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Preface 

 

 I joined the MCDB department in July 2014, and the Wang lab as a graduate student on 

April 15, 2015. The data in this dissertation mainly came from two manuscripts developed while 

in the Wang lab.  

 Originally, there were four goals for this dissertation: 

1) Develop a set of criteria for determining Golgi stress. 

2) Screen a number of different stress conditions in cells using those criteria. 

3) Describe a molecular mechanism of Golgi stress. 

4) Perform experiments in a physiological model of Golgi stress.  

 Much of Chapter I is from work  performed while doing a full semester rotation in the 

Wang lab. Conceptually, Chapter I describes the system model and discusses progress  made to 

accomplish goals 1 and 2, i.e., to establish a robust criteria of Golgi stress and screen cell stresses 

using it.  

 The data presented in Chapter II was fundamental towards  reaching goal 3, discovering a 

mechanism of Golgi stress.  

For this project, some of the Golgi stresses discovered and our criterion for measuring 

them, were deeply explored to find the mechanism. An initial observation, that thapsigargin 

caused Golgi fragmentation was made by a former student in the Wang lab, Saiprasad 
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Ramnarayanan, who was a co-author on the work that was eventually published. Mingzhou Fu 

also made important contributions in the early stages of this work and was a co-author. After 

continuing this work and developing it significantly in this study, which includes a physiological 

model of Golgi stress, the final full research article, Cytosolic Ca2+ Modulates Golgi Structure 

Through PKCα-Mediated GRASP55 Phosphorylation, was published in iScience, March 27 

2020; 23, 100952. Stephen Ireland, Sai Ramnarayanan and Yanzhuang Wang designed the 

project. Stephen Ireland performed the experiments for Figure 2.1C-D, 2.1E-G, 2.2A-D, 2.3A, 

2.3D-H, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11A-D, 2.12, 2.13; Saiprasad Ramnarayanan 

performed the experiments for Figure 2.1A-B, 2.1E-G, 2.3A-C, 2.3E-G, 2.5A-B, 2.5F-G; 

Mingzhou Fu performed the experiments for Figure 2.1A-B, 2.1E-G, 2.3A-C, 2.3E-G, 2.5A-B, 

2.5F-G; Jianchao Zhang performed the experiments in Figure 2.11E-F; Jie Li made reagents used 

in Figure 2.10D-E; Dabel Emebo performed the experiments for Figures 2.2E-F. Stephen 

Ireland, Sai Ramnarayanan and Mingzhou Fu analyzed the data. Stephen Ireland and Yanzhuang 

Wang wrote the paper. 

 Data from Chapter III comprises a continuation of goal 3, to explore molecular 

mechanisms, but with a different set of stressors that had an apparently different mechanism. 

This chapter arose from the discovery that not all Golgi stresses lend themselves to easy 

characterization by the initial fragmentation criterion, namely, the use of fluorescent microscopy 

to score or grade fragmentation level. This manuscript includes a new way to think about Golgi 

stress in terms of ultrastructural and biochemical changes in the cell. Some of the important 

preliminary data for this work was collected by undergraduate students, Haoran Huang and Shun 

Enomoto. A manuscript summarizing these findings entitled Hydrogen peroxide induces Arl1 

degradation and impairs Golgi-mediated trafficking is currently in revision in the journal 
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MBoC. Stephen Ireland, Haoran Huang and Yanzhuang Wang designed the project. Stephen 

Ireland, Jianchao Zhang and Haoran Huang performed the experiments: Stephen Ireland 

performed the experiment for Figure 3.1A, 3.2, 3.4, 3.5, 3.6A, 3.7; Haoran Huang performed the 

experiment for Figure 3.1A, 3.2, 3.3, 3.6A, 3.8; Jianchao Zhang performed the experiment for 

Figure 3.1B. Stephen Ireland and Haoran Huang analyzed the data. Stephen Ireland and 

Yanzhuang Wang wrote the paper. 

 Chapter IV contains concluding remarks related to what is believed to be the important 

central conclusions of this research study with respect to accomplishing or suitably addressing 

stated goals. Chapter IV, is hoped to encourage future scientists to continue the work and build 

upon it. The chapter concludes with a brief vignette demonstrating an important open question 

and possible avenue(s) for future research. In this case, Stephen Ireland designed the project. 

Stephen Ireland analyzed the data for Figure 4.1A. Stephen Ireland performed experiments for 

Figure 4.1B-E. 
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Abstract 

 

 In mammals, the Golgi apparatus has a unique stacked structure that is important for its 

function; yet, the Golgi structure is dynamic and its structure and function changes in response to 

different stress conditions applied to the cell. Since Golgi functions are abnormal in stress, it 

implies that Golgi structure may play a critical role in human diseases.  

 This research project studied how the Golgi apparatus responds to stress. The study 

process followed in a stepwise progression:  First, it was necessary to determine how the Golgi 

responded to endoplasmic reticulum (ER) stress; findings indicated that the Golgi is fragmented 

in response to thapsigargin (TG) but not to other ER stress inducers such as tunicamycin (Tm) 

and dithiothreitol (DTT).  Since TG treatment is known to cause an increase in cytosolic 

calcium, it was useful to determine whether a calcium-sensitive kinase could act as the trigger of 

Golgi morphological change. This led to identification of protein kinase C-α (PKCα) and its 

substrate GRASP55 in calcium stress-induced Golgi fragmentation, and abnormal Golgi 

functions. More generally, cytosolic calcium is a logical trigger in the Golgi structure alteration 

process during stress, as it has been shown to be regulated during several cellular processes. 

Subsequently, this study confirmed that activating or inflammatory agents induce Golgi 

fragmentation and cytosolic calcium increase via a similar mechanism.  

 These findings are of great interest to cell biologists who are working on Golgi dynamics, 

membrane trafficking, cellular responses to stresses, and histamine biology. 

 Next, several novel findings are described where, reactive oxidative species (ROS) 

induce the degradation of Golgi structural proteins in the trans-Golgi, including Arl1, Golgin-97, 

and Golgin-245, and thereby impair membrane trafficking. 
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This work is believed to be the first systematic study of how ROS affects Golgi structure 

and function. It revealed the trans-Golgi and trafficking at the trans-Golgi as novel targets of 

ROS in cells, which may help understand the toxicity of ROS in human diseases.  It also found 

that the degradation of Arl1, Golgin-97 and Golgin-245 is not mediated by proteasomes nor 

lysosomes, but rather by cytosolic proteases. This finding underscores the importance of 

cytosolic proteases whose importance has been often underestimated in recent studies. 

 During this study, some molecular tools were designed and constructed to detect Golgi 

calcium signals in cells using GCaMP-based sensors. The main advantage of this sensor is that 

the GCaMP calcium probe is covalently linked to GRASP55 on the Golgi and can directly sense 

and detect fluctuations of local cytoplasmic calcium in the vicinity of the Golgi. This tool is 

essentially a de facto Golgi stress sensor, which can be used by others who wish to quickly 

screen for compounds that reduce calcium-related Golgi fragmentation during stress. 

 Besides calcium imaging was an opportunity to develop another set of tools for imaging 

specific proteins of interest at the ultrastructural level. These sensors utilize a recombinant 

ascorbate peroxidase (apex) enzyme to catalytically precipitate an electron dense product in the 

vicinity of a cellular protein of interest. In the lab the apex gene was linked to each GRASP55 

and GRASP65 with the hopes that future researchers will utilize this fusion protein to identify 

the precise intracellular localizations of these proteins with high resolution. 
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CHAPTER I 
 

Introduction1 

 

1.1 Overview of the exocytic and endocytic trafficking system  

The cell is a highly ordered machine in large part due to a correctly functioning endocytic 

trafficking system (Fig. 1.1) (Glick and Nakano, 2009). For conventionally secreted proteins, 

newly synthesized polypeptides in the endoplasmic reticulum (ER) are folded and packaged into 

transport carriers. The nascent polypeptides and lipids then progress through the intermediate 

compartments and make their way to the Golgi apparatus (Saraste and Marie, 2018). Transport 

vesicles fuse and their contents begin a modification process with numerous essential surface 

features, including sugar and phosphate groups, as they make their way through the Golgi. 

Trafficking between Golgi compartments relies on a group of long coiled-coil proteins called 

golgins, which act as membrane tethers to capture vesicles and facilitate their fusion with the 

Golgi membranes (Lupashin and Sztul, 2005; Muschalik and Munro, 2018; Witkos and Lowe, 

2015; Xiang and Wang, 2011).  

 
 

 

1 The data from Figure 1.4 was revised from works referenced in the corresponding figure legend 

and in the text related to the figure. Figure 1.6 from this chapter was modified from data 

originally published in Golgi biogenesis. Cold Spring Harb Perspect Biol, 2011. 3(10): p. 

a005330, with authors listed as Wang, Y. and J. Seemann.  
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Maturation of biosynthetic products often must be a sequential process, and there are two 

competing models of how this occurs; in one model enzymes are located in a systematic way 

within an assembly line composed of maturing cisternae, this is also mediated by membrane 

tethers (Munro, 2011). Anterograde movement through the Golgi is mediated by packaging into 

discrete units called COPII vesicles that coalesce to form new Golgi cisternae (McCaughey and 

Stephens, 2018). Retrograde travel to return cargo, Golgi enzymes, or endocytosed materials to 

an earlier stage of the endocytic trafficking system including the Golgi happens via COPI 

vesicles (Ishii et al., 2016).  A third type of vesicle, clathrin-coated vesicles are destined for 

endosome/autophagosome via multivesicular bodies. Clathrin-coated vesicles originate from an 

area of the Golgi called the trans-Golgi network (TGN) and were discovered to also emerge from 

the plasma membrane (Mettlen et al., 2018). The Golgi cisternae, however,  seem to be stable 

compartments that accept cargo via incoming COPII vesicles from the ER.  

 

Whatever model of Golgi transport one embraces, protein products are packaged and leave the 

Golgi toward destinations within and outside the cell (Pantazopoulou and Glick, 2019). The 

Golgi processes many important proteins, but there are examples of secreted proteins that bypass 

the Golgi apparatus, which are altogether called unconventionally secreted proteins; but these 

will not be discussed in detail here. In general, the Golgi apparatus must balance biosynthetic 

and degradative pathways and can be characterized as a factory in the cell. The Golgi therefore 

must coordinate many proteins to organize the unique stacked structure and cope with dynamic 

bi-directional trafficking. 
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1.1.1 Introduction to the Golgi apparatus 

The Golgi apparatus is a membrane organelle in the center of the endomembrane system. It is 

responsible for protein and lipid trafficking, processing, and secretion. As many as 30% of all 

proteins encoded by the human genome, including hormones, enzymes, and immunoglobulins, 

are processed by the Golgi with speed and fidelity (Pfeffer, 2010).  The Golgi has a unique and 

recognizable shape as a stacked structure of parallel flattened cisternae (Fig. 1.1). It is located 

adjacent to the centrosome, near the center of most cell types along with the nucleus (Fig. 1.2). 

There are on average a few dozen Golgi stacks per cell which are connected laterally to form the 

so-called "Golgi ribbon."  

 

The structure of the Golgi is physically dynamic.  During cell cycle progression, it is reversibly 

disassembled  (Barr et al., 1997).  During programmed cell death it is irreversibly disassembled 

(Mancini et al., 2000). An important aspect of Golgi biology is that its structure determines its 

functions (Fig. 1.3). 

 

1.1.2 Golgi structure and position 

The Golgi stack has essential structural features.  It is polarized and it contains distinct cis-/trans-

compartments. In general, incoming cargo, received from the ER, is progressively modified until 

the product is sorted and sent to its required destination.  

 

In the evolutionary past, the Golgi’s polarity presented cells with a problem during mitosis, a 

process in which the cell and each organelle must divide in half.  The problem was, how to 
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ensure the next generation of cells would have equal proportions of the Golgi arranged in the 

proper way.  

 

The cell’s solution for equal proportioning of the Golgi apparatus during cell division is an 

elegant disassembly and reassembly process with well-defined phases. During mitosis, the Golgi 

ribbon becomes untethered, the stacks become unstacked, and the cisternae are shortened and 

become vesiculated (Tang et al., 2012). Vesiculation permits vesicles to spread evenly 

throughout the cytoplasm. At the end of mitosis in telophase, the entire process runs in reverse. 

Vesicles fuse depending on their constituent parts and membranes restack to form the Golgi 

ribbons again. This well-choreographed process depends on the careful coordination of many 

molecular machineries in the cell including kinases and phosphatases, ubiquitin ligases and 

deubiquitinases, vesicle fission and fusion machineries as well as many others. 

 

In interphase, the Golgi ribbon in mammalian cells forms near the microtubule organizing center 

(MTOC) of the cell near the centrosome (Yadav and Linstedt, 2011). There are some exceptions, 

but this study observed the normal Golgi shape at the ultrastructural level is an elaborate 

complex of four-to-eight long membranous, stacked cisternae that connect laterally to form an 

articulated ribbon (Fig. 1.3B). This ribbon is held in place due to the persistent actions of the 

microtubule minus-end directed motor protein Dynein that carries Golgi membranes to a 

pericentriolar region along microtubule network. Microtubules are required for lateral linking of 

the Golgi ribbon. It was found that treatment of cells with the microtubule depolymerizing drug 

nocodazole disperses Golgi stacks throughout the cell (Cole et al., 1996).  
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1.1.3 Golgi function and significance 

While the Golgi has a recognizable structure, it is not always clearly understood what it does. 

However, viewing the Golgi as a factory in the cell is a useful analogy.  A factory receives inputs 

from outside sources and assembles larger, more complex, items from the basic building block 

components. Once the product is boxed and labeled, the item is loaded on a vehicle for delivery.  

 

In the Golgi/factory analogy, the primary function of the Golgi involves the processes of material 

handling, modifications, and sorting, to produce secretory proteins and lipids. During processing 

there is a step-wise exposure of secretory traffic to the unique enzyme and sorting machinery 

containing compartments of the Golgi apparatus. As these cargos are exposed to enzymes in each 

Golgi cisternae, they are processed with modifications such as glycosylation and phosphorylation 

and grow in complexity (Capasso et al., 1989; Fleischer, 1983).  

 

Many protein products encoded by the human genome would have no function if not for further 

processing by the Golgi apparatus (Miyoshi et al., 2020).  A particular example takes place in 

professional secretory cells called goblet cells lining mucous membranes (Araujo et al., 2019). 

These cells produce abundant amounts of pre-glycoproteins called mucins that are received by 

the Golgi.  There, they are modified with carbohydrate additions called O-GalNAc glycans by 

the activity of polypeptide O-GalNAc-transferases (GALNTs) (Brockhausen and Stanley, 2015). 

When ready, mature mucus molecules are secreted via secretory granules.  This is the highly 

"sticky" substance that traps invaders in the respiratory system before they can do much harm. In 

this sense, the Golgi adds and refines the biological materials with more information and 

complexity, allowing an otherwise nonfunctional protein do a real job in the real world.  
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Proteins can be modified with numerous modifications in the Golgi and would not function 

properly otherwise; these proteins include immunoglobulins, neurotransmitters, growth factors, 

cell surface receptors, cell adhesion molecules, and many others needed for organism health and 

survival. 

 

1.2 Golgi stress definition, types, and regulators 

Golgi stress can be defined as perturbations of Golgi functions of sorting, trafficking and 

modifications. Because the Golgi lies in the middle of the membrane trafficking pathway and 

may house the majority of enzymes in the cell (Colley, 1997), disorganization of Golgi 

membranes often causes abrupt biological and morphological changes within the cell necessary 

to maintain homeostasis. 

 

Researchers have developed numerous ways to observe Golgi structural disorganization in the 

cell including by using various modalities of microscopy including immunofluorescence (Thayer 

et al., 2013), and electron microscopy (EM) (Bekier et al., 2017). These researchers have broken 

down structural change into several metrics which include swelling, enlargement, compaction, 

disorganization, fragmentation, and so on. However, we will define Golgi structural 

disorganization during stress as "fragmentation" to contrast it with the "disassembly" that occurs 

during the cell cycle. 

 

The Golgi is fragmented and exhibits signs of morphological and functional changes in several 

major human diseases including Alzheimer’s, cancer, and amyotrophic lateral sclerosis (ALS) 
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(Fig. 1.4A-B) (Mourelatos et al., 1996; Petrosyan, 2015; Sundaramoorthy et al., 2015). Some 

stresses including overactivation of neurons also induce a clear Golgi fragmentation phenotype 

(Fig. 1.4C-F) (Thayer et al., 2013).  

 

Although the Golgi is directly responsible for the proper functioning of proteins essential for 

human health and survival, little is known about the biological processes that lead to Golgi 

fragmentation and Golgi functions during stress and disease. Intermediate steps could be 

required to transduce a change of the Golgi, such as secondary messengers like calcium or 

reactive oxygen species (ROS). It is also not known to what extent exogenous or endogenous 

stresses play in Golgi functions. How the Golgi looks during dynamic regulation to respond to 

multiple types of cellular stress, or damage by stress leading to functional consequences for the 

cell, is the topic of this research investigation. 

 

Cellular stress is not a new field of study. Some things are known about the Golgi with respect to 

known stress pathways. One example of the tight coupling of secretory pathway stress responses, 

is the relationship between the endoplasmic reticulum unfolded protein response (UPR) and 

Golgi stress. This connection has been hypothesized by Oku et al. to be due to a rapid increase of 

substrates in the Golgi as the ER rapidly produces secretory and membrane proteins during UPR, 

placing increasing demands on the Golgi by cargo crowding (Oku et al., 2011). The Golgi’s 

unique stacked structure could provide a mechanism to balance the speed by which biochemical 

modifications can be made, with the fidelity. For example, if there is a robust increase in demand 

on glycolytic processing, then it might benefit the cell to decrease Golgi stacking and increase 

membrane surface area. Experimental data covered in Chapter II showed this was the case. In 



8 

 

Chapter II, questions are raised concerning whether the Golgi morphological changes, that 

occur as a consequence to ER stress inducing drugs, actually precede the well characterized 

UPR.  Since, the Golgi structure becomes smaller and more compact upon starvation, and 

fragments during apoptosis,  any explanation of Golgi fragmentation must account for the 

occurrence during normal conditions including cell division and apoptosis. 

 

If the Golgi is indeed not responding to ER stress but actually has the ability to enact its own 

changes in the cell in response to external triggers this brings up an intriguing possibility. A 

growing body of work, including this study, shows that there are Golgi-specific stress pathways 

in the cell. Many groups have reported that Golgi-associated genes, including glycosylation 

enzymes and vesicular trafficking components are upregulated during Golgi stress, along with 

Golgi fragmentation. For example, mutations that disrupt Golgi structural organization, such as 

those genes encoding seven of the eight conserved oligomeric Golgi complex (COG) subunits, 

result in malfunctions in protein processing and congenital defects of glycosylation (Smith and 

Lupashin, 2008). There is/are likely also one or more sensors in the Golgi that are able to 

recognize a need for up-regulation of Golgi genes. An example is when the function of the Golgi 

was disturbed in Oku et al., transcription from the cis-activating Golgi stress response element 

(GASE) was induced, which in turn upregulated glycosylation enzymes and post-Golgi vesicular 

trafficking factors (Oku et al., 2011). It will be shown, too, that other Golgi morphological 

changes likely take place in response to phosphorylation of Golgi matrix components such as the 

post-translational modification of Golgi re-assembly and stacking proteins (GRASPs) during 

stress. 
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A potentially significant consequence of the Golgi-specific stress hypothesis is that perhaps 

imbalanced pathways can be returned to a normal, non-diseased state by utilizing a pre-existing 

mechanism within the cell. A basic problem arising when considering the question of Golgi 

stress carefully is whether it is the Golgi detecting cellular stress and influencing other pathways, 

or is it reacting to existing problems within the cell producing stress responses as the influence of 

these problems reach some triggering level. My current understanding is that the truth lies 

somewhere in the middle; that the Golgi has the ability to both detect and respond to cellular 

stress, but this is largely based on both the type and duration of the specific insult.  

 

Some examples of Golgi fragmentation exist during normal cellular development, such as during 

mitosis and apoptosis.  Since these normal functions could potentially obfuscate an analysis of a 

Golgi-specific stress response using only fragmentation, other types of measurement and many 

controls are required.  

 

1.2.1 Golgi stress in the context of the cell 

There are many examples of cellular stress conditions in the literature. A list of proteins that 

have increased protein expression as a result of stressful stimuli was made from three published 

general cellular stress response screens (Alvarez-Miranda et al., 2015; Chia et al., 2012; Millarte 

et al., 2015). All the proteins published in these screens were upregulated by the induction of at 

least one of seven cellular damage response categories, i.e.,  DNA damage, ER stress, 

inflammation, osmotic pressure, oxidation, pH imbalance, and starvation (Fig. 1.5A). Of these 

stress categories, several are known to produce Golgi fragmentation in various cell types and 

tissues. Preliminary work for this study verified whether these stress categories caused Golgi 
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fragmentation in HeLa cells in cell culture. Preliminary experiments indicated many stress 

categories were indeed able to cause Golgi fragmentation phenotypes in HeLa cells. 

 

1.2.2 Golgi plasticity in response to stress conditions  

Golgi structure altering stresses include ER stress, inflammation, pH imbalance, and others (Fig. 

1.5A). There are a wide array of stress-induced Golgi structural phenotypes, including 

compacted and diffused, but one of the most common is fragmentation (Fig. 1.5D-E).  An 

exhaustive review of each stressful condition was beyond the scope of this study. 

 

The most critical stresses that affect Golgi structure, in particular those that produce 

fragmentation and changes in Golgi biology, will be briefly discussed. For background, the 

following are short summaries of stresses recounted in literature that cause Golgi responses. 

 

pH 

The concentration of H+ ions is believed a major factor in contributing to the organization of the 

Golgi (Kellokumpu, 2019). The interplay between cytosol pH and Golgi lumen pH is thought to 

be an important regulatory mechanism that influences trafficking. Cytosolic pH in most cells is 

approximately 7.2 and the Golgi pH has been reported from 6.25 – 6.58 (Schapiro and Grinstein, 

2000).  

 

The pH of the Golgi luminal compartment decreases in the direction of the plasma membrane. 

The pH gradient across the Golgi membrane is maintained by V-ATPases that undergo active ion 

transport. Many enzymes have an acidic pH requirement. For example, mannose-6-phosphate 
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receptors (M6PR) are transmembrane glycoproteins that undergo pH-dependent targeting of 

lysosomal enzymes to acidic organelles where they can carry out their function. Recycling of 

M6PR is important for cellular homeostasis and depends on Golgi pH (Lin et al., 2004). 

Treatment of cells with monensin, a drug that increases pH of the Golgi lumen to neutral levels, 

also prevents recycling of sorting receptors (Basu et al., 1981). Mutations of critical enzymes in 

the Golgi, which lead to dysregulation of pH, can also lead to protein trafficking defects and 

accumulation of byproducts in the lysosome or extracellular space. Therefore, the Golgi pH is 

important to maintain cellular homeostasis and health. 

 

Calcium 

Under stress conditions, free calcium and calcium sensitive enzymes have been shown to 

increase in the cytoplasm. The cytosolic Ca2+ level at rest is ~100 nM (Garrity et al., 2016; 

Zampese and Pizzo, 2012). During physiological stimulation, cytosolic free calcium can climb to 

3 μM (Celsi et al., 2009). Cytosolic calcium is suppressed during mitosis (Kiehart, 1981). 

Dysregulation of calcium is known to accompany Golgi fragmentation (Nakagomi et al., 2008). 

Cytosolic calcium dysregulation appears in Alzheimer's disease. In the presence of amyloid 

precursor protein (APP), calpain, a calcium sensitive furin-like protease, catalyzes the conversion 

of p35 to p25.  Then, p25 activates Cdk5, which phosphorylates GRASP65 in response to 

amyloid-β (Aβ) accumulation. Fragmentation of Golgi enhances trafficking of APP (Joshi et al., 

2014). Therefore, it appears that changes in cytosolic or Golgi calcium during stress could cause 

an adaptive Golgi stress response. 
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The Golgi can handle cellular calcium and is important for calcium homeostasis (Dolman and 

Tepikin, 2006). Calcium handling depends on Golgi calcium channels and transporters to reduce 

cytosolic ion concentration. The Golgi has Ca2+ channels in common with the ER: inositol 

triphosphate receptors (IP3Rs) and sarco/endoplasmic reticulum ATPase isoform 2b (SERCA2b) 

on its cis-face, and ryanodine receptors (RyRs) and secretory pathway ATPases (SPCA1) mostly 

on its trans-face. IP3Rs are calcium efflux channels that respond to inositol triphosphatase (IP3) 

and regulate the release of calcium from the ER or Golgi lumen. SERCA2b is a ubiquitously 

expressed ATPase that can bind two cytosolic calcium ions at once, burning ATP to move them 

into the Golgi lumen. SPCA1 also burns ATP to move divalent cations (Ca2+ and Mg2+ ) from 

the cytosol into the luminal space. These pumps and transporters may be significant to cytosolic 

processes that are dependent on these ions. Damage to these components could occur during 

stress due to oxidative damage, lipid peroxidation and membrane deposition of aggregated 

proteins (Nakagomi et al., 2008). It may be possible that cytosolic calcium homeostasis is 

disrupted at critical times, like after damage to these proteins.  

 

The Golgi is also known to store, and itself use, cellular calcium (Dolman and Tepikin, 2006). 

Calcium is tightly regulated within the Golgi apparatus by binding proteins. The Golgi apparatus 

has 4 known calcium binding proteins, Cab45, CALNUC, p54/NEFA and calumenin (Dolman 

and Tepikin, 2006). In addition, both Ca2+ and Mg2+ act as required biosynthetic co-factors 

within the Golgi lumen. The Golgi is somewhat resistant to calcium fluctuations, suggesting that 

changes in Golgi calcium concentration may result in disruption of Golgi processes, such as 

membrane trafficking, signal transduction, organelle homeostasis, and organelle acidification 

(Stefan et al., 2017). 



13 

 

 

There is a novel mechanism, discussed in Chapter II, that coordinates Golgi structure and 

perhaps function: Increased cytoplasmic Ca2+, which activates PKCα, and subsequently 

phosphorylates GRASP55, impairs its function in Golgi structure organization. 

 

Osmotic Pressure 

Cellular responses to osmotic stress share much overlap with calcium handling, because 

excretion of solutes is not only the mechanism of reducing calcium concentration in the cell but 

also water movement out of the cell in a hypotonic environment. Similarly, absorption of solutes 

is the cellular response to hypertonic environments and allows cells to cope with stress, making 

the most energetically efficient means of coping with these stress pathways to overlap regulatory 

pathways. For example, primary astrocytes exposed to hypotonic media undergo a rapid initial 

swelling followed by regulatory volume decrease that depended on extracellular calcium influx 

(O'Connor and Kimelberg, 1993). An exhaustive review of the overlapping nature and of 

osmotic balance, heat shock and ion handling was outside the scope of this study. 

 

O-Glycosylation and glucose level 

Dysregulation of O-GlcNAc and aberrant O-GlcNAc modification has been implicated in 

pathologies of metabolic and neurodegenerative diseases as well as cancers and autoimmunity 

(Lefebvre et al., 2005). The Golgi has been identified as a target of O-GlcNAcylation during 

physiological growth conditions (Zhang et al., 2018). During starvation de-O-GlcNAcylated 

GRASP55 functions in linking LC3-II and LAMP2 to tether autophagosomes and lysosomes and 

facilitate autophagic flux. 
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Reactive Oxygen Species/Hypoxia 

All living cells are sensitive to reactive oxygen and reactive nitrogen species (ROS/RNS) from 

both exogenous and endogenous sources. The process of reducing oxygen in the electron 

transport chain produces an endogenous source of ROS, a serious threat, predominantly in the 

forms of superoxide and the hydroxyl radical. The predominant exogenous source of ROS is 

hydrogen peroxide (H2O2). H2O2 reagent is commonly used to introduce ROS to cells, since 

other molecular oxygen species cannot penetrate the plasma membrane.  

 

Several mechanisms of ROS scavenging exist within the cell to mitigate direct damage to 

biological tissues including glutathione, polyphosphate, vitamin C, etc. The mitochondria is 

typically credited as the major producer of ROS, but the Golgi apparatus is proposed to respond 

and play a key regulatory role in cellular responses to oxidative stress (Schieber and Chandel, 

2014).  

 

Hypoxic conditions result when mutated or damaged respiration enzymes and transporters 

interrupts the flow of oxygen and CO2 to and from tissues, starving them of energy via the loss 

of oxygen as a terminal electron acceptor in the electron transport chain. One pathway resulting 

from hypoxic condition is the unfolded protein response (UPR). Oxidized proteins cannot fold 

properly and leads to the onset of UPR. Accumulation of misfolded proteins and proteostasis is a 

hallmark of age-related diseases such as Alzheimer's, Parkinson's, and Huntington’s.  
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It is generally believed degradation of damaged proteins and organelles is handled by the 

ubiquitin-proteasome or autophagy/lysosome pathways. Hypoxic conditions also interact with 

lipid metabolism increasing glycolysis with a decrease in gluconeogenesis, and dysregulates lipid 

stores (Bailey et al., 2015).  

 

In Chapter III a situation in the cell will be explored, where Golgi cisternae become lost when 

exposed to H2O2. Under these conditions, H2O2 treatment of HeLa cells reduces the number of 

Golgi cisternae, leading to the loss of Golgi tethers. Of further interest (and not covered here) 

would be to check whether Golgi tethers are also proteolytically degraded in hypoxic conditions.  

 

1.2.3 Key regulators of Golgi stress: GRASPs and beyond 

There are several cases of Golgi fragmentation in cells and a few cases have fairly well-known 

mechanisms. The mechanism for Golgi fragmentation during apoptosis for example is mediated 

by cleavage of Golgi matrix components by caspases. Some examples of matrix components that 

are cleaved in this way are GRASP65, Golgin 160, and p115. Depleting a golgin often causes 

fragmentation. 

 

As previously reported, during cell cycle progression, the Golgi also disassembles, releasing 

membranes that partition into each daughter cell (Fig. 1.6A). Mitotic Golgi disassembly is 

characterized by three stereotyped changes to the Golgi structure:  

1. Ribbon unlinking  

2. Cisternal unstacking  

3. Vesicle release 
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GRASP55 and GRASP65 are peripheral membrane proteins that organize the Golgi structure 

through GRASP domain oligomerization, and localize to the medial-trans and cis-Golgi 

cisternae, respectively. The GRASP region has been predicted to contain two hydrophobic 

protein-protein interaction modules called PDZ domains. Unstacking of cisternae is accompanied 

by the phosphorylation of GRASP55 and GRASP65 at the C-terminal serine/proline rich (SPR) 

domain by mitotic kinase (Fig. 1.6B). Phosphorylation destabilizes PDZ-mediated 

oligomerization. During interphase, the Golgi structure is also maintained by GRASPs. 

Knockdown of GRASPs by RNA-interference (RNAi) is followed by complete Golgi 

fragmentation and unstacking of the entire Golgi stack. Knockdown also leads to disruption of 

protein trafficking, modification and sorting (Xiang et al., 2013).  

 

Since GRASP55 and GRASP65 organize the Golgi structure, the dynamic Golgi regulation of 

GRASPs during interphase might provide a link between disruptions of Golgi structure and 

defects in trafficking, sorting and incomplete protein processing in disease. 

 

1.3 Tools to study Golgi stress 

There are many reagents that can be used in the lab as tools to study the effects that stress will 

have on cells. For example treatment of HeLa cells with Monensin hydrochloride solutions, leads 

to vacuolation of the Golgi apparatus, and a total block in anterograde trafficking. Disturbance of 

tobacco BY-2 cells with macrolide antibiotics, Concanamycin and Bafilomycin A1, which block 

V-ATPase, leads to a similar swelling phenotype and dysregulation of Golgi function. Upon 

Brefeldin A (BFA) treatment the Golgi apparatus collapses into ER. Upon washout of BFA, the 

exit of newly synthesized membrane proteins from the ER cisterna to the Golgi complex can 
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then be measured. Temperature-blocking cells (incubated at 20°C) prevents exit from the TGN, 

and accumulates cargo at the blocked Golgi. Reduced temperature from physiological ranges 

prevents transfer of a membrane glycoprotein to the cell surface but does not prevent terminal 

glycosylation. After returning cells to 37°C, trafficking returns to normal. 

 

Many other tools to study the functions of the Golgi apparatus during Golgi stress will be 

discussed in following chapters. 

 

1.3.1 Golgi fragmentation 

Golgi stresses do not all produce the same effects on cells. However, the Golgi structure is 

frequently altered during cellular stresses on a temporary basis. One major alteration, called 

Golgi fragmentation, is the dissolution of the Golgi membranes into smaller components.  

 

Many cellular stresses result in Golgi fragmentation in cell culture. There are a number of stress-

induced Golgi structural phenotypes, including compacted and swollen, but one of the most 

common ones is fragmentation. Many cellular treatments result in Golgi fragmentation in cell 

culture including but not limited to viral infection, perturbations of cellular pH, and heat-shock.  

 

One advantage of using the Golgi fragmentation as an indicator of Golgi stress is that it has also 

been observed during human disease. Since the structure of the Golgi is closely linked to cellular 

functions during disassembly, Golgi fragmentation might have consequences for cellular 

functioning during disease. Yet studies have not established a specific, mechanistic description 
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of the molecular changes that alter the Golgi during many stresses, or made a direct connection 

between drug-induced fragmentation in cell culture and disease.  

 

Using optical approaches in tissue culture cells, this study explored the link between cellular stress 

and Golgi fragmentation, and investigated the mechanism and consequences of 

pharmacologically-induced Golgi structural changes. The hypothesis was: Golgi structure and 

functions are altered by Golgi stress (Fig. 1.7).  

 

In order to undertake the present study, a reliable approach to quantify the Golgi fragmentation 

phenotype quickly and consistently was needed. In order to quantify Golgi fragmentation, an 

unbiased approach that could be used to define whether a Golgi is intact or fragmented was 

developed.  Three hundred cells from each experiment was determined to be a sufficient number 

to get minimal variation within each experimental unit. First, cells were fixed and labeled for Golgi 

structural proteins of choice, and DNA. Then, slides were viewed under the microscope with a cell 

counter, using the following criteria: 

1) If the Golgi exists as a single piece of connected membrane, it is counted as intact.  

2) If a Golgi exhibits several items that are connected by visible membrane bridges, 

even though these bridges might be faint, the Golgi is considered intact.  

3) If a Golgi exhibits ≥ 3 disconnected pieces (no visible bridges connecting them), then 

the Golgi is fragmented.  

4) Mitotic cells, defined by the DNA pattern, and overlapping cells in which the Golgi 

pattern is difficult to define, are not counted. Hoechst was used to identify individual, 

mitotic and overlapping cells. 
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1.3.2 Golgi stacking and EM 

Golgi stress and fragmentation was also defined using a more high resolution approach, since it 

was known that sometimes the Golgi became enlarged or compacted during some stress 

conditions, but light microscopy did provide much information about these phenotypes.  

 

Regular fluorescence has a resolution limit of 200 nanometers. The space between Golgi 

cisternae is about 8 nanometers. Since routine transmission electron microscopy has the ability to 

resolve structures down to the 0.2 nanometers, we chose this methodology as a better choice to 

examine Golgi fragmentation in greater detail.  

 

A methodology for examining Golgi ultrastructure was developed. Cells were stressed in cell 

culture and processed for electron microscopy (refer to methods section Chapters II and III). 

Golgi images were then captured at 11,000x magnification. Golgi morphology was quantified 

from at least 20 cells in each experiment for statistical robustness. A Golgi cisterna was 

identified as a perinuclear membrane within a Golgi stack ≥4 times longer than its width. After 

measurement of many different variables of Golgi stacks, the following three metrics were 

settled upon for providing the most information in stress conditions: 

 

1) Stack length - the longest cisterna within a Golgi stack, using the ruler tool in 

Photoshop Elements 13, was measured not accounting for bends or turns. 

2) Number of cisternae per stack - the number of cisternae per Golgi stack was counted. 

Closely associated ER-cisternae were omitted. 
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3) Number of vesicles per stack - round objects no greater than 80 microns in diameter 

within 0.5 micron distance to a Golgi stack were counted.  

 

1.3.3 Golgi functions during stress 

Many diseases and stresses affecting the Golgi apparatus are tied to impairment of Golgi 

functions. Familial amyotrophic lateral sclerosis or fALS transgenic mouse model of fALS 

(human SOD1-G93A) displayed shortened and fewer cisternae in spinal cord motor neuronal 

Golgi (Fig. 1.4B) (Mourelatos et al., 1996). Golgi fragmented several months prior to symptoms 

of ALS paralysis. No vesicles present around the shortened stacks suggested a loss of function. 

Golgi fragmentation is a result of microtubule depolymerization. A significant decrease in 

synaptic transmission has been reported in animals treated with microtubule depolymerizing 

drugs that disperse the Golgi apparatus. In neurons, many neurotransmitters are processed in the 

Golgi. Therefore, Golgi stress and fragmentation in ALS might cause impairment of neuronal 

function of axonal transport and synaptic vesicle release. 

 

Knockdown of GRASPs by RNA-interference (RNAi) is followed by complete Golgi 

fragmentation and unstacking of the entire Golgi stack. Knockdown also leads to disruption of 

protein trafficking, modification and sorting. Since GRASP55 and GRASP65 organize the Golgi 

structure, the dynamic Golgi regulation of GRASPs during interphase might provide a link 

between disruptions of Golgi structure and defects in trafficking, sorting and incomplete protein 

processing in disease. The regulation of Golgi structural proteins, such as GRASP55 and 

GRASP65, during interphase gives a plausible explanation for Golgi fragmentation during 

cellular stress. The extent of a Golgi stress response during TG and H2O2 treatment was studied 



21 

 

by evaluating the Golgi structure after stimulation. The evaluation identified whether GRASP55 

and GRASP65 were post-translationally modified by phosphorylation or other modifications 

during TG or H2O2 treatment, and confirmed the identity of changes that happened during stress. 

 

1.3.4 Calcium sensors 

Ca2+ dynamic at the Golgi as well as its role in membrane trafficking at the Golgi is still an 

understudied area. It’s been postulated that the Golgi apparatus might sense cellular stress. If 

aspects of the Golgi structure are specifically regulated during stress via calcium fluctuations, 

these changes might significantly impact Golgi functions. Several cellular organelles, like the ER 

and lysosomes, have inherent mechanisms to adapt their structure to accommodate stressful 

conditions and help maintain their specific functions.  

 

During ER stress, the ER-localized transmembrane protein pATF6, is transported to the Golgi 

where it is cleaved, at which point its cytosolic domain is translocated into the nucleus where it 

transcriptionally activates ER chaperone genes. There are now available reagents to detect ER 

stress such as antibodies that recognize the phosphorylated form of eIF2α and translational arrest 

that occurs during UPR. During starvation, the dephosphorylated transcription factor EB (TFEB) 

enters the nucleus and activates genes related to lysosomal degradation and autophagy. There are 

tools available to detect the activated autophagy pathway, most notably the antibody which 

recognizes LC3-I and LC3-II. By examining the ratio of LC3-II and LC3-I one can easily 

recognize if autophagy is underway. 
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During this study calcium, too, was discovered to play a profound role in Golgi structure 

regulation. Changes affecting calcium also accompany the regulation of at least one Golgi 

structural protein, GRASP55, during interphase. Since it is known that this mechanism depends 

on calcium a calcium sensing version of GRASP55 was generated that can be reliably used to 

detect Golgi stress. The GRASP55 calcium probe utilizes a GCaMP sensor domain that enables a 

researcher to observe calcium flux as a function of fluorescent output. Using this calcium sensor, 

careful measurement of the extent of a Golgi stress response during diverse drug or 

environmental treatments can aid in the evaluation of drugs that may mitigate Golgi structure 

changes during stress. In essence this is a tool that can be used to directly measure Golgi stress in 

cells.  

 

1.4 The goal of this study 

The experiments and findings, presented herein, were designed to show whether or not the Golgi 

may be equipped to respond to cellular stress. Having a working understanding of the regulation 

of the Golgi apparatus during stress might result in discovery of ways to change and improve 

Golgi functions and help support cellular homeostasis and organism health (Fig. 1.7). 
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1.5 Figures 

 

 

Fig. 1.1 The exocytic and endocytic trafficking network 

Cargo manufactured in the ER is loaded into COPII vesicles and sent to the Golgi via the 

intermediate compartment (IC). Upon arrival to the Golgi, vesicles fuse, forming the cis-Golgi 

Network. Cargo then progressively moves to the trans-Golgi Network. There, it is sorted and 

trafficked to many destinations such as endosomes (End), lysosomes (Lys), plasma membrane 

(PM) or outside of the cell via secretory granules (SG). 
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Fig. 1.2 Normal Golgi structure and position 

Schematic representation of single mammalian epithelial cell indicating the Golgi apparatus in 

relation to the nucleus and plasma membrane structures. 
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Fig. 1.3 Golgi function and significance 

(A) Schematic representation of the cell indicating the Golgi apparatus in normal conditions (left 

side) and during a disruption of the Golgi stack (right side). (B) The net effect of fragmented 

Golgi is an increased membrane surface area for vesicle budding machinery to gain access. (C) 

The function of the cell that is altered is faster trafficking, sorting and glycosylation defects via 

the disruption of enzyme containing compartments. 
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Fig. 1.4 Disease and cellular stresses disrupt Golgi structure 

(A-B) Mourelatos, et al. show that ALS disease model mice having G93A mutation in the SOD1 

gene have disrupted Golgi structure (Mourelatos et al., 1996). Mouse spinal cord motor neuron 

Golgi apparatus showing WT Golgi in A, or ALS transgenic Golgi in B. MG-160 was the marker 

used. (C-D) Thayer et al. show that the Golgi fragments under hyper-excited conditions (Thayer 

et al., 2013). Neurons were cultured under normal (C) and overactivated (D) conditions (elevated 

potassium concentration, high potassium). Immunostaining (left) for GM130 (green) and MAP2 

(blue) with 3D reconstruction of anti-GM130 signal (right). The color of the distinct Golgi 

fragments corresponds to the relative size of the fragment. Scale bar, 10 microns. (E-F) 
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Quantification of number (#), and surface area (μm2) of distinct Golgi fragments from 

reconstructed GM130 fluorescent signal. 
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Fig. 1.5 Tools to study Golgi stress in cell culture 

(A) Figure shows seven categories of cellular stress and whether they cause Golgi fragmentation 

in HeLa cells. (B) HeLa cells treated with DMSO, (C) 1 mM H2O2 for 10 minutes, (D) 250 nM  

thapsigargin for 1 hour, or (E) 2 µM ionomycin for 1 hour. Cells were fixed and stained for 

Giantin (green), TGN46 (red), and Hoechst (blue). Asterisks (*) denote fragmented Golgi. Scale 

bar, 5 microns. 
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Fig. 1.6 Regulation of the Golgi stack structure 

(A) Golgi structure is diffused during mitosis. NRK cells were fluorescently labeled for 

antibodies against GM130 (green), tubulin (red), and DNA (blue) . Scale bar, 10 microns. (B) 

Phosphorylation by kinases breaks the GRASP55/65 oligomers and thus unstacks the cisternae. 
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Fig. 1.7 Schematic approach for identifying mechanisms of Golgi stress response and 

dysfunction 

How certain hallmarks of Golgi stress, including Golgi fragmentation and cisternal unstacking, 

regulate many aspects of membrane trafficking is unknown. It remains to be resolved how Golgi 

stress regulates Golgi functions including trafficking, glycosylation and sorting (pink arrows)  
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CHAPTER II 

 

Cytosolic Ca2+ Modulates Golgi Structure Through PKCα-Mediated GRASP55 

Phosphorylation2 

 

2.1 Abstract 

It has been well documented that the endoplasmic reticulum (ER) responds to cellular stresses 

through the unfolded protein response (UPR), but it is unknown how the Golgi apparatus 

responds to similar stresses. In this study, we treated HeLa cells with ER stress inducers, 

thapsigargin (TG), tunicamycin (Tm) and Dithiothreitol (DTT), and found that only TG 

treatment resulted in Golgi fragmentation. TG induced Golgi fragmentation at a low dose and 

short time when UPR was undetectable, suggesting that Golgi fragmentation occurs 

independently of ER stress. Further experiments demonstrated that TG induces Golgi 

fragmentation through elevating intracellular Ca2+ and protein kinase Cα (PKCα) activity, which 

phosphorylates the Golgi stacking protein GRASP55. Significantly, activation of PKCα with 

other activating or inflammatory agents, including phorbol 12-myristate 13-acetate (PMA) and 

 
 

 

2 This chapter was modified from a version published the journal iScience, with authors listed as 

Stephen Ireland, Saiprasad Ramnarayanan, Mingzhou Fu, Xiaoyan Zhang, Jianchao Zhang, Jie 

Li, Dabel Emebo and Yanzhuang Wang (see Acknowledgments section). 
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histamine, modulates the Golgi structure in a similar fashion. Hence, our study revealed a novel 

mechanism through which increased cytosolic Ca2+ modulates Golgi structure and function. 

 

2.2 Introduction 

In mammalian cells, the Golgi apparatus is characterized by a multilayer stacked structure of ~5-

7 flattened cisternal membranes, and stacks are often laterally linked to form a ribbon located in 

the perinuclear region of the cell (Tang and Wang, 2013; Wang and Seemann, 2011). The exact 

mechanism of Golgi stack formation is not fully understood, but it has been shown that the Golgi 

re-assembly stacking protein of 55 kDa (GRASP55, also called GORASP2) and its homolog 

GRASP65 (GORASP1) play essential roles in Golgi stacking (Wang et al., 2003; Zhang and 

Wang, 2015). Both GRASPs are peripheral membrane proteins that share similar domain 

structures and overlapping functions (Wang and Seemann, 2011). GRASP65 is predominantly 

concentrated in the cis Golgi, whereas GRASP55 is localized on medial-trans cisternae. Both 

GRASPs form trans-oligomers through their N-terminal GRASP domains that “glue” adjacent 

Golgi cisternae together into stacks (Wang et al., 2003; Xiang and Wang, 2010) and ribbons 

(Feinstein and Linstedt, 2008; Puthenveedu et al., 2006). GRASP oligomerization is regulated by 

phosphorylation; mitotic phosphorylation of GRASP55 and GRASP65 at the C-terminal Serine/ 

Proline-Rich (SPR) domain inhibits oligomerization and results in Golgi cisternal unstacking and 

disassembly (Tang et al., 2012; Wang et al., 2005; Xiang and Wang, 2010).  

 

The Golgi exhibits different morphology in different cell types and tissues as well as under 

different conditions. For example, in many secretory cells such as Brunner's gland of platypus, 

the Golgi forms large, well-formed stacks (Krause, 2000), while electron micrographs show 
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reorganization of Golgi membranes in prolactin cells of female rats upon cessation of a sucking 

stimulus (Rambourg et al., 1993). In neurons, increased neuronal activity causes dispersal of the 

Golgi at the resolution of light microscopy (Thayer et al., 2013). In Alzheimer’s disease, the 

Golgi membranes are dispersed and fragmented in neurons from human brain and mouse models 

(Joshi et al., 2015). Golgi fragmentation is also observed in other neurodegenerative diseases, 

including Parkinson’s (Mizuno et al., 2001) and Huntington’s (Hilditch-Maguire et al., 2000) 

diseases and amyotrophic lateral sclerosis (ALS) (Fujita and Okamoto, 2005; Gonatas et al., 

1998; Mourelatos et al., 1996). In addition, the Golgi has also been shown to be fragmented in 

lung, prostate and breast cancers (Petrosyan et al., 2014; Sewell et al., 2006; Tan et al., 2016). A 

plausible hypothesis is that the Golgi adjusts its structure and function in response to different 

physiological and pathological conditions; however, the molecular mechanisms that control 

Golgi structure and function under disease conditions are so far not well understood. 

 

The Golgi structure can be modulated experimentally such as by molecular manipulations of 

GRASP55 and GRASP65. Microinjection of antibodies against GRASP55 or GRASP65 into 

cells inhibits post-mitotic stacking of newly formed Golgi cisternae (Wang et al., 2003; Wang et 

al., 2008). Knockdown (KD, by siRNA) or knockout (KO, by CRISPR/Cas9) of either GRASP 

reduces the number of cisternae per stack (Sutterlin et al., 2005; Tang et al., 2010b), whereas 

simultaneous depletion of both GRASPs causes fragmentation of the entire Golgi stack (Bekier 

et al., 2017; Xiang and Wang, 2010). Expression of non-phosphorylatable GRASP65 mutants 

enhances Golgi stacking in interphase and inhibited Golgi disassembly in mitosis (Tang et al., 

2010b). Since GRASPs play critical roles in Golgi structure formation, it is reasonable to 

speculate that physiological and pathological cues may trigger Golgi fragmentation through 
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GRASP55/65 modification, such as phosphorylation (Ahat et al., 2019a; Li et al., 2019a). Using 

GRASPs as tools to manipulate Golgi stack formation, it has been demonstrated that Golgi 

cisternal unstacking accelerates protein trafficking but impairs accurate glycosylation and sorting 

(Bekier et al., 2017; Xiang et al., 2013). In addition, GRASP depletion also impacts other 

cellular activities such as cell attachment, migration, growth, and autophagy (Ahat et al., 2019b; 

Zhang et al., 2019; Zhang et al., 2018). 

 

Protein kinase C (PKC) is a large family of multifunctional serine/threonine kinases that are 

activated by signals such as increases in the concentration of diacylglycerol (DAG) and/or 

intracellular calcium ions (Ca2+). In cells, PKCs are mainly cytosolic, but transiently localize to 

membranes such as endosomes and Golgi upon activation (Chen et al., 2004; El Homasany et al., 

2005). Membrane association of PKC is via a C1 domain that interacts with DAG in the 

membrane. Conventional PKCs (cPKCs) also contain a C2 domain that binds Ca2+ ions, which 

further enhances their membrane association and activity (Nishizuka, 1995). Knockdown of 

atypical PKCs (aPKCs) using siRNA causes a reduction in peripheral ERGIC-53 clusters without 

affecting the Golgi morphology (Farhan et al., 2010). In addition, increased PKC activity has 

been implicated in cancer (Cooke et al., 2017; Kim et al., 2013), but the mechanism by which 

PKC may contribute to invasion, inflammation, tumorigenesis, and metastasis is not fully 

understood (Griner and Kazanietz, 2007).  

 

In this study, we performed high-resolution microscopy and biochemistry experiments to 

determine how the Golgi responds to cellular stresses such as ER stress. While not all ER stress 

inducers caused Golgi fragmentation, treatment of cells with the Ca2+-ATPase inhibitor 



35 

 

thapsigargin (TG) resulted in Golgi fragmentation with a low dose and short time in which ER 

stress was undetectable, indicating that Golgi fragmentation occurs independently of ER stress. 

Further experiments demonstrated that TG-induced cytosolic Ca2+ spikes activate PKC that 

phosphorylates GRASP55. Interestingly, inflammatory factors such as histamine modulate the 

Golgi structure through a similar mechanism. Thus, we have uncovered a novel pathway through 

which cytosolic Ca2+ modulates the Golgi structure and function.  

 

2.3 Results 

2.3.1 TG treatment induces Golgi fragmentation and UPR 

It has been hypothesized that ER stress and the unfolded protein response (UPR) cause Golgi 

fragmentation and dysfunction through overloading misfolded proteins into the Golgi (Oku et al., 

2011). To test this hypothesis, we performed a time course treatment of HeLa cells with a well-

known UPR inducer, TG, which specifically blocks the sarcoendoplasmic reticulum Ca2+ 

transport ATPase (SERCA) (Xu et al., 2004) and causes Ca2+ dysregulation (Ito et al., 2014). We 

assessed the Golgi morphology by co-staining the cells for GM130, a cis-Golgi marker, and 

TGN46, a protein in the trans-Golgi network. As shown in Fig. 2.1A-B, the Golgi became 

fragmented after TG treatment, and the response was linear over time (Fig. 2.1A-B). Although 

Golgi fragmentation was more obvious after a longer treatment, it became detectable in shorter 

treatments such as 10 min. We also performed super-resolution microscopy to examine the Golgi 

structure in parallel after Tm, DTT or TG treatment. Similar to that observed in control cells, the 

Golgi structure is intact in Tm and DTT-treated cells, with extensive overlap between cis- and 

trans-Golgi markers; whereas TG treatment caused not only fragmentation of the Golgi 

structure, but also separation of cis- and trans-Golgi markers (Fig. 2.1C-D). This careful 
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examination of the Golgi morphology by super-resolution fluorescence microscopy 

demonstrated that the Golgi ribbon was broken down, as the Golgi in TG treated cells appeared 

as disconnected puncta (Fig. 2.1C-D). 

 

To correlate Golgi fragmentation with UPR, we performed Western blot of TG-treated cells to 

assess the levels of several UPR markers, including phosphorylated eukaryotic translation 

initiation factor 2A eIF2α (p-eIF2α), the ER UPR chaperone binding of immunoglobulin protein 

(Bip), and the CCAAT-enhancer-binding protein homologous protein (CHOP). As shown in Fig. 

2.1E-G, longer term TG treatment, such as 2 h or longer, caused UPR, as indicated by the 

increase of all three markers. When the treatment was reduced to 30 min, only the p-eIF2α level 

increased, while Bip and CHOP did not change. This indicates that the minimal time for UPR to 

occur is ~30 min under our experimental conditions. Consistently, no significant increase in the 

level of any of these UPR markers was detected when the treatment was reduced to below 30 

min. Interestingly, the Golgi in a significant proportion of cells was fragmented at this time. 

Golgi fragmentation was obvious with 10 min TG treatment when UPR was undetectable, and 

became more prevalent at 30 min treatment (Fig. 2.1A-B). The fact that Golgi fragmentation 

occurs earlier than UPR indicates that Golgi fragmentation is unlikely a downstream effect of ER 

stress, but rather, occurs independently of UPR.  

 

It is worth mentioning that TG treatment did not affect the level of key Golgi structural proteins, 

including the Golgi stacking proteins GRASP55 and GRASP65, the Golgi tethering protein 

GM130, and the Golgi SNARE Gos28 (Fig. 2.1E), indicating that TG induces Golgi 

fragmentation likely through modification rather than degradation of Golgi structural proteins. 
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TG-induced Golgi fragmentation is reversible; when TG was washed out, the Golgi structure 

gradually returned to its normal shape (Fig. 2.2A-B). Consistently, TG-treatment did not induce 

apoptosis as shown by Annexin V staining. In contrast, staurosporine treatment, which is known 

to induce apoptosis, increased Annexin V cell surface staining (Fig. 2.2C-D). In addition, TG 

treatment did not seem to affect the organization of the actin and microtubule cytoskeleton (Fig. 

2.2E-F).  

 

2.3.2 Tunicamycin (Tm) or dithiothreitol (DTT) treatment induces UPR but not Golgi 

fragmentation 

To test whether the hypothesis that Golgi fragmentation occurs independently of UPR applies 

only to TG treatment or also to other ER stress inducers, we repeated the same set of experiments 

by treating cells with tunicamycin (Tm), an antibiotic that induces ER stress by inhibiting N-

glycosylation and the accumulation of misfolded proteins in the ER lumen. Tm treatment did not 

affect the Golgi morphology after 360 min, as indicated by the GM130 and TGN46 signals (Fig. 

2.3A-C). Further analysis of Tm-treated cells by electron microscopy (EM) also did not reveal 

any significant changes in the Golgi structure (Fig. 2.3D). The treatment indeed induced UPR, as 

indicated by the robust increase in the p-eIF2α, Bip and CHOP levels, in particular after 120 min 

(Fig. 2.3E-G). 6 h Tm treatment increased the width of the ER cisternae and caused ER 

fragmentation (Fig. 2.3H). Like Tm, dithiothreitol (DTT) treatment also did not cause Golgi 

fragmentation, although Bip and CHOP levels increased significantly after 120 min of treatment 

(Fig. 2.4). Taken together, these results indicate that ER stress is unlikely a direct cause of Golgi 

fragmentation. 
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2.3.3 TG induces Golgi fragmentation prior to UPR through elevated cytosolic Ca2+ 

We next sought to decouple the Golgi stress response from UPR after TG treatment. As a 

complimentary approach to the time-course experiment shown in Fig. 2.1, we titrated TG (1 - 

250 nM) in the treatment. Here we treated cells for 20 min, a time point prior to UPR becoming 

detectable when cells were treated with 250 nM TG (Fig. 2.5). The results showed that Golgi 

fragmentation increased linearly in response to the increasing TG concentration, and importantly, 

TG at low doses (1 nM to 250 nM) effectively caused Golgi fragmentation (Fig. 2.5A-B). For 

comparison, we also assessed UPR in the same cells. As shown in Fig. 2.5C-E, treatment of cells 

with up to 250 nM TG for 20 minutes did not cause UPR as indicated by the p-eIF2α and Bip 

levels. These results indicate that TG-triggers Golgi fragmentation independent of ER stress.  

 

We next asked how TG treatment induces Golgi fragmentation. Knowing that TG increases 

cytosolic Ca2+ (Jones and Sharpe, 1994), we employed the membrane permeable Ca2+ chelater 

BAPTA-AM to test whether TG induces Golgi fragmentation through cytosolic Ca2+. We pre-

treated cells with BAPTA-AM alone (60 µM) for 30 min, and then with or without TG (100 nM) 

for 0, 15, 30, and 60 min (Fig. 2.5F-G). The result showed that BAPTA-AM significantly 

prevented TG-induced Golgi fragmentation, while BAPTA-AM alone did not affect the Golgi 

morphology. Subsequent EM analysis confirmed TG-induced Golgi fragmentation and its rescue 

by BAPTA-AM (Fig. 2.5H-I). TG treatment reduced the number of cisternae per stack and the 

length of cisternae, but increased the number of vesicles surrounding each stack. These effects 

were largely abolished by the addition of 60 µM BAPTA-AM for 30 minutes. Further testing of 

various concentrations of BAPTA-AM for 10 minutes could inhibit 250 nm TG treatment (Fig. 

2.6A-B). Furthermore, we carried out similar experiments in normal rat kidney (NRK) cells and 
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RAW 264.7 murine macrophages and obtained similar results (Fig. 2.7), indicating that the 

effect of TG treatment on the Golgi structure is not cell type specific. These results demonstrated 

that cytosolic Ca2+ is required for TG-induced Golgi fragmentation. Therefore, the driving force 

behind TG-induced Golgi fragmentation is the elevated cytosolic Ca2+. 

 

2.3.4 TG-induced Golgi fragmentation increases protein trafficking in the Golgi 

As GRASP depletion-mediated Golgi destruction impacts Golgi functions such as protein 

trafficking (Ahat et al., 2019b; Xiang et al., 2013), we examined the effect of TG treatment on 

the trafficking of the Vesicular Stomatitis Virus Glycoprotein (VSV-G) using the well-

established RUSH system (Boncompain et al., 2012). Cells were transfected with a plasmid that 

encodes both the invariant chain of the major histocompatibility complex (Ii, an ER protein) 

fused to core streptavidin and VSV-G fused to streptavidin-binding peptide (SBP). Under growth 

conditions without biotin, the interaction between streptavidin and SBP retains VSV-G in the 

ER. Upon the addition of biotin, this interaction is disrupted, resulting in synchronous release of 

the VSV-G reporter from the ER to the Golgi. Since VSV-G is a glycoprotein, we used 

endoglycosidase H (EndoH) to distinguish its core (ER and cis Golgi) and complex (trans Golgi 

and post-Golgi) glycosylation forms as an indicator of trafficking. As shown in Fig. 2.8A, TG 

treatment first slightly decreased VSV-G trafficking at 15 min release, but then increased VSV-G 

trafficking at 60 and 90 min compared to DMSO control. Our previous studies showed that 

VSV-G reaches the cis Golgi at 15-20 min and trans Golgi at ~90 min (Bekier et al., 2017; Li et 

al., 2019b). These results suggest that TG treatment may delay VSV-G release possibly by 

slowing down its folding; but once it reaches the cis Golgi, VSV-G trafficking across the Golgi 

stack is significantly accelerated. Monensin (Mo) is known to disrupt the Golgi structure and 
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blocks TGN exit (Fliesler and Basinger, 1987), and thus was used as a control. As expected, 

monensin treatment resulted in VSV-G accumulation in the Golgi (Fig. 2.8A-C).  

 

To confirm these results using an alternative approach, we treated cells with Brefeldin A (BFA) 

to accumulate ManII-GFP in the ER. We then washed out BFA and analyzed ManII-GFP in ER-

to-Golgi trafficking. The results showed that ManII-GFP started to accumulate in the Golgi at 60 

min of BFA washout in the presence of TG, while the same observation occurred at 90 min in 

the control (Fig. 2.8D). 

 

2.3.5 TG induces Golgi fragmentation through PKCα activation 

Given that phosphorylation of Golgi structural proteins has been shown to cause Golgi 

fragmentation in physiological conditions such as in mitosis (Tang et al., 2010b; Wang et al., 

2003; Xiang and Wang, 2010), as well as in pathological conditions such as in Alzheimer’s 

disease (Joshi et al., 2014), we explored the possibility that phosphorylation of Golgi structural 

proteins may play a role in TG-induced Golgi fragmentation. We treated cells with 

staurosporine, a non-selective kinase inhibitor, and a number of specific inhibitors of calcium-

related kinases such as protein kinase Cs (PKCs) and Ca2+/calmodulin-dependent protein kinases 

(CAMKs). As shown in Fig. 2.9A-B, staurosporine significantly reduced Golgi fragmentation in 

TG-treated cells. In addition, Bisindolylmaleimide I (BIM1), a selective PKC inhibitor, and KN-

93, an inhibitor of CAMKII, also partially reduced Golgi fragmentation in TG-treated cells (Fig. 

2.9A-B). These results suggest that either PKC and/or CAMKII is involved in TG-induced Golgi 

fragmentation. Since both BIM1 and KN-93 inhibitors have pleiotropic effects, we selected two 

alternative drugs, Gӧ6976 and KN-62, to inhibit PKC and CAMKII, respectively. While Gӧ6976 
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inhibited TG-induced Golgi fragmentation effectively, KN-62 had no effect (Fig. 2.9A-B), 

suggesting a major role of PKC in TG-induced Golgi fragmentation.  

 

To further confirm that PKC activation causes Golgi fragmentation, we treated cells with phorbol 

12-myristate 13-acetate (PMA), a widely used PKC activator, and its inactive enantiomer, 4-

alpha-phorbol myristate acetate (4-alpha). The results showed that 4-alpha had no effect on the 

Golgi structure, while PMA treatment caused Golgi fragmentation (Fig. 2.9C-D), although 4-

alpha and PMA had no effect on the level of PKC expression (Fig. 2.9E). Taken together, these 

results indicate that TG induces Golgi fragmentation through PKC activation.  

 

PKC has multiple isoforms including α, βI, βII, γ, δ, ε, η, ζ, and ι (Kajimoto et al., 2001). To 

identify the PKC isoform responsible for TG-induced Golgi fragmentation, we expressed GFP-

tagged PKC isoforms, including all four known classical PKC (cPKC) isoforms (α, βI, βII, γ) 

that respond to Ca2+ stimuli, one from the non-calcium responsive novel PKC (nPKC, δ), and 

one from the atypical PKC (nPKC, ζ) subfamily (Fig. 2.10A-B). To enhance the activity of 

expressed PKC, we also treated cells with PMA, using 4-alpha as a control. The results showed 

that expression of PKCα and treatment of cells with PMA increased Golgi fragmentation (Fig. 

2.10A-B, Fig. 2.11A-C). Interestingly, in addition to the localization to the plasma membrane as 

previously reported (Becker and Hannun, 2003), wild type PKCα-GFP was also concentrated on 

the Golgi upon PMA treatment, as indicated by the colocalization with GM130 (Fig. 2.11A; Fig. 

2.10B); while other PKC isoforms, or the inactive PKCα K368R mutant (Baier-Bitterlich et al., 

1996), did not show the same phenotype (Fig. 2.11D-E).  
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To further specify that PKCα mediates TG-induced Golgi fragmentation, we knocked down 

PKCα in cells with siRNA. The results showed that PKCα depletion reduces Golgi fragmentation 

after TG treatment (Fig. 2.11F-H). Taken together, these results demonstrate that PKCα 

activation causes Golgi fragmentation.  

 

2.3.6 PKCα induces Golgi fragmentation through GRASP55 phosphorylation 

Since activated PKCα localizes to the Golgi, we thought it might phosphorylate Golgi structural 

proteins. To identify potential PKCα targets on the Golgi, we performed gel mobility shift assays 

on a number of Golgi structural proteins, tethering factors, and SNARE proteins after TG 

treatment (Fig. 2.12A). To ensure that the band shift was caused by phosphorylation, we also 

applied staurosporine (2 µM for 10 min prior to TG treatment) to TG-treated cells to broadly 

inhibit phosphorylation. Among the proteins tested, GRASP55 and GRASP65 showed a smear 

above the main bands (Fig. 2.12A), indicating a partial phosphorylation of the proteins. To 

increase the resolution of phosphorylated proteins we utilized phos-tag gels, which showed 

GRASP55, but not GRASP65, to be significantly shifted up after TG treatment (250 nM, 1 h) 

(Fig. 2.12B). TG-induced mobility shift of GRASP55 was not seen upon Tm treatment (Fig. 

2.12C, lanes 2 vs. 3; Fig. 2.12D), and was less dramatic than by nocodazole (Noc) treatment that 

blocks cells in mitosis when GRASP55 is fully phosphorylated (Fig. 2.12C, lanes 3 vs. 4) 

(Xiang and Wang, 2010), indicating that TG induced partial phosphorylation of GRASP55. The 

mobility shift of GRASP55 triggered by TG treatment was abolished by the addition of 

staurosporine (Fig. 2.12B, lanes 3 vs. 2), validating the mobility shift by phosphorylation. 
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To determine if PKCα could phosphorylate GRASP55 directly, recombinant GRASP55 was 

incubated with a small amount of active PKCα in vitro and products were run on phos-tag gel 

and Coomassie stained (Fig. 2.12E). The Coomassie stained band pattern revealed two p-

GRASP55 bands. We next increased the amount of PKCα in the reaction and incubated it with 

recombinant GRASP55. When Western blot was performed GRASP55 phosphorylation bands 

were confirmed showing that PKCα can directly phosphorylate GRASP55 (Fig. 2.12F, upper 

panel). In this experiment, PKCα was also auto-phosphorylated (Fig. 2.12F, lower panel). To 

identify the specific phosphorylation sites on GRASP55, a series of point mutants were  

constructed based on likely PKC consensus sites within the GRASP55 protein sequence: S255A, 

S260A, S262A/S263A, S269A, S273A/T274A, T278A, S289A, and S292A. These sites were 

assayed but none seemed to strongly abolish the GRASP55 mobility shift induced by PKC (data 

not shown). 

 

GRASP55 contains an N-terminal GRASP domain that forms dimers and oligomers, and a C-

terminal serine/proline-rich (SPR) domain with multiple phosphorylation sites (Xiang and Wang, 

2010; Zhang and Wang, 2015). To map the PKCα phosphorylation site on GRASP55, we 

expressed GFP-tagged GRASP55 truncation mutants (Zhang et al., 2018), treated the cells with 

TG, and determine their phosphorylation. A visible mobility shift of the GRASP55 variants was 

observed on the mutants possessing amino acids (aa)251-300, but not the truncated forms shorter 

than aa250 (Fig. 2.13A-B). To further determine the functional consequence of GRASP55 

phosphorylation, we expressed these constructs and treated cells with or without TG. The 

exogenously expressed GRASP55 truncation mutants were targeted to the Golgi as indicated by 

giantin as a Golgi marker, but had no impact on the Golgi structure (Fig. 2.13C). However, when 
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cells were treated with TG, expression of the N-terminal aa250 or shorter reduced TG-induced 

Golgi fragmentation; while expression of N-terminal aa300 or longer had no significant effect 

(Fig. 2.13C-D). These results demonstrated that phosphorylation of GRASP55 within aa251-300 

is important for TG-induced Golgi fragmentation. Taken together, these results demonstrate that 

TG treatment activates PKCα, which localizes to the Golgi membrane and subsequently 

phosphorylates GRASP55. 

 

2.3.7 Histamine modulates the Golgi structure 

It is known that histamine activates Ca2+-dependent PKC isoforms and up-regulates cytokine 

secretion via the release of calcium from the ER into the cytosol (Matsubara et al., 2005). It has 

also been shown that histamine triggers protein secretion and Golgi fragmentation (Saini et al., 

2010), but the underlying mechanism has not been revealed. Therefore, we treated HeLa cells 

with histamine and determined the effect on Golgi morphology. EM analysis confirmed that 

histamine treatment induced alterations in the Golgi structure at a concentration and time often 

used in previous studies (Sahoo et al., 2017; Xie et al., 2018) (Fig. 2.14). As shown in Fig. 

2.15A-B, histamine treatment induced Golgi fragmentation in a dose and time dependent 

manner. More than 40% of cells possessed fragmented Golgi after 100 µM histamine treatment 

for 1 h (Fig. 2.15B). Subsequent EM analysis confirmed that histamine treatment induced 

alterations in the Golgi structure including fewer cisternae per stack, shorter cisternae, and an 

increased number of Golgi-associated vesicles (Fig. 2.15C-D; Fig. 2.14) 

 

It has been previously shown that histamine activates Gβγ, which causes TGN fragmentation 

(Saini et al., 2010). Since HeLa cells do not express Gβγ, and histamine treatment triggers 
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fragmentation of the entire Golgi stack (Fig. 2.15C-D), the Golgi fragmentation observed in our 

study may occur through a different mechanism. Indeed, like TG, histamine-induced Golgi 

fragmentation also depended on PKC, as the addition of the PKC inhibitor Gӧ6976 reduced 

histamine-induced Golgi fragmentation (Fig. 2.15E-F). These results demonstrate that histamine 

treatment impacts Golgi structure through a similar mechanism as TG. 

 

While it has been well documented that TG or histamine treatment elevates Ca2+ level in the 

cytosol, whether this is also true for the Ca2+ level in the Golgi region has not been reported. To 

test the effect of TG or histamine treatment on the Ca2+ level in the Golgi region in real-time, we 

fused the Ca2+ probe GCaMP (Muto et al., 2013) to GRASP55, expressed the GRASP55-

GCaMP construct in cells (Fig. 2.15G), and performed live cell imaging. Treatment of cells with 

100 µM histamine caused a robust calcium spike (Fig. 2.15H). Subsequent experiments using 

this novel Golgi-localized Ca2+ probe demonstrated that treatment of cells with TG and Io also 

significantly elevated the Ca2+ level in the Golgi (Fig. 2.15I). Taken together, our results 

demonstrated that histamine or TG treatment elevates the Ca2+ level in the Golgi region, which 

subsequently activates PKCα, leading to GRASP55 phosphorylation and Golgi fragmentation 

(Fig. 2.16). Thus, this study revealed a novel mechanism of how histamine, and perhaps other 

drugs, modulates Golgi structure and function. 

 

2.4 Discussion 

In this study, by comparing Golgi fragmentation with ER stress in response to TG, Tm and DTT 

treatments, we uncovered a novel signaling pathway through which increased cytosolic Ca2+ 

triggers Golgi fragmentation through PKCα activation and GRASP55 phosphorylation. 
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Significantly, we also demonstrated that histamine modulates the Golgi structure via a similar 

mechanism, which opens a new window through which we can better understand the effect of 

histamine on cell physiology. 

 

One possible model of Golgi stress is that the expanding capacity of the ER during cellular stress 

leads to the failure of the Golgi as it is over-burdened with misfolded or improperly folded 

proteins, affecting its functions like glycosylation (Oku et al., 2011). However, our results do not 

support this hypothesis for two reasons: First, although three ER stress inducers, TG, Tm and 

DTT, all induce ER stress, only TG treatment causes Golgi fragmentation. Second, TG induces 

Golgi fragmentation at a low dose and time when UPR is undetectable. These results 

demonstrate that Golgi fragmentation occurs independently of ER stress; instead, the Golgi may 

possess its own mechanism to sense and respond to stress. Furthermore, our study revealed a 

novel mechanism that coordinates Golgi structure and perhaps function: TG treatment increases 

cytoplasmic Ca2+, which activates PKCα, that subsequently phosphorylates GRASP55, impairing 

its function in Golgi structure formation. GRASP55 therefore provides the conceptual link 

between an extracellular cue and Golgi morphological change during stress. 

 

GRASP55 is comprised of an N-terminal GRASP domain (aa1-212) that forms dimers and 

oligomers and functions as a membrane tether to maintain an intact Golgi structure, and an SPR 

domain (aa212-454) that undergoes post-translational modifications and functions as the 

regulatory domain of the protein (Xiang and Wang, 2010; Zhang and Wang, 2015). Originally, 

GRASP55 was found to be phosphorylated by ERK2 at T225 and T222 (Jesch et al., 2001). 

Subsequently, additional sites, such as S245 and T249, were identified to be phosphorylated in 
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mitosis, which is required for mitotic Golgi disassembly (Xiang and Wang, 2010). Recently, 

GRASP55 was discovered to be de-O-GlcNAcylated upon energy or nutrient deprivation and 

regulates autophagosome maturation (Zhang et al., 2019; Zhang et al., 2018). These results 

indicate that GRASP55 is an excellent candidate to function as both a sensor and effector of 

cellular stresses. Thus, GRASP55 is likely a master regulator of Golgi structure formation, 

function, and stress responses.  

 

Our in vitro phosphorylation assay demonstrated that PKCα can directly phosphorylate 

GRASP55 likely on more than one site. Previously, it has been shown by mass spectrometry that 

GRASP55 is phosphorylated on S441 after TG treatment, but the kinase mediating this 

phosphorylation is unknown (Gee et al., 2011). Although our results are consistent with this 

previous study, the exact phosphorylation site(s) need further investigation. 

 

Histamine is a neuroendocrine hormone involved in the regulation of stomach acid secretion, 

brain function and immune response; many of these functions involve secretion (Karpati et al., 

2018; Sahoo et al., 2017; Xie et al., 2018). The role of histamine in immune response is often 

through the activation of the downstream kinase PKCα. For example, histamine enhances the 

secretion of granulocyte-macrophage colony stimulation factor (GM-CSF) and nerve growth 

factor (NGF) in different cell types, both through a PKCα-dependent mechanism (Sohen et al., 

2001). Interestingly, histamine promotes HeLa cell proliferation and growth, and has been shown 

to be elevated in cancers where Golgi is fragmented and secretion is enhanced. Histamine does 

not induce ER stress (Deniaud et al., 2008). In our experiments, histamine induced a clear Golgi 

fragmentation phenotype, confirming a link between histamine and Golgi fragmentation. 
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Additionally, expression of PKCα, but not other PKC isoforms, along with a stimulation with 

PMA, exhibited an additive Golgi fragmentation effect. Interpreting results of drug treatments 

used in this study present problems, and this was mitigated by using minimum doses consistent 

with those found in literature, or even less in the case of thapsigargin. Consistent with prior work 

showing that disassembly of Golgi stacks accelerates protein trafficking (Xiang et al., 2013), our 

findings therefore offer a mechanism for how histamine increases secretion of inflammatory 

factors. 

 

How Ca2+ controls membrane trafficking at the plasma membrane has been well documented in 

regulated secretion in specific cell types such as neurons, neuroendocrine cells and mast cells; 

while its role in other cell types is less well known. Ca2+ dynamic at the Golgi as well as its role 

in membrane trafficking at the Golgi is still an understudied area. There are EF-hand Ca2+ 

binding proteins associated in the Golgi. For example, Cab45 is located in the Golgi lumen, 

while Calnuc is found in both cell cytosol and membrane fractions (Lin et al., 1998). At the cis-

Golgi, Calnuc binds Gαi and Gαs, which is thought to be important for vesicular trafficking (Lin 

et al., 2000). There are also P-Type ATPases (SPCAs) such as SPCA1 located in the Golgi that 

regulate Ca2+ homeostasis in the Golgi and control neural polarity (Sepulveda et al., 2009; 

Vanoevelen et al., 2007). Our study provided a novel link between thapsigargin and histamine 

treatment, elevation of Ca2+ concentration in the Golgi region, activation of PKC and 

phosphorylation of Golgi GRASP55, and modification of Golgi structure and function.  

 

Our study revealed that TG induces Golgi fragmentation through increasing cytosolic Ca2+ and 

GRASP55 phosphorylation. A similar case has been described previously in Alzheimer's disease, 
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where cytosolic calcium increases by Aβ treatment triggers activation of a cytosolic protease, 

calpain, which cleaves p35 to generate p25 and activate Cdk5, a cytoplasmic kinase that is highly 

expressed in neurons (Lew et al., 1994). Subsequently, activated Cdk5 phosphorylates GRASP65 

and perhaps other Golgi structural proteins, leading to Golgi fragmentation (Joshi et al., 2015; 

Joshi et al., 2014). Although PKC and GRASP55 were not the focus in this study, expression of 

a phosphorylation deficient mutant of GRASP55 significantly reduced Golgi fragmentation as 

well as Aβ production. Taken together, our studies indicate that the Golgi is sensitive to cellular 

stimuli and stresses as in disease conditions, and responds to signaling cues to adjust its structure 

and function through increasing cytosolic Ca2+ and GRASP55 modification. Future studies 

defining the detailed mechanisms may help understand disease pathologies with Golgi and 

trafficking defects.  

 

2.5 Materials and Methods 

Reagents, Plasmids and siRNA 

All reagents used were from Sigma-Aldrich (St. Louis, MO), Roche (Basel, Switzerland) or 

Calbiochem (EMD Millipore, Burlington, MA), unless otherwise stated. The Annexin V 

apoptosis detection kit was from BioVision Inc. (San Francisco, CA). PKCα-GFP and GFP-

PKCβII plasmids were provided by Dr. Yusuf Hannun (Stony Brook Cancer Center). GFP-

PKCβI, GFP-PKCδ, and GFP-PKCζ plasmids were provided by Dr. Hesham El-Shewy (Medical 

University of South Carolina). The CAMKIIβ plasmid was provided by Dr. Mohammed 

Akaaboune (University of Michigan). The Str-li_VSVGwt-SBP-EGFP plasmid was provided by 

Dr. Franck Perez (Institut Curie). PKCγ-GFP cDNA construct was purchased from Addgene 
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(Cambridge, MA). The ManII-GFP HeLa cell line was made in house by transfecting HeLa cells 

with α-mannosidase II covalently linked to GFP. 

 

Control siRNA (Silencer Select Negative Control #1 siRNA) was purchased from Applied 

Biosystems (ThermoFisher). PKC-specific custom siRNA targeting to endogenous human PKCα 

(5’-CAGAAGAACTGTATGCAAT-3’) was purchased from Ambien (ThermoFisher). To 

perform knockdowns, 200 nM of each oligo was used to transfect cells for 48 hours.  

 

Antibodies 

The following antibodies were used: monoclonal antibodies against β-actin and GFP (Sigma-

Aldrich), Gos28 and GM130 (BD Biosciences, Franklin Lanes, NJ), PKCα (Santa Cruz 

Biotechnology, Dallas, TX), and -tubulin (Developmental Studies Hybridoma Bank, University 

of Iowa); polyclonal antibodies against CHOP, p-eIF2, eIF2 and p115 (Cell Signaling, 

Danvers, MA), Giantin, GRASP55 and GRASP65 (Proteintech), Bip (Santa Cruz), GM130 

("N73" from Dr. J. Seemann), and TGN46 (Bio-Rad). Secondary antibodies were purchased 

from Jackson Laboratory (Bar Harbor, ME). Secondary antibodies used for fluorescence 

microscopy include fluorescence-labelled goat anti-mouse, goat anti-rabbit and goat anti-sheep 

(for TGN46) antibodies, all used in 1:200 dilution. Secondary antibodies used for Western blot 

include HRP-conjugated goat anti-mouse and goat anti-rabbit antibodies, all used in 1:5000 

dilution. 

 

Cell Culture and Drug Treatments  
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For all experiments, mycoplasma-free HeLa were obtained from ATCC (Manassas, VA) and 

passaged ≤20 times prior to use in experiments. NRK cells were a gift from Dr. Peter Arvan 

(University of Michigan). HeLa and NRK cells were cultured in Dulbecco's modified Eagle’s 

medium (DMEM; ThermoFisher, Waltham, MA) supplemented with 10% fetal bovine serum 

(FBS; Gemini Bio-Products, Sacramento, CA) and 100 units/ml penicillin-streptomycin at 37°C 

with 5% CO2. RAW 264.7 murine macrophages were kindly provided by Dr. Kezhong Zhang 

(Wayne State University) and cultured in RPMI 1640 medium supplemented with 10% fetal 

bovine serum and 100 units/ml penicillin-streptomycin at 37°C with 5% CO2. Cells were grown 

on glass coverslips according to standard tissue culture methods (Tang et al., 2012). Coverslips 

were pre-coated with poly-lysine (Gibco) to aid in cell attachment. For mitotic synchronization, 

cells were treated with 100 ng/ml nocodazole for 18 h and "shake-off" cells (Xiang et al., 2007) 

were collected and lysed for Western blot analysis. All drugs, except cAMP-dependent protein 

kinase inhibitor (PKI) that is a peptide and dissolved in water, were made in DMSO, aliquoted, 

and stored at -20ºC. Stocks were diluted into working solutions of DMEM at the time of the 

experiment as described in the text or figure legend. Upon the addition of the drug, cells were 

incubated at 5% CO2 and 37°C for the indicated times. Cells were washed 3 times with ice cold 

phosphate buffered saline (PBS) and collected with a cell scraper. 

 

Immunofluorescence Microscopy 

For fluorescence microscopy, cells were rinsed 3 times in ice cold PBS, fixed with 4% (w/v) 

paraformaldehyde, quenched with 50 mM NH4Cl, permeabilized in 0.2% v/v Triton X-100 in 

PBS, and blocked for 1 h with PBS with 1% w/v bovine serum albumin (BSA) Fraction V 

(ThermoFisher, Waltham, MA) (Tang et al., 2016). Cells were incubated with a primary 
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antibody diluted in 1% BSA in PBS (PBSB) at room temperature for 1.5 h, washed with PBS, 

and incubated with an FITC- or TRITC-labeled secondary antibody (1:200 dilution) in PBSB for 

45 min at room temperature. Cells were washed 3 times with PBS and stained with 1:5,000 

Hoechst dye for 5 min, mounted on glass slides with Moviol, and images were captured with a 

Zeiss (Oberkochen, Germany) Observer fluorescent microscope with a 63x oil objective lens 

with a numerical aperture of 1.4 and an Axiocam Mrm camera. TIF files were exported with 

AxioVision software (Zeiss).  

 

For super-resolution microscopy, Alexa Fluor 647, and Alexa Fluor 488-labeled secondary 

antibodies (ThermoFisher) were used. After washing, coverslips were mounted to slides using 

ProLong Diamond antifade super-resolution imaging mountant (ThermoFisher). Super-resolution 

images were imaged using Leica (Wetzlar, Germany) TCS SP8 STED super-resolution 

microscope. Images were quantified using the NIH ImageJ software and assembled into figures 

with Photoshop Elements (Adobe, San Jose, CA). To clearly show the Golgi structure, brightness 

or contrast was adjusted linearly across all samples within each experiment. 

 

For calcium imaging, GRASP55-GCaMP7 transfected cells were plated onto glass bottomed 

dishes and imaged by a Nikon C2-plus Laser Scanning Confocal Microscope System configured 

with a Ti2-E inverted microscope. Images were captured at 488 nm and 561 nm in sequential 

scanning mode. Z-stacks of 5 slices at 1 µm interval were acquired every 30 seconds for a total 

period of 10 min. The NIS-Elements C software was used for acquisition, analysis and 

visualization. The "+Histamine" symbol in Movie S1 was added in Adobe Premiere Pro 2020. 
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For quantification, fluorescence intensity was measured every minute for 60 min. 20 cells were 

measured for each drug treatment. 

 

To quantify Golgi fragmentation, cells were evaluated by eye under a microscope according to 

predefined fragmentation criteria, at least 300 cells were counted in each reaction. The following 

criteria are used to define whether a Golgi is intact or fragmented: 1) If the Golgi exists as a 

single piece of connected membrane, it is intact. 2) If a Golgi exhibits several items that are 

connected by visible membrane bridges, even though these bridges might be faint, the Golgi is 

considered intact. 3) If a Golgi exhibits ≥ 3 disconnected pieces (no visible bridges connecting 

them), then the Golgi is fragmented. 4) Mitotic cells, defined by the DNA pattern, and 

overlapping cells in which the Golgi pattern is difficult to define, are not counted. Hoechst was 

used to identify individual, mitotic and overlapping cells. In experiments where transfected 

proteins were employed, only transfected cells were counted, and 100 cells were counted per 

replicate. In experiments where an inhibitor screen was performed, an unbiased image 

thresholding method was used to extract fragmentation data from ≥40 cells per replicate.  

 

Protein Biochemistry  

For immunoblotting, cells from a culture dish were pelleted and lysed with 30 µl lysis buffer (40 

mM Hepes, pH 7.4, 200 mM KCl, 5 mM MgCl2, 1% Triton X-100 (Bio-Rad, Hercules, CA), 50 

mM beta-glycerol phosphate, protease inhibitor cocktail (Roche), and phosphatase inhibitors 

NaF and NaVan pH 8.0). Samples were mixed with 6X SDS-PAGE sample buffer (400 mM 

Tris-Cl pH 6.8, 15% SDS, 10 mM DTT, 50% glycerol, 0.05% bromophenol blue), denatured at 

95°C for 4 min and then run on PAGE gels. For Fig. 2.12, subpanels C and D 8% gels were run 
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at 4°C for 8 h. Protein was transferred to nitrocellulose membranes using semi-dry transfer (Bio-

Rad, Hercules, CA) at constant 16 V. Membranes were blocked for 10 min with 3% milk in 

0.2% Tween-20 in phosphate buffered saline (PBST) and immunoblotted. Western blots were 

captured with Enhanced Chemiluminescence (ECL) dye reagent (ThermoFisher), in a 

FluorChem M chemi-luminescent imager (ProteinSimple, San Jose, CA). 

 

Electron Microscopy (EM) 

For EM, cells were fixed in pre-warmed serum-free DMEM, 20 mM Hepes, pH 7.4, 2% 

glutaraldehyde at room temperature for 30 min or 4°C overnight as previously described (Tang et 

al., 2010a). Cells were washed 2 times with 0.1 M Sodium cacodylate (Electron Microscopy 

Sciences, Hatfield, PA), and post-fixed on ice in 1% v/v reduced Osmium tetroxide, 0.1 M 

Sodium cacodylate (w/v) and 1.5% cyanoferrate (w/v) in water. Cells were rinsed 3 times with 

50 mM maleate buffer, pH 5.2, 3 times with water, scraped, and pelleted in microcentrifuge 

tubes for embedding. The EMBED 812 (EMD) protocol was used to embed cells and resin 

blocks were sectioned to 60 nm with a diamond knife and mounted on Formvar-coated copper 

grids. Samples were double contrasted with 2% uranyl acetate then with lead citrate and rinsed 

with copious amounts of water. Grids were imaged using a Philips (Amsterdam, Netherlands) 

transmission electron microscope. Golgi images were captured at 11,000x magnification. Golgi 

stacks were identified using morphological criteria and quantified using standard stereological 

techniques. A Golgi cisterna was identified as a perinuclear membrane within a Golgi stack ≥4 

times longer than its width. Stack length was measured for the longest cisterna within a Golgi 

stack using the ruler tool in Photoshop Elements 13. For the number of cisternae per stack, the 

number of cisternae was counted. For the number of vesicles per stack, round objects no greater 
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than 80 µm in diameter within 0.5 µm of a Golgi stack were counted. At least 20 cells were 

quantified in each experiment, and the EM results represent two independent experiments. 

 

VSV-G Trafficking using RUSH system 

VSV-G trafficking was performed as previously described (Li et al., 2019b). Briefly, HeLa cells 

were transfected with the Str-li_VSVG wt-SBP-EGFP plasmid (Boncompain et al., 2012) and 

cultured at 37°C for 16 h. Cells were then incubated with 250 nM TG or 10 µM monensin in 

fresh medium for 0.5 h at 37°C before 40 µM D-biotin (VWR Life Science, Radnor, PA) was 

added. Cells were then lysed at indicated time points (chase), treated with or without EndoH, and 

analyzed by Western blotting for VSV-G-GFP using a GFP antibody. The percentage of EndoH 

resistant VSV-G was quantified using the ImageJ software. 

 

Molecular Cloning  

Catalytically inactive PKCα, PKCα-GFP (K368R), was made in-house using site-directed 

mutagenesis. Constructs for GRASP55 truncation mutants, aa1-212, aa1-250, aa1-300, aa1-400, 

aa1-430 were constructed in pEGFP-N1 vector using BamHI and HindIII sites (Zhang et al., 

2018). GRASP55 phosphorylation deficient mutants, S255A, S260A, S262A/S263A, S269A, 

S273A/T274A, T278A, S289A and S292A were constructed by site-directed mutagenesis. The 

genetically encoded calcium indicator GRASP55-GCaMP7 was made in-house by inserting the 

GCaMP7a gene (kind gift from Dr. Haoxing Xu) into a pmCherry-N1-GRASP55 WT vector 

(Zhang et al., 2018) using BamH1 and NotI restriction sites. All cDNAs generated in this study 

were confirmed by DNA sequencing. 
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In vitro Kinase Assay 

In the presence or absence of 2 mM ATP, twenty μg/ml recombinant GRASP55 protein (Xiang 

and Wang, 2010) was incubated with 10 μg/ml (for WB) or 20 μg/ml (for Coomassie blue 

staining) recombinant PKCα (SignalChem, British Columbia, Canada), respectively. Reactions 

were performed in kinase buffer (20 mM HEPES-NaOH, pH 7.4, 1 mM CaCl2, 1 mM DTT, 10 

mM MgCl2, 200 μg/ml phosphatidylserine, 20 μg/ml diacylglycerol) at 30°C for 3 h. Reactions 

were terminated by adding SDS sample buffer and boiling. GRASP55 proteins were separated by 

Phos-tag SDS-PAGE and visualized by Coomassie blue staining or immunoblotting. In brief, 50 

μM Phos-tag acrylamide and 100 μM MnCl2 were included in the gel recipe according to the 

manufacturer’s instructions. Phos-tag gels were washed twice in water and stained by Coomassie 

blue or three times in transfer buffer supplemented with 10 mM EDTA and twice in transfer 

buffer without EDTA before transferring to membranes. 

 

Quantitation and Statistics 

All data represent the mean ± SEM (standard error of the mean) of at least three independent 

experiments unless noted. A statistical analysis was conducted with two-tailed Student’s t-test in 

the Excel program (Microsoft, Redmond, WA). Differences in means were considered 

statistically significant at p ≤ 0.05. Significance levels are: *, p<0.05; **, p<0.01; ***, p<0.001. 

Figures were assembled with Photoshop (Adobe, San Jose, CA). Pearson's colocalization 

coefficient values were computed using the "Coloc 2" function in ImageJ software. 
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2.6 Figures 

 

 

Fig. 2.1 TG treatment induces Golgi fragmentation and UPR 

(A) Short term TG treatment causes Golgi fragmentation. HeLa cells were treated with 250 nM 

TG, fixed at the indicated time points, and stained for GM130 (cis-Golgi) and TGN46 (trans-

Golgi). Scale bar, 20 µm. (B) Quantitation of A for cells with fragmented Golgi using GM130 as 
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the Golgi marker. (C) HeLa cells were treated with DMSO, 250 nM TG for 20 min, 5 µM Tm 

for 6 h, or 10 mM DTT for 2 h. Cells were stained for GM130 (green) and TGN46 (red) and 

analyzed by super-resolution microscopy. (D) Pearson's correlation coefficients of GM130 and 

TGN46 signals in C. Two-tailed Student's t-tests were used to calculate statistical significance 

(**, p ≤ 0.01). (E) Longer term TG treatment results in ER stress. Cells treated as in A were 

analyzed by Western blot of indicated proteins. Note that TG treatment increases the levels of p-

eIF2α, Bip and CHOP. (F-G) Quantitation of the ratio of p-eIF2α/eIF2α and the Bip levels from 

(E), with the no-treatment control normalized to 1. All quantitation results are shown as Mean ± 

SEM from at least 3 independent experiments; statistical analyses were performed using two-

tailed Student's t-tests (*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001). 
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Fig. 2.2 TG-induced Golgi fragmentation is reversible  

(A) TG-induced Golgi fragmentation is reversible. Cells were treated with either DMSO or 100 

nM TG for 1 h. After washing out TG, TG-treated cells were incubated in fresh growth medium 

for the indicated times and stained for GM130 (red) and DNA (blue). (B) Quantitation of A for 

cells with fragmented Golgi. For statistical analyses, treated cells were compared to the DMSO 

control (Ctrl). *, p ≤ 0.05; **, p ≤ 0.01. (C) Acute TG treatment does not cause apoptosis. Cells 

were treated with either DMSO or 100 nM TG for 20 min without or with 6 h washout, or with 2 

µM staurosporine (STS) for 4 h, and stained for GM130 and DNA. (D) Cells in C were surface 

stained with Annexin V-EGFP. Scale bars in all fluorescent images, 20 µm. (E) Cells were 

treated with 0.5 µM latrunculin B for 2 h and 250 nM TG was added for the last 20 min. Cells 

were stained for F-actin with phalloidin (red) and GM130 (green). Scale bar, 20 µm. (F) Cells 

were treated with 1 µM Noc for 2 h and 250 nM TG was added for the last 20 min. Cells were 

stained for α-tubulin (red) and GM130 (green). Scale bar, 20 µm. 
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Fig. 2.3 Tm treatment induces UPR but not Golgi fragmentation  

(A) Tm treatment has no effect on the Golgi morphology. HeLa cells were treated with 5 µg/ml 

Tm for indicated times and stained for GM130 (green) and TGN46 (red). Scale bar, 20 µm. (B-

C) Quantitation of Golgi fragmentation in Tm-treated cells in A. (D) EM micrographs of the 

Golgi region in Tm-treated cells. Scale bar, 0.5 µm. (E) Tm-treated cells as in A were analyzed 

by Western blots. Note the increased levels of p-eIF2, Bip and CHOP over time. (F-G) 

Quantitation of p-eIF2/eIF2α and Bip in E. Results are shown as Mean ± SEM from at least 3 

independent experiments; statistical analyses were performed using two-tailed Student's t-tests 

(*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001). (H) Representative EM images of ER cisternae in 

cells treated with DMSO (Ctrl) or tunicamycin (Tm, 5 µg/ml) for 6 h. ER cisternae in Ctrl cells, 

indicated by arrowheads (►), appear to have a narrow, intact structure; where in Tm treated 

cells, the ER cisternae appear to be swollen and fragmented, as indicated by arrows (→). Scale 

bar, 0.5 µm. 
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Fig. 2.4 DTT treatment induces UPR but not Golgi fragmentation 

(A) HeLa cells were treated with DMSO or 10 mM DTT for indicated times and stained for 

GM130 (green), and TGN46 (red). Scale bar, 20 µm. (B) Quantitation of A for cells with 

fragmented Golgi. (C) Western blots of ER stress and Golgi proteins showing UPR induction 

upon DTT treatment. (D) Quantitation of Bip levels from four independent experiments. Two-

tailed Student's t-tests were used to calculate statistical significance (*, p ≤ 0.05). 
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Fig. 2.5 TG induces Golgi fragmentation prior to UPR through elevated cytosolic Ca2+ 
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(A) HeLa cells were treated with the indicated concentrations of TG for 20 min and stained for 

GM130. Scale bar, 20 µm. (B) Quantitation of cells with fragmented Golgi in A. (C) Cells 

treated with TG as in A were analyzed by Western blots. (D-E) Quantitation of p-eIF2α/eIF2α 

and Bip in C from five independent experiments. (F) BAPTA-AM inhibits TG-induced Golgi 

fragmentation. HeLa cells treated with 100 nM TG for indicated times with or without 60 µM 

BAPTA-AM (B/AM) 30 minute pre-treatment, and stained for GM130. Scale bar, 20 µm. (G) 

Quantitation of F from three independent experiments. (H) Electron micrographs of Golgi 

profiles in HeLa cells treated with 250 nM TG and B/AM for 20 min. Note that the Golgi is 

comprised of bulbous saccules in the TG-treatment, whereas in the B/AM pretreated cells the 

cisternae appear straight and well-stacked. Asterisks (*) indicate nuclei. Scale bar, 0.5 µm. (I) 

Quantitation of the morphological features of Golgi stacks on the EM images in H. For statistics, 

B/AM and TG were compared to DMSO treatment, while TG+B/AM was compared to TG 

treatment. 
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Fig. 2.6 BAPTA-AM inhibits TG-induced Golgi fragmentation  

(A) HeLa cells were pretreated with BAPTA-AM for 10 minutes in the amounts shown and then 

treated with 250 nM TG for 20 minutes, and then with 250 nM TG for 20 min followed by 

immunostaining of GM130 and TGN46. Scale bar, 20 µm. (B) Quantitation of cells in (A) with 

fragmented Golgi based on the GM130 pattern in the cell. Quantitation of %cells w. Golgi frag. 

in B from 3 independent experiments. Two-tailed Student's t-tests were used to calculate 

statistical significance (**, p ≤ 0.01). 
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Fig. 2.7 Low concentration of TG induces Golgi fragmentation in NRK cells and RAW 

264.7 macrophages 

(A) NRK cells were treated with the indicated concentrations of TG for 20 min and stained for 

GM130. Scale bar, 20 µm. (B) Quantitation of cells with fragmented Golgi in A. (C) Cells 

treated with TG as in A were analyzed by Western blots. (D-E) Quantitation of p-eIF2α/eIF2α 
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and Bip in C from 3 independent experiments. (F) RAW 264.7 murine macrophage cells were 

treated with the indicated concentrations of TG for 20 min and stained for GM130. Scale bar, 10 

µm. (G) Quantitation of cells with fragmented Golgi in F. (H) Cells treated with TG as in F were 

analyzed by Western blots. (I-J) Quantitation of p-eIF2α/eIF2α and Bip in H from 3 independent 

experiments. Two-tailed Student's t-tests were used to calculate statistical significance (*, p ≤ 

0.05; **, p ≤ 0.01; ***, p ≤ 0.001). 
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Fig. 2.8 TG-induced Golgi fragmentation increases protein trafficking in the Golgi 
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(A) Cells were transfected with the Str-li_VSVG wt-SBP-EGFP plasmid for 16 h followed by a 

30 min treatment with DMSO, 250 nM TG, or 10 µM monensin (Mo) at 37°C. Cells were then 

incubated with complete medium containing 40 µM biotin (chase) for the indicated times, lysed 

and treated with (+) or without (-) EndoH, and analyzed by Western blot for GFP. (B) 

Quantification of A for the percentage of EndoH resistant VSV-G from three independent 

experiments. Quantitation results are shown as Mean ± SEM. Statistical analyses were performed 

using two-tailed Student's t-tests by comparing to the control (*, p ≤ 0.05). (C) Representative 

images of A showing the subcellular localization of VSVG-EGFP at indicated time points after 

biotin chase. Scale bar, 20 µm. (D) Fluorescent images showing the subcellular localization of 

ManII-GFP in cells treated with DMSO (Ctrl) or 250 nM TG at the indicated time points of BFA 

washout. ManII-GFP appears in the Golgi area beginning at 60 min, whereas this takes longer in 

control cells. Scale bar, 20 µm. 
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Fig. 2.9 TG induces Golgi fragmentation through PKCα activation 

(A) Inhibition of PKC reduces TG-induced Golgi fragmentation. HeLa cells were pre-treated 

with DMSO, BAPTA-AM (B/AM, 60 µM for 10 min), staurosporine (STS, general kinase 

inhibitor, 2 µM for 10 min), KN-62 or KN-93 (CAMKII inhibitors, 10 µM and 5 µM, 

respectively, 10 min), or BIM1 or Gӧ6976 (PKC inhibitors, 2 µM and 4 µM, respectively, 10 

min), and then with 250 nM TG for 20 min followed by immunostaining of GM130 and TGN46. 

Scale bar, 20 µm. (B) Quantitation of cells in (A) with fragmented Golgi based on the GM130 

pattern in the cell. (C) HeLa cells were treated with 100 nM PMA for 1 h; 4-alpha-PMA of the 

same concentration was used as a control. (D) Quantitation of cells with fragmented Golgi in C. 

(E) Cells treated as in C were analyzed by Western blot to show that PMA treatment does not 

change the PKCα expression level. 
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Fig. 2.10 PKCα localizes to the Golgi upon activation  

(A) Expression of PKC isoforms. HeLa cells were transfected with indicated PKC isoforms and 

analyzed by Western blot for GFP or PKCα. (B) Fluorescent images showing the localization of 

expressed PKC isoforms after treatment with DMSO, 4-alpha, or PMA. PMA induces PKCα (α-

GFP) localization to the Golgi area, a similar but less dramatic effect was observed for PKCβII 

(GFP-βII). Scale bar, 20 µm. 
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Fig. 2.11 PKCα is required for Golgi fragmentation during PKCα activation  

(A) Activation of ectopically expressed PKCα triggers its Golgi localization (indicated by “→”) 

and Golgi fragmentation (*). Cells transfected with GFP or PKCα-GFP were treated with 100 

nM PMA or 4-alpha for 1 h. Note the fragmented Golgi in these cells upon PMA treatment. 

Scale bar, 20 µm. (B) Quantitation of cells in A with fragmented Golgi. (C) Western blot of cells 

from A showing that ectopic PKC expression does not alter the endogenous PKCα expression 

level. (D) PKCα-GFP (K368R) expressed in HeLa cells and treated with either 4-alpha or PMA 

and visualized by Western blotting. (E) Cells in D were probed for GM130 (red) and DNA 

(blue). (F) HeLa cells were transfected with control (Ctrl-i) or PKC-specific siRNA for 48 h and 

then treated with 250 nM TG for 20 min. Cells were fixed and stained for GM130 (green) to 

show the Golgi structure. Scale bar, 20 µm. (G) Quantitation of Golgi fragmentation of cells in 

F. (H) Cells in F were blotted for endogenous PKCα to evaluate the siRNA knockdown 

efficiency. All quantitation results are shown as Mean ± SEM from three independent 

experiments. Statistical analyses were performed using two-tailed Student's t-tests (*, p ≤ 0.05; 

**, p ≤ 0.01; ***, p ≤ 0.001; NS, non-significant). 
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Fig. 2.12 PKCα induces Golgi fragmentation through GRASP55 phosphorylation 

(A) TG treatment results in the phosphorylation of GRASP55 but not other Golgi proteins. HeLa 

cells were treated with 250 nM TG for 1 h, with or without 2 µM staurosporine (STS) pre-

treatment for 10 min, and analyzed by Western blot. (B) Cell lysates in A were analyzed by 

phos-tag gels and Western blot. (C) GRASP55 is phosphorylated upon TG treatment. HeLa cells 

treated with Tm, TG or nocodazole (Noc) were analyzed by phos-tag gels and Western blot. 

Note the mobility shift of GRASP55 upon TG treatment compared to control (Ctrl). Nocodazole-

arrested mitotic cells were used as a positive control for GRASP55 phosphorylation. (D) 

Quantitation of GRASP55 phosphorylation in TG treated cells. The intensity of the 

phosphorylated (upper) band was quantified by densitometry analysis, and plotted relative to the 

intensities of the full length (lower) band. Shown are the results of relative phosphorylation of 

GRASP55 from 3 independent experiments. (E) PKCα phosphorylates GRASP55 in vitro. 

Phosphorylated GRASP55 (►) was analyzed by phos-tag gels and visualized using Coomassie 

blue staining. (F) PKCα phosphorylates GRASP55 in vitro. Purified PKCα and GRASP55 were 

incubated in a kinase buffer with or without ATP as indicated, and analyzed by phos-tag gels and 

Western blot for GRASP55 and PKCα.   



74 

 

 

Fig. 2.13 Phosphorylation of GRASP55 within aa251-300 is important for TG-induced 

Golgi fragmentation 

(A) Mapping the phosphorylation site on GRASP55 by expressing GRASP55 truncation 

mutants. Indicated GFP-tagged GRASP55 constructs were expressed in HeLa cells. After TG 

treatment, GRASP55 was analyzed by mobility shift. Note the mobility shift in lanes 8, 10, and 

12. (B) Quantitation of GRASP55 phosphorylation in TG treated cells from A. (C) TG-induced 

Golgi fragmentation is rescued by the expression of non-phosphorylatable GRASP55 proteins. 

Cells expressing the indicated GRASP55 constructs were stained for giantin. (D) Quantitation of 

cells in C with fragmented Golgi. Results are shown as Mean ± SEM. Statistical analyses were 

performed using two-tailed Student's t-tests (*, p ≤ 0.05; **, p ≤ 0.01). 
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Fig. 2.14 Histamine treatment alters the Golgi structure 

HeLa cells treated with either DMSO (control, 1 h) or histamine (100 µM, 1 h) were analyzed by 

EM. Shown are collections of electron micrographs representing the two treatments. Consistent 

aberrations in Golgi shape were frequently seen in histamine-treated cells, including reduced 

cisternae number and stack length, and increased number of vesicles. Scale bar, 0.5 µm. 
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Fig. 2.15 Histamine induces Golgi fragmentation through PKC activation 

(A) HeLa cells were treated with indicated concentrations of histamine for 1 h, stained for 

GM130, and quantified for the percentage of cells with fragmented Golgi. Shown are the 

quantitation results. (B) HeLa cells were treated with 100 µM histamine for the indicated times 

and analyzed as in A. Note that histamine induced Golgi fragmentation within 2 h. (C) Electron 

micrographs of Golgi profiles in HeLa cells treated with DMSO control (Ctrl, left panel) or 100 

µM histamine for 1 h (right panel). Note the reduced size of the Golgi in histamine-treated cells. 

Scale bar, 0.5 µm. (G) Expression of the GRASP55-GCaMP7 Golgi Ca2+ sensor. HeLa cells 

transfected with indicated proteins were analyzed by Western blot for GFP. (H) Histamine 

treatment increases the GRASP55-GCaMP7 signal. HeLa cells were co-transfected with 

mCherry-GM130 (red) and GRASP55-GCAMP7 (green). Shown are still frames before (left 

panel) or after (right) histamine was added. (I) TG and ionomycin treatments increase the 

GRASP55-GCaMP7 signal. HeLa cells expressing GRASP55-GCaMP7 were treated with 100 

µM histamine (Hist), 250 nM TG, or 1 µM ionomycin (Io) for 1 h. Shown are the quantitation of 

the fluorescence intensity before and after the drug was added. All quantitation results are shown 
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as Mean ± SEM. Statistical analyses were performed using two-tailed Student's t-tests (*, p ≤ 

0.05; **, p ≤ 0.01; ***, p ≤ 0.001). 
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Fig. 2.16 Proposed model of PKCα during stress 

Under normal conditions (upper left), cells contain intact Golgi and low cytosolic calcium. 

Under certain types of calcium stress, such as during histamine or thapsigargin treatment, the 

Golgi becomes fragmented and unstacked (upper right). This morphology is accompanied by an 

increase in cytosolic calcium and activation of PKCα which localizes to the Golgi membrane and 

phosphorylates GRASP55.  
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CHAPTER III 

 

Hydrogen Peroxide Induces Arl1 Degradation and Impairs Golgi-Mediated Trafficking3 

 

3.1 Abstract 

Reactive oxygen species (ROS)-induced oxidative stress has been associated with diseases such 

as amyotrophic lateral sclerosis (ALS), stroke and cancer. While the effect of ROS on 

mitochondria and endoplasmic reticulum (ER) has been well documented, its consequence on the 

Golgi apparatus is less well understood. In this study, we characterized the Golgi structure and 

function in HeLa cells after exposure to hydrogen peroxide (H2O2), a reagent commonly used to 

introduce ROS to cells. Treatment of cells with H2O2 resulted in the degradation of Arl1 and 

dissociation of GRIP-domain containing proteins Golgin-97 and Golgin-245 from the trans-

Golgi. This effect could be rescued by treatment of cells with protease inhibitors. Structurally, 

H2O2 treatment reduced the number of cisternal membranes per Golgi stack, suggesting a loss of 

trans-Golgi cisternae. Functionally, H2O2 treatment inhibited both anterograde and retrograde 

 
 

 

3 This chapter is modified from a version that has been submitted to the journal Molecular 

Biology of the Cell with authors listed as Stephen C. Ireland, Haoran Huang and Yanzhuang 

Wang (see Acknowledgements section). 
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protein transport, consistent with the loss of membrane tethers on the trans-Golgi cisternae. This 

study revealed membrane tethers at the trans-Golgi as novel specific targets of ROS in cells. 

 

3.2 Introduction 

In eukaryotic cells the reduction of O2 to H2O during ATP generation in the mitochondria 

necessarily leads to the production of reactive oxygen species (ROS). ROS can damage various 

cellular components such as lipids, proteins and nucleic acids. Oxidative stress of cells occurs 

when damage to cellular components is high enough to lead to a constellation of system failures. 

For example, treatment of hemoglobin and rat globular basement membrane with hydrogen 

peroxide (H2O2) makes them more susceptible to proteolytic cleavage (Davies, 2016; Fligiel et 

al., 1984). In addition, oxygen free radicals such as superoxide anion, singlet oxygen, hydroxyl, 

and perhydroxyl, either generated by the cell or from an external source, can cause the death of 

multiple cell types in vitro and are thought to contribute to many inflammatory conditions 

(Ahsan et al., 2003; Singh et al., 2007). High levels of oxidative stress are often associated with 

diseases such as cancer, diabetes, atherosclerosis, stroke, and neurodegenerative disorders such 

as amyotrophic lateral sclerosis (ALS), in which there is a failure in the cells to reduce ROS 

(Manoharan et al., 2016; Nindl et al., 2004). 

 

ROS can damage membrane organelles. For example, oxidation and thereby inactivation of 

protein tyrosine phosphatases (PTPs) can increase steady-state protein phosphorylation of eIF2α 

and endoplasmic reticulum (ER) stress through redox inhibition of protein phosphatase 1 (Santos 

et al., 2016). H2O2 treatment inactivates catalase and disrupts mitochondria in Hs27 human 

fibroblasts, and increases the secretion of matrix metalloproteases (Koepke et al., 2008). H2O2 
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can also damage the fluidity and function of the plasma membrane in vascular endothelial cells 

(Block, 1991). So far, how ROS affects the structure and function of the Golgi apparatus has not 

been well documented. 

 

The Golgi is a membrane organelle with a stacked structure that functions as a trafficking hub in 

the cell for the delivery of proteins and lipids to their final destinations. In anterograde 

trafficking, the cis Golgi cisternae receive proteins synthesized by the ER in COPII vesicles and 

sends them to the endosomal/lysosomal system, the plasma membrane, or outside of the cell. In 

retrograde trafficking, the trans face of the Golgi receives vesicles from the plasma membrane 

and endosomes for subsequent delivery to the ER (Huang and Wang, 2017). These functions rely 

on a group of long coiled-coil proteins called golgins, which act as membrane tethers to capture 

vesicles and facilitate their fusion with the Golgi membranes (Lupashin and Sztul, 2005; 

Muschalik and Munro, 2018; Witkos and Lowe, 2015; Xiang and Wang, 2011). These include 

GM130 in the cis-Golgi that functions in ER-to-Golgi trafficking, and a group of four GRIP 

(“Golgin-97, ranBP2alpha, imh1p and p230/golgin-245”)-domain containing proteins, Golgin-

97, Golgin-245, GCC88 and GCC185, in the trans-Golgi (Jackson, 2003; Lu and Hong, 2003; 

Luke et al., 2003).  

 

The GRIP-domain containing golgins are important for both anterograde and retrograde 

trafficking at the trans-Golgi (Munro, 2011). GCC88 and GCC185 have been shown to differ in 

their membrane binding properties and localize to distinct subdomains of the trans-Golgi, and 

facilitate the sorting and delivery of distinct cargo sets to and from the trans-Golgi network 

(TGN) (Derby et al., 2004). Golgin-97 and Golgin-245 localize to overlapping but non-identical 
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subdomains of the TGN and mediate endosome-to-Golgi trafficking (Lu et al., 2004; Wong and 

Munro, 2014), but only Golgin-97 has been implicated in the anterograde trafficking of E-

Cadherin to the cell surface (Lock et al., 2005). Therefore, the GRIP domain tethers regulate the 

transport of diverse cargo molecules. The GRIP domain of Golgin-97 and Golgin-245 anchors 

these golgins to the trans-Golgi by the interaction with Arl1 (ADP-ribosylation factor-like 

protein 1), a member of the ARF/Arl family of small GTPases that is localized on trans-Golgi 

membranes. Depletion of Arl1 by RNAi causes dissociation of Golgin-97 and Golgin-245 from 

the trans-Golgi membranes and impairs both anterograde and retrograde trafficking at the TGN 

(Nishimoto-Morita et al., 2009).  

 

In this study we determined the effect of ROS on Golgi structure and function by acute treatment 

of cells with H2O2. We found that H2O2 treatment resulted in a reduction of the number of Golgi 

cisternae in the stacks, a rapid loss of Arl1, and dissociation of Golgin-97 and Golgin-245 from 

the trans-Golgi, which impaired both anterograde and retrograde trafficking. This study revealed 

the trans-Golgi and trafficking at the trans-Golgi as novel targets of ROS in cells, which may 

help understand the toxicity of ROS in human diseases. 

 

3.3 Results 

3.3.1 H2O2 treatment causes specific degradation of Arl1 and its binding partners Golgin-97 

and Golgin-245 

Oxidative stress is most frequently studied using hydrogen peroxide (H2O2), a membrane-

permeable source of the peroxide ion (O2
2-) that is relatively stable in aqueous solutions (Stone 

and Yang, 2006). To investigate the effect of ROS on the Golgi, we applied H2O2 to HeLa cells 
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in culture for 10 min with increasing concentrations consistent with physiological levels present 

in cells (Schroder and Eaton, 2008). Since it has been previously shown that ROS triggers 

protein degradation (Pajares et al., 2015), we first examined the effect of H2O2 treatment on the 

level of Golgi structural proteins by Western blotting. As shown in Fig. 3.1A, H2O2 treatment at 

1.4 mM, the highest concentration we tested, had no significant effects on most Golgi structural 

proteins, including GCC88, GCC185, GM130, GRASP65, GRASP55, Golgin-160, cation 

independent mannose-6-phosphate receptor (CI-M6PR), and syntaxin 6. However, Arl1, Golgin-

97 and Golgin-245 were significantly reduced. In this experiment we also tested α-tubulin, a 

microtubule protein that has previously been shown to be degraded upon 200 µM H2O2 treatment 

for 1 or 4 h (Hu and Lu, 2014). However, total α-tubulin level was unaffected in our 

experiments, possibly because we used a shorter time for the treatment, indicating that our 

experimental condition is milder than that of previous studies. Syntaxin 6 is an important 

SNARE protein in TGN trafficking (Bock et al., 1997), but the level of syntaxin 6 remained 

unchanged after H2O2 treatment at all concentrations. Based on these results, we chose to use 1 

mM H2O2 and 10 min for the treatment in most of our following experiments; at this condition 

Arl1, Golgin-97 and Golgin-245 are degraded whereas GM130 and other Golgi structural 

proteins did not change. 

 

As an alternative approach, we performed high-speed centrifugation to separate cytosolic 

proteins from cellular membranes. This approach allowed us to examine not only the protein 

level, but also the membrane association of Arl1 and other proteins (Fig. 3.1B). As controls we 

used GS28 and actin as markers for membranes and cytosol, respectively. As shown in Fig. 

3.1B, Arl1, Golgin-97 Golgin-245, GCC88, and GCC185 were all enriched in the membrane 
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fraction of control cells. After H2O2 treatment, Arl1, Golgin-97 and Golgin-245 were reduced in 

the membrane fractions, while GCC88 was relatively stable, consistent with the results shown 

above. 

 

3.3.2 H2O2 treatment reduces membrane association of GRIP domain-containing golgins in 

trans-Golgi 

Our results showed that H2O2 treatment reduced the protein level of Arl1, Golgin-97 and Golgin-

245 but not the other two GRIP domain-containing golgins, GCC88 and GCC185 (Fig. 3.1). To 

further confirm that H2O2 treatment reduces the level of GRIP domain-containing golgins in the 

Golgi by an alternative method, we analyzed their subcellular localization by 

immunofluorescence microscopy. As shown in Fig. 3.2A-B, H2O2 treatment reduced the level of 

Arl1 and Golgin-97 in the Golgi region indicated by GM130 in a dose dependent manner. 

Similarly, Golgin-245 also reduced its level in the Golgi region (Fig. 3.3). Unlike Golgin-97 and 

Golgin-245, GCC88 and GCC185 signals reduced in the Golgi region but increased in the 

cytosol after H2O2 treatment (Fig. 3.3), indicating that GCC88 and GCC185 were dissociated 

from the Golgi, although they were not degraded (Figure 3.1A). Taken together, our results 

indicate that H2O2 treatment reduces the level of membrane tethers in the trans-Golgi 

membranes. 

 

3.3.3 Short term H2O2 treatment does not cause Golgi fragmentation but reduces the 

number of cisternae per Golgi stack 

Because no significant change was observed in the Golgi morphology by immunofluorescence 

microscopy using GM130 and TGN46 as markers (Fig. 3.4A-B), we next performed electron 
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microscopy (EM) to analyze the ultrastructure of the Golgi stacks in more detail. As shown in 

Fig. 3.5, the average number of Golgi cisternae per stack was reduced by H2O2 treatment (3.5 ± 

0.3) compared to that of control cells (4.8 ± 0.3), indicating a loss of Golgi cisternae. Previously, 

we have observed that depletion of GRASP65 and/or GRASP55 reduces the number of cisternae 

in the Golgi stack and the length of the Golgi cisternae, resulting in vesiculation of Golgi 

membranes (Bekier et al., 2017; Xiang and Wang, 2010). However, unlike GRASP depletion, 

the number of vesicles surrounding each Golgi stack did not significantly change after H2O2 

treatment, nor did the average length of the stacks (Fig. 3.5; Fig. 3.6). The shape of the Golgi 

cisternae appeared to be normal, with flat, well aligned cisternae within the stacks, and with 

narrow and uniform gaps between them. The reduction in cisterna number in the stacks and the 

loss of trans-Golgi membrane tethers suggest a possibility that trans-Golgi cisternae were 

removed or reduced after H2O2 treatment. 

 

3.3.4 H2O2 treatment reduces anterograde and retrograde trafficking 

Arl1 and the GRIP domain-containing golgins are best known for their roles in tethering vesicles 

from the endosomes to facilitate their fusion with Golgi membranes. To determine the effect of 

H2O2 treatment on retrograde trafficking, we first looked at the subcellular localization of CI-

M6PR, which is constantly recycled between the TGN and late endosomes. While treatment of 

cells with 1 mM H2O2 had no effect on the protein level of CI-M6PR at various time points (Fig. 

3.7A), the CI-M6PR signal in the Golgi region reduced over time (Fig. 3.7B-C). The reduction 

of the CI-M6PR signal in the Golgi region indicates an inhibition of CI-M6PR trafficking from 

the endosomes to the Golgi in H2O2-treated cells. As a complimentary approach, we used Shiga 

toxin 1 B subunit (StxB) as a tool to measure retrograde trafficking (Selyunin and 
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Mukhopadhyay, 2015a). Cells were first incubated with StxB at 4ºC to allow it to bind to the cell 

surface, and then warmed up to 37ºC to allow StxB trafficking toward the Golgi (chase). After 

60 min chase, StxB was accumulated in the Golgi region in control cells; in contrast, it existed 

mostly as cytoplasmic puncta in H2O2-treated cells (Fig. 3.7D). Consistent with the loss of Arl1 

tethering complexes, our results demonstrate that H2O2-treatment impairs the function of the 

trans-Golgi in retrograde trafficking.  

 

Since TGN also play essential roles in anterograde trafficking, we determined the effect of H2O2 

treatment on Vesicular Stomatitis Virus-Glycoprotein (VSV-G) trafficking using the RUSH 

system (Boncompain et al., 2012). Cells were transfected with a plasmid that encodes both the 

invariant chain of the major histocompatibility complex (Ii, an ER protein) fused to core 

streptavidin and VSV-G fused to streptavidin-binding peptide (SBP). Under normal conditions 

the interaction between streptavidin and SBP retains VSV-G in the ER. Upon the addition of 

biotin, this interaction is displaced by the strong binding of biotin with SBP, resulting in the 

release of the VSV-G reporter from the ER for trafficking to the plasma membrane. Since VSV-

G is a glycoprotein, we used endoglycosidase H (EndoH) to distinguish its core (ER and cis-

Golgi) and complex (post-Golgi) glycosylation forms as an indicator of trafficking. As shown in 

Fig. 3.7F, H2O2 treatment decreased the EndoH resistant post-Golgi forms of VSV-G at 30 and 

60 min time points after release compared to that in the control, demonstrating that H2O2 

treatment decreased VSV-G trafficking through the Golgi. Using the same experimental scheme, 

we also labelled cell surface VSV-G with an antibody that recognizes its extracellular domain in 

unpermeabilized cells at different time points to determine its arrival to the plasma membrane 

after release. In the control treatment, VSV-G started to appear at the cell surface after 30 min 
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release; whereas in H2O2 treated cells VSV-G was still undetectable after 60 min release (Fig. 

3.7G). Taken together, degradation of membrane tethers in the trans-Golgi upon H2O2 treatment 

impairs both anterograde and retrograde trafficking.  

 

3.3.5 H2O2 treatment causes golgin-97 degradation by cytoplasmic proteases 

As demonstrated above, Arl1, Golgin-97 and Golgin-245 are degraded upon H2O2 treatment; 

therefore, we determined whether this degradation was mediated by proteasomes or lysosomes, 

two major protein degradation pathways in the cell. Because it has been previously shown that 

oxidative stress triggers autophagy, a cellular process that delivers cargo molecules to lysosomes 

for degradation, we first inhibited autophagy and lysosomal degradation with Bafilomycin A1 

(BafA1) and determined the effect on H2O2-induced Golgi protein degradation. As shown in Fig. 

3.8A, BafA1 treatment resulted in the accumulation of p62, a cargo protein for autophagosomal 

degradation (lane 2 vs. 1), but had no effect on H2O2-induced Arl1 or Golgin-97 degradation 

(Fig. 3.8A, lane 4 vs. 3), indicating that H2O2-induced Arl1 or Golgin-97 degradation is not 

through autophagy or lysosomes. We also confirmed that the addition of BafA1 had no effect on 

H2O2-induced Golgin-97 reduction in the Golgi region by immunofluorescence microscopy (Fig. 

3.8C).  

 

Proteasomal degradation is a process in which cells target ubiquitinated proteins for degradation 

by the proteasome (Eisenberg-Lerner et al., 2020). By examining our Western blots, we did not 

detect ubiquitinated forms of Arl1 and Golgin-97. In addition, inhibition of proteasomal 

degradation by MG132 had no effect on H2O2-induced Arl1 and Golgin-97 degradation as 

examined by Western blotting or fluorescence microscopy (Fig. 3.8D-F). These results 
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demonstrated that ROS-induced Arl1 and Golgin-97 degradation is not via lysosomes or 

proteasomes. 

 

In addition to proteasomal and lysosomal degradation pathways, cytosolic proteases are known 

to degrade Golgi proteins such as Golgin-160 (Mancini et al., 2000). Therefore, we added a 

protease inhibitor cocktail (Roche) into the treatment to determine if it could rescue H2O2-

induced Arl1 degradation. This cocktail contains a set of chemicals that can effectively inhibit a 

broad spectrum of serine and cysteine proteases. As shown in Fig. 3.8G-H, the addition of the 

protease inhibitors blocked H2O2-induced Arl1 and Golgin-97 degradation. Furthermore, 

immunofluorescence microscopy confirmed that adding protease inhibitors effectively inhibited 

H2O2-induced Golgin-97 reduction in the Golgi region (Fig. 3.8I). Taken together, these results 

indicate that the degradation of Arl1 and Golgin-97 upon H2O2 treatment is by cytoplasmic 

proteases. 

 

3.4 Discussion 

In this study, we revealed that H2O2 treatment induces a rapid degradation of Golgi tethering 

proteins on the trans-Golgi, including Arl1, Golgin-97 and Golgin-245, which could be rescued 

by protease inhibitors, indicating that H2O2-induced ROS activates a cytoplasmic protease to 

selectively degrade Arl1, Golgin-97 and Golgin-245 on the trans-Golgi. This results in a 

reduction of the cisternal number per Golgi stack and impairs both anterograde and retrograde 

trafficking. Our results revealed a novel mechanism by which oxidative stress within 

physiological levels induces rapid and selective degradation of Arl1 and its associated golgins on 
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the trans-Golgi, which impairs both anterograde and retrograde trafficking. This study has 

identified the Golgi as a novel site of ROS to exert its toxicity in cells.  

 

It is interesting to see that the degradation of Arl1 and its associated golgins is not by 

proteasomes or lysosomes, but rather by cytoplasmic proteases. How proteins in the Golgi are 

degraded is so far not well understood. Theoretically, Golgi proteins can be degraded by the 

following pathways: 1) by lysosome-mediated protein degradation, which requires delivery of 

Golgi proteins to the lysosomes either by direct trafficking or by autophagy; 2) by ER-associated 

degradation (ERAD), in which particular Golgi proteins traffic back to the ER for degradation by 

proteasomes; 3) by direct ubiquitination at the Golgi and degradation by the proteasomes on site; 

and 4) by cytoplasmic proteases. We originally speculated lysosomal degradation as the most 

likely mechanism for Arl1 degradation as it has previously been shown that oxidative stress 

triggers autophagy (Zhang et al., 2016) and that there is a link between Golgi function and 

autophagy (Zhang et al., 2019; Zhang et al., 2018). However, this possibility was ruled out by 

BafA1 treatment, which inhibits lysosomal degradation. Similarly, inhibition of proteasomes by 

MG132 also had no effect on Arl1 degradation. It is possible that a cytoplasmic protease may be 

more readily accessible than proteasomes or lysosomes for Arl1, Golgin-97 and Golgin-245.  

 

The identity of this cytoplasmic protease is as yet unknown and remains a subject for future 

investigation. One possible candidate is calpain, which is non-lysosomal and is known to be 

activated by ROS in intermittent hypoxia (Bailey et al., 2015). Calpain has two isoforms that are 

both calcium-activated neutral protease that function in the cytoplasm (Croall and DeMartino, 

1991). Convincing evidence for a role of these proteases is lacking for most of the described 



90 

 

functions, however calpain may proteolytically regulate PKC suggesting a possible explanation 

for why the Golgi is not fragmented during H2O2 treatment in Fig. 3.4. Calpain cleavage 

specificity is likely mediated by substrate tertiary structure and not primary protein sequence, 

which increases the difficulty to predict the precise cleavage sites on its target proteins. 

 

In contrast to some other Golgi stresses such as thapsigargin treatment that triggers Golgi 

fragmentation (Ireland et al., 2019), H2O2 does not cause obvious Golgi fragmentation, nor 

apoptosis. The loss of Arl1 and its associated golgins, together with the lack of Golgi 

fragmentation and the impairment of anterograde and retrograde trafficking in H2O2 treated cells, 

indicates that Arl1 and its associated golgins play critical roles in membrane trafficking, but may 

not be essential for Golgi structure formation. Alternatively, Golgi fragmentation may take 

longer than 10 min at which our assays were performed. Indeed, H2O2 treatment reduced the 

number of cisternae in the Golgi stack and Golgi-mediated trafficking, indicating that trafficking 

defects occur prior to Golgi fragmentation. The identity of the lost cisternae remains unknown; 

but given that Arl1 and its associated golgins reside in the trans-Golgi, it is more likely that some 

trans cisternae are lost upon H2O2 treatment, which requires further investigation. 

 

Our study revealed that the trans-Golgi is uniquely sensitive to oxidative stress in cells, which 

may help understand the toxicity of ROS in human diseases. ROS has been found to occur in 

several human diseases such as ALS, cancer and diabetes (Manoharan et al., 2016; Nindl et al., 

2004), and Golgi structural and functional defects have been observed in Parkinson’s (Mizuno et 

al., 2001), Huntington’s (Hilditch-Maguire et al., 2000) and Alzheimer’s (Joshi et al., 2015; Joshi 

et al., 2014; Joshi and Wang, 2015) diseases and ALS (Fujita and Okamoto, 2005; Gonatas et al., 
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1998; Mourelatos et al., 1996). It would be interesting to test whether Arl1 and its associated 

golgins are degraded in these diseases in future studies.  

 

3.5 Materials and Methods 

Reagents and Plasmids 

All reagents used in this study were purchased from Sigma-Aldrich (St. Louis, MO), Roche 

(Basel, Switzerland), EMD Millipore (Burlington, MA), or ThermoFisher (Waltham, MA), 

unless otherwise stated. H2O2 (30% in water) was from Fisher Chemical. Trypan blue was from 

Gibco (Dublin, Ireland). N-acetyl cysteine (NAC) was from Sigma. The cOmplete, EDTA-free 

protease inhibitor (PI) tablets were from Roche. Shiga toxin 1 Subunit B (StxB) was from BEI 

Resources (Manassas, VA). D-Biotin was from VWR Life Science (Radnor, PA). Bafilomycin 

A1 (BafA1) was from Fisher Scientific. MG132 was from EMD Millipore. The Str-li_VSVGwt-

SBP-EGFP plasmid was provided by Dr. Franck Perez (Institut Curie). 

 

Antibodies 

The following primary antibodies were used. Monoclonal antibodies against β-actin and GFP 

(Sigma-Aldrich); Shiga Toxin B (Fisher); GM130, Gos28, Golgin-245 and syntaxin 6 (BD 

Biosciences, Franklin Lanes, NJ); -tubulin (Developmental Studies Hybridoma Bank, 

University of Iowa); Arl1 (Abcam); VSV-G extracellular domain (David Sheff). Polyclonal 

antibodies against GCC88, Golgin-160, CI-M6PR, GRASP55 and GRASP65 (Proteintech); 

GCC185 (Abcam); GM130 ("N73" from J. Seemann); TGN46 (Bio-Rad). Secondary antibodies 

were purchased from Jackson Laboratory (Bar Harbor, ME). Secondary antibodies used for 

fluorescence microscopy include fluorescence-labelled goat anti-mouse, goat anti-rabbit and goat 
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anti-sheep antibodies. Secondary antibodies used for Western blot include HRP-conjugated goat 

anti-mouse and goat anti-rabbit antibodies.  

 

Cell Culture and Drug Treatments  

HeLa were obtained from ATCC (Manassas, VA), cultured in Dulbecco's modified Eagle’s 

medium (DMEM; ThermoFisher) supplemented with 10% fetal bovine serum (FBS; Gemini 

Bio-Products, Sacramento, CA) and 100 units/ml penicillin-streptomycin at 37°C with 5% CO2, 

and routinely screened for mycoplasma contamination. Cells were grown on glass coverslips 

according to standard tissue culture methods (Tang et al., 2011). Coverslips were pre-coated with 

poly-lysine (Gibco) to aid in cell attachment. H2O2, NAC and PI solutions were made fresh in 

Milli-Q water. All other drugs were dissolved in DMSO and stock solution aliquoted and stored 

at -20°C until use. Stock solutions were diluted into working solutions of DMEM or water at the 

time of the experiment. Depending on the chemical, H2O or DMSO was used as control in the 

experiments. 

 

Protein Biochemistry  

For immunoblotting, cells from a 6 cm dish were washed 3 times with ice cold PBS and 

collected with a cell scraper. Cells were pelleted and lysed with 100 µl lysis buffer (20 mM Tris-

HCl, 150 mM NaCl, 1% Triton X-100 (Bio-Rad, Hercules, CA), 20 mM glycerolphosphate and 

protease inhibitor cocktail). Samples, excluding GCC185 samples (see below), were mixed with 

6X SDS PAGE buffer with fresh DTT, denatured at 95°C for 4 min and then analyzed by SDS-

PAGE. Protein was transferred to nitrocellulose membranes using semi-dry transfer at a constant 

16 V. Membranes were blocked for 10 min with 3% milk in 0.2% Tween-20 in phosphate 
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buffered saline (PBST) and immunoblotted. GCC185 and Golgin-245 samples were denatured at 

50°C for 5 min before loading onto a SDS-PAGE and transferred to nitrocellulose membranes by 

a wet-transfer at 50 V for 2 h. Western blots were captured with enhanced chemiluminescence 

(ECL) dye reagent (ThermoFisher) in the FluorChem M chemi-luminescent imager 

(ProteinSimple). 

 

Subcellular Fractionation 

Fractionation of membranes was performed as described (Xiang et al., 2013). Briefly, control 

(Ctrl) HeLa cells and cells treated with 1 mM H2O2 for 10 min (H2O2) were washed with PBS, 

collected in HBS buffer (0.25 M sucrose, 10 mM HEPES, pH7.2, 1 mM Mg(OAc)2, 1 mM 

EDTA, 0.5 mM PMSF, and protease inhibitor cocktail) with a cell scraper, and homogenized 

using 349 a ball-bearing (Ø=8.008) homogenizer (HGM Lab Equipment) to ~80% cell breakage 

(Tang et al., 2011; Tang et al., 2010a). Plasma membrane disruption efficiency was examined by 

a trypan blue exclusion method. Homogenate was centrifuged at low speed for 10 min at 1000 g 

at 4°C. Post-nuclear supernatant (PNS) was then subjected to ultracentrifugation for 1 h in a 

TLA55 rotor at 100,000 g at 4°C to separate membranes (M) from cytosol (C). An equal amount 

of PNS, C and M were loaded onto SDS-PAGE and analyzed by Western blot using the 

indicated antibodies (Xiang et al., 2013). 

 

Immunofluorescence Microscopy 

For fluorescence microscopy, cells were rinsed 3 times in ice cold phosphate buffered saline 

(PBS), fixed with 4% (w/v) paraformaldehyde, quenched with 50 mM NH4Cl in PBS, 

permeabilized in 0.2% (v/v) Triton X-100 in PBS, and blocked for 1 h with PBSB - PBS 
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supplemented with 1% (w/v) bovine serum albumin (BSA) Fraction V (ThermoFisher, Waltham, 

MA) (Tang et al., 2016). Cells were incubated with a primary antibody diluted in PBSB at 

overnight gently rocking at 4°C, thoroughly washed with PBS, and incubated with an FITC-, 

TRITC- or CY5-labeled secondary antibody (1:200 dilution in PBSB) at room temperature for 

30 min. Cells were then washed 3 times with PBS and stained with 1:10,000 Hoechst dye for 3 

min, and then mounted on glass slides with Moviol plus fluorescence brightener (DABCO; 

Acros Organics). Images were captured with a Zeiss Observer fluorescent microscope with a 63x 

oil objective lens and Axiocam Mrm camera. TIF files were exported with AxioVision software 

(Zeiss). For the data in Fig. 3.7B and C, images were collected at random locations on the 

coverslip with the autofocus function of ZEN software at 20x magnification. 

 

Electron Microscopy 

All EM related reagents were from Electron Microscopy Sciences (EMS; Hatfield, PA). Cells 

were fixed in pre-warmed serum-free DMEM, 20 mM HEPES, pH 7.4, 2% glutaraldehyde at 

room temperature for 30 min or 4°C overnight as previously described (Tang et al., 2010a; Wang 

et al., 2005). Cells were washed 2 times with 0.1 M Sodium cacodylate, and post-fixed on ice in 

1% (v/v) reduced Osmium tetroxide, 0.1 M Sodium cacodylate (w/v) and 1.5% cyanoferrate 

(w/v) in water. Cells were rinsed 3 times with 50 mM maleate buffer, pH 5.2, 3 times with water, 

scraped, and pelleted in microcentrifuge tubes for embedding. The EMBED 812 protocol was 

used to embed cells and resin blocks were sectioned to 60 nm with a diamond knife and mounted 

on Formvar-coated copper grids (Tang et al., 2010a). Samples were double contrasted with 2% 

uranyl acetate then with lead citrate and rinsed with copious amounts of water. Grids were 

imaged using a Philips (Amsterdam, Netherlands) transmission electron microscope. Golgi 
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images were captured at 11,000x magnification. Golgi stacks were identified using 

morphological criteria and quantified using standard stereological techniques. A Golgi cisterna 

was identified as a perinuclear membrane within a Golgi stack ≥4 times longer than its width. 

Stack length was measured for the longest cisterna within a Golgi stack using the ruler tool in 

Photoshop Elements 13. For the number of cisternae per stack, the number of cisternae was 

counted. For the number of vesicles per stack, round objects no greater than 80 microns in 

diameter within 0.5 micron distance to a Golgi stack were counted. Golgi morphology was 

quantified from at least 20 cells in each experiment. 

 

Shiga toxin 1B subunit (StxB) transport assay 

Shiga toxin assay was performed as previously described (Selyunin and Mukhopadhyay, 2015b). 

In short, cells were plated onto poly-lysine coated coverslips and cultured overnight, incubated 

with 4 µg/mL purified Shiga toxin 1B subunit (StxB) DMEM at 4°C for 30 min, and then 

washed thoroughly with cold PBS. Cells were then incubated with H2O2 in growth medium for 

10 minutes at 37ºC, washed with growth medium, and further incubated in growth medium 

without H2O2 for an additional 50 min at 37ºC. After treatment, cells were fixed and 

permeabilized as described above, stained with indicated primary and secondary antibodies for 

1.5 h each at room temperature, and analyzed by fluorescence microscopy. 

 

VSV-G protein trafficking and exofacial labelling 

For EndoH treatment and Western blotting, cells in a dish were transfected with the Str-li_VSVG 

wt-SBP-EGFP plasmid for 16 h followed by a 10 min treatment with 1 mM H2O2. Cells were 

then incubated with fresh growth medium containing 40 µM biotin (chase) for the indicated 



96 

 

times. Cells were lysed with denaturing buffer (0.5% SDS, 40 mM DTT), boiled at 90°C for 10 

minutes, and treated with (+) or without (-) EndoH in G5 buffer (50 mM Sodium Citrate, pH 5.5) 

at 37°C for 1 h. Reaction was mixed with SDS buffer and analyzed by Western blot for GFP. 

Bands on Western blots were quantified using densitometry analysis. The intensity of the upper 

EndoH resistant band was divided by that of the total of the upper and lower bands to calculate 

the mature/total ratio. 

 

For immunofluorescence analysis of cell surface VSV-G, HeLa cells grown on poly-lysine 

coated coverslips were transfected with the Str-li_VSVG wt-SBP-EGFP plasmid for 16 h. Cells 

were then fixed in 4% paraformaldehyde without permeabilization, blocked with 1% BSA in 

PBS, and incubated with an anti-VSV-G antibody overnight at 4°C. After washing 3 times with 

PBS, the cells were briefly permeabilized with 0.3% Triton X-100 and processed for 

immunofluorescence. 

 

Quantitation and Statistics 

All data represent the mean ± SEM (standard error of the mean) of at least three independent 

experiments unless noted. A statistical analysis was conducted with two-tailed Student’s t-test in 

the Excel program (Microsoft, Redmond, WA). Differences in means were considered 

statistically significant if p ≤ 0.05. Significance levels are: *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 

0.001. Figures were assembled with Photoshop (Adobe, San Jose, CA). For Fig. 3.7C, automatic 

thresholding was performed in ImageJ, and the Golgi-localized M6PR signal was plotted. Over 

300 cells were evaluated for each timepoint. 
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3.6 Figures 

 

 

Fig. 3.1 H2O2 treatment causes specific degradation of Arl1 and its binding partners 

(A) Effect of H2O2 treatment on indicated proteins. HeLa cells were treated with the indicated 

concentrations of H2O2 for 10 min, collected, and blotted for the indicated proteins. (B) 

Distribution of indicated proteins in membrane and cytosolic fractionations. Control (Ctrl) cells 

and cells treated with 1 mM H2O2 for 10 min were homogenized with a ball-bearing 

homogenizer followed by a low speed centrifugation to prepare post nuclear supernatant (PNS). 

The PNS was then subjected to ultracentrifugation to separate membranes (Mem) from the 

cytosol (Cyt). GS28 and Actin were used to denote Mem and Cyt fractions, respectively. 
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Fig. 3.2 H2O2 treatment causes specific degradation of Arl1 and Golgin-97 by IF 

(A) H2O2 treatment reduces the Golgi localization of Arl1. HeLa cells were treated with the 

indicated concentrations of H2O2 for 10 min, fixed, and stained for Arl1 (red), GM130 (green) 

and DNA (blue). (B) H2O2 treatment reduces the Golgi localization of Golgin-97. HeLa cells 

were treated as above and stained for Golgin-97, GM130 and DNA. 
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Fig. 3.3 H2O2 treatment reduces membrane association of golgins in the trans-Golgi 

(A) HeLa cells treated with 1 mM H2O2 for 10 min were stained for GCC88 (left panels), EGFP-

GCC185 expressing HeLa cells with the same treatment were analyzed for GCC185 (right 

panels). Note that GCC88 and GCC185 have reduced signals in the Golgi but diffused signals in 

the cytosol after H2O2 treatment. Scale bar, 20 µm. 
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Fig. 3.4 H2O2 treatment does not cause Golgi fragmentation 

(A) H2O2 treatment does not induce significant Golgi fragmentation. HeLa cells were treated 

with indicated concentrations of H2O2 for 10 min and stained for GM130 and TGN46. Scale bar, 

20 µm. (B) Quantitation of Golgi fragmentation in H2O2-treated cells in A. Results are shown as 

Mean ± SEM from three independent experiments. No significant changes were detected by two-

tailed Student's t-tests.  
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Fig. 3.5 Short term H2O2 treatment reduces the number of cisternae per Golgi stack 

(A-B) Representative electron micrographs of Golgi profiles in HeLa cells either untreated (Ctrl; 

A) or treated with 1 mM H2O2 for 10 min (H2O2; B). Note that the Golgi stacks contain fewer 

cisternae in the H2O2-treatment compared to Ctrl cells. Scale bar, 0.5 µm. (C-D) Quantitation of 

Golgi stack morphological features of cells in A and B. (E) Summary of quantitation of the 

morphological features of Golgi stacks on the EM images represented in A and B. Results are 

shown as Mean ± SEM; statistical analyses were performed using two-tailed Student's t-tests (*, 

p ≤ 0.05; NS, not significant). 
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Fig. 3.6 H2O2 treatment alters the Golgi structure. 

HeLa cells were incubated in growth medium without (A) or with 1 mM H2O2 (B) for 10 min 

were analyzed by EM. Shown are a collection of electron micrographs representing the two 

treatments. Consistent aberrations in the Golgi stacks were seen in H2O2-treated cells, in 
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particular a reduction of the cisterna number per Golgi stack, while the cisternal length and the 

number of vesicles surrounding each stack did not change. Scale bar, 0.5 µm. 
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Fig. 3.7 H2O2 treatment reduces anterograde and retrograde trafficking  

(A) HeLa cells treated with 1 mM H2O2 for indicated times were analyzed by Western blotting. 

(B) HeLa cells treated as in A were stained for CI-M6PR (red) and GM130 (green). Scale bar, 50 

µm. (C) Quantitation of the Golgi-localized CI-M6PR intensity in B. Statistical analyses were 

performed using two-tailed Student's t-tests in comparison with the control (***, p ≤ 0.001). 

Note the decrease in Golgi-localized CI-M6PR along with the unchanging total protein amount 

in A. (D) Live cells were incubated with Shiga toxin (StxB) on ice followed by a 60 min 

incubation at 37ºC to allow StxB trafficking to the Golgi. Cells were fixed and stained for StxB 

(green) and TGN46 (red). Scale bar, 20 µm. Note the dispersed StxB signals in H2O2 treated 
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cells, which is more concentrated in the Golgi region in control cells. (E) VSV-G trafficking 

assay using the RUSH system. Cells transfected with the Str-li_VSVG wt-SBP-EGFP plasmid 

were treated with or without 1 mM H2O2 for 10 minutes followed by VSV-G release from the 

ER for indicated times. Cell lysate was treated with or without EndoH and blotted for GFP. (F) 

Bands in E were quantified using densitometry analysis. The intensity of the upper EndoH 

resistant band was divided by that of the total of the upper and lower bands to calculate the 

mature/total ratio. Results are shown as Mean ± SEM from three independent experiments. 

Statistical analyses were performed using two-tailed Student's t-tests in comparison with the 

control (*, p ≤ 0.05; **, p ≤ 0.01). (G) Cells were treated as in E, fixed with PFA without 

permeabilization, and stained with an anti-VSVG antibody that recognizes its luminal domain. 

Scale bar, 20 µm. 
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Fig. 3.8 H2O2 treatment causes golgin-97 degradation by cytoplasmic proteases. 

(A) HeLa cells were treated with 400 nM BafA1 for 2 hours, followed by the addition of 1 mM 

H2O2 in the last 10 min and analyzed by Western blots for the indicated proteins. (B) 

Densitometric analysis of Golgin-97 blots in A from three independent experiments. (C) HeLa 

cells were treated as in A and stained for GM130 (green), Golgin-97 (red), and DNA (blue). 

Scale bar, 20 µm. (D) Cells were treated with 20 µM MG132 for 4 hours, followed by the 

addition of 1 mM H2O2 in the last 10 min and analyzed by Western blots for indicated proteins. 

(E) Densitometric analysis of the Golgin-97 protein level on Western blot in D from three 

independent experiments. Results are shown as Mean ± SEM. Statistical analyses were 

performed using two-tailed Student's t-tests (**, p ≤ 0.01, ***, p ≤ 0.001). (F) HeLa cells were 

co-treated with MG132 as in D and stained for GM130, Golgin-97 and DNA. Scale bar, 20 µm. 

(G) HeLa cells co-treated with or without a protease inhibitor cocktail and 1 mM H2O2 for 10 
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min were analyzed by Western blotting. (H) Quantitation of Golgin-97 Western blot in G with 

densitometric analysis. (I) Cells treated as in G were stained for Golgin-97 (red), GM130 

(green), and DNA (blue). Scale bar, 20 µm.Results are shown as Mean ± SEM from three 

independent experiments. Statistical analyses were performed using two-tailed Student's t-tests 

(***, p ≤ 0.001). 
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CHAPTER IV 

 

Conclusions and Future Directions 

 

4.1 Concluding remarks 

The conclusion of this research is that the Golgi possesses its own mechanisms to sense and 

respond to various stresses. It has been commonly thought in the past that Golgi stress is a mere 

consequence of the expanding capacity of the ER during cellular stress. This, so the theory goes, 

leads to a failure of the Golgi as it is over-burdened with misfolded or improperly folded 

proteins, which in turn affect Golgi functions (Oku et al., 2011). However, results do not support 

this hypothesis for two reasons: First, although three ER stress inducers, TG, Tm and DTT, all 

induced ER stress, only TG treatment caused Golgi fragmentation. Second, TG induced Golgi 

fragmentation at a lower dose within a time window when UPR was undetectable. Therefore, 

Golgi fragmentation occurs independently of ER stress. Furthermore, this study revealed a novel 

mechanism that coordinates Golgi structure and perhaps function: TG treatment increases 

cytoplasmic Ca2+, which activates PKCα, that subsequently phosphorylates GRASP55, impairing 

its function in Golgi structure formation. GRASP55 therefore provides the conceptual link 

between an extracellular cue on the one hand and Golgi morphological change during stress on 

the other. 
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In contrast to some other Golgi stresses such as thapsigargin treatment that triggers Golgi 

fragmentation (Ireland et al., 2019), H2O2 did not cause obvious Golgi fragmentation, nor 

apoptosis. Here it was revealed that H2O2 treatment induced a rapid degradation of Golgi 

tethering proteins on the trans-Golgi, including Arl1, Golgin-97 and Golgin-245. This loss 

coincided with a stark reduction of the cisternal number per Golgi stack and impaired both 

anterograde and retrograde trafficking functions. Further results indicate that H2O2-stress 

induced ROS activates a cytoplasmic protease to selectively degrade Arl1, Golgin-97 and 

Golgin-245 on the trans-Golgi. This happened independently of apoptosis and necrosis induced 

proteolytic activation. In this study we have identified Golgi proteins and Golgi functions as 

novel targets of ROS-toxicity in cells, in contrast to the fragmentation phenotype seen in 

Chapter II. Furthermore the work has identified specific targets of ROS on the Golgi, Arl1, 

Golgin-97, and Golgin-245.  

 

The experiments in this study were designed to define intrinsic Golgi stress response 

mechanisms. It was found that the Golgi indeed is a target to receive physiological inputs from 

the cell or the environment to increase or decrease functional outputs. Understanding the specific 

regulatory machinery of the Golgi apparatus during stress can aid in the discovery of ways to 

manipulate Golgi health and help support cellular homeostasis and organism health. 

 

4.2 Future directions 

An outstanding question in the Golgi field has been how GRASP65 and GRASP55 remain 

segregated into distinct Golgi compartments. The N-terminal GRASP55 domain is 83% similar 

and 67% identical to that of GRASP65 in human (Fig. 4.1A). This has led to the conclusion that 
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GRASP55 and GRASP65 may stack different regions of the Golgi (Pfeffer, 2001). However, the 

mechanism controlling this biological distinction remains unsolved. 

 

One possible mechanism of segregations could be palmitoylation of GRASPs. Palmitoylated 

proteins tend to be trafficked toward the plasma membrane, whereas de-palmitoylated proteins 

tend to make their way back toward endosomal and Golgi membranes. Palmitoylation is also 

reversible, unlike myristoylation. Palmitoylation occurs at cysteine residues and less frequently 

at serine residues within proteins. Human GRASP55 differ in both cysteine and serine residues 

with its GRASP65 counterpart. It will be interesting to know if one or more of these sites is 

available for palmitoylation. 

 

Scientific inquiry has had several major shifts over the recent centuries and many of these shifts 

have involved dramatic improvements in imaging. What is needed next is spatial separation of 

individual proteins at the ultrastructural level. Super-resolution has brought us closer to 

achieving this, but electron microscopy will be needed to go further. Utilization of Apex2-GBP, 

or a derivative technique, will allow cell biologists to label proteins using EM. To that end, a 

technique was developed for the lab employing apex enzyme labelled Golgi proteins. Some of 

the progress is shown in Fig. 4.1B-E.  

 

The apex tool has the power to directly test the hypothesis that palmitoylation of GRASP 

homologues controls their segregation within the Golgi. By creating alanine point mutations in 

the cysteine residues of GRASP proteins and comparing the localization patterns between mutant 
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and wild type proteins using apex, one could ask if mutants would appear more on the cis-Golgi 

than they normally do. 

 

To continue the work, a researcher in the Wang lab could 1) improve and clarify previous 

findings that GRASP55 and GRASP65 localize to inter-cisternal spaces of the Golgi stack as 

previously shown, and 2) identify the mechanism of how GRASP homologues, GRASP55 and 

GRASP65, separate themselves in different parts of the Golgi stack. 
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4.3 Figures 

 

 

Fig 4.1 GRASP55 localizes to the inter-cisternal spaces of the Golgi stack 

(A) BLAST sequence alignment of human GRASP55 and human GRASP65 N-terminus 

showing the number of identities, mismatches (gaps), and conservative substitutions (+). (B) 
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HeLa cells co-expressing Apex-GBP (Apex) and Histone 2B-GFP (H2B-GFP) after undergoing 

a DAB reaction. The nucleus exhibits with a high degree of opaque reaction product compared to 

untransfected cells indicated by the asterisk (*) (please see section 4.4 for Materials and 

Methods). (C) Co-expression of Apex-GBP and the Golgi structural protein GRASP55-GFP 

(GRASP55). The Golgi is shown occupying a central position in the cell compared to the H2B 

control cells in B. Scale bar, 20 microns. (D) EM visualization of untransfected HeLa cell 

showing normal Golgi stacks, G. Also visible is the nucleus N. (E) EM visualization of HeLa 

cell co-transfected with Apex2-GBP and GRASP55-GFP plasmids. The dark, electron dense 

region within the Golgi, G, stacks suggests an inter-cisternal enrichment of GRASP55, whereas 

light microcopy can never establish this level of detail. Also visible is the nucleus, N. Scale bar, 

500 nanometers.  
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4.4 Materials and Methods 

Basic Local Alignment Search Tool (BLAST) 

Protein BLAST was performed using National Center for Biotechnology Information's (NCBI) 

online alignment software. Amino acid sequences were obtained by aligning two or more 

sequences. The first subject sequence was the first 212 positions of human GRASP55 

(GORASP2; NCBI Reference Sequence: NP_001188357.1), and the query sequence was the first 

212 positions of human GRASP65 (GORASP1; NCBI Reference Sequence: XP_006713364.1).  

 

Reagents and Plasmids  

All EM related reagents were from Electron Microscopy Sciences (EMS; Hatfield, PA). The 

Apex2-GBP plasmid was purchased from Addgene (#67651). The H2B-GFP plasmid was 

purchased from Addgene (#11680). GRASP55-GFP was made in house using the pEGFP-N1 

vector (Zhang et al., 2018) 

 

Cell Culture and Drug Treatments  

HeLa were obtained from ATCC (Manassas, VA), cultured in Dulbecco's modified Eagle’s 

medium (DMEM; ThermoFisher) supplemented with 10% fetal bovine serum (FBS; Gemini 

Bio-Products, Sacramento, CA) and 100 units/ml penicillin-streptomycin at 37°C with 5% CO2, 

and routinely screened for mycoplasma contamination. Cells were grown on glass coverslips 

according to standard tissue culture methods (Tang et al., 2011). Coverslips were pre-coated with 

poly-lysine (Gibco) to aid in cell attachment. 

 

Apex Electron Microscopy 
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Hela cells were plated onto 6 cm tissue culture dishes with a coverslip 24 h prior to transfection. 

Cells were transfected with Apex2-GBP with either mock, H2B-GFP or GRASP55-GFP 

plasmids for 16 h. Cells were fixed in pre-warmed serum-free DMEM, 20 mM HEPES, pH 7.4, 

2% glutaraldehyde at room temperature for 1 h or 4°C overnight as previously described (Tang 

et al., 2010a; Wang et al., 2005). The DAB reaction buffer was prepared fresh and used 

immediately (1 mg/mL solution of 3’3-diaminobenzidine tetrahydrochloride (Sigma-Aldrich) in 

0.1 M sodium cacodylate). Undissolved precipitate was removed with syringe filtration using a 

0.2 µm filter. Cells were washed 2 times with DAB buffer. This initial wash was then replaced 

with DAB reaction mixture after adding H2O2 (5.88 mM), and cells were allowed to incubate for 

60 minutes. The cells were next washed 3x with pure 0.1 M cacodylate buffer followed by 10x 

with ddH2O. Coverslips were collected and imaged using brightfield (Fig. 4.1B-C). Remaining 

cells were then incubated in 2% filtered uranyl acetate solution at 4°C, and rinsed with water 

until no traces of yellow remained (about 3 times). The EMBED 812 protocol was used to embed 

cells and resin blocks were sectioned to 60 nm with a diamond knife and mounted on Formvar-

coated copper grids (Tang et al., 2010a).  
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