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Abstract 
 

Diffuse intrinsic pontine glioma (DIPG) is an incurable pediatric brainstem tumor.  

Genomic studies of autopsy and biopsy tissue revealed the presence of recurrent mutations in 

activing A receptor, type 1 (ACVR1) and lysine to methionine mutations at position 27 (K27M) 

in the genes encoding histone H3 variants, H3.1 and H3.3. To study the role of the mutations on 

DIPG tumorigenesis we developed genetically engineered brainstem glioma models harboring 

recurrent DIPG mutations, ACVR1 G328V and histone H3.1 K27M. Histological analysis 

indicates tumors generated were diffuse and localized in the brainstem. Survival analysis 

demonstrated that ACVR1 G328V enhanced median survival, while the H3.1 K27M mutation 

did not significantly affect median survival independently of ACVR1 G328V.  We also 

developed a transplantable model of DIPG by implanting mutant ACVR1 tumor neurospheres 

into the pons of immune competent mice. This enabled us to test the therapeutic efficacy and 

toxicity of immune stimulatory gene therapy using adenoviruses expressing thymidine kinase 

(TK) and fms-like tyrosine kinase 3 ligand (Flt3L). Our results show that adenoviral delivery of 

TK/Flt3L in mice bearing mutant ACVR1 brainstem glioma resulted in anti-tumor immunity, 

recruitment of anti-tumor specific T cells and increased median survival.  Histopathological 

analysis shows that TK/Flt3L was well tolerated in the brainstem. The results from this thesis 

work provide support for continued clinical investigation into TK/Flt3L immune stimulatory 

gene therapy for DIP. 



 1 

Chapter 1: Introduction1 

Clinical aspects of DIPG 

Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive pediatric brain cancer that 

is currently incurable. DIPG occurs in children of median age of 6-7 years and bears a bleak 

prognosis: a median survival of 11 months with only 10% of DIPG patients surviving two years 

from onset (1). A DIPG diagnosis results from the culmination of acute neuropathological 

symptoms including cranial nerve palsies, long-tract and cerebellar signs, in addition to the 

characteristic radiographic abnormality in the pons (1). The longstanding standard treatment for 

DIPG is focal radiation (2). Radiation provides mitigation of symptoms and slows down tumor 

growth in the majority of DIPG patients (3,4). Unfortunately, the efficacy of radiotherapy is 

limited and provides only transient symptomatic relief and meager benefits to DIPG patient 

survival (4-7). Numerous clinical trials have evaluated other treatments (alone and in 

combination with radiation) such as cytotoxic chemotherapy, small molecule inhibitors, and 

immunotherapies. However, none of these therapies have demonstrated a significant 

improvement in patient survival without imposing substantial adverse side effects (7).  

 The location of DIPG tumors poses a challenge for diagnosis and treatment. DIPG tumors 

infiltrate the pons, a region of the brainstem that regulates basic functions like breathing, blood 

 
1 Portions of this chapter have been published in: Mendez, F.M., Nunez, F.J., Garcia-Fabiani, M.B., Haase S., 
Carney, S., Gauss, J.C., Becher, O.J., Lowenstein, P.R., and Castro, M.G. Epigenetic reprogramming and chromatin 
accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease, Neuro-Oncology, 2019, 
noz218. 
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pressure, and heart rate. The crucial functions of the pons and the inability to differentiate tumor 

cells from normal tissue in the operating room makes surgical resection impossible. Even a 

biopsy of the tumor was felt to be unnecessary given that the results would not change clinical 

management. Contemporary practice still relies on the characteristic MRI abnormality of these 

tumors to confirm a DIPG diagnosis: a T2 hyperintense signal abnormality occupying at least 

50% of the pons (8). This general practice will likely continue until molecular and pathological 

evaluation of DIPG tumors is able to meaningfully impact the standard of care. Nevertheless, 

biopsy remains a significant aspect of DIPG management, as the scarcity of DIPG samples poses 

challenges to the characterization and development of novel therapeutic agents for this disease. 

Progress has been made recently with numerous studies reporting on the safety and low 

morbidity of computer-aided stereotactic biopsies since their development in 1978 (9-12). There 

is also evidence suggesting that liquid biopsies, utilizing cerebral spinal fluid or plasma, 

represent a promising future strategy to diagnose and monitor DIPG via the distinct markers 

present on the circulating tumor DNA (13). While the dire need to improve DIPG treatment 

remains, the increase in biopsy has facilitated significant advances in determining the hallmark 

genetic characteristics of DIPG—namely the 2012 discovery of H3K27M mutations in 

approximately 85% of DIPG tumors (14,15). Biopsies are now being increasingly performed at 

academic medical centers in order to designate patients into genetically stratified clinical trials, 

with the hope that such targeted treatments will provide improvements in DIPG treatment(16). 

 Pathological evaluation of DIPG describes a diffuse tumor of the pons, often infiltrating 

the of medulla and midbrain, with otherwise typical characteristics of histopathological 

heterogenous glial neoplasms (17). Historically, high-grade glioma was defined by the World 

Health Organization (WHO) based on histopathological characteristics such as the presence of 
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microvascular proliferation or necrosis. However, the most recent WHO classification of central 

nervous system tumors, published in 2016, began incorporating molecular testing as part of its 

diagnostic criteria. This led the WHO to define a new neoplastic entity establishing midline 

gliomas (e.g., brainstem, thalamic, spinal cord) harboring H3K27M mutations and diffuse 

growth as “diffuse midline gliomas, H3K27M-mutant” (18). This term includes 80% of DIPGs 

harboring H3K27M mutations (14,15,19). Herein, we refer to mutations of lysine 27 to 

methionine as H3K27M, due to the nomenclature used in the original reports. However, based on 

standard mutation nomenclature it is lysine 28 that is mutated to methionine (20). 

Normal postnatal development of the human and murine pons 

Our understanding of DIPG may be enhanced by studying the postnatal development of 

the human pons. A morphometric analysis of the human pons 0-18 years of age found that there 

is a rapid, sixfold increase in the volume of the pons from birth to age five, followed by slower 

but continued growth throughout childhood (21). MRI and histological analysis of myelin basic 

protein indicate that this expansion of the pons is likely due to an increase of myelination in the 

basis pontis (21). Ki67 staining also revealed that the number of proliferative cells began to 

decline rapidly from 0-7 months followed by a further decline by age 3, and only a small 

population persisted throughout childhood (21). Two populations of vimentin/nestin-expressing 

cells were also identified — a dorsal group near the ventricular surface that persists throughout 

childhood, and a parenchymal population that declines by 7 months (21). Monje et al., utilized 

24 normal postmortem brainstem samples and analyzed neural precursor cells in the midbrain, 

pons, and medulla. They identified a nestin positive population in the ventral pons that peaks 

first during infancy, and then peaks for a second time at age 6 (22). The results from these 
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studies indicate that the human pons is undergoing continuous growth during childhood. It is 

noteworthy that two independent studies one using pons volume as a metric and the other using 

density of nestin-positive cells as a metric, suggest that there is a peak growth at approximately 5 

or 6 years of age, which correlates with age of incidence of DIPG. A murine study also observed 

a fivefold increase in the basis pontis postnatally, while the tegmentum grew fourfold (23). 

However, this rapid growth is not due to myelination as in the human pons, but is reportedly due 

to proliferation (23). The pons is the most proliferative brainstem region in comparison to the 

midbrain or medulla (23). A parenchymal progenitor population of sex-determining region Y-

box 2 (Sox2+), oligodendrocyte transcription factor 2 (Olig2+) was identified as the main 

proliferative progenitor population, and Lindquist et al., also found that the majority of adult 

pons oligodendrocytes were found to be derived from postnatal Sox2+ progenitors (23). Overall, 

the murine pons growth postnatally resembles human pons growth. Lineage tracing studies using 

markers of progenitor cell populations could help increase our understanding of the cell of origin 

of DIPG.  

Cell of origin in DIPG 

If DIPG originates from a postnatal cell then the cell of origin in DIPG may be the 

proliferative Ki67+/Olig2+ proliferative population identified by Tate. et al., in the postnatal 

pons, or the nestin+ population identified by Monje and colleagues (21,22). The hypothesis that 

DIPG arises from a postnatal precursor cell is supported by the findings of Funato et al., 

demonstrating that the H3.3 K27M mutation, together with platelet derived growth factor 

receptor A (PDGFRA) activation and p53 loss, was sufficient to induce neoplastic 
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transformation in human embryonic stem cells (ESCs) and that expression of H3.3 K27M led to 

a resetting of neural precursors to a more primitive stem cell state (24).  

However, it is also possible that the cell of origin is an embryonic precursor cell. Pathania 

et al., performed in utero electroporation to over express H3.3 K27M in neural progenitor cells in 

the lower rhombic lip of the developing hindbrain where some pontine nuclei are derived. They 

found that in combination with Trp53 loss it was sufficient to induce both focal and diffuse 

tumors, but expression of H3.3 K27M postnatally did not yield the same results (25). Sun et al., 

also demonstrated that the H3.3 K27M mutation was sufficient to immortalize human fetal 

hindbrain-derived neural progenitor cells, but not cortex derived progenitor cells (26). This 

finding suggested that only human fetal hindbrain-derived neural progenitor cells could become 

oncogenic with the introduction of the highly prevalent H3.3 K27M mutation.  

 In support of a developmental origin, whether postnatal or prenatal, single cell RNA 

sequencing of six H3 K27M mutated glioma patients identified that they have a developmental 

hierarchy, with some tumor cells having transcriptional profiles that were associated with either 

astrocytic differentiation, oligodendrocytic differentiation, and oligodendrocytic progenitor-like 

programs (27) .This study also revealed that the largest fraction of stem-like cells in DIPGs were 

oligodendrocyte progenitor-like cells (OPCs), supporting the hypothesis of a precursor OPC cell 

of origin for DIPG (27). 

Genetic mutations in DIPG 

The developmental regulator activin A receptor type 1 (ACVR1) is a frequently mutated 

gene in DIPG present in approximately 24% of patients(28). There are six somatic mutations 

occurring in either the glycine serine rich domain or the kinase domain (Figure 1.1) (29-32). The 
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most frequent mutation is the G328V mutation, which we model in Chapter 2. ACVR1 mutations 

are typically observed in younger DIPG patients(29-32). ACVR1 has been shown to be 

necessary to establish proper patterning in late gastrulation during embryogenesis for normal 

craniofacial and cardiac development (33-35). The receptor is part of the transforming growth  

factor beta (TGF-β) family. Normally, upon bone morphogenetic protein (BMP) ligand binding, 

type 2 BMP receptor kinase phosphorylates ACVR1, a type 1 BMP receptor. This initiates a 

downstream signaling cascade through phosphorylation of the Smad transcription factors (Figure 

1.2)(36). However, ACVR1 mutations result in ligand independent activation of the Smad1/5/8 

signaling pathway(29-32,37).  

Canonically, ACVR1 phosphorylates Smad1/5/8 (38). ACVR1 is also mutated in the 

congenital disorder fibrodysplasia ossificans progressive (FOP) (39). Interestingly, cells 

expressing mutated ACVR1 respond to activin ligands to which wild-type ACVR1 does not 

normally respond (40,41). In models of FOP, activin-ACVR1 signaling was sufficient to induce 

heterotypic ossification (40,41). DIPG cells harboring mutated ACVR1 have also been shown to 

 

Figure 1.1 ACVR1 mutations in DIPG 

A schematic of ACVR1 domain organization showing the position of mutations that have been 
described in DIPG. Mutations labeled with an asterisk have also been described to occur in 
patients with FOP. The ligand binding (LD), glycine serine rich (GS), and kinase domain are 
labelled.  
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exhibit an aberrant response to activin A (42). Activin receptor signaling  regulates 

oligodendrocyte lineage cell responses during white matter development and after injury(43).  

During development, BMPs are tightly regulated temporally and spatially by other 

signaling pathways (36). Postnatally, BMPs promote astrogliogenesis while inhibiting both 

neurogenesis and oligodendrogliogenesis (36). Although a lot is known about BMP signaling in 

the brain, the role of BMP signaling or ACVR1 has not been studied in the early postnatal pons. 

Identifying the implications of ACVR1 or other BMP interacting/inhibitory pathways on neural 

 

Figure 1.2 ACVR1 signaling pathway 

A cartoon of the ACVR1 signaling pathway. ACVR1 is a type I BMP receptor which forms a 
heteromeric complex with type II BMP receptors upon BMP ligand binding. Activated ACVR1 
then phosphorylates the Smad1/5/8 transcription factors.  Phosphorylated Smad1/5/8 
transcription factors are then able to bind to Smad 4 and translocate into the nucleus to regulate 
transcription. An asterisk represents the ACVR1 G328V mutation which results in auto-
activation of this pathway independent of BMP ligand binding.  
 



 8 

precursor or proliferative populations could provide new directions for development of therapies.  

In addition to activating ACVR1 mutations, there have also been amplifications in inhibitor of 

DNA binding protein 2 (ID2), ID3, mutations in BMP3, BMPK, and others in approximately 

19% of DIPG, underscoring the importance of the BMP pathway in DIPG (44). Hoeman et al., 

found that in vitro expression of ACVR1 R206H upregulated mesenchymal markers and 

activated signaling of signal transducer and activator of transcription 3 (Stat3) (45). Using a 

replication-competent avian sarcoma-leukosis virus long terminal repeat splice acceptor (RCAS) 

mouse model with PDGFA, the authors also found that ACVR1 R206H accelerated 

gliomagenesis and cooperates with H3.1 K27M to accelerate tumor growth and malignancy (30). 

In vivo inhibition of ACVR1 with the LDN212854 inhibitor also significantly increased median 

survival in the RCAS model described above (45).  In addition, treatment with ACVR1 

inhibitors, LDN-139189 and LDN-214117, prolonged survival in orthotropic patient-derived 

xenograft models of ACVR1 R206H (42).  Thus, ACVR1 may be an important therapeutic target 

for the treatment of DIPG.  

TP53, the gene encoding the tumor suppressor p53, is mutated in 42% of DIPG tumors. 

Survival and apoptosis in the developing and adult nervous systems are regulated by p53 (29,46). 

In the brain, p53 is preferentially expressed in progenitor cells, and in vitro experiments using 

neurospheres (NS) from p53 null mice suggested that TP53 regulates cell cycle progression and 

apoptosis (47,48). An increased proliferation rate in neural stem cells could make them 

susceptible to acquiring additional mutations that lead to malignancy.  

Protein phosphatase, Mg2+/Mn2+-dependent 1D (PPMI1D), mutated in 23% of DIPG 

cases, is expressed in the fetal mouse brain and germline mutations of PPM1D lead to an 

intellectual disability syndrome, suggesting a role in neurodevelopment (31). PPM1D 
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dephosphorylates the DNA damage response proteins p53, checkpoint kinase 2, ataxia 

telangiectasia mutated, and, gamma-H2A histone family member X to enable re-entry into the cell 

cycle following cellular stress (49). PPMI1D plays a critical role in central nervous system 

homeostasis by regulating G2/M cell cycle progression in adult neural progenitor cells through 

inhibition of p53 activity (50). Thus, PPM1D and p53 together modulate the balance between 

self-renewal of neural progenitor cells while minimizing genotoxic stress. In DIPG, truncating 

mutations of PPM1D that stabilize the protein are mutually exclusive with TP53 mutations 

(31,51).  

   DIPGs are also characterized by amplifications of genes that regulate the G1-S cell cycle 

progression, particularly cyclin D family members CCND1, CCND2, CCND3 and cyclin 

dependent kinase inhibitors CDK4 and CDK6 (31,52,53). Cyclins and cyclin dependent kinases 

form a complex that phosphorylates retinoblastoma protein, allowing for cell cycle progression 

(54). The regulation of the cell cycle progression and length is important for neurogenesis. In 

vitro, neural precursor cells with dominant negative forms of CDK2, CDK4, and CDK6 undergo 

cell cycle arrest (55).  The overexpression of cyclin D and CDK4 in neural progenitors of 

developing brain shortened G1 length and inhibited neurogenesis demonstrating that a 

lengthening of G1 regulates the switch from proliferation to neurogenesis (56).  Uncontrolled 

proliferation is a characteristic of many cancers, and there are currently four clinical trials testing 

the efficacy of CDK4/6 inhibitors that were initially developed for other cancers in DIPG 

(NCT02255461, NCT03387020, NCT03355794, NCT02644460). The results of these clinical 

trials will shed light on the effectiveness of CDK4/6 inhibitors as a single therapeutic agent in 

DIPG.  
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The most frequent mutation in DIPG is a K27M mutation that occurs on genes encoding 

histone H3 variants H3.3 and H3.1/2 (14,15,19). Histones are proteins that package DNA into 

compact units called nucleosomes, an octamer comprised of four core histones (H2A, H2B, H3, 

and H4) and approximately 147 base pairs of DNA (57). Nucleosome cores are connected by a 

strand of linker DNA that is stabilized by the recognition and binding of histone H1 (57). 

Histone H3 is post-translationally modified (methylation, acetylation, ubiquitiniation, 

sumoylation, etc.) on the N-terminal tail to regulate transcription, DNA replication and repair. 

H3.1 and H3.2 are canonical histones encoded by multiple genes which are “replication-

coupled,” meaning that they are synthesized and deposited on DNA during S-phase (Table 1.1) 

(57). The histone variant H3.3 is a non-canonical histone (Table 1.1). Non-canonical histones, in 

contrast, are usually encoded by one or two genes, and are expressed throughout the cell cycle 
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(57). 

 

 Histone variants have distinct functions—for example H3.3. is typically deposited on 

transcriptionally active genes and generally harbors post-translational modifications associated 

with activation. Meanwhile H3.1 and H3.2 are associated with inactivation modifications (58). 

An analysis of histone H3 gene expression in silico during human brain development found that 

genes encoding the H3.3 variant, including H3F3A, were present at all developmental stages; 

however, their expression did gradually decrease across developmental stages (59). In contrast, 

the genes encoding the H3.1 variant, including HIST1H3B are silenced at early developmental 

stages (59). One important caveat that the authors noted was that H3.1 transcripts lack 

 

Table 1-1: Summary of histone H3 variants 

Table listing genes encoding for canonical and non-canonical histone H3 variants. Despite 
many genes encoding for canonical histone H3 variants H3.1 and H3.2 only the HIST1H3B, 
HIST1H3C, and HIST2H3C genes have been observed to be mutated in DIPG. Three genes 
encode for the H3.3 variant, but only the H3F3FA gene is mutated in DIPG.  
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polyadenylation and thus are potentially underrepresented in poly(A)-derived cDNA libraries 

and RNA-seq data sets used in the study (59).  

Polycomb Repressive Complex 2 (PRC2), is a Polycomb group (PcG) protein, which is 

composed of three core subunits enhancer of zeste homolog 1 (EZH1) or EZH2, embryonic 

ectoderm development (EED), and suppressor of zeste 12 homolog (SUZ12)—that mediates the 

repression of developmental genes (60). EZH1 and EZH2 contain a conserved catalytic 

Su(var)3-9/enhancer-of-zeste/trithorax (SET) domain found in many lysine methyl transferases, 

which catalyzes the di-, and tri-methylation of histone 3 lysine 27 (H3K27me2/3) (61). 

H3K27me3 is a repressive mark that is associated with inactive gene promoters (60). The 

trithorax group of proteins, on the other hand, are antagonistic regulators of  PcG proteins and 

include the SET1 family  (SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4 in humans), which 

catalyze  methylation of histone 3 lysine 4 (62). Tri-methylation of histone 3 lysine 4 

(H3K4me3) is associated with active chromatin (62). In DIPG cells, the genomic distribution of 

H3K4me3 methylation is largely unaltered compared with neural stem cells (63). 

H3K27M  functions as a dominant negative mutation that dramatically reduces global 

levels of H3K27me3 in DIPG cells and tissue even though H3K27M protein makes up only a 

small percentage of total H3 (3-17%  in DIPG cells as measured by mass spectrometry )(63-65). 

Several hypotheses have been suggested to explain the mechanism of global reduction of 

H3K27me3 by the H3K27M mutation.  Lewis et al., observed that synthetic H3K27M peptides 

interact with the EZH2 active site (64). In support of this, co-immunoprecipitation by 

experiments of wild-type or H3.3 K27M containing mono-nucleosomes revealed enrichment of 

EZH2 and SUZ12 proteins in mutated nucleosomes (65). Bender et al., also demonstrated that 

the H3.3 K27M mutation decreased EZH2 methyltranferase enzymatic activity (65).  



 13 

Additionally, a biochemical study demonstrated that EZH2 recognizes the histone H3 tail (66). 

The authors also showed that inhibition of EZH2 catalytic activity by H3K27M could be 

alleviated through enhanced acetylation of surrounding chromatin regions (66). Consistent with 

this, a crystal structure of the human PRC2 complex with the H3K27M peptide demonstrated 

that the mutant peptide binds to the active site of the SET domain.  Furthermore, the binding of 

EED to H3K27me3, present as a result of an existing repressive mark, leads to the stabilization 

of the SET domain. This enhances the binding of PRC2 with the H3K27M peptide (67). The 

resulting theories suggest that H3K27M binds to the EZH2 component of the PRC2 complex, to 

inactivate or sequester the complex, thus preventing it from carrying it out di- and tri-

methylation on wild-type nucleosomes (Figure 1.3 A).  

 However, Piunti, A. et al., reported that EZH2 and SUZ12 are largely excluded from 

chromatin containing H3.3 K27M. Instead mutant K27M proteins are found in regions that 

contain H3K27 acetylation, which many groups had reported to be increased in H3.3 K27M 

mutant cells (64,68,69). Subsequently, they found that PRC2 activity is required for DIPG cell 
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2maintenance and growth through potentially dependent or independent repression of p16, a 

 
2 This figure was originally published in: Mendez, F.M., Nunez, F.J., Garcia-Fabiani, M.B., Haase S., Carney, S., 
Gauss, J.C., Becher, O.J., Lowenstein, P.R., and Castro, M.G. Epigenetic reprogramming and chromatin 
accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease, Neuro-Oncology, 2019, 
noz218. 

 

Figure 1.3 Mechanisms by which H3K27M leads to defective PRC2 activity and global 
hypomethylation. 

(A) H3K27M mutatant histone inhibits (shown by curved bracket) the catalytic activity of 
EZH2 to deposit the H3K27me3 mark (shown by red arrow). (B) PRC2 is sequestered at poised 
enhancers b binding to H3K27M, which restrains the available PRC2 pool from binding to its 
strong affinity sites. (C) H3K27M interferes (shown by curved bracket) with the spread of the 
H3K27me3 mark by PRC2 (shown by black arrows) leading to global hypomethylation and 
transcriptional de-repression.  
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PRC2 target gene (68).  Indeed, others have observed locus specific enrichment of H3K27me3 in 

H3K27M  expressing cells, and hypothesize that H3K27M promotes tumorigenesis through 

repression of tumor suppressors (63).  In support of this, using a genetic mouse model, Cordero 

et al., found that the H3.3 K27M mutation in the context of PDGF signaling promoted 

gliomagenesis through repression of the p16 tumor suppressor (70). Additionally, a mouse model 

generated by neonatal induction of H3.3 K27M, PDGFRA, and Trp53 demonstrated that H3.3 

K27M accelerated tumor development, and that genes enriched in H3.3 K27M tumors were 

associated with bivalently regulated neural developmental genes (71). Silveira et al., observed 

that knockdown of H3F3A, the gene encoding the H3K27M mutation, restored H3K27me3 

levels (72). The restoration of this repressive mark resulted in a promoter shift from active to 

bivalent state in 32-48% of genes upregulated by K27M(72).  Similarly, a study using embryonic 

stem cells expressing the H3.3 K27me3 mutation found that EZH2 (a component of PRC2) is 

sequestered to poised enhancers, which was unique to H3K27M-expressing cells compared with 

wild-type H3.3 ESCs. The authors propose that the limited availability of PRC2 to bind its strong 

affinity sites across the genome leads to global hypomethylation (Figure 1.3 B). The authors also 

found that H3K27M is enriched at highly transcribed genes and is low within regions that are 

enriched in H3K27me3 peaks, thereby allowing for H3K27me3 silencing at those sites. 

Recently, Harutyunyan et al., have reported that the global deposition of H3K27me2/3 is reduced 

in H3.3 K27M cells and that removal of H3K27M could rescue this effect (73). These findings 

suggest that neither the recruitment of PRC2 nor its ability to deposit H3K27me3 in the local 

proximity of unmethylated cytosine-phosphate-guanine (CpG) islands is affected by H3K27M. 

Instead the ability of PRC2 to facilitate the spread of the H3K27me3 mark is inhibited by 

H3K27M, represented by the reduced distribution of H3K27me3 at these sites (Figure 1.3 C) 
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(73). Interestingly, posterior fossa type A ependymomas with high expression of enhancer of 

zeste homolog inhibitory protein (EXHIP) are also characterized by global loss of H3K27me3 

and retention of this mark at CpG islands (74-76). Several groups have recently reported that a 

conserved sequence in EZHIP functions as an endogenous H3K27M analog that inhibits PRC2 

activity (76-78). Jain et al, propose a model where EZHIP blocks H3K27me3 spreading by 

inhibiting allosterically-activated PRC2 (76). Thus, the K27M mutation and EZHIP appear to 

deregulate PRC2 activity by similar mechanisms. In chapter 2, I describe the development of a 

mouse model with the ACVR1 G328V and H3.1 K27 mutations that enabled us to study the 

function of these mutations in DIPG tumorigenesis. 

Immunotherapy 

The dismal prognosis of DIPG requires the development of novel treatment approaches. 

Immunotherapy, an approach that uses the body’s immune system to fight cancer has grown 

immensely.  Several immunotherapies have been approved by the Food and Drug Administration 

(FDA) including a dendritic cell vaccine for prostate cancer, and pembrolizumab, a monoclonal 

antibody for the PD-1 receptor, an immune checkpoint protein, which received approval for the 

treatment of unresectable or metastatic solid tumors with high microsatellite instability or 

mismatch repair deficiency(79-81). These successes in solid tumors have yielded much interest 

in the use of immunotherapies for the treatment of brain tumors.    

Nevertheless, there are several features of high-grade gliomas that need to considered for 

the successful implementation of immunotherapeutic strategies.  For example, some of the most 

promising immunotherapies are immune checkpoint blockade drugs.  Immune checkpoint 

blockade drugs are based on the use of monoclonal antibodies that block inhibitory signals of T 
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cell activation (82). However, the efficacy of immune checkpoint inhibitors is thought to 

correlate with mutational burden, and both adult glioblastoma and DIPG tumors have a low 

mutational burden (83,84). Despite the proposed correlation, there are some patients with low 

tumor burden that benefit from immune checkpoint blockade drug, and there are currently a 

number of ongoing clinical trials testing the safety and efficacy of these drugs in DIPG (85-88).  

Another feature of gliomas is high tumor heterogeneity which is a problem for single targeted 

immunotherapies such as peptide vaccines targeting specific tumor antigens, since high 

heterogeneity can lead to antigen escape (89,90).  

The unique environment of the brain also poses a challenge.  The brain has a functional 

lymphatic system, and there is evidence of immunosurveillance within the brain and T cell 

entry(91,92). However, in comparison to peripheral organs, the brain has few resident 

professional antigen presenting cells (APCs) (93). The presentation of antigen to T cells by 

APCs is essential for the activation of the adaptive immune response (94). Perhaps not 

surprisingly, glioblastomas have few infiltrating immune cells (95).  The glioma 

microenvironment also has high levels of immunosuppressive cytokines such as TGF-β and IL-

10 (96,97). At late stages of glioma, TGF-β promotes the expansion of regulatory T cells (96,97). 

Meanwhile, IL-10 has been shown to inhibit the activation and effector function of T cells, 

monocytes, and macrophages (97,98). In addition, IL-10 also downregulates MHC class II 

expression on monocytes, and inhibits anti-tumor immune responses by inhibiting production of 

interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) by immune cells (97,99). 

Gliomas also promote the expansion of an immunosuppressive network of immune cells such as 

myeloid-derived suppressor cells (MDSCs), tumor associated macrophages/microglia (TAMs), 
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and regulatory T cells (Tregs) which further prevent gliomas from initiating an effective 

antitumor immune response (96).    

DIPG tumor microenvironment 

The DIPG microenvironment has not been as extensively studied as that of adult gliomas 

has.  One recent study compared the tumor immune microenvironment of DIPG with adult 

glioblastoma tumors found that DIPG tumors had less infiltrating T cells (100). Using tissue 

microarrays a second study found that, compared to control adjacent brain tissue, DIPG samples 

did not have extensive TAMs, nor increased T cell infiltration (101). In addition, macrophages 

from DIPG tumors expressed fewer inflammatory factors compared to macrophages from adult 

glioblastoma tumors, including lower levels of IL6, IL1A, IL1B, CCL3, CCL4, among other 

inflammatory factors (100). DIPG tumor cells also secreted fewer cytokines and chemokines 

compared to GBM tumor cells (100,101). Overall, initial studies of the DIPG tumor immune 

microenvironment suggest that DIPG tumors are unable to initiate effective anti-tumor immune 

responses. In addition, it appears that DIPGs do not have the immunosuppressive factors that 

characterize adult gliomas, therefore immunotherapies that improve the recruitment of cytotoxic 

lymphocytes may be especially effective since they may not need to overcome an 

immunosuppressive tumor microenvironment (101). 

Immune stimulatory gene therapy  

Our laboratory has successfully employed a strategy based on increasing dendritic cell 

infiltration into the tumor microenvironment (102-107).  Dendritic cells are the most efficient 
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antigen presenting cells (102,108). They take up antigens, process them and load them onto 

major histocompatibility complex (MHC) class I and II molecules. Dendritic cells then migrate 

to the draining lymph nodes and present antigens to T cells, initiating antigen-specific immune 

responses (94).  Our strategy to enhance anti-tumor immune responses relies on the adenoviral 

delivery of two genes, a conditionally cytotoxic gene, thymidine kinase, and Flt3L. Flt3L, is a 

growth factor that induces dendritic cell differentiation, proliferation, and activation (102,109). 

TK phosphorylates the prodrug ganciclovir (GCV) to GCV-monophosphate. Cellular kinases 

convert it into GCV triphosphate which inhibits DNA polymerase causing DNA chain 

termination (110,111). Several phase I clinical trials have demonstrated that adenoviral 

administration of thymidine kinase is safe, although higher doses do cause neurotoxicity(112-

115). A phase III randomized control clinical trial in Europe demonstrated that adenoviral 

delivery of TK followed by intervenes GCV was safe and prolonged time to death, however it 

did not improve overall survival (116).  

Thus, our laboratory has used a combination therapy of adenoviral delivery of Ad-TK 

and Ad-Flt3L (Figure 1.4). This strategy relies on Ad-TK/GCV to induce tumor cell death while 

the delivery of Ad-Flt3L results in the recruitment of dendritic cells into the tumor 

microenvironment (106,117).  Cell death results in the release of tumor antigens and damage 

associated molecular pattern molecules which trigger an immune response against self-antigens 

(111). Indeed, we previously demonstrated that dying tumor cells release high-mobility group 

box 1 (HMGB1), into the tumor microenvironment, an endogenous toll-like receptor 2 (TLR2) 

ligand (106,107). Toll-like receptors (TLRs), are pattern recognition receptors that recognize 

patterns expressed by pathogens and DAMPs and stimulate dendritic cell activation(118). 
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HMGB1 activated dendritic cells then travel to the draining lymph nodes where they prime T 

cells to elicit an antigen specific cytotoxic immune response (106,107).  

Our laboratory has demonstrated that the combination of Ad-TK/Ad-Flt3L results in 

tumor regression, long term survival, and immunological memory in mouse and rat models of 

adult glioblastoma (103,104,119).  This combination therapy is currently being investigated in a 

Phase 1 clinical trial at the University of Michigan [NCT01811992] (120). We hypothesize 

that this therapy will also be effective for the treatment of DIPG, a tumor characterized by low 

immune cell infiltration. However, DIPGs are biologically very different tumors from adult 

gliomas. In chapter 3 of this thesis, I present evidence suggesting that this therapy is safe and 

effective in mouse model of brainstem glioma harboring the ACVR1 DIPG mutation.  

Summary 

DIPG is a rare pediatric brainstem tumor for which there is no treatment. Alterations in 

developmental and epigenetic mechanisms drive disease progression in DIPG. It is likely that 

DIPGs arise from an NPC that accumulates characteristic mutations. It is thought that the histone 

H3K27M mutation serves as the initial event, making the transformed cells susceptible to 

acquiring TP53, ACVR1, and additional mutations. The goal of this thesis was to generate 

immune competent, genetically engineered mouse models of brainstem glioma to investigate the 

role of relevant DIPG mutations, and test the safety and effectiveness of immune stimulatory 

gene therapy in this biologically unique pediatric glioma.  
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Figure 1.4 Diagram of adenoviral mediated TK/Flt3L gene therapy3

 

 
3 Image modified from David B. Altshuler, Padma Kadiyala, Felipe J. Nuñez, Fernando M. Nuñez, Stephen Carney, 
Mahmoud S. Alghamri, Maria B. Garcia-Fabiani, Antonela S. Asad, Alejandro J. Nicola Candia, Marianela 
Candolfi, Joerg Lahann, James J. Moon, Anna Schwendeman, Pedro R. Lowenstein & Maria G. Castro. Prospects of 
biological and synthetic pharmacotherapies for glioblastoma, Expert Opinion on Biological Therapy. 2020.  

A combination of Ad-Tk/Flt3L is administered intratumorally. The prodrug, GCV, is 
administered via intraperitoneal injection. TK converts GCV into a toxic metabolite resulting 
in tumor cell death and release of damage associated molecules, such as HMGB1 and tumor 
antigens. Flt3L recruits dendritic cells into the tumor microenvironment where they take up 
tumor antigens released by dying tumor cells and present them to T cells via MHC complexes.  
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Chapter 2 : Generation of Mouse Models of Brainstem Glioma4 

Abstract 

Diffuse intrinsic pontine glioma (DIPG) is a brain tumor most commonly diagnosed in 

children of median age 6-7 and the prognosis is very poor. Information from genomic studies of 

autopsy and biopsy tissue has revealed the presence of recurrent activating mutations in ACVR1 

and dominant negative K27M mutations in the genes encoding histone H3 variants, H3.3 and 

H3.1. We developed genetically engineered immunocompetent mouse models to assess the role 

of ACVR1 G328V and the commonly co-expressed H3.1 K27M on DIPG pathogenesis using the 

Sleeping Beauty (SB) transposase system to target neural stem cells in the subventricular zone. 

We observed that ACVR1 G328V enhanced median survival, while the H3.1 K27M mutation 

did not significantly affect median survival on its own. Histological analysis of ACVR1 G328V 

mutant tumors displayed increased downstream signaling of bone morphogenetic pathway 

(BMP) as demonstrated by increased phospho-smad1/5 levels. We also demonstrated that the 

H3.1 K27M mutant tumors had decreased H3K27me3 levels. Additionally, transcriptome 

analysis of mutant ACVR1 neurospheres (NS) identified an increase in the transforming growth 

factor beta (TGF-β) signaling pathway and the regulation of cell differentiation. These data 

indicate that we are able to use the SB transposase system to develop in vivo and in vitro models 

 
4 Portions of this chapter have been submitted for publication in Clinical Cancer Research in collaboration with the 
following co-authors: Padma Kadiyala, Felipe J. Nunez, Stephen Carney, Fernando Nunez, Jessica C. Gauss, Ramya 
Ravindran, Sheeba Pawar, Marta Edwards, Pedro R. Lowenstein, and Maria G. Castro.  



 32 

of relevant DIPG mutations. We also demonstrate that tumors can be induced in the brainstem 

and that we can generate transplantable models which allow for rapid testing of novel 

therapeutics.  

Introduction 

Diffuse Intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brainstem tumor 

for which there is no current treatment. Consequently, the percent of children who survive for 

longer than two years is less than ten percent. The most frequent DIPG mutations affect the N-

terminal tail of histone H3.3 and histone H3.1 and result in the change of a lysine to methionine 

at residue 27 (1-3). It has been reported that the K27M mutation inhibits Enhancer Of Zeste 2 

(EZH2) histone methyltransferase activity causing a global hypomethylation of H3K27 (4). Post-

translational modifications regulate chromatin structure and transcription and are particularly 

important during normal development, stem cell maintenance and differentiation(5,6) . Thus, a 

mutation that affects histone modifications may have a profound impact on gene expression with 

oncogenic consequences.  

Recently it was described that the next most frequently mutated gene in DIPG is ACVR1 

(mutated in 24% of DIPG cases) (7-10). ACVR1 encodes a type 1 BMP receptor and the six 

mutations reported are believed to result in constitutive BMP pathway activation (7-10). BMPs 

play important roles in the development of neural stem cells (11). Spatial temporal regulation of 

the BMPs enables them to fulfill their multiple roles. During neurogenesis BMPs initially 

promote neural lineage commitment and inhibit oligodendrocyte commitment, while during 

gliogenesis BMPs promote astrocyte lineage commitment (11). Additionally, in adulthood BMP 

signaling is important for the maintenance and differentiation of neural stem cells in the 
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subventricular zone and subgranular zone (11). Interestingly, the mutations found in DIPG 

overlap with germline mutations in ACVR1 that cause the musculoskeletal disorder 

fibrodysplasia ossificans progressiva (FOP) and some patients with this disorder have been 

reported to have atypical neurological symptoms and white matter lesions (12). 

Mouse models are crucial to elucidate the mechanisms by which ACVR1 G328V and 

H3.1 K27M contribute to DIPG pathogenesis in order to develop targeted therapies against these 

mutations. We used the sleeping beauty (SB) transposase system to develop mouse models of 

DIPG. SB is a transposase that is able to recognize inverted repeats/direct repeats (IR/DR) sites 

on DNA transposons and carry out a cut and paste reaction to integrate transposon DNA into a 

host genome(13). The SB system can be utilized to generate endogenous tumors that resemble 

gliomas through delivery of DNA transposons that encode oncogenes and tumor suppressors (14-

18). We utilized the SB transposase system to introduce plasmids encoding the activating 

ACVR1 mutation and H3.1 K27M mutation in the context of upregulated NRAS and p53 

knockdown into neural stem cells in the subventricular zone. In our mouse model ACVR1 

G328V was associated with increased median survival while the H3.1 K27M mutation did not 

alter median survival independently of ACVR1. Transcriptome analysis of ACVR1 mutant NS 

identified an increase in the TGF-β signaling pathway and signaling pathways regulating the 

pluripotency of stem cells. We also show that the SB system can be utilized to deliver plasmid 

DNA into the fourth ventricle of postnatal day 1 mice to generate brainstem gliomas. 

Additionally, we demonstrate that tumor neurospheres derived from the SB generated tumors can 

be implanted into the pons of adult mice to rapidly develop immune competent transplantable 

mouse models of DIPG. 
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Methods 

Experimental model: 

All animal studies were conducted according to guidelines approved by the Institutional Animal 

Care and Use Committee at the University of Michigan. Animals were housed in an AAALAC 

accredited animal facility and had constant access to food and water; they were monitored daily 

for tumor burden. Males and females were used. The strain of mice utilized in the study was 

C57BL/6 (Jackson Laboratory, 000664). A murine model of glioma was generated by employing 

the SB transposon system to integrate plasmid DNA into the genome of postnatal day 1 (P1) 

mouse pups. The plasmids utilized were as follows: (i) SB Transposase and luciferase (pT2C-

LucPGK-SB100X, henceforth referred to as SB/Luc) (ii) a short-hairpin against p53 (pT2-shp53-

GFP4, henceforth referred to as shp53) or shp53-NO-GFP (iii) a constitutively active mutant of 

NRAS (pT2CAG-NRASV12, henceforth referred to as NRAS) with or without (4) mutant 

ACVR1 G328V (pkt-ACVR1-G328V-IRES-Katushka; henceforth referred to as mACVR1) (1-

3). To create the mACVR1 plasmid we cloned pCMV5-ALK2-WT into pKT2-IRES-Katushka 

by blunt cloning. Then, we used the QuikChange II Site-Directed Mutagenesis Kit (Agilent, 

200523) to introduce (c.983G>T, p.Gly328Val) mutation into pKT2-ALK2-WT-IRES-Katushka, 

to generate pKT2-ACVR1-G328V-IRES-Katushka (Addgene plasmid #77437).  The resultant 

mACVR1 plasmid was confirmed by Sanger sequencing. SB/Luc, shp53 and NRAS plasmids 

were the generous gift of Dr. John Ohlfest (University of Minnesota, now deceased). The 

pCMV5-ALK2-WT plasmid was a generous gift from Jeff Wrana (Addgene plasmid #11741). 

All experiments were performed using post-natal day 1 (P1) or P2 wild-type C57BL/6 mice. The 

plasmid combinations injected were as follows: (1) (i) shp53 and NRAS (henceforth referred to 

as wt-ACVR1), (ii) shp53, NRAS, and ACVR1m. Mice were injected according to a previously 
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described protocol (2). Briefly, plasmids were mixed in mass ratios of 1:2:2:2:2 (20 µg plasmid 

in a total of 40 µL plasmid mixture) with in vivo-jetPEI® (Polyplus Transfection, 201-50G) (2.8 

µL per 40 µL plasmid mixture) and dextrose (5% total) and maintained at room temperature for 

at least 20 minutes prior to injection. Anesthesia was performed by placing the pup on ice for 2 

minutes and then on a neonatal stereotaxic stage cooled to 2-8°C to maintain anesthesia. The 

lateral ventricle (1.5 mm AP, 0.7 mm lateral, and 1.5 mm deep from the λ-suture) or fourth 

ventricle (3 mm posterior to the λ-suture and 3 mm deep) were targeted (4). Plasmid uptake and 

tumor development and progression was monitored as previously described (2,3). Animals were 

monitored daily for signs of morbidity (ataxia, impaired mobility, hunched posture, seizures, or 

scruffy fur). Symptomatic mice were transcardially perfused using Tyrode’s solution and fixed 

with 4% paraformaldehyde (PFA) (2,3,5).  

Immunohistochemistry (IHC) of paraffin embedded brains:  

Immunhistochemistry staining was performed as previously described (2,3). Briefly, after 

perfusion, mouse brains were harvested and post-fixed in 4% PFA then paraffin embedded. 

Tissue was sectioned using a rotary microtome. Heat mediated antigen retrieval was performed 

using either 1X Rodent Decloaker (Biocare Medical, RD 913) or citrate buffer (10 mM citric 

acid, 0.05% non-ionic detergent, pH 6) at 125°C for 30 seconds and at 90°C for 10s followed by 

quenching of endogenous peroxides using 0.3 % H2O2 for 30 minutes, and permeabilization 

with 0.025% Triton in TBS. Sections were blocked with 10% horse serum, 0.1% BSA in TBS) 

for 30 minutes and then incubated overnight at 4°C with primary antibody diluted in 0.1% BSA 

in TBS.  For 3,3′-Diaminobenzidine (DAB) staining the VECTASTAIN ABC HRP Kit (Vector 

Laboratories, PK-4000) was used. The Alexa Flour 488 Tyramide SuperBoost Kit (Thermo 

Fisher Scientific, NC1136352) was used for the phospho Smad1/Smad5/Smad8 (Ser463/465) 



 36 

(MilliporeSigma, AB3848-I) antibody. Bright-field images were obtained using Olympus MA 

BX53 microscope.  Flourescent images were obtained using confocal microscopy (Carl Zeiss: 

MIC-System). A list of all antibodies can be found on Appendix Table A1.  

Primary (NS): 

Mouse (NS) were generated from tumors that were developed using the SB system by injection 

of the following plasmid combinations (1) (i) shp53 and NRAS, or (ii) shp53, NRAS, and 

ACVR1m into the lateral ventricle (1.5 mm AP, 0.7 mm lateral, and 1.5 mm deep from the λ-

suture) following previously described protocols (2,3,5,6). When animals became symptomatic 

they were anesthetized then transcardially perfused with Tyrode’s solution. The brains were 

harvested and tumors were identified by fluorescence expression. The tumor was then extracted 

and placed in 300 µL of media in an Eppendorf tube. Then, the tumor was mechanically 

dissociated using a sterile plastic pestle that fit the walls of the Eppendorf tube. This was 

followed by incubation with 1 mL of a cell dissociation buffer (Accutase, 423201), then filtered 

through a 70 µm strainer and maintained in neural stem-cell media [DMEM/F12 with L-

Glutamine (Gibco, 11320-033), B-27 supplement (Gibco, 12587- 010), N-2 supplement (Gibco, 

17502-048), Penicillin-Streptomycin (Corning, Cellgro, 30-001-CI), and Normocin (InvivoGen, 

ant-nr-1)] at 37 °C, 5% CO2. hFGF and hEGF (Shenendoah Biotech,100-26, 100-146) were 

supplemented twice weekly at 1 µL (20 ng/µL each stock, 1000x stock) per 1 mL media. 

Primary mutant ACVR1 glioma NS were transduced with pLVX-OVA to generate mACVR1-

OVA NS and selected with 5 ug/mL puromycin (Sigma, P8833). pLVX-OVA was generated by 

cloning cytoplasmic ovalbumin from pCI-neo-cOVA (Addgene plasmid #25097) into pLVX-

mCherry-c1 (Takarabio, 632561) by Nde1 and EcoR1 directed cloning.  

Western blot: 
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NS were harvested and re-suspended in RIPA buffer (MilliporeSigma, R0278) with 1X of Halt™ 

Protease and Phosphatase Inhibitor Cocktail, EDTA-free (100X) (Thermo Scientific, 78441). 

The Pierce™ BCA Protein Assay Kit (Thermo Scientific, 23227) was used to measure protein 

concentration. 20 µg of protein extract were run on a 4-12% SDS-PAGE PAGE gel (Thermo 

Fisher Scientific, NuPAGE®, NP0322BOX) and transferred to nitrocellulose membranes (Bio-

Rad, 1620112). The membrane was probed with 1:500 of anti-phospho Smad1/Smad5/Smad8 

(Ser463/465) (MilliporeSigma, AB3848-I); 1:500 of anti-Smad1 antibody (Abcam, ab63356); 

1:500 of anti-Id1 (Biocheck, BCH-1/37-2); and 1:10,000 of β-actin antibody (MilliporeSigma, 

A1978). The secondary antibodies used were: 1:4000 of goat anti-rabbit (Dako, Agilent 

Technologies, P0448) and 1:20,000 of rabbit anti-mouse (Dako, Agilent Technologies, P0260 ). 

SuperSignal West Femto (Thermo Fisher Scientific,  34095) was used to for detection. 

 In vitro experiments with ACVR1 inhibitor: 

LDN-214117 is a specific ACVR1 inhibitor (7). To determine an effective concentration to 

inhibit ACVR1 signaling in our mouse NS we plated wild type or mutant ACVR1 cells in a T-25 

flak containing growth media supplemented with varying concentrations of LDN-214117 (0.03 

uM, 0.1 uM, 0.3 uM, 1 uM); Selleck Chemicals, S7147) or equivalent DMSO control. NS were 

incubated with inhibitor for 90 minutes and then cells were collected to assess phosphorylation 

of Smad1/5 and Id2 by western blot.  

Immunocytochemistry: 

SU-DIPG-VI and SU-DIPG-XX1 were obtained from Dr. Michelle Monje at Stanford University 

(Stanford, Ca) in accordance with an institutionally approved protocol at each institution. Cells 

were cultured in DMEM with 10% FBS. 1 X 105 cells per well were plated on glass slides 

coated with 2% gelatin. Cells were fixed with 4% PFA and permeabilized with PBS 1X plus 
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0.3% Tween. ICC was performed with 1:100 Id1 (Biocheck, BCH-1/195-14), pERK1/2 (Cell 

Signaling, 4370), pMEK1/2 (Santa Cruz, sc-7995-R), and 1:1000 goat anti-rabbit antibody, 

Alexa Flour 488 (Invitrogen, A -11034).  

RNA-seq analysis: 

RNA-seq analysis was performed in collaboration with the Bioinformatics Core at the University 

of Michigan. Read files from the University of Michigan Sequencing Core’s storage were 

downloaded and concatenated into a single fastq file for each sample. The quality of the raw 

reads data for each sample was assessed using FastQC [1] (version v0.11.3) to identify features 

of the data that may indicate quality problems (e.g. low quality scores, over-represented 

sequences, inappropriate GC content). The Tuxedo Suite software package was used for 

alignment, differential expression analysis, and post-analysis diagnostics. Briefly, we aligned 

reads to the reference genome including both mRNAs and lncRNAs (UCSC mm10) using 

TopHat (version 2.0.13) and Bowtie2 (version 2.2.1.). The default parameter settings for 

alignment were used, with the exception of: “--b2-very-sensitive” telling the software to spend 

extra time searching for valid alignments. We used FastQC for a second round of quality control 

(post-alignment), to ensure that only highquality data would be input to expression quantitation 

and differential expression analysis. We performed two different analysis techniques to specify 

differential expression: Tuxedo and DESeq2, using UCSC mm10.fa as the reference genome 

sequence. The volcano plot was produced using an R base script and encompasses all genes 

identified by our RNA-seq analysis. In order to identify significantly differentially expressed 

genes, we set a log2 fold change cut-off of 0.585 and –log10(FDR) greater than 1.3, where 

circles represent individual genes and colors as indicated (red-upregulated, green-downregulated) 

shown in Figure 3A. The data was analyzed using Advaita Bio’s iPathwayGuide 
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(https://www.advaitabio.com/ipathwayguide). This software analysis tool implements the 

‘Impact Analysis’ approach that takes into consideration the direction and type of all signals on a 

pathway, the position, role and type of every gene, etc., as described in (8-11). Gene Ontology 

(GO) enrichment analysis was performed using iPathwayGuide 

(http://www.advaitabio.com/ipathwayguide), displaying up- and down-regulated genes 

associated with the same GO and was shown in Figure 3C. GO Biological Processes, selected for 

relevance to phenotype, were plotted in a horizontal bar graph using graphpad shown in Figure 

3B. All 100 differentially expressed genes between wt-ACVR1 and mutant-ACVR1 NS were 

converted to excel with their corresponding gene names in uppercase in first column and log2-

fold change values in second column to create the rank file. This rank file is used as an input for 

gene set enrichment analysis (GSEA) pre-ranking on program downloaded from Broad Institute 

(http://software.broadinstitute.org/gsea/index.jsp). In addition, Broad Institute provides a gene 

set containing all GOs (c5.all.v7.0.symbols.gmt), which is also required to perform the pre-

ranking using 2000 permutations and gene set size range of 0 to 200. The enrichment map is 

generated using the Cytoscape platform and requires the rank and gmt files along with the 

positive/negative GSEA report files. Each node represents an individual GO, the size is reflective 

of the number of genes within that set, and the red color signifies positively regulated pathways. 

We set a pvalue cut off of 0.001 and FDR of 0.5. The stringency of our FDR was lowered due to 

encompass the underlying biological pathways differentially regulated by ACVR1 are shown in 

yellow in Figure 3D. The enrichment score plots for Regulation of BMP signaling Pathway and 

Regulation of Cell Differentiation are shown in Figure 3E and 3F respectively, which are images 

provided in the GSEA Pre-ranking report.  

Statistical analysis 
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All data were analyzed using GraphPad Prism version 8. Animals studies were performed with at 

least 3 animals per group. The statistical test used is indicated in each figure. A p ≤ 0.05 was 

considered significant.  

Results 

Mouse model of glioma expressing DIPG mutations induced by transforming neural 

progenitor cells using the SB transposase system 

To assess the impact of DIPG mutations in glioma pathogenesis we generated a 

genetically engineered mouse model of DIPG using the SB transposase system (14,15). We 

induced tumors by activation of the receptor tyrosine kinase (RTK)-RAS- phosphatidylinositol 

3-kinase (PI3K) pathway, which is upregulated in a large percentage of DIPGs, and through 

inactivation of TP53, also commonly mutated in DIPG (19-21). This was achieved through the 

delivery of the following plasmids: NRASV12, a short hair pin targeting tumor protein p53 

(TP53) (shP53), and SB transposase/firefly luciferase, with or without ACVR1G328V or H3.1 

K27M (Fig. 2.1 A) into the lateral ventricle of neonatal mice to target neural progenitor cells in 

the subventricular zone (Fig. 2.1 B). The four experimental groups were: (1) control (wt-ACVR1 

and wt- H3.1) [NRASV12 and shp53)], (2) mutant ACVR1 (mACVR1) [NRASV12, shp53, 

ACVR1G328V] (3) mutant H3.1 (H3.1 K27M) [NRASV12, shp53, HIST1H3BK27M], and (4) mutant 

ACVR1/H3.1 K27M) (NRASV12, shp53, ACVR1G328V, HIST1H3BK27M). The median survival 

(MS) of animals in the control group was 80 days post injection (dpi) (Fig. 2.1 C). mACVR1 

tumors (MS=119 dpi) had enhanced survival compared to control group [Mantel-Cox test; p = 

0.0029] (Fig. 2.1C). H3.1 K27M did not have an effect on survival compared to the control group 

[Mantel-Cox test; p = not significant (ns)] (Fig 2.1C). Surprisingly, tumors harboring 
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NRAS/shp53/ACVR1 G328V/H3.1 K27M had increased survival compared to both the control 

group (p<0.0001) and the mACVR1 group [Mantel-Cox test; p=0.0371] (Fig. 2.1C). Tumors 

induced with ACVR1 G328V had increased immunostaining of phopho-Smad1/5, a transducer 

of BMP signaling as compared to the NRAS/shP53 control (Fig. 2.2A). Furthermore, tumors 

induced with a plasmid combination including H3.1 K27M have decreased immunostaining of 

H3K27me3 as compared to the NRAS/shP53 control consistent with the global H3K27me3 loss 

observed in patients with H3K27M mutations (Fig. 2.2B).  

Characterization of mutant ACVR1 NS 

To assess the role of ACVR1 G328V we generated in vitro cultures from the mACVR1 

tumors. This was done by harvesting the brain once animals became symptomatic, excising the 

tumor which was identified by a Katushka fluorescent reporter, and dissociating the tumor to 

generate a single cell suspension. In culture the cells form 3D structures which we refer to as 

tumor NS (Fig. 2.3A). We characterized the in vitro tumor NS expressing mACVR1 and observed 

that they exhibited elevated levels of phospho-smad1/5 (Fig. 2.3B) and elevated levels of Id1 (Fig. 

2.3B). To test the effect of a specific inhibitor of ACVR1, LDN-214117, on phospho-Smad1/5 

signaling we treated mACVR1 NS with increasing concentrations of LDN-214117. We observed 

decreased levels of phospho-Smad1/5 and Id2, while the levels of total Smad1 remain unchanged 

(Fig. 2.3C). These results indicate that ACVR1 G328V activates the BMP signaling pathway in 

mACVR1 NS.  

To identify genes regulated by mACVR1 we performed RNAseq analysis on mACVR1 

and wt-ACVR1 NS and identified genes that were differentially regulated (1.5-fold; FDR-

corrected P < 0.05) (Figure 2.4A). The top three pathways that were impacted by ACVR1 G328V 

were focal adhesion (FDR corrected, p=0.004), the TGF-beta signaling pathway (FDR corrected, 
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p=0.004), and signaling pathways regulating pluripotency of stem cells (FDR corrected, 

p=0.009) (Figure 2.4B). Over expressed genes within the TGF-Beta pathway included ACVR1, 

and inhibitor of DNA binding genes Id1, Id2, and Id3 (Figure 2.4B). Gene set enrichment 

analysis (GSEA) suggests an enrichment in the response to BMP and the regulation of cell 

differentiation (Fig. 2.4C-E).  

Since one of the top signaling pathways involved the regulation of pluripotency in stem 

cells, we evaluated whether mACVR1 tumors express CD133, CD44, and Aldh1, stem cell 

markers. Intracranial wt-ACVR1 or mACVR1 tumors were established in the pons of adult mice 

using SB derived NS. The results demonstrate that mACVR1 tumors have increased expression 

of the cancer stem cell markers CD133 (p=0.0002) and CD44 (p=0.0112) (Fig. 2.5A). However, 

we did not observe differences in the expression of another cancer stem cell marker, i.e., 

Aldehyde dehydrogenase 1 family, member A1 (Aldh1) (Fig. 2.5A). We next investigated the 

tumor initiating potential of wt-ACVR1 and mACVR1 NS in vivo. With wt-ACVR1 NS, the 

minimum number of cells required to generate brainstem gliomas with 100% penetrance was 

1,000 cells, whereas, with mACVR1 NS it was possible to generate brainstem gliomas with 

100% penetrance using 500 cells (Fig. 2.5B). These results indicate that mACVR1 NS have a 

greater tumor initiating potential.  

Generation of gliomas in the brainstem using SB system  

To test if we could generate gliomas in a more physiologically relevant location we 

injected the SB plasmids into the fourth ventricle of postnatal day 1 mice which is near the pons 

(Fig. 2.6A). The median survival (MS) of mice in the mACVR1 group was 127 dpi while the 

median survival for the wt-ACVR1 group was MS=85 dpi (Fig. 2.6B). All tumors, regardless of 

ACVR1 mutation status, displayed high cellularity, nuclear atypia, invasive features, and grew in 
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the brainstem (Fig. 2.6C). Tumors expressed markers of glial cells including oligodendrocyte 

transcription factor 2 (Olig2) (Fig. 2.6D), glial fibrillary acidic protein (GFAP) (Fig. 2.6E), and 

the neural stem cell marker, Sox2 (Fig. 2.6F). Both the wt-ACVR1 group and mACVR1 tumors 

were positive for phosphorylated extracellular signal-regulated kinase (pERK) 1/2 (Fig. 2.6G). 

Additionally, we confirmed that tumors expressing mACVR1 exhibited activated Smad1/5/8 

transcription factors (Fig. 2.6H). This correlated with increased levels of the downstream 

canonical target gene, inhibitor of DNA binding 1 (Id1) (Fig. 2.6I). Since the SB tumors were 

generated from tumors induced by activation of the RTK-RAS-PI3K signaling pathway we 

checked if this pathway was activated in DIPG cultures. Indeed, we found that SU-DIPG VI (wt-

ACVR1) and SU-DIPG XX1 (mACVR1) cultures were positive for phosphorylated ERK1/2 

(Fig. 2.7A). We also observed that mACVR1 DIPG cells had increased levels of ID1 compared to 

WT ACVR1 DIPG cultures (Fig. 2.7B).  

Transplantable mouse model of brainstem glioma for pre-clinical testing 

To develop a model that can be utilized for rapid pre-clinical testing of DIPG therapies, 

we implanted mACVR1 NS into the pons of immune competent adult C57BL/6 mice (Fig. 2.8A). 

The median survival of mice bearing mACVR1 brainstem gliomas was 19 dpi (Fig. 2.8B), giving 

us an adequate therapeutic window. Mice bearing mACVR1 brainstem gliomas are positive for 

Ki67 (proliferating cells), GFAP (astrocyte marker), Vimentin (astrocytes and ependymal cells), 

Iba1 (microglia), but negative for MBP (a marker of mature oligodendrocytes) (Fig. 2.8C). The 

tumors are also positive for pERK1/2 and pMEK1/2 demonstrating activation of the RTK-RAS-

PI3K signaling pathway (Fig. 2.8C). We also observed expression of Id1 a downstream target 

gene of BMP-Smad1/5 signaling (Fig. 2.8C). Therefore, tumors derived by intracranial 
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implantation of mACVR1 tumor NS maintain key features of the spontaneous tumors derived 

using the SB system and are amenable to pre-clinical therapeutic implementation. 

Discussion 

The development of molecularly and histologically accurate animal models is critical for 

the identification and testing of novel therapeutic targets. When we initiated our study there were 

no available models studying the biology of a subgroup of DIPG patients co-expressing ACVR1 

and H3.1 K27M mutations. Therefore, we utilized the SB transposase system to generate 

endogenous mouse models of ACVR1 G328V and H3.1 K27M DIPG. The SB system efficiently 

and reproducibly integrates plasmid DNA into the neural progenitor cells’ host chromosomal 

DNA of neonatal mice, allowing for the functional assessment of the role of candidate DIPG 

genes in promoting tumor progression (14,15,17,18). Additionally, tumors arise in an immune 

competent mouse. Although, H3.1 K27M and ACVR1 mutations are hypothesized to be 

potential tumorigenic drivers in DIPG, we were not able to generate tumors with mACVR1 

alone, H3.1-K27M alone, or a combination of mACVR1, H3.1-K27M, and activated PIK3CA. 

This is consistent with reports that mutations of ACVR1 were not sufficient to make Tp53 null 

mouse astrocytes tumorigenic, and that PDGF signaling was required to generate tumors with 

H3.3 K27M and Tp53 loss (10,22). For this reason, it was necessary to utilize additional 

tumorigenic drivers. We used NRAS, in combination with p53 knockdown, because it has been 

shown to be able to generate mouse models of glioblastoma that have histologically relevant 

features by activation of the RTK/RAS pathway, which is altered in 61.7% of DIPG cases 

(15,17-19). We developed gliomas in the cerebral hemispheres by injecting plasmids encoding 

NRASV12D, shp53, ACVR1 G328V and/ or H3.1 K27M into the lateral ventricles. Tumors 
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harboring the ACVR1 G328V mutation exhibited elevated phospho-Smad1/5 levels. We also 

observed that mutant H3.1 K27M tumors had decreased levels of H3k27me3, a phenotype of 

K27M mutations. Thus, our SB generated tumors exhibited the well documented phenotypes of 

the ACVR1 and H3.1 K27M mutations.  

Since DIPG tumors originate in the pons, it was important for us to be able to test if we 

could develop gliomas in the pons. To do this, we injected plasmids encoding NRASV12D, 

shp53, and ACVR1 G328V into the fourth ventricle and showed that it was possible to induce 

tumors in the brainstem. Both the lateral ventricle and brainstem models of ACVR1 G328V 

exhibited a significantly increased median survival compared with wt-ACVR1 tumors. This is in 

contrast with results from Hoeman C.M. and colleagues in which the authors found that in an 

RCAS model of DIPG, driven by p53 loss and PDDGF-A, ACVR1 R206H accelerated tumor 

growth, in the presence or absence of H3.1 K27M (23). One potential reason for the difference in 

survival observed between our models may lie in the specific amino acid substitution that was 

modelled. We used the ACVR1 G328V mutation since this mutation was reported to be the most 

common of the six recurrent ACVR1 mutations. Recently it was reported that only amino acid 

substitutions of ACVR1 at the G328 residue confer a significant increase in survival (24). Thus, 

our SB model of ACVR1 G328V is consistent with what is seen in patients with mutations of 

glycine at position 328.  

Transcriptional profiling of neurospheres expressing mACVR1 versus wt-ACVR1 

confirmed upregulation of the TGF-beta pathway in mACVR1 NS, and identify pathways 

regulating the pluripotency of stem cells to be increased by the ACVR1 mutation. Additionally, 

we observed that mACVR1 NS have increased levels of stemness markers CD133 and CD44 

after re-implantation and greater tumor initiation potential when compared to wt-ACVR1 NS. 
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Taken together, our data suggests mACVR1 regulates stemness and tumor initiation potential. 

Interestingly, clonal evolution analysis of a DIPG tumor found that the ACVR1 mutation was 

present along with the H3.1 K27M mutation in all tumor clones, in contrast to secondary 

mutations found only in some subclones, implicating mACVR1in DIPG tumor initiation (25). In 

addition, Hoeman C.M. and colleagues observed that ACVR1 R206H contributed to increased 

tumor incidence using the RCAS model driven by p53 loss and PDDGF-A, supporting our 

results that ACVR1 plays a role in tumor initiation (23).  

The SB model also enabled us to generate an intracranial model of brainstem glioma 

through implantation of tumor NS into the pons of adult C57BL/6 mice. This implantation model 

has an intact immune system, and short latency enabling it to be used for pre-clinical testing of 

immune-mediated strategies for DIPG. We implanted tumors with mACVR1 NS, however, it 

would be possible to generate tumor NS expressing other DIPG mutations in order to test the 

effect of specific DIPG mutations on the efficacy of a pre-clinical therapy.  

In conclusion, we demonstrate the amenability of the SB transposase to be used to 

develop genetically and histologically accurate models of DIPG. We generated models of 

ACVR1 G328V and H3.1 K27M, two genes mutated in DIPG. Uncovering the role of these 

mutations on DIPG tumorigenesis and disease progression could provide novel mechanistic 

insights useful to develop novel therapeutic targets for this incurable and deadly pediatric 

brainstem tumor. 



 47 

Figures 

 
Figure 2.1 DIPG mouse models induced in the lateral ventricle 

(A) Schematic representation of SB transposase and transposon plasmids used to develop 
gliomas with DIPG mutations in the lateral ventricle. Black arrows indicate position of inverted 
repeat and direct repeat (IR/DR) sequences which flank specific DNA sequences. (B) (i) 
neonatal mouse on stereotaxic frame. Lateral ventricle coordinates: 1.5 mm ventral and 0.8 mm 
lateral to the lambda, (ii) bioluminescence imaging at 1-day post injection (dpi) confirming the 
efficiency of the in vivo transfection.  (iii) bioluminescence imaging at endpoint stage showing 
a large tumor (iv) fluorescence image of a GFP fluorescent tumor. (C) Kaplan-Meier survival 
curves for mice bearing lateral ventricle gliomas induced with NRASV12/shp53 (n = 12), 
NRASV12/shp53/ ACVR1G328V (n = 13), NRASV12/shp53/ H3.1 K27M (n = 23), 
NRASV12/shp53/ ACVR1G328V/ H3.1 K27M (n = 22). MS = median survival. 
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 Figure 2.2 Characterization of DIPG gliomas induced in the lateral ventricle  

(A) IHC staining for phospho-Smad1/5 (p-Smad1/5) protein in paraffin embedded SB brainstem 
tumor sections of the (1) control group, (2) mACVR1, (3)H3.1 K27M) and (4) mACVR1/ H3.1 
K27M. Scale bar is 20 µm. Arrows represent positive staining. (B) IHC staining for H3K27me3 
protein in paraffin embedded SB brainstem tumor sections of the (1) control group, (2) 
mACVR1, (3)H3.1 K27M) and (4) mACVR1/ H3.1 K27M. Scale bar is 20 µm. Tumors 
harboring the H3.1 K27M have decreased positive staining for H3K27me3 compared to the 
control group or the mACVR1 group.  
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5 The schematic from Figure 2.3A has been previously published in: Mendez, F.M., Nunez, F.J., Zorilla-Veloz R.I., 
Lowenstein, P.R., and Castro, M.G. Native Chromatin Immunoprecipitation Using Murine Brain Tumor 
Neurospheres, Journal of Visual Experiments, 2018; Jan 29;(131). 

 

Figure 2.3 ACVR1 G328V activates the phosphor-Smad1/5 signaling pathway 

(A) A bright field and fluorescent image of a brain harvested from a mouse that reached the end 
point stage. The tumor area is delineated by the dotted line and is positive for the fluorescent 
reporter, Katushka. The tumor is then isolated and the tumor tissue is dissociated and cultured in 
vitro where tumor NS form. (B) WB assay was performed on three different clones of wt-ACVR1 
and mACVR1 NS to assess the protein level of phopho-Smad1/5, Smad1, and Id1, a downstream 
Smad1/5 regulated gene. ß-actin: loading control. C1, C2, C3 represent the clones of NS used. (C) 
WB assay was performed on mACVR1 NS treated with LDN-214117 (0.03-1uM) and blotted for 
Smad1/5, Smad1, and Id2; ß-actin: loading control. 
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Figure 2.4 ACVR1G328V upregulates genes involved in the TGF-ß /Smad signaling and 
pathways related to stem cell maintenance and focal adhesion 

 (A) Differential gene expression in mACVR1 tumors analyzed by RNA-seq. Volcano plot 
comparing differentially expressed genes in mACVR1 versus wt-ACVR1 mouse NS. The log 
10 (FDR corrected p-values); q-values were plotted against the log 2 (Fold Change: FC) in gene 
expression. Genes upregulated by ≥ 1.3 fold and with a FDR corrected p-value < 0.05 are 
depicted as red dots; genes that were downregulated by ≥1.3 fold and with a FDR corrected p-
value < 0.05 are depicted as green dots. (B) Differentially expressed pathway genes associated 
with mACVR1 in mACVR1 versus wt-ACVR1 mouse NS. Plot of the log (FC) of genes with 
an FDR corrected p-value < 0.05. (C) Pathway enrichment maps of DE genes in mACVR1 
versus wt-ACVR1 NS. Clusters of nodes depicted in red illustrate differentially upregulated 
pathways resulting from GSEA (P < 0.05; FDR < 0.5). The yellow highlighted nodes indicate 
up-regulated GO terms containing ACVR1. (D) GSEA enrichment plot of regulation of BMP 
signaling pathway genes identified by RNA-Seq analysis in mACVR1 versus wt-ACVR1 
mouse NS. (E) GSEA enrichment plot of regulation of cell differentiation genes identified by 
RNA-Seq analysis in mACVR1 versus wt-ACVR1 mouse NS. 
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Figure 2.5 Increased expression of stem cell markers and greater tumor initiation 
potential in mACVR1 NS compared to WT ACVR1 NS 

(A) Levels of CD133, CD44, and Aldh1 in the tumor microenvironment of mice bearing wt-
ACVR1 or mACVR1 was assessed when animals displayed signs of tumor burden. 
Representative histograms display each marker’s expression (green = wt-ACVR1, red = 
mACVR1). MFI = mean fluorescence intensity; * p < 0.05; *** p < 0.001; unpaired t test. Bars 
represent mean ± standard error of the mean (SEM) (n = 3 biological replicates). (B-C) In vivo 
tumor initiation capacity. Kaplan-Meier survival curves for mice intracranially implanted with 
different numbers of wt-ACVR1 (B) or mACVR1 NS (C) as indicated in the plot. MS: median 
survival. 
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Figure 2.6 Generation of mouse brainstem glioma model using the SB transposase 
system. 

(A)Schematic representation of brainstem glioma model. (i) One day old pups were injected in 
the fourth ventricle (3 mm posterior to the λ-suture and 3 mm deep) with plasmid cocktail. (ii) 
Bioluminescence imaging at 1-day post injection (dpi) confirming the efficiency of the in vivo 
transfection. (iii) Brightfield image of brainstem tumor (iv) Fluorescence image of  brainstem 
tumor with GFP reporter protein. (B). Kaplan-Meier survival curve for genetically engineered 
mice bearing  brainstem gliomas induced with NRASV12/shp53;[control] (n = 15), 
NRASV12/shp53/ ACVR1G328V (n = 11),  (C) Hematoxylin and eosin stained paraffin 
embedded SB brainstem tumor sections (control and mACVR1). Scale bar in the upper panel 
images is 200 µm. Scale bar in the bottom panel images is 20 µm. (D-I) Immunohistochemistry 
(IHC) staining for: (D) Olig2, an oligodendrocyte marker (scale bar in the upper panel image 
is 200 µm, scale bar for the bottom panel images is 50 µm) (E) GFAP, an astrocyte marker 
(scale bar in the upper panel image is 200 µm, scale bar for the bottom panel images is 20 µm) 
(F) Sox2, a transcription factor that plays an important role in the maintenance of neural stem 
cells (scale bar in the upper panel image is 200 µm, scale bar for the bottom panel images is 50 
µm) (G) phosphorylated ERK-1/2 protein (pERK1/2) (scale bar in the upper panel image is 200 
µm, scale bar for the bottom panel images is 50 µm). 
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(H) phospho-Smad1/5 (scale bar in the upper panel image is 100 µm, scale bar for the bottom 
panel images is 50 µm, white arrows indicate positive expression) (I) Id1 (scale bar in the upper 
panel image is 100 µm, scale bar for the bottom panel images is 50 µm). 
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Figure 2.7 DIPG cells express pERK1/2 and ID1 

Immunocytochemistry (ICC) staining for (A) pERK1/2 and (B) ID1 on human DIPG cells: SU-
DIPG VI (wt-ACVR1) and SU DIPG XX1 (mACVR1). Scale bar = 50 µm. 
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Figure 2.8 Transplantable model of DIPG 

(A) Schematic of experimental design showing assessment of survival and histology in mice 
bearing mACVR1 brainstem gliomas. (B) Kaplan-Meier survival curve of mice bearing 
mACVR1 intracranial gliomas. MS = median survival. (C)Paraffin embedded mACVR1 tumor 
sections were stained with Hematoxylin and Eosin (H&E), Ki67 (proliferating cells), GFAP 
(astrocytes), MBP (myelin sheaths and oligodendrocytes), Vimentin (ependymal cells and 
astrocytes), Iba1 (microglia), pERK1/2, pMEK1/2, or Id1. Scale bar = 200 µm for the H&E. 
Scale bar = 100 µm for the immunostains. Scale bar for all magnified insets = 20 µm. 
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Chapter 3 : Efficacy of Immune Stimulatory Gene Therapy in 
Mouse Models of Brainstem Glioma6 

Abstract 

Diffuse intrinsic pontine glioma (DIPG) bears a dismal prognosis. Mutant ACVR1 (mACVR1) 

neurospheres (NS) were implanted into the pons of immune competent mice to test the 

therapeutic efficacy and toxicity of immune stimulatory gene therapy using adenoviruses 

expressing thymidine kinase (TK) and fms-like tyrosine kinase 3 ligand (Flt3L). mACVR1 NS 

expressing the surrogate tumor antigen ovalbumin were generated to investigate if TK/Flt3L 

treatment induces the recruitment of tumor-antigen specific T cells to the tumor 

microenvironment (TME). Adenoviral delivery of TK/Flt3L in mice bearing brainstem gliomas 

resulted in anti-tumor immunity, recruitment of anti-tumor specific T cells to the TME and 

increased median survival. This study provides insights into the phenotype and function of the 

tumor immune microenvironment in a mouse model of brainstem glioma harboring mACVR1. 

Immune stimulatory gene therapy targeting the hosts’ anti-tumor immune response inhibits 

tumor progression and increases median survival of mice bearing mACVR1 tumors. 

 
6 Portions of this chapter have been submitted for publication in Clinical Cancer Research in collaboration with the 
following co-authors: Padma Kadiyala, Felipe J. Nunez, Stephen Carney, Fernando Nunez, Jessica C. Gauss, Ramya 
Ravindran, Sheeba Pawar, Marta Edwards, Pedro R. Lowenstein, and Maria G. Castro. 
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Introduction 

Brain and central nervous system tumors are the leading cause of cancer death in 

children(1). Diffuse intrinsic pontine glioma (DIPG) occurs mainly in children, and accounts for 

10-20% of pediatric brain tumors (2). DIPG originates in the pons and is highly invasive making 

surgical removal impossible. The median survival is 8-11 months, and has not improved in more 

than 40 years (3). Radiation can temporarily provide symptom relief and extend survival by a 

few months it can cause detrimental effects on developing brain (4,5). Thus, there is a critical 

need to identify an effective therapy for DIPG.  

It would be advantageous to harness the power of the immune system to elicit effective 

anti-tumor immunity in DIPG patients. Immune mediated treatment modalities have yielded 

promising clinical benefits in melanoma, non-small-cell lung cancer, renal cell cancer, and 

prostate cancer (6-9). We have also previously shown the efficacy of an immune stimulatory 

gene therapy approach in several rat and mouse models of adult glioblastoma (10,11). This 

approach has recently completed its Phase I Clinical Trial accrual for the treatment of adult 

patients with newly diagnosed glioblastoma multiforme (World Health Organization (WHO) 

grade IV (NCT01811992)). This immune-mediated gene therapy approach is based on 

adenoviral delivery of herpes simplex virus type 1-thymidine kinase (TK) and Fms-like tyrosine 

kinase 3 ligand (Flt3L). Upon administration of the prodrug, ganciclovir, proliferating tumor 

cells expressing TK undergo immunogenic cell death (10,11). Dying tumor cells, release 

damage-associated molecular patterns (DAMPs), such as high-mobility group B1 protein 

(HMGB1), calreticulin, and adenosine triphosphate (ATP) (10,12). Meanwhile, Flt3L elicits the 

recruitment of dendritic cells to the tumor microenvironment (10). HMGB1 released by dying 

tumor cells activates dendritic cells through Toll-like receptor 2 (TLR2) mediated signaling (10). 

https://clinicaltrials.gov/ct2/show/NCT01811992
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Activated dendritic cells pick up the tumor antigens and traffic to the draining lymph nodes, 

where they generate a specific anti-tumor cytotoxic T-cell response (10,13).  Herein, we aimed to 

test the efficacy of this immune stimulatory approach in an immunocompetent mouse model of 

mutant ACVR1 brainstem glioma.  

Treatment with TK/Flt3L immune stimulatory gene therapy significantly improved 

median survival compared to standard of care. The TK/Flt3L gene therapy induced a strong anti-

tumor cytotoxic immune response demonstrated by an increase in the frequency of tumor 

antigen-specific CD8 T cells in mice treated with TK/Flt3L therapy when compared to saline 

controls. Our results suggest that immune-mediated gene therapy could be a promising 

therapeutic approach for DIPG. 

Methods 

Implantable syngeneic murine brainstem glioma models: 

Female C57BL/6 mice between 6-8 weeks were used for all implantation experiments. 

Intracranial tumors were generated by stereotaxic injection of 1000 ACVR1m tumor NS into the 

pons using a 5 µl Hamilton syringe with a removable 33-gauge needle with the following 

coordinates: (0.8mm posterior; 1.00mm lateral to the λ-suture and 5mm deep). Animals were 

anesthetized, then the skin over the incision site was cut and retracted, and a burr hole was 

drilled into one side of the skull using a 0.45 mm drill bit corresponding to the pons coordinates. 

Tumor NS were delivered in a 2 µl volume after holding the needle in place for 2 minutes. Each 

injection was performed over the course of 7 minutes; the needle was left in place for an 

additional minute before being slowly withdrawn from the brain. 
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Intratumoral injection of adenoviral vectors and radiation treatment: 

We used first generation Ad.hCMV.hsFLT3L (Ad-Flt3L) + Ad.hCMV.TK (Ad-TK)(10,13). Five 

days post tumor implantation (dpi) mice were assigned to four treatment groups: (i) control 

group: empty Ad(Ad0)/saline); Ad0 was delivered intratumorally (i.t) and saline 

intraperitoneally (i.p.), (ii) gene therapy: Ad-TK(1×10^8 plaque-forming units (pfu)/Ad-

Flt3L(2×10^8 pfu of Ad-TK) /GCV; Ad-TK/Ad-Flt3Ldelivered i.t., ganciclovir (GCV) (Biotang; 

RG001-1g) was administered i.p. at 25 mg/kg/daily for 10d, starting 1d post-gene therapy, (iii) 

Standard of care (IR): Ad0/saline+IR; an overall dose of 20 Gy IR was administered (2 Gy/d for 

10d), and (iv) Gene therapy + standard of care: Ad-TK/Ad-Flt3L/GCV+IR. Intratumoral 

injections of adenoviral vectors was delivered in μL volume in three locations to depths of 4.4, 

4.5, and 4.6 mm, at the coordinates detailed above.  Sample size was n = 5 for each treatment 

group. For the functional analysis of T cells in the tumor microenvironment (TME), 8 days post 

tumor implantation mice were assigned to either the control group or the gene therapy group 

detailed above. Sample size was n = 3; where per sample it was necessary to pool tumor tissue 

from three mice for the control and five mice for the gene therapy group due to the size of the 

tumor.  

Flow cytometry: 

For flow cytometry experiments were performed using protocols described before (10,11,13).  

Flow data were acquired on a FACSAria flow cytometer (BD Biosciences) and analyzed using 

Flow Jo version 10 (Treestar). Prior to staining cells with antibodies, live/dead staining was 

carried out using fixable viability dye (eBioscience). Then, cells were resuspended in PBS 

containing 2% fetal bovine serum (FBS) (flow buffer) and non-specific antibody binding was 

blocked with CD16/CD32 (Biolegend, 101335). All stains were carried out for 30 minutes at 4°C 
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with 3X flow buffer washes between live/dead staining, blocking, surface staining, cell fixation, 

intracellular staining and data acquisition. The fixation/ permeabilization staining kit (BD 

Biosciences, 554714) was used for all intracellular stains. Antibody information is included in 

supplementary table 1. For T cell functional analysis within the TME, the cells from the tumor 

mass were stained with anti-mouse CD45, CD3, CD8, and SIINFEKL-H2Kb-tetramer-PE. For 

IFNγ stains, single cell suspensions generated from the tumor mass were stimulated with 25 

ug/mL of mACVR1-OVA lysate for 24 hours in 10% FCS-containing media followed by 6 h 

incubation with Brefeldin and monensin. Cells were stained with CD3 and CD8 antibodies, 

followed by intracellular staining for IFNγ.  To assess tumor cell stemness tumor cell 

suspensions generated from wt-ACVR1 and mACVR1 implanted tumors were stained for 

CD133, CD44, and Aldh1.  

Assessment of damage associated molecule release: 

To assess for release of damage associated molecules after treatment with either radiation (3G) 

or Ad-TK (500 MOI)/GCV (25µM), 10,000 mACVR1 NS were plated on 6-well plates. The next 

day they were treated with Ad-TK (500 MOI) and/or radiation (3G). Following a 48 hour 

incubation they were treated with GCV (25 µM ). The following day they were stained with 

calreticulin or high mobility group box 1 (HMGB1) antibodies following flow cytometry 

protocols described above.  To assess ATP release, we used the ATP determination kit following 

manufacturer’s instructions (Invitrogen, A22066) to measure ATP levels in media after 48 hours 

of treatment. Media was used to generate the ATP standard curve. 

T cell Proliferation analysis: 

Splenocytes from 21 dpi mACVR1-OVA brainstem glioma-bearing mice treated with saline or 

gene therapy, as detailed above, were labeled with Carboxyfluorescein succinimidyl ester 
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(CFSE) per manufacturer’s instructions and cultured with 100 nM SIINFEKL peptide (Anaspec, 

60193-1; dissolved in H20 and stored in -80 °C) for 4 days. As a positive control we used 

splenocytes from Rag2 knockout/transgenic OT-I T cell receptor mice (Taconic, 2334) 

stimulated with SIINFEKL. As a negative control we used unstimulated splenocytes. Cells were 

then stained with CD3 and CD8, and T cell proliferation was assessed based on CFSE dye 

dilution. 

Cytotoxic T cell assay: 

Splenocytes from saline or gene therapy treated mice were incubated with mACVR1-OVA NS 

for 24 hours at the indicated ratios (1:1, 10:1, 20:1).  Lysis of tumor cells was assessed by using 

Annexin-V. (14,15). 

Complete blood count (CBC) and serum chemistry: 

Collected blood was transferred to EDTA tubes for CBC (RAM Scientific, 077058) or in serum 

separation tubes (Sarstedt, 41.1378.005). CBC and serum chemistry was performed by the In-

Vivo Animal Core (IVAC) at the University of Michigan. 

Neuropathological analysis: 

To assess the safety of vector delivery into the brainstem, non-tumor bearing animals were 

treated with Ad-TK/Ad-Flt3L gene therapy or saline. GCV was administered intraperitoneally 

one day later for 7 days. One day after the last dose of GCV was administered animals were 

euthanized and brains were harvested and processed for histology as detailed above. 

Hematoxylin and eosin (H&E) staining was performed to assess gross histopathological features 

(16). Immunohistochemistry staining for glial fibrillary acidic protein (GFAP) to mark 
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astrocytes, myelin basic protein (MBP) to mark myelin sheaths and oligodendrocytes, and Iba1 

to mark microglial cells. 

Hematoxylin and eosin (H&E): 

Liver tissue sections (5 µm thick) from tumor bearing animals treated with saline, radiation, gene 

therapy, and gene therapy and radiation were stained with H&E (16).  

Statistical analysis 

All data were analyzed using GraphPad Prism version 8, or R (version 3.1.3). All animal studies 

were carried out with at least 3 animals per group (specified in each experiment). The statistical 

test used is indicated in each figure. A p ≤ 0.05 was considered significant.  

Results 

Mutant ACVR1 NS release DAMPs in vitro 

Due to the invasive nature of brainstem gliomas and their refractive response to current 

therapies we wanted to assess the efficacy of immune stimulatory TK/Flt3L gene therapy. The 

release of DAMPs is crucial for the success of TK/Flt3L mediated therapy, therefore, we first 

assessed whether mACVR1 NS released DAMPs in vitro after treatment with GCV alone, TK 

alone, or GCV+TK, with, or without 3 Gray (Gy) of irradiation (IR). We found that mACVR1 

NS treated with GCV+TK released increased levels of calreticulin (p<0.0001; Fig. 3.1), high 

mobility group box 1 protein (HMGB1) (p<0.0001; Fig. 3.1), and adenosine triphosphate (ATP) 

(p = 0.0071; Fig. 3.1). We also observed that the combination of GCV+TK with IR further 

increased the levels of calreticulin (p<0.0001; Fig. 3.1), HMGB1 (p=0.0375; Fig. 3.1), and the 

release of ATP (p = 0.0158; Fig. 3.1) by the mACVR1 NS.  
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Pre-clinical testing of immune stimulatory gene therapy 

Having established that mACVR1 NS release calreticulin, HMGB1, and ATP in vitro 

following treatment with either IR or TK+GCV, we next tested the efficacy of this treatment 

paradigm in vivo. Five days’ post intracranial tumor implantation into the pons (Fig. 3.2A), mice 

were assigned to four treatment groups as indicated in Figure 3.2. Our results demonstrate that 

Ad-TK/Ad-Flt3L therapy was more effective in prolonging the median survival (MS) of 

mACVR1 brainstem glioma bearing mice compared to animals receiving IR,(MS=36 days post 

implantation (dpi) for TK/Flt3L group vs. 23 dpi for IR group; p = 0.0014, Mantel-Cox test), or . 

animals receiving saline control treatment (MS=18dpi; p = 0.0015, Mantel-Cox test) (Fig. 3.2B). 

Combining standard of care with gene therapy led to an improved median survival (MS=37 dpi), 

but did not significantly affect the efficacy of Ad-TK/Ad-Flt3L therapy (Fig. 3.2B).  

Assessment of anti-brainstem glioma specific T cells 

We next aimed to investigate whether Ad-TK/Ad-Flt3L treatment recruits anti-brainstem 

glioma specific T cells into the tumor immune microenvironment (TME). To do this, we used the 

surrogate tumor antigen ovoalbumin (OVA)(13,17) expressing mACVR1 cells (mACVR1-OVA 

NS). We were able to quantify tumor specific CD8 T cells in the TME through the use of the 

SIINFEKL-H2Kb tetramer (Fig. 3.3A). We observed a 3.8-fold increase in the frequency of 

tumor specific CD8 T cells in the TME after treatment with Ad-TK/Ad-Flt3L gene therapy (p = 

0.0007; ***, Fig. 3.3B). To test the impact of Ad-TK/Ad-Flt3L gene therapy on the activation 

status of CD8 T cells in the TME, we stained effector T cells for the expression of IFNγ after re-

stimulating CD8 T cells isolated from the TME with mACVR1-OVA NS-lysate for 24 hrs. Our 

data show that IFNγ is increased 3.8 fold (p = 0.0038; **, Fig. 3.3C) in CD8 T cells from Ad-

TK/Ad-Flt3L gene therapy treated mice compared to saline controls. To test if Ad-TK/Ad-Flt3L 
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gene therapy affected antigen-specific T cell proliferation we labeled splenocytes with 5-(and 6)-

carboxyfluorescein diacetate succinimidyl ester (CFSE), and stimulated them with the OVA 

cognate SIINFEKL peptide. As a positive control we also stimulated splenic T cells from OT-1 

mice that have their TCR engineered to recognize the SIINKEKL peptide. Our results show that 

the percentage of T cells that proliferated in response to the SIINKEKL peptide was greater (1.7 

fold, p <  0.0001, Fig. 3.3D) in mice treated with Ad-TK/Ad-Flt3L gene therapy compared to the 

saline treated control group. Additionally, the cytotoxicity of T cells isolated from the spleen of 

animals treated with Ad-TK/Ad-Flt3L gene therapy was observed to be significantly higher (1.95 

fold, p = 0.004 at 20:1 ratio, Fig. 3.3E) when compared with the saline treated group indicating 

that gene therapy significantly enhanced the cytotoxic activity of splenic T cells. 

Histopathological analysis 

To evaluate any potential adverse effects of delivering gene therapy into the brainstem 

we performed a detailed histopathological analysis of brains from non-tumor bearing animals. 

After the animals were treated intracranially with Ad-TK/Ad-Flt3L, GCV was administered 

intraperitoneally one day after adenoviral injection for seven days. Brains were harvested for 

neuropathology analysis 24 hours after the last dose of GCV was administered. Architectural 

integrity was assessed by H&E staining and by immunohistochemistry using GFAP (astrocytes), 

MBP (myelin sheaths, oligodendrocytes) and Iba1 (microglia). No gross tissue abnormalities 

were observed in response to TK/Flt3L therapy compared to the saline controls (Fig. 3.4). There 

was also no change in GFAP or MBP expression in response to TK/Flt3L therapy indicating that 

the brain architecture was unaffected (Fig. 3.4). There was no increase in Iba1 expression in the 

animals treated with TK/Flt3L therapy indicating that gene therapy does not induce inflammation 

in normal brain tissue 8 days’ post treatment. (Fig. 3.4).   
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Assessment of systemic toxicity  

To assess potential systemic toxicity due to TK/Flt3L or IR treatment, we performed 

H&E staining on liver sections and complete hematological and serum biochemical analysis in 

tumor bearing animals from the saline, TK/Flt3L, and TK/Flt3L + IR treatment groups. The liver 

sections from all treatment groups had normal hepatocyte architecture and did not show signs of 

inflammation or necrosis (Fig. 3.5). The white blood cell counts were within normal range for 

the saline, TK/Flt3L, and TK/Flt3L + IR groups, but significantly decreased in the IR group in 

comparison to the saline treated group (p < 0.0001, Fig. 3.6). This is consistent with a study that 

found that whole brain radiation significantly decreased total white blood cell counts (18). Red 

blood cell, hemoglobin, hematocrit, platelet, lymphocyte, neutrophil, and monocyte counts were 

not significantly affected by TK/Flt3L or IR therapy (Fig. 3.6). We did not find any significant 

changes in important enzymes involved in liver (ALT, AST) and kidney (BUN) function as a 

result of TK /Flt3L or IR therapies (Fig. 3.6).  

Discussion 

DIPG remains an incurable tumor with a poor prognosis (19). The tumors originate in the 

pons and infiltrate into sensitive regions of the brainstem precluding surgical resection (20). 

Currently, the treatment option for children with DIPG is limited to radiation to provide 

palliative care (21). Although radiation can temporarily provide symptomatic relief and extend 

survival by a few months, it can cause detrimental effects on the developing brain (4,5). 

Therefore, there is a dire need for new therapeutic interventions. DIPG studies involving the 

development and implementation of novel therapies have utilized patient derived xenograft 

models, where human DIPG cells are implanted into the brain of immune deficient mice or rats 
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to establish intracranial tumors (22,23). One limitation with those models is that immune 

suppressed animals cannot be used to test immunotherapies or perform immune-related 

mechanistic studies. We developed an immune competent transplantable mouse model of DIPG 

harboring the ACVR1 G328V mutation (mACVR1), and this study focuses on the response of 

mACVR1 brainstem glioma tumors to immunotherapies.  

There has been significant progress in the field of cancer immunotherapy leading to 

improvements in overall survival in many types of solid tumors (6-8,24,25). Advances in 

immunotherapies include the development of immune therapies targeting immune checkpoints, 

vaccine approaches against tumor antigens or dendritic cell vaccines designed to stimulate the 

adaptive immune response, adoptive cell therapy, oncolytic viral therapy, and immune 

stimulatory gene therapy (25-27). This has led to a growing number of clinical trials testing 

immunotherapies in DIPG (27).  

In recent years, it has been established that activated immune cells are able to migrate and 

enter into the brain parenchyma, and that the brain has a functional lymphatic system that allows 

for transport of CNS-antigens to the draining lymph nodes (28,29). Thus, the brain is capable of 

mounting T cell-mediated adaptive immune responses, but, since there are very low numbers of 

local professional antigen presenting cells within the normal brain, endogenous immune 

responses fail to trigger potent immune response against tumor antigens localized in the brain 

parenchyma (30,31).  

In adult glioblastoma (GBM) there is evidence of immune cell infiltration, but an 

immunosuppressive environment precludes effective anti-tumor immunity (26,32,33). GBM 

tumors establish an immunosuppressive environment by the release of immunosuppressive 
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cytokines, such as TGF-β and IL-10, by the recruitment or induction of immunosuppressive cells, 

such as regulatory T cells, myeloid-derived suppressor cells, or tumor associated macrophages, 

and by the expression of immune checkpoint receptor ligands (32-38). In comparison to adult 

GBM, initial studies of the tumor microenvironment in DIPG have found that there is a low number 

of immune infiltrates in human DIPG tumors and that they do not express inflammatory cytokines 

and chemokines (39,40). These data provide support for the use of an immune modulatory 

therapeutic strategy to enhance the recruitment of immune cells into the tumor, with the aim of 

mounting an effective anti-DIPG immune response. 

We have previously demonstrated that combined immune stimulatory gene therapy 

mediated through the delivery of adenoviruses encoding herpes simplex virus type 1 thymidine 

kinase (TK) and fms-like tyrosine kinase 3 ligand (Flt3L) leads to tumor regression and long 

term survival in several rodent models of glioblastoma (GBM) (10,11,41-43). This therapy is 

based on inducing tumor cell death though expression of suicide gene TK (44,45). Tumor 

antigens and damage-associated molecular pattern molecules (DAMPs), such as calreticulin, 

high mobility group box1 (HMGB1), and ATP, are released by dying tumor cells (12,46). The 

effectiveness of this combination therapy also relies on Flt3L to recruit dendritic cells into the 

tumor microenvironment, while the release of HMGB1 stimulates TLR2-dependent activation of 

dendritic cells (10,45,47). Activated dendritic cells can then transport antigens to the draining 

lymph nodes and induce tumor specific T cell responses (10,45). Initial results from the first in 

human Phase 1 clinical trial of combined adenoviral delivery of TK and Flt3L for the treatment 

of adult GBM are promising and report that the therapy was well tolerated (48). However, it has 

been established that the biology of DIPG and GBM is different (49). Therefore, it is necessary 

to assess the safety and efficacy of TK/Flt3L therapy in pre-clinical models of brainstem glioma. 
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Herein, we demonstrate that treatment with TK/Flt3L gene therapy in mice bearing mACVR1 

brainstem gliomas stimulates a strong anti-tumor cytotoxic immune response leading to a 

significant increase in survival (Fig. 3.2B). Treatment with TK/Flt3L increased the frequency of 

tumor-specific CD8 T cells (Fig. 3.3B) in the tumor microenvironment and increased toxicity as 

demonstrated by enhanced IFNγ production (Fig. 3.3C).  

Additionally, delivery of TK/Flt3L into the normal brainstem did not induce any local or 

systemic cytotoxicity. Hematoxylin and eosin staining and immunostaining for GFAP 

(astrocytes), MBP (myelin sheaths, oligodendrocytes), and Iba1 (activated macrophages and 

microglia) was used to assess local toxicity, and we observed no architectural abnormalities or 

overt inflammation as a result of TK/Flt3L therapy. Histological examination of hematoxylin and 

eosin stained liver tissue did not show signs of inflammation, necrosis, or alterations in normal 

hepatocyte structure. Hematological toxicity, assessed by complete blood count and serum 

chemistry analysis, indicated that TK/Flt3L therapy did not induce any toxicity as values from a 

TK/Flt3L treated group were not significantly altered when compared to saline treated animals. 

Our results are consistent with other pre-clinical studies that report the brainstem can tolerate 

adenoviral mediated immunotherapy (50,51). Results from a clinical trial (NCT03178032) 

utilizing adenoviral vector delivery of an oncolytic virus into the pons of DIPG patients will also 

shed light on the feasibility and toxicity of intratumoral adenoviral delivery into the brainstem 

(52).  

In conclusion, we provide compelling evidence that warrants further development of 

conditionally cytotoxic immune stimulatory gene therapy for the treatment of DIPG. We 

anticipate that in the clinic, this approach could also be used in combination with immune 
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checkpoint blockade to further enhance the therapeutic efficacy of the TK/Flt3L-mediated anti-

brain stem glioma immune response. 
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Figures 

 

 

Figure 3.1 TK+GCV and radiation induce release DAMPs by mACVR1 NS 

mACVR1 NS were treated with TK (500 MOI) and/ or 3 Gray (Gy) ionizing radiation (IR), 
followed by GCV (25 µM) 24 hours later. Following a 48-hour incubation, levels of calreticulin 
and HMGB1 were assessed by flow cytometry, while levels of ATP release were assessed using 
a colorimetric assay. MFI = mean fluorescence intensity; * p < 0.05; **** p < 0.0001; two-way 
ANOVA, followed by Turkey’s multiple comparisons.  
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Figure 3.2 Efficacy of Immune-Stimulatory Gene Therapy 

(A) Experimental design showing mice bearing mACVR1 brainstem gliomas treated with 
saline or TK/FLT3L gene therapy on day 5 post tumor implantation, followed by intraperitoneal 
administration of GCV (25 mg/kg) on day 6-12. Radiation was administered at a dose of 
2Gy/Day for 5d for two weeks 5 days’ post tumor implantation; mice were monitored for 
survival. (B) Kaplan-Meier survival analysis for mice bearing mACVR1 tumors treated with 
saline (n = 5), IR (n = 6), TK+ GCV (n=5), or IR+TK+GCV (n=5). Data were analyzed using 
log-rank (Mantel-Cox) test; ** p < 0.005 
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Figure 3.3 Immune stimulatory gene therapy induces tumor specific T-cell infiltration 

(A)Experimental design showing mice bearing mACVR1-OVA brainstem gliomas treated with 
saline or TK/FLT3L gene therapy on day 8 post implantation, followed by intraperitoneal 
administration of GCV (25 mg/kg) on day 9-15. (B) Tumor specific CD8 T cells within the 
TME of mACVR1-OVA tumors were analyzed by staining for SIINFEKL-Kb tetramer.  
 (C) Activation status of CD8 T cells within the TME was analyzed by staining for IFNγ after 
stimulation with tumor lysate. Representative flow plots for each group are displayed; *** p < 
0.001, ** p < 0.01; unpaired t test. Bars represent mean ± SEM (n = 3 biological replicates, 
where resected tumors from 3 animals were pooled for the control group and 5 animals were 
pooled for the gene therapy group). (D) Experimental design showing splenocytes from saline 
or TK/FLT3L treated mACVR1-OVA tumor bearing mice labeled with CFSE and then 
stimulated with 100 nM of SIINFEEKL peptide for four days in culture to assess CD8+ T cell 
proliferation. Histograms show representative CFSE staining from unstimulated splenocytes 
(negative control), OT-1 splenocytes undergoing rapid proliferation in response to SIINFEKL 
(positive control), and the effect of SIINFEKL-induced T cell proliferation on splenocytes from 
saline or TK/Flt3L treated mACVR1-OVA tumor bearing mice. Quantification of splenocytes 
undergoing T cell proliferation; **** p < 0.0001; oneway ANOVA followed by followed by 
Turkey’s multiple comparisons. Bars represent mean ± SEM (n = 3 biological replicates). (E) 
Splenocytes from saline or TK/Flt3L treated mice were incubated with mACVR1-OVA NS, 
for 24 hours at the indicated ratios. Lysis of tumor cells was assessed by using Annexin-V. 
mACVR1 NS undergoing apoptosis were identified as Annexin-V+/CD45- cells. Data were 
compared using unpaired t test; **** p < 0.0001; *** <0.001. Bars represent mean ± SEM (n 
= 3 biological replicates). 
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Figure 3.4 Neuropathology Toxcicity Assessment 

Assessment of local toxicity of adenoviral delivery of TK/Flt3L into normal brainstem. Mice 
were injected in the pons with Ad-TK and Ad-Flt3L, or saline. GCV was administered 
intraperitoneally 24 h post vector delivery for 7 days. 24 h after the last dose of GCV was 
administered neuropathological analysis of the brain was assessed by H&E staining and 
immunostaining for GFAP (astrocytes), MBP (myelin sheaths, oligodendrocytes), and Iba1 
(microglia). Black box represents magnified area. Blue scale bar = 1 mm. Black scale bar = 50 
µm. 
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Figure 3.5 Liver Histology 

Mice bearing mACVR1 brainstem gliomas were treated with saline or TK/ FLT3L gene therapy 
on day 5 post tumor implantation, followed by intraperitoneal administration of GCV (25 
mg/kg) on days 6-12. Radiation was administered at a dose of 2 Gy/Day for 5d for two weeks 
5 days’ post tumor implantation. Livers were processed for histology on day 23. Bright field 
images of paraffin embedded liver sections stained with H&E of animals that were treated with 
(a) saline, (b) IR, (c) Tk/Flt3L + GCV or (d) Tk/Flt3L + GCV+ IR. Scale bar = 50 µm. 
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Figure 3.6 Hematology and serum chemistry 

Mice bearing mACVR1 brainstem gliomas were treated with saline or TK/FLT3L gene therapy 
on day 5 post tumor implantation, followed by intraperitoneal administration of GCV (25 
mg/kg) on days 6-12. Radiation was administered at a dose of 2 Gy/Day for 5d for two weeks 
5 days’ post tumor implantation. Blood and serum samples were drawn on day 23 to assess 
clinical parameters. (A) White blood cell (WBC), (B) red blood cell (RBC), (C) hemoglobin, 
(D) hematocrit, (E) Platelet (PLT), (F) Lymphocytes, (G) Neurotrophils (Neu), (H) Monocytes, 
(I) alanine aminotransferase (ALT), (J) blood urea nitrogen (BUN), (K) aspartate 
aminotransferase (AST). 
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Chapter 4: Summary and Conclusions 

Summary 

The work presented in this dissertation demonstrates the feasibility of generating mouse models 

which recapitulate the histopathological features of diffuse intrinsic pontine glioma (DIPG) using 

the Sleeping Beauty (SB) transposon system. The SB system enabled us to generate mouse 

models of brainstem glioma harboring ACVR1 G328V and H3.1 K27M, two prevalent DIPG 

mutations, in order to investigate their role in DIPG tumorigenesis. We also developed a 

transplantable model in the adult pons by implantation of tumor neurospheres expressing 

ACVR1 G328V. The development of this syngeneic model with an intact immune system 

allowed us to investigate the use of Thymidine Kinase (TK)/Fms-like tyrosine kinase 3 ligand 

(Flt3L) immune stimulatory therapy for DIPG. Here, I summarize the main conclusions of my 

thesis work and discuss their translational relevance. 

Challenges in the treatment of DIPG 

Diffuse intrinsic pontine glioma (DIPG) is a pediatric brainstem tumor with poor 

survival.  Surgical removal is not possible due to the sensitive location and diffusive nature of 

DIPG.  Biopsies are not necessary for diagnosis, so they are not routinely performed. This has 

hampered the ability to study the biology of this tumor and develop effective therapies.  Within 
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the past decade, collaborations between scientists, clinicians, and clinician scientists within the 

pediatric neuro-oncology community have led to the discovery of unique mutations driving 

DIPG, reviewed in chapter one of this thesis (1).  This was followed by the development of cell 

lines and in vivo xenograft models derived from tissue acquired at time of autopsy or biopsy 

material of DIPG patients (2). Xenograft models are valuable because they have standardized 

growth rates, times of death, and tumor localization, however, studies must be performed in 

immunocompromised mice which limits the ability to study the efficacy of immunotherapies (3). 

To overcome this limitation, we developed a genetically engineered animal model of brainstem 

glioma expressing DIPG mutations, as described in chapter two of this thesis. This enabled us to 

assess the role of individual mutations in DIPG pathogenesis.  Despite an increased 

understanding of the biology of the tumor there are still no effective therapies for the treatment 

of DIPG. Conventional chemotherapeutics and radiation have not shown an effective response 

therefore we investigated the efficacy of an immune stimulatory gene therapy, described in 

chapter 3 of this thesis.  

Using the Sleeping Beauty Transposase system to generate models of DIPG  

In 2014, a DIPG molecular subgroup co-expressing a mutation in activin receptor type I, 

(ACVR1), a bone morphogenetic (BMP) receptor, and the histone H3.1 K27M mutation (4,5) 

was identified. ACVR1 mutations and H3.1 K27M mutations are largely restricted to pontine 

gliomas, and DIPG patients harboring these mutations are characterized as having an earlier age 

of onset and longer overall survival, further highlighting the unique biology of this subgroup (4). 

The ACVR1 mutation activates the BMP-Smad1/5 signaling pathway while the H3.1 K27M 

mutation results in H3K27me3 hypomethylation. During development BMPs promote 
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astrogliogenesis while inhibiting oligodendrogliogenesis (6-8). BMP signaling is also implicated 

in supporting the maturation of oligodendrocytes (9). In adult glioblastoma, BMP-Smad1/5/8 

signaling induces differentiation of glioblastoma tumor initiating cells and decreases the in vivo 

tumor initiating ability of GBM cells (10). However, BMP-Smad1/5 signaling has also been 

shown to promote proliferation and migration in transformed astrocytes (11). Thus, it is unclear 

what role elevated Smad1/5 signaling plays in DIPG pathogenesis. To address this gap, we 

developed an animal model expressing the ACVR1 G328V and H3.1 K27M mutations using the 

Sleeping Beauty (SB) system (12).  

We first used the SB system to deliver plasmids encoding DIPG mutations into neural 

stem cells lining the lateral ventricles, a site where we had previously demonstrated that we 

could generate high grade gliomas. We demonstrated that mutant ACVR1 tumors had increased 

levels of phosphorylated Smad1/5/8 indicating upregulation of the BMP pathway. This was 

confirmed by RNA-seq analysis. We also identified a link between mutant ACVR1 and the 

regulation of stemness and increased tumor initiating potential.  Further, we confirmed that H3.1 

K27M mutant tumors exhibited global loss of H3K27me3. Our survival studies revealed that 

ACVR1 G328V increased median survival, while H31 K27M only enhanced median survival in 

the presence of the ACVR1 G328V, suggesting a potential cooperation.  

Once we had established a working model, we sought to improve it by initiating the 

tumors in the brainstem since DIPG arises from this anatomical location. We demonstrated that 

we could successfully induce tumors in the brainstem with histological features of DIPG through 

delivery of plasmid DNA into the fourth ventricle. The brainstem tumors were diffusive, spread 

into the cerebellum, and express markers of glioma cells.  Although, BMPs play an important 

role in mediating the differentiation of neural and glioma stem cells, we did not observe any 
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differences in the expression levels of Nestin or Olig2 in mutant or wt-ACVR1 tumors, 

indicating that mutant ACVR1 did not affect their differentiation state.  Mutant ACVR1 

enhanced median survival in our mouse model of brainstem glioma, reproducing the result we 

had observed in the lateral ventricle tumors. One caveat of this model is that at the time that 

animals begin to decline in health and present with neurological symptoms the tumors were very 

small and consequently there was a limited amount of tumor tissue. 

A limitation of the SB models of DIPG presented here is the requirement of NRAS as a 

tumorigenic driver since ACVR1 G328V and H3.1 K27M and were not sufficient to develop 

tumors when delivered into the postnatal pons. To date, no other genetically engineered models 

of DIPG have been generated postnatally that don’t require additional tumorigenic drivers. 

However, recently Pathania M. and colleagues demonstrated that the combination of H3.3 K27M 

and p53 knockdown could transform neural stem cells in the brainstem by delivery of PiggyBac 

DNA transposon plasmids at embryonic day 12.5, but it took 6-8 months for tumors to develop 

(13). Another group using in utero electroporation to transfect neural stem cells using PiggyBac 

DNA transposon plasmids was unable to generate tumors using H3.3 K27M and p53 knockdown 

at embryonic day 13.5 suggesting that the developmental window is more susceptible to 

transformation at embryonic day 12.5 (14). It would be interesting to see if at this developmental 

time point activating ACVR1 G328V and H3.1K27M mutations could be sufficient to transform 

neural stem cells in the brainstem.  

Immune stimulatory gene therapy is effective in a mouse model of DIPG 

The lack of immune competent mouse models of DIPG has limited the ability to study 

the efficacy of immunotherapeutic strategies for the treatment of DIPG. Therefore, one of the 



 89 

aims of this dissertation was to test the efficacy of a therapeutic strategy developed by our 

laboratory that modulates the immune system to induce an anti-cancer response in our mouse 

model of DIPG (15-19). The immune mediated gene therapy approach relies on thymidine kinase 

(TK)-mediated killing of tumor cells where tumor cell death results in the release of antigens and 

damage associated molecular pathogen patterns, such as HMGB1, calreticulin, and ATP into the 

tumor microenvironment (15,20).  Previously, our lab has demonstrated that dying glioblastoma 

tumor cells release HMGB1 and activate dendritic cells recruited to the tumor microenvironment 

by adenoviral delivery of the adjuvant Flt3L(15). Activated dendritic cells then travel to the 

draining lymph nodes to initiate an anti-tumor T cell response. This therapeutic strategy has 

recently completed phase I clinical trial in patients with GBM with promising results (21).  Like 

glioblastoma tumors, DIPGs are also characterized by low immune cell infiltration (22,23). 

Therefore, we hypothesized that TK/Flt3L therapy would also be effective for the treatment of 

DIPG.  

In chapter 3 of this thesis, we show that intratumoral administration of TK/Flt3L therapy 

in mice bearing mACVR1 brainstem gliomas triggers a robust anti-tumor immune response that 

leads to enhanced median survival. We also established brainstem tumors expressing the 

surrogate tumor antigen ovalbumin and labeled antigen specific anti-brainstem glioma T cells 

using specific tetramers. Using these brainstem tumors, we demonstrated that TK/Flt3L therapy 

resulted in the recruitment of anti-brainstem glioma specific CD8 T cells into the tumor immune 

microenvironment.  Treatment with gene therapy also resulted in an increase in the frequency of 

tumor infiltrating CD8 T cells that release IFNγ, a cytokine released by activated CD8 T cells, 

was increased when exposed to specific tumor antigens.  Additionally, TK/Flt3L therapy also 

resulted in an increase in splenic CD8 T cell expansion and enhanced their cytotoxic activity. 



 90 

Neurological examination post treatment with TK/Flt3L and GCV in a normal brain did not 

reveal any signs of treatment related neuro-toxicity, or overt inflammation.  We also did not 

observe any systemic toxicity as a result of TK/Flt3L therapy and GCV.  Overall, our results 

demonstrate that treatment with TK/Flt3L gene therapy achieves a robust anti-tumor efficacy and 

can be safely administered in the brainstem. I think future studies could investigate how different 

DIPG mutations impact the efficacy of immunotherapy. There is speculation, for example, that 

tumor cells with the H3.1 K27M mutation may have distinct effects on immune cell function 

compared with tumor cells with the H3.3 K27M mutation (22).  Since the K27M mutation 

affects 80% of DIPGs it will be important to understand the effects of this mutation on the 

efficacy of TK/Flt3L gene therapy (24-26).  

Translational Impact 

The work presented in this thesis has significant translational impact because radiation, the 

current standard of care for DIPG, does not improve the survival of DIPG patients and only 

provides palliative care. The dismal prognosis dictates the development of novel and safe 

approaches. In this thesis, I describe the development of a DIPG model bearing mutated ACVR1 

or H3.1 K27M, two mutations frequent in DIPG, using the SB transposon system in neonate 

mice.  We also demonstrated that TK/Flt3L therapy can be safely delivered to the brainstem in a 

transplantable model of DIPG and can generate an anti-tumor therapeutic immune response and 

extend the survival of mice bearing mACVR1 brainstem tumors. The development of 

immunocompetent mouse models was invaluable for the analysis of the immune stimulatory 

effect of TK/Flt3L therapy. The safety studies we performed indicate that TK/Flt3L gene therapy 

does not elicit immune-mediated toxicity or inflammation which is important because 
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inflammation in the brainstem could be life threatening. Overall, my thesis work provides 

support for continued clinical investigation into TK/Flt3L immune stimulatory gene therapy for 

DIPG.  
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