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Abstract 
 

Breast cancer (BC) is the most commonly diagnosed cancer in women and the second most 

deadly. Trimodality therapy consisting of surgery, chemotherapy, and radiation therapy is used to 

treat the majority of BC patients. However, despite the use of RT, a significant portion of patients, 

specifically those with basal-like BC, develop recurrences within 5-years of treatment completion. 

In an effort to understand why patients with basal-like BC are more likely to recur than patients 

with luminal or Her2-enriched BC we undertook a series of studies to understand the biology 

underlying radioresistance in basal-like BC. We first performed transcriptomic and proteomic 

analysis in cell lines representing the spectrum of BC subtypes treated with radiation (RT). RT 

induced RNA and protein expression changes in cell cycle, DNA damage, and p53 signaling 

pathways, which may act as modulators of the RT response in basal-like BC and lead to resistance. 

RT was unable to induce genes and proteins related to apoptosis after RT in radioresistant, p53-

mutant BC cell lines, indicating that an inability to activate this pathway may contribute to 

radioresistance.  

Activation of the apoptosis pathway, through inhibition of Bcl-2 family anti-apoptotic 

proteins, radiosensitized p53-mutant, PIK3CA/PTEN wild-type basal-like BC. Specific inhibition 

of Bcl-xL, but not Bcl-2, lead to radiosensitization of p53-mutant PIKCA/PTEN wild-type basal-

like BC. Radiosensitization was mediated through RT induced Mcl-1 degradation, that in 

combination with Bcl-xL specific inhibition, increased the percentage of apoptotic cells. 

Overexpression of Mcl-1 in p53-mutant, PIK3CA/PTEN wild-type basal-like BC rescued this 

radioresistance. In vivo, pan inhibition of Bcl-2 family proteins or specific inhibition of Bcl-xL in 



 xvii 

combination with RT delayed tumor growth and increase time to tumor doubling and tripling. 

These data provide a rationale for using Bcl-xL inhibitors for the radiosensitization of p53-mutant, 

PIK3CA/PTEN wild-type basal-like BC. 

To expand upon these studies and further identify proteins related to recurrence we 

correlated gene expression to early recurrence (<3 years) in four independent datasets with patient 

outcomes and found TTK, a cell cycle kinase, was most differentially expressed. Inhibition of TTK 

(both genetic and pharmacologic) radiosensitized basal-like BC. Reintroduction of wild-type TTK, 

after endogenous TTK knockdown, rescued radiosensitization, however reintroduction of kinase-

dead TTK was unable to do so. TTK inhibition (both genetic and pharmacologic) led to unresolved 

double stranded DNA (dsDNA) damage over time after RT, indicating that TTK inhibition may 

compromise dsDNA repair efficiency. Using a homologous recombination (HR) specific reporter 

system, we found that TTK inhibition (both genetic and pharmacologic) decreased HR efficiency. 

Furthermore, TTK knockdown decreased Rad51 foci formation, a marker for active HR, after RT. 

Reintroduction of wild-type TTK, after endogenous TTK knockdown, rescued HR repair 

efficiency and Rad51 foci formation, however reintroduction of kinase-dead TTK was unable to 

do so. Using a specific non-homologous end joining (NHEJ) reporter system, we found that TTK 

inhibition (both genetic and pharmacologic) had no effect on NHEJ repair efficiency. In vivo, TTK 

inhibition (both genetic and pharmacologic) in combination with RT reduced tumor growth and 

increase time to tumor tripling in subcutaneous basal-like BC cell line models. In an orthotopic 

patient derived xenograft model, pharmacologic inhibition of TTK in combination with RT 

synergistically reduced tumor growth and increased time to tumor tripling. Together our results 
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show that a multi-omics characterization of the RT response led to successful nomination of 

radiosensitization targets that may be clinically tractable. 
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Chapter 1  

Introduction 

 

Breast cancer, diagnosis, and treatment 

Breast cancer is the most commonly diagnosed cancer in women and second most deadly 

behind only lung cancer (1). Approximately one in eight women will be diagnosed with breast 

cancer within their lifetime, however the lifetime risk from dying of breast cancer is only 

approximately one in forty (1-3). Early diagnosis is common, with 70% of cases diagnosed at an 

early stage (stage I and II). While Stage III and IV are less commonly diagnosed, they have the 

worst outcomes among breast cancer patients and are responsible for most of the mortality 

associated with breast cancer (3). This underscores the importance of early detection in breast 

cancer.  

More effective screening strategies have played a major role in improving survival for 

breast cancer patients. Historically breast cancer diagnoses were made based on physical exam 

findings, most commonly a palpable breast mass or enlarged lymph nodes (4). With these less 

sensitive techniques women were more commonly diagnosed with advanced stage disease, 

including breast cancers that had already spread to the lymph nodes. With the advent of 

mammography, detection of breast cancers are more commonly diagnosed at an earlier stage, 
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which has led to an improvement in survival (5, 6). Monitoring for disease progression or 

recurrence has also improved, due to more sensitive imaging and blood-based (circulating tumor 

DNA or circulating tumor cells) testing allowing for the earlier detection of disease recurrence 

and/or progression (7-10).  

Once diagnosed with breast cancer treatment decisions are predicated on several factors 

including tumor stage, tumor grade, as well as hormone-receptor status. Patients are typically 

treated using a trimodality therapy consisting of surgery, chemotherapy, and radiation therapy (3). 

This trimodality therapy, while very effective, does not result in a cure for all patients. Nuclear 

hormone receptor and HER2 amplification status are important markers for the effectiveness of 

therapy, with ER expression a predictive biomarker of response to endocrine therapy and HER2 

amplification being a predictive biomarker of response to anti-HER2 therapies including 

trastuzumab (11, 12). Hormone-receptor status and HER2 expression have also been used as a 

prognostic marker for patient outcomes (13, 14). Furthermore, patients often receive additional 

treatments that target these nuclear hormone receptors or HER2 amplification, in addition to the 

trimodality treatment discussed previously (15-17). 

 

Nuclear Hormone receptors and HER2 amplification in breast cancer 

Nuclear hormone receptors, estrogen receptor (ER) and progesterone receptor (PR), as well 

as human epidermal growth factor receptor 2 (Her2) have been well documented for their 

prognostic role in breast cancer (13, 14). ER and PR classically group together into ER/PR-positive 

(ER/PR+) subtype, while Her2-positive (Her2+) breast cancers represent an independent subtype 
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(18-20). Breast cancers that do not express ER, PR, or Her2 are defined as triple-negative breast 

cancers (TNBC) (21). The majority of breast cancer patients are diagnosed with ER+ breast cancer, 

while HER+ and TNBC are much less commonly diagnosed (3, 20, 21). ER, which is expressed 

in ~70% of breast cancers, is a hormone receptor that, when activated by its ligand estradiol, 

homodimerizes and translocates to the nucleus where it acts as a transcription factor that can 

activate expression of genes that govern growth and proliferation (22, 23). PR, a hormone receptor 

similar to ER, is often co-expressed with ER. However, PR’s role in breast cancer development 

and prognosis is still not well understood (24, 25). ER+ breast cancers have the best outcomes, in 

part, due to more indolent disease as well as targeted therapies aimed at inhibition of ER signaling, 

the driver of this subtype of breast cancer (26, 27). Amplification of the HER2 gene and subsequent 

overexpression of Her2 protein occurs in ~25% of breast cancers (28, 29). Her2 is part of the 

epidermal growth factor receptor (EGFR) family, and thus is involved in signaling processes 

related to cell growth (30, 31). While patients with Her2+ cancer historically had the worst 

outcomes, the discovery and clinical development of targeted therapies aimed at Her2 has led to 

increased patient survival, with survival rates for patients with Her2+ breast cancer rivaling 

survival rates in women with ER+ breast cancer (28, 32, 33). TNBC, which does not express any 

of the previously mentioned receptors, represent ~10-20% of breast cancer diagnoses. These 

cancer have the worst outcomes due to the inherent aggressiveness of the disease as well as a lack 

of targeted therapies available for treatment. Studies are underway to identify what pathways drive 

TNBC and how these pathways could be targeted for treatment (34-38). 
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Breast cancer subtypes 

Despite the utility of ER, PR, and HER2 expression as prognostic biomarkers and 

predictors of treatment response, it is clear that the expression of these three genes does not 

completely explain the heterogeneity of breast cancer. Seminal work by several investigators, 

including Dr. Chuck Perou at UNC, more fully characterized breast cancers using transcriptional 

profiling of breast cancer patient tumors (39, 40). This profiling has revealed a number of clinically 

and biologically relevant subtypes – Luminal A, Luminal B, Her2-enriched, and basal-like breast 

cancer, known as intrinsic subtypes of breast cancer (39). Importantly, these intrinsic subtypes are 

prognostic of patient outcomes as well as predictive of response to therapy, including 

chemotherapy (40-45). Additional studies have attempted to further stratify these breast cancer 

subtypes based on their gene expression profiles to aid in guiding therapeutic decisions and better 

stratify patient outcomes (36, 46-48).  

 

Luminal breast cancers 

The luminal A and luminal B breast cancer subtypes include the majority of ER/PR+, Her2-

negative (Her2-) breast cancers and are the most commonly diagnosed subtypes of breast cancer, 

comprising over approximately 40-60% and 10-20% of breast cancer diagnoses, respectively (3, 

39, 40, 49). Luminal A cancers have the best prognosis of all breast cancers, comprising less than 

2% of all breast cancer related deaths, while Luminal B breast have worse outcomes (50-52). While 

the underlying drivers of these differences in outcomes in not entirely clear, the drivers are at least 

multifactorial. Luminal A breast cancers are enriched for ER related genes but exhibit low 
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expression of proliferation markers, such as Ki67. Luminal B breast cancers are also enriched for 

ER related genes, however, they exhibit high expression of proliferation markers (CCNB1, 

CCNE1, MYBL2, MELK, etc) and are generally higher grade tumors compared to luminal A tumors 

(39, 40).  

In addition to treatment with surgery, radiation, and often chemotherapy, by virtue of their 

expression of ER, luminal breast cancers are treated with hormonal therapy targeting the ER. The 

addition of tamoxifen, a competitive antagonist of the ER, significantly increases survival for pre-

menopausal ER+ patients (11, 53). More recently, studies have shown that 3rd generation 

nonsteroidal inhibitors letrozole and anastrozole are more effective than tamoxifen as first line 

therapies for post-menopausal women with ER+ breast cancer (54-56). Despite the efficacy of 

these therapies, they are not universally effective, especially in women with metastatic breast 

cancer. In this setting, patients often develop resistance to hormone therapies creating a need for 

additional therapies to combat recurrences and further metastases (57, 58). CDK4/6 inhibitors, 

which target the cell cycle proteins to reduce proliferation and arrest cells, have been found to 

increase survival in metastatic breast cancer patients and represent the new standard of care, in 

combination with anti-estrogens, in the first line treatment of women with ER+ metastatic breast 

cancer (59, 60). 

 

Her2-enriched breast cancers 

The Her2-enriched (Her2+) subtype consists of the majority of breast cancers with an 

amplification of the HER2 gene and overexpression of HER2 protein and comprise ~20-25% of 
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breast cancer patients (39, 40, 61). Her2+ breast cancers are enriched for Her2 and Her2 related 

genes GRB7 and MMP11. Additionally, Her2+ cancers have high expression of proliferation 

related genes, which is thought to be driven by Her2 itself. Prior to the introduction of anti-Her2 

therapy, Her2+ patients had poor outcomes, similar to that of Luminal B breast cancers; however, 

the development of therapies specifically targeting Her2, the first targeted molecular therapy to be 

used for breast cancer treatment after hormone therapy, has increased survival for these patients 

(15, 32, 33, 62, 63). Trastuzumab (Herceptin), a monoclonal antibody and the first approved 

therapy targeting HER2, improved patient survival through binding to the extracellular domain 

(ECD) to inhibit dimerization (64-66). More recently, pertuzumab, a monoclonal antibody that 

interacts with a different ECD of HER2, prevents heterodimerization of HER2 and HER3 (67, 68). 

Although modest efficacy has been seen with the use of pertuzumab alone, studies are underway 

examining the combination therapy of pertuzumab with trastuzumab (68, 69). Furthermore, the 

development of ado-trastuzumab emtansine (T-DMI), a conjugation of trastuzumab and 

microtubule inhibitor, is currently under clinical trial and has been shown to improved survival as 

a second-line treatment strategy for Her2+ patients (65, 70-72). 

 

Basal-like breast cancers 

The basal-like subtype contains the majority of breast cancers with low expression of ER, 

PR, and Her2 (TNBC), as well as their related genes, with high expression of proliferation related 

genes (73). Basal-like breast cancers account for ~10-20% of breast cancers (74, 75). P53, 

PIK3CA, and BRCA1 mutations are commonly found in basal-like breast cancer, as is loss of the 
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Rb pathway (36, 37, 76). Patients with basal-like breast cancer have the worst survival outcomes 

across subtypes due to, at least in part, the high proliferative potential of the cancer as well as the 

lack of targeted therapies (77-79). Additionally, basal-like breast cancers are more resistant to 

conventional therapies, including radiation therapy (80, 81). While aromatase inhibitors and 

Herceptin are available for the treatment of luminal and Her2+ breast cancers, few treatments are 

available for the treatment of basal-like breast cancer. Inhibition of poly ADP-ribose polymerase 

(PARP), an enzyme family that plays a role in single strand DNA break repair mechanism, base 

excision repair, has recently been approved for treatment of BRCA1/2 mutant breast cancers, 

however this represents only a small subset of basal-like breast cancers (82-84). Currently, many 

therapeutic targets are under investigation for treatment of basal-like breast cancers. 

 

Difference in response to radiation between the subtypes 

 Despite the use of radiation, basal-like breast cancers continue to have highest rates of local 

recurrence across breast cancer subtypes. Radiation therapy and surgery are least effective in 

treating and curing basal-like breast cancers compared luminal and Her2+ breast cancer subtypes 

(49, 80, 85-88). This difference in clinical response to radiation therapy underscores the 

importance of understanding how different subtypes respond to radiation therapy and demonstrates 

the need for radiosensitization efforts for cancers resistant to radiation therapy. Several groups 

have sought to examine and predict radiosensitivity across cancers, however the factors underlying 

radioresistance remain unknown (89-91). 
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Radiosensitization mechanisms 

In trying to understand the radiation response across breast cancer subtypes and what might 

drive the differences in response to therapy, studies have also aimed to identify and characterize 

novel targets for the treatment of basal-like breast cancer (92). The majority of the 

radiosensitization targets identified to date can be grouped into four different categories of cellular 

pathways, each related to the response to radiation – DNA damage, cell cycle, cell death, and 

oxygen deprivation.  

   

DNA Damage 

 Radiation therapy causes DNA damage through either direct or indirect effects (93). Direct 

effects occur when ionizing radiation generates free electrons from orbital electron shells displaced 

by the energy of photons that then directly break covalent bonds either in the ribose phosphate 

backbone of the double helix or between the paired base pairs in the DNA. Indirect damage occurs 

as radical oxygen species (ROS) are generated due to displaced electrons that then react with the 

negatively charged DNA strand or oxidize lipids and proteins within the cell (93-95). The majority 

of DNA damage (~2/3 of the damage) is caused by these indirect effects, mediated by ROS, that 

interact with DNA to cause single and double strand DNA breaks (93). Although, single strand 

lesions make up ~60-70% of the damage cause by radiation therapy, double strand DNA (dsDNA) 

breaks are more lethal to cells, as the single strand repair mechanisms base excision repair and 

nucleotide excision repair more faithfully correct single stranded DNA breaks (96, 97). dsDNA 

damage is primarily repaired by two mechanism, homologous recombination (HR) and non-
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homologous end joining (NHEJ) (98-101). The fidelity of these repair pathways are critical for the 

repair of not only radiation induced damage but also natural damage occurring from other 

genotoxic factors (102).  

 HR repair uses the sister chromatid as a template to accurately repair dsDNA damage, thus 

repair by HR can only occur in late S phase or G2 of the cell cycle, when sister chromatids are 

available as a template for HR (103, 104). NHEJ repairs dsDNA breaks by blindly ligating two 

blunt ends of a dsDNA break in a non-templated fashion (105). This can lead to the introduction 

of insertions and deletions of base pairs (indels) or chromosomal rearrangements due to ligating 

of unpaired DNA breaks, making NHEJ the less accurate form of repair (105, 106). However, 

because NHEJ does not rely on sister chromatids for repair, cells are able to use NHEJ repair 

throughout the cell cycle to repair dsDNA damage and is more often utilized after ionizing 

radiation due to its cell cycle independent availability (105). 

 The accumulation of DNA damage has been shown to be lethal to cells. To this end, studies 

have shown that inhibition of DNA damage repair pathways can increase DNA damage to the 

point of cell death (107). Furthermore, inhibition of DNA damage repair proteins in combination 

with radiation therapy has proven to be a successful mechanism for increasing the efficiency of 

radiation therapy, by increasing DNA damage to the point of cell death (108). 

 Preclinical studies have shown inhibition of either ataxia telangiectasia mutated (ATM) or 

ataxia telangiectasia and Rad3-related (ATR), apex protein kinases in both the DNA damage and 

cell cycle checkpoint, leads to radiosensitization of cancer through decreased DNA damage repair 

after radiation (109-112). Inhibition of Rad51, a recombinase critical for successful HR, also 
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sensitizes cancers, including basal-like breast cancer cell lines, to DNA damaging agents through 

impaired DNA repair (113-115). Inhibition of NHEJ specific proteins, such as DNA-dependent 

protein kinase (DNAPK), can also radiosensitize cancer cells (116, 117).Additionally, inhibition 

of Poly ADP-ribose (PARP), an enzyme involved in the regulation of the multiple DNA repair 

mechanisms, radiosensitizes multiple cancer models, including TNBCs (118-125). Despite the 

efficacy of radiosensitization by inhibiting these proteins, the critical reliance of normal cells to 

these same proteins limits their clinical utility given the off target effects. 

   

Cell Cycle  

 Radiation therapy is most effective in the S and G2 phases of the cell cycle, when DNA is 

replicated for division and before/during mitosis, when mitotic errors can be propagated to 

daughter cells. After radiation therapy and in response to appropriately sensed DNA damage, 

cycling cells often arrest at G1 or G2 checkpoints (126, 127). These checkpoints, as well as others, 

ensure that damaged does not occur during synthesis of DNA and that cells do not continue through 

mitosis, thus propagating damaged DNA into daughter cells. This prevents damaged cells from 

propagating mutations and breaks caused by radiation therapy (128). To increase DNA damage 

and mitotic errors after DNA damage, researchers have used inhibitors targeted towards critical 

members of cell cycle checkpoints to increase cell cycling and DNA damage (129, 130). 

Additionally, many cell cycle targets that have been targeted for radiosensitization have also been 

found to play a role in DNA damage response, as the two are closely related (129-132). Inhibition 

of Wee1, a cell cycle kinase responsible for phosphorylating cdc2, which in part controls entry 
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into mitosis, has been shown to increase radiosensitivity by removing the G2 checkpoint thus 

pushing cells into mitosis (132-134). Inhibition of maternal embryonic leucine zipper kinase 

(MELK), a known cell cycle protein, has been shown to specifically radiosensitize TNBCs (131). 

Inhibition of Checkpoint kinase 1 (Chk1), a protein known to regulate both cell cycle and DNA 

damage pathways, has been shown to radiosensitize multiple cancer models, including TNBC, 

through changes to the cell cycle, DNA damage repair, and cell death (129, 135-138). Finally, 

CDK4/6 inhibition, which leads to G1/S transition blockade, is merging as a potential 

radiosensitizing strategy in breast, head and neck, and glioblastoma cancer treatment (139-141). 

 

Cell Death 

 Radiation therapy causes DNA damage that can lead to the induction of programmed cell 

death, including apoptosis, ferroptosis, autophagy, mitotic catastrophe, and necrosis (142-146). 

Each cell death pathway operates independent of one another and are thus targeted separately for 

radiosensitization. Radiation therapy has been thought to primarily induce apoptosis, a 

programmed cell death mechanism, through unrecoverable DNA damage (146). However, studies 

detailing the effect of radiation on the induction of ferroptosis and autophagy underscore the fact 

that different cancers likely induce programmed cell death via different mechanisms (147-150). 

Previously, groups have sought to radiosensitizes multiple cancer models though inhibition of anti-

apoptotic proteins (Bcl-2 family proteins Bcl-2, Bcl-w, Bcl-xL, and Mcl-1), to increase cell death 

after radiation therapy (151-155). Other studies have sought to increase radiosensitivity through 

modulating p53 phosphorylation to increase apoptosis (156). Inhibition of MDM2, an E3 ubiquitin 
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ligase for p53, has been shown to increase both apoptosis and autophagy (157, 158). Interesting, 

both inhibition and activation of autophagy have been shown to enhance radiation effectiveness, 

detailing the complication nature of autophagy in cancer treatment (149, 150, 159, 160). Inhibition 

of autophagy has been shown to increase apoptosis related cell death, while decreasing nutrients 

available for cancer cells (159-161). While other studies have demonstrated that increased 

autophagy leads to greater cell death and regression of tumors (150, 162). Multiple studies have 

detailed how inhibition of cell cycle targets in combination with radiation therapy can lead to an 

increase in mitotic catastrophe related cell death, through deregulation of cell cycle checkpoints 

necessary to maintain the integrity of DNA (130, 163). 

 

Oxygen Deprivation 

 As noted previously, the majority of DNA damage induced by radiation therapy is 

mediated through indirect effects and reliant on oxygen for the production radical oxygen species 

(ROS) that subsequently cause DNA damage (164, 165). It has been well characterized that tumors 

with low oxygen supply are more resistant to radiation therapy, and normalization of oxygen 

tension in tumors (either through normalization of the tumor vasculature or through oxygen 

mimentics) has improved the efficacy of radiation in multiple preclinical and clinical studies (165, 

166). TNBC are noted to be more hypoxic than other subtypes of breast cancers, likely contributing 

to their resistance to radiation therapy (167-169). Radiation therapy is often give in a fractionated 

manner to patients, in part, because poorly vascularized tumors have lower oxygen content and are 

therefore more resistant to radiation (165, 170). With daily fractionated, the more normoxic 
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“outer” cells of the tumor are preferentially killed and removed, allowing for diffusion of oxygen 

into the previously hypoxic core. Thus, these previously hypoxic centers are exposed to oxygen 

and increase their likelihood of cell kill with each successive fraction of radiation. When sequenced 

over weeks to months (often 30-40 fractions of treatment for patients with cancer), radiation can 

effectively kill all clonogens in a tumor, including those that were previously at the hypoxic center 

of the tumor (171, 172). As hypoxic tumors are more resistant to radiation therapy, efforts have 

been made to radiosensitize hypoxic cancers (173, 174). Studies have shown that re-oxygenation 

of hypoxic in vivo TNBC models leads to radiosensitization (175). 

 

Novel radiosensitizers 

 While the majority of radiosensitization agents and experimental radiosensitization targets 

are directed toward the previously mentioned cellular pathways, more recently studies have shown 

that inhibition of receptors and signaling networks can radiosensitize cancers. Inhibition of 

androgen receptor (AR), a hormone receptor expressed in prostate and a subset of breast cancers, 

has been shown to radiosensitize both prostate and TNBCs through regulation of DNA damage 

repair genes (176-178). Inhibition of PIK3CA and related pathway members, have also been 

shown to increase radiosensitization across numerous cancer models. Studies have detailed how 

inhibition of the PIK3CA pathway leads to cell cycle arrest, decrease DNA damage repair 

efficiency, and increased apoptosis (179-182). 
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Our Studies 

 In an effort to further understand how breast cancer subtypes respond to radiation therapy, 

we describe transcriptomic and proteomic changes that occur in breast cancer in response to 

radiation therapy. Using this data we compared the radiation response across breast cancer 

subtypes to describe differences that may dictate the effectiveness of radiation therapy. This allows 

for the nomination of potentially key regulators of the radiation response that be targeted for 

radiosensitization of basal-like breast cancers. We show that p53, in part, mediates the radiation 

response and also demonstrate how radioresistance in p53 mutant breast cancers might be 

overcome. Finally we demonstrate that inhibition of a cell cycle protein, TTK (Mps1), canonically 

involved in the regulation of the spindle assembly checkpoint (SAC) complex, radiosensitizes 

aggressive breast cancers through a non-canonical role in the DNA damage response. Together 

our studies provide a more complete view of the radiation response across breast cancer subtypes 

and nominate radiosensitization targets to aid in the treatment of the most aggressive breast cancer 

subtype, basal-like breast cancer. 
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Chapter 2  

Multi-omics Characterization of the Breast Cancer Radiation Response 

Summary 

Radiation therapy is a mainstay of treatment of breast cancer and delivered to the majority of breast 

cancer patients after surgery; however, relatively little is known about the breast cancer radiation 

response. The effectiveness of radiation differs across breast cancer subtypes and mutational 

profiles, indicating that these cancers likely have different transcriptomic and proteomic responses 

to radiation. Understanding how different breast cancer subtypes and mutations respond to 

radiation will allow for a further understanding of why breast cancers exhibit a heterogeneous 

response to radiation. Using microarray and reverse phase protein array (RPPA) we characterize 

the transcriptomic and proteomic response to radiation across a panel of breast cancer cell lines. 

Transcriptional changes occur as early as 12- and 24- hours after radiation across cell lines, though 

earlier responses were not detected. Radiation induces DNA replication, cell cycle, and p53 

responses across all cell lines; however, differential expression of cell cycle related genes changes 

in a breast cancer subtype-dependent manner. Transcriptionally, apoptosis pathway related genes 

are induced in p53 wild-type cell lines but not in p53 mutant cell lines. RPPA protein analysis 

demonstrates differential protein and phosphor-protein expression changes in apoptosis and cell 

cycle pathways across breast cancer subtypes and p53 mutation status. Together, our data provides 

the most comprehensive description of the radiation response to date. 
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Introduction 

Breast cancer is the most commonly diagnosed cancer among women and the second most 

deadly (1). Breast cancer subtyping is based on the expression of three receptors estrogen receptor 

(ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2), and 

this expression also dictates prognosis in this disease (2-4). More recently, advances in 

transcriptomic sequencing technology have allowed for subtyping of breast cancer based on the 

expression of genes in each tumor. For example, a panel of fifty genes has been used to classify 

breast cancers into four different subtypes, Luminal A, Luminal B, Her2-enriched (Her2+), and 

basal-like breast cancer. Luminal A breast cancers are typically ER-positive (ER+)/PR-positive 

(PR+) with low expression of the proliferation marker Ki67. Luminal B breast cancers are also 

typically ER/PR+ but with high Ki67 expression (5, 6). HER2 enriched breast cancers typically 

have high expression of the Her2 receptor, due to amplification of the HER2 gene, though this is 

not required for a tumor to be classified as Her2-enriched (5-7). Finally, basal-like breast cancers 

typically have low expression of all nuclear hormone receptors, lack Her2 amplification, and have 

high expression of proliferation and cell cycle markers (5, 6). Importantly, subtyping of tumors 

has allowed for the discrimination of patient outcomes based on standard treatment modalities and 

can be used to guide treatment decisions as well as help to predict their response to treatments (8-

13).  

Radiation therapy (RT) is given to the majority of breast cancer patients regardless of their 

subtype; however, patients with basal-like breast cancer are more likely to have locoregional 

recurrences than patients with luminal or Her2+ breast cancer, even when treated with RT (14, 



 29 

15). Unfortunately, the reason for the increased rates in locoregional recurrence within the basal-

like breast cancer subtype has yet to be elucidated despite the numerous studies describing this 

phenomenon (14, 16, 17). 

Previous studies aimed at characterizing the RT response have focused solely on the 

transcriptional response (18). However, as many changes after RT are acute changes, interrogating 

the protein and phosphoprotein changes elicited by radiation treatment remains a critical gap in 

our understanding of the breast cancer response to ionizing radiation. Reverse phase protein array 

(RPPA) is a miniaturized dot-blot array capable of measuring hundreds of protein/phosphoprotein 

changes simultaneously (19). Recently, RPPA has been used to measure and identify complex 

signaling changes in response to various treatments (20-23). Using this approach, proteins and 

their corresponding phosphoproteins can be quantitatively assessed, thus providing a snapshot of 

the activation state of assayed proteins, pathways, and networks in a given tumor (24-27).  To 

identify proteins and pathways that may be mediators of radiation response, one could use RPPA 

to identify proteins and phosphoproteins whose expression changes acutely after radiation 

treatment in multiple models of breast cancer, representing various subtypes of this heterogeneous 

disease. To date, however, no studies have examined the radiation response using RPPA or using 

a multi-omics approach. 

In an effort to more fully characterized the RT response we used publicly available 

microarray data in which breast cancer cell lines were harvested 24 hours after 5 Gy RT to examine 

differential expression across all breast cancer subtypes (18). We also used microarray data 

generated within our lab to pair with the open source data. These data, in combination with RPPA, 
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allowed us to more fully characterize the RT response in various subtypes of breast cancer. 

Furthermore, these data allowed us to nominate multiple targets that may be regulating the 

radiation response in breast cancer and thus serve as targets for the radiosensitization of breast 

cancer. 

Results 

High variance in public dataset leads to low differential gene expression 

To begin to characterize the transcriptomic changes after RT, we used publically available 

data from Gene Expression Omnibus (GEO) (GSE59732) in which breast cancer cell lines, across 

all subtypes, were given 5 Gy RT (a clinically relevant dose of radiation) and harvested for RNA 

24 hours after RT (18). Previously published differential expression analysis showed only 4 of the 

16 cell lines had robust different gene expression 24 hours after RT, and these changes were only 

seen in the luminal-subtype of cancers. This led the authors to claim that only the luminal subtype 

of breast cancer cell lines exhibit differential expression after radiation while the basal-like or 

HER2 enriched subtype do not. Clinical response data, including data already discussed in this 

thesis, contradicted this claim and we sought to independently verify this claim. To do this we 

accessed the primary source data from the authors available from GEO and performed our own 

differential expression analysis. Our analysis also showed that only the 4 luminal-like breast cancer 

cell lines had any appreciable differentially gene expression after radiation (data not shown). To 

investigate further, we performed principal component analysis (PCA) to determine how similar 

the technical replicates within the experiment behaved. PCA analysis is a statistical method used 
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to measure the similarity between samples by combining multiple unrelated variables into singular 

linear values referred to as principle components (PC). These PCs are then plotted together to 

visually depict the similarity of samples to one another (28).  

In the estrogen receptor-positive (ER+), luminal breast cancer cell lines, MCF-7, T47D, 

and ZR-75-1 had tight clustering of triplicate treatment samples together (Figure 2.1A-C). 

However, PCA of the CAMA-1 samples showed inconsistent clustering of triplicate samples 

(Figure 2.1D). When we performed PCA for Her2+ (Figure 2.2A-D), triple-negative breast cancer 

(TNBC) (Figure 2.3A-E), and normal cell lines (Figure 2.4A-C), we saw inconsistent clustering 

across all cell lines except for HBL-100 using PCA. Unsurprisingly the only cell lines with robust 

differential gene expression reported by the authors were the four cell lines in which PCA produced 

the expected pattern of technical replicate clustering. We therefore concluded that a lack of 

differential gene expression in non-luminal cell lines was not due to radiation only eliciting a 

response in luminal-type tumors, rather due to high variance from inconsistent clustering of their 

non-luminal subtype samples. 

Radiation induces cell cycle changes and p53 pathway response 

While we were unable to use the publically available datasets to characterize the 

transcriptomic changes after radiation, we performed our own transcriptomic analysis to determine 

gene expression changes induced after radiation treatment in three breast cancer cell lines (MDA-

MB-231 [TNBC], BT-549 [TNBC], and MCF-7 [luminal]) across multiple time points to begin to 

understand the timing of transcriptomic changes after RT. Here, we harvested RNA from the three 

cell lines 3-, 12-, and 24-hours after 4 Gy RT and performed microarray analysis. Although robust 
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differential gene expression was found at the 12- and 24-hour time points across all three cell lines 

(Figure 2.5A), little differential gene expression was seen at the 3-hour time points in MDA-MB-

231 (1 gene with Log(FC) > 0.4, FDR < 0.05) and BT-549 (10 gene with Log(FC) > 0.4, FDR < 

0.05) cell lines, and more modest differential expression was seen at 3-hours in MCF-7 cell line 

(135 gene with Log(FC) > 0.4, FDR < 0.05). Volcano plots at 12- and 24-hours in all three cell 

lines show the distribution of differential expression across cell lines (Figure 2.5B-G). These data 

suggest that the transcriptional level changes induced by radiation are not immediate, and that the 

signaling cascade that induces radiation-induced gene expression changes is a delayed event that 

takes hours to be detected. 

 PCA analysis was perform to ensure appropriate clustering was seen across time points 

within each cell line. Unlike with the publically available datasets, both MDA-MB-231 and BT-

549 cells had consistent technical replicate clustering at the 12- and 24-hour time points as well as 

robust differential expression, as would be expected (Figure 2.6A-B & D-E). In contrast, the 3-

hour time point had inconsistent clustering, potentially owing to the lack of differential expression 

noted in these samples (Figure 2.6C&F). The MCF-7 cell line had replicate clustering at the 24-

hour time point, while the 12- and 3-hour time points had more loose clustering (Figure 2.6G-I). 

Interestingly, MCF-7 cells had high levels of differential gene expression across all time points 

despite the lack of clear triplicate clustering at early time points.  

 While differential gene expression analysis allows one to understand expression changes 

on a gene-by-gene basis, it does not allow for a more global assessment of pathways or cellular 

processes that may be changing. To address this limitation, we performed KEGG (Kyoto 
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Encyclopedia of Genes and Genomes) analysis to identify pathways enriched after radiation, using 

differentially expressed genes as the input (29). Across all three cell lines numerous pathways were 

significantly altered, including cell cycle and p53 signaling, which were enriched 24-hours after 

RT (Figure 2.7A-C). Pathways enriched 12-hours after RT included DNA damage repair 

pathways such as homologous recombination and Fanconi anemia as well as cell cycle and p53 

signaling, as seen with the 24-hour time point (Figure 2.7B&C). MDA-MB-231 cells 12-hours 

after RT did not have enough differentially expressed genes for accurate KEGG analysis and was 

therefore the results were excluded. 

Radiation induces different changes to cell cycle related genes between luminal and basal-

like breast cancers 

 To further investigate pathways that may be related to RT across cell lines, we specifically 

looked at differentially expressed genes within the cell-cycle pathway. In both MDA-MB-231 and 

BT-549 cell lines we saw similar patterns of downregulated genes in G1 and S phase of the cell 

cycle and upregulated genes in the G2 and mitosis phases of the cell cycle. Downregulated genes 

included E2F1-5, Cyclin D, E, and A, as well as CDK2. Upregulated genes included CDK1, Plk1, 

Rb, and several genes associated with the spindle assembly checkpoint (SAC) complex (Mps1, 

Mad1, Mad2, Bub1, etc) (Figure 2.8A&B). However, in the MCF-7 cell line, which is p53 wild-

type and ER+, we see downregulation of G2 and mitosis related genes, such as CDK1, cyclin A 

and B, as well as many members of SAC complex (Mps1, Mad1, Mad2, Bub1, etc) (Figure 2.9). 

In addition, few changes were identified in genes related to G1 and S phase in these luminal-like 

MCF-7 cells compared to MDA-MB-231 and BT-549 cell lines. Together these results indicate 
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that different subtypes of breast cancer likely respond differently to RT as evidenced by the 

differential effects of RT on cell-cycle effects, DNA damage response, and other pathways in these 

models. These data also suggest that these differences in gene expression may be dependent on 

p53 functional status, as it is a major checkpoint protein after DNA damage and is induced by 

ionizing radiation. 

p53 mutation status may dictate apoptotic response to radiation therapy 

 One noticeably absent pathway from all cell lines and across all time points was the 

apoptotic pathway. As RT is known to induce single- and double strand DNA breaks that, when 

unrepaired, lead to a subsequent induction of apoptosis, the lack of differentially expressed genes 

within the apoptosis signaling pathway was surprising (30, 31). To investigate this further we 

interrogated the gene expression changes of over 40 genes known to be related to apoptosis. Gene 

expression changes were then visualized by generation of a heat map and gene expression changes 

after RT were assessed. Across all three time points the MCF-7 cell line has a consistent group of 

apoptosis-related genes whose expression was significantly altered, including genes whose 

expression went both up- and down- after RT, particularly at the 3- and 24-hour time points. 

However, in both basal-like cell lines, MDA-MB-231 and BT-549, we see general downregulation 

of transcripts associated with apoptosis and a lack of induction of the pathway globally (Figure 

2.10A-C). While the differences seen between basal-like and luminal breast cancer cell lines could 

be due to estrogen receptor status, p53 mutation status, or other factors, we hypothesized that p53 

mutations may be causing differential regulation between cell lines. 
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 To test this hypothesis we used the open source data from GEO previous described. Using 

the four cell lines for which there was appropriate clustering on PCA and for which we had  robust 

differential gene expression data, three of these cell lines were known to be wild-type for the p53 

gene while one had a mutation in p53. When we visualized gene expression in the apoptotic 

pathway, a similar trend as noted in our initial analysis emerged. The p53 wild-type cell lines 

(MCF-7, ZR-75-1, and HBL-100) had upregulation and differential expression of many genes in 

the apoptosis pathway, while the p53 mutant cell line (T47D) had very little upregulation of 

apoptosis related genes (Figure 2.10D). Using this second dataset we were able to show that within 

the same subtype of breast cancer, p53 mutation status could predict differential expression of 

apoptosis related genes suggesting alterations in pathway activity between p53 wild type and 

mutant models of breast cancer. 

Microarray data from an additional eight cell lines is inconclusive  

 In an effort to make more definitive conclusions about the transcriptional consequences of 

RT, we treated eight additional cell lines with 4 Gy RT and harvest RNA 24-hours after RT. Five 

basal-like breast cancer cell lines, SUM-159, MDA-MB-453, MDA-MB-468, CAL-120, and 

HCC-38 and 3 luminal cell lines, T47D, CAMA-1, and BT-474 were included in our second 

analysis that again utilized a Affymetrix microarray platform. Unfortunately, after differential 

expression analysis none of the additional eight cell lines had more than 50 differentially expressed 

genes (Figure 2.11A).  

 We performed PCA across all samples to determine if the new samples clustered by cell 

line or RT treatment. Each cell line clustered together separately from RT treatment (Figure 
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2.11B). When we performed PCA within each cell line we found inconsistent clustering across all 

cell lines (Figure 2.12A-H). This again indicates that high levels of variance caused low 

differential expression, which was seen previously in the samples downloaded from GEO, making 

it impossible to draw conclusions about radiation-induced gene changes in these cell lines. 

Reverse phase protein array shows changes in protein expression after radiation therapy  

 Thus far all of our analyses related to gene expression changes that occur after radiation 

were limited to transciptomic analysis of differentially expressed RNA transcripts. This ignores 

protein and phosphoprotein changes that may be induced by radiation in breast cancer models that 

may influence sensitivity to this treatment. To aid in our characterization of changes that occur in 

response to RT, we performed reverse phase protein arrays (RPPA) with protein harvested 1-, 6-, 

and 24-hours after 4 Gy RT.  

 RPPA is a novel quantitative protein detection system that relies on validated, high-quality 

antibodies to measure protein expression levels and function states of many signaling pathways. 

RPPA is also able to quantitate very small amounts of protein expression (femtograms of target in 

nanograms of starting material), and in particular the activation state of cellular signaling pathways 

and networks using phospho-specific antibodies. Thus, RPPA may be useful for target discovery, 

in addition to being a means of measuring the global activation status of multiple signaling 

pathways at one time in individual samples after treatment, including radiation (32, 33). 

We compared changes in protein expression at 1-, 6-, and 24-hours after RT to an untreated 

control group for each cell line. To examine proteomic changes after RT we used multiple basal-

like (MDA-MB-231 and BT-549) and luminal (MCF-7 and T47D) breast cancer cell lines. We 
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expected to see significant overlap between basal-like cell lines and luminal cell lines separately; 

however, no clear proteomic changes were seen within breast cancer subtypes at either 1- or 24- 

hours (Figure 2.13A&B). In the basal-like cell lines only Her3, p53, p-FAK (Y925), caveolin, and 

p-EGFR (Y1068) increased in both cell lines and only XRCC1, p-Cdc2 (Y15), and AURKB 

decreased. In the luminal cell lines only p-AKT (T308), p-ERK1 (S217), Bcl-xL, and CCND3 

increased and RSK, CASP9 Cleaved-5330, and CAS7 Cleaved-D198 decreased in both cell lines. 

At the 24-hour time point Her3, p-FAK (Y925), caveolin, and p-EGFR (Y1068) increased in both 

basal-like cell lines, while multiple genes related cell cycle (p-Wee1 [S625], p-Cdc2 [Y15], p-

CDK1 [S296]), AKT signaling (p-AKT [S473 and T308], and MAPK signaling (p-AMPK [T172], 

p-MAPK [T202]) decrease. In the luminal cell lines multiple genes related to MAPK and MEK 

signaling increase (MEK1, pMEK1 [S217], p-ERK1 [S217], and MAPK [T202]) while cell cycle 

(p-p27 [T157] and p27) and Src (Src and p-Src [Y416]) related genes decreased. This small number 

of commonly differentially expressed genes within breast cancer subtypes was unexpected and 

indicates that the RT response may not be dictated by breast cancer subtype but by other factors, 

as has been suggested before (34). 

 While proteomic changes across all genes show little overlap between breast cancer 

subtypes, we next focused on genes related to the apoptotic response to identify if various breast 

cancer cell lines had a similar proteomic response to RT that was identified in our transcriptomic 

analysis. Interesting the T47D cell line, a luminal cell line with mutant p53 had increased 

expression of several apoptotic proteins (Figure 2.14A&B). Additionally, all p53 mutant cell lines 

had a large increase in p53 protein expression 1-hour after RT, indicating that those cell lines may 
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have been attempting to elicit a p53 response but were unable to due to mutations in the p53 gene 

(35). Also, of note, Bcl-2 family proteins (Bcl-xL and Mcl-1), which are clinically targetable, had 

robust changes in expression 1-hour after RT, indicating that these may be viable targets for 

radiosensitization in specific breast cancers worthy of additional interrogation. 

 We also examined changes in cell cycle proteins after RT and found that there is a general 

decrease in cell cycle proteins across all cell lines after RT (Figure 2.14C&D). Although few 

genes decreased across all cell lines (p27 and p-p27 [T157]) many cell cycle related protein were 

downregulated in 3 of the 4 of the breast cancer cell lines including p-CDK1 (S296), pCdc2 (Y15), 

p-Wee1 (S462), AURKB, Wee1, and Chk1. Many of these genes were downregulated both 1- and 

24-hours after RT, which is an expected result, as RT is used to decrease tumor growth (36-38). 

 Finally, as ionizing radiation elicits its effect by inducing DNA damage, we evaluated DNA 

damage response genes separately to examine how each cell line respond to DNA damage over 

time. Three cell lines (MDA-MB-231, MCF-7, and T47D) exhibited a 2-fold increase in phospho-

ATM (Ser 1981) (p-ATM), an indicator of DNA damage, 1-hour after RT (Figure 2.15A, C, & 

D). Across all cell lines, proteins that increase in response to RT decrease to normal levels by 24-

hours (Figure 2.15A-D). This is likely because the DNA breaks have been successfully repaired 

by this time, which aligns with other studies showing that double strand DNA damage is repaired 

by approximately 24-hours across cancer cell line models (39, 40). Taken together, these RPPA 

results provide a more complete view of how breast cancers respond to RT and show that breast 

cancer cell lines respond differently independent of subtype. 
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Discussion 

In our studies we show, using a multi-omics approach (RNA and protein quantification), 

that there is a heterogeneous response to radiation therapy in breast cancer cell lines, independent 

of subtypes both transcriptomically and proteomically. We go on to highlight differences in gene 

expression across multiple cell lines and subtypes of breast cancer. We use this data to perform 

pathway analysis and show that RT induces changes in DNA replication, cell cycle, and p53 related 

genes across all three cell lines at the transcriptomic level. Furthermore, we show that genes within 

the cell cycle pathway are upregulated in G1 and S phase in the luminal call line, MCF-7, while 

genes in G2 and mitosis are downregulated. However, in the basal-like cell lines, MDA-MB-231 

and BT-549, we see downregulation of cell cycle genes within G1 and S phase and upregulation 

of genes in the G2 and M phases of the cell cycle. Finally, we note the lack of programmed cell 

death, in multiple breast cancer cell lines model, through apoptosis identified using pathway 

analysis and hypothesize that re-activation of the apoptosis pathway may be an effective strategy 

to radiosensitize radioresistant breast cancer cell lines by inducing cell death after RT. Using 

reverse phase protein array (RPPA) we also show specific changes in protein expression across 

multiple pathways including cell cycle, DNA damage, and apoptosis pathways. Together, our 

results provide a more comprehensive and accurate description of changes, both transcriptomic 

and proteomic, after RT in breast cancer cell lines. These data provide additional insights into 

targetable genes and pathways that can be followed up with in vitro and in vivo studies. 

 We began our studies by attempting to use open source microarray data, in which breast 

cancer cell lines were treated with radiation and compared to untreated samples. Unfortunately, 
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these data were unusable due to high variance between technical replicates. Previously, this data 

was used in a study where the authors concluded that only luminal subtype breast cancer cell lines 

have differential expression after RT, while Her2+ and basal-like cell lines do not have differential 

expression after RT (18). Based on our re-analysis of that data, we draw a different conclusion and 

as noted above, the lack of differential expression in Her2+ and basal-like subtypes was likely due 

to high variance in the data and not biological difference in the RT response. Additionally, we 

attempted to replicate their study to provide data with lower variance that may be useable for 

differential gene expression and pathway analysis. However, as seen in the previously published 

study, our data too had high variance and low differential expression across several cell lines. This 

highlights the importance of quality assurance in large datasets, including transcriptomic data, and 

that without proper quality checks, inappropriate conclusions can be drawn using flawed data. 

While the cause of the variance is unknown, we analyzed RNA quality before microarray analysis 

and all samples had an RNA integrity number (RIN) of 9 or greater, indicating RNA quality was 

not a reason for high variance. Furthermore, all samples with a cell line were processed and run 

on a single microarray chip, thereby eliminating any batch effects in each sample. This makes it 

difficult to define what caused the high variance and low number of differentially expressed genes 

among many cell lines. Interestingly, there was overlap between breast cancer cell lines on the 

open source dataset and what was run by our group. Within the overlap only one cell line, MCF-

7, showed consistent differential expression after RT. 161 genes were differentially expressed in 

both datasets, about 33% of the total genes in the Duke dataset (which had less total differentially 

expressed genes) (Figure 2.16A). However, when we performed KEGG pathway analysis six of 
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the top 10 pathways were common across both datasets, indicating that genes in similar pathways 

were differentially expressed (Figure 2.16B). Furthermore, of the four pathways not in common 

in the top ten, three were still significantly enriched in the opposing dataset (data not shown). 

Together, these results indicate that RT induces similar pathway responses in the MCF-7 cell lines 

across multiple groups. 

While we were unable to generate usable data in eight cell lines, we did generate usable 

microarray data in three cell lines, at three time points, after RT. In this study we were able to 

accurately cluster triplicates together and perform differential expression analysis and pathway 

analysis. Here, we were able to show that unlike in other studies, basal-like breast cancer cell lines 

did in fact have transcriptional changes after RT (18). Additionally, we identified that basal-like 

breast cancer cell lines had different transcriptional cell cycle changes as compared to a luminal 

breast cancer cell line. This difference in cell cycle gene expression may contribute to basal-like 

breast cancers to be more radioresistant than luminal cell lines. Additionally, differences in 

expression of DNA damage linked genes, p53 pathway genes, and apoptosis related genes likely 

contribute to radioresistance in basal-like breast cancer compared to luminal breast cancer. Theses 

pathways have all previous been targeted for radiosensitization but no studies to date have shown 

transcriptional differences across all pathways after RT between basal-like and luminal breast 

cancer subtypes (41-45).  

Alternatively, differences in gene expression across these pathways could also be linked to 

p53 mutation status, as both MDA-MB-231 and BT-549 cell lines have mutations in p53, while 

MCF-7 cells have wild-type p53 (46, 47). P53 is a master regulator of genomic integrity and DNA 
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integrity and has been well characterized in the regulation of cell cycle, DNA damage response, 

and apoptosis. Thus, functional p53 may be regulating gene expression changes between breast 

cancer subtypes in a p53-dependent manner, and this regulation is lost in the p53 mutant models 

(48-52). The use additional cell lines, with different p53 mutational status, would help to further 

characterize the role of p53 in mediating these gene expression changes and whether gene 

expression differences are due to differences in p53 mutational status or breast cancer subtypes.  

Our RPPA data show consistent changes in protein expression after RT in genes that are 

known to change after (i.e. controls). For example, phospho-ATM, a canonical marker for DNA 

damage significantly changed 1-hour after RT in three of the four cell lines (53, 54). In BT-549 

cells, which did not have an increase in p-ATM, a large increase in phospho-CHK2, a 

phosphorylation target of ATM, was seen (55). Although no increase in p-ATM was seen in this 

cell line, the increase in p-CHK2 acts a strong positive control that the RT did induce DNA 

damage. Furthermore, all four cell lines had a decrease in multiple members of the cell cycle 

pathway, which also acts as an experimental positive control for RT. However, we were limited in 

the number of proteins and phosphor-proteins that we could assess (only ~100 in the current study) 

and future studies utilizing additional validated antibodies will allow for a more complete picture 

of the protein and phosphoprotein changes occurring after radiation. 

Using a multi-omics approach we provide the most comprehensive characterization of how 

breast cancer cell lines respond to radiation therapy. Understanding transcriptomic and proteomic 

changes in response to radiation allows for the nomination of potential radiosensitization targets 

for radioresistant breast cancers. Our data show that activation of the apoptosis pathway in basal-
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like breast cancer cell lines may be a promising strategy for radiosensitization. Furthermore, G2 

and mitosis related cell cycle proteins (CDK1, Plk1, TTK/Mps1, Bub1, and Wee1) that are 

overexpressed in basal-like breast cancers after radiation therapy may also represent promising 

targets for radiosensitization. We hypothesize that inhibition of these proteins will increase the 

effectiveness of radiation therapy in aggressive basal-like breast cancers, that are typically resistant 

to radiation therapy. These hypotheses will be explored in the following 2 chapters 

 

Methods 

Irradiation 

Irradiations were performed using a Kimtron IC 225 (Kimtron Medical) at a dose rate of 

approximately 2 Gy/min in the University of Michigan Comprehensive Cancer Center 

Experimental Irradiation Core (Ann Arbor, MI). Dosimetry is performed semiannually using an 

ionization chamber connected to an electrometer system that is directly traceable to a National 

Institute of Standards and Technology calibration. The beam was collimated with a 0.1 mm Cu 

inherent filter and a 0.2 mm Cu filter was used for cell line irradiation. A 2 mm Cu filter was used 

for in vivo xenograft experiments.  

RNA isolations 

Cells were treated with 4 Gy RT or no treatment and harvested either 1-, 6-, or 24-hours after 

radiation. After the indicated treatment RNA was isolated from cells by the manufacturer’s 
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instructions on the miRNeasy kit (Qiagen). The optional DNase treatment was performed on 

each sample. 

Microarray platform 

RNA integrity number (RIN) of 9 or higher was measured for each sample using an Agilent 2100 

Bioanalyzer. The Human Gene ST 2.1 plate was used for microarray analysis and processed by 

the University of Michigan microarray facility using the Affy Plus kit.  

Microarray analysis 

Microarray analysis was performed in R version 3.6.1. Gene values were assigned using robust 

multi-array average (RMA), which is able to normalize values to the background of each chip and 

output the data in log-transformed values (56). A weight linear model specifically designed for 

microarray analysis was fit to the data to perform differential expression analyses of interest (57). 

We then used a gene-by-gene algorithm to assigned weights to each and thus increasing the power 

of downstream differential gene expression (58). Upon calculation of differential expression the 

data were analyzed (significantly impacted pathways, biological processes, molecular interactions, 

miRNAs, SNPs, etc.) using Advaita Bio’s 

iPathwayGuide (https://www.advaitabio.com/ipathwayguide). This software analysis tool 

implements the ‘Impact Analysis’ approach that takes into consideration the direction and type of 

all signals on a pathway, the position, role and type of every gene, etc., as described in (59-62). 

Threshold for differential expression was log2 fold change (FC) greater than or equal to 0.4 and a 

Bonferroni corrected p-value of less than or equal to 0.05. R version 3.4 was used for principal 
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component analysis (PCA) and programs used include, limma, oligo, ggplot2, pd.hugene.2.1.st, 

and dplyr (63, 64). 

Protein isolation  

Breast cancer cells were grown in 6-well plates, treated with 4 Gy RT, and harvest either 3, 12, or 

24 hours after RT. Cells were then washed twice with PBS (Invitrogen) and harvested with RIPA 

lysis buffer (Thermo Fischer) supplemented with cOmplete Mini protease (Sigma-Aldrich) and 

phosSTOP (Roche) inhibitors. BCA assay was used to quantify protein concentration and the 

concentration was adjusted to 1.5µg/µl as necessary. Bond-Breaker TCEP solution (Pierce 

Biotechnology) was added at 1/10th volume and samples were boiled at 95˚. 

Reverse phase protein array (RPPA)  

After protein lysates were prepared as described above, the lysates were serially diluted (1:2, 1:4, 

1:8, and 1:16). An Aushon 2470 arrayer (Quanterix) was used to create a spot array containing all 

samples for each antibody measured (>100 antibodies in total) on Oncyte Avid nitrocellulose-

coated slides (Grace Bio-Labs) according to the manufacturer’s instructions. Slides were stored at 

-80˚C until immunostaining using an automated slide stainer (Dako Link 48), Dako). All 

antibodies were validated at MD Anderson as well as Royal College of Surgeons, Dublin, Ireland. 

Scanned slides were analyzed using MicroVigene software V.5.1 (VigeneTech). Spot intensities 

were generated using MicroVigene software where a four-parameter logistic-log model, 

‘SuperCurve’ algorithm, was used to fit a curve to each sample (65). Global sample median 
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normalization was used to normalize all samples with one antibody. Differential expression was 

measured by comparing RT samples at each time point to the untreated cells within each cell line.  
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Figures 

 

Figure 2.1: Principal component plots (PCA) from the Duke dataset for luminal breast cancer cell 
lines. A-C) PCA plots for MCF-7 (A), T47D (B), and ZR-75-1 (C) cell lines show clustering between 
triplicate for each treatment (control v. radiation). D) PCA plot for the CAMA-1 cell line does not show 
clustering between treatment groups. Control (Con) vs. radiation at 24 hours (RT) in triplicate. 
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Figure 2.2: Principal component plots (PCA) from the Duke dataset for Her2 positive breast cancer 
cell lines. A-D) PCA plots for BT-474 (A), SK-BR3 (B), AU-565 (C), and HCC-1954 (D) cell lines do not 
show clustering between triplicates for each treatment. Control (Con) vs. radiation at 24 hours (RT) in 
triplicate. 
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Figure 2.3: Principal component plots (PCA) from the Duke dataset for basal-like breast cancer cell 
lines. A-E) PCA plots for BT-549 (A), MDA-MB-231 (B), SUM-159 (C), SUM-149 (D), and DKAT (E) 
cell lines do not show clustering between triplicates for each treatment. Control (Con) vs. radiation at 24 
hours (RT) in triplicate. 
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Figure 2.4: Principal component plots (PCA) from the Duke dataset for normal breast cell lines. A) 
PCA plot for the HBL100 cell line shows clustering between triplicates for each treatment. B&C) PCA 
plots for MCF-10A (B) MCF-12A (C) cell lines do not show clustering between triplicates for each 
treatment. Control (Con) vs. radiation at 24 hours (RT) in triplicate. 
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Figure 2.5: Gene expression changes after radiation (RT) are greatest after 24 hours. A) The number 
of differential expressed genes after RT (4 Gy) increase with time up to 24 hours. B-D) Volcano plots 
showing the number of differentially expressed genes 24 hours after RT in MDA-MB-231 (B), BT-540 (C), 
and MCF-7 (D) cell lines. E-G) Volcano plots showing the number of differentially expressed genes 
12hours after RT in MDA-MB-231 (E), BT-540 (F), and MCF-7 (G) cell lines. Log2FC > 0.4, 
AdjPVal<0.05 
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Figure 2.6: Principal component plots (PCA) for MDA-MB-231, BT-549, and MCF-7 cell lines after 
radiation (RT) over multiple time points. A-C) PCA plots for MDA-MB-231 cell line over multiple time 
points 3 hours (A), 12 hours (B), and 24 hours (C). The PCA plots for 12 and 24 hours after radiation show 
good clustering between control and RT groups. D-F) PCA plots for BT-549 cell line over multiple time 
points 3 hours (D), 12 hours (E), and 24 hours (F). The PCA plots for 12 and 24 hours after radiation show 
good clustering between control and RT groups. G-I) PCA plots for MCF-7 cell line over multiple time 
points 3 hours (G), 12 hours (H), and 24 hours (I). All PCA plots show good clustering between control 
and RT groups. 
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Figure 2.7: Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A) KEGG analysis for 
MDA-MB-231 cell line at the 24 hour time point. B&D) KEGG analysis for BT-549 cell line 24 (B) and 
12 (D) hours after RT. C&E) KEGG analysis for MCF-7 cell line 24 (C) and 12 (E) hours after RT. 
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Figure 2.8: Basal-like breast cancer cell lines have increased expression of G2 and M genes 24 hours 
after radiation (RT). A&B) Differentially expressed genes in the cell cycle pathway of MDA-MB-231 
(A) and BT-549 (B) cell lines 24 hours after RT. 

 

 

 

Figure 2.9: The luminal cell line, MCF-7, has decreased expression of genes in G2 and M 24 hours 
after radiation. 
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Figure 2.10: p53 mutant cell lines have no induction of apoptosis related genes. A-C) Heatmap shows 
no change in apoptosis related genes in p53 mutant cell lines (MDA-MB-231 and BT-549) across 3 (A), 12 
(B), and 24 (C) hour time points compared to a p53 wild-type cell line (MCF-7). D) In cell lines with robust 
differential gene expression within the Duke dataset p53 wild-type cell lines have robust induction of 
apoptosis related genes compared to the p53-mutant cell line T47D. 
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Figure 2.11: Microarray analysis on 8 additional cell lines demonstrate little differential expression 
after radiation (RT). A) Number of differentially expressed genes 24 hours after RT in 8 additional cell 
lines. B) Principal component analysis (PCA) of all eight cell lines together. After RT control and RT 
cluster together within each cell line.   
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Figure 2.12: Principal component analysis (PCA) for individual cell lines 24 hours after radiation 
(RT). A-H) PCA analysis shows no clustering within treatment groups in SUM-159 (A), MDA-MB-453 



 63 

(B), MDA-MB-468 (C), CAL-120 (D), HCC-38 (E), T47D (F), CAMA-1 (G), and BT-474 (H) cell lines. 
Control (Con) vs. radiation at 24 hours (RT) in triplicate. 

 

 

 

Figure 2.13: Reverse phase protein array (RPPA) highlights differences in protein expression after 
radiation (RT) across cell lines. A) Relative change in protein expression compared to untreated cells 1-
hour after RT across four cell lines. B) Relative change in protein expression compared to untreated cells 
24-hours after RT across four cell lines. 

 



 64 

 

 

 

 

 



 65 

 

Figure 2.14: Protein changes in the apoptosis and cell cycle pathways 1- and 24-hours after radiation. 
A&B) Relative changes in protein expression of genes within the apoptotic response 1- (A) and 24- (B) 
hours after RT. C&D) Relative changes in protein expression of genes in the cell cycle pathway 1- (C) and 
24- (D) hours after RT. 
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Figure 2.15: Changes in the DNA damage response proteins after radiation across multiple time 
points. A-D) Relative change in protein expression compared to untreated cells across three time points, 1-
, 6-, and 24- hours after RT in MDA-MB-231 (A), BT-549 (B), MCF-7 (C), and T47D (D) cell lines. 
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Figure 2.16: The MCF-7 cell line has similar differential expression after radiation (RT) in both the 
University of Michigan dataset and the Duke dataset. A) Venn diagram depicting differentially 
expressed genes shared in common between the two datasets (FC > 0.4, AdjPval < 0.05) after RT. B) Kyoto 
encyclopedia of genes and genomes (KEGG) analysis of MCF-7 cells show 6 of the top 10 pathways are 
common across both datasets. 
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Chapter 3  

Bcl-xL Inhibition Radiosensitizes p53 mutant, PIK3CA/PTEN wild-type Basal-like Breast 

Cancer 

Summary 

Apoptosis related gene expression is induced after radiation therapy (RT) in p53 wild-type breast 

cancer cells, while p53 mutant breast cancers have little induction of p53 related genes. Mutations 

in p53 are correlated with radioresistance in breast cancer cell line models. Inhibition of Bcl-2 

family proteins radiosensitizes p53 mutant, PIK3CA/PTEN wild-type basal-like breast cancer cell 

lines, but has no effect on p53 mutant, PIK3CA/PTEN mutant basal-like breast cancer. 

Combination treatment of Bcl-2 family inhibition and RT significantly increases the percent of 

apoptotic cells. Bcl-xL specific, but not Bcl-2 specific, inhibition leads to radiosensitization of p53 

mutant, PIK3CA/PTEN wild-type cell lines. Furthermore, Bcl-xL inhibition in combination with 

RT increases the percent of apoptotic cells while Bcl-2 inhibition does not. Radiosensitization is 

mediated by a decrease in Mcl-1 protein expression induced by RT in combination with Bcl-xL 

inhibition and overexpression of Mcl-1 rescues radioresistance. In vivo, Bcl-2 family inhibition or 

specific Bcl-xL inhibition in combination with RT decreases tumor growth and increases time to 

tumor doubling and tripling. Additionally, specific inhibition of Bcl-xL in combination with 

radiation leads to ~80% stable tumors in an in vivo orthotopic basal-like breast cancer cell line 

model. Together these results indicate that Bcl-xL inhibition may be a feasible clinical strategy for 

the radiosensitization of p53 mutant, PIK3CA/PTEN wild-type basal-like breast cancers. 
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Introduction 

While most breast cancer patients are effectively cured with the addition of radiation 

therapy (RT) to their surgical management, a significant number develop locoregional recurrence 

despite RT and might be aided by the addition of radiosensitization agents to decrease their chance 

of local recurrence after RT (1). While previous efforts aimed at identifying particular patient 

populations at risk for local recurrences after RT, it is still unclear what the molecular drivers of 

these recurrences are (2-4). One approach to understand these drivers has been to characterize the 

transcriptomic response after RT with the rationale that gene expression changes between tumors 

that respond to RT may be different than non-responding tumors. Thus far, however, these studies 

have focused on the most radioresponsive luminal subtypes, without assessing other breast cancer 

subtypes and ignoring the most radioresistant subtype of breast cancer, basal-like tumors that lack 

estrogen and progesterone receptor expression (5). 

 To date, radiosensitization efforts have primarily focused on DNA synthesis and DNA 

damage related targets as possible radiosensitization agents, including cisplatin gemcitabine and 

PARP inhibitors (6, 7). Unfortunately despite their efficacy, these treatments are often associated 

with extensive normal tissue toxicities that has limited their clinical translatability (8). An 

alternative method for radiosensitization is to directly increase the percent of apoptotic cells after 

RT by targeting anti-apoptotic proteins. Apoptosis, a closely regulated pathway of programmed 

cell death, is controlled by activator (BH3 only proteins – BID, BIM, PUMA, and NOXA), 

sensitizer (BH3 only proteins – BAD, BIK, NOXA, HRK, PUMA, and BML), effector (BAX, 

BAK, and BOK), and anti-apoptotic proteins (Bcl-2 family proteins – BCL2, BCLXL, MCL1, 
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BCLW, and BFL1) (9-15). Under normal physiological conditions anti-apoptotic proteins are 

bound to effector proteins to inhibit apoptosis (10). Under cellular stress conditions, a signaling 

cascade, that is often, but not exclusively, mediated by p53, allows BH3 only sensitizer proteins 

to bind to anti-apoptotic proteins, releasing effector proteins (often Bax/Bak) from anti-apoptotic 

proteins (16-19). Upon release effector proteins form both hetereo and homo-dimers that allow for 

the release of cytochrome c from the mitochondria, thus irreversibly committing a cell to death 

through apoptosis (20, 21). 

 Inhibition of anti-apoptotic proteins, specifically, Bcl-2, Bcl-xL, and Mcl-1, has been to 

shown to be a successful cancer treatment strategy for acute myeloid leukemia (AML), chronic 

lymphocutic leukemia (CLL), and small lymphocytic lymphoma (22-25). As a result efforts are 

underway to inhibit anti-apoptotic proteins in other cancers, particularly in combination with 

treatments, such as DNA damaging agents or targeting of PIK3CA/PTEN pathway members (26-

30). To date, few studies have focused on inhibition of anti-apoptotic proteins in combination with 

RT and none have specifically examined Bcl-xL inhibition in combination with RT (31). 

 In this study we aimed to identify an at risk population of breast cancer patients that could 

benefit from the addition of radiosensitization. We found that sensitivity to RT was correlated with 

p53 mutational status, and that p53 mutant tumors were significantly more resistant to ionizing 

radiation than p53 wild-type models. To explore this association, we performed microarray 

analysis to assess transcript expression from cell lines treated with or without RT. This analysis 

identified that p53 mutant breast cancer cell lines have a limited apoptotic transcriptional response 

to RT compared to p53 wild-type cell lines. We hypothesized that “re-activation” of the apoptotic 
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pathway, through inhibition of anti-apoptotic proteins, could lead to radiosensitization of these 

non-responsive p53 mutant breast cancers. Inhibition of Bcl-2 family proteins led to 

radiosensitization of p53 mutant breast cancers in a PIK3CA/PTEN pathway dependent manner. 

This radiosensitization was dependent on Bcl-xL, but not Bcl-2 or Bcl-w, inhibition. 

Mechanistically, we found that Bcl-xL inhibition induced radiosensitivity was mediated by RT-

induced Mcl-1 protein loss and that overexpression of Mcl-1 rescued radioresistance. In vivo, using 

an orthotopic xenograft model, combination treatment of pan Bcl-2 family, or specific Bcl-xL, 

inhibition in combination with RT led to a significant delay in tumor growth and increased time to 

tumor doubling and tripling. In addition, the combination of Bcl-xL inhibition and RT led to tumor 

stasis or regression in 9 out of 11 tumors. Together, our results provide preclinical data in support 

of Bcl-xL inhibition as a potential clinical strategy for radiosensitization of p53 mutant, 

PIK3CA/PTEN wild-type breast cancers. 

Results 

Breast cancers with p53 mutations are more radioresistant and have a decreased apoptotic 

response 

  To asses factors that may correlate with radiosensitivity we determined the intrinsic 

radiosensitivity 21 breast cancer cells with known hormone receptor and p53 mutation status 

(Figure 3.1A). Correlation analysis revealed that radiosensitivity was significantly correlated with 

p53 mutation status; p53 mutant breast cancer cell lines were significantly more radioresistant than 

p53 wild-type cell lines (Figure 3.1B). Evaluation of the transcriptional response using gene 
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expression microarray data 24 hours after RT demonstrated that the p53 wild-type cell line, MCF-

7, had robust transcriptional induction of genes associated with the apoptotic pathway; however, 

in p53 mutant cell lines, MDA-MB-231 and BT-549, few of these apoptosis-associated genes were 

overexpressed after RT (Figure 3.1C). Using open source data (GSE59732) we compared gene 

expression after RT within only luminal breast cancer cell lines with varying p53 mutation status. 

This comparison allowed us to eliminate confounding results due to high variances in estrogen 

receptor, progesterone receptor, and HER2 expression differences in these models. Here, we found 

that p53 wild-type cell lines, MCF-7 and ZR-75-1, had a large number of apoptosis related genes 

with increased expression after RT. As previously seen, the p53 mutant cell line, T47D, had few 

apoptosis related genes overexpressed after RT. Additionally, the normal breast cell line, HBL-

100, which is p53 wild-type, also had significant overexpression of apoptosis related genes (Figure 

3.1D). Together these results suggest that mutations in p53 may blunt a transcriptional apoptotic 

response which contributes to their radioresistant phenotype. We therefore hypothesized that 

inhibition of anti-apoptotic proteins may “reactivate” this death pathway and render p53 mutant 

breast cancer cell lines more sensitive to RT. 

Pan Bcl-2 family inhibition radiosensitizes p53 mutant, PIK3CA/PTEN wild-type basal-like 

breast cancer 

To assess the impact of Bcl-2 family inhibition on breast cancer cell lines we identified the 

IC50 of proliferation of ABT-263, an inhibitor of Bcl-2, Bcl-xL, and Bcl-w, on multiple 

radioresistant basal-like breast cancer cell lines, all with mutant p53 (32). We found a range of 

IC50s from ~40nM to greater than 10µM. However, basal-like breast cancer cell lines with 
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mutations in the PIK3CA/PTEN pathway had significantly higher IC50s than those cell lines with 

no mutations in the PIK3CA/PTEN pathway (Figure 3.2A&B). Thus, we hypothesized that cell 

lines with an intact PIK3CA/PTEN pathway would be radiosensitized by ABT-263 while those 

with mutations in the PIK3CA/PTEN pathway would not. To asses this, we performed clonogenic 

survival assays in multiple cell lines either wild-type or mutant for the genes in the PIK3CA/PTEN 

pathway. MDA-MB-231, CAL-120, and HCC-38 cell lines, which all have an intact 

PIK3CA/PTEN pathway, were significantly radiosensitized by sub IC50 concentrations of ABT-

263 (MDA-MB-231 radiation enhancement ratio (rER) 100nM: 109-1.21, 500nM: 1.22-1.37, 

1µM: 1.40-1.66; CAL-120 rER 100nM: 1.10-1.33, 250nM: 1.15-1.63, 500nM: 1.36-1.74; HCC-

38 rER 10nM: 1.06-1.11, 25nM: 1.12-1.27, 50nM: 1.37-1.40). Additionally, there was a significant 

decrease in surviving fraction of cells after 2 Gy RT (SF 2-Gy) in cells treated with ABT-263 

compared to DMSO control (Figure 3.2C-E). Combination treatment of ABT-263 and RT (4 Gy) 

significantly increased the percent of apoptotic cells compared to RT alone in both MDA-MB-231 

and CAL-120 cell lines (Figure 3.3A&B). Finally, a combination of ABT-263 and RT (4 Gy) 

increased in cleaved-PARP, a marker for apoptosis, compared to either RT or drug alone in MDA-

MB-231 and CAL-120 cells (Figure 3.3C&D) (33).  

Conversely, in p53 mutant cell line models with mutations in the PIK3CA/PTEN pathway, 

SUM-159 and MDA-MB-453 cell lines, ABT-263 did not lead to radiosensitization (SUM-159 

rER 100nM: 0.93-1.17, 500nM: 0.87-1.00, 1µM: 0.94-1.03; MDA-MB-453 rER 100nM: 1.10-

1.15, 500nM: 1.02-1.14, 1µM: 1.00-1.30) and no decrease in SF-2 Gy was seen (Figure 3.4A&B). 

Additionally, combination treatment of ABT-263 and RT (4 Gy) did not lead to a significant 
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increase in apoptotic cells compared to RT (Figure 3.4C&D). Thus, inhibition of Bcl-2, Bcl-xL, 

and Bcl-w, with ABT-263, radiosensitized p53 mutant basal-like breast cancers in a 

PIK3CA/PTEN pathway dependent manner, and that this radiosensitization was mediated through 

increased apoptosis. 

Specific inhibition of Bcl-xL radiosensitizes p53 mutant, PIK3CA/PTEN wild-type basal-

like breast cancers 

  We next sought to identify which protein of the three targeted by ABT-263 (Bcl-2. Bcl-

xL, or Bcl-w) was responsible for the radiosensitization of PIK3CA/PTEN wild-type basal-like 

breast cancer. To do this, we first determined the IC50 of proliferation of WEHI-539, a Bcl-xL 

specific inhibitor (Figure 3.5A) (34). MDA-MB-231, CAL-120, and HCC-38 all had similar 

WEHI-539 IC50s compared to ABT-263, indicating that Bcl-xL may be the protein responsible 

for inhibiting apoptosis in these cell lines (Figure 3.5B). Using clonogenic survival assays we 

found that specific inhibition of Bcl-xL, using WEHI-539, radiosensitized the p53 mutant, 

PIK3CA/PTEN intact breast cancer cell lines MDA-MB-231, CAL-120, and HCC-38 (Figure 

3.5C-E) and significantly decreased SF-2 Gy across all three cell lines (MDA-MB-231 rER 

100nM: 0.90-1.13, 500nM: 1.18-1.25, 1µM: 1.27-1.38; CAL-120 rER 50nM: 1.13-1.21, 100nM: 

1.31-1.35, 250nM: 1.60-2.14; HCC-38 rER 25nM: 1.24-.150, 50nM: 1.30-1.93, 100nM: 1.45-

1.99). As with the pan-Bcl-2 family inhibitor ABT-263, combination of WEHI-539 and RT (4 Gy) 

significantly increased the percent of apoptotic cells compared to RT alone in MDA-MB-231 and 

CAL-120 cells (Figure 3.6A&B). Furthermore, combination treatment of WEHI-539 and RT (4 

Gy) increased cleaved PARP compared to RT or drug alone (Figure 3.6C&D). 
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 To further confirm that Bcl-xL inhibition is indeed responsible for radiosensitization of 

PIK3CA/PTEN wild-type basal-like breast cancer cell lines we performed clonogenic survival 

assays using a different Bcl-xL inhibitor, A-1331852, which was developed for in vivo use (35). 

As with the WEHI-539 compound, treatment with A-1331825 radiosensitized MDA-MB-231 cells 

(rER 250nM: 1.12-1.19, 500nM: 1.18-1.28, 1µM: 1.26-1.40) and significantly decrease SF-2 Gy 

(Figure 3.5F). Thus, we concluded Bcl-xL inhibition is sufficient to radiosensitize p53 mutant, 

PIK3CA/PTEN wild-type basal-like breast cancers. 

Inhibition of Bcl-2 does not radiosensitization p53 mutant, PIK3CA/PTEN basal-like 

breast cancer 

Having established that Bcl-xL inhibition was sufficient to confer radiosensitivity in p53 

mutant, PIK3CA/PTEN wild-type basal-like breast cancer, we next sought to determine if Bcl-2 

also played a role in this radiosensitization. Using ABT-199, a Bcl-2 specific inhibitor, we first 

determined the IC50 of proliferation of ABT-199 in our model systems of p53 mutant breast 

cancers (Figure 3.7A) (22). p53 mutant, PIK3CA/PTEN wild-type basal-like breast cancer cell 

lines MDA-MB-231, CAL-120, and HCC-38 all had much higher ABT-199 IC50s compared to 

both ABT-263 (pan Bcl-2 family inhibitor) and WEHI-539 (Bcl-xL specific inhibitor), initially 

indicating that Bcl-2 inhibition may not be as effective in the radiosensitization of PIK3CA/PTEN 

wild-type basal-like breast cancers (Figure 3.7B). 

 Clonogenic survival assays using the Bcl-2 inhibitor, ABT-199, showed that Bcl-2 

inhibition did not radiosensitize MDA-MB-231 or CAL-120 cell lines (MDA-MB-231 rER 

100nM: 0.97-1.21, 500nM: 0.96-1.12, 1µM: 0.97-1.10; CAL-120 rER 100nM: 1.02-1.05, 500nM: 
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0.94-1.12, 1µM: 0.97-1.10) and did not decrease the SF-2 Gy (Figure 3.7C&D). Similarly, 

combination of ABT-199 and RT (4 Gy) did not increase the percent of apoptotic cells compared 

to RT in either cell line (Figure 3.7E&F). Finally, the combination of ABT-199 and RT (4 Gy) 

did not increase cleaved PARP compared to either RT or drug alone (Figure 3.7G&H). Thus we 

concluded that inhibition of Bcl-2 does not contribute to radiosensitization of PIK3CA/PTEN 

wild-type basal-like breast cancer. 

Radiation leads to decreased Mcl-1 expression, allowing for radiosensitization by Bcl-xL 

inhibition 

In an effort to identify why p53 mutant, PIK3CA/PTEN mutant basal-like breast cancers 

did not respond to Bcl-xL inhibition mediated radiosensitization, we sought to identify the 

mechanism for radiosensitization in PIK3CA/PTEN wild-type cell lines. Previous studies 

demonstrated that dual inhibition of Bcl-xL and Mcl-1 in cancer cell lines led to decreased growth 

both in vitro and in vivo (28, 36, 37). Furthermore, previous studies have demonstrated Bcl-2 

family inhibition increases Mcl-1 expression in the MDA-MB-231 basal-like breast cancer cell 

line and that RT reduces Mcl-1 expression after Bcl-2 family inhibition (31). Therefore we 

hypothesize that RT may be impacting Mcl-1 protein expression, in a PIK3CA/PTEN dependent 

manner, thus allowing for increased radiosensitivity after Bcl-xL inhibition. To address this we 

assessed Mcl-1 protein levels after combination treatment of ABT-263 and RT (6 Gy). After a 24-

hour pretreatment with ABT-263, Mcl-1 protein levels increased, however, 30 minutes after RT 

(6 Gy) Mcl-1 levels returned to baseline in the CAL-120 cell line (Figure 3.8A).  
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 To further confirm that decreased Mcl-1 expression is necessary for Bcl-2 family inhibition 

dependent radiosensitization of PIK3CA/PTEN wild-type basal-like breast cancer, we sought to 

rescue radioresistance by overexpressing Mcl-1 protein. While Bcl-xL inhibition significantly 

radiosensitized p53 mutant, PIK3CA/PTEN wild-type cell lines MDA-MB-231 and CAL-120 

treated with lipofectamine alone (MDA-MB-231 rER WEHI-539: 1.19-1.32; CAL-120 rER 

WEHI-539: 1.34-1.35), the overexpression of Mcl-1 in these cells reversed the radiosensitization 

phenotype of Bcl-xL inhibition (MDA-MB-231 rER Mcl-1 & WEHI-539: 1.03-1.06; CAL-120 

rER Mcl-1 & WEHI-539: 0.99-1.09) and rescued SF-2 Gy (Figure 3.8B&D). Overexpression of 

exogenous FLAG-tag Mcl-1 was confirmed through western blot (Figure 3.8C&E) These results 

demonstrate that Bcl-xL inhibition in combination with RT leads to radiosensitization of 

PIK3CA/PTEN wild-type basal-like breast cancer in a manner that is dependent on decreased Mcl-

1 expression. 

Bcl-xL inhibition radiosensitizes p53 mutant, PIK3CA/PTEN wild-type basal-like breast 

cancer in vivo 

 To examine the effect of Bcl-2 family member inhibition, and specifically Bcl-xL 

inhibition, in vivo, we orthotopically injected SCID CB-17 female mice with MDA-MB-231 cells 

and allowed them to grow to approximately 80mm3. Once the tumors had established (~80mm3), 

mice were given either 25 mg/kg of ABT-263 (pan Bcl-2 family inhibitor) once a day for 10 days, 

25 mg/kg of A-1331852 (Bcl-xL inhibitor) once a day for 10 days, 9 fractions of 2 Gy RT, or a 

combination of either ABT-263 or A-1331852 and RT, which started 24 hours after the first 

treatment with drug (Figure 3.9A). A combination of pan Bcl-2 family inhibition with ABT-263 
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and RT significantly decreased tumor growth compared to drug or RT alone with the time to tumor 

doubling extended from 12 days in the control arm to 31 days in the combination treated arm. 

Furthermore, the combination of Bcl-xL inhibition with A-1331852 and RT more effectively 

delayed tumor growth with time to tumor doubling extended from 12 days in the control arm to an 

undefined number of days in the combination treated arm (Figure 3.9B). Both combination 

treatments significantly decreased tumor volume compared to drug alone (Figure 3.9C). 

Furthermore, combination treatment of either ABT-263 or A-1331852 with RT significantly 

delayed time to tumor doubling (Control – 12 days, RT – 14 days, ABT-263 – 16 days, ABT + RT 

– 31 days, A-1331852 – 15 days, and A-1331 + RT – Undefined)  and tripling (Control – 15.5 

days, RT – 28 days, ABT-263 – 29 days, ABT + RT – Undefined days, A-1331852 – 24 days, and 

A-1331 + RT – Undefined) (Figure 3.9D&E). The combination of A-1331852 and RT led to the 

tripling of no tumors after 31 days and doubling of only 2 tumors in that same time. This 

established that inhibition of Bcl-xL, with either the pan Bcl-2 family inhibitor, ABT-263, or with 

the specific Bcl-xL inhibitor, A-1331852, in combination with RT not only radiosensitized MDA-

MB-231 cells in vitro but also in vivo and led to stability or regression of 9 out of 11 tumors in the 

combination treatment arm, even after one month.  

 

Discussion 

 In an effort to identify mediators of radiation resistance in breast cancer, we profiled the 

intrinsic sensitivity of a panel of over 20 breast cancer cell lines. Such profiling identified p53 

mutation status as being significantly correlated with radiation sensitivity. We show p53 mutant 
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breast cancers are more resistant to ionizing radiation than p53 wild-type breast cancers and p53 

mutant breast cancers are unable to induce a transcriptional apoptotic response after radiation 

treatment compared to p53 wild-type breast cancers (Figure 3.1). Although more resistant to 

ionizing radiation, we hypothesized that inhibiting anti-apoptotic proteins in p53 mutant breast 

cancers may allow for the re-introduction of apoptosis after RT and thus radiosensitize these 

cancers. Treatment of p53 mutant breast cancer cell lines with the Bcl-2 family inhibitor ABT-263 

significantly radiosensitized these cells in a PIK3CA/PTEN dependent manner. Mechanistically, 

this radiosensitization of p53 mutant, PIK3CA/PTEN wild-type cell lines was caused by an 

increase in the percent of apoptotic cells after a combination of ABT-263 and RT (Figure 3.2, 3.3, 

and 3.4). In an effort to identify which Bcl-2 family protein was responsible for radiosensitization 

we performed clonogenic survival assays with the Bcl-xL specific inhibitor, WEHI-539. Specific 

inhibition of Bcl-xL significantly radiosensitized p53 mutant, PIK3CA/PTEN wild-type basal-like 

breast cancer cell lines and significantly increased the percent of apoptotic cells in combination 

with RT (Figure 3.5 and 3.6). However, inhibition of Bcl-2, with the Bcl-2 specific inhibitor ABT-

199, did not radiosensitize p53 mutant, PIK3CA/PTEN intact basal-like breast cancer nor did it 

increase the percent of apoptotic cells in combination with RT (Figure 3.7). Pharmacologic 

inhibition of Bcl-2 family proteins led to an increase in Mcl-1 protein, while treatment with RT 

led to a decrease in Mcl-1 protein, again in a PIK3CA/PTEN – dependent manner. Overexpression 

of Mcl-1 rescued this radiosensitizing phenotype and led to resistance of Bcl-xL inhibition 

mediated radiosensitivity. (Figure 3.8). Finally, we show that both Bcl-2 family and Bcl-xL 

specific inhibition significantly radiosensitizes p53 mutant, PIK3CA/PTEN wild-type basal-like 
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breast cancer cell lines in vivo, with Bcl-xL inhibition leading to more durable and dramatic 

response with radiation (Figure 3.9). Together, these results demonstrate that Bcl-xL inhibition 

radiosensitizes p53 mutant breast cancers in a PIK3CA/PTEN dependent manner through the 

regulation of Mcl-1 protein. 

 While our nomination of the apoptotic pathway for radiosensitization of aggressive breast 

cancers was successful, radioresistance is likely explained many factors apart from p53 mutation 

status. For example, previous studies have found genes including CDKN2A and Keap1 to 

participate in radioresistance, while mutations in genes such as Rb and EGFR have been found to 

increase radiosensitivity (38-42). These mutations, as well as others yet to be identified, add 

complexity in characterizing the radiation response. Furthermore, many studies have shown 

mutations in p53 can have differential effects (43). Both nonsense mutations and missense 

mutations can lead to p53 inactivation or gain of function (44-47). Moreover, overexpression of 

MDM2 can lead to p53 loss, which would not be apparent from solely examining p53 mutation 

status (48-50). Interestingly, previous studies have developed a p53 inactivation signature that may 

be more effective at determining p53 inactivation (51). A signature similar to this may be more 

useful in predicting proteins associated with radioresistance in breast cancer. 

After confirming that pan Bcl-2 family inhibition induces radiosensitization in p53 mutant, 

PIK3CA/PTEN wild-type cell lines we showed that inhibition of Bcl-xL was responsible for 

radiosensitization. Previous studies have shown that inhibition of Bcl-2, using ABT-737, 

radiosensitizes multiple breast cancer subtypes (31); however, ABT-737 also inhibits Bcl-xL and 

this more likely explains the radiosensitization phenotype (52). Previous studies have also shown 
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that dual targeting of Bcl-xL and PIKC3A in PIK3CA mutant breast cancers blocks tumor growth 

in vivo (28). This growth inhibitory effect is mediated through PIK3CA inhibition which leads to 

decreased mTOR regulated Mcl-1 translation, thus decreasing Mcl-1 protein expression while 

inhibiting Bcl-xL. While we also show decreased Mcl-1 expression in our studies, we believe that 

Mcl-1 protein is being rapidly degraded after RT in PIK3CA/PTEN wild-type cell lines. We 

hypothesize that RT is leading to increased activation of an E3-ubiquitin ligase or decreased 

activity of a deubiquitinating protein. Many E3-ubiquitin ligases and deubiquitinating proteins 

have been identified for Mcl-1, however we have not determined which is leading to decreased 

Mcl-1 protein expression after RT and this is the subject of ongoing investigation in our group 

(Figure 3.10) (53-56). 

 While inhibition of Bcl-xL in combination with RT leads to profound radiosensitization in 

an orthotopic MDA-MB-231 in vivo model, we plan to perform additional in vivo models using 

patient derived xenografts (PDXs), which may more accurately reflect tumor heterogeneity in 

patients. Within these studies we also plan to examine platelet counts as inhibition of Bcl-xL has 

been shown to acutely decreased platelets (22). These pending studies, coupled with the results 

reported here, provide the preclinical rational for combination treatment with Bcl-xL inhibitors 

and RT and suggest this could be a tractable treatment strategy for p53 mutant, PIK3CA/PTEN 

wild-type breast cancer patients. 
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Methods 

Cell Culture 

Triple-negative breast cancer cell lines MDA-MB-231, CAL-120, HCC-38, BT-549, and MDA-

MB-453 were grown from frozen samples (ATCC). SUM-159 cells were received from Steve 

Ethier, from the University of Michigan. MDA-MB-231, CAL-120, MDA-MB-453 cell lines were 

grown in DMEM (Invitrogen) supplemented with 10% FBS (Invitrogen). BT-549 and HCC-38 

cell lines were grown in RPMI 1640 (Invitrogen) and supplemented with 10% FBS. All cell lines 

were supplemented with 1% penicillin/streptomycin (Invitrogen). SUM-159 cells were grown in 

Ham’s F-12 media (Gibco) supplemented with 5% FBS, 5mL of 1M HEPES, 1ug/mL 

Hydrocortisone, 1x antibiotic-antimycotic (Thermo Fisher) and 6ug/mL insulin (Sigma). All cells 

lines were grown in a 5% CO2 incubator, tested for mycoplasma routinely (MycoALert, Lonza), 

and authenticated at the University of Michigan DNA sequencing core before use. 

Compounds 

ABT-263, ABT-199, WEHI-539, and A-1331852 were order from MedChemExpress as a 10mM 

solution in DMSO. Multiple concentrations of each drug were used for various assays. 

Irradiation 

Irradiations were performed using a Kimtron IC 225 (Kimtron Medical) at a dose rate of 

approximately 2 Gy/min in the University of Michigan Comprehensive Cancer Center 

Experimental Irradiation Core (Ann Arbor, MI). Dosimetry is performed semiannually using an 

ionization chamber connected to an electrometer system that is directly traceable to a National 
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Institute of Standards and Technology calibration. The beam was collimated with a 0.1 mm Cu 

inherent filter and a 0.2 mm Cu filter was used for cell line irradiation. A 2 mm Cu filter was used 

for in vivo xenograft experiments.  

Western Blot 

Cells were lysed with RIPA buffer (Thermo Fischer) supplemented with cOmplete Mini protease 

(Signam-Aldrich) and phosSTOP (Roche) inhibitors and western blot was performed as previously 

described (57). Cleaved PARP and Mcl-1 (Cell Signaling Technology [CST]) antibodies were 

used at 1:1,000 dilution in 1% milk. GAPDH (CST) antibody was used at 1:10,000 dilution in 1% 

milk. Actin (CST) antibody was used at 1:50,000 dilution in 1% milk.  

IC50 of proliferation 

2,000-5,000 cells were plated per well in a 96-well plate and allowed to adhere overnight. Drug 

was added at various concentrations and after 72 hours AlamarBlue (1/10th volume) was added. 

Fluorescence was measured 3-8 hours after the addition of AlamarBlue, based on the proliferation 

rate of the cell line.  

Clonogenic survival assays 

Exponentially growing cells were plated at clonal density and allowed to adhere overnight. Drug 

was added 1 hour prior to radiation and allowed to grow for one to two weeks. Cells were fixed 

with 7 parts methanol and 1 part acetic acid and stained with crystal violet. A colony was deemed 

50 cells or large and a linear-quadratic survival curve was fit to each assay as previously described 

(58). 
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Annexin V Staining 

The Annexin-VFLUOS Staining Kit (Roche Cat. No. 11858 777 001) was used for 

quantification of apoptosis and differentiation from necrosis by flow cytometry. In brief, cells 

(0.25×105) grown in 6-well plates were treated with Bcl-2 family inhibitors (ABT-263, ABT-

199, and WEHI-539) at the indicated doses. Cells were pretreated with drug 1-hour before RT (4 

Gy) and harvested for staining 48-hours after RT. Cells were collected, washed with PBS, and 

incubated in 100µl of binding buffer containing 2µl of Annexin V-FITC and 2 µl of PI for 15 

min at room temperature in the dark according to the manufacturer's instructions. Apoptosis was 

immediately quantified using FCM. Results were presented as percentages of Annexin V-FITC 

positive cells, or Annexin V-FITC and PI double positive cells. The total apoptosis was summed 

up from that of early apoptosis (Annexin V+/PI−) and late apoptosis (Annexin V+/PI+). 

In vivo studies 

Cells or patient derived xenografts (PDXs) were orthotopically implanted into the mammary fat 

pad of CB-17 SCID female mice. Tumors were allowed to grow to ~80mm3 and randomized before 

treatment began. ABT-263 or A-1331852 were given once a day for ten days at 25mg/kg and nine 

fractions of radiation were given, starting one day after drug was given. Tumor size was measured 

approximately three times per week using a digital caliper. Tumor volume was calculated using 

the equation V= (L * W2) * π/6 (V=volume, L=length, W=width). Synergistic effects were 

calculated using the fraction tumor volume (FTV) method as previously described (59, 60). 
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Study approval 

The procedures listed above were approved by the Institutional Animal Care and Use Committee 

(IACUC) at the University go Michigan. 

Statistics 

Statistical analyses were performed using GraphPad Prism 8.0. One-way ANOVA with Dunnett’s 

multiple comparisons test was used for clonogenic survival and Annexin V assays. One-way 

ANOVA with Dunnett’s multiple comparisons test and Log-rank (Mantel-Cox) test were used for 

in vivo analyses. A P value equal to or less than 0.05 was considered significant.  
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Figures 

 

Figure 3.1: p53 mutant breast cancers are more resistant to radiation and do not exhibit an apoptotic 
response. A) Breast cancer cell lines intrinsic radiosensitivity organized from most radiosensitive to least 
radiosensitive. ER status, HER2 status, and p53 mutation status depicted. B) p53 wild-type cell lines are 
more radiosensitive than p53 mutant. C&D) RT induces an apoptosis gene transcriptional response in a 
p53-dependent manner in both a University of Michigan dataset (C) and a dataset from Duke (D). A two-
sided Student’s t-test was used for analyses. * p < 0.05 
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Figure 3.2: Pan Bcl-2 family inhibition radiosensitizes p53 mutant, PIK3CA/PTEN wild-type basal-
like breast cancer cell lines. A) ABT-263 (pan Bcl-2, Bcl-xL, and Bcl-w inhibitor) IC50 of proliferation 
in multiple basal-like breast cancer cell lines. B) Summary of ABT-263 IC50 values. C-E) ABT-263 
significantly radiosensitizes MDA-MB-231 (C), CAL-120 (D), and HCC-38 (E) cell lines. One-way 
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ANOVA with Dunnett’s multiple comparisons test was used for analyses. * p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. 

 

 

 

Figure 3.3: Pan Bcl-2 family inhibition in combination with radiation (RT) significantly increases the 
percent of apoptotic cells in p53 mutant, PIK3CA/PTEN wild-type basal-like breast cancer cell lines. 
A&B) ABT-263 (pan Bcl-2, Bcl-xL, and Bcl-w inhibitor) in combination with RT significantly increases 
the percent of apoptotic cells compared to RT alone in MDA-MB-231 (A) and CAL-120 (B) cell lines.  
C&D) Combination of ABT-263 and RT increases cleaved PARP compared to RT alone in MDA-MB-231 
(C) and CAL-120 (D) cell lines. Cells were pretreated with ABT-263 for 1-hour before RT (4 Gy) and 
harvested either 48-hours after drug or 48-hours after RT. A two-sided Student’s t-test was used for 
analyses. * p<0.05 
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Figure 3.4: Pan Bcl-2 family inhibition does not radiosensitize p53 mutant, PIK3CA/PTEN mutant 
basal-like breast cancer cell lines and does not increase the percent of apoptotic cells. A&B) ABT-263 
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(pan Bcl-2, Bcl-xL, and Bcl-w inhibitor) does not radiosensitize SUM-159 (A) and MDA-MB-453 (B) cell 
lines. C&D) Combination of ABT-263 and RT does not increase the percent of apoptotic cells compared 
to RT in SUM-159 (C) and MDA-MB-453 (D) cell lines. Cells were pretreated with ABT-263 for 1-hour 
before RT (4 Gy) and harvested either 48-hours after drug or 48-hours after RT.  One-way ANOVA with 
Dunnett’s multiple comparisons test and a two-sided Student’s t-test were used for analyses.   
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Figure 3.5: The Bcl-xL inhibitor, WEHI-539, radiosensitizes p53 mutant, PIK3CA/PTEN wild-type 
basal-like breast cancer cell lines. A) WEHI-539 IC50 of proliferation in multiple basal-like breast cancer 
cell lines. B) Summary of WEHI-539 IC50 values. C-E) WEHI-539 significantly radiosensitizes MDA-
MB-231 (C), CAL-120 (D), and HCC-38 (E) cell lines. F) A-1331852, a Bcl-xL inhibitor significantly 
radiosensitizes MDA-MB-231 cells. One-way ANOVA with Dunnett’s multiple comparisons test was used 
for analyses. **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 3.6: Inhibition of Bcl-xL in combination with radiation (RT) significantly increases the 
percent of apoptotic cells in p53 mutant, PIK3CA/PTEN wild-type basal-like breast cancer cell lines. 
A&B) WEHI-539 (Bcl-xL inhibitor) in combination with RT significantly increases the percent of apoptotic 
cells compared to RT alone in MDA-MB-231 (A) and CAL-120 (B) cell lines. C&D) Combination of 
WEHI-539 and RT increases cleaved PARP compared to RT alone in MDA-MB-231 (C) and CAL-120 
(D) cell lines. Cells were pretreated with WEHI-539 for 1-hour before RT (4 Gy) and harvested either 48-
hours after drug or 48-hours after RT.  A two-sided Student’s t-test was used for analyses.   * p<0.05, 
**p<0.01 
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Figure 3.7: Bcl-2 inhibition does not radiosensitize p53 mutant, PIK3CA/PTEN wild-type basal-like 
breast cancer cell lines. A) ABT-199 (Bcl-2 inhibitor) IC50 of proliferation in multiple basal-like breast 
cancer cell lines. B) Summary of ABT-199 IC50 values. C&D) ABT-199 does not radiosensitize the p53 
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mutant, PIK3CA/PTEN wild-type cell lines MDA-MB-231 (C) and CAL-120 (D). E&F) Combination of 
Bcl-2 inhibition and RT does not increase the percentage of apoptotic cells compared to RT alone. G&H) 
Combination of Bcl-2 inhibition (ABT-199) and RT does not increase cleaved PARP compared to RT 
alone. Cells were pretreated with ABT-199 for 1-hour before RT (4 Gy) and harvested either 48-hours after 
drug or 48-hours after RT.  One-way ANOVA with Dunnett’s multiple comparisons test and a two-sided 
Student’s t-test were used for analyses.  

 

Figure 3.8: Overexpression of Mcl-1 rescues resistance to Bcl-xL inhibition induced 
radiosensitization in p53 mutant, PIK3CA/PTEN wild-type basal-like breast cancer cell lines. A) Bcl-
2 family inhibition (ABT-263 [1µM]) leads to increased Mcl-1 protein after 24 hours. However, RT (6 Gy) 
reduces Mcl-1 expression after Bcl-2 family inhibition in the CAL-120 cell line. B&D) Overexpression of 
Mcl-1 rescues resistance to Bcl-xL inhibition in the p53 mutant, PIK3CA/PTEN wild-type cell lines MDA-
MB-231 (B) and CAL-120 (D). C&E) Western blot depicting overexpression of Flag-tagged Mcl-1 in 
MDA-MB-231 (C) and CAL-120 (E) cell lines. Two-sided Student’s t-test were used for analyses. *p<0.05 
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Figure 3.9: In an orthotopic in vivo model, inhibition of Bcl-xL in combination with radiation (RT) 
significantly radiosensitizes MDA-MB-231 cell. A) Outline of in vivo drug and radiation dosing B) 
Combination treatment of ABT-263 (pan Bcl-2 family inhibitor) or A-1331852 (Bcl-xL inhibitor) 
significantly delays tumor growth compared to RT or drug alone. C) Combination of ABT-263 or A-
1331852 with RT significantly reduces tumor size. D&E) Combination of either ABT-263 or A-1331852 
with RT significantly delays time to tumor doubling (D) or tripling (E) in p53 mutant, PIK3CA/PTEN wild-
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type cell line MDA-MB-231. One-way ANOVA with Tukey’s multiple comparisons test and Log-rank 
(Mantel-Cox) test were used for analyses.  ****p<0.0001    

 

 

Figure 3.10: Hypothesis for Mcl-1 degradation in PIK3CA/PTEN wild-type and mutant settings. In 
p53 mutant, PIK3CA/PTEN wild-type basal-like breast cancer cell lines radiation therapy (RT) inhibits 
AKT related signaling, which decreases AKT phosphorylation of GSK-3β thus stabilizing GSK-3β. GSK-
3β phosphorylates Mcl-1 signaling for its proteasome mediated degradation. In a PIK3CA/PTEN mutant 
setting RT does not decrease AKT related signaling due to activation mutations. This leads to inhibition of 
GSK-3β through phosphorylation and stabilization of Mcl-1, thus reducing apoptosis. 
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Chapter 4 

TTK Inhibition Radiosensitizes Basal-like Breast Cancer through Impaired Homologous 

Recombination 

Summary 

Increased rates of locoregional recurrence are observed in patients with basal-like breast 

cancer (BC) despite the use of radiation therapy (RT); therefore, approaches that result in 

radiosensitization of basal-like BC are critically needed. Using patient tumor gene expression data 

from four independent datasets, we correlated gene expression with recurrence to find genes 

significantly correlated with early recurrence after RT. The highest ranked gene, TTK, was most 

highly expressed in basal-like BC across multiple datasets. Inhibition of TTK, using both genetic 

and pharmacologic methods, enhanced radiosensitivity in multiple basal-like cell lines. 

Radiosensitivity was mediated, at least in part, through persistent DNA damage after treatment 

with TTK inhibition and RT. Inhibition of TTK impaired homologous recombination (HR), but 

not non-homologous end joining, repair efficiency and decreased Rad51 foci formation. Re-

introduction of wild-type TTK rescued both radioresistance and HR repair efficiency after TTK 

knockdown, however, re-introduction of kinase-dead TTK did not. In vivo, TTK inhibition 

combined with RT, led to a significant decrease in tumor growth in both heterotopic and 

orthotopic, including patient derived xenograft, BC models. These data support the rationale for 

clinical development of TTK inhibition as a radiosensitizing strategy for basal-like BC patients 

and these efforts are currently underway. 
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Introduction 

Breast cancer (BC) is the most commonly diagnosed invasive cancer for women in the 

United States and the second leading cause of cancer related deaths (1). Radiation therapy (RT) 

remains a mainstay therapy for BC patients and has been shown to not only reduce local 

recurrence, but improve overall survival for BC patients (2). While RT is effective for many BC 

patients, a significant proportion of patients, especially those with basal-like BC, continue to have 

high rates of local recurrence and poor overall survival, suggesting RT is not as effective in those 

patient populations (3-7).    

While effective targeted treatment options are available for estrogen receptor-positive 

(ER+) and HER2-positive (Her2+) BCs, fewer targeted treatment options exist for women with 

basal-like BCs. Recent advancements in BC subtyping have allowed for more advanced clinical 

risk stratification and treatment recommendations for patients; however, recommendations for 

radiation dose and treatment scheduling remain similar for all BC subtypes (8, 9). In an era of 

precision medicine and molecularly targeted therapy, understanding the molecular drivers of 

radiation resistance in basal-like BC remains a critical unmet clinical need. 

To that end, previous studies have attempted to identify and characterize targets for the 

radiosensitization of BC, including basal-like BC. These studies have identified cell cycle and 

DNA damage response proteins that may be implicated in RT resistance (10). As expected, 

targeting DNA damage response related proteins is a promising strategy for radiosensitization (11). 
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Recently, cell cycle proteins have also been shown as possible radiosensitization targets, often 

through modulating the effectiveness of DNA damage repair genes (12, 13). To date, however, 

few therapies targeting these proteins have been clinically implemented owing, in part, to the dose 

limiting toxicities and off-target effects of these agents.  

Here we sought to identify novel radiosensitizing targets in aggressive basal-like BC. In 

this study, we use clinical datasets to correlate gene expression to recurrence-free survival after 

radiation in women with BC and nominate TTK as a potential mediator of radioresistance in 

aggressive subtypes of BC. Using clinical and preclinical data we demonstrate that TTK is 

overexpressed in locally recurrent and basal-like BC. Preclinical studies show that inhibition of 

TTK, both genetically and pharmacologically, leads to increased radiosensitivity of basal-like BC 

cell line and PDX models. Radiosensitization is kinase function dependent and mediated, at least 

in part, through impaired homologous recombination repair efficiency. Finally, we validate TTK 

inhibition mediated radiosensitivity in vivo using a clinical grade pharmacologic inhibitor. 

 

Results 

TTK is the top gene correlated to recurrence after radiation in breast cancer across four 

independent datasets 

In an effort to identify genes that play a role in radioresistance and thus increase rates of 

local recurrence (LR) in BC, we correlated gene expression to early (defined as 3 years or earlier) 

recurrence, including LR, across four independent datasets that included women treated with 



 114 

radiation as per standard of care. We restricted our results to genes with an odds ratio of greater 

than or equal to 2.0 and multiple-testing corrected p-value < 1.0 x 10e-6. Within these constraints, 

ten genes were found to significantly correlate with early recurrence across all four breast cancer 

datasets (Figure 4.1A). These genes were ranked based on their average differential log2 fold 

change across all four datasets, between patients with early (≤3 years) recurrence and those who 

did not have evidence of recurrence at 3 years. This nomination identified TTK, also known as 

Monopolar spindle 1 (Mps1), as the top ranked gene with an average log2 fold change of 1.73 

across the four independent datasets. To further refine our nomination, we focused on genes with 

a clinical grade inhibitor currently in development. TTK was one of only three genes found to 

currently have a pharmacological agent in clinical trial according to clinicaltrials.gov (Table 1). 

To confirm our findings, we performed Kaplan-Meier analyses in two independent datasets 

(Servant and Vande Vijver), as well as with one of the original four datasets (Wang).These datasets 

all had more carefully annotated local recurrence-specific information and included women treated 

with RT. In all three datasets, TTK expression above the median correlated to decreased local 

recurrence-free survival (LRFS) (Figure 4.1B-D; Servant: HR=1.70 p-value=0.004, Vande 

Vijver: HR=2.42 p-value=0.005, Wang: HR=2.23 p-value<0.0001). Furthermore, when divided 

into quartile expression, TTK expression is associated with a stepwise decrease in LRFS in these 

datasets (Figure 4.2A-C). Univariate analysis shows TTK expression is significantly correlated 

with LRFS in all three datasets (Table 2). In multivariate analysis (MVA), using a stepwise logistic 

regression model, TTK remained the strongest predictor of LR (HR 1.29-11.29) independent of all 

other clinicopathologic features (Table 2).  
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We then evaluated TTK expression in multiple independent datasets to see if it was 

associated with any intrinsic subtype of BC. In each dataset evaluated, TTK expression is 

significantly elevated in patients with estrogen receptor-negative (ER-) tumors compared to 

patients with estrogen receptor-positive (ER+) tumors (Figure 4.2D-F; p-value<0.001). Moreover, 

using the METABRIC dataset (14) (n=1,986 patients) to evaluate TTK expression by breast cancer 

intrinsic subtype we found TTK expression was highest in the basal-like subtype and is 

significantly overexpressed in BC versus normal tissue (p-value<0.0001, Figure 4.1E). 

Furthermore, in an institutionally assembled dataset of BC metastatic tumors (MET500 patients 

(15)), we found that TTK is significantly overexpressed in basal-like BC compared to other 

subtypes (Figure 4.1F). This association was also seen in the TCGA BC dataset (n=945 patients) 

(Figure 4.2G). Using RNA sequencing data of BC cell lines from the Cancer Cell Line 

Encyclopedia (CCLE), we found TTK is overexpressed in ER- BC cell lines compared to ER+ BC 

cell lines, and is more highly expressed in basal-like cell lines compared to Her2+ or luminal cell 

lines (Figure 4.2H&I; p-value<0.001). TTK protein expression was measured in a panel of BC 

cell lines confirming higher expression of TTK protein in basal-like BC cell lines, with MDA-

MB-231 and BT-549 having the highest TTK protein expression (Figure 4.2J&K). Finally, we 

compiled the mutational landscapes of cell lines used for further studies (Figure 4.2L) (16). 

 

TTK inhibition radiosensitizes basal-like breast cancer cell lines 

The correlation between TTK and early recurrence suggests TTK may be involved in the 

RT response of BC. To further examine this, we performed Gene Set Enrichment Analysis 
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(GSEA). Here, TTK expression was correlated with the expression of all other genes in the TCGA 

dataset and rank ordered by correlation coefficient. That gene list was then inputted into GSEA to 

identify pathways and networks associated with TTK expression. We found cell cycle genes in 

ionizing radiation (IR) response at 6 and 24 hours were significantly enriched concepts at the top 

of the list (Enrichment Score > 3.5 and p-value < 0.00001) (Figure 4.4A). Negatively correlated 

concepts were related to ER+ and luminal BC, further validating our original nomination of TTK 

as being associated with basal-like BC (Figure 4.4B). Together these results indicate that TTK 

may be involved in the radiation response of BC and may function as a mediator of radiosensitivity.  

To measure the effect of TTK perturbation on radiosensitivity in vitro, we used previously 

characterized radioresistant BC cell lines with high TTK expression (MDA-MB-231 and BT-549) 

(Figure 4.2J&K) (17). We performed clonogenic survival assays on stable, basal-like BC cell 

lines, expressing doxycycline (dox) inducible shRNA, for TTK knockdown. Dox-induced TTK 

knockdown increased radiosensitivity in multiple shTTK stable clones in both MDA-MB-231 

(Figure 4.3A, rER: shTTK#1 1.42-1.63, shTTK#2 1.21-1.25) and BT-549 (Figure 4.3C, rER: 

shTTK#1 1.21-1.25, shTTK#2 1.21-1.26) cell lines.). We also observed a significant decrease in 

the percent of surviving cells after 2 Gy radiation (SF-2 Gy) in shTTK dox+ compared to shTTK 

dox-. Knockdown of TTK protein was confirmed with varying degrees of cytotoxicity in both cell 

lines (Figure 4.3B&D, and Figure 4.4C&D). Additionally, dox treatment had no effect on 

radiosensitivity in shControl stable MDA-MB-231 and BT-549 cell lines (Figure 4.3A-D). 

To confirm that TTK kinase function, and not just protein structural or scaffolding function, 

is important in mediating the response to RT in basal-like BC models, we performed clonogenic 
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assays with the ATP-competitive TTK inhibitor, Bayer 1161909 - Empesertib (hereafter referred 

to as B909), currently in clinical development (18). This drug was chosen as it is currently the only 

TTK-inhibitor in phase I/II clinical trials and because the target specificity, pharmacodynamics, 

and pharmacokinetics have already been well established (18). Drug doses used for 

radiosensitization studies were approximately half of the IC50 of proliferation in order to evaluate 

radiosensitization, and not single agent antiproliferative effects (Figure 4.4E-G). TTK inhibition 

was confirmed using western blot analysis of phospho-Histone 3 (Ser10), a reported marker of 

functional TTK (Figure 4.4H&I) (19). As with TTK knockdown, we observed a dose-dependent 

increase in radiosensitization in MDA-MB-231 (rER: 1.15-1.39), BT-549 (rER: 1.10-1.39), and 

SUM159 (rER: 1.11-2.27) cell lines treated with B909 (Figure 4.3E-G). A dose-dependent 

decrease in SF-2 Gy was also observed in all cell lines and B909 caused varying degrees of 

cytotoxicity in both cell lines (Figure 4.4K-M). However, combination treatment of B909 and RT 

did not significantly decrease growth compared to B909 alone (Figure 4.4J). 

As a final, independent confirmation of radiosensitization, clonogenic survival assays were 

performed using an additional TTK inhibitor, NMS-P715 (19). TTK inhibition with NMS-P715 

also increased radiosensitivity and significantly decreased the SF-2 Gy, further indicating TTK 

kinase function is important for radioresistance (Figure 4.4N). Cytotoxicity and rER with NMS-

P715 are summarized in Figure 4.4O. 
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TTK inhibition leads to persistent DNA damage after radiation  

While radiosensitization can be induced through a number of mechanisms, we 

hypothesized TTK-mediated radiosensitization may be due, in part, to decreased double-strand 

DNA (dsDNA) damage repair efficiency. To evaluate the effect of TTK inhibition on dsDNA 

break repair, we measured γH2AX foci (greater than 15 foci per cell), a marker for unresolved 

dsDNA damage, in cells treated with TTK inhibition, RT, or combination treatment over time (20). 

Using the MDA-MB-231 shTTK and BT-549 shTTK models, we measured γH2AX foci at various 

time points after treatment with DMSO, dox (2µg/mL) alone, RT (2 Gy) alone, or a combination 

of dox and RT. 30 minutes after RT there were equivalent levels of γH2AX positive cells in RT 

alone and combination treated cells (~70% in MDA-MB-231 shTTK and ~80% in BT-549 

shTTK), while the non-irradiated cells had few γH2AX positive cells. Over time, the cells treated 

with RT alone repaired the RT-induced dsDNA damage more efficiently than the combination 

treated group at 4, 16, and 24 hours in MDA-MB-231 shTTK cells (Figure 4.5A) and at 4, 12, and 

16 hours in BT-549 shTTK cells (Figure 4.5B), suggesting TTK knockdown delayed dsDNA 

break repair efficiency. Representative images of γH2AX are shown 24 hours after RT in MDA-

MB-231 shTTK cells (Figure 4.6A) and 16 hours after RT in BT-549 shTTK cells (Figure 4.5C).  

To assess the contribution of TTK kinase function in dsDNA break repair, unresolved 

dsDNA damage was also measured after treatment with B909 (75nM) in MDA-MB-231 and BT-

549 cell lines. Approximately 75% of cells treated with 2 Gy were positive for γH2AX foci 30 

minutes after radiation (Figure 4.5D&E). As seen in the shTTK cell lines, combination treatment 

of B909 and RT resulted in persistent γH2AX foci positive cells over time in MDA-MB-231 cells 
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(16 and 24 hours) (Figure 4.5D) and BT-549 (12 and 16 hours) (Figure 4.5E). Representative 

images of γH2AX foci staining are shown 24 hours after RT in MDA-MB-231 (Figure 4.5F) and 

16 hours after RT in BT-549 cells (Figure 4.6B).  

Finally, we assessed dsDNA break repair using a second inhibitor, NMS-P715, in MDA-

MB-231 cells. As previously seen, TTK inhibition in combination with RT led to persistent 

γH2AX foci at 16 and 24 hours (Figure 4.6C). Representative images of γH2AX foci at the 24 

hour time point can be found in Figure 4.6D. These results indicate that TTK inhibition may lead 

to radiosensitization of basal-like BC cell lines, at least in part, due to impaired dsDNA damage 

repair. 

 

TTK inhibition decreases homologous recombination mediated DNA damage repair 

Homologous recombination (HR) and non-homologous end joining (NHEJ) are the two 

prominent mechanisms for dsDNA repair. Although either may be involved in dsDNA break 

repair, previous reports suggested a potential correlation between TTK expression and HR (21). 

To further investigate these possible mechanisms of radiosensitization we again performed GSEA 

by correlating gene expression with TTK expression. Here, we used the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) to nominate cellular pathways related to TTK expression. In both 

the METABRIC and TCGA datasets HR was significantly correlated to TTK gene expression and 

was listed in the top eight positively correlated concepts (Figure 4.7A&B). However, NHEJ was 

not significantly correlated to TTK expression in either dataset. Thus, we hypothesized that TTK-

mediated radiosensitization and persistent unresolved dsDNA breaks are due, at least in part, to 
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decreased HR repair efficiency. Using stable cell lines, with a well-characterized and validated HR 

specific GFP reporter system, we tested the efficiency of HR after TTK knockdown (22-24). In 

both MDA-MB-231 and BT-549 cell lines, siRNA-mediated TTK knockdown significantly 

decreased HR efficiency compared to siNT (Figure 4.7C&D). As controls, knockdown of Rad51, 

a key protein in the HR pathway, significantly decreased HR efficiency using this reporter system, 

while knockdown of XRCC6 (Ku70), a key protein in NHEJ, had no effect on HR efficiency 

(Figure 4.7C&D) (25). To evaluate the dependence of this TTK-mediated HR repair on TTK 

kinase function, we used pharmacological TTK inhibition, via B909 (50nM and 75nM). As with 

TTK knockdown, treatment with B909 significantly decreased HR efficiency in MDA-MB-231 

and BT-549 cells (Figure 4.7E&F). Chk1/2, critical proteins in the HR response, and DNAPK, 

which is required for effective NHEJ repair, served as model-system controls. As expected, 

pharmacologic inhibition of Chk1/2, by AZD7762 (150nM), an equipotent Chk1/2 inhibitor, 

decreased HR efficiency while the DNAPK inhibitor, NU7441 (1.5µM), which is not known to 

affect HR, had no effect on HR proficiency (Figure 4.7E&F) (26-28). All experiments were 

repeated in a second clone to reduce clone-specific effects and confirm TTK knockdown/inhibition 

decreases HR efficiency (Figure 4.8A-D). 

To further corroborate our findings that TTK knockdown and inhibition decreased HR 

proficiency, we performed Rad51 foci formation assays after RT (4 Gy) in MDA-MB-231 shTTK 

and BT-549 shTTK stable cell lines. Rad51 foci formation is a marker for active HR repair; 

therefore, inhibition of Rad51 foci formation is indicative of impaired HR proficiency (25). In both 

cell lines, combination treatment of dox (TTK knockdown) and RT resulted in a significant 
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decrease in Rad51 foci formation at both early and late time points (MDA-MB-231: 6 and 24 

hours, BT-549: 4 and 16 hours) compared to RT alone. Few Rad51 foci were seen at either time 

point in cells treated with DMSO or dox alone (Figure 4.7G&I). Representative images at 24 

(MDA-MB-231) and 16 (BT-549) hours are shown and western blot analyses depict Rad51 protein 

expression is equal across all treatment groups, indicating that the decrease in Rad51 foci cannot 

be attributed to a more general decrease in Rad51 protein after TTK knockdown (Figure 4.7H&J). 

These results indicate RT induces Rad51 foci formation, while TTK knockdown inhibits this 

formation, likely leading to decreased HR efficiency. 

Finally, we treated BT-549 cell lines with B909 alone, RT alone, or a combination of B909 

and RT and found a decrease in both phospho-BRCA1 and phospho-CHK1 after a combination of 

B909 and RT compared to RT alone (Figure 4.8E). Decreased phosphorylation of BRCA1 and 

CHK1 are canonical markers of impaired HR efficiency. Additionally, combination treatment of 

B909 with RT decreases phospho-RPA, indicating disruption of the HR pathway and possibly the 

lack of Rad51 foci formation after TTK knockdown (Figure 4.8F) (29). This further indicates that 

TTK inhibition via B909 disrupts HR, likely leading to increased radiosensitivity of basal-like 

breast cancer cell lines.   

 

TTK inhibition has no effect on non-homologous end joining repair 

While TTK inhibition decreased HR efficiency, we also tested the effect of TTK inhibition 

on NHEJ efficiency using a well-characterized and validated NHEJ-specific reporter plasmid 

system (30, 31). Dox induced TTK knockdown in MDA-MB-231 and BT-549 shTTK cells did 
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not decrease NHEJ efficiency, while treatment with the known DNAPK inhibitor NU7441 (1.5 

µM) significantly decreased efficiency of NHEJ in both cell lines (Figure 4.9A&B). To evaluate 

the effect of TTK kinase function on NHEJ efficiency, we also treated MDA-MB-231 and BT-549 

cells with B909 (50nM and 75nM). Neither B909 nor AZD7762 (Chk1/2 inhibitor) affected NHEJ 

efficiency, while NU7441 (DNAPK inhibitor) significantly decreased the efficiency of NHEJ 

(Figure 4.9C&D).  

Additionally, we treated MDA-MB-231 and BT-549 cells with B909 alone, RT alone, or a 

combination of B909 and RT to determine if canonical NHEJ phospho-proteins were affected. No 

difference in pKu80 (Thr714) was found between combination treatment of B909 and RT 

compared to RT alone in both MDA-MB-231 and BT-549 cells (Figure 4.9E&F). Together, these 

results confirm that TTK inhibition has no effect on NHEJ repair efficiency.   

 

Kinase-dead TTK does not rescue radiosensitivity phenotype  

 To validate that inhibition of TTK kinase function is responsible for the radiosensitization 

phenotype previously observed, we performed clonogenic survival assays using siRNAs to deplete 

endogenous TTK expression while re-introducing siRNA resistant wild-type (WT) or kinase-dead 

(KD) TTK. As previously demonstrated, knockdown of TTK using siRNA significantly increased 

radiosensitivity in both MDA-MB-231 and SUM-159 cell lines. Re-expression of WT TTK 

restored radioresistance in both cell lines; however, re-expression of KD TTK did not restore 

radioresistance in either cell line (Figure 4.10A&B). Western blot analyses showed siRNA 

dramatically reduced endogenous TTK expression. It also confirmed robust expression of WT and 
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KD TTK upon reintroduction using siRNA resistant constructs (Figure 4.11A). A summary of 

cytotoxicity and rER can be found in Figures 4.11B&C. Together, these results confirm that the 

kinase function of TTK is essential for the radioresistance phenotype observed in basal-like breast 

cancers models. 

 We also wanted to confirm that inhibition of TTK kinase function was responsible for 

impaired HR phenotype. Using the stable HR GFP reporter cell lines previously described, we 

measured the impact of TTK knockdown using siRNA as well as the reintroduction of WT and 

KD TTK.  In both MDA-MB-231 and BT-549 cell lines we found that re-expression of WT TTK 

rescued HR efficiency, while expression of KD TTK was not able to rescue HR competency after 

siRNA-mediated TTK knockdown of TTK (Figure 4.10C&D). To further confirm, the role of 

TTK’s kinase function on HR we conducted Rad51 foci formation experiments. BT-549 cells were 

pretreated with either lipofectamine alone, siRNA targeting TTK, siRNA + WT TTK, or siRNA + 

KD TTK 48 hours before RT (4 Gy). TTK knockdown resulted in a significant decrease in Rad51 

foci. However, re-expression of WT TTK after knockdown rescued Rad51 foci formation, whereas 

re-expression of KD TTK was unable to rescue appropriate Rad51 foci formation (Figure 4.10E). 

Representative images of Rad51 foci 4 hours after RT are shown in Figure 4.10F. 

 

TTK knockdown or inhibition reduces tumor growth in vivo  

Once we established that TTK knockdown or inhibition leads to radiosensitization of basal-

like BC in vitro and that this effect is mediated, at least in part, by decreased dsDNA break repair 

efficiency through HR, we wanted to determine whether inhibition of TTK in vivo similarly led to 
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radiosensitization. We initially utilized the MDA-MB-231 shTTK knockdown model in 

heterotopic xenograft studies, injecting cells subcutaneously into the flanks of female mice. After 

the tumors were established and grew to ~100mm3, mice received either no treatment, TTK 

knockdown with dox, RT alone, or a combination of TTK knockdown with dox and RT. RT was 

given in six doses of 2 Gy over six days, beginning 72 hours after initial dox treatment to 

knockdown TTK (Figure 4.12A). Combination treatment significantly reduced relative tumor 

growth compared to no treatment, TTK knockdown with dox, and RT alone (Figure 4.12B). Time 

to tumor tripling significantly increased for combination treatment (undefined) compared to no 

treatment (14 days), TTK knockdown with dox (19 days), and RT (17.5 days) (Figure 4.12C). 

Mouse weights were not significantly different between treatment groups in this study (Figure 

4.13A). To confirm that the addition of dox reduced TTK expression, we performed 

immunohistochemistry on tumor samples. Dox induced TTK knockdown significantly reduced 

TTK expression in the shTTK dox+ tumors compared to shTTK Dox- tumors (Figure 4.12D&E).  

Finally, using the fraction tumor volume (FTV) method to measure synergy between treatments, 

we found that a combination of TTK knockdown and RT led to at least an additive, if not 

superadditive, effect (Ratio [R] <1) (Figure 4.13B).   

To establish that dox has no effect on tumor growth as well as to determine that the decrease 

in tumor growth previously seen was not an artifact of a single shTTK clone, we performed a 

second study with four independent stable MDA-MB-231 shRNA groups (shControl dox-, 

shControl dox+, shTTK#2 dox+, and shTTK#2 dox+ plus RT). No difference in tumor growth was 

observed between shControl +/- dox, indicating dox alone has no effect on tumor growth (Figure 
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4.13C&D). As seen in our previous xenograft study, a combination of TTK knockdown and RT 

decreased tumor growth and increased time to tumor tripling (34 days) compared to shControl 

dox- (10.5 days), shControl dox+ (13 days), and shTTK#2 dox+ (15 days) (Figure 4.13C&D). 

Again mouse weights were similar in all groups (Figure 4.13E).  

To assess the role of TTK kinase function, and not just protein expression, on 

radiosensitization in vivo, we performed a xenograft study using the clinical grade TTK inhibitor 

B909 to test whether TTK kinase inhibition would also decrease tumor growth and increase time 

to tumor tripling. Using a similar design scheme, mice received either placebo treatment (CMC-

Tween80), RT alone, B909 (1mg/kg) alone, or combination therapy (RT + B909). Combination 

treatment significantly decreased relative tumor growth and significantly increased time to tumor 

tripling (undefined days) compared to placebo (11 days), RT alone (22 days), and B909 alone (15 

days) (Figure 4.12F&G). Interestingly, 19% of tumors in the combination treatment group 

remained stable in size and were not growing even at the time of study completion (38 days), 

suggesting sustained durable response even weeks after the completion of therapy. As with TTK 

knockdown, combination treatment of B909 and RT had little effect on mouse weights (Figure 

4.13F). Furthermore, using the FTV method to measure synergy between treatments, we found 

that inhibition of TTK kinase function had a synergistic effect with RT (R>1) (Figure 4.13G).  

To confirm these findings independently, we utilized an orthotopic PDX model to test the 

efficacy of B909 plus RT. In this model we implanted basal-like BC PDX (PDX mutations listed 

in Figure 4.2L) tumors in the mammary fat pad of mice and allowed them to grow to ~100mm3.  

Mice received either placebo treatment (CMC-Tween80), RT alone, B909 (2.5mg/kg) alone, or 
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combination therapy (RT + B909). In agreement with the previous animal studies, combination 

treatment led to a significant decrease in tumor growth and increased time to tumor tripling 

(undefined days) compared to placebo (9 days), RT alone (22 days), and B909 alone (13 days) 

(Figure 4.12H&I). Combination treatment of B909 and RT did not cause weight loss in mice. 

However, mice that received either placebo or B909 alone gained weight throughout the study 

which can be attributed to the growth of the PDX tumors (Figure 4.13H). As seen in our previous 

study, combination treatment of B909 and RT was synergistic (R>1) and led to tumor regression 

in many mice (Figure 4.13I). These results indicate that TTK inhibition, using B909, in 

combination with RT inhibits tumor growth and delays time to tumor tripling. Together, our 

findings in multiple non-overlapping models suggest the combination treatment of B909 and RT 

may be a feasible strategy for the treatment of patients with basal-like BC with high risk of local 

recurrence.  

 

Discussion 

In this study we unbiasedly nominated TTK as the gene most strongly correlated with BC 

recurrence after radiation in four independent patient datasets (Figure 4.1&4.2). TTK expression 

is strongly associated with TNBC/basal-like BC subtypes. Using both genetic (shRNA/siRNA) 

and pharmacologic (NMS-P715 and Bayer 1161909 – Empesertib) TTK inhibition we induced 

radiosensitization in multiple basal-like BC cell lines (Figure 4.3&4.4). We found that TTK 

inhibition led to persistent unresolved dsDNA damage over time (Figure 4.5&4.6). TTK 

knockdown or inhibition led to impaired HR with no effect on NHEJ, and impaired HR is 
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responsible, at least in part, for increased radiosensitivity of basal-like BC cell lines (Figure 4.7-

4.9). We also show inhibition of TTK kinase function is responsible for increased radiosensitivity 

and loss of HR efficiency through the use of wild-type and kinase-dead TTK re-expression after 

endogenous TTK knockdown (Figure 4.10&4.11).  In vivo, both genetic and pharmacologic TTK 

inhibition decreased tumor growth and increased time to tumor tripling in both cell line and 

orthotopic PDX models (Figure 4.12&4.13). Together, these results demonstrate that TTK 

inhibition, in combination with RT, is a potentially effective strategy for the radiosensitization of 

basal-like BC that may ultimately lead to decreased rates of recurrence for patients.  

In our nomination of novel targets for the radiosensitization of BC, we found TTK, also 

known as Monopolar Spindle 1 (Mps1), as the top target for radiosensitization of basal-like BC. 

TTK is overexpressed in various cancers and has previously been studied as a target for treatment 

of BC, glioblastoma, ovarian cancer, colon cancer, and others (18, 19, 32-35). TTK has been well 

characterized for its role in the spindle assembly checkpoint (SAC) complex, which prevents 

progression from metaphase to anaphase in mitosis when problems occur in metaphase (36-40). 

Previously, TTK inhibition has been shown to cause irregular mitosis as well as increased 

aneuploidy, lagging chromosomes, and mitotic catastrophe (41, 42). Given these findings, 

previous groups have focused on TTK inhibition as a monotherapy, in combination with 

conventional chemotherapies, or in combination with anti-PD-1 antibodies (18, 33, 41, 43). To 

date, however, few studies have characterized the role of TTK in the radiation response and as a 

possible combination therapy with RT (32). Additionally, previous studies have implicated TTK 

in HR- and NHEJ-mediated dsDNA break repair, though these studies suggest TTK may be more 
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strongly linked to HR pathway than NHEJ (21, 32). Our results add to this growing body of 

literature and are the first to suggest TTK inhibition is a viable strategy for the radiosensitization 

of basal-like BC. We also demonstrate for the first time that this radiosensitivity in BC is mediated, 

at least in part, through impaired HR repair. 

Our nomination process, in four distinct BC datasets, identified ten genes correlated with 

recurrence in patients treated with radiation.  In addition to the top nominated gene (TTK), multiple 

other identified genes (including EZH2 and KPNA2) have previously been associated with 

recurrence and radioresistance in various cancers (44, 45). This suggests our unbiased approach to 

nominate novel mediators of recurrence was rational and effective. While we only studied the 

effect of TTK inhibition on radiosensitization in this study, these additional genes may also be 

strong targets for the radiosensitization of BC and warrant further investigation.  

Here we show TTK kinase function mediates HR competency; however, there are likely 

additional mechanisms for radiosensitization influenced by TTK. Increases in mitotic catastrophe, 

aneuploidy, and cell cycle defects have previously been linked to TTK inhibition and are likely to 

contribute to the observed radiosensitization (32, 33, 40, 42, 46). In our study, we used three basal-

like breast cancer cell lines and a PDX model that are all BRCA1 wild-type in ordered to asses HR 

competency. We hypothesize that TTK inhibition may also have utility in BRCA1 mutant breast 

cancer cell lines through its role in the spindle assembly checkpoint complex and not through 

impaired HR. However, further studies are necessary to validate this hypothesis. 

We have demonstrated that TTK inhibition had no effect on non-homologous end joining 

(NHEJ) efficiency (Figure 5), despite other groups reporting reduced NHEJ efficiency after TTK 
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inhibition (32). This discrepancy may be explained by the different model systems and different 

pharmacological inhibitors used. For example, previous studies reporting TTK inhibition led to 

impaired NHEJ used the TTK inhibitor NMS-P715 (32). However, at higher doses NMS-P715 

also inhibits maternal embryonic leucine zipper kinase (MELK), a kinase that our lab has shown 

to be critical to the NHEJ pathway (19). These off-target effects may have caused the decreased 

NHEJ efficiency seen in their study. However, further research needs to be performed, in multiple 

non-overlapping models, to reasonably address this concern. Furthermore, while we demonstrate 

that TTK inhibition leads to a decrease in HR repair efficiency, we have not yet identified the 

mechanism by which this occurs. Additional studies are currently underway to understand how 

TTK interacts with proteins in the HR pathway and how TTK inhibition leads to decreased HR 

efficiency. 

Local recurrences after radiation remain a significant issue for women with basal-like BC, 

as the molecular drivers of these radioresistant recurrences are currently unclear. This study 

identifies TTK as a potential molecular mediator of radioresistance in basal-like BC. These data 

suggest that utilizing TTK inhibitors in combination with radiation may lead to improved rates of 

local control and disease cure for women with basal-like BC with high TTK expression. Future 

studies by our group and others will test this hypothesis in clinical trials with the goal of improving 

local control and survival in women with these aggressive forms of BC. 
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Methods 

Gene Nomination 

Four independent datasets of primary tumor samples from women with breast cancer with 

associated, curated recurrence data and gene expression were utilized for nomination (Wang (47), 

Desmedt (48), van’t Veer (49), and Schmidt (50)). Using Oncomine.org for analysis and “Invasive 

Ductal Breast Carcinoma - Recurrence at 3 Years - Top 1% over-expressed” as a primary concept 

filter, we identified the genes whose expression was significantly correlated with recurrence event 

within 3 years of diagnosis with an odds ratio of >2 and a multiple testing corrected p-value 

<0.000001 in each data set as originally reported (51). The identified genes from each dataset were 

then compared for overlap in all four datasets to generate the final list of genes for further 

investigation. 

Gene Set Enrichment Analysis (GSEA) 

Gene expression was correlated to TTK expression in the TCGA breast cancer datasets and ranked 

by correlation coefficient. The settings used in GSEA were c2.all.v6.symbols.gmt [curated] as the 

gene sets database, 1000 permutations, and the minimum size was 15. For GSEA KEGG analysis 

both METABRIC and TCGA were used with c2.cp.kegg.v7.0.symbols.gmt, 1000 permutations, 

and a minimum size of 10 (52, 53). 

Cell Culture 

Basal-like BC cell lines MDA-MB-231 and BT-549 were grown from frozen samples (ATCC).  

MDA-MB-231 cells were grown in DMEM (Invitrogen) supplemented with 10% FBS (Invitrogen) 
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and penicillin/streptomycin (Invitrogen). BT-549 cells were grown in RPMI 1640 (Invitrogen) 

with 10% FBS (Invitrogen). SUM-159 were originally sourced from Steve P. Ethier at the 

University of Michigan and were obtained internally from Dr. Sofia Merajver. SUM-159 cells 

were grown in HAMS F-12 media (Thermo Fisher) supplemented with 5% FBS (Invitrogen), 5 

mg/ml human insulin (Sigma), 10mmol/L HEPES (Thermo Fisher), 1 mg/kg Hydrocortisone 

(Sigma), and antibiotic-antimycotic. All cell lines were grown in 5% CO2 incubator. Cells were 

passaged at ~70% confluence. Cell lines were authenticated at the University of Michigan DNA 

Sequencing core facility before use and tested for mycoplasma routinely (MycoAlert®, Lonza). 

Clonogenic Survival Assays 

Exponentially growing cells were plated in 6-well plates overnight before treatment with 

doxycycline, drug, siRNA, or TTK plasmids. Cells were pretreated with, doxycycline (2µg/ml) for 

36 hours, drug for 2 hours, siRNA for ~8-24 hours, and TTK plasmids for 24 hours before radiation 

treatment. Cells were allowed to grow for 7-14 days before being fixed (7:1, methanol: acetic acid) 

and stained (crystal violet). Colonies were counted as ≥50 cells. A linear-quadratic survival curve 

was fit to each assay, as previously described (54). 

Western Blot Analysis 

Cells were washed twice with ice cold PBS and lysed with RIPA buffer (Thermo Fisher) 

supplemented with phosSTOP (Roche) and cOmplete Mini protease inhibitors (Sigma-Aldrich). 

Western blot analysis was performed as previously described (55). Specific antibody information 

and dilutions can be found in Table 4.3. 
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Transfections, siRNAs, shRNAs, plasmids 

siRNAs and shRNAs were ordered from Dharmacon and are listed in Table 4.3. siRNAs were 

transfected using Lipofectamine RNAiMax (Invitrogen) and Opti-MEM media (Invitrogen). Wild-

type and kinase-dead TTK plasmids were generously given by the Yu lab and contain a 6x Myc 

tag (56). Specific information of siRNAs, shRNAs, and plasmids can be found in Table 4.3. 

Irradiation 

Irradiations were performed using a Kimtron IC 225 (Kimtron Medical) at a dose rate of 

approximately 2 Gy/min in the University of Michigan Comprehensive Cancer Center 

Experimental Irradiation Core (Ann Arbor, MI). Dosimetry is performed semiannually using an 

ionization chamber connected to an electrometer system that is directly traceable to a National 

Institute of Standards and Technology calibration. The beam was collimated with a 0.1 mm Cu 

inherent filter and a 0.2 mm Cu filter was used for cell line irradiation. A 2 mm Cu filter was used 

for in vivo xenograft experiments.  

IC50 Analysis 

2,000 cells per well were plated in a 96 well plate and allowed to adhere overnight. Drug was 

added at varying concentrations (1nM-10µM) and the cells were incubated for an additional 72 

hours. After 72 hours, AlamarBlue (Thermo-Fisher) was added at 1/10 the volume of media and 

incubated for 3 hours at 37˚C. The plate was read using a BioTek™ Cytation™ 3 Cell Imaging 

Multi-Mode Reader. A dose-response curved was made using GraphPad Prism 7 software. 
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Proliferation Assay 

Cells were plated in 96 well plates (1,500 cells/well) and allowed to sit overnight. The following 

day cells were pretreated with DMSO or B909 for 1 hour before radiation (2 Gy). Cells were 

then placed in an IncuCyte® Machine which measured the confluence of the plate every 4 hours 

for ~4 days.  

Gamma H2AX and Rad51 foci formation assay 

γH2AX and Rad51 foci were analyzed as previously described (57). Cells with >15 γH2AX foci 

or >10 Rad51 foci were scored as positive. Blinded analysis was performed when counting cells 

positive for foci.  Antibody information can be found in Table 4.3. 

Homologous recombination reporter assay 

Cells were transfected with the HR reporter DR-GFP plasmid using Lipofectamine 2000 

(Invitrogen) following the manufacturer’s recommendations, with geneticin (ThermoFisher) 

selection, and validated using flow cytometry by GFP after SceI treatment (58). Validated clones 

were plated in a 6-well plate, pretreated with the indicated siRNA for 24 hours, drug for 1 hour, or 

TTK plasmids for 48 hours. SceI adenovirus was added to the cells for 48 hours; cells were 

harvested and sorted via flow cytometry for GFP+ cells, which indicated successful HR.  

Non-homologous end joining reporter assay 

The pEYFP plasmid (gift from Canman Lab) was completely digested with 20U of NheI-HF and 

purified using QIAquick PCR purification kit (CAT# 28104). Cells (1.0x105 per well) were plated 

in six well plates. The following day, 1µg of the digested pEYFP plasmid was transfected per well. 
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One hour before transfection, the cells were treated with either TTK inhibitor or DMSO. Cells 

were harvested at indicated time points, and the DNA plasmids were isolated with QIAprep Spin 

Miniprep Kit (Cat#27106). SYBR green real time qPCR was conducted in triplicate in 384-well 

PCR system, using DNAas template. Specific primers used are listed in Table 4.3. Relative DNA 

repair efficiency was calculated by comparative method normalized to the CT value of internal 

control.   

Mouse Xenograft Experiments 

Cells were injected subcutaneously on the bilateral flanks or orthotopically in the mammary fat 

pads of CB-17 SCID female mice originally sourced from Charles River Laboratories in 

Wilmington, Massachusetts and maintained in a breeding colony at the University of Michigan. 

Tumors were allowed to grow to ~100mm3 and randomized before treatment began. Doxycycline 

(1µg/ml) was given through drinking water to induce shTTK cells 72 hours prior to the beginning 

of radiation therapy (RT). Bayer 1161909 (B909) was administered at a dose of 1mg/kg twice a 

day for 2 days over 4 weeks, one day prior to the start of RT. RT was given as 6 doses of 2 Gy. 

Tumor size was measured 3 times a week using a digital caliper and tumor volume was calculated 

using the equation V= (L * W2) * π/6. Additive/synergistic effects were calculated using the 

fraction tumor volume (FTV) method as previously described (59, 60).  

Study Approval 

The procedures listed above were approved by the Institutional Animal Care and Use Committee 

(IACUC) at the University of Michigan. 
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Statistics 

Statistical analyses were performed using GraphPad Prism 7.0. A log-rank (Mantel-Cox) test was 

used for analyses of survival curves. One-way ANOVA was performed for breast cancer subtype 

analysis. Two-sided Student’s t-test and one-way ANOVA with Dunnett’s multiple comparisons 

test were used for in vitro statistical analysis. One-way ANOVA with Dunnett’s multiple 

comparisons test and Log-rank (Mantel-Cox) test were used for in vivo analyses. A P value less 

than or equal to 0.05 was considered significant. 
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Figures 

 
Figure 4.1 TTK expression correlates with breast cancer (BC) recurrence and independently predicts 
local recurrence-free survival (LRFS). A) Four BC datasets (Desmedt, van’t Veer, Wang, and Schmidt) 
were used to identify genes associated with early recurrence (within 3 years) (Odds Ratio > 2.0 and p-value 
< 1.0E-6). B-D) Kaplan Meier local recurrence-free survival analysis in three independent datasets: Servant 
(B), Vande Vijver (C), and Wang (D) demonstrates that patients with higher than median expression of 
TTK have significantly higher rates of local recurrence after radiation compared to patients with lower than 
median TTK expression. E) TTK is overexpressed in basal-like BC compared to other subtypes (p<0.0001) 
and is overexpressed in BC compared to normal tissue (p<0.0001) in the METABRIC dataset. F) TTK is 
overexpressed in basal-like BC compared to non basal-like BC, using transcripts per million (TPM), in the 
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University of Michigan institutional dataset (Met500) (p<0.0001). Two-sided Student’s t-test and ANOVA 
were used for analyses. Error bars represent standard deviation. 
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Figure 4.2: TTK expression correlates with local recurrence-free survival (LRFS) in breast cancer 
(BC) and is overexpressed in estrogen receptor-negative (ER-) BC compared to estrogen receptor-
positive (ER+) breast cancer. A-C) Kaplan Meier analysis by quartile expression demonstrates higher 
TTK expression correlates with decreased LRFS in the Servant (A), Vande Vijver (B), and Wang (C) 
datasets. D-F) TTK is overexpressed in ER- BC compared to ER+ BC in the Servant (D), Vande Vijver 
(E), and Wang (F) datasets. Log-rank (Mantel-Cox) test was used for analyses of survival curves. G) TTK 
is overexpressed in patients with TNBC/basal-like BC compared to other subtypes in the TCGA BC dataset. 
Additionally, TTK is overexpressed in BC compared to normal tissue. H&I) TTK is overexpressed in ER- 
BC cell lines compared to ER+ BC cell lines and TTK has highest expression in basal-like BC cell lines 
compared to other subtypes using CCLE data measured in transcripts per million (TPM). J&K) TTK protein 
expression is highest in MDA-MB-231 and BT-549 BC cell lines and TTK protein expression is highest in 
basal-like BC compared to other subtypes. L) Mutational landscapes of cell lines and PDX models used for 
in vitro and in vivo studies. Two-sided Student’s t-test and one-way ANOVA were used for analyses. Error 
bars represent standard deviation. 
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Figure 4.3: Inhibition of TTK confers radiosensitivity in multiple basal-like breast cancer cell lines 
with high baseline TTK expression. A&C) shRNA induced TTK knockdown increases radiosensitivity 
in MDA-MB-231 (rER: 1.21-1.63) and BT-549 (rER: 1.21-1.26) cell lines. B&D) The addition of 
doxycycline leads to TTK knockdown in multiple stable clones in MDA-MB-231 and BT-549 cell lines. 
E-G) Pharmacological inhibition of TTK induces radiosensitivity of MDA-MB-231 cells (rER: 25nM 1.15-
1.18, 37.5nM 1.23-1.29, 50nM 1.34-1.39) and BT-549 (rER: 25nM 1.10-1.17, 37.5nM 1.11-1.30, 50nM 
1.23-1.39), and SUM-159 cells (rER: 25nM 1.11-1.26, 37.5nM 1.35-1.64, 50nM 1.74-2.27)  in a dose-
dependent fashion  Data represent the mean of three independent experiments and error bars represent SEM 
for clonogenic assays and SD for SF-2 Gy. Two-sided Student’s t-test was used for comparison of shRNA 
clonogenic assays and one-way ANOVA with Dunnett’s multiple comparisons test was used for 
comparison of B909 clonogenic assays.  * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.  
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Figure 4.4: Gene set enrichment analysis (GSEA) correlates TTK with radiation response and TTK 
inhibition radiosensitizes multiple basal-like breast cancer (BC) cell lines. A) GSEA identifies cell 
cycle genes at 6 and 24 hours as the top positively correlated concepts with TTK expression in TCGA BC 
dataset. B) GSEA concepts negatively correlated with TTK expression in the TCGA BC dataset. C&D) 
Summary of radiation enhancement ratios (rER) and cytotoxicity caused by TTK knockdown in MDA-
MB-231 (C) and BT-549 (D) cells. E-G) IC50 of proliferation analyses of B909 in MDA-MB-231 (E) 
(109nM), BT-549 (F) (131nM), and SUM-159 (G) (91nM) cell lines. Error bars represent SEM. H&I) B909 
reduces pH3 (Ser10) expression dose dependently in MDA-MB-231 (H) and BT-549 (I) cell lines. J) 
Proliferation assays of BT-549 cells treated with RT alone, B909 alone, or a combination treatment. Two-
way ANOVA with Dunnett’s Multiple Comparisons test was used to compare treatment groups. Data are a 
representation of 2-3 replicates. K-M) Radiation enhancement ratio (rER) and cytotoxicity of B909 
clonogenic survival assays in MDA-MB-231 (J), BT-549 (K), and SUM-159 (L) cell lines. N) Clonogenic 
survival assay and SF-2 Gy in MDA-MB-231 cells using the TTK inhibitor NMS-P715 (1.5µM). O) 
Summary of radiation enhancement ratios (rER) and cytotoxicity caused by NMS-P715. Unless otherwise 
stated, data represent the mean of three independent experiments. Error bars represent SEM for clonogenic 
survival assays and proliferation assays and standard deviation for SF-2 Gy. A Two-sided Student’s t-test 
was used for comparison. **p<0.01, ***p<0.001  
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Figure 4.5: TTK inhibition in combination with RT leads to persistent double-strand DNA (dsDNA) 
damage over time. A&B) Combination treatment of dox inducible shRNA and RT leads to persistent 
dsDNA damage over time in two basal-like breast cancer cell lines: MDA-MB-231 (A) and BT-549 (B). 
C) Representative images of BT-549 γH2AX foci at 16 hours. D&E) Pharmacological inhibition of TTK 
kinase function, using B909, in combination with RT leads to persistent dsDNA damage over time in two 
basal-like breast cancer cell lines, MDA-MB-231 (D) and BT-549 (E). F) Representative images of MDA-
MB-231 γH2AX foci at 24 hours. Data represent the mean of three independent experiments repeated in 
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triplicate, with ~100 cells counted for each experiment, and error bars represent standard deviation. Two-
sided Student’s t-test was used for comparison. * p<0.05, ** p<0.01 

 
 
 

 
Figure 4.6: Representative images of γH2AX foci. A) Representative images of γH2AX foci in MDA-
MB-231 shTTK#1 cells 24 hours after radiation. B) Representative images of γH2AX foci in BT-549 cells 
treated with Bayer 1161909 at 16 hours after radiation. C) Combination treatment of TTK inhibition (NMS-
P715) and RT lead to persistent double strand DNA damage over time. D) Representative images of γH2AX 
foci at 24 hours in MDA-MB-231 cells treated with NMS-P715. Data represent the mean of three 
independent experiments repeated in triplicate, with ~100 cells counted for each experiment, and error bars 
represent standard deviation. Two-sided Student’s t-test was used for comparison. * p < 0.05, ** p < 0.01 
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Figure 4.7: TTK inhibition reduces homologous recombination repair (HR) efficiency. A&B) KEGG 
analysis through GSEA correlates the HR pathway with TTK expression in the METBRIC (A) and TCGA 
(B) datasets. C&D) TTK knockdown, by siRNA, reduces HR efficiency in an HR specific report system in 
MDA-MB-231 (C) and BT-549 (D) cells. E&F) Inhibition of TTK kinase function, by B909 at 50nM and 
75nM, reduces HR efficiency in MDA-MB-231 (E) and BT-549 (F) cells. G&I) TTK knockdown, via a 
dox inducible shRNA, reduces RAD51 foci formation after 4 Gy radiation in MDA-MB-231 (G) and BT-
549 (I) cell lines. H&J) Representative images of MDA-MB-231 (H) and BT-549 (J) RAD51 foci and 
western blots showing no change in total RAD51 levels after dox or RT treatment. Data represent the mean 
of three independent experiments and error bars represent standard deviation. One-sided t-tests corrected 
for multiple comparisons were used for comparison of HR efficiency assays and Two-sided Student’s t-test 
was used for comparison of RAD51 foci experiments. * p<0.05, ** p<0.01, *** p<0.001 
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Figure 4.8: Homologous recombination (HR) efficiency is reduced by TTK inhibition in a second 
stable HR specific reporter clone and through western blot analysis. A&B) Knockdown of TTK by 
siRNA significantly reduces HR efficiency in MDA-MB-231 (A) and BT-549 (B) cells. C&D) TTK 
inhibition by Bayer 1161909 reduces HR efficiency in MDA-MB-231 (C) and BT-549 (D) cells. Data 
represent the mean of 3-4 independent experiments and error bars represent standard deviation. E) TTK 
inhibition reduces phospho-BRCA1 and phospho-CHK1 after RT compared to RT alone in BT-549 cells. 
Western blots represent two independent experiments. F) TTK inhibition reduces phospho-RPA after RT 
compared to RT alone in and BT-549 cells. Western blots represent two independent experiments. One-
way ANOVA with Dunnett’s multiple comparisons test was used for comparison. *p≤0.05, **p<0.01.  
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Figure 4.9: TTK knockdown has no effect on non-homologous end joining repair efficiency. A&B) 
TTK knockdown, via dox inducible shRNA has no effect on NHEJ efficiency in MDA-MB-231 (A) nor 
BT-549 (B) cells, while DNAPK inhibition significantly reduces NHEJ efficiency. C&D) Pharmacologic 
inhibition of TTK kinase, using B909, at 50nM and 75nM, has no effect on NHEJ, while DNAPK inhibition 
significantly reduces NHEJ efficiency in MDA-MB-231 (C) and BT-549 (D) cell lines. E&F) Inhibition of 
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TTK with B909 has no effect on pKu80 (Thr714). Data represent the mean of three independent 
experiments and error bars represent standard deviation. Two-sided Student’s t-test was used for 
comparison of shTTK NHEJ assays and one-way ANOVA with Dunnett’s multiple comparisons test was 
used for comparison of B909 NHEJ assays. * p<0.05, ** p<0.01 
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Figure 4.10: After knockdown of TTK, wild-type (WT) TTK rescues the radiosensitization 
phenotype, while kinase-dead (KD) TTK does not. A&B) TTK knockdown, with siRNA, leads to 
radiosensitization of MDA-MB-231 (A) and SUM-159 (B) cell lines. The addition of WT TTK rescues this 
phenotype, while KD TTK does not. C&D) Knockdown of TTK using siRNA decreases homologous 
recombination (HR) efficiency, while the reintroduction of wild-type TTK rescues HR efficiency. However, 
reintroduction of KD TTK does not rescue HR efficiency in both MDA-MB-231 (C) and BT-549 (D) cell 
lines. E) TTK knockdown, by siRNA, decreases RAD51 foci formation, however, reintroduction of WT 
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TTK rescues RAD51 foci formation. Introduction of KD TTK is unable to rescue RAD51 foci formation. 
F) Representative images of RAD51 foci at 4 hours. Data represent the mean of three to four independent 
experiments and error bars represent standard deviation. One-way ANOVA with Dunnett’s multiple 
comparisons test was used for comparison. * p<0.05, ** p<0.01, **** p<0.0001 

 

 
Figure 4.11: TTK rescue representative western blots and clonogenic assay cytotoxicity information. 
A) Representative western blot of TTK knockdown by siRNA and overexpression of wild-type (WT) or 
kinase dead (KD) TTK. B&C) Cytotoxicity and radiation enhancement ratio information for MDA-MB-
231 (B) and SUM-159 (C) clonogenic assays. D) Representative western blot of TTK knockdown by siRNA 
and overexpression of WT or KD TTK in the BT-549 cell line. Western blots are representative of duplicate 
experiments. 
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Figure 4.12: Combination treatment of TTK inhibition and RT reduces basal-like breast cancer 
tumor growth in vivo. A) Model of treatment schedule for in vivo studies. B) Doxycycline (dox) inducible 
MDA-MB-231 shTTK cells have decreased tumor growth with a combination of dox and RT (n=16) 
compared to TTK knockdown (n=15) or RT alone (n=16). C) Combination treatment (RT + dox) leads to 
increased time to tumor tripling in vivo. D) Immunohistochemistry from shTTK in vivo model depicts 
success knockdown of TTK after the addition of dox. E) Average percent of TTK positive cells across four 
tumors from the shTTK in vivo model plus or minus dox. F) TTK inhibition, by B909 (1mg/kg), in 
combination with RT leads to decreased tumor growth and G) increased time to tumor tripling in MDA-
MB-231 breast cancer cells (n=16 tumors per group). H) In an orthotopic PDX model, combination 
treatment of B909 (2.5mg/kg) and RT decreases tumor growth compared to placebo, B909 only, and RT 
only. I) Combination treatment of B909 and RT leads to increased time of tumor tripling. One-way ANOVA 
with Dunnett’s multiple comparisons test and Log-rank (Mantel-Cox) test were used for analyses. Error 
bars represent standard error of the mean. ** p<0.01, *** p<0.001, **** p<0.0001.  
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Figure 4.13: In vivo studies additional information. A) MDA-MB-231 shTTK#1 mouse weights from in 
vivo study. B) Additive/synergistic analysis for MDA-MB-231 shTTK#1 in vivo study using fractional 
tumor volume (FTV) method. C) In a second dox inducible MDA-MB-231 shTTK cell line (shTTK#2), 
tumor growth is inhibited by a combination of dox and RT compared to dox alone, while dox has no effect 
on shControl cells. Two-sided Student’s t-test was used for analyses. Error bars represent standard error of 
the mean. D) Combination treatment (dox + RT) leads to increased time to tumor tripling, while dox alone 
has no effect on shControl cells (n=16 tumors per group). Log-rank (Mantel-Cox) tests were used for 
analyses. E) Mouse weights from MDA-MB-231 shControl/shTTK#2 in vivo study. F) Mouse weights from 
MDA-MB-231 Bayer 1161909 (B909) in vivo study. G) Additive/synergistic analysis for MDA-MB-231 
B909 in vivo study using the FTV method. H) Mouse weights from the PDX4664 orthotopic study. I) 
Additive/synergistic analysis for PDX4664 B909 in vivo study using the FTV method. ****p<0.0001. 
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Figure 4.14: TTK interacts with the spindle assembly checkpoint (SAC) complex to ensure accurate 
chromosomal alignment and regulates homologous recombination to ensure accurate double strand 
DNA repair. Inhibition of TTK leads to an increase in aneuploidy, lagging chromosomes, and mitotic 
catastrophe through its canonical role in the SAC complex. Our findings demonstrate a novel role for TTK 
in the homologous recombination pathway. Inhibition of TTK with knockdown, kinase-dead constructs, 
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and a clinical grade inhibitor, Bayer 1161909, decreases in the efficiency of homologous recombination but 
has no effect on non-homologous end joining. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Tables 

 

 
 

Table 1: Genes associated with locoregional recurrence after radiation. List of ten overlapping genes 
across four datasets (Desmedt, Van’t Veer, Wang, and Schmidt) associated with locoregional recurrence 
after radiation. Fold change between recurrent and non-recurrent genes listed under each dataset. List of 
genes under clinical development noted. 

 

 

 

 



 164 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 2: Univariate and multivariate analysis of Servant, Vande Vijver, and Wang datasets. 
Univariate and multivariate analyses were performed for the Servant, Vande Vijver, and Wang 
datasets independently. In multivariate cox proportional hazards regression analysis of all patients, 
only TTK expression (continuous variable) remained significantly associated with worse local 
RFS in all three datasets. Log-rank (Mantel-Cox) test was used for analyses of survival curves. 
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Chapter 5  

Discussion 

 

Summary 

 While the 5- and 10-year survival rates of breast cancer continue to rise, patients with basal-

like breast cancer continue to have the worst outcomes (1). The lack of targeted therapies as well 

as resistance to radiation therapy (RT) in basal-like breast cancer contribute to their lower survival 

rates (2, 3). Although there have been extensive efforts to increase the effectiveness of RT in breast 

cancer patients, few to date, have provided clinical benefit to patients without substantial toxicities 

(4, 5).  

 Our studies aimed to characterize the RT response in breast cancer cell lines to help unearth 

novel targets for radiosensitization of basal-like breast cancer. We hypothesized that comparing 

gene and protein expression differences induced by RT across multiple breast cancer cell lines and 

subtypes would provide novel insights into what may be causing radioresistance in basal-like 

breast cancers. We describe, for the first time, changes in genes related to cell cycle, DNA damage, 

p53, and apoptosis that may contribute to radioresistance (Figure 2.7-2.15). We use this data to 

highlight important differences between luminal and basal-like breast cancer cell lines that could 

be leveraged for radiosensitization of basal-like breast cancers.  

 After RT many breast cancer cell lines are dependent on p53 signaling to drive apoptosis 

related transcriptional changes (6, 7). In the context of tumors with mutations in p53, this activation 

of the apoptotic pathway is silenced at the transcriptional and translational level. When this 
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pathway is intact, cells are markedly more sensitive to ionizing radiation than when the pathway 

is silenced, and our multi-level –omics approaches nominate this pathway as a key mediator of 

radiation resistance in p53 mutant tumors (Figure 3.1). We therefore nominate anti-apoptosis 

genes as potential radiosensitization targets. In vitro, we test whether activation of the apoptosis 

pathway, through inhibition of anti-apoptosis proteins, could radiosensitize basal-like breast 

cancer cell lines. Interesting, we see that inhibition of Bcl-2 family proteins (Bcl-2, Bcl-xL, Bcl-

w) specifically radiosensitizes p53 mutant, PIK3CA/PTEN wild-type cell lines but not p53 mutant, 

PIK3CA/PTEN mutant cell lines (Figure 3.2). We demonstrate that radiosensitization of p53 

mutant, PIK3CA/PTEN wild-type cell lines is caused by inhibition of specifically Bcl-xL and not 

Bcl-2 (Figure 3.5-3.7). Radiosensitization is mediated, at least in part, through RT induced Mcl-1 

degradation in p53 mutant, PIK3CA/PTEN wild-type cell lines. Overexpression of Mcl-1 in p53 

mutant, PIK3CA/PTEN wild-type cell lines rescues resistance to Bcl-xL inhibition induced 

radiosensitization (Figure 3.8-3.9). Finally, we show that inhibition of Bcl-2 family proteins 

(ABT-263) or Bcl-xL alone (A-1331852) radiosensitizes basal-like breast cancer cell lines in vivo 

and extends time to tumor doubling and tripling compared to treatment with drug or RT alone 

(Figure 3.10). 

 Next, we leverage open source clinical outcomes data from women with breast cancer 

treated with RT to nominate genes associated with early (<3 years) locoregional recurrence. We 

identify ten genes to be significantly associated with early locoregional recurrence across four 

independent datasets. The most differentially expressed gene associated with early locoregional 

recurrence was TTK, also known as monopolar spindle 1 (Mps1). TTK is significantly 
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overexpressed in breast cancer compared to normal tissue and most overexpressed in the basal-

like breast cancer subtype (figure 4.1). Using gene set enrichment analysis (GSEA) we correlate 

TTK expression with cell cycle genes in the radiation response at both 6- and 24-hours (Figure 

4.4). In vitro, inhibition of TTK, through either genetic knockdown (shRNA/siRNA) or 

pharmacologic inhibition of kinase function (Bayer 1161909 [B909]), significantly radiosensitizes 

multiple basal-like breast cancer cell lines (Figure 4.3). Reintroduction of wild-type TTK, after 

endogenous TTK knockdown, rescues radioresistance but reintroduction of a kinase-dead mutant 

of TTK was unable to rescue this radioresistance (Figure 4.10). Radiosensitization is mediated, at 

least in part, through impaired double stranded DNA (dsDNA) repair and TTK inhibition (both 

genetic and pharmacologic) decreases homologous recombination (HR) repair but had no effect 

on non-homologous end-joining (NHEJ) (Figure 4.5-4.9). Reintroduction of wild-type TTK 

rescues HR efficiency but reintroduction of kinase dead TTK mutant was unable to do so (Figure 

4.10). Finally, we show in vivo that TTK inhibition (both genetic and pharmacologic) in 

combination with RT significantly decreases tumor growth and increases time to tumor tripling. 

Furthermore, pharmacologic inhibition of TTK synergistically radiosensitizes both basal-like 

breast cancer cell line and patient derived xenograft (PDX) models in vivo (Figure 4.12-13) (8). 

 Together, we are able to demonstrate that more complete characterization of the RT 

response leads to the nomination of multiple novel radiosensitization targets. Additionally, our 

work highlights the utility of multi-omic “big data” in the nomination of modulators of 

radioresistance. Perturbation of these nominated protein suggests novel functions of these proteins 
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in the context of basal-like breast cancer function. Finally, the use of clinical grade inhibitors and 

clinically relevant model systems minimizes the barriers to clinical translation.  

 

Future Directions 

 While we characterize the RT response in multiple breast cancer cell lines across multiple 

time points, both transcriptionally and proteomically, additional work remains to gain a 

comprehensive understanding of how breast cancer cells respond to RT. First, additional cell lines 

need to be characterized transcriptionally and proteomically after RT to more completely 

understand how RT effects different breast cancer subtypes and how different mutations contribute 

to the RT response. While we discuss and provide data on how p53 mutations may contribute to 

the RT response, breast cancers have additional common mutations in PIK3CA, PTEN, Rb, and 

BRCA1/2 (9). Each of these mutations, as well as others, likely contribute to the RT response, 

meaning radiosensitization efforts across different breast cancer mutational landscapes will likely 

be different. Providing additional data from cell line models and creating new models to modulate 

mutational status of genes will allow us to understand how each gene contributes to the RT 

response. This information could then be used clinically to identify patients for whom radiation is 

likely to be more (or less) effective. 

 Reverse phase protein array (RPPA) is a powerful tool to quantitate protein and 

phosphoprotein changes after RT (10). However, we used a limited number of antibodies in our 

study of the RT response. Adding additional validated antibodies would provide more detail into 

how pathways change at the protein and phosphoprotein level after RT. In addition, creating a tool 
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to combine microarray/RNA-sequencing data with RPPA data would provide new insights into 

understanding how changes in RNA, protein, and phosphoprotein expression work together to 

modulate cellular pathways after RT. Furthermore, layering additional data types, such as 

chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of genes enriched in breast 

cancer, such as estrogen receptor (ER), androgen receptor (AR), or E2F1, would aid in 

understanding how transcription factor (TF) binding changes in response to RT (9, 11-14). 

Furthermore, transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) 

could be used to identify changes in chromatin accessibility after RT. Together, these data would 

give a more ‘complete’ understanding of how breast cancer cell lines respond to RT. 

Understanding chromatin accessibility, TF binding, transcriptional, and proteomic changes after 

RT would allow us to further understand differences in the RT response between radiosensitive 

and radioresistant breast cancers. This data would be used to nominate novel targets for 

radiosensitization within breast cancer subtypes as well as within specific mutational profiles. 

 These studies would further aid in understanding how cellular machineries work together 

to govern the RT response in breast cancer and would greatly aid in uncovering the complexity of 

this response. However, combining unique datasets will require the creation of novel bioinformatic 

tools to fully utilize all the information provided by these platforms. While analyzing each dataset 

alone is much more feasible with the methods currently available, combining datatypes at a 

“systems-wide” level is more challenging. These analyses require unique and currently under-

developed techniques for the datasets we used. Although tools are available for specific 

combinations of data types (i.e. – RNA-sequencing and ChIP-sequencing), nothing currently exists 
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to combine RPPA with additional unique types of data (15, 16). The complexity of the data types 

and lack of necessary tools needed to address the union of these datasets underscores the difficulty 

in fully understanding how specific treatments impact diverse cancer types and subtypes. 

  Our studies examining inhibition of Bcl-2 family proteins, and specific inhibition of Bcl-

xL, as a radiosensitization strategy demonstrate, for the first time, the importance of Bcl-xL, and 

not Bcl-2, in avoiding apoptosis in p53 mutant, PIK3CA/PTEN wild-type breast cancer. However, 

while we show that inhibition of Bcl-xL has no impact on p53 mutant, PIK3CA/PTEN mutant 

basal-like breast cancer cell lines, we have not identified why mutations in the PIK3CA/PTEN 

pathway blunts Bcl-xL inhibition mediated radiosensitization. Previous studies have found that 

PIK3CA/PTEN mutant breast cancers depend on both Bcl-xL and Mcl-1 for survival and that Mcl-

1 expression is controlled by mTOR/4E-Bp in PIK3CA mutant breast cancers, which may stabilize 

Mcl-1 expression (17). Interestingly, some studies have found that mutations and amplifications 

in PIK3CA do not increase mTOR activity (18-20). Mutations in the PIK3CA/PTEN pathway also 

affect downstream targets such as GSK-3β, which has been shown to regulate Mcl-1 stability 

through phosphorylation of Mcl-1 (21-24). Alternatively, other groups have reported that E3 

ubiquitin ligases (FBW7, Mule, β-TrCP) and deubiquitinases (USP13, OTUD1, DUB3) may 

regulate Mcl-1 stability, both dependently and independently of GSK-3β or mTOR, which may 

also lead to stable expression of Mcl-1 in PIK3CA/PTEN mutant basal-like breast cancers (17, 22, 

24-29). To date, the E3 ubiquitin ligase and deubiquitinase responsible for regulating Mcl-1 

stability in basal-like breast cancer has yet to be identified. Furthermore, in prostate cancer, 

inhibition of epidermal growth factor receptor (EGFR) increases Mcl-1 degradation through 
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mechanisms independent of GSK-3β and ubiquitination, though it is unknown whether this process 

occurs in breast cancer (30). Identifying the mechanism through which Mcl-1 stability is 

determined would allow us to more completely understand why RT reduces Mcl-1 expression in 

p53 mutant, PIK3CA/PTEN wild-type basal-like breast cancer cell lines but has no effect in 

PIK3CA/PTEN mutant cell lines. 

 We demonstrate that inhibition of Bcl-2 family proteins or Bcl-xL alone significantly 

radiosensitizes the p53 mutant, PIK3CA/PTEN wild-type cell line in vivo; however, additional in 

vivo studies are needed to confirm our results. For example, we plan to perform similar studies 

using orthotopic patient derived xenograft (PDX) models that are both PIK3CA/PTEN wild-type 

as well as mutant. These studies will provide further evidence that PIK3CA/PTEN mutations cause 

resistance to Bcl-xL inhibition mediated radiosensitization in additional models of basal-like breast 

cancer. Results showing significant radiosensitization in PIK3CA/PTEN wild-type basal-like 

models will further confirm our in vitro and in vivo findings, strengthening the case for 

translatability to the clinic.  

 Our research adds to the growing body of literature that links cell cycle proteins to DNA 

damage repair mechanisms (8, 31, 32). Through multiple experimental modalities we show TTK 

inhibition decreases homologous recombination (HR) repair efficiency but has no impact on non-

homologous end joining (NHEJ) repair efficiency. While previous groups have correlated TTK to 

HR or demonstrated a loose connection to the HR pathway, we provide the most robust evidence 

to date that TTK directly impacts HR efficiency (8, 33, 34). Despite this novel association, we 

have not yet identified exactly how TTK interacts with the HR pathway. Previous studies have 
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suggested TTK may directly interact with p53 and/or Chk2, which may explain why TTK 

inhibition reduces HR efficiency (35, 36). p53 has previously been linked to HR through both 

transcriptional means and through direct interaction with Rad51 (37, 38). However, p53 is often 

mutated in basal-like breast cancer, potentially changing its role within HR (9, 39-41). 

Furthermore, previous studies have also shown that p53 can directly regulate NHEJ repair, 

complicating how TTK could interact with p53 to impair HR but not NHEJ (42, 43). Chk2 has 

been linked to HR through interactions with both BRCA1 and BRCA2, core proteins of the HR 

pathway, therefore TTK inhibition could reduce the ability of Chk2 to interact with BRCA protein, 

limiting the efficiency of the HR repair pathway (44-46). Alternatively, TTK may interact with 

other proteins related to the HR pathway. Further experiments are needed to identify and 

characterize the relationship between TTK and proteins in the HR repair pathway. To that end, our 

group has connected MELK, a cell cycle protein, as a mediator of NHEJ repair efficiency through 

interactions with both Ku70 and Ku80 (data not published), by performing immunoprecipitation 

(IP) mass spectrometry experiments. This same technique could be used to identify the protein(s) 

that interact with TTK in the HR pathway. This method would provide non-biased data depicting 

binding partners of TTK and potentially provide novel links between TTK and proteins in the HR 

repair pathway. 

 TTK is well established as the apical signaling protein of the spindle assembly checkpoint 

(SAC) complex, which is responsible for ensuring appropriate alignment of chromosomes in 

metaphase of mitosis (47-49). Previous studies have shown that inhibition of TTK increases 

mitotic errors, lagging chromosomes, and aneuploidy leading to increased cell death (50-52). 
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However, few studies have examined the cell death pathway that is activated by inhibition of TTK 

(53). While apoptosis and/or mitotic catastrophe may be the most likely or most prominent cell 

death pathway, ferroptosis, necrosis, or autophagy may also contribute to cell death after TTK 

inhibition (54-57). Furthermore, combination treatment of TTK inhibition and RT may activate 

different cell death pathways compared to TTK inhibition or RT alone, an area of continued 

interest by our group (58).  

  

Final Remarks  

In conclusion, our studies provide the most complete view of the RT response in breast 

cancer to date. We use this data from cell line models as well as patient tumor microarray data to 

nominate multiple radiosensitization targets in basal-like breast cancer. Our characterization of 

TTK and Bcl-xL as radiosensitization targets in basal-like breast cancer provides a first indication 

for a role in radiation response for these proteins in the radioresistant phenotype common to basal-

like breast cancer. Furthermore, the use clinical grade inhibitors in both in vitro and in vivo 

experiments increases the translatability of our studies. While additional experiments need to be 

performed to further understand the mechanism of radiosensitization in both studies, we 

demonstrate the efficacy of both treatment strategies in basal-like breast cancer cell lines and 

patient derived xenograft (PDX) models. These data also provide the preclinical rationale for the 

development of Bcl-xL and TTK inhibitors for the radiosensitization of basal-like breast cancers 

in women at high risk for locoregional recurrence after treatment. 
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