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Abstract

Rydberg ensembles have many diverse and important applications for quantum infor-

mation and quantum optics. For example, Rydberg ensembles can generate non-classical

states of light which would be useful in a quantum network, and they could be used as qubits

in a future quantum computer. For this reason, this thesis will present investigations of

light-matter interactions in Rydberg ensembles.

Non-classical states of light, such as single-photon states, are important for many quantum

communication protocols. We have performed an experiment that demonstrates the gener-

ation of single-photon states from a Rydberg ensemble. We then studied the second-order

correlations between this single-photon state of light and an incident coherent field. Under

these conditions, we observed Hanbury Brown-Twiss interference between the emission from

a driven super-atom and a coherent field in the absence of stimulated emission.

For a universal quantum computing architecture, coherence times must be much longer

than gate operations. We observe ground-Rydberg coherence times in excess of 20 µs

by using a "magic-wavelength" optical lattice to confine the atoms. Using this coherence

time, we measured the differential nuclear-spin-dependent light shifts for principal quantum

numbers, n, between n = 30 and n = 65, which is relevant for future high-fidelity Rydberg

qubits in optical potentials. Also, we measured the hyperfine constant for atomic Rb to be

Āns = 35.71± 0.18 GHz.

xv



Chapter 1

Introduction

In 1901, Max Planck discovered that the quantization of the electromagnetic radiation

emitted from a black body solved the so-called "ultraviolet catastrophe" [1]. This catastrophe

was a problem in classical physics where the prevailing theory, the Rayleigh-Jeans law,

predicted a divergence in the amount of electromagnetic radiation from a black body at

shorter wavelengths. A new field of physics, quantum optics, began in the process of

resolving this problem. Since that time, quantum optics has grown to a field of physics that

affects everyday life because of the development of technologies such as solar cells, lasers,

and fiber optics. Within the scientific community, advances in protocols for the generation of

entangled and squeezed states of light have paved the way for quantum-enhanced metrology,

atomic clocks [2], and precision measurements such as measuring vibrations in spacetime

[3]. Quantum optics has enabled researchers to study the fundamental nature of light-matter

interaction: long-range entanglement [4], optical tweezers [5], and cooling atoms to a Bose-

Einstein condensate [6]. Moreover, quantum optics has combined with computer science to

form the field of quantum information.

In the keynote talk at the First Conference on Quantum Computation in 1981, Richard

Feynman spoke on the differences between a classical computer and a hypothetical quantum

computer when simulating a quantum system. He concluded that classical computation was

1



impractical for simulations of quantum mechanics because the necessary computational power

scales exponentially with the number of particles and degrees of freedom in the simulation

[7]. A quantum computer could hypothetically simulate quantum mechanical systems

without exponential scaling in the size of the computer. Since that conference, there have

been many advances in the field of quantum information, including the first quantum logic

gates[8], multi-qubit quantum processors [9], primitive calculations [10], and the first claims

of quantum supremacy [11]. Today there is such excitement about quantum information

that, within the private sector, several companies are developing quantum computers for

future commercial purposes. These advancements have been implemented in a variety of

architectures, such as superconducting circuits, trapped ions, quantum dots, and neutral

atoms. Quantum information and quantum optics based on neutral atoms has seen great

advancement in recent years and will be the focus of this thesis.

1.1 Overview

Neutral atoms excited to states with a high principal quantum number (n), so-called Rydberg

states, can have state-dependent interactions that are necessary for quantum logic, for example,

two-bit gates. Furthermore, the interaction can be tuned by the proper choice of principal

quantum number n. For example, at n = 100 it has been shown that the interaction between

two atoms is twelve orders of magnitude larger than for ground-state atoms [12]. Rydberg

ensembles exhibit interesting many-body physics phenomena, such as Rydberg blockade

[13]. In contrast to single atoms, Rydberg ensembles in the blockade regime utilize many-

body effects to achieve strong atom-photon coupling [14]. Also, the efficient generation

of single-photons can be realized in ensembles of atoms [13], which is important for many

quantum communication protocols.

This thesis will present investigations of light-matter interactions in Rydberg ensembles

and their applications for quantum information and quantum optics. In these investigations,
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I was involved in experimental design, fabrication, and data acquisition. Additionally, I

aided in the analysis and modeling of each experiment. These studies can be separated into

two general topics: (1) interference effects between a coherent state and non-classical states

of light from a Rydberg ensemble, and (2) investigations on long-lived coherence between

ground and Rydberg levels.

(1) Non-classical states of light, such as single-photon states, play an important role

in many quantum communication protocols, such as entanglement swapping [15, 16] and

quantum key distribution [17]. We have performed an experiment that demonstrates the

ability to create single-photon states from a neutral atom ensemble, and we studied the

second-order correlations with an incident coherent field. With these correlations, we show

the presence of Hanbury Brown-Twiss (HBT) interference between a coherent field and

emission from a driven super-atom in the absence of stimulated emission. This is in contrast

to previous experiments that have inferred a connection between the two phenomena.

(2) The third of five criteria that DiVincenzo identified for a universal quantum computing

architecture is that coherence times must be much longer than gate operations [18]. In the

past, coherence time was severely limited in experiments with Rydberg ensembles due to

motional dephasing. By using a "magic-wavelength" optical lattice to confine the atoms,

we demonstrate ground-Rydberg coherence times in excess of 20 µs, which is an order of

magnitude improvement over previous experiments performed with unconfined ensembles.

Using this improvement, we were able to measure the differential nuclear-spin-dependent

light shifts for principal quantum numbers n between n = 30 and n = 65.

This thesis is comprised of six chapters:

• Chapter 1. This chapter provides the background necessary for the rest of the thesis,

including neutral alkali atoms, Rydberg states, state-insensitive trapping, and second-

order correlations of photons. The potential benefits and detriments of using neutral

Rydberg atoms for quantum information are also discussed throughout the chapter.
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• Chapter 2. This chapter goes over the experimental setups that were used in the

following three chapters. In particular, I examine the magneto-optical trap setup,

several of the laser systems that were used, the normalization of the coincidences for

Hanbury Brown-Twiss interference, the optical lattice geometry, and the procedure to

measure the magic detuning.

• Chapter 3. Hanbury Brown and Twiss (HBT) interference and stimulated emission,

two fundamental processes in atomic physics, have been studied in a wide range of

applications in science and technology. We study interference effects that occur when a

weak probe is sent through a gas of two-level atoms that are prepared in a singly-excited

collective (Dicke or “superatom") state and for atoms prepared in a factorized state.

We measure the time-integrated second-order correlation function g(2) of the output

field as a function of the delay between input probe field and radiation emitted by the

atoms τ and find that, for the Dicke state, g(2) is twice as large for τ = 0 as it is for

γeτ � 1 (γe is an excited state decay rate), while for the product state, this ratio is

equal to 3/2. The results agree with those of a theoretical model in which any effects

related to stimulated emission are totally neglected - the coincidence counts measured

in our experiment arise from Hanbury Brown and Twiss interference between the input

field and the field radiated by the atoms.

• Chapter 4. This chapter discusses our findings on enhanced ground-Rydberg coherence.

By confining atoms in a state-insensitive optical lattice, the lifetime of the ground-

Rydberg coherence is increased to ≥ 20 µs, an order of magnitude improvement over

previous experiments using freely diffusing atoms. Using these enhanced lifetimes,

we measure the so-called "magic" lattice wavelengths for Rb and use them to extract

the
∣∣6p3/2

〉
⇔
∣∣ns1/2

〉
reduced electric dipole matrix elements. Good agreement

is found with values obtained using an effective one-electron potential for principal

quantum numbers n between n = 30 and n = 70. We develop a theoretical model
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based on quantized motion to map out the ground-Rydberg coherence as a function

of time that is in good agreement with the experimental results. The availability of

long coherence times presents new opportunities for high-resolution spectroscopy and

quantum information science.

• Chapter 5. This chapter presents a detailed analysis of the nuclear-spin manifolds asso-

ciated with the ns Rydberg levels of 87Rb atoms that interact with both magnetic and

optical lattice fields. Eigenvalues and eigenkets for the Rydberg manifold are obtained

and used to study the dynamics of phase-matched emission following illumination of

an ensemble of cold atoms with excitation and readout laser pulses. By comparing the

measured emission signal to predictions of a model that accounts for the quantized

motion of atoms in a one-dimensional optical lattice potential, we are able to extract the

Rydberg hyperfine and light shift contributions to the observed modulation frequencies.

In this way, the hyperfine splitting of Rydberg ns levels is measured for n in the range

of 30 to 65. Our results should be relevant for realizations of high-fidelity Rydberg

qubits confined in optical potentials.

• Chapter 6. I state the conclusions from the previous chapters and look at the future of

the field.

1.2 Neutral alkali atoms

Alkali atoms (lithium, sodium, potassium, rubidium, cesium, and francium) have a single

valence electron. Such atoms generally possess a simple energy level structure. For rubidium

and cesium in particular, the atomic energy levels have a narrow natural linewidth in compar-

ison to the energy separation between the different states. This is significant because when

the atoms are driven with a narrow linewidth excitation field, the energy level structure can

be approximated as a two-level system as is necessary for a qubit. Rubidium and cesium are
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commonly used in neutral atom quantum computation experiments because diode lasers that

produce light for the transitions of these atoms can be easily produced. There are also many

established techniques to cool and trap these atoms in a vacuum system. A cold cloud of

atoms isolated from collisions with background gases has a longer trap lifetime than atoms

not in a vacuum. These longer lifetimes can be helpful because there is more time in between

experimental loadings for measurements. For all of these reasons, ensembles of 87Rb atoms

are used for all of the experiments in this thesis.

Neutral alkali atoms have been used to demonstrate several important quantum informa-

tion protocols including generation of single-photons [13], long-lived quantum memories

[19], photon conversion to a telecommunication wavelength (to use in the existing telecom-

munications infrastructure) [20], and large defect-free arrays of neutral atoms in an optical

lattice (for scaling the number of qubits) [21, 22]. These demonstrations show the potential of

neutral atoms as an architecture for a scalable quantum computer or network. However, there

are still open questions in the field as to whether neutral atom quantum gates with high fidelity

will be achieved as has been done for superconducting circuits and trapped ions. Currently

the highest-fidelity two-qubit gates for neutral atoms is f ≈ 0.9 in a two-dimensional array

[23] and f ≥ 0.974 in a one-dimensional array [24]. This will have to be improved for

a future quantum computer. If a calculation needs 100 gate operations and the fidelity is

0.97, the probability of having a correct calculation is ≈ 5%. Another potential problem for

using neutral atoms in quantum information is that they have much shorter trap lifetimes

than trapped ions, therefore, periodic reloading of the atomic sample is required. This is in

contrast to ions, which can be trapped and used for long periods of time.
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1.3 Rydberg atoms

1.3.1 Basic properties

State-dependent interactions are necessary for two-qubit quantum gates [12]. Creating these

gates is an important step towards quantum computation. These state-dependent interactions

can be achieved in neutral atoms by changing the principal quantum number. Interactions

between two neutral atoms are generally weak if they are in the ground state. However, when

the atoms are excited to high principal quantum numbers, the interaction strength grows by

several orders of magnitude. These highly excited states, referred to as Rydberg states, are

similar to the states in a hydrogen atom with energy level scaling as ∼ n−2 and the electron

orbital radius scaling as ∼ n2.

Rydberg level property Scaling with principal quantum number
Radius n2

Dipole-dipole interaction n4

van der Waals interaction n11

Nuclear sub-level splitting n−3

Magic wavelength detuning n−3

Table 1.1: Rydberg level properties and the theoretical scaling principals with the principal
quantum number.

For Rydberg atoms, the electronic wavefunctions are distributed so far from the nucleus

that the effective electron dipole moment of the atom is very large in comparison to a ground-

state atom. If two Rydberg atoms are in close proximity, they will interact either through the

dipole-dipole interaction, which scales as ∼ n4, or through the van der Waals interaction,

which scales as ∼ n11, as can be seen in Table 1.1. The force that is dominant depends on

the distance between the two atoms. The van der Waals force is dominant at long distances,

and the dipole-dipole force is dominant at short distances. These large scaling factors allow
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Figure 1.1: (a) An ensemble of atoms with a single Rydberg excitation. The Rydberg
blockade radius, rb, for the Rydberg atom grows with the principal quantum number such
that at large enough principal quantum numbers the Rydberg blockade can be on the order
of the size of the ensemble. (b) The interaction shifts the doubly excited state, |RR〉, by
∆ν , which is out of resonance with the two-photon excitation. (c) Diagram of a two-photon
excitation scheme with frequencies ω1 and ω2 detuned by ∆ from the intermediate state |I〉.
A retrieval pulse, ωr, results in an emitted photon ωe.

atoms separated by∼ 10 microns to interact with each other, shifting the dipole transitions on

the order of ∼ 10 MHz at a principal quantum number of n ≈ 100 [12]. In the experiments

presented in this thesis, the 87Rb atoms are excited to principal quantum numbers between

n = 30 and n = 87.

1.3.2 Rydberg blockade

When an atom is excited to a sufficiently high principal quantum number, the dipole-

dipole/van der Waals interaction between the excited atom and any nearby atoms will shift

the Rydberg levels of the nearby atoms out of resonance with a narrow linewidth excitation

field. It can be derived that the probability of exciting a second atom to the same Rydberg
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state is [12]:

P =
N − 1

N

Ω2
N

∆ν

, (1.1)

where N is the number of atoms, ΩN is the collective Rabi frequency which is
√
N times a

single atom’s rabi frequency Ω, and ∆ν is the energy shift due to the interactions with the

Rydberg atom. At a sufficiently high principal quantum number, where ∆ν is large, and at a

low collective Rabi frequency there will be one Rydberg atom in the ensemble. This means

that the one excitation can "block" every other atom within an ensemble from being excited

as depicted in Fig. 1.1 (a) and (b). This is the phenomenon known as Rydberg blockade, and

the radius, within which no further atoms can be excited, is known as the blockade radius

[25, 26, 27].

If the ensemble is smaller than the blockade radius, the entire cloud of atoms can only

have one excitation in it, creating a collective Dicke state, which is described by:

|R〉 =
1√
N

N∑
i=1

|g1〉...|ri〉...|gN〉, (1.2)

where N is the number of atoms, |g〉 is the ground state for an atom, and |ri〉 is the Rydberg

state for the ith atom.

This single collective excitation can be useful for single-photon generation. This is shown

in Figure 1.1 (c), for the case when the ensemble is excited to a collective Rydberg state via a

two-photon transition (ω1, ω2). Once the state is excited, a photon can be generated by using

a retrieval pulse (ωr) that drives the Rydberg atom down to an intermediate state |I〉. The

resulting photon emission, from the ensemble, will have a frequency (ωe) that is the difference

between the sum of the two excitation photons and the retrieval photon (ωe = ω1 + ω2 − ωr),

due to conservation of energy. If the ensemble is optically thick, the emitted photon will

have a defined spatial mode resulting from the two excitation fields and the retrieval field,

such that ~ke = ~k1 + ~k2 − ~kr. This is because the field emission from each of the atoms is

phase-matched [28]. This defined emission mode allows for a more efficient collection of
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single-photons.

There is also an enhancement in coupling strength between a collective Dicke state and

an optical field. The collective Rabi frequency of the effective two-state system has an

enhancement ∝
√
N where N is the number of atoms [14]. So, the more atoms you have,

the faster you can drive the collective Rabi oscillation between the ground and Rydberg state.

This is important because the ground and Rydberg states form a basis for a qubit in Rydberg

ensembles.

1.3.3 Ground-Rydberg coherence

The third of five criteria that DiVincenzo identified for a universal quantum computing

architecture is that coherence times must be much longer than gate operations [18]. If

the coherence time is less than the duration of a qubit gate operation, the fidelity will be

decreased because of the information that is lost from the decoherence. One possible source

of a decrease in coherence time in Rydberg ensembles is dephasing. Dephasing is caused

by a phase shift of individual atoms within the ensemble relative to other atoms. This leads

to destructive interference between the emission fields from the atoms. An example of

dephasing, for the case of the two-photon excitation scheme discussed earlier, is motional

dephasing. The two-photon excitation will result in a spin-wave where the state can be

expressed as:

|R〉 =
1√
N

∑
i

ei
~ks·~ri|g〉...|ri〉...|g〉, (1.3)

where N is the number of atoms, ~ks is the spin-wave vector (~ks = ~k1 + ~k2), and ~ri is the

position of the atoms. If the atoms in the ensemble have a non-zero temperature, they will

move in the ensemble and acquire relative phase differences. This motional dephasing limits

the coherence lifetime and can be described by the equation:

Scl ∼
∑
i

〈ei ~ks·[~vx,it−~ro,i]〉, (1.4)

10



where Scl is the number of photons collected from an ensemble after a retrieval pulse is

applied, ~vx,i is the velocity of an atom in the ensemble, t is the time in between the excitation

and retrieval pulses, and ~ro,i is the initial position of an atom. Upon averaging over the

ensemble it can be shown that the retrieved signal can be modeled as a Gaussian:

Scl ∼ e−
t2

τ2 , (1.5)

where τ is the dephasing time given by:

τ =
1

ks

√
m

kBT
, (1.6)

where m is the mass of the atom (87Rb), kB is the Boltzmann constant, and T is the tem-

perature of the ensemble. τ is the limiting factor of coherence time in most unconfined

ensembles.

Thus, once the atoms in the ensemble have moved a distance comparable to the spin-wave

spatial period (λs = 2π
ks

), the Rydberg ensemble excitation has completely dephased, and a

photon can no longer be retrieved. The dephasing is typically on the order of microseconds

for an ensemble at a temperature of ∼ 10 µK. If the atoms are tightly confined to less than a

spin-wave spatial period, then motional dephasing can be reduced, as will be shown in the

next section.

1.4 State-insensitive trapping

One way to confine the atomic motion along the direction of the spin-wave is to use a

one-dimensional optical lattice along the direction of the excitation beams. The effective

two-photon excitation wavelength λs will be longer than the distance an atom can move in a

lattice site. If we take an excitation scheme that will be used later in this thesis, for example,

420 nm and 1012 nm can be used to excite to Rydberg levels. If the excitation beams are

counter-propagating, the resulting spin-wave spatial period is λ2ph = 0.72 µm. The length
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of a single lattice site is L ≈ 0.5 µm if the wavelength of the lattice field is λl ∼ 1000

nm, (L = λl
2

). Therefore, the atom cannot move far enough to completely dephase and will

oscillate in the lattice. This will be examined in more detail in Chapter 4.

The principle behind an optical lattice is the AC Stark effect: the electric field of an

optical lattice shifts the energy levels of the atoms and can be described as ∆ls ∝ αgI ,

where αg is the polarizability of the ground state, I is the optical intensity, and ∆ls is the

resulting shift for the energy level. In a far detuned lattice, the polarizability of the Rydberg

state αr is generally not equal to the polarizability of the ground level αg. This leads to

spatial variations in the transition frequency between the ground and Rydberg levels. This

is significant because, as the atoms move in the trap, the transition frequency for the atom

will change depending on their position. Upon retrieval, the fields emitted from the atoms

will destructively interfere, decreasing the coherence time. The spatial variations can lead

to dephasing of the atoms in < 1 µs. A diagram of the spatial variation can be seen in Fig

1.2(a).

In order to spatially confine the atoms without adding dephasing from the spatial variance

of the ground-Rydberg transition, a state-insensitive trap can be utilized. In our state-

insensitive trap the frequency of the trapping light is near resonance with the transition

between the Rydberg state and an intermediate state as seen in Fig 1.2(b). At a specific

detuning (∆m) from the transition frequency, the polarizability of the Rydberg state will be

matched to that of the ground state (αg = αr). This detuning is called the "magic" detuning

because energy shifts due to the trap are the same for both the ground and Rydberg levels

[29, 30]. This allows for spatial confinement of the atoms without adding, to first order,

dephasing due to the trapping light. In Chapter 4 some remaining sources of dephasing will

be examined.
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Figure 1.2: (a) An energy level diagram and the spatial dependence of the energy level shift
for the ground and Rydberg level in a far detuned dipole trap made from a Gaussian beam.
(b) The same energy level shifts for a dipole trap that is near resonance with an intermediate
state. At a particular frequency, the two spatial modes can be matched. This frequency is
referred to as the "magic" frequency.

1.5 Photon correlations

The generation and characterization of non-classical states of light are important for a broad

range of physics experiments even outside of the field of quantum optics. For example, at the

Laser Interferometer Gravitational-wave Observatory (LIGO), a squeezed-state of light is

being used in the interferometer to measure the vibrations of spacetime due to gravitational

waves [3]. This non-classical state of light is used because it has a better signal-to-noise ratio

when measuring the relative phase than classical light. This thesis focuses on the study of

single-photon states, multi-photon states, and coherent states. Our main tool to study these

states is the second-order correlation function, g(2).

To measure g(2) the Hanbury Brown-Twiss (HBT) method is typically used [31]. A

simplified scheme of the HBT setup is shown in Figure 1.3, where a beam splitter splits
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Photon 
counter

Figure 1.3: Diagram of a setup for the Hanbury Brown-Twiss method where a beam is divided
between two detectors and the photons are counted in D1 and D2, as well as the coincidences
between the two detectors.

an incoming light field between two detectors, D1 and D2. The number of photoelectric

detection events in each detector, C1 and C2, and the number of coincidence counts between

the two, C12, are recorded. A coincidence count is defined as detection events in D1 and D2

with some separation τ . It is useful to change these raw numbers of counts and coincidences

into a probability of detection or coincidence (P1, P2, P12) for a given time period.

Let us assume we have some electric field (E+(t)) that is incident on an HBT setup and

we want to see what temporal correlations there are in that electric field (the "+" denotes

positive frequencies, and, while nonphysical, negative frequencies, E−(t), can be formally

allowed). Then, what we are interested in is the electric field at time t, E+(t), and at time

t+ τ , E+(t+ τ). If we take the expectation value of these and normalize by the intensity of

the field, one can derive a measure of second-order correlations g(2)(τ) to be [32]:
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g(2)(τ) =
〈E−(t)E−(t+ τ)E+(t+ τ)E+(t)〉

〈E−(t)E+(t)〉2
. (1.7)

For pulsed fields the expression is

g(2)(τ) =
〈E−(t)E−(t+ τ)E+(t+ τ)E+(t)〉
〈E−(t)E+(t)〉〈E−(t+ τ)E+(t+ τ)〉

. (1.8)

Experimentally g(2)(τ) is time integrated such that,

g(2)(τ) =

∫
dt1
∫
dt2〈E−(t1)E−(t2)E+(t2)E+(t1)〉

[
∫
dt〈E−(t)E+(t)〉

]2 , (1.9)

The numerator,
∫
dt1
∫
dt2〈E−(t1)E−(t2)E+(t2)E+(t1)〉, is proportional the number of

coincidences over the integration time. Experimentally we measure this as P12. Then there

is the matter of normalizing the second-order correlations. Through this thesis there are

several normalization used for coincidences, for example, when we measure photons from

the ensemble to check if the output is a single-photon state we use:

g(2)(τ) =
P12(τ)

P1P2

, (1.10)

where P12(τ) is the probability of having a count in detector 1 and detector 2 separated by

time, τ . While τ can be any period of time, τ = 0 describes the nature of the photon statistics

for the field. If g(2)(0) > 1, the statistics of the field are super-Poissonian. Light fields, in this

case, have more correlations than would be produced by independent photons, so the photons

are "bunching" together. If g(2)(0) = 1, the statistics of the field are Poissonian. This is the

case for photons that are completely independent of each other because for any independent

probabilities P1P2 = P12. Also, g(2)(0) = 1 for a coherent state. Finally, if g(2)(0) < 1, the

state is sub-Poissonian. These states are referred to as "antibunching". The lowest possible

g(2)(0) is zero. This is when there are no coincidence counts from a light field. This case

corresponds to a perfect single-photon state. In fact, it can be shown that for Fock states,

such as the single-photon state, the second-order correlation function is [32]:
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g(2)(0) = 1− 1

n
, (1.11)

where n is the number of photons in the Fock state. Using this formula we can tell how well

our system produces single-photons and whether there is a negligible number of photons in

the two-photon state.
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Chapter 2

Experimental methods

2.1 Magneto-optical trap (MOT)

In this thesis, a dual-MOT system was used to collect 87Rb atoms in a high vacuum system.

The dual-MOT system consists of two sections: a chamber with low vacuum and a chamber

with high vacuum. On the low vacuum side, an ampule of Rb serves as the source of atoms

for the system. A line of 87Rb atoms is gathered in a glass cell using a two-dimensional (2D)

MOT. A pushing beam is used to transport the atoms from the low vacuum side through a

differential vacuum tube to a high vacuum chamber where a three-dimensional (3D) MOT is

used to collect the atoms. Both the 2D and 3D MOT beams have a wavelength of 780 nm

and are detuned from the |5S1/2, F = 2〉 ↔ |5P3/2, F = 3〉 transition by −13 MHz. Two

tapered amplifiers supply the 2D and 3D MOTs with 300 mW and 100 mW, respectively.

A repumping field resonant with the |5S1/2, F = 1〉 ↔ |5P3/2, F = 2〉 transition is used in

both the 2D and 3D MOTs to prevent the atoms from accumulating in |5S1/2, F = 1〉. The

3D MOT is in high vacuum to reduce the collision rate of Rb atoms with background atoms

resulting in MOT and dipole trap lifetimes of ≈ 10 s. The 2D MOT creates a large flux of

atoms such that the 3D MOT can collect ∼ 1010 atoms in a 1 s loading time. The pressure in

the high vacuum side is < 10−10 Torr as measured by a NEXTorr pressure gauge [33]. Once
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the atoms are loaded into the 3D MOT, the pushing beam is turned off in order to isolate the

3D MOT from the low vacuum section. To cool the atoms in the MOT the 780 nm fields

are detuned by an additional ≈ 55 MHz for a period of 40 ms. The repumper is reduced to

one-tenth of its original power allowing a fraction of the atoms into the |5S1/2, F = 1〉 state

to suppress light assisted collisions, that can eject atoms from the trap.

2.2 Experimental setup

Several excitation schemes and trap geometries are used throughout this thesis. The arrange-

ment of each of the optical fields in relation to the glass cell for the 3D MOT is shown in

Figure 2.1. To prepare the atoms for the experimental sequences, the atoms are transferred

from the 3D MOT to either an optical lattice or a cross-dipole trap over the course of 50

ms. The optical lattice is used for experiments where long-lived coherence between the

ground and the Rydberg state is required (see Chapters 4 and 5). The lattice is formed by a

retro-reflected 1012 nm beam. The 1012 nm beam is overlapped with the excitation beams

using four Semrock dichroic mirrors [34]. To generate the linear polarization of the 1012

nm incident lattice beam at the position of the atoms, we use a polarizing beam splitter, a

half-wave plate, and a quarter-wave plate before the dichroic mirrors. A quarter-wave plate, a

half-wave plate, and a Glan-Thompson polarizer are used to ensure the retroreflection has the

same polarization as the incident field. An axis system was chosen with the lattice along the

x-axis. The length of the ensemble in the lattice, along the x-axis, was ≈ 0.4 mm. The length

is determined by the size of the MOT at the time of loading.

A cross-dipole trap is used to gather a dense sample of atoms at the intersection of two

beams from a 1064 nm Nd:YAG laser for experiments with non-classical states in Chapter

3. The polarizations of the two beams are orthogonal so a lattice is not formed. The beams

were focused such that the waist was wx ≈ 30 µm along the x-axis. The ensemble fills a

portion of the trap and has a total length of Ld ≈ 35 µm, in the x-direction, less than the
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Figure 2.1: The geometry of the excitation and trapping fields. For each experiment, a pair
of fields are used for the two-photon excitation to Rydberg; these pairs are 420/1012 nm,
795/475 nm, and 780/480 nm. These fields are overlapped with the lattice using four dichroic
mirrors D1, D2, D3, and D4. A 5 cm achromatic lens is used on either side of the cell
for focusing the beams. A Hanbury Brown-Twiss (HBT) setup is used to detect ensemble
emission (795 nm and 780 nm). A half-wave plate before a polarizing beam splitter is used
to divert power to one or both of the single-photon counting modules. A similar HBT setup
(not shown in the diagram) was used to collect and analyze 420 nm photons. The 1012 nm
lattice beam is retro-reflected to create the optical lattice used for experiments that required
long ground-Rydberg coherence times. A 1064 nm cross-dipole trap is used to create a trap
with a length along the x-direction that is smaller than a Rydberg blockade radius at n > 75.
The polarization, magnetic fields, and optical pumping beams vary between experiments
depending on what magnetic sublevel of |5S1/2〉 the atoms are initialized in.
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Rydberg blockade radius at a principal quantum number of n > 75. In the z-direction, the

waist of the cross-dipole trap beams is wz ≈ 60 µm. The cloud of atoms is much larger

than the waist of the excitation beams, therefore, the cloud is approximately uniform with

respect to the excitation beams radially. Both the optical lattice and the cross-dipole trap are

aligned such that atoms could be loaded into the cross-dipole trap and then transferred into

the lattice by adiabatically lowering the cross-dipole trap while raising the optical lattice.

The ensemble of atoms that is produced from the transfer is L ≈ Ld in length, as opposed

to L ≈ 0.4 mm long when the ensemble is loaded directly from the MOT. The transferred

ensemble is occasionally used for diagnostics such as checking the alignment of the lattice or

the cross dipole trap.

The two-photon excitation schemes we use are 420/1012 nm, 795/475 nm, and 780/480

nm with the intermediate states |6P3/2〉, |5P1/2〉, and |5P3/2〉, respectively. The excitation

beams and the lattice beams are collinear along x. The pairs of 420/1012 nm and 795/475

nm are used for experiments in the optical lattice. 780/480 nm is used in Chapter 3 for

experiments with non-classical states. For all excitation schemes, there is a general protocol

where the two excitation fields are pulsed on at the same time to excite the ensemble into the

Rydberg state. The excitation is stored in the atoms for a time Ts . Finally, a retrieval pulse

of 1012 nm, 475 nm, or 480 nm light is used to drive the ensemble from the Rydberg state to

an intermediate state. A light field is then emitted from the ensemble. The emitted 420 nm,

795 nm, and 780 nm light is detected using a Hanbury Brown-Twiss setup [31]. To protect

the single-photon counting modules (SPCMs) and decrease noise on the detectors an AOM

is used for gating the retrieved photons. The gating allows light to reach the Perkins-Elmer

SPCM [35] only at the time when atomic emission is present. This process is repeated several

thousand times over the course of ∼ 100 ms. Then the trap is dropped and a next MOT cloud

of atoms is loaded. Several of the laser systems used to create the excitation and retrieval

pulses are discussed in more detail later in this Chapter.
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2.3 780 nm setup for Hanbury Brown-Twiss correlations

for a driven superatom

This section explains the 780 nm excitation and probe pulse laser system for Chapter 3.

The laser setup for the 780 nm produces two pulses, one for excitation, and one for a

probe pulse. The excitation pulse is detuned from the |5S1/2〉 ↔ |5P3/2〉 transition by −90

MHz to suppress excited state populations in the |5P3/2〉 level. In conjunction with the 480

nm excitation pulse, the 780 nm excitation pulse will excite the ensemble to |nS1/2〉. The

probe pulse detuning from the |5S1/2〉 ↔ |5P3/2〉 transition can range from −90 MHz to
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Figure 2.2: Setup of the 780 nm excitation and probe laser. The AOMs A, B, and C correspond
to the AOMs in Figure 2.3.
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+30 MHz. The temporal modes of the probe pulse and the ensemble emission are matched

as closely as possible. The timing of the probe pulse is adjustable from 150 ns before the

atomic emission to 150 ns after the atomic emission. Lastly, the spatial modes of both pulses

are the same at the position of the atoms because both are coupled to the same fiber. These

pulses of light are achieved with the laser system in Figure 2.2.

The 780 nm light is produced using a cat-eye reflector ECDL (MOGlabs CEL002) [36].

After an optical isolator, a fraction of the light is coupled to an EOSPACE fiber Electro-optic

phase modulator (EOM) [37]. The output of the EOM is aligned to a Stable Laser Systems

cavity [38] that has a free spectral range of 1.5 GHz and a finesse of F ≈ 10, 000. The laser

is frequency locked to the cavity using the Pound-Drever-Hall technique [39]. The EOM was

used for modulating the light and providing a frequency sideband. This sideband allowed us

to lock at frequencies other than the zeroth order mode of the cavity. A Toptica PDD 110

[40] was used to produce an error signal and a Toptica FALC 110 [40] provided feedback to

the laser. The laser linewidth when locked is ≈ 50 kHz. A High-Finesse wavemeter [41] was

used to monitor the frequency of the laser and has an accuracy of < 10 MHz when calibrated

using the |5S1/2〉 ↔ |5P3/2〉 transition.

Three acousto-optic modulators (AOMs) are used to produce the correct frequencies

and temporal shapes for the excitation and probe pulses. The first two AOMs, A and B,

are used to control the frequency of the 780 excitation and probe pulses. These AOMs are

used in the configuration depicted in Figure 2.2 to have a large frequency tuning range and

provide better suppression of unwanted light leakage than a double-pass AOM system. The

fiber in between AOM B and AOM C is to ensure the spatial mode to the third AOM does

not change. Without the fiber, different frequencies in AOM A and AOM B would slightly

change the beam position on AOM C. The different position on the crystal of AOM C would

result in different travel times of the acoustic wave, thereby changing the optical pulse timing.

With the fiber, only the coupling efficiency changes with different frequencies in AOMs

A and B. More radio frequency (RF) power directed to the AOMs can compensate for the
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Figure 2.3: (a) The RF setup for 780 nm AOMs A, B, and C. Frequency generators 1− 4 are
used to drive the three AOMs. The RF switches determine when the frequency from each
of the 4 RF generators is allowed to the AOMs. The splitter is placed such that generator 2
can drive both AOMs A and B while generator 1 can only drive AOM A and generator 3 can
only drive AOM B. Generator 4 can only drive AOM C. (b) The timing diagrams for the RF
switches connected to generators 1− 4. The final timing diagram shows the optical output
to the experimental setup where the first pulse is for excitation and the second pulse is the
probe.
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coupling efficiency. While the overall efficiency of coupling to the fiber is low for the probe

pulse (∼ 1%), only a few photons are needed to interfere with the ensemble emission. The

excitation pulse is nearly aligned to the fiber and only needs a maximum power of ∼ 10 nW.

AOM C is used to shape the probe pulse and make the timing consistent for all detunings.

Neutral density filters are used to attenuate the background light coupled into the fiber that is

connected to the experimental table.

The RF frequencies and pulse timing are shown in Figure 2.3. The frequency of the laser

is chosen by the following method: using the same driving frequency for AOMs A and B

(generally 200 MHz), the 780 nm absorption spectrum of the Rb ensemble is measured. The

laser is frequency locked such that the light to the experimental table has a frequency 90

MHz less than the |5S1/2〉 ↔ |5P3/2〉 transition frequency. This frequency of light is used for

the 780 nm portion of the two-photon excitation scheme as is shown in the timing diagram

Figure 2.3 (b). For the probe pulse, an RF frequency between 140 and 200 MHz is sent to

AOM A and an RF frequency between 200 and 260 MHz is sent to AOM B. Because AOM A

uses the minus first order and AOM B uses the plus first order, the resulting probe detuning

is between −90 MHz and +30 MHz with respect to the |5S1/2〉 ↔ |5P3/2〉 transition. The

third AOM has a constant frequency and is pulsed on for the excitation. (The length of the

excitation pulse is controlled by AOMs A and B.) Then, AOM C is pulsed on for a short

amount of time to control the duration and timing of the probe pulse. All RF generators

(1− 4) used for the 780 nm excitation and retrieval were WindFreak Technologies SynthNV

RF generators [42].

2.4 480/475 nm setup for Hanbury Brown-Twiss

correlations for a driven superatom

This section explains one of the laser systems for Chapter 3.

To provide light for the |5P3/2〉 ↔ |nS1/2〉 transition, a cat-eye reflector ECDL (MOGlabs
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CEL002) is used. The laser has a wavelength range from 940 nm to 970 nm. When the

beam is frequency doubled, light can be produced from 470 nm to 485 nm. This wavelength

range can drive the transition from either |5P1/2〉 (475 nm) or |5P3/2〉 (480 nm) to principal

quantum numbers n > 30. Generally for our setup 480 nm is used. The laser setup is shown

in Figure 2.4 (a). First, a small fraction of the light is sent through a fiber EOM to a Stable

Laser Systems cavity for locking the laser, in a similar fashion to the 780 nm frequency

locking setup described in the previous section. After the pick-off for the cavity, some light

is diverted to a wavelength meter to monitor the frequency of the light.

The laser light not used for locking or monitoring is aligned to a tapered amplifier that

produces an output power of ≈ 1 W of 960 nm light. The output light is then directed

through an isolator to a Toptica SHG Pro [40] for the second-harmonic generation. The SHG

uses a non-linear crystal in a bow-tie cavity to double the frequency of the 960 nm light

and produces ≈ 300 mW of 480 nm light. The 480 nm beam is used to produce two pulses

of light; one pulse for the two-photon excitation scheme and the other (retrieval) pulse to

drive the ensemble from the Rydberg state to the intermediate state. The atoms will emit

780 nm light when they decay from the intermediate state to the ground state. The emitted

photon is collected using SPCMs. The excitation light is detuned from the |5P3/2〉 ↔ |nS1/2〉

transition by +90 MHz to match the 780 nm detuning. The retrieval pulse is resonant with

the |nS1/2〉 ↔ |5P3/2〉 transition. These two pulses of light are achieved by using two AOMs.

AOM A is driven with a frequency of 200 MHz and produces a negative first-order beam

that is used for the retrieval pulse. The excitation pulse is made by the negative first-order of

AOM B. The driving frequency for AOM B is 110 MHz. To save optical power, the negative

first order of AOM A is overlapped with the negative first order of AOM B through the crystal

of AOM B. The two AOMs are never on at the same time, as shown in the timing diagram in

Figure 2.4 (b). Therefore, this overlap on the AOM will not result in unwanted frequencies

of light. Using this AOM arrangement we are able to send as much light as possible, up to 75

mW, for both the excitation and retrieval pulses. To find the correct frequencies of 480 nm
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Figure 2.4: (a)Setup of the 480 nm excitation and retrieval laser system. (b) Timing diagram
showing the timing for the excitation and retrieval pulses controlling AOMs A and B.

pulses, we use the following procedure:

1. The |5S1/2〉 ↔ |5P3/2〉 transition is measured through the method of absorption

spectroscopy using the 780 nm probe pulse.

2. The 780 nm laser is frequency-locked 90 MHz below the resonance measured in the

previous step.
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3. The 480 nm excitation frequency is set to be 90 MHz more than the frequency used for

retrieval using the AOMs in Figure 2.4.

4. The pulse timing is made such that the 780 nm and 480 nm excitation pulses occur at

the same time and the 480 nm retrieval pulse occurs after 1 µs of storage time.

5. The frequency of the 480 nm laser is scanned while measuring the ensemble emission

using the SPCMs.

6. The frequency of the 480 nm laser with the maximum retrieved photons from the

Rydberg state is where the 480 nm retrieval pulse is on resonance with the |5P3/2〉 ↔

|nS1/2〉 transition and the two-photon excitation is resonant with the |5S1/2〉 ↔ |nS1/2〉.

The frequency of the 480 nm retrieval field is double-checked by using electromag-

netically induced transparency (EIT). This is done by putting the 780 nm probe pulse on

resonance with the |5S1/2〉 ↔ |5P3/2〉 transition. The power of the probe pulse can be

measured with the SPCMs. When the ensemble is present the atoms will absorb some of

the probe light. However, if the 480 nm frequency is scanned over the |5P3/2〉 ↔ |nS1/2〉

transition the ensemble will be made transparent to the probe pulse. The frequency that

makes the ensemble most transparent to 780 nm light is the 480 nm retrieval frequency. This

frequency should be the same as in step 6.

2.5 Matching the temporal modes of the probe pulse and

the atomic emission

To match the temporal mode of the probe pulse with the ensemble emission, we used

two parameters, the probe pulse length and the 480 nm power. The probe pulse length

was controlled by AOM C in Figure 2.2. By adjusting the pulse length we achieved an

approximately Gaussian probe pulse with a duration between 40 ns and 100 ns. The power
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M

Figure 2.5: Normalized photocounts M̃ as a function of time for two different 480 retrieval
powers. The x-axis is the detection time of the photons relative to an arbitrary trigger time.
The temporal profiles of the atomic emission for two different 480 powers: blue ∼ 10 mW
and green ∼ 1 mW. The y-axis shows the probability of receiving a photon at a given time
with 2 ns binning. M̃ is normalized such that the sum of all data points is one.

of the 480 nm field determined the length of the photon emission from the atom for our

experiment. Generally, we had low enough power that the limitation of the length of the

temporal profile was the time needed to drive the ensemble from the Rydberg state to the

intermediate state. The Rabi frequency of the transition scales as Ω ∝
√
P , therefore, four

times as much 480 nm optical power will produce a temporal profile that is approximately

half as long. This approximation starts to break down when the Rabi frequency approaches

the decay rate of the intermediate state. Figure 2.5 shows the temporal profiles of the retrieved

photons from the ensemble at two different 480 nm powers. The laser system for producing

480 nm light is discussed in the previous section.

Using these two parameters, we were able to match the temporal profiles of the electric

fields for the probe pulse and the atomic emission to 95%. The temporal overlap J is

calculated using the formula:
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J =

∫ √
Ie(t)Ip(t)dt√∫

Ie(t)dt
∫
Ip(t)dt

(2.1)

where J is the overlap, Ie(t) is the temporal intensity profile of the emitted field, and Ip(t) is

the temporal intensity profile of the probe field (this equation is expressed in terms of electric

fields in Chapter 3.) Ie(t) and Ip(t) were measured using SPCMs connected to a FAST Com

Tech P7888 4-input multiple-event time digitizer [43].

When the temporal modes are optimally matched, the two temporal profiles can be

approximated as Gaussian pulses with 1
e

waists of τe,p ≈ 35 ns. The number of coincidences

is measured under two situations. Either the timing of the two pulses is the same and the

frequency of the probe is scanned, or the frequency of the two pulses is the same and the

probe timing was scanned. In the case of scanning the detuning, we can improve the temporal

matching by using post-selection to discard the photons on the tails of each of the pulses

where the mismatch between the temporal profiles is the greatest. The post-selection cannot

be applied when varying the timing of the probe pulse relative to the atomic emission because

the probe pulse needs to be shifted by up to ±150 ns and tails cannot be easily disregarded.

2.6 Data normalization for Hanbury Brown-Twiss

correlations for a driven superatom

This section explains how we normalized coincidences from an HBT setup in Chapter 3.

In Chapter 3 the goal is to measure the "enhancement factor" in the number of coinci-

dences in an HBT setup. The coincidences are a result of the probe pulse and the ensemble

emission interference. The enhancement factor is a measure of how many more coincidences

occur when the probe pulse and the atomic emission are overlapped, as opposed to when

they are widely separated in time. To calculate the enhancement factor of coincidences,

the coincidences must be normalized for each time-integrated data point. The normaliza-
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tion factor is calculated for each data point individually because with the current setup the

power of the probe and the number of counts from the ensembles are not consistent. The

inconsistency results from when the frequency of the probe is changed, using the AOMs, the

power of the probe also changes, as explained in Section 2.3. These power variations are

partially compensated for by adjusting RF power to the AOMs controlling the probe, however,

more precise control is required to completely equalize the powers from measurement to

measurement. Another source of probe pulse power variation is from changing the delay of

the probe pulse. Changing the delay moves the pulse from times when the 480 nm retrieval

light is on to times when the 480 nm retrieval light is off. The 480 nm retrieval light is

resonant with the |5P3/2〉 ↔ |nS1/2〉 transition which causes EIT for the probe light. Because

the 480 nm light makes the ensemble transparent, more 780 photons are transmitted through

the ensemble. Both the variation in fiber coupling and in EIT change the power of the probe

pulse causing the number of coincidences in the HBT setup to change. Therefore, the number

of coincidences has to be normalized for each data point.

As explained in the next Chapter, we expect approximately twice as many coincidences

when the probe pulse and the ensemble emission are temporally and spectrally overlapped as

when they have different timings or frequencies. We normalize so the number of coincidences

of widely separated pulses is equal to 1. The enhancement factor will be approximately equal

to the normalized coincidences when the two pulses are overlapped. When the pulses are

widely separated in time, they are completely independent. We can measure the probability of

detection, for a given trial, in both of the detectors in the HBT setup for the probe beam, Pp1

and Pp2, and the atomic emission, Pe1 and Pe2 (1 and 2 denoting detectors D1 and D2.) For

two independent fields, the probability of a coincidence Pnorm for a given trial is calculated

to be,

Pnorm = Pp1Pp2 + Pp1Pe2 + Pe1Pp2 + Pe1Pe2g
(2)(0), (2.2)
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where g(2)(0) is the second-order correlation function for the ensemble.

The procedure for normalization is Pp1, Pp2, Pe1, and Pe2 are measured. Then the

coincidence rate with both fields on is measured, P12, over the course of 1− 2 hours for a

given delay or detuning between the pulses. After P12 is measured, Pp1, Pp2, Pe1, and Pe2 are

measured again to check if there have been any drifts in the probability of detection since the

beginning of the measurement. For each P12 measurement, we calculate the corresponding

Pnorm normalization factor by averaging the two measurements of Pp1, Pp2, Pe1, and Pe2 and

using Equation 2.2. We normalize each point individually using the formula,

Nc =
P12

Pnorm
. (2.3)

The normalized coincidences Nc are measured for different detunings and delays between

the pulses and then fit with a model discussed in the next Chapter.

2.7 Trap geometry for optical lattice

This section explains the geometry of the optical lattice in Chapters 4 and 5.

When measuring the ground-Rydberg coherence in a state-insensitive optical lattice,

spatial averaging over differential shifts due to the non-lattice potentials is a limiting factor in

the ground-state–Rydberg-state coherence time. One way to improve the coherence time is by

making the ratio between the waists of the lattice (wl) and the excitation (we) beams as large

as possible (wl
we
� 1), as is further explained in Chapter 4. This could be accomplished by

decreasing the excitation radius at the atoms. However, the lens used to focus the excitation

beams has a focal length of 5 cm. The numerical aperture of this lens is too small for the

excitation beam to have a spot size � 10 µm. Alternatively, the lattice waist could be

increased. However, the lattice waist is also limited by the 5 cm lens. If we wanted a lattice

waist of wL ≈ 100 µm, the Rayleigh length of the beams is zR =
πw2

L

λ
≈ 3.1cm. Since zR
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is on the order of the lens focal length we could not make the trap waist the size that was

required.

Due to geometric constraints, we kept the 5 cm lens. To have a larger lattice radius at the

atoms, the focus of the 1012nm lattice beams was shifted away from the atoms. The atoms

are confined along the axial direction of the lattice beams so the atoms are held where they

are loaded. To align this geometry, we used the following procedure:

1. A collimated 1012 nm beam is aligned to the 5 cm lens and is used to form a dipole

trap.

2. The dipole trap is imaged on an Andor Solis iKon-M camera [44].

3. The incident 1012 nm beam is aligned onto the MOT.

4. Irises are used to define a spatial mode that is aligned to the MOT.

5. A 30 cm lens is added to the incident 1012 nm beam path to focus the lattice beam 35

cm before the 5 cm lens. As a result, the 1012 nm light is divergent at the lens.

6. The new spatial mode is aligned with the irises that were set up in step 4.

7. After the 1012 nm light passes through the MOT and exits the glass cell, the 1012 nm

lattice beam is collimated.

8. The collimated 1012 nm light is retro-reflected to form the lattice.

9. Fluorescence from the atoms in the lattice is imaged on the camera and used as a proxy

for the number of atoms.

10. The retro-reflection is adjusted to maximize the fluorescence signal.

Following this procedure, we were able to load an optical lattice from a MOT with the focus

of the lattice beams far from the MOT.
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Figure 2.6: Diagram showing the position of the focus of the two lattice beams with respect
to the ensemble of Rb atoms (not to scale). The displacement and waist of the incident
(reflected) beam is labeled X+ (X−) and w+ (w−), respectively.

Figure 2.6 shows the position of the ensemble relative to the position of the incident

and retro-reflected foci. The geometry for Chapters 4 and 5 is: an incident beam focused

X+ = 7.9 mm off the MOT center with a waist of w+ = 33 µm. The retro-reflected beam is

focused X− = 23.9mm off the MOT center with a waist of w− = 68 µm.

2.8 Measuring magic frequency

This section explains how the magic frequency of the optical lattice has been measured in

Chapter 4.

To implement state-insensitive trapping, we measured the so-called "magic" detuning

from the |6P3/2〉 ↔ |nS1/2〉 transition for multiple principal quantum numbers. Depending

on the principal quantum number the magic value occurred when blue detuned by between

0.1 and 6 GHz. The required wavelength of light to be slightly detuned from the |6P3/2〉 ↔

|nS1/2〉 transition, λL, is between 1012 nm and 1035 nm depending on the principal quantum

number. A separate 1012 nm field is used in conjunction with a 420 nm pulse to excite the

ensemble to the Rydberg state.
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Figure 2.7(a) shows the laser system for the 1012 nm excitation and retrieval pulses. The

light is produced by a MOGlabs CEL002 laser that is locked to a cavity in a similar fashion to

780 nm and 480 nm. The wavelength of the excitation and retrieval laser is monitored using a

Highfinesse WS-8 wavelength meter. The excitation is detuned from resonance by +12 MHz

from the |6P3/2〉 ↔ |nS1/2〉 transition and the retrieval pulse is on resonance. The timing

diagram for these two pulses is shown in Figure 2.7(b). To achieve these two pulses, we use

two AOMs A and B. We drive AOM A with 92 MHz for the excitation pulse, and AOM B at

80 MHz for the retrieval pulse. The first-order of each AOM is overlapped and coupled to

an optical fiber connected to the experimental table. To find the correct frequency for the

1012 nm laser to be locked, first, the frequency of the |5S1/2〉 ↔ |6P3/2〉 transition is found

using the absorption spectra for 420 nm light. The 420 nm excitation is then detuned by

−12 MHz from the transition. The frequency of the excitation and retrieval laser is scanned

to maximize the number of photons retrieved from the ensemble at short storage time, < 1

µs. This procedure ensures that the retrieval pulse is resonant with the |6P3/2〉 ↔ |nS1/2〉

transition and the two-photon transition is resonant with the |5S1/2〉 ↔ |nS1/2〉 transition.

The lattice beam is generated by an M Squared SolsTiS Ti:Sapph laser [45], which has

a wavelength range from 850 nm to 1050 nm. The laser system setup as shown in Figure

2.7(c). Several milliwatts of the light are sent to a High Finesse WS-8 wavelength meter.

The frequency of the light is read by the wavemeter. Long timescale fluctuations in the laser

frequency are stabilized using a PID feedback locking scheme provided by the HighFinesse

wavemeter. The Ti:Sapph is stable over short timescales, so the feedback is sufficient to lock

the laser to the accuracy of the wavelength meter, < 10 MHz which is sufficient to measure

the magic frequency. All of the Ti:Sapph power not diverted to the wavemeter is aligned to

an AOM that is driven at 80 MHz. The first-order of the AOM is coupled to a fiber connected

to the experimental table. The power of the incident beam for the lattice is ≈ 0.8 W at the

position of the atoms.

To find the magic frequency the following procedure was used:
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Figure 2.7: (a) The laser system for the 1012 nm excitation and retrieval pulses. (b) The
timing diagram showing when AOMs A and B are on. (c) The laser system for the 1012 nm
lattice.
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Figure 2.8: The normalized retrieval efficiency as a function of lattice detuning at n = 59.
The blue points show the magic frequency peak after 12 µs of storage time. The green points
show the magic frequency peak after 24 µs of storage time. The y-axis is normalized such
that the maximum of each graph is equal to one.

1. The atomic sample is excited to the Rydberg state using a two-photon excitation scheme

with 420 nm and 1012 nm light.

2. The excitation is stored in the ensemble for a duration of Ts.

3. A retrieval pulse of 1012 nm light is used to drive the Ryberg ensemble to the interme-

diate state resulting in the phase-matched emission of 420 nm photons.

4. The photons from the ensemble are collected with an SPCM.

5. The retrieval efficiency is calculated (the number of photons retrieved divided by the

number of trials).

6. This process is repeated for different lattice wavelengths.

7. The retrieval efficiency as a function of lattice detuning is fit using the model explained

in Chapter 4 to measure the magic wavelength.
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Due to the finite temperature of the ensemble, the atoms oscillate along the axial direction

of the lattice. For the magic frequency measurement procedure, Ts has to be after one atomic

oscillation is completed. For our trap depth, the oscillation period is ≈ 12 µs. At this storage

time, the magic detuning coincides with the maximum retrieved efficiency when scanning

the magic wavelength.

The detuning of the lattice to the |6P3/2〉 ↔ |nS1/2〉 transition is calculated by the

difference between the 1012 nm retrieval pulse frequency and the lattice frequency on the

wavemeter. The AOM frequency and order of deflection are the same for the lattice and the

retrieval pulse, therefore, the AOM frequencies are ignored leaving only the difference in

frequencies on the wavemeter. While the absolute frequency of the wavemeter is accurate

to < 10 MHz the relative frequency difference between the 1012 nm retrieval light and the

1012 nm lattice is ≈ 1 MHz.

To extend coherence time as long as possible, we optimized the wavelength at longer

storage times. Figure 2.8 shows the retrieved signal as a function of lattice detuning for

two different storage times at n = 59. The blue points are taken after 12 µs of storage time

(one complete atomic oscillation in the lattice). The green points are taken after 24 µs of

storage time (two complete atomic oscillations in the lattice). The magic frequency peaks

are narrower at longer storage times which makes the measurement more precise. These

measurements were always taken after a complete atomic oscillation in the lattice.
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Chapter 3

Hanbury Brown-Twiss correlations for a

driven superatom

This chapter is based on Ref. [46]

3.1 Introduction

In his 1917 paper [47], Einstein introduced his famous A and B coefficients, with the A

coefficient associated with spontaneous emission and the B coefficient to either absorption

or stimulated emission (both referred to as "changes of state due to irradiation" by Einstein).

While there may not be a universal definition as to what constitutes stimulated emission,

any definition describes processes in which atom-field interactions lead to an increase in

the intensity of an input field. There have been a number of both theoretical analyses

and experimental implementations involving parametric down-conversion (e.g., Refs. [52,

48, 49, 50, 51, 53]) which have been interpreted in terms of stimulated emission and/or

amplification. In all of these cases, coincidence counts involving both signal and idler modes

are measured when a single-photon or a weak coherent probe pulse is sent into a crystal, so

that it propagates collinearly with the signal mode. A two-fold increase in the time-integrated

coincidence counts occurs for overlapping probe and signal field pulses, compared to the
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case of non-overlapping pulses. The increase in coincidence counts was interpreted in terms

of probe-induced stimulated emission in the crystal. The analyses supporting this assertion

are based on a perturbative calculation of the evolution of the state vector associated with an

effective Hamiltonian involving third-order nonlinear susceptibilities.

3.2 Theory

We have carried out an experiment that, in some ways, is analogous to the down-conversion

experiments. Instead of a nonlinear crystal, our active medium consists of a gas of cold

rubidium atoms, Figure 3.1(a). Following their release from an optical trap, the atoms are

subjected to an excitation-deexcitation pulse sequence, leading to phase-matched emission in

the x direction having central frequency ωA. A weak probe pulse having central frequency ωP

is also sent into the sample in the x direction and can be delayed relative to the phase-matched

emission pulse. The output field, containing contributions from both the input field and the

field radiated by the atoms, is sent to a beam splitter and coincidence counts are recorded

as a function of the delay time. As in the down-conversion experiments, we can observe an

increase in coincidence counts by a factor of 2 when the probe field overlaps with the field

radiated by the atoms.

What is the origin of this increase in coincidence counts? Can it be traced to stimulated

emission as is claimed in down-conversion experiments, or are there other mechanisms at

play here? To help answer these questions, we prepare our atomic ensemble in two distinct

fashions, one involving a single excitation (superatom or Dicke [28] state) and the other a

factorized initial state. We are able to do this by choosing different Rydberg states in the

excitation schemes. The results are analyzed using source-field theory [54]. In the case of

the Dicke state preparation, there is a single excitation shared by N atoms and the incoming

probe pulse can drive a stimulated transition between the Dicke state and the ground state.

The coupling strength between the two collective states is enhanced by a factor
√
N . As a
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Figure 3.1: Outline of the experiment. a, Experimental setup: ultracold atomic gas is
prepared in a crossed pair of focused YAG laser beams. A pair of lenses focuses E1 and E2

laser fields to drive a two-photon transition from the ground state |g〉 to the Rydberg state |r〉.
A retrieval laser pulse ER leads to emission of atomic field which is split on a beam-splitter
and directed onto photodetectors D1 and D2. A probe laser field with controllable frequency
and delay is aligned into the spatial mode of the atomic emission. b, Three main steps of the
protocol: (i) an atomic ensemble is excited into a Rydberg atomic state |r〉; (ii) after a short
delay, the atoms are driven into intermediate state |e〉, leading to emission on the |e〉 ↔ |g〉
transition, with propagation direction determined by the phase-matching condition; (iii) an
incoming probe field and atomic emission fields, with controllable delay between the two
fields, are directed towards HBT measurement.
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consequence, one might associate the increased coincidence counts with stimulated emission.

On the other hand, for a factorized initial atomic state, such an interpretation is no longer

tenable since the incident probe field is actually absorbed by the medium. In both cases

however an increase in coincidence counts is observed. We present experimental results and

a theoretical analysis that leads us to conclude that stimulated emission is not responsible

for the increase in coincidence counts. Instead, the increase in coincidence counts can

be attributed to Hanbury Brown and Twiss (HBT) interference [31], which we claim is

also responsible for the increase in coincidence counts measured in the down-conversion

experiments.

To illustrate the underlying physics, we consider first a single-photon probe pulse incident

on a two-level atom (lower level g and excited level e) that is prepared in its excited state

at time t = 0. The wave front of the probe pulse, which has cross-sectional area A greater

than the pulse’s central wavelength λ, arrives at the atom at time τ ≥ 0. In source-field

theory [32], the positive frequency component of the field operator for this system can be

written as E+(R, t) = E
(0)
+ (R, t) + E

(S)
+ (R, t), where E(0)

+ (R, t) is the free-field operator

and E(S)
+ (R, t) is the source field operator associated with the field radiated by the atoms in

the sample. Two types of measurements can be envisioned. Either (1) the integrated field

intensity is measured or (2) the time-integrated number of coincidence counts is recorded as a

function of τ after the field is sent through a beam splitter. The detection volume is restricted

to a small angle in the forward direction.

For A� λ2, a "weak coupling" approximation can be made—the interaction between

the atoms and the input pulse can be neglected to lowest order, owing to the fact that

max [Ωp/γe � 1,ΩpTp � 1], where Ωp is the probe Rabi frequency, Tp is the probe pulse

duration, and γe is the excited state decay rate. It is then rather easy to analyze the two

measurement scenarios, which are sensitive to different physical processes. The total field can

be viewed as a sum of the collimated input field, the spherical wave spontaneously emitted

field from the atom, and the field scattered by the atom.
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The integrated field intensity is sensitive to the amplitudes of the three contributions

to the total field. Stimulated emission or absorption is associated with the interference of

the scattered field with the (unperturbed) input field [55]. Whether stimulated emission or

absorption occurs depends on both the spectral width of the input pulse and the time delay

τ . In contrast, the time-integrated number of coincidence counts Nc is insensitive to the

relative phase of the input and source fields—it depends only on field intensities. Moreover,

in the weak coupling approximation, the scattered field has a negligible effect on the value

of Nc. When measured as a function of τ , Nc exhibits a “bump" for τ = 0 that can then be

interpreted as HBT interference between the input field and the field spontaneously emitted

from the atoms, in exact analogy with the HBT increase in the second order correlation

function for two independent light sources. In other words, although both stimulated emission

and HBT interference can both be described in terms of interference, they correspond to

fundamentally different physical processes. The HBT coincidence count bump is not linked

to stimulated emission—it occurs even if the input field is attenuated. Moreover, in the

weak coupling approximation, any absorption or stimulated emission of the input pulse is

negligibly small—the output field intensity is approximately equal to the sum of the input

and atomic field intensities, considered as independent sources.

3.3 Superatom

The same formalism can be used to model our experiment involving phase-matched emission

from an ensemble of atoms, Figure 3.1(b). The three-level atoms (ground state |g〉 =

|5S1/2, F = 2,mF = 2〉, intermediate state |e〉 = |5P3/2, F = 3,mF = 3〉, and Rydberg

state |r〉 = |nS1/2,mJ = 1/2〉) are prepared in a phase-matched superposition of ground

and Rydberg states using an excitation pulse of duration TE = 1 µs, consisting of two

counter-propagating laser pulses E1 and E2 having central wavelengths 780 nm and 480 nm,

respectively. Field E1 drives the |g〉 ↔ |e〉 transition with Rabi frequency Ω1 and field E2
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Figure 3.2: Probing a collective (super-atom) state. a, Probability of photoelectric detection
event per trial P as a function of two-photon detuning ∆2 = ωrg − (ωE1 + ωE2) for the
Rydberg state |r〉 = |87S1/2〉. The solid curve is a Lorentzian fit. The 0.8 MHz (FWHM)
width of the peak is determined by the 1 µs excitation pulse duration; b, P as a function of
the collective Rabi angle θ displaying a period of a many-body (super-atom) Rabi oscillation.
Solid curve is a theory curve for a collective Rabi oscillation with Ω2/2π = 1.5 MHz and
Ω1/2π varied between 2 and 20 MHz. The best fit between theory and the data occurs for the
number of atoms N = 234.
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drives the |e〉 ↔ |r〉 transition with Rabi frequency Ω2. Field E1 is detuned by an amount

δ = −2π × 90 MHz from ωeg. For a high-n Rydberg state [56], excitation of more than one

atom into the Rydberg state can be suppressed, with the atomic ensemble being coherently

driven between the collective ground state |G〉 and a singly-excited (so-called superatom)

collective state |R〉 at a frequency ΩN =
√
NΩ1Ω2/(2δ) [57, 58, 14, 59, 61, 60]. After a

delay Ts ≈ 0.5 µs following the excitation pulse, a readout pulse ER, centered at 480 nm is

applied that is resonant with the |r〉 ↔ |e〉 transition frequency and leads to phase-matched

emission with ωA = ωeg.

Figure 3.2(a) displays the probability of photoelectric detection P as a function of

two-photon detuning ∆2 between (ωE1 + ωE2) and ωrg. The maximum probability of a

photoelectric detection per trial is Pmax ≈ 2.5× 10−2 for a chosen value of θ ≡ ΩNTE ' π.

Figure 3.2(b) shows P as a function of θ. Accounting for a factor of ζ = 0.27 transmission

and detection efficiency, there is a maximum probability pf ≈ 0.09 for a single photon to

be emitted into the spatial mode defined by the single-mode fiber used for collection. A

probe pulse whose temporal profile matches that of the phase-matched emission and whose

spatial mode corresponds to the detector acceptance mode, is also sent into the medium. In

the absence of any Rydberg excitation, the transmission coefficient for the probe pulse is

0.45± 0.01. Figure 3.3 shows measured intensity profiles (normalized photo-counts M̃ vs

time t) for the probe pulse and the phase-matched atomic emission. The profiles are matched

by adjusting both the readout and probe pulses, with their overlap integral being 0.94 for a

0.5 µs integration window and greater than 0.98 for a 0.1 µs integration window centered

on their peak values. The value of the time-integrated second-order correlation function for

atomic emission in the absence of the probe pulse is g(2)
A = 0.04. The probe pulse can be

delayed by a time τ relative to the phase-matched emission and the probe frequency ωP can

be detuned by an amount ∆ from ωA.

The total output field is sent into a beam splitter and detectors in the output mode of

the beam splitter record coincidence counts. In the weak coupling approximation, any
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M

Figure 3.3: Temporal intensity profiles for the probe pulse (red) and the atomic emission
(blue).

contribution to coincidence counts due to stimulated emission constitutes a small effect, of

order 1/ (Nk2
0A) ' 10−6, where k0 = ω21/c and A is the cross-sectional area of the probe

pulse. In fact, instead of being amplified by the medium, the output field intensity in the

presence of Rydberg excitation is actually decreased by ' 10−2.

3.4 Experimental setup

Our experimental system consists of two connected glass cells. In the first cell, a background-

loaded, two-dimensional magneto-optical trap (MOT) of 87Rb atoms directs a cold atomic

beam into a high vacuum glass cell, feeding a three-dimensional MOT for a period of 1.2

s. This MOT loads an optical dipole trap formed by two orthogonally polarized YAG laser

beams intersecting at an angle of 27◦. The dipole trap beams have a total power of 5 W

and transverse waists of 16 µm and 34 µm for a maximum trap depth of ' 0.5 mK. The

atomic cloud of ' 9 µm radius has temperature T ∼ 60 µK and density ρ ' 4 × 1011
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cm−3. The level scheme is described in the main text. The ground state is denoted by

|g〉 = |5S1/2, F = 2,mF = 2〉, the intermediate state by |e〉 = |5P3/2, F = 3,mF = 3〉, and

the Rydberg state by |r〉 = |nS1/2,mJ = 1/2〉.

A bias magnetic field of 5.5 G is switched on and atoms are optically pumped to the |g〉

state. The excitation pulse consists of a pair of counter-propagating fields denoted by E1 and

E2, respectively. Field E1 has central wavelength 780 nm and is σ+ polarized while field

E2 has central wavelength 480 nm and is σ− polarized. In Fig. 3.4, the timing sequence for

the 480 nm and 780 nm fields is shown. The excitation fields create a spin wave between

the |g〉 and |r〉 states. Field E2 is detuned from ωeg by δ1/2π = 90 MHz. The 780 nm

light is derived from an extended cavity diode laser (ECDL). Light at 480 nm is produced

by frequency-doubling of an amplified output of a 960 nm ECDL. Both of the ECDLs are

frequency-locked to a thermally stabilized ultra-low expansion glass cavity. The sum of the

frequencies of the E1 and E2 fields are tuned to be in resonance with the |g〉 ↔ |r〉 ground to

Rydberg state transition. The spin wave is stored for a period Ts ' 0.5 µs.

After storage time Ts the atoms are coherently driven on the |r〉 ↔ |e〉 transition by

a (σ+-polarized) retrieval field ER, creating an array of atomic dipoles which give rise

to a phase-matched emission on the |e〉 ↔ |g〉 transition. The E1, E2, and ER fields are

focused onto the atoms with beam waists w1 ≈ 6 µm and w2 = wR ≈ 15 µm and Rabi

frequencies Ω1/2π ' 5 MHz, Ω2/2π ' 1.5 MHz, and ΩR/2π ' 6 MHz, respectively. The

∼ 36 µm length of the atomic cloud in the longitudinal dimension and the ∼ 6 µm waist

of the 780 nm excitation field mode determines the (z−) and the radial dimensions of the

ensemble, respectively. The emitted light is collected into a single-mode optical fiber coupled

to a single-photon detector. The retrieved field is split by a beam-splitter, with the two

outputs coupled into single mode fibers followed by single-photon detectors D1,2. To avoid

damaging the detectors by the Ω1 field, a gating acousto-optical modulator is used. The 6

µs long experimental sequence is repeated 10,000 times for each sample preparation, with a

3 µs optical pumping period inserted every five cycles. One trap loading and experimental
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Figure 3.4: Timing sequence of laser fields in the experimental protocol.

sequence cycle takes 1.9 s. To avoid dephasing the Rydberg-ground coherence by the

differential optical trapping potential, the dipole trap is turned off for a 1.5 µs period within

which the atomic excitation sequence is performed.

Every experimental trial data acquisition is triggered and photoelectric events on detectors

D1 and D2 are recorded within gated time intervals. In each experimental trial, photoelectric

events from detectors D1 and D2 are recorded within a time interval varying between

100 ns and 300 ns. The photoelectric detection probability for both detectors is given by

P = P1 + P2 = N1/N0 +N2/N0, where N1,2 are the events recorded by D1 and D2 and N0

is the number of experimental trials. The probability for detecting coincidences is given by

P12(τ) = N12(τ)/N0, where N12(τ) is the number of coincidences from the two detectors

with time delay τ . When no probe light is used, the probability of photoelectric detection P

is proportional to the single excitation preparation efficiency ξ: P = ηrζξ. ηr is the efficiency

of converting excitation in |b〉 into mode-matched photon field. The photon transmission
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and detection efficiency ζ is given by ζ = ηaηfηd = 0.27, where ηa = 0.68, ηf = 0.72

and ηd = 0.55 are AOM diffraction efficiency, fiber coupling efficiency and single photon

detection efficiency, respectively.

3.5 Dicke state

The probe pulse is a weak, coherent state pulse having energy less than or of order ~ωeg. The

atoms are prepared either into (1) a state consisting of a single phase-matched excitation by

choosing an upper atomic state |r〉 = |87S1/2〉 with strong interactions [13, 62, 63], or (2) an

upper atomic state |r〉 = |50S1/2〉, which leads to a factorized atomic state having on average

Nr ≈ 1.5 Rydberg excitations in the sample. In case (1), assuming that the spatial profiles

of the probe and phase-matched emission pulses are identical, the number of photo-counts

separated in time by t21 is given by

Nc(t21) =

∫ ∞
−∞

dt Ĩ(t)Ĩ(t+ t21) [1 + V1(K) cos (∆t21)] , (3.1)

where Ĩ(t) is proportional to the intensity profile of the probe field,K is the ratio of integrated

intensities for the input probe pulse and phase-matched emission, and V1(K) = 2K/(K2 +

2K + g
(2)
A ) is the fringe visibility, allowing for a nonzero value of g(2)

A . As was the case for

a two-level atom, Eq. (3.1) is derived assuming that atom-field interactions are negligibly

small, that is, no effects related to stimulated emission are included. In Figure 3.5(a), we plot

measured values of Nc(t21) for K = 0.21. The theory curve is obtained assuming a Gaussian

profile for Ĩ(t) and an expected value of V1(0.21) = 0.83.

The normalized time-integrated coincidence counts are given by

Nc = 1 + 2K|J |2/[K2 + 2K + g
(2)
A ], (3.2)

where J ≡
∫∞
−∞ e

−i∆tS(t− τ)f(t)dt is the overlap integral of the two fields, S(t) and f(t)

are the (real) scaled amplitudes of the phase-matched field and the probe pulse, respectively,

normalized such that
∫∞
−∞ dt S

2(t) = 1,
∫∞
−∞ dt f

2(t) = 1. In this case we allow for a slight
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Figure 3.5: Two-photon statistics for the upper atomic state a, |r〉 = |87S1/2〉 and b,
|r〉 = |50S1/2〉. Coincidences in 2 ns as a function of detection-time delay t21 for detuning
∆/2π = −80 MHz between the probe field and the field emitted by the atoms. Solid curves
in a and b are obtained from theory described in the text and the supplemental material of
reference [46].
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difference between the intensity profiles of the probe field and atomic emission. If the

intensity envelopes are identical and if K � 1 and g(2)
A � 1, the time-integrated coincidence

counts are doubled provided ∆ = 0 and τ = 0, from the case where |∆| /γe � 1 or γeτ � 1.

In Fig. 3.6(a), Nc is plotted as a function of ∆ for τ = 0 and Nc is plotted as a function

of τ for ∆ = 0 in Fig. 3.7(a). The Equation (3.2) is strictly valid only under an assumption

of an optically thin medium in which the fraction of energy radiated by the atoms in the

phase-matched direction pf � 1. Including corrections of order pf ≈ 0.06 we estimate

the value of Nc ' 1 + 2(1 − pf )K|J |2/(K2 + 2K + g
(2)
A ). In Figs. 3.6(a) and 3.7(a), the

theoretical curves are drawn using {K = 0.46, |J(∆ = 0)|2 = 0.98} [Nc(∆ = 0) = 1.72]

and {K = 0.35, |J(τ = 0)|2 = 0.94} [Nc(τ = 0) = 1.72], respectively.

When a Rydberg blockade is operative, the problem can be reduced to an effective two-

level problem involving transitions between the Dicke state and the ground state. As such, it

is possible to envision a situation in which there is total inversion of the system. Although the

probe field can produce stimulated emission on the inverted system, the observed factor of

two increase in coincidence counts is not a consequence of stimulated emission. Rather, it is

an indication of both the nonclassical nature of the atomic Dicke state and HBT interference.

3.6 Factorized state

As further evidence of the fact that the increase in coincidence counts results from HBT

interference and not stimulated emission, we next consider a factorized initial atomic state

for which g(2) = 1 and there is no inversion. Assuming that there is no temporal coherence

between the input pulse and the phase-matched emission and that f(t) = S(t), Nc(t21) is

given by

Nc(t21) =

∫ ∞
−∞

dt Ĩ(t)Ĩ(t+ t21) [1 + V2(K) cos (∆t21)] ,

where V2(K) = 2K/(1 + K)2 is the fringe visibility. In Figure 3.5(b), we plot values of

Nc(t21) for the Rydberg state |r〉 = |50S1/2〉 and with K = 0.98. The solid curve is theory,
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Figure 3.6: Two-photon statistics for the upper atomic state a, |r〉 = |87S1/2〉 and b,
|r〉 = |50S1/2〉. Normalized coincidences as a function of the detuning ∆ between the probe
pulse and the pulse from the ensemble. Solid curves in a and b are obtained from theory
described in the text and the supplemental material of reference [46].
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Figure 3.7: Two-photon statistics for the upper atomic state a, |r〉 = |87S1/2〉 and b,
|r〉 = |50S1/2〉. Normalized coincidences as a function of the delay τ between the probe
pulse and the pulse from the ensemble. Solid curves in a and b are obtained from theory
described in the text and the supplemental material of reference [46].
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with fringe visibility V2(0.98) ≈ 0.50. The fringe visibility of 1/2 is consistent with HBT

interference between two coherent-state pulses, a situation that is mirrored by our choice

of a factorized atomic state and a coherent-state probe pulse. For K = 1, the normalized

time-integrated coincidence counts are given by Nc = 1 + 1
2
|J |2. It is seen that in this

case, for f(t) = S(t), the time-integrated coincidence rates are increased by a factor of 3/2

provided ∆ = 0 and τ = 0, from the case where |∆| /γe � 1 or γeτ � 1. Figures 3.6(b)

and 3.7(b) show Nc as a function of pulse detuning and delay respectively, together with

theory curves for which the enhancement factor Nc ' 1 + 2(1− pf )|J |2K/(1 +K)2. In Figs.

3.6(b) and 3.7(b), the theoretical curves are drawn using {K = 0.90, |J(∆ = 0)|2 = 0.97}

[Nc(∆ = 0) = 1.46] and {K = 1.00, |J(τ = 0)|2 = 0.93} [Nc(τ = 0) = 1.44], respectively.

Again, although stimulated emission is absent, there is an enhancement in coincidence counts

when the probe pulse overlaps with the phase-matched atomic emission.

3.7 Conclusion

In conclusion, the interaction between the incident probe field with the atoms in experiments

such as ours and in Refs. [52, 48, 49, 50, 51, 53] can be treated in a weak coupling approxi-

mation. In that limit the increase in coincidence counts can be fully described by HBT-type

interference between the incident field and the field radiated by the medium. There is no

direct connection with stimulated emission.

53



Chapter 4

Long-lived coherence between ground

and Rydberg levels in a

magic-wavelength lattice

This chapter is based on Ref. [64]

4.1 Introduction

Ground-state–Rydberg-state coherence in ensembles of ultra-cold atoms plays a critical role

in many quantum information, quantum communication, and precision metrology protocols

[56, 12, 65, 66, 67, 68, 69, 70]. Single-photon generation [13], photon anti-bunching [62],

many-body Rabi oscillations [14], creation of entanglement of light and atomic excitations

[63], single-photon optical switches and interaction-induced phase shifts [71, 72, 73, 74, 75]

have been demonstrated based on coupling of ensembles of neutral atoms with propagating

quantum light fields. Significant progress has also been made in employing Rydberg interac-

tions for entanglement [59, 60, 76], many-body interferometry [77], and quantum simulation

in arrays of neutral atoms [78]. All these experiments have relied on quantum coherence

between the ground and Rydberg states. Prolonging this coherence lifetime is therefore
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crucial to further advances in increasing the size and complexity of quantum algorithms and

the precision of atomic measurements.

Several physical processes contribute to ground-state–Rydberg decoherence, including

spontaneous decay, black-body radiation, and coupling to stray electric fields [56]. In the

majority of experiments to date, however, the loss of coherence can be attributed mainly

to motional dephasing, limiting the coherence lifetime to a few microseconds [13, 14, 59,

60, 76, 78]. Motional dephasing can be reduced by tightly confining the atoms in an optical

dipole trap. Unfortunately, while typical off-resonant dipole traps are attractive for ground

state atoms, they are repulsive for atoms in Rydberg levels. This results in fast decoherence

owing to position-dependent differential energy shifts, making it necessary to turn off the

trapping fields for the duration of the Rydberg excitation period. To overcome this problem,

the trapping fields can be tuned to a so-called “magic" wavelength [29, 30] that results in

identical energy shifts for the ground and Rydberg state [63, 79]. The magic wavelength is

close to that of the Rydberg level |ns1/2〉 - intermediate level |6p〉 transition.

In this work we exploit the use of the magic wavelength to obtain a significant enhance-

ment of ground-state–Rydberg atomic coherence lifetimes over a range of principal quantum

numbers n = 30 . . . 70. This is achieved by confining the atomic sample in a one-dimensional,

state-insensitive optical lattice along the axis of propagation of the excitation light fields. We

observe damped oscillations of the collective ground-state–Rydberg atomic coherence in the

lattice potential. The anharmonicity of the potential leads to a damping of the visibility of

the oscillations, whereas the radiative decay and black-body radiation-driven depopulation of

the Rydberg state lead to a damping of the overall signal.

A second component of this paper is the formulation of a theory that can be used to

explain the overall features of the experimental data. A first principles calculation of the

signal presents considerable challenges, even when interactions between Rydberg atoms

can be neglected. The reason for this is that standard methods [32] involving the use of

the Maxwell-Bloch equations or a source-field approach are no longer applicable when the
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atoms undergo quantized motion in the trap potentials. Moreover, if the trap potentials differ

for the Rydberg and ground state potentials, any approach assuming classical motion in the

potentials fails if the signal depends on the coherence between these levels. There have

been theories of phased-matched emission from trapped atoms that have been developed in

the context of atom interferometry [82], but the formalisms used in those approaches differ

somewhat from what is needed in our problem involving excitation of Rydberg levels. More

closely related to our calculations are those of Zhao et al. [83] and Jenkins et al. [84] who

considered phase-matched emission from trapped atoms using Raman transitions. Jenkins

et al. [84] used a model in which the atoms undergo classical motion in a lattice potential.

In contrast to these authors, we present a theory that treats the atomic motion in the lattice

quantum-mechanically and allows for different Rydberg and ground state potentials. We first

present a theoretical formalism that can be used to model our system and then describe its

experimental implementation.

4.2 Theory

A full theoretical description of retrieved signal from an ensemble in a state-insensitive

optical lattice can be found in the reference [64]. It explains the three parts of the retrieved

signal: the optical potentials of the ground and Rydberg states, the contribution to the signal

from a single atom, and the weighted sums over the distribution of atoms. In this section, I

will briefly overview the optical potentials for the ground and Rydberg states to qualitatively

explain why the so-called non-lattice contribution is important for coherence time. Then

I will state the final equations used to model the signal from the atoms and examine how

experimental parameters such as trap depth and atomic sample length affect the coherence

time of the ensemble.
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Figure 4.1: (a) A cold sample of 87Rb gas is trapped in a 0.5-µm-period one-dimensional
optical lattice formed by a retro-reflected beam EL. Two nearly counter-propagating beams,
E1 and E2 excite a spin wave between the |5s1/2, F = 2〉 and |ns1/2〉 levels. After a storage
time, Ts, a retrieval pulse, ER, is applied, creating an array of atomic dipoles which give rise
to a phase-matched emission from the sample. The actual geometry used in the experiment
differs somewhat from that shown schematically in the figure. b) Relevant 87Rb energy levels
and corresponding fields, with ∆ = ωL − ωns,6p3/2 and ∆1 = ωE2 − ωns,6p3/2 . c) Schematic
diagram indicating transitions between the ground and excited state motional levels. d)
Timing diagram showing the excitation and retrieval pulse sequence.
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4.2.1 Optical potentials

As depicted in Figure 4.1(a) the ensemble is held in an optical lattice. The levels we are

concerned with, |5s1/2〉 and |ns1/2〉, are shown in Figure 4.1(b) with the excitation and

retrieval frequencies (ωE1 , ωE2 , and ωER), and the lattice frequency ωL. ωL is near-resonant

with the intermediate state |6p3/2〉 such that it shifts both the ground state and the Rydberg

state nearly equally as depicted in Figure 4.1(c). The general electric field amplitude for the

y-polarized trap can be described as,

E(R, t) =
1

4

[
A+(ρ,X)eikLX + A−(ρ,X)e−ikLX

]
e−iωLt

+c.c., (4.1)

where

A±(ρ,X) = E±,0
w±,0
w±(X)

e−ρ
2/w2
±(X), (4.2)

ρ is the radial coordinate (the axial coordinate being X), E±,0 are the field amplitudes for the

incident (+) and retro-reflected (−) fields, kL is the wave number of the lattice kL = 2π/λL,

w±,0 are the waist radii of these fields, and

w±(X) = w±,0

√
1 +

(X −X±,0)2

X2
±,r

, (4.3)

where X±,0 are the foci positions for the incident and retro-reflected beams, and X±,r is the

Rayleigh lengths for the incident and retro-reflected beams. An explanation of the lattice

geometry is in Chapter 2.

By calculating the time-averaged intensity and multiplying by the ground state polariz-

ability αg the ground state potential can be calculated using the dipole approximation,

Ug = − 1

16
αg
[
4A+A− cos2 (kLX) + (A+ − A−)2] ,

(4.4)
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In this equation, the term 4A+A− cos2 (kLX) is referred to as the lattice potential because

it depends on the position of the atomX in the lattice. The term (A+ − A−)2 is the non-lattice

potential and is independent of X . This calculation can be performed for the Rydberg state

as well, however, it is more complicated due to the break down of the dipole approximation.

For a full explanation see reference [64]. It is sufficient to say the result will have a lattice

potential and a non-lattice potential as well. However, for the Rydberg level the polarizability

depends on the detuning of the lattice from the |6p3/2〉 ↔ |ns1/2〉 transition. By careful

choice of lattice detuning the lattice potentials for the ground and Rydberg states can be

matched. The two states have the same spatial variation under the condition

D2
n

6~∆m,n

= αg + |αf | θn, (4.5)

where

θn = 〈cos (2kLx)〉ns (4.6)

this is from the Rydberg atom averaging over the lattice when the dipole approximation

breaks down. ∆m,n is the magic detuning for the ns Rydberg level, αf = −e2/mω2
L is the

free electron polarizability, and Dn is the reduced dipole matrix elements

Dn =
∣∣∣〈ns||d̂||6p3/2〉

∣∣∣ . (4.7)

Equation 4.5 is used to calculate the dipole matrix elements after measuring ∆m,n.

However, while the lattice potential is matched for the ground and Rydberg states, the

non-lattice potential cannot be fully compensated at every point in the trap. The differential

shift resulting from the non-lattice potential is found in Ref. [64] to be

U
(nl)
d (ρ,X) = ~ωd(ρ,X) =

|αf |U0

2αg
(1− θn) I(ρ,X), (4.8)
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where

I(ρ,X) =
w+(0)w−(0)

2

×

[√
1

ξ

e−2ρ2/w2
+(X)

w2
+(X)

+
√
ξ
e−2ρ2/w2

−(X)

w2
−(X)

]
(4.9)

ξ is the ratio between the incident and reflected power and

U0 =
1

4
αg

16cµ0P

π

1

w+(0)w−(0)
. (4.10)

X = 0 denotes the position of the atomic cloud center and P is the optical power of the

lattice.

As will be seen later in this chapter, decoherence due to this mismatch will be the limiting

factor at high principal quantum numbers. The spatial variation in the non-lattice potential is

described by I(ρ,X) which leads to the mismatch decreasing the coherence time. Therefore,

to maximize coherence time, the geometry of the trap must be carefully chosen to make

I(ρ,X) have as little variation over the ensemble as possible.

4.2.2 Lattice contribution

The final expression can be separated into three parts: the lattice contribution, the non-lattice

contribution, and three dissipative mechanisms as shown in reference [64].

The lattice contribution to the signal can be written as

Gl(Ts) =

∣∣∣∣∣∣∣
∑qmax

q,q′,q′′ ρ1q′′,1q′(0)M1q′;3q (−kux)

×M3q;1q′′ (kux) e
i
(
ω
(1)

q′ −ω
(3)
q

)
Ts

∣∣∣∣∣∣∣
2

, (4.11)

where,

M
(j)
3q;1q′(k) =

∫
dXj [ψ3q (Xj)]

∗ eik·Rjψ1q′ (Xj)

= [M1q′;3q(−k)]∗ , (4.12)
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Figure 4.2: Graphs of gl(Ts) as a function of ω0Ts: red, solid curve - cos2(kLX) potential;
blue, dashed curve - harmonic potential.

ρ1q,1q′(0) =
exp

[
−~ω(1)

q

kBT

]
δq,q′∑qmax

q=0 exp
[
−~ω(1)

q

kBT

] , (4.13)

where δq,q′ is a Kronecker delta. The ω(1)
q are obtained by solving the appropriate Mathieu’s

equations in reference [64], M (j)
3q;1q′(k) the matrix elements for transitions between motional

levels, T is the temperature of the ensemble, and ψαq (Rj) is an eigenfunction for the atom j

moving in the ground or lattice potential.

The lattice contribution is responsible for the motional dephasing of the ensemble. The

atoms are trapped oscillating in a lattice leading to oscillations in the retrieved signal. In

Fig. 4.2 we plot these oscillations,for two trapping potentials, without any other decoherence

mechanisms as a function of ω0Ts for U0/kB = 32 µK and U0/kBT = 2.75 using the

following equation,

gl(Ts) = Gl(Ts)/Gl(0). (4.14)
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Figure 4.3: Graphs of the analytic approximation and exact expressions of gnl (dashed and
solid respectively), from reference [64], as a function of storage time Ts for U0/kB = 40
µK and different sample lengths: blue - L = 1 µm, dark green - L = 50 µm, light green -
L = 100 µm, orange - L = 150 µm, red - L = 500 µm.

The frequency ω0 is defined by

U0 =
1

2

Mω2
0

k2
L

, (4.15)

4.2.3 Non-lattice contribution

The non-lattice contribution to the signal given in Eq. (4.16).

Gnl(Ts) =

∣∣∣∣∫ ∞
−∞

dX

∫ ∞
0

ρdρf(ρ,X)N (ρ,X)e−iωd(ρ,X)Ts

∣∣∣∣2 , (4.16)

where ωd is the frequency shift of the non-lattice potential and f(ρ,X) describes the excitation

spatial modes

f (ρ,X) =

(
wE1,0

wE1(X)

)
exp

[
− ρ2

w2
E1

(X)

]
×
{(

wE2,0

wE2(X)

)
exp

[
− ρ2

w2
E2

(X)

]}2

, (4.17)

wi,0 are the transverse waists of the beams at the foci, wi(X) = wi,0

√
1 +

(
X
Xri

)2

, and Xri

is the Rayleigh length for the excitation beams 420 nm and 1012 nm. In our experiment,
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Figure 4.4: Graphs of gnl, multiplied by the decay due to the dissipative mechanisms, as a
function of storage time Ts for U0/kB = 40 µK, n = 51, and different lattice widths: blue
- wl = 200 µm, green - wl = 100 µm, orange - wl = 50 µm, red - wl = 25 µm. The black
dashed line shows the population decay from the dissipative mechanisms.

wE1,0 = 17 µm, wE2,0 = 15 µm, and the atomic density profile is given by

N (ρ,X) = exp

[
U0

2kBT
I(ρ,X)

]
exp

[
−X

2

L2

]
. (4.18)

where L is the length of the ensemble. The non-lattice contribution can be modeled using the

equation,

gnl(Ts) = Gnl(Ts)/Gnl(0).

The lifetime from the non-lattice contribution is dependent on the geometry of the optical

trap, excitation beams, and shape of the atomic cloud. Figure 4.3 shows that as the length of

the sample is increased, the lifetime decreases. The non-lattice potential results in dephasing

which reduces the coherence time because of the variation in trap depth over the length of the

ensemble. Since there is more spatial variation over longer ensembles the coherence time is

shorter. Figure 4.4 shows that the lifetime increases as the lattice radius gets larger. If the
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Figure 4.5: Graphs of gnl, multiplied by the decay due to the dissipative mechanisms, as a
function of storage time Ts for U0/kB = 40 µK, n = 51, and lattice width wl = 50 µm and
ensemble temperature : purple - T = 0.1 µK, blue - T = 0.5 µK, green - T = 1 µK, orange -
T = 2 µK, red - T = 10 µK. The black dashed line shows the population decay from the
dissipative mechanisms.

radius of the lattice beam is much greater than the radius of the excitation beam, there is little

variation in the non-lattice potential over the excitation volume. Therefore, ground-Rydberg

coherence times are longer.

The temperature of the sample can also have an effect on the coherence time. At very low

temperatures the atoms settle in the lowest motional energy level of the optical lattice. The

atoms will be motionless at the very bottom of the potential resulting in a small ensemble

radius. This results in less variation of the non-lattice potential over the sample leading to

longer coherence times for colder samples as seen in Figure 4.5. Lastly, the trap depth affects

the coherence time as seen in Figure 4.6. As the trap depth increases the coherence time

decreases as a result of the non-lattice potential becoming more significant in deeper traps.
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Figure 4.6: Graphs of gnl for sample length L = 100 µm and trap depths U0/kB = 5, 10, 20,
and 40 µK, represented by increasing line thickness.

4.2.4 Dissipative mechanisms

Three dissipative mechanisms are included in the model. These three mechanisms are

spontaneous decay τ (0)
n , transitions due to blackbody radiation τ (bb)

n , and transitions induced

by the lattice τ6p,n. These decay mechanisms are modeled as,

1

τeff
=

1

τ6p,n

+
1

τ
(0)
n

+
1

τ
(bb)
n

. (4.19)

The three mechanisms can be written individually as,

τ6p,n =
h∆m,n

U0

τ6p,0;

τ (0)
n = τ (0)(n∗)2.94;

τ (bb)
n =

3~(n∗)2

4α3
FSkBT

,

where τ6p,0 = 125 ns, τ (0) = 1.43 ns [64], T = 293 K, n∗ = n − 3.13, and αFS is the fine

structure constant.
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Figure 4.7: Total lifetime of the Rydberg state at different principal quantum numbers when
considering lattice-induced population decay from the 6p3/2 level, spontaneous decay from
the Rydberg level, and blackbody induced transitions. Together these make a theoretical
maximum coherence time for trapped Rydberg atoms.

Figure 4.7 shows Eq. 4.19 for several trap depths. At low principal quantum number the

lifetimes are limited by τ (0)
n and τ (bb)

n . At higher principal quantum numbers τ6p,n becomes

the dominant factor. Also, we see for all principal quantum numbers that lower the trap

depths leads to longer lifetimes.

4.2.5 Final model

As shown in reference [64], the lattice contribution, the non-lattice contribution, and the

dissipative factors can be combined to model the complete retrieved signal as

G(Ts) = Gnl(Ts)Gl(Ts)e
−Ts/τeff . (4.20)

Our data is normalized to the signal retrieved after 1 µs storage time, therefore, we fit the

data in this chapter using:

η(Ts) = G(Ts)/G(1). (4.21)
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4.3 Experimental results

The experimental geometry and measurement sequence are shown in Fig. 4.1(a). An optical

lattice is formed by a y-polarized, retro-reflected laser field propagating along the x-axis

having power P+ ≈ 0.8 W. The trap field is generated by a Titanium-Sapphire laser tunable

in the 850 nm to 1050 nm range, frequency-locked to an optical cavity. The laser wavelength

is measured with a wavemeter calibrated to 10 MHz accuracy using a diode laser locked to

Rb 780 nm line. The trap field is detuned from ωns,6p3/2 by ∆.

Atoms are loaded into the lattice using a magneto-optical trap. The maximum depth of

the optical dipole potential at the atoms is U0/kB ≈ 40 µK, with the corresponding axial

and radial oscillation frequencies {νρ, νx} = {0.3, 80} kHz. The resulting cloud, which has

temperature of T ≈ 10 µK, consists of ∼ 105 87Rb atoms having radial and axial waists

of σρ ≈ 50 µm and σX ≈ 0.2 mm respectively. The atoms are optically pumped to the

|5S1/2, F = 2,mF = 0〉 state in a magnetic bias field B0 = 0.5 mT.

Two nearly counter-propagating, z-polarized fields, E1 andE2 excite a spin wave between

the |5s1/2, F = 2〉 and |ns1/2〉 levels. The fields imprint a spatial phase coherence between

the ground and Rydberg states varying as ∝ ei(
~k1+~k2)·~R, where ~k1 and ~k2 are the wave-vectors

for the fields E1 and E2 respectively. Field E1 has wavelength 420 nm, while field E2,

produced by a laser diode, is tunable in the 1012 nm to the 1026 nm wavelength range to

excite Rydberg states with principal quantum numbers n ≥ 30. Field E2 is detuned from

ωns,6p3/2 by ∆1 ≈ 12 MHz. The E1 and E2 fields are focused onto the atoms with beam

waists wE1,0 ≈ 17 µm and wE2,0 ≈ 15 µm and Rabi frequencies ΩE1/2π ' 0.2 MHz and

ΩE2/2π ' 5 MHz, respectively. The spin wave is stored for a period Ts varied between 1

and 70 µs. At time Ts the atoms are coherently driven on the |ns1/2〉 ↔ |6p3/2〉 transition by

a (z-polarized) retrieval field ER of Rabi frequency ΩR ≈ ΩE2 , creating an array of atomic

dipoles which give rise to a phase-matched emission from the sample. The emitted light

is collected into a single-mode optical fiber coupled to a single-photon detector. To avoid
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Figure 4.8: (a)-(d) Normalized signal η(Ts) at storage time Ts around the first revival
(10− 12 µs) as a function of lattice detuning ∆ for principal quantum numbers 30, 51, 60,
and 65. The solid curves, based on the model described in the text, are used to extract the
values of ∆m,n. The dashed red and solid green vertical lines represent the theoretically
expected and the extracted values of the magic detuning, respectively. Blue and red bands
represent fits using temperatures 20% lower and higher than the best fit value, respectively.
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Figure 4.9: (a) ∆m,n as a function of the principal quantum number n, with the solid curve
based on our theoretical model. (b) Extracted values of the scaled reduced matrix elements
as a function of n.

69



damaging the detectors by the ΩE1 field, a gating acousto-optical modulator is used. The

photon transmission and detection efficiency ηtd is given by ηtd = ηcηoηfηd = 0.13, where

ηc = 0.89, ηo = 0.39, ηf = 0.66 and ηd = 0.55 are vacuum cell transmission efficiency,

optics transmission efficiency (including the gating AOM), fiber coupling efficiency and

single photon detection efficiency, respectively. The arrival times of detected photons are

recorded, and the number of detected photons per excitation and retrieval cycle is used as our

signal.

4.3.1 Magic wavelengths for the 5s− ns transition

The normalized retrieval signal η(Ts), given by Eq. (4.21), is plotted in Fig. 4.8(a-d) as

a function of ∆, along with the experimental data points. The solid green vertical lines

represent the values of the magic detunings ∆m,n extracted from the fit of the theoretical

curves to the data while the dashed red vertical lines represent the values of ∆m,n obtained

using Eq. (4.5) and the ARC values of the dipole matrix elements. The extracted values of

∆m,n are plotted in Fig. 4.9(a). Consistent with the scaling of dipole matrix elements, ∆m,n

varies approximately as (n∗)−3. The values of Dn(n∗)3/2 obtained from Eq. (4.5) using the

extracted values of ∆m,n are shown in Fig. 4.9(b), superimposed on the expected values of

the matrix elements computed using the ARC values [81]. The 3% standard deviation band is

based on comparing our computed values of |〈15s1/2||d̂||np〉| reduced matrix elements with

the values for these matrix elements given in Ref. [29].

4.3.2 Dynamics of the Ground-state–Rydberg coherence

The signal as a function of Ts serves as a measure of the dynamics of the stored spin wave.

With ∆ = ∆m,n, the signal as a function of storage time Ts, normalized to its value at

Ts = 1µs, is plotted in Fig. 4.10, along with the theoretical curves. The oscillations result

from the nearly periodic motion of the atoms along the optical lattice. The oscillation
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Ts

Figure 4.10: Normalized signal η as a function of storage time for several principal quantum
numbers. The solid black curve is based on our theoretical model. Blue and red bands
represent temperatures 20% lower and higher than the best fit value, respectively. The gray
curve shows loss attributable to black-body and spontaneous decay from the Rydberg state.
The dashed red curve adds in the contribution of spontaneous decay from the 6P level. The
dashed blue curve additionally includes the dephasing attributable to the non-lattice potential.
Most experimental error bars are smaller than the shown markers.
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Figure 4.11: Normalized signal η as a function of storage time for n = 40 for 420 nm - 1018
nm (green circles) and 795 nm-475 nm (orange diamonds) excitation, with the corresponding
atomic transitions shown in the inset. The solid curves are the result of a numerical simulation
of atomic motion using the model described in the text. The black curve is the same as in Fig.
4.10. Most experimental error bars are smaller than the shown markers.

visibility decreases with time owing to the anharmonic nature of the potential. Moreover the

anharmonicity adds a small damping component to the signal and its contribution becoming

more pronounced with increasing temperature.

In Fig. 4.11 we compare the n = 40 signal with its counterpart obtained by exciting the

atoms with 795 nm and 475 nm fields via the |5p1/2, F = 1〉 intermediate level. The effective

two-photon excitation wavelength for the latter λ2ph = 1.2 µm, longer than λ2ph = 0.72 µm

for the 420 nm-1018 nm excitation. As one would expect, the 795 nm-475 nm excitation

exhibits lower visibility of oscillations as a result of decreased motional dephasing for the

longer-wavelength spin-wave. The role of trap anharmonicity also decreases with longer spin-

wave period, whereas the non-lattice contribution to the dephasing contribution is unaffected

by it.
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4.4 Conclusion

We have demonstrated ground-state–Rydberg atomic coherence lifetimes in excess of 20

µs using a state insensitive optical lattice. A theory has been developed to account for the

quantized motion of atoms in the trap potentials. The theoretical line shapes that are derived

are in good agreement with the experimental results and can be used to extract values for

the ns - 6p3/2 reduced electric dipole matrix elements. Our approach should be of use for

precision measurements and quantum information studies involving atomic Rydberg states.
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Chapter 5

Differential nuclear-spin-dependent light

shifts and state mixing of Rydberg atoms

This chapter is based on Ref. [86]

5.1 Introduction

A promising platform for quantum information processing is based on the excitation of ultra-

cold atoms to Rydberg states [12]. Achieving long-lived ground-Rydberg atomic coherence is

one of the cornerstones of this approach. To suppress the effects of motional dephasing on this

coherence, the atoms can be confined in optical potentials that are identical for the ground and

Rydberg states [29, 30, 87, 88, 63, 79, 64]. However, in addition to confining the atoms, the

optical trap fields also mix and shift the Rydberg energy levels. As a consequence, the energy

level spacing within a given Rydberg manifold results from a complicated combination of

optical field potentials, hyperfine interactions, and interactions of the atoms with any external

magnetic bias fields. A complete understanding of this level structure is needed to maximize

the fidelities for quantum information protocols using trapped Rydberg atoms.

In this paper we present a theoretical and experimental study of 87Rb Rydberg atoms

confined in an optical lattice potential and subjected to an external magnetic field. For a given
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n, the frequency of the lattice fields is chosen so as to match the light shift potentials for the

ground and ns Rydberg levels [63, 64]. Actually, it is not possible to match the ground state

lattice potential to that of all the hyperfine sublevels in a given ns level. For example, an ns

level of 87Rb contains eight sublevels. In general, the trapping potential differs for each of

these levels and must be accounted for in a complete analysis. Moreover, since the atoms are

trapped in these potentials, it becomes necessary to use a fully quantum theory for the atomic

motion.

The trapped atoms are subjected to a two-photon pulse that excites the atoms to a

targeted Rydberg level, followed by a time-delayed readout pulse that leads to phase-matched

emission from the sample. By a proper choice of excitation field polarization, the output

signal, measured as a function of the time delay, contains components that oscillate at the

frequency separations of the ns Rydberg sublevels.

These frequency separations contain contributions arising from the magnetic field interac-

tion, hyperfine interaction and light shift potentials. To isolate these effects, we calculate the

eigenkets and eigenenergies of the Rydberg levels in the absence of light shifts and then de-

termine to what extent the light shifts modify them. The light shifts themselves are composed

of near-resonance and ponderomotive contributions. The ponderomotive contribution, which

includes effects related to the breakdown of the dipole approximation [88], is a function of

n, but for a given n, is the same for all the sublevels. The near-resonance contribution both

shifts and couples the sublevels. Rather remarkably, we find that coupling of hyperfine –

magnetic field eigenkets is almost negligible for the range of our experimental parameters,

although there was no a priori reason to believe that this should be the case when the lattice

field polarization is orthogonal to the magnetic field. As a result, the only effect of the optical

potential is to provide a differential shift for the Rydberg sublevels. We are able to assess the

role played by these differential light shifts and to determine what effect, if any, they have on

the atomic motion. In this way we determine the hyperfine constant A from the measured

frequency intervals for n ranging from 30 to 65. Previously, A values were measured for low
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values of n using direct optical spectroscopy [89, 90]. In these experiments, residual Doppler

broadening resulted in a spectral resolution to about 100 kHz, limiting the method to n ≤ 27.

Millimeter-wave spectroscopy has been used for high-n states of atomic Cs, with kHz-level

resolution achieved using ultra-cold atoms [91]. In this work we achieve a resolution as low

as several kHz.

5.2 Experiment

The experimental setup and level diagram for one of our excitation schemes are shown

in Fig. 5.1. For the most part, the experimental setup is identical to the one used in our

previous work Ref. [64]. The major difference is that the polarization of the field Ω1 in

the current experiment has both y and z components whereas it was z-polarized in the

previous experiment. An ultra-cold sample of Rb atoms is loaded into a one-dimensional

optical lattice formed by counter-propagating optical fields polarized along the y-axis. The

measurements are made using a magnetic field B = 5 Gauss for which the electronic Zeeman

splitting is much greater than the hyperfine separations of the ns levels being studied, the

so-called hyperfine Paschen-Back regime. In this case the ns1/2 Rydberg level splits into two

manifolds, characterized by mJ = ±1/2, separated in frequency by ≈ 14 MHz, with each

manifold consisting of four mI-components. The∼ 1 MHz two-photon excitation bandwidth

δν is much smaller than the frequency separation between the two manifolds. The lattice

wavelength λ ' 1012 − 1027 nm is tuned to near-resonance with the |6p3/2〉 ↔ |ns1/2〉

atomic transition, the specific value chosen to match the optical potentials for the ground

state and the mF = mJ +mI = 0 component of the Rydberg Zeeman manifold.

The ensemble is driven resonantly to the Rydberg state |ns1/2〉 using counter-propagating,

Te = 1 µs-long, pulses of a 420 nm field Ω1 and a (nominally) 1012 nm field Ω2. The

polarization of Ω1, controlled by half-wave plate oriented at an angle θi/2 with respect to

z-axis, is a linear combination of the y- and z-polarizations, while Ω2 is purely z-polarized.

76



ns1/2 , mJ= 1/2

ns1/2 , mJ= -1/2

 Ω2/A,π

6p3/2 , F=3

5s1/2 , F=2

 Ω1

π σ +σ -

1-1 0

-2
-1

 0
 1

2
 1

0
-1

0

 Δ 

 x

y B

 Ω1

 D1 

 D2  Ω2/A

 ΩL
(a) (b)

Figure 5.1: (a) Experimental setup. An ultra-cold sample of 87Rb gas is trapped in a “magic"
one-dimensional optical lattice formed by a retro-reflected lattice beam ΩL that is directed
along the x axis and polarized in the y direction. Two excitation beams, Ω1 (420 nm) and Ω2

(varying between 1013 nm and 1026 nm) counter-propagate along the x axis and are focused
at the position of the atomic sample cloud with ( 1

e2
) waists of 17 and 15 µm, respectively.

After a time delay Ts following the excitation pulse, a retrieval field ΩA generates a phase-
matched output signal. The polarization of field Ω2 and the retrieval field ΩA is fixed in
the z-direction, whereas the polarization of field Ω1 has both y and z components that are
adjusted to optimize the modulation depth of the output signal. The output signal has both y-
and z- components which are mixed with a half-wave plate, split by a polarizing beam splitter,
and measured by single-photon detectors D1(2). (b) Atomic level diagram showing the
initial (|5s1/2, F = 2,m = 0〉) state, intermediate (|6p3/2〉), and Rydberg |ns1/2〉 sublevels.
The final state manifold consists of two, spectrally resolved Zeeman sub-manifolds, each
containing four levels. Even in the presence of light shifts, mF = mJ +mI remains a good
quantum number. For this excitation scheme, the mF = 0,±1 levels in each electronic
Zeeman manifold are populated.
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In this way three mI-components in a given electronic Zeeman manifold of |ns〉 are excited.

After a storage period Ts, the atoms are coherently driven by a (z-polarized) 10 µs-long

retrieval field ΩA whose frequency is resonant with the |ns〉 ↔ |6p3/2〉 transition . The

ensuing cooperative emission on the |6p3/2〉 ↔ |5s1/2〉 transition is directed through a half-

wave plate and polarizing beam splitter. Each of the output polarization modes is collected

into a single-mode fiber and directed onto a single-photon detector.

5.3 Theory

In this section, we examine three sources of energy shifts for the nuclear sublevels of Rydberg

atoms confined to an optical lattice: the hyperfine interactions, magnetic fields, and light

shifts. This will be done in two parts: the eigenfrequencies when considering just the

hyperfine interactions and magnetic fields will be stated. This gives a simplified version of

the frequency splitting we measure for the hyperfine constant. Second, I will state the full

theoretical model. For a detailed derivation of the model see reference [86].

The contribution to the total system due to the hyperfine interaction contribution, denoted

by Hhf in the |nFmF 〉 basis in frequency units is

〈nF ′m′F |Hhf |nFmF 〉
h

= νhfs


3
8
δF,2

−5
8
δF,1

δF,F ′δmF ,m′F , (5.1)

where δa,b is a Kronecker delta. The magnetic field interaction contribution is,

HB = −β0B

~

(
gsSz + gI

me

mp

Iz

)
. (5.2)

When one diagonalizes Hhf +HB the eigenfrequencies are equal to
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νn8 =
3νhfs

8
+ νB

νn7,n1 =
−νhfs ± 4

√
ν2
hfs + 2νhfsνB + 4ν2

B

8

νn6,n2 =
−νhfs ± 4

√
ν2
hfs + 4ν2

B

8

νn5,n3 =
−νhfs ± 4

√
ν2
hfs − 2νhfsνB + 4ν2

B

8

νn4 =
3νhfs

8
− νB

mF= 2

mF= 1

mF= 0

mF= −1

mF= −2

(5.3)

where i labels the frequency νni of each level, one being the lowest frequency and eight being

the highest. The Pashen-Back region is in the limit that νB � νhfs. This is approximately

satisfied in our experiment with νB ≈ 7 MHz and νhfs < 2 MHz at n = 30 and νhfs < 0.8

MHz at n > 40. An example of the frequency shift for the different nuclear sublevels as

a function of the magnetic field can be seen in Figure 5.2 for principal quantum number

n = 50. At n < 50, νhf is larger, however, because our experiment is run at ≈ 5 Gauss

we are always in the Pashen-Back region. In the Pashen-Back region, the splitting between

two adjacent nuclear sublevels, within a manifold, is ≈ νhf/4 for all magnetic fields, in the

absence of light fields. So the frequency splittings, in our setup, will mainly come from two

factors: hyperfine interaction and light shifts due to the lattice. The lattice introduces optical

potentials that cause shifts between different levels in a manifold. This will be included in the

full theory in the next section. However, as will be explained later in the chapter, the effect of

the trap will be measured and we used this to determine νhf at zero trap depth.

5.3.1 Final equation

The final equation found in reference [86] for fitting the signal from the atoms is,

ηV (Ts) = SV (Ts)/SV (Ts = 1µs), (5.4)
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Figure 5.2: Hyperfine splitting of nuclear sublevels of both electronic sublevels as a
function of the magnetic field for n = 50. At high magnetic fields, the atom is in the
so-called Paschen-Back regime when all of the splittings between the nuclear sublevels are
approximately constant and equal. For this experiment, the magnetic field is B = 5 Gauss,
well into the Paschen-Back regime.

the normalization factor in the denominator corresponds to the signal retrieved after 1 µs

storage time. This equation was used to fit all of the data in the next sections and measure

the hyperfine splittings as well as the differential nuclear-spin-dependent light shifts. The

function SV is defined by,

SV (T s) =

∣∣∣∣∫ ∞
−∞

dX

∫ ∞
0

ρdρΛ(ρ,X)N (ρ,X)CV (ρ,X, T s)

∣∣∣∣2
×e−ΓnsTs , (5.5)

Λ(ρ,X) characterizes the excitation and retrieval pulses spatially dependent Rabi frequencies

and N (ρ,X) is the atomic density distribution. e−ΓnsTs/2, accounts for the dissipative

mechanism in Chapter 4. CV (ρ,X, Ts) are the contributions from motional states in the

ground state lattice potential and is described by,
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CV (ρ,X, Ts) =
2∑

mF=−1

qmax∑
q,q′

e−iωnsmF TsQ(V )
pJnsmF

×e−2πiD̃
(j)
nsmF

(ρ,X)TsMgq;nsmF q′ (−k)

×MnsmF q′;gq (k) e
i
(
ω
(g)
q −ω

(nsmF )

q′

)
Tsρ1q,1q(0),

(5.6)

where ρ1q,1q(0) is the density matrix elements for the initial distribution of motional energy

level states. ωnsmF accounts for differential light shifts, as well as the magnetic and hy-

perfine interactions. The function Q(V )
pJnsmF describes the excitation and retrieval dynamics.

D̃
(j)
nsmF (ρ,X) is the difference in non-lattice potentials between Rydberg and ground state

levels. MnsmF q′;gq (k) are the matrix elements for coupling of motional states between the

ground and Rydberg levels. The frequencies ω(g)
q and ω(nsmF )

q′ are the frequencies of the

ground and nsmF lattice potentials. The sums over q, q′, q′′ are restricted to the bound states.

5.4 Excitation and retrieval polarization

To optimize the retrieved quantum beat signal such that we have the most accurate measure-

ment of the frequency splitting, the polarization of the excitation beam and the retrieved

photons must be carefully chosen. To this end, a simplified model can be used, where the

atoms are excited from the ground level to three equally separated nuclear-sublevels in the

Rydberg state m = −1, 0, 1. The polarization of the excitation beams controls which of the

three nuclear-sublevels are populated. For our experiment, the magnetic field is along the

z-axis and the excitation beams are propagating along the x-axis as can be seen in Figure

5.1. Polarization components along the y-axis will drive σ+ and σ− transitions. Polarization

along the z-axis will drive π transitions. Therefore, the angle of excitation, along with the

Clebsch-Gordan coefficients, controls the proportion excited to each of the nuclear-sublevels.
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Figure 5.3: Retrieved signal S as a function of storage time T for θ1 = 0◦, 30◦, 60◦, 90◦ in
red, orange,green, and blue, respectively. The principal quantum number for this frequency
of quantum beat is n = 51 and an retrieved polarization angle of θ2 = 0◦.

The effect of the excitation polarization is shown in Fig 5.3. The angle for this polarization

should be chosen such that the oscillation visibility is greatest.

The emitted photon polarization is dependent on the final distribution of the excitation

probability among the three nuclear sublevels. In Figure 5.1 (b) the three nuclear sublevels

we populate are labeled m = −1, 0, 1. Upon retrieval, the population in sublevels m = 1

and m = −1 will emit a field polarized along the y-direction and the population in m = 0

will emit a field polarized along the z-direction. A half-wave plate and polarizing beam

splitter can select the emission from which nuclear sublevels are directed to a photon detector.

Since the energy splitting between levels m = 1 and m = −1 is twice as large as between

levels m = ±1 and m = 0 the beat frequency is twice as high between the outer two energy

levels (1 and −1). Therefore, it is useful to measure the retrieved signal or the emission with

polarization along the y-axis because a higher frequency can be measured more accurately in
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Figure 5.4: Retrieved signal S as a function of storage time T for θ2 = 0◦, 30◦, 60◦, 90◦ in
red, orange,green, and blue, respectively. The principal quantum number for this frequency
of quantum beat is n = 51 and an retrieved polarization angle of θ1 = 0◦.

the same coherence time. The dependence of the output signal on the polarization selected to

go to the photon detectors can be seen in Fig 5.4. The total output signal is described by the

equation

S = |C1 sin(θ2) cos(θ1) + C2 sin(θ1) cos(θ2)(e−iωT + eiωT )|2, (5.7)

where θ1 is the angle of the excitation polarization, θ2 is the angle of the polarization which

is directed to the detector, T is the storage time, ω is the frequency of the nuclear sublevel

splitting, and C1 and C2 are determined by the Clebsch-Gordan coefficients for the given

excitation scheme.
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TS

Figure 5.5: Normalized signal η ≡ F (Ts)/F (Ts = 1 µs) as a function of storage time for
principal quantum number n = 40 with fitted trap depth U0/kB = 31 µK and temperature
T = 10 µK for a single excited state (blue) and a triplet of states (red) using (θi, θd)=(0, 24)
and (32, 24) respectively. Solid curves are based on our theoretical model.

5.5 Analysis of retrieved signal

Let us first consider the data for n = 40. As a function of delay time Ts between the excitation

and readout pulses, the overall signal decays, primarily as a result of blackbody-induced

transitions and spontaneous decay. In addition to the overall decay, the signal exhibits an

oscillatory behavior. If the trap potentials are purely harmonic characterized by frequency ω

and if the ground and Rydberg potentials are matched, for a ground state thermal distribution,

ρ1q,1q(0) =
(
1− e−β

)
e−qβ; β =

~ω
kBT

, (5.8)

the quantity CV in Eq. (5.6) can be written in the form [93]

|CV (T21)| ≈ e−2ζ2[1−cos(ωTs)]/β

×
∣∣1 +Q1e

−iω10Ts +Q−1e
−iω−10Ts

∣∣ , (5.9)
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where

ζ = k12

√
~

2Mω
(5.10)

is the Lamb-Dicke parameter for the excitation field (k12 is the effective propagation constant

for the two-photon excitation field and M is the atomic mass) and ωm0 (m = −1, 1) is the

frequency difference between the Zeeman Rydberg sublevel having total magnetic quantum

number m from the level having m = 0. For n = 40, the quantity ωm0 results primarily

from the hyperfine and Zeeman interactions. For n = 40 the light shifts for the Rydberg

sublevels can be neglected as they have an insignificant effect on the signal. The frequency ω

is determined by the depth of the trap potential U0.

To fit our data we need to know the value of the trap depth U0 and the temperature T . We

obtain values for these quantities by fitting our data with the half-wave plate angle controlling

the polarization of the first excitation field to θi = 0. In this case, both the fields that constitute

the two-photon excitation scheme are z-polarized, and Q±1 = 0 in Eq. (5.9). The retrieved

signal in this case, displayed as blue diamonds in Fig. 5.5 exhibits the oscillatory behavior

predicted by the exponential term in Eq. (5.9), which can be attributed to the center-of-mass

motion of the atom within the optical lattice trap potential. In fitting the data to theory,

however, we allow for trap anharmonicity [see Eq. (5.6)] and extract values for U0 and T

from the frequency and visibility of the oscillations, respectively. A theoretical curve using

the best-fit value of U0/kB = 31 µK and T = 10 µK is displayed in the figure as a solid blue

curve. If the potential were purely harmonic, the signal would rephase at integral multiples

of the trap frequency; however owing to the trap anharmonicity, the oscillations are no longer

purely periodic. Trap anharmonicity also adds slightly to the decay of the signal.

Having obtained values of U0 and T , we switch the half-wave plate angle to an angle

θi 6= 0. In that case the signal oscillates at the beat frequency between the different Rydberg

sublevels. Fitting the signal to the full theoretical expression given in Eq. (5.6) using the

best-fit values of U0 and T found previously allows us to extract the hyperfine splitting
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(a)

(b)

(c)

Figure 5.6: Normalized signal η utilizing the alternative excitation scheme via the intermedi-
ate |5p1/2〉 state and (θi, θd) = (32◦, 24◦) for the mJ = −1/2 electronic Zeeman component
and principal quantum number n = 60. Experimental data with best-fit values of temperature
of 4 µK and trap depths of Uo/kB = 22, 18 and 14 µK are shown as red circles, green
diamonds, and blue squares, respectively, along with color-coded curves that represent the
predictions of a theoretical model that take into account the state-dependence of the optical
potentials. The dashed gray curves correspond to a theory in which this state dependence is
neglected and a single optical potential is used (that of the mF = 0 sublevel). The solid gray
theory curves correspond to an excitation scheme in which field Ω1 is z-polarized.

86



νhfs, treated as a free parameter. The quantities Q(V )
nsmF appearing in Eq. (5.6) are also

treated as adjustable parameters in the fitting procedure to account for the uncertainties in the

bandwidths, detunings and strengths of the excitation and retrieval pulses. A representative

output signal in one of the detectors is shown in Fig. 5.5 with experimental data points

displayed as red circles and theory as the solid red curve. We find agreement between the

experimental data and the best-fit models obtained via Markov Chain Monte Carlo fitting.

The input and output polarization angles θi = 32◦ and θi = 24◦ were empirically chosen to

maximize the visibility of the Rydberg Zeeman beat frequency oscillations.

We have also used an alternative excitation scheme with a smaller value of k12 that

leads to a diminished amplitude of the oscillations attributed to motion in the traps (see

the dashed gray curves in Figure 5.6). In this scheme atoms are optically pumped into the∣∣5s1/2, F = 2,mF = 2
〉

ground state and using the 5p1/2 level as the intermediate state for

two-photon excitation with fields Ω1 and Ω1 having wavelengths of 795 nm and 475 nm. The

signal in this case is shown in Fig. 5.6 for T = 4 µK and trap depths U0/kB = 22, 18, and

14 µK.

For n = 40, the light shifts do not significantly contribute to the separation between the

three mF Rydberg sublevels that are excited. Moreover, the differential optical potentials

for the three states are sufficiently small to result in approximately the same motional states

for the three levels. This is no longer the case for higher values of n. For example, the

theoretical curves shown in Fig. 5.6 for n = 60, exhibit differences between the models

assuming a single state independent potential (that associated with the mF = mJ +mI = 0

level) and the true state-dependent potentials. In addition, for higher values of n, effects of

spontaneous decay from the
∣∣6p3/2

〉
state, which is coupled to the Rydberg levels by the trap

fields adds to the signal decay rate. Moreover, the dephasing associated with the breakdown

of the dipole approximation in calculating the contributions of the ponderomotive potential

to the light shifts also increases the decay of the signal [88]. Experimental data for n = 60

shown in Fig. 5.6 do not allow us to distinguish definitively between the state-independent
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Figure 5.7: Average frequency separation between adjacent nuclear-spin states within the
same mJ manifold for the n = 60 Rydberg level as a function of trap depth for the upper
(mJ = 1

2
, blue circles) and lower (mJ = −1

2
, red circles) electronic Zeeman manifold.

and state-dependent potential models.

The measured frequency intervals as a function of trap depths are displayed in Fig. 5.7 for

the two electronic Zeeman components of the |60s1/2〉 level, together with linear fits based

on Eq. (5.3) from this Chapter and Eq. (A26) in reference [86]. The two intervals differ by

the nuclear Zeeman interaction. The intervals in the absence of the trapping potential are

determined by the intercepts of the fits with the ordinate. Using Eq. (5.3) the value of the

hyperfine splitting νhfs = 193± 5 kHz for the n = 60 Rydberg state is determined.

For other values of n, fits similar to those in Fig. 5.5 are made for a single value of the

trap depth. Each value of νhfs constitutes a weighted average of values obtained over up to

three runs using data recorded by the two detectors. The mean value νhfs is computed as a

weighted average of ν(i)
hfs, with the weights being their inverse variances extracted from the

individual fits.

The two main sources of uncertainty for νhfs are 1) the statistical which is evaluated as

weighted sum of the individual values, and 2) the uncertainty in the determination of the trap
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depth which translates into an error of the inferred differential light shifts for the hyperfine

Paschen-Back states. The νhfs ∼ n−3, while differential light shifts scale as ∼ n3. As a

result, the statistical uncertainty is the dominant one for n = 30 and 40, whereas the error

due to the uncertainty of the trap depth is the larger one for states of n ≥ 51. The data are

shown in Figure 5.8(a) along with a fit using νhfs = C(n− 3.13)−3 with C as an adjustable

parameter. In Figure 5.8(b) we plot the scaled hyperfine constant Ans ≡ νhfs(n − 3.13)3.

The weighted average Ans = 35.71± 0.18 GHz is plotted as a dashed line together with a

corresponding 95% confidence region. Also shown are the results of prior measurements of

Ans [95, 89, 90, 96, 97].

5.6 Conclusions

In summary, we have analyzed nuclear-spin manifolds associated with the ns Rydberg levels

of 87Rb atoms placed in magnetic and optical lattice fields. Using the eigenvalues and

eigenkets for the Rydberg manifold, we have investigated the dynamics of phase-matched

emission following illumination of an ensemble of cold atoms with excitation and readout

laser pulses. In this way, Rydberg state-dependent light shifts and hyperfine splittings for

principal quantum numbers between n = 30 and n = 65 have been determined. Our

results have relevance to implementations of optically-trapped Rydberg qubits allowing for

high-fidelity quantum gates.
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(a)                 

(b)           

Figure 5.8: (a) Hyperfine frequency νhfs as a function of principal quantum number n. (b)The
same data as the previous figure after removing the (n− 3.13)−3 dependence. The red band
represents a 95% confidence interval for our fitted value. Gray intervals are data from Ref.
[95] (green), Ref. [89] (purple), Ref. [96] (orange), and Ref. [97] (blue).
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Chapter 6

Conclusion

6.1 Summary and outlook

Neutral atoms excited to states with a high principal quantum number (n > 10) have strong

and controllable state-dependent interactions making them a promising platform to study

quantum information, quantum optics, and many-body phenomena. For example, collective

effects in ensembles of Rydberg atoms can be used to achieve strong coupling to optical fields

and efficient generation of non-classical states of light. These properties could be exploited for

nodes in a future quantum network. Rydberg ensembles also exhibit several interesting many-

body physics phenomena, such as Rydberg blockade [13]. This thesis, which has presented

results on light-matter interaction in Rydberg atoms, studied two topics: interference effects

between non-classical states of light and a coherent state, and investigations on long-lived

coherence between ground and Rydberg levels.

We demonstrated the creation of non-classical states from a Rydberg ensemble. We

then studied the second-order correlations with an incident coherent field and observed the

presence of Hanbury Brown-Twiss (HBT) interference between the coherent field and the

emission from a driven superatom. In our experimental setup, stimulated emission could be

ignored so our observation of HBT interference contrasts with previous experiments that
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have inferred a connection between HBT interference and stimulated emission. These results

could lead to a range of future experiments. For example, if the probe pulse is replaced with

another single-photon source, we will be able to observe the Hong-Ou-Mandel (HOM) effect

[99]. HOM creates an entangled photonic state, (|2〉|0〉 + |0〉|2〉), an example of a NOON

state [100]. A Rydberg ensemble is an excellent source of single-photons making it a good

candidate for efficiently creating these entangled states of light. Another potential direction

for future work stems from the fact that our experiment was performed in the weak coupling

limit. This is where the cross-sectional area of the probe pulse (A) is much greater than the

square of the wavelength (A� λ2); in this regime stimulated emission can be ignored. By

focusing the excitation beam near the diffraction limit, it may be possible to study stimulated

emission outside of the weak coupling limit on the single excitation level.

We achieved ground-Rydberg coherence times in excess of 20 µs using a state-insensitive

optical lattice. This coherence time is an order of magnitude improvement over experiments

with unconfined ensembles. One path for future research is using long-lived ground-Rydberg

coherence to improve collective qubits employing Rydberg ensembles. As stated in Divin-

cenzo’s third criteria for a universal quantum computer, coherence times must be much longer

than gate operations [18]. Quantum coherence is also crucial for many other phenomena in

quantum optics including photon bunching/antibunching [62], many-body Rabi oscillations

[14], and entanglement of multiple qubits [60].

Using the long ground-Rydberg coherence time in a state insensitive optical lattice, we

measured the differential nuclear-spin-dependent light shifts for principal quantum numbers

n, ranging from n = 30 to n = 65. This experiment should be relevant for high-fidelity

Rydberg qubits and gates. Also, outside of the world of quantum information, the ability to

measure the beat frequency between two nuclear sublevels could be used to measure other

frequency splittings, such as the remaining hyperfine splittings of Rb or Cs.

These experiments show the potential of Rydberg ensembles for practical applications

in the field of quantum information as well as for improving our understanding of the
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fundamental physical processes underpinning modern quantum optics.
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