular dynamics simulations can be used to 

guide the design of mutations to either strengthen or weaken CNB formation and the 
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functional impact of the mutations can be characterized using a number of biophysical 

or cell-based assays. This approach can also be extended to delineate the contribution 

of other structural elements of the kinesin motor domain.  

We noticed that the length of the CS across the kinesin superfamily is highly 

variable (Chapter 3) and sought to determine what the minimal CS length is required for 

high-load transport.  We find that kinesin-1 motors with a truncated CS, and therefore 

shorter CNB, have a compromised force output as single motors in an optical trap and 

are also crippled in their ability to drive transport of high-load cargo in cells. 

Furthermore, we find that truncation the N-terminal portion of the CS, which is not 

contribute to CNB formation, cripples high-load transport of membrane-bound 

organelles in cells. In addition, we find that truncation of the N-terminal portion of the 

coverstrand of the kinesin-2 motor KIF3AB compromises its ability to drive high-load 

transport in cells (Chapter 3). This is the first experimental evidence that modulating 

CNB formation of an N-terminal motor from a different kinesin family compromises its 

ability to drive transport of high-load cargo in cells. This supports the model that the CS 

plays a conserved mechanical role in force generation (Budaitis et al., 2019; Hesse et 

al., 2013; Hwang et al., 2008; Khalil et al., 2008). Surprisingly we find that high-load 

transport by heterodimeric KIF3AB motors is crippled by weakening CNB formation of 

the KIF3A but not the KIF3B motor domain, suggesting that the KIF3A motor domain 

may be important to specify force. Further work is needed to address this functional 

difference.  

 Strikingly, molecular dynamics simulations predict that sequence changes in the 

CS and NL of homodimeric kinesin-2 motor KIF17 limit the number of residues that 

contribute to CNB formation and therefore this motor is predicted to have a reduced 

force output. Indeed, we find that teams of KIF17 motors are unable to transport high-

load cargo (Golgi elements) in cells (Chapter 3). In contrast, recent optical trapping 

studies find that single KIF17 motors generate high-force and continuously drive 

transport under load (Milic et al., 2017). It is possible that there are additional 

sequences differences in the NL-docking pocket or elsewhere in the KIF17 motor 

domain that may compensate for poor CNB and enable motors to generate high force. 

Careful biophysical characterization of the behavior of single KIF17 motors and the 
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cooperative behavior of teams of KIF17 motors is needed to better understand this 

discrepancy (see future directions).   

 The N-latch is conserved in most kinesins, particularly in motors known to step 

processively along microtubules (Chapter 2) suggesting that NL latching may be a 

conserved feature for kinesin transport under load. Indeed, we find that the KIF1A 

KAND mutation in α1-β3 (Y89D) disrupts NL-latching and mutant motors are crippled in 

their force output (Chapter 4).  Whether N-latch formation and docking of β10 along the 

core motor domain play important roles beyond kinesin-1 and -3 motors remains to be 

investigated.  

5.1.2 Design principles of a kinesin motor domain: small changes have big effects 
Despite high sequence and structural conservation of the kinesin motor domain, 

individual kinesins display amazing diversity in their motility properties. How sequence 

divergence can manifest in such dramatic changes in the functional output of a kinesin 

motor is puzzling. Sequence alignment of the motor domain across the kinesin 

superfamily has led to the identification and characterization of a number of family-

specific sequence insertions [for example: kinesin-3 Loop12 (Soppina & Verhey, 2014); 

kinesin-5 Loop5 (Kapoor et al., 2000); kinesin-8 Loop2 (Kim et al., 2014); kinesin-13 

Loop2 (Helenius et al., 2006; Hunter et al., 2003); kinesin-2 Loop11 (Guzik-Lendrum et 

al., 2015)].  However, often times there are no obvious sequence differences between 

motors and yet they have different motility properties. For example, the kinesin-4 family 

is composed of an immotile motor (KIF7), a slow but highly processive motor (KIF27), 

and a fast but moderately processive motor (KIF4) (Yue et al., 2018).  

The work included in this dissertation is an example of how subtle mutations in 

the kinesin motor domain can have unanticipated effects on motility. Kinesin motors are 

allosteric enzymes where its functional output (stepping behavior) is dependent on tight 

coupling between microtubule binding, nucleotide hydrolysis, and force generation. 

Therefore, single amino acid changes that disrupt communication between these 

elements (allosteric hot spots) may be sources of sequence divergence responsible for 

distinct functional outputs of the kinesin motor domain. Indeed, a recent paper by 

Richards et al. not only identified networks of residue-residue interactions important for 

force generation, ATP hydrolysis, or microtubule binding, but also identified networks of 
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interactions critical for long-distance coupling between these functional elements. 

Notably many elements that form the NL docking pocket (α4, α1-β3, β7, and β8-L13) 

are linked to elements in the microtubule-binding interface or nucleotide-binding pocket 

(Richard et al., 2016). Therefore, mutations that disrupt NL docking are predicted to 

feedback to these elements to modulate microtubule binding and nucleotide 

binding/hydrolysis (and vice versa). How these networks of communication are 

disrupted or modified across the kinesin superfamily may be an important strategy to 

understand how sequence divergence underlies functional diversity.  

Strikingly, we found that kinesin-1 motors with single residue changes to weaken 

CNB formation and NL latching displayed enhanced unloaded motility properties 

(landing rate, velocity, and run length; Chapter 2) due to allosteric effects on regions 

that coordinate nucleotide and bind microtubules. Collectively, these results highlight a 

striking feature of the kinesin motor domain, where subtle changes in force generating 

elements (CNB formation and NL latching) can act as a molecular gearshift, where 

speed and processivity come at the cost of robust force production. Whether this is a 

strategy used to tune motors to be fast and processive versus slower but stronger is not 

clear.  

Moreover, a number of residues identified to form important allosteric networks 

for kinesin motility (Richard et al., 2016) are mutated in KIF1A associated neurological 

disorders (Chapter 4), including V8M and Y89D mutations characterized in Chapter 4. 

Thus, single residue changes that disrupt communication between the nucleotide-

binding pocket, microtubule-binding elements, and force generating elements may be a 

common strategy to disrupt kinesin function and manifest in disease (Shen et al., 2017; 

Yang et al., 2012). 

On a broader scale, this work highlights a common strategy in evolution for how 

small changes in sequence and/or biophysical properties (binding affinity, rates of 

catalysis, coupling between functional elements) can lead to novel behavior. Therefore, 

the use of interdisciplinary techniques to understand the functional output of sequence 

divergence within the kinesin superfamily can be applied across biology to other protein 

superfamilies, especially those whose properties are not easy to study under single-

molecule conditions. 
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5.1.3 Insights into designing mutant kinesin motor proteins to probe cellular 
function 

There are over 45 different kinesin motors in humans that display developmental- 

and tissue-specific expression patters. For example, a subset of kinesin motors is 

specifically expressed in neurons (Hirokawa et al., 2010; Hirokawa et al., 2009; Miki et 

al., 2003). It is unknown how kinesin motors are functionally distinct from one another. 

Gene knockout in model organisms have been used to better understand the biological 

significance of a specific kinesin. However, many times gene knockouts are embryonic 

lethal, have subtle effects as a result of functionally redundant motors, or the effects are 

secondary to the motor’s function making it difficult to conclude the biological 

significance of a given motor (Nakajima et al., 2002; Yang et al., 2001). Furthermore, 

high sequence and structural conservation of the kinesin motor domain make 

development of inhibitors specific to a kinesin motor or family difficult [with exception of 

kinesin-5 Eg5 (Kapoor et al., 2000) and kinesin-15 KIF15 (Dumas et al., 2019)]. Thus, it 

has been challenging to specifically and dynamically probe kinesin function in a 

biological context. Work presented in this dissertation can be applied to design motors 

that are amenable to inhibition or motors that have altered functional outputs (force 

generation, velocity, and processivity) and can be used to probe kinesin function without 

genetically removing the protein. 

5.1.3.1 Strategies to design inhibitable kinesin motors  
Previous work has developed a chemical-genetic engineering approach to 

generate kinesin-1, -2, and -3 motors that are sensitive to cell permeable, small-

molecule inhibitors. This method requires engineering a kinesin motor domain that has 

a sequence insertion to lock the motor domain into a conformation that is not amenable 

to microtubule-based stepping upon addition of an inhibitor (for example, prevents 

microtubule stimulated ATPase activity or generates a rigor kinesin that is locked on the 

microtubule track). One approach fuses a DmrB domain to the coverstrand and addition 

of rapalog links together the two DmrB domains of a dimeric kinesin and prevents 

stepping, reminiscent with someone trying to walk with their shoelaces tied together 

(Engelke et al., 2016). Given our findings in Chapter 2, DmrB dimerization is likely to 

prevent proper forming and/or breaking of the CNB and therefore motor stepping. This 
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is consistent with previous cross-linking studies that prevent dynamic forming and 

breaking of the CNB (Tomishige & Vale, 2000). 

Strikingly, when designing inhibitable kinesin motors, fusing the DmrB domain to 

the coverstrand can render a motor (1) inactive in the presence and absence of 

inhibitor, (2) active in the absence of inhibitor and inactive in the presence of the 

inhibitor, or (3) active in the absence and presence of the inhibitor. This outcome is 

specific for each type of kinesin motor that is engineered (Engelke et al., 2019; Engelke 

et al., 2016) and most likely reflects differences in CNB formation across the kinesin 

superfamily. Therefore, work assessing the conservation of CNB formation across the 

kinesin superfamily (Chapter 2 and 3) can provide important insight into designing 

inhibitable motors. Due to the dynamic nature of CNB formation for kinesin motility and 

its predicted role in gating ATPase activity (Budaitis et al., 2019; Cao et al., 2014; 

Hahlen et al., 2006), the coverstrand may be an important mechanical element to 

modulate and selectively impair motility. Furthermore, as a small flexible element at the 

N-terminus, it is unlikely that sequence insertions before the coverstrand will cause 

instability or unfolding of the protein. 

5.1.3.2 Strategies to design kinesin motors with altered motility properties 
 Although in vitro, single-molecule studies have provided considerable insight into 

how kinesins are functionally distinct from one another, how distinct motility properties 

specifies a motor’s function in a physiological context is not clear. Adding to the 

complexity, most cargoes in cells contain multiple motors on their surface, including (1) 

motors of the same type, (2) different motors from the same superfamily, and/or (3) 

different classes of motors. The functional advantage for having mixed populations of 

motors associated with a cargo is unclear. One possibility is that motors serve 

functionally redundant roles. Another possibility is that the cooperative activity of these 

motors leads to emergent mechanisms of transport important for a specific biological 

task in the cell.  

 To more carefully dissect these possibilities, motors with altered motility 

properties (processivity, velocity, force generation, sensitivity to detachment under 

load), can be engineered to replace the WT motor in a model organism or cell culture 

system. Work from this dissertation can be used as a guide to design subtle mutations 
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in the kinesin motor domain to systematically modulate the force output of a motor 

[Chapters 2 - 4; (Budaitis et al., 2019)]. Furthermore, work from the Verhey lab has 

designed monomeric kinesins that are unable to step in a foot-over-foot manner 

(Schimert et al., 2019) and generated mutants with changes in their processivity or 

microtubule-landing rate (Soppina & Verhey, 2014; Scarabelli et al., 2015), collectively 

providing a tool box of strategies to alter the functional output of a kinesin motors.   

5.2 Future Outlook 

5.2.1 Strategies to study multi-motor transport in cells  
We have used cell-based transport assays to screen for mutations in the kinesin 

motor domain that impact the ability for teams of motors to drive the transport of high- 

versus low-load cargo in cells, a property predicted to underlie functional distinctions 

between kinesin motors. This method provides an effective strategy to better 

understand how modulating a kinesin’s single-molecule motility properties impact its 

ability to drive transport under native conditions. However, our conclusions about cargo 

transport are based on fixed samples. Thus, although we were able to collect higher 

sample sizes using fixed samples, we do not have information on the dynamics of 

transport. Future work can use live-cell imaging methods to provide additional insight 

into how mutations affect the ability of motors to cooperate to drive transport. For 

instance, transport speed and pause frequencies of individual cargoes may reveal 

functional underpinnings of emergent transport behaviors in cells (Efremov et al., 2014).  

Unfortunately, it is still difficult to connect how the number and organization of 

motors on an endogenous cargo relates to transport in cells. However, modifications to 

this artificial cargo transport assay may help bridge this gap in knowledge. For instance, 

we use a strategy to coat the surface of membrane-bound cargo with kinesin motors, an 

exaggerated strategy to monitor kinesin-driven transport in cells. Instead, Efremov. et al. 

used a doxycycline-based method to regulate the number FKBP domains associated 

with a cargo, and therefore regulate the number of motors recruited to the surface of the 

cargo.  Efremov. et al., found that varying the number of kinesin-1 motors on a low-load 

cargo did not impact the transport properties of the cargo (Efremov et al., 2014). 
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However, it would be interesting to see if this relationship changes with different kinesin 

families, mutants, or when motors are tasked to drive high-load transport.  

 Often times cargo transport is driven by mixed populations of motors [dynein or 

myosin, (Hendricks et al., 2010; Schuster et al., 2011; Shubeita et al., 2008; Soppina et 

al., 2009)]. Therefore, it may be advantageous to address this physiological requirement 

by inducibly recruiting different types of motors to the surface of cargoes and monitoring 

transport. Indeed, a variety of inducible recruitment strategies have been optimized to 

allow for rapid and specific recruitment of dynein, kinesin, or myosin motors [chemical 

recruitment strategies (Bentley & Banker, 2015; Duan et al., 2015; Efremov et al., 2014; 

Janssen et al., 2017; Kapitein et al., 2010) and optogenetic recruitment (van Bergeijk, 

Adrian, Hoogenraad, & Kapitein, 2015)].  

 Although peroxisome (low-load) and Golgi (high-load) dispersion assays in cells 

may be more reflective of true transport events than in vitro assays, this assay is still not 

a perfect representation of the functional requirements motors are tasked with in 

biology. Therefore, it may be beneficial to apply this strategy to study the behavior of 

motors driving microtubule-based tasks that are more representative of the motor’s 

function in cells. For instance, kinesin-5 motor Eg5 is able to generate substantial forces 

to slide microtubules in cell division. However, we find that when these motors are 

coupled through a lipid membrane, they are unable to drive transport of low-load cargo 

(peroxisomes, data not shown). Therefore, although this may provide important 

information about how tight or loose coupling of motors can change transport behavior, 

this strategy would not be insightful to probe the mechanical properties of Eg5 motors. 

This also may be the reason for the conflicting behavior of the motility of KIF17 as single 

motors under purified conditions and as teams driving transport in cells.  

5.2.2 Insight into disease 
Loss of cellular organization or defects in cytoskeletal-based transport can lead 

to a number of diseases, including cancer (Yu & Feng, 2010), 

neurodevelopmental/neurodegenerative disorders (Gabrych et al., 2019; Salinas et al., 

2008), and ciliopathies (Gerdes et al., 2009). The list of disease-associated mutations in 

kinesin motor proteins has grown substantially in the last 10 years. Notably, most 
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disease-associated mutations are located in the motor domain; however, how these 

mutations impact the functional output of a kinesin motor is not clear.  

Often times, the functional impact of a disease-associated mutation is inferred 

from sequence alignment.  However, a number of KIF1A associated mutations (Chapter 

4) map to elements in the kinesin motor domain with no direct implication in microtubule 

binding, nucleotide binding/hydrolysis, or stepping/force generation. Therefore, it can be 

difficult to infer a mutations impact on kinesin function and careful characterization of 

how disease-associated mutations impact the functional output of a motor may be 

necessary. Recent work has identified a network of residues across the kinesin motor 

domain important for maintaining communication between functional elements and may 

serve as an important resource for understanding how mutations impact kinesin function 

(Richard et al., 2016).   

Work from this dissertation suggests that disease-associated mutations may not 

only affect a motor’s single-molecule motility properties but also its ability to cooperate 

to drive transport. Only a few previous studies assess the functional output of teams of 

mutant motors and this is typically done with microtubule-gliding assays (Arpăg et al, 

2014; Nieh et al., 2017). Unfortunately, in microtubule gliding assays, motors are rigidly 

coupled to one another. Thus, although this assay may be informative for motors that 

drive microtubule sliding during cell division, it may not be the best way to assess the 

behavior of mutant motors driving transport of membrane-bound cargo, where motors 

are loosely coupled in a lipid membrane (Grover et al., 2016). Therefore, it may be 

important to compare the behavior of mutant motors under single-molecule conditions 

with their ability to drive microtubule-based tasks in cells using a functionally relevant 

assay to better understand of how changing their functional output manifests in disease.  

Finally, some disease-associated mutations in kinesin motors have dominant 

effects (Gabrych et al., 2019). Therefore, it is important to understand the behavior of 

heterodimeric motors, where one motor domain harbors a mutation while the other 

motor domain is WT. We find that pairing a KIF1A KAND mutant motor domain with a 

WT KIF1A motor domain does not rescue motility. Methods to create heterodimeric 

motors will be important for future work. It is also possible that endogenous cargoes 

have mixed populations of (1) homodimer WT motors, (2) homodimeric mutant motors, 
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and (3) heterodimeric motors. Thus, it will also be important to understand how this 

impacts their ability to cooperatively drive transport in each scenario.  

5.2.3 Conservation of CNB formation across the kinesin superfamily 
 Although there is structural evidence that the cover-neck bundle forms in a 

number of different kinesins (Atherton et al., 2014; Atherton et al., 2017; Goulet et al., 

2012; Hesse et al., 2013; Nitta et al.,  2008), biophysical evidence that the coverstrand 

is a conserved mechanical element important for kinesin motors to generate a power 

stroke is lacking. We used artificial transport assays in cells to screen how sequences 

changes in the CS or NL impacts the ability for different kinesin motors to drive transport 

of high-load versus low-load cargo in a physiological context. Although this work 

supports the model that CNB formation is a mechanical element important for high-load 

transport, how modulation of these elements impacts the functional output of single 

kinesins motors is not clear. Therefore, a more detailed characterization of CS and NL 

mutants across the kinesin superfamily will provide important insight into how 

differences in their force output contributes to their function in cells.  

5.2.4 KIF17 and its functional output in cells 
Our molecular dynamics simulations suggest that the short length of the 

coverstrand and a proline residue in β9 of the NL reduces the number of residues in the 

that can contribute to cover-neck bundle formation. Consistent with this prediction, 

teams of KIF17 motors were able to drive the transport of low- but not high-load cargo 

to the cell periphery. However, mutations predicted to lengthen CNB formation in KIF17 

did not enhance the ability for teams of motors to drive high load-transport. Strikingly, 

recent optical trap studies suggest that KIF17 is able to continuously transport against 

high forces under single molecule conditions [6 pN stall force; (Milic et al., 2017)].  

The disparity between KIF17’s single-molecule motility properties and its inability 

to drive high-load transport in cells is puzzling. KIF17 is best known for its function in 

driving intraflagellar transport in primary cilia and vesicle transport in neurons (Hirokawa 

et al., 2010; Verhey, Dishinger, & Kee, 2011), both areas that have specialized 

compartments with tight regulation of transport (Hirokawa et al., 2010). Therefore, it is 

possible that our low- and high-load, artificial cargo assays are not appropriate methods 
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to probe the functional output of KIF17. One possibility is that the activity of KIF17 is 

regulated in an unanticipated manner in the cytoplasm of cells. For instance, the 

functional output of KIF17 may be regulated by posttranslational modifications or by 

proteins that directly bind to KIF17. Indeed, kinesin binding protein (KBP) was recently 

identified to bind to the motor domain of KIF1A, preventing its association with 

microtubules in neurons (Kevenaar et al., 2016). Another possibility is that KIF17 

requires a specific subset of microtubules to drive transport along. However, increasing 

the polyglytamylation, acetylation, or detyrosination of microtubules in COS-7 cells had 

no effect on enhancing the ability for teams of KIF17 motors to drive high-load transport 

(data not shown). Therefore, recruitment of KIF17 motors to its native cargo in a cellular 

context may be a better strategy to understand its behavior in cells (Engelke et al., 

2019; Franker et al., 2016).  

 Finally, it is also possible that as single motors, KIF17 is robust at transporting 

high-load but as a team they are unable to cooperate. To address this possibility, it will 

be important to characterize the motility properties of defined numbers of KIF17 motors 

(Derr et al., 2012; Furuta et al., 2013; Grover et al., 2016; Norris et al., 2014) and 

compare this to their behavior as single motors.   
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