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ABSTRACT

This dissertation aims to consider different problems in the area of stochastic optimization,

where we are provided with more information about the instantiation of the stochastic pa-

rameters over time. With uncertainty being an inseparable part of every industry, several

applications can be modeled as discussed. In this dissertation we focus on three main areas

of applications: 1) ranking problems, which can be helpful for modeling product ranking,

designing recommender systems, etc., 2) routing problems which can cover applications in

delivery, transportation and networking, and 3) classification problems with possible applica-

tions in medical diagnosis and chemical identification. We consider three types of solutions

for these problems based on how we want to deal with the observed information: static,

adaptive and a priori solutions. In Chapter II, we study two general stochastic submodular

optimization problems that we call Adaptive Submodular Ranking and Adaptive Submod-

ular Routing. In the ranking version, we want to provide an adaptive sequence of weighted

elements to cover a random submodular function with minimum expected cost. In the rout-

ing version, we want to provide an adaptive path of vertices to cover a random scenario with

minimum expected length. We provide (poly)logarithmic approximation algorithms for these

problems that (nearly) match or improve the best-known results for various special cases.

We also implemented different variations of the ranking algorithm and observed that it out-

performs other practical algorithms on real-world and synthetic data sets. In Chapter III,

we consider the Optimal Decision Tree problem: an identification task that is widely used

in active learning. We study this problem in presence of noise, where we want to perform

viii



a sequence of tests with possible noisy outcomes to identify a random hypothesis. We give

different static (non-adaptive) and adaptive algorithms for this task with almost logarithmic

approximation ratios. We also implemented our algorithms on real-world and synthetic data

sets and compared our results with an information theoretic lower bound to show that in

practice, our algorithms’ value is very close to this lower bound. In Chapter IV, we focus on

a stochastic vehicle routing problem called a priori traveling repairman, where we are given a

metric and probabilities of each vertices being active. We want to provide an a priori master

tour originating from the root that is shortcut later over the observed active vertices. Our

objective is to minimize the expected total wait time of active vertices, where the wait time

of a vertex is defined as the length of the path from the root to this vertex. We consider two

benchmarks to evaluate the performance of an algorithm for this problem: optimal a priori

solution and the re-optimization solution. We provide two algorithms to compare with each

of these benchmarks that have constant and logarithmic approximation ratios respectively.

ix



CHAPTER I

Introduction

Traditional optimization models assume full information on the instances being solved,

which is unrealistic in many situations. In order to remedy this limitation, there has been

significant work in the area of optimization under uncertainty, which deals with various ways

to model uncertain input. One popular way to handle uncertainty is by using stochastic mod-

els. In stochastic models we assume that the data is random with a specific distribution,

based on which we can optimize an expected objective function. To design algorithms for

such a problem, we need to specify our decisions under all possible outcomes of the data;

therefore, computing an optimal stochastic policy is usually much harder than optimizing

a deterministic problem. There are many examples of polynomial time deterministic algo-

rithms that do not extend to stochastic settings. As the number of possible outcomes in a

stochastic problem is often exponential in the input size, the time/space complexity of an

algorithm that finds the optimal solution is often exponential as well. In many applications,

we need much faster running times but we are willing to sacrifice optimality up to a point.

This is the main idea behind approximation algorithms. An approximation algorithm pro-

vides a near optimal solution with time complexity that is a polynomial in the input size.

For example, in case of the 0/1 maximization knapsack problem, there is a Fully Polynomial

Time Approximation Scheme in the deterministic setting [61], and there is a constant factor

1
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approximation algorithm in the stochastic setting [28]. Moreover, we want to make sure

that the solution of an approximation algorithm is still close to the optimal solution. So,

to evaluate its performance, we are interested in proving that the ratio of the algorithm’s

objective to the optimal value, which is called the approximation ratio of the algorithm, is

not very large (small) for minimization (maximization) problems. For stochastic problems,

we are interested in bounding the ratio of expected objectives. For instance, in [28], authors

prove that the expected cost of their algorithm is at least a constant factor of the expected

optimal cost for stochastic knapsack.

Typically, when dealing with uncertainty, the unknown data is revealed gradually over

time. There are three main approaches for such problems. First, is to have a static (non-

adaptive) algorithm that offers the same solution regardless of the additional information we

receive. Second, we can design adaptive algorithms that can make decisions based on incre-

mental information. Finally, we can offer an offline master solution which can be modified

online (with very small overhead) in order to adjust to the additional data; this approach is

known as a priori optimization.

In some applications, the run-time of the algorithm might be far more important than its

solution value. In those cases, we might prefer to save time by generating the same sequence

of actions regardless of the observed information, rather than modifying the solution. This

corresponds to a static (non-adaptive) algorithm. For instance, in emergency rooms doctors

usually perform a fixed sequence of tests rather than waiting to see each test result due to

the importance of time in patients’ status. Medical diagnosis is an application of our work

in Chapter III and we present some non-adaptive algorithms there.

On the other hand, in some applications the algorithm’s run-time is of secondary im-

portance in comparison with the algorithm’s solution value: here adaptive algorithms are

preferred. For instance, in product ranking our focus is usually on maximizing the revenue
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and we are less sensitive about the time. It turns out that in many cases, there is a huge

gap between adaptive and non-adaptive algorithms. For example, in [37] authors show that

there is polynomial “adaptivity gap” for stochastic set cover, which justifies why we prefer

to have the extra overhead in real time. In Chapters II and III we focus on such adaptive

policies.

A priori optimization ([15]) is especially beneficial when we need to solve instances of

the same problem repeatedly. The small online time and space complexity in modifying

the master solution for each instance is one of the main reasons that makes this method

desirable. Another reason is that the master solution will give us some information about

the modified solution for each instance that might be useful for management and planning.

On the other hand, the objective of a master solution is usually costlier than a solution

produced by a fully adaptive algorithm; therefore, deciding about the approach we want to

use should come from a careful consideration of this trade-off. In Chapter IV we consider a

priori solutions.

1.1 Summary of Contributions

In Chapter II, we discuss a general stochastic ranking problem where an algorithm needs

to adaptively select a sequence of elements so as to “cover” a random scenario (drawn from a

known distribution) at minimum expected cost. The coverage of each scenario is captured by

an individual submodular function, where the scenario is said to be covered when its function

value goes above a given threshold. We obtain a logarithmic factor approximation algorithm

for this adaptive ranking problem, which is the best possible (unless P = NP ). This problem

unifies and generalizes many previously studied problems with applications in search ranking

and active learning. The approximation ratio of our algorithm either matches or improves

the best result known in each of these special cases. Furthermore, we extend our results to an
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adaptive vehicle routing problem, where costs are determined by an underlying metric. This

routing problem is a significant generalization of the previously-studied adaptive traveling

salesman and traveling repairman problems. Our approximation ratio nearly matches the

best bound known for these special cases. Finally, we present experimental results for some

applications of adaptive ranking.

In Chapter III, we focus on a fundamental task in active learning, which involves perform-

ing a sequence of tests to identify an unknown hypothesis that is drawn from a known distri-

bution. This problem, known as optimal decision tree induction, has been widely studied for

decades and the asymptotically best-possible approximation algorithm has been devised for

it. We study a generalization where certain test outcomes are noisy, even in the more general

case when the noise is persistent, i.e., repeating a test gives the same noisy output, disallow-

ing simple repetition as a way to gain confidence. We design new approximation algorithms

for both the non-adaptive setting, where the test sequence must be fixed a-priori, and the

adaptive setting where the test sequence depends on the outcomes of prior tests. Previous

work in the area assumed at most a logarithmic number of noisy outcomes per hypothe-

sis and provided approximation ratios that depended on parameters such as the minimum

probability of a hypothesis. Our new approximation algorithms provide guarantees that are

nearly best-possible and work for the general case of a large number of noisy outcomes per

test or per hypothesis where the performance degrades smoothly with this number. Our

results adapt and generalize methods used for submodular ranking and stochastic set cover.

We evaluate the performance of our algorithms on two natural applications with noise: toxic

chemical identification and active learning of linear classifiers. Despite our theoretical log-

arithmic approximation guarantees, our methods give solutions with cost very close to the

information theoretic minimum, demonstrating the effectiveness of our methods.

In Chapter IV, we discuss the a priori traveling repairman problem, which is a stochastic
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version of the classic traveling repairman problem (also called the traveling deliveryman or

minimum latency problem). Given a metric (V, d) with a root r ∈ V , the traveling repairman

problem (TRP) involves finding a tour originating from r that minimizes the sum of arrival-

times at all vertices. In its a priori version, we are also given independent probabilities of

each vertex being active. We want to find a master tour τ originating from r and visiting

all vertices. The objective is to minimize the expected sum of arrival-times at all active

vertices, when τ is shortcut over the inactive vertices. We obtain the first constant-factor

approximation algorithm for a priori TRP under non-uniform probabilities. Previously, such

a result was only known for uniform probabilities. We also present a O(log n)- approximation

algorithm with respect to the re-optimization solution (which has access to full information),

where n is the number of vertices. We believe that this is the first result for a priori TRP

with respect to the re-optimization solution in any setting.



CHAPTER II

Adaptive Submodular Ranking and Routing

The results in this chapter appear in [60] and [71].

2.1 Introduction

Many stochastic optimization problems can be viewed as sequential decision processes of

the following form. There is a known distribution D over a set of scenarios, and the goal is

to cover the unknown realized scenario i∗ drawn from D. In each step, an algorithm chooses

an element which partially covers i∗ and receives some feedback from that element. This

feedback is then used to update the distribution over scenarios (using conditional probabil-

ities). So any solution in this setting is an adaptive sequence of elements. The objective is

to minimize the expected cost incurred to cover the realized scenario i∗.

Furthermore, many different criteria to cover a scenario can be modeled as covering a

suitable submodular function. Submodular functions are widely used in many domains, e.g.

game theory, social networks, search ranking and document summarization; see [78, 62, 74,

65].

As an example of the class of problems that we address, consider a medical diagnosis

application. There is a patient with an unknown disease and there are several possible tests

that can be performed. Each test has a certain cost and its outcome (feedback) can be used

to restrict the set of possible diseases. There are also a priori probabilities associated with

6
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each disease. The task here is to obtain an adaptive sequence of tests so as to identify the

disease at minimum expected cost.

As another example, consider a search engine application. On any query, different user-

types are often interested in viewing different search results. Each user-type is associated

with the set of results they are interested in and a threshold number of results they would

like to see. There is also a probability distribution over user-types. After displaying each

result (or a block of small number of results), the search engine receives feedback on which

of those results were of interest to the realized user-type. The goal is to provide an adaptive

sequence of results so as to minimize the expected number of results until the user-type is

satisfied.

Yet another example arises in route planning for disaster management. After a major

disaster such as an earthquake, normal communication networks are usually unavailable.

So rescue operators would not know the precise locations of victims before actually visiting

them. However, probabilistic information is often available based on geographical data etc.

Then the task is to plan an adaptive route for a rescue vehicle that visits all the victims

within minimum expected time.

In this chapter, we study an abstract stochastic optimization problem in the setting

described above which unifies and generalizes many previously-studied problems such as

optimal decision trees studied in [53], [63], [27], [20], [49] and [26], equivalence class deter-

mination (see [40] and [12]), decision region determination studied in [58] and submodular

ranking studied in [6] and [55]. We obtain an algorithm with the best-possible approximation

guarantee in all these special cases. We also obtain the first approximation algorithms for

some other natural problems that are captured by our framework, such as stochastic versions

of knapsack cover and matroid basis with correlated distributions. Moreover, our algorithm

is very simple to state and implement. We also present experimental results on the optimal
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decision tree problem and our algorithm performs very well.

We extend our framework to a vehicle-routing setting as well, where the elements are

located in a metric and the cost corresponds to travel distance/time between these locations.

As special cases, we recover the adaptive traveling salesman and repairman problems that

were studied in [49]. Our approximation ratio almost matches the best result known for

these special cases. Our approach has the advantage of being able to solve a more general

problem while allowing for a simpler analysis. We note that submodular objectives are also

commonly utilized in vehicle routing problems, see [23] and references therein for theoretical

work and [80] for applications in information acquisition and robotics.

For some stochastic optimization problems, one can come up with approximately optimal

solutions using static (non-adaptive) solutions that are insensitive to the feedback obtained,

see e.g. stochastic (maximization) knapsack in [28] and stochastic matching in [10]. However,

this is not the case for the adaptive submodular ranking problem. For all the special cases

mentioned above, there are instances where the optimal adaptive value is much less than the

optimal non-adaptive value. Thus, it is important to come up with an adaptive algorithm.

2.1.1 Adaptive Submodular Ranking

We start with some basics. A set function f : 2U → R+ on ground set U is said to be

submodular if f(A) + f(B) ≥ f(A∩B) + f(A∪B) for all A,B ⊆ U . The function f is said

to be monotone if f(A) ≤ f(B) for all A ⊆ B ⊆ U . We assume that set functions are given

in the standard value oracle model, i.e. we can evaluate f(S) for any S ⊆ U in polynomial

time.

In the adaptive submodular ranking problem (ASR) we have a ground set U of n elements

with positive costs {ce}e∈U . We also have m scenarios with a probability distribution D given

by probabilities {pi}mi=1 totaling to one. Each scenario i ∈ [m] := {1, · · · ,m} is specified by:

(i) a monotone submodular function fi : 2U → [0, 1] where fi(∅) = 0 and fi(U) = 1 (any
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monotone submodular function can be expressed in this form by scaling), and

(ii) a feedback function ri : U → G where G is a set of possible feedback values.

We note that fi and ri need not be related in any way: this flexibility allows us to capture

many different applications. Scenario i ∈ [m] is said to be covered by any subset S ⊆ U of

elements such that fi(S) = 1. The goal in ASR is to adaptively find a sequence of elements

in U that minimizes the expected cost to cover a random scenario i∗ drawn from D. The

identity of i∗ is initially unknown to the algorithm. When the algorithm selects an element

e ∈ U , it receives some feedback value g = ri∗(e) ∈ G which can be used to update the

probability distribution of i∗ using conditional probabilities. In particular, the probability

of any scenario i ∈ [m] with ri(e) 6= g would become zero. The sequence of selected elements

is adaptive because it depends on the feedback received.

Example: Figure 2.1 demonstrates an example for ASR. In this example we have elements

U = {e1, e2, e3, e4, e5, e6} and 3 scenarios. Each element has cost 1 and there is a uniform

probability distribution over scenarios. Each senario i ∈ {1, 2, 3} is associated with a subset

Si with submodular function fi(S) = |S∩Si|
|Si| and binary feedback function ri(e) = 1[e ∈ Si].

So the realized scenario i∗ will be covered with subset S ⊆ U if and only if Si∗ ⊆ S. And,

the feedback from an element e is one if and only if e ∈ Si∗ . The decision tree in Figure 2.1

represents a feasible solution with expected cost 1
3
· 4 + 1

3
· 3 + 1

3
· 3 = 10

3
.

A solution to ASR is represented by a decision tree T , where each node is labeled by an

element e ∈ U and the branches out of such a node are labeled by the possible feedback we

can receive after selecting e. Each node in T also corresponds to a state which is specified

by the set E of previously selected elements and the feedback θe ∈ G of each e ∈ E. From

this information, we can obtain a more abbreviated version of the state as (E,H) where

H denotes the set of uncovered and compatible scenarios based on the observed feedback.
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e1

e2

e3

e4
e5

S1

S3 Scenario 1

e6

S2

covered

e5

e1

e2

e4

e3

e6e4

0

1

1

1

1

10

1
1

Scenario 2
covered

Scenario 3
covered

Figure 2.1: An example for ASR and a feasible solution

Formally,

H = {i ∈ [m] : fi(E) < 1, ri(e) = θe for all e ∈ E}

Every scenario i ∈ [m] traces a root-leaf path in the decision tree T which at any node

labeled by element e ∈ U , takes the branch labeled by feedback ri(e). Let Ti denote the

sequence of elements on this path. In a feasible decision tree T , each scenario i ∈ [m] must be

covered, i.e. fi(Ti) = 1. The cost CT (i) of T under scenario i is the total cost of the shortest

prefix T i of Ti such that fi(T i) = 1. The objective in ASR is to minimize the expected cost∑m
i=1 pi ·

(∑
e∈T i ce

)
. We emphasize that multiple scenarios may trace the same path in T :

in particular, it is not necessary to identify the realized scenario i∗ in order to cover it.

We also note that cost is only incurred until the realized scenario i∗ gets covered, even

though the algorithm may not know this. In applications where scenarios correspond to users

and the goal is to minimize cost incurred by the users, this is the natural definition. An

example is the multiple intent re-ranking problem which models the search engine application

(see Section 2.4.2). However, in some other applications (such as optimal decision tree), we

are interested in algorithms that know exactly when to stop. For the applications that we

consider, it turns out that this is still possible using the above definition: see Section 2.4 for

details.
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An important parameter in the analysis of our algorithm is the following:

(2.1) ε := min
e∈U :fi(S∪e)>fi(S)

i∈[m], S⊆U

fi(S ∪ e)− fi(S).

It measures the minimum positive incremental value of any element. Such a parameter

appears in all results on the submodular cover problem, eg. [87], [6].

2.1.2 Adaptive Submodular Routing

In the adaptive submodular routing problem (ASP) we have a ground set U of n elements

which are located at vertices of a metric (U ∪ {s}, d), where s is a specified root vertex.

Here d : U × U → R+ is a cost function that is symmetric (i.e. d(x, y) = d(y, x) for all

x, y ∈ U) and satisfies triangle inequality (i.e. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ U).

We will use the terms element and vertex interchangeably. As before, we have m scenarios

with a probability distribution D given by probabilities {pi}mi=1 totaling to one, and each

scenario i ∈ [m] is associated with functions fi and ri. A feasible solution to ASP can again

be represented by a decision tree T , at the end of which each scenario is covered. Note

that in the actual solution, we need to return to the root s after visiting the last vertex in

T . For any scenario i, let τi denote the root-leaf path traced in decision tree T , and let πi

denote the shortest prefix of τi such that fi(πi) = 1. The cost CT (i) of T under scenario

i is the total cost of path πi. Specifically, if πi = s, e1, e2, · · · ek, the cost under scenario i

would be CT (i) = d(s, e1) +
∑k−1

i=1 d(ei, ei+1). The objective is to minimize the expected cost∑m
i=1 pi · CT (i). As with ASR, cost in ASP is only incurred until the realized scenario i∗ is

covered.

This problem differs from ASR only in the definition of the cost: here we want to minimize

the expected metric-cost of the walk that covers i∗. Note also that ASP generalizes ASR (at

the loss of a factor 2). To see this, for any ASR instance, consider the ASP instance on the

metric (U ∪ {s}, d) induced by a star with center s and leaves U where d(s, e) = ce for all
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e ∈ U .

2.1.3 Results

Our main result is an O(log 1
ε

+ logm)-approximation algorithm for adaptive submodular

ranking (ASR) where ε > 0 is as defined in (2.1) and m is the number of scenarios. Assuming

P 6= NP , this result is asymptotically the best possible even when m = 1. This is because

the set cover problem on k elements is a special case of ASR with m = 1 and parameter

ε = 1/k, and [30] showed that approximating set cover to within a (1− ε) ln k factor (for any

ε > 0) is NP-hard. Our algorithm is a simple adaptive greedy-style algorithm. At each step,

we assign a score to each remaining element and select the element with maximum score.

Such a simple algorithm was previously unknown even in the special case of optimal decision

tree, despite a large number of papers on this topic, including [53], [63], [27], [1], [20], [44],

[49], [38] and [26] .

For adaptive submodular routing (ASP) we provide an O(log2+δ n · (log 1
ε

+ logm))-

approximation algorithm where δ > 0 is any fixed constant and ε is as defined in (2.1).

This algorithm utilizes some ideas from the algorithm for ASR, and involves combining a

number of smaller tours into the final solution. We also make use of an algorithm for the

(deterministic) submodular orienteering problem in a black-box fashion. Our result is nearly

the best-possible because the group Steiner problem studied in [35] is a special case of ASP

with m = 1 and parameter ε = 1/k where k denotes the number of groups. There is an

Ω(log2−δ n) factor hardness of approximation for group Steiner by [50] and the best approx-

imation ratio known is O(log2 n · log k) from [35].

We show that our framework is widely applicable by demonstrating a number of previously-

studied stochastic optimization problems as special cases. In many cases, we match or

improve upon prior approximation guarantees. We also obtain the first approximation algo-

rithms for some other stochastic problems. More details on these applications can be found
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in Section 2.4.

Finally, in Section 2.5 we provide computational results for the optimal decision tree

problem (and its generalized version). We use a dataset arising in the identification of toxic

chemicals based on binary symptoms. Our algorithm performs very well compared to some

other natural algorithms.

Outline of key techniques. Our algorithm for ASR involves repeatedly selecting an ele-

ment that maximizes a combination of (i) the expected increase in function value relative

to the target of one, and (ii) a measure of gain in identifying the realized scenario. See

Equation (2.2) for the formal selection criterion. Our analysis provides new ways of reason-

ing about adaptive decision trees. At a high level, our approach is similar to that for the

minimum-latency TSP in [17] and [22]. We upper bound the probability that the algorithm

incurs a certain power-of-two cost 2k in terms of the probability that the optimal solution

incurs cost 2k/α, which is then used to establish an O(α) approximation ratio. Our main

technical contribution is in relating these completion probabilities in the algorithm and the

optimal solution (see Lemma II.3). In particular, a key step in our proof is a coupling of

“bad” states in the algorithm (where the gain in terms of our selection criterion is small)

with “bad” states in the optimum (where the cost incurred is high). This is reflected in the

classification of the algorithm’s states as good/ok/bad (Definition II.4) and the proof that

the expected gain of the algorithm is large (Lemma II.5). Our algorithm and analysis for the

adaptive routing problem (ASP) are along similar lines.

2.1.4 Related Works

The basic submodular cover problem (select a min-cost subset of elements that covers a

given submodular function) was first considered by [87] who proved that the natural greedy

algorithm is a (1 + ln 1
ε
)-approximation algorithm. This result is tight because set cover is
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a special case. The submodular cover problem corresponds to the special case of ASR with

m = 1.

The deterministic submodular ranking problem was introduced by [6] who obtained an

O(log 1
ε
)-approximation algorithm when all costs are unit. This is a special case of ASR

when there is no feedback (i.e. G = ∅) and costs are uniform; note that the optimal ASR

solution in this case is just a fixed sequence of elements. The result in [6] was based on an

interesting “reweighted” greedy algorithm: the second term in our selection criterion (2.2)

is similar to this. A different proof of the submodular ranking result, using a min-latency

type analysis, was obtained in [55] which also implied an O(log 1
ε
)-approximation algorithm

with non-uniform costs. We also use a min-latency type analysis for ASR.

The first O(logm)-approximation algorithm for optimal decision tree was obtained in [49],

which is known to be best-possible from [20]. This result was extended to the equivalence

class determination problem in [26]. Previous results based on a simple greedy “splitting”

algorithm, had a logarithmic dependence on either costs or probabilities which can be ex-

ponential in m; see [63], [27], [1], [20] and [44]. The algorithms in [49] and [26] were sig-

nificantly more complex than what we obtain here as a special case of ASR. In particular

these algorithms proceeded in O(logm) phases, each of which required solving an auxil-

iary subproblem that reduced the number of possible scenarios by a constant factor. Using

such a “phase based” algorithm and analysis for the general ASR problem only leads to an

O(logm · log 1
ε
)-approximation ratio because the subproblem to be solved in each phase is

submodular ranking which only has an O(log 1
ε
)-approximation ratio. Our work is based on a

much simpler greedy-style algorithm and a new analysis, which leads to theO(logm+log 1/ε)

approximation ratio.

A different stochastic version of submodular ranking was considered in [55] where (i)

the feedback was independent across elements and (ii) all the submodular functions needed
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to be covered. In contrast, ASR involves a correlated scenario-based distribution and only

the submodular function of the “realized” scenario i∗ needs to be covered. Due to these

differences, both the algorithm and analysis for ASR are different from [55]: our selection

criterion (2.2) involves an additional “information gain” term, and our analysis requires a

lot more work in order to handle correlations. We note that unlike ASR, the stochastic

submodular ranking problem in [55] does not capture the optimal decision tree problem and

its variants (equivalence class, decision region determination, etc).

For some previous special cases of ASR studied in [40], [12] and [58], one could obtain

approximation algorithms via the framework of “adaptive submodularity” introduced by [38].

However, this approach does not apply to the general ASR problem and the approximation

ratio obtained is at least Ω(log2 1/pmin) where pmin = minmi=1 pi can be exponentially small in

m. We note that the original paper by [38] claimed an O(log 1/pmin) bound which was found

to be erroneous by [70]; an updated version in [39] addresses this error but only obtains

an O(log2 1/pmin) bound. So even in the case of uniform probabilities, our result provides

an improved O(logm) approximation ratio compared to the O(log2m) ratio from [39]. We

also note that our analysis is based on a completely different approach, which might be of

independent interest.

Recently, [43] considered the scenario submodular cover problem, which can also be seens

as a special case of ASR. This involves a single integer-valued submodular function for

all scenarios which is defined on an expanded groundset U × G (i.e. pairs of “element,

feedback” values). For this problem, our algorithm matches (in fact, improves slightly) the

approximation ratio in [43] with a much simpler algorithm and analysis. We note that

ASR is strictly more general than scenario submodular cover. For example, deterministic

submodular ranking studied in [6] is a special case of ASR but not of scenario submodular

cover.
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A special case of the adaptive routing problem (ASP), the adaptive TSP was studied in

[49], where the goal is to visit vertices in a random demand set. [49] obtained an O(log2 n ·

logm)-approximation algorithm for adaptive TSP and showed that any improvement on

this would translate to a similar improvement for the group Steiner problem, which is a long

standing open question. While our approximation ratio for ASP is slightly worse, it is much

more general and involves a simpler analysis. For example, using ASP we can directly obtain

an approximation algorithm for the variant of adaptive TSP where only a target number of

demand vertices need to be visited.

A problem formulation similar to ASP was also studied in [64] where approximation

algorithms were obtained under certain technical assumptions on the underlying submodular

functions and probability distribution. To the best of our knowledge, the approach in [64] is

not applicable to the general ASP problem considered here.

2.2 Algorithm for Adaptive Submodular Ranking

Recall that the state of our algorithm (i.e. any node in its decision tree) can be represented

by (E,H) where (i) E ⊆ U is the set of previously selected elements and (ii) H ⊆ [m] is

the set of scenarios that are compatible with feedback (on E) received so far and are still

uncovered.

Intuitive explanation of the algorithm: At each state (E,H), our algorithm selects an

element that maximizes the value computed in Equation (2.2). This can be viewed as the

cost-effectiveness of any element e: the terms inside the paranthesis measure the gain from

element e and this gain is normalized by the element’s cost ce. The gain of any element e

comes from two sources:

1. Information gain: this corresponds to the first term in (2.2). Note that the feedback

from element e can be used to define a partition of the scenarios in H, where all
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scenarios in a part have the same feedback from e. Then, subset Le(H) is defined to

be the complement of the largest-cardinality part; note that each part within Le(H)

has size at most |H|/2. If the realized scenario happens to be in Le(H) then we make

good progress in identifying the scenario: this is because the number of compatible

scenarios decreases by (at least) a factor of two. The term
∑

j∈Le(H) pj in (2.2) is just

the probability that the realized scenario is in Le(H).

2. Function coverage: this corresponds to the second term in (2.2) and is based on the

algorithm for deterministic submodular ranking from [6]. An important point here is

that we consider the relative gain of each function fi (for i ∈ H) which is the ratio

of the increase in function value (i.e. fi(e ∪ E) − fi(E)) to the remaining target (i.e.

1− fi(E)), rather than just the absolute increase.

Algorithm 1 gives a formal description. Note that we may not incur the cost for all

selected elements under scenario i∗ as the cost is only considered up to the point when

i∗ is covered.

Algorithm 1 ASR algorithm

E ← ∅, H ← [m]

while H 6= ∅ do

For any element e ∈ U , let Be(H) denote the set with maximum cardinality amongst

{i ∈ H : ri(e) = t}, for t ∈ G.

Define Le(H) = H \Be(H)

Select element e ∈ U \ E that maximizes:

(2.2)
1

ce
·

 ∑
j∈Le(H)

pj +
∑
i∈H

pi ·
fi(e ∪ E)− fi(E)

1− fi(E)

 .

E ← E ∪ {e}
Remove incompatible and covered scenarios from H based on the feedback from e.

end while

Output E

Note that H only contains uncovered scenarios. So, for all i ∈ H we have fi(E) < 1 and
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the denominator in equation (2.2) is always positive. We have the following theorem:

Theorem II.1. Algorithm 1 is an O(log 1/ε+ logm)-approximation algorithm for ASR.

Now, we analyze the performance of this algorithm. For any subset T ⊆ [m] of scenarios,

we use Pr(T ) =
∑

i∈T pi. Let OPT denote an optimal solution to the ASR instance and

ALG be the solution found by the above algorithm. Set L := 15(1 + ln 1/ε+ log2m) and its

choice will be clear later. We refer to the total cost incurred at any point in a solution as

the time. We assume (without loss of generality, by scaling) that all costs are at least 1. For

any k = 0, 1, · · · , we define the following quantities:

• Ak is the set of uncovered scenarios of ALG at time L · 2k, and ak = Pr(Ak). More

formally, we have Ak = {i ∈ [m] : CALG(i) ≥ L · 2k} where CALG(i) is the cost of

scenario i in ALG.

• Xk is the set of uncovered scenarios of OPT at time 2k−1, and xk = Pr(Xk). That is,

we have Xk = {i ∈ [m] : COPT (i) ≥ 2k−1} where CALG(i) is the cost of scenario i in

OPT. Note that x0 = 1.

To keep things simple, we will assume that all costs are integers. However, the analysis

extends directly to the case of non-integer costs by replacing summations (over time t) with

integrals.

Lemma II.2. The expected cost of ALG and OPT can be bounded as follows.

(2.3) CALG ≤ L
∑
k≥0

2kak + L and COPT ≥
1

2

∑
k≥0

2k−1xk

Proof. In ALG, for all k ≥ 1, the probability of scenarios for which the cover time is in
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[2k−1L, 2kL) is equal to ak−1 − ak. So we have:

CALG =
∑
i∈[m]

pi · CALG(i) =
∑
k≥1

∑
i∈Ak−1\Ak

pi · CALG(i) ≤
∑
k≥1

∑
i∈Ak−1\Ak

pi · 2kL

≤
∑
k≥1

2kL(ak−1 − ak) + L(1− a0) =
∑
k≥1

2kLak−1 −
∑
k≥1

2kLak + L(1− a0)

= 2
∑
k≥0

2kLak − (
∑
k≥0

2kLak − La0) + L(1− a0) =
∑
k≥0

2kLak + L

On the other hand, in OPT, for all k ≥ 1, the probability of scenarios for which the cover

time is in [2k−2, 2k−1) is equal to xk−1 − xk. So we have:

COPT =
∑
i∈[m]

pi · COPT (i) =
∑
k≥1

∑
i∈Xk−1\Xk

pi · COPT (i)(2.4)

≥
∑
k≥1

∑
i∈Xk−1\Xk

pi · 2k−2 ≥
∑
k≥1

2k−2(xk−1 − xk)

=
∑
k≥1

2k−2xk−1 −
∑
k≥1

2k−2xk =
∑
k≥0

2k−1xk −
1

2
(
∑
k≥0

2k−1xk −
1

2
)

≥ 1

2

∑
k≥0

2k−1xk

Above we use the fact that x0 = 1.

Thus, if we upper bound each ak by some multiple of xk, it would be easy to obtain the

approximation factor. However, this is not the case and instead we will prove:

Lemma II.3. For all k ≥ 1 we have ak ≤ 0.2ak−1 + 3xk.

Using this lemma we can prove Theorem II.1:
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Proof. Let Q =
∑
k≥0

L · 2kak +L, which is the bound on CALG from (2.3). Using Lemma II.3:

Q ≤ L ·
∑
k≥1

2k(0.2ak−1 + 3xk) + L(a0 + 1)(2.5)

≤ 0.4L ·
∑
k≥0

2kak + 6L ·
∑
k≥1

2k−1xk + L(a0 + 1)

≤ 0.4(Q− L) + 6L

(∑
k≥0

2k−1xk −
x0

2

)
+ 2L ≤ 0.4 ·Q+ 12L · COPT(2.6)

The first inequality in (2.6) is by definition of Q and a0 ≤ 1, and the second inequality

uses the bound on COPT from (2.3). Finally, we have Q ≤ 20L · COPT . Since L = 15(1 +

ln 1/ε+ logm) and CALG ≤ Q, we obtain the theorem.

2.2.1 Proof of Lemma II.3

We now prove Lemma II.3 for a fixed k ≥ 1. Consider any time t between L · 2k−1 and

L · 2k. Note that ALG’s decision tree induces a partition of all the uncovered scenarios at

time t, where each part H consists of all scenarios that are at a particular state (E,H) at

time t. Let R(t) denote the set of parts in this partition. We also use R(t) to denote the

collection of states corresponding to these parts. Note that all scenarios in Ak appear in

R(t) as these scenarios are uncovered even at time L · 2k ≥ t. Similarly, all scenarios in R(t)

are in Ak−1. See Figure 2.3.

We have the following proposition:

Proposition II.3.1. Consider any state (E,H) and element e ∈ E. Then (i) the feedback

values {ri(e) : i ∈ H} are all identical, and (ii) Le(H) = ∅.

Proof. Note that by definition, at state (E,H) all scenarios in H are compatible with the

feedback we have received from elements in E. Thus, all of them should have the same
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time : 2k−1

Stemk(H)

TH(k)

Figure 2.2: Stemk(H) in OPT for |G| = 2

time : L2k−1 time : L2ktime : t

good

H1

H4

bad

okay
H2

H3

H5

H6

H7

R(t) = {H1, H2, H3, H4, H5, H6, H7}
R(t) is a partition of uncovered scenarios at time t

Figure 2.3: Bad, good and okay states in ALG

feedback for any element in E. Furthermore, for any e ∈ E, Le(H) is the complement of the

largest part in the partition of H based on element e’s feedback. According to the fact that

all scenarios in H have the same feedback for element e, they are all in the same part, which

is the largest part. So the complement of the largest part of the partition which is Le(H) is

empty.

For any (E,H) ∈ R(t), note that E consists of all elements that have been completely

selected before time t. The element that is being selected at state (E,H) is not included in

E. Let TH(k) denote the subtree of OPT that corresponds to paths traced by scenarios in

H up to time 2k−1; this only includes elements that are completely selected by time 2k−1.

Note that each node (labeled by any element e ∈ U) in TH(k) has at most |G| outgoing

branches and one of them is labeled by the feedback corresponding to Be(H) = H \ Le(H).

We define Stemk(H) to be the path in TH(k) that at each node (labeled e) follows the branch

corresponding to H \Le(H). See Figure 2.2 for an example. We also use Stemk(H) to denote

the set of elements that are completely selected on this path.

Definition II.4. Each state (E,H) in ALG is exactly one of the following types:
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• bad if the probability of uncovered scenarios in H at the end of Stemk(H) is at least

Pr(H)
3

.

• okay if it is not bad and Pr(∪e∈Stemk(H) Le(H)) is at least Pr(H)
3

.

• good if it is neither bad nor okay and the probability of scenarios in H that get covered

by Stemk(H) is at least Pr(H)
3

.

See Figure 2.3. This is well defined, because by definition of Stemk(H) each scenario in

H is (i) uncovered at the end of Stemk(H), or (ii) in Le(H) for some e ∈ Stemk(H), or

(iii) covered by some prefix of Stemk(H), i.e. the function value reaches 1 on Stemk(H).

So the total probability of the scenarios in one of these 3 categories must be at least Pr(H)
3

.

Therefore each state (E,H) is exactly one of these three types.

The following quantity turns out to be very useful in our proof of Lemma II.3.

Z :=
L2k∑

t>L2k−1

∑
(E,H)∈R(t)

max
e∈U\E

1

ce
·
(

Pr(Le(H)) +
∑
i∈H

pi ·
fi(e ∪ E)− fi(E)

1− fi(E)

)
(2.7)

=
L2k∑

t>L2k−1

∑
(E,H)∈R(t)

max
e∈U\E

1

ce
·
(∑
i∈H

pi ·
(

1[i ∈ Le] +
fi(e ∪ E)− fi(E)

1− fi(E)

))
(2.8)

Basically Z corresponds to the total “gain” according to our algorithm’s selection crite-

rion (2.2) accrued from time L2k−1 to L2k, over all the decision paths. We note that if

costs are not integer, we can consider an integral over time t ∈ (L2k−1, L2k] instead of the

summation, and the rest of the analysis is essentially unchanged. Now, we obtain a lower

and upper bound for Z and combine them to prove Lemma II.3. The lower bound views Z

as a sum of terms over t, and uses the fact that the gain is “high” for good/ok states as well

as the bound on probability of bad states (Proposition II.4.1). The upper bound views Z as

a sum of terms over scenarios and uses the fact that if the total gain for a scenario is “high”

then it must be already covered.
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Proposition II.4.1. For any t ∈ [(L2k−1, L2k], we have
∑

(E,H)∈R(t)
(E,H):bad

Pr(H) ≤ 3xk.

Proof. Note that Stemk(H) ⊆ TH(k). Recall that TH(k) was the subtree of OPT up to time

2k−1 that only contains the scenarios in H. So, the probability of uncovered scenarios at the

end of Stemk(H) is at most the probability of scenarios in H that are not covered in OPT

by time 2k−1. This probability is at least Pr(H)/3 for the bad state (E,H) based on its

definition. Now, since states in R(t) induce a subpartition of scenarios, we have

xk =
∑
i∈Xk

pi ≥
∑

(E,H)∈R(t)
(E,H):bad

∑
i∈H∩Xk

pi ≥
∑

(E,H)∈R(t)
(E,H):bad

Pr(H)/3.

Rearranging, we obtain the desired inequality.

Lemma II.5. We have Z ≥ L · (ak − 3xk)/3.

Proof. Considering only the good/okay states in each R(t) in the expression (2.7):

Z ≥
L2k∑

t>L2k−1

 ∑
(E,H)∈R(t)
(E,H):okay

max
e∈U\E

Pr(Le(H))

ce
+

∑
(E,H)∈R(t)
(E,H):good

max
e∈U\E

∑
i∈H

pi
ce
· fi(e ∪ E)− fi(E)

1− fi(E)


Fix any time t. For any state (E,H) ∈ R(t) define W (H) = Stemk(H) \ E. The total

cost of elements in Stemk(H) is at most 2k−1; so c(W (H)) ≤ 2k−1.

Case 1. (E,H) is an okay state. Since W (H) ⊆ U \ E we can write:

max
e∈U\E

Pr(Le(H))

ce
≥ max

e∈W (H)

Pr(Le(H))

ce
≥

∑
e∈W (H)

Pr(Le(H))

c(W (H))

≥ Pr(∪e∈W (H)Le(H))

2k−1
=

1

2k−1
· Pr(∪e∈Stemk(H)Le(H)) ≥ Pr(H)

3 · 2k−1
(2.9)
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The equality in (2.9) uses ∪e∈ELe(H) = ∅ (by Proposition II.3.1), and the last inequality is

by definition of an okay state.

Case 2. (E,H) is a good state. Below, we use F ⊆ H to denote the set of scenarios that

get covered in Stemk(H); by definition of a good state, we have Pr(F ) ≥ Pr(H)/3. Again

using W (H) ⊆ U \ E, we have:

max
e∈U\E

1

ce

∑
i∈H

pi ·
fi(e ∪ E)− fi(E)

1− fi(E)
≥ max
e∈W (H)

1

ce

∑
i∈H

pi ·
fi(e ∪ E)− fi(E)

1− fi(E)

≥ 1

c(W (H))

∑
e∈W (H)

∑
i∈H

pi ·
fi(e ∪ E)− fi(E)

1− fi(E)

=
1

c(W (H))

∑
i∈H

pi
∑

e∈W (H)

fi(e ∪ E)− fi(E)

1− fi(E)
≥ 1

2k−1

∑
i∈H

pi ·
fi(W (H) ∪ E)− fi(E)

1− fi(E)
(2.10)

=
1

2k−1

∑
i∈H

pi ·
fi(Stemk(H))− fi(E)

1− fi(E)
≥

∑
i∈F

pi
2k−1

=
Pr(F )

2k−1
≥ Pr(H)

3 · 2k−1
(2.11)

The last inequality in (2.10) is by submodularity of the fis, and the next equality is by

definition of W (H). The first inequality in (2.11) is based on this fact that fi(Stemk(H)) = 1

for any i ∈ F and the last inequality is by definition of a good state. Now, we combine (2.9)

and (2.11):

Z ≥
L2k∑

t>L2k−1

∑
(E,H)∈R(t)
(E,H):okay

Pr(H)

3 · 2k−1
+

L2k∑
t>L2k−1

∑
(E,H)∈R(t)
(E,H):good

Pr(H)

3 · 2k−1

=
L2k∑

t>L2k−1

Pr(R(t))−∑(E,H)∈R(t)
(E,H):bad

Pr(H)

3 · 2k−1
≥

L2k∑
t>L2k−1

ak − 3xk
3 · 2k−1

=
L · (ak − 3xk)

3
(2.12)

The first equality uses the fact that the states (E,H) ∈ R(t) are exactly one of the types

bad/okay/good. The last inequality uses Proposition II.4.1 and that {H : (E,H) ∈ R(t)}

contains all scenarios in Ak.

Lemma II.6. We have Z ≤ ak−1 · (1 + ln 1/ε+ logm).
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Proof. For any scenario i ∈ Ak−1 (i.e. uncovered in ALG by time L2k−1) let π̂i be the path

traced by i in ALG’s decision tree. For each element e that appears in π̂i, we say that e is

selected during the interval Ke,i = (De, De + ce] where De is the total cost of elements in π̂i

before e. Let πi be the sub-path of π̂i consisting of elements selected between time 2k−1L

and 2kL or when i gets covered (whatever happens earlier). Let te,i ≤ ce denote the width of

the interval Ke,i ∩ (L2k−1 , L2k]. Note that there can be at most two elements e in πi with

ti,e < ce: one that is being selected at time L2k−1 and another at L2k.

Recall that for any L2k−1 < t ≤ L2k, every scenario in R(t) appears in Ak−1. So only

scenarios in Ak−1 can contribute to Z and we rewrite (2.8) by interchanging summations as

follows:

Z =
∑

i∈Ak−1

pi ·
∑
e∈πi

te,i ·
1

ce

(
fi(e ∪ E)− fi(E)

1− fi(E)
+ 1[i ∈ Le(H)]

)

≤
∑

i∈Ak−1

pi ·
(∑
e∈πi

fi(e ∪ E)− fi(E)

1− fi(E)
+
∑
e∈πi

1[i ∈ Le(H)]

)
(2.13)

Above, for any e ∈ πi we use (E,H) to denote the state at which e is selected.

Fix any scenario i ∈ Ak−1. For the first term, we use Claim II.6.1 below and the definition

of ε in Equation (2.1). This implies
∑

e∈πi
fi(e∪E)−fi(E)

1−fi(E)
≤ 1+ln 1

ε
. To bound the second term,

note that if scenario i ∈ Le(H) when ALG selects element e, then the number of compatible

scenarios decreases by at least a factor of two in path πi. So such an event can happen at

most log2m times along the path πi. Thus we can write
∑
e∈πi

1[i ∈ Le(H)] ≤ log2m. The

lemma now follows from Equation (2.13).

We now complete the proof of Lemma II.3.
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Proof. By Lemma II.5 and Lemma II.6 we have:

L · (ak − 3xk)/3 ≤ Z ≤ ak−1 · (1 + ln 1/ε+ logm) = ak−1 ·
L

15

Rearranging, we obtain ak ≤ 0.2 · ak−1 + 3xk as needed.

Claim II.6.1 (Claim 2.1 in [6]). Let f : 2U → [0, 1] be any monotone function with f(∅) = 0

and ε = min{f(S ∪ {e}) − f(S) : e ∈ U, S ⊆ U, f(S ∪ {e}) − f(S) > 0}. Then, for any

sequence ∅ = S0 ⊆ S1 ⊆ · · ·Sk ⊆ U of subsets, we have

k∑
t=1

f(St)− f(St−1)

1− f(St−1)
≤ 1 + ln

1

ε
.

2.3 Algorithm for Adaptive Submodular Routing

Recall that the adaptive submodular routing problem (ASP) is a generalization of ASR to

a vehicle-routing setting where costs correspond to a metric (U ∪ {s}, d). Here, U denotes

the set of elements and s is a special root vertex. The rest of the input is exactly as in ASR:

we are given m scenarios where each scenario i ∈ [m] has some probability pi, a submodular

function fi and a feedback function ri. The goal is to compute an adaptive tour (that begins

and ends at s) and covers a random scenario i∗ at minimum expected cost, where the cost

corresponds to the cost of the path of elements we need to take until we cover the realized

scenario. For any walk P , when it is clear from context, we will also use P to refer to the

vertices/elements on this walk.

An important subproblem in our algorithm for ASP is the submodular orienteering problem

(SOP), defined as follows. There is a metric (U∪{s}, d) with root s, a monotone submodular

function f : 2V → R+ and a bound B. The goal is to compute a tour P originating from

s of cost at most B that maximizes f(P ). A (ρ, σ)-bicriteria approximation algorithm for

SOP returns a tour P such that cost of P is at most σ · B and f(P ) ≥ OPT/ρ, where OPT
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is the maximum value of a tour of cost at most B. Our ASP algorithm will make use of a

(ρ, σ)-bicriteria approximation algorithm denoted ALG-SOP.

Intuitive explanation of the algorithm: Our algorithm involves concatenating a sequence

of smaller tours (each originating from s) where the tour costs increase geometrically. Each

such tour is obtained as a solution to a suitably defined instance of SOP. The SOP instance

encountered at state (E,H) involves the function g(E,H) defined in (2.14). Similar to the

Equation (2.2), which is the definition of “gain” of an individual element in the ASR algo-

rithm, function g(E,H)(T ) measures the collective gain from any subset T of elements. This

again comprises of two parts:

1. Information gain: this is the first term in (2.14). The definition of subsets Le(H) is

the same as for ASR. If the realized scenario happens to be in Le(H) for any e ∈ T

then it is clear that we make good progress in identifying the scenario: the number of

compatible scenarios decreases by (at least) a factor of two. The term Pr (∪e∈TLe(H))

in (2.14) is just the probability that the realized scenario is in Le(H) for some e ∈ T .

2. Function coverage: this is the second term in (2.14) and is based on the algorithm for

deterministic submodular routing from [55].

Crucially, both of these terms in g(E,H) are monotone submodular functions: so SOP can be

used.

As with ASR, the algorithm for ASP may not incur the cost of the entire walk traced

under scenario i∗: recall that the cost is only incurred until i∗ gets covered.

We can always assume that Pu ⊆ U \ E in Line 9: this is because g(E,H)(e) = 0 for all

e ∈ E as in Proposition II.3.1. In the rest of this section, we will prove the following result.

Theorem II.7. If ALG-SOP is any (ρ, σ)-bicriteria approximation algorithm for SOP, our

algorithm for ASP is an O(σρ(log 1/ε+ logm))-approximation algorithm.
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Algorithm 2 ASP algorithm

E ← ∅, π ← ∅, H ← [m] and D = 15ρ(1 + ln 1
ε + logm).

for phase k = 0, 1, 2, ... do

If H = ∅ then output π and end the algorithm.

for iteration u = 1, 2, ..., D do

For any element e ∈ U \ E, let Be(H) denote the set with maximum cardinality amongst

{i ∈ H : ri(e) = t} for t ∈ G; and define Le(H) := H \Be(H)

Define the submodular function

(2.14) g(E,H)(T ) := Pr (∪e∈TLe(H)) +
∑
i∈H

pi ·
fi(E ∪ T )− fi(E)

1− fi(E)
, ∀T ⊆ U

Use ALG-SOP to approximately solve the SOP instance on metric (U ∪ {s}, d) with

root s, submodular function g(E,H) and cost bound 2k to obtain tour Pu.

E ← E ∪ Pu and concatenate Pu to π to form a new tour

Remove incompatible and covered scenarios from H based on the feedback from Pu

end for

end for

We can use the following known result on SOP.

Theorem II.8. [18] For all constant δ > 0, there is a polynomial time (O(1),O(log2+δ n))-

bicriteria approximation algorithm for the Submodular Orienteering problem.

By combining Theorems II.8 and II.7 we obtain:

Corollary II.9. For any constant δ > 0, there is an O((log 1/ε+logm)·log2+δn)-approximation

algorithm for the adaptive submodular routing problem.

Instead of Theorem II.8, we can also use the quasi-polynomial timeO(log n)-approximation

algorithm for SOP from [23], which implies:

Corollary II.10. There is a quasipolynomial time O((log 1/ε+logm) · log n)-approximation

algorithm for ASP.

2.3.1 Analysis

We start by showing that the use of SOP is well-defined.
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Proposition II.10.1. For any state (E,H) in Algorithm 2, the function g(E,H) is monotone

and submodular.

Proof. First note that for any monotone submodular function fi and E ⊆ U , we have

fi(E ∪ T )− fi(E) is a monotone submodular function of T . Also f(T ) = Pr(
⋃
e∈T Le(H)) is

a weighted coverage function, so it is monotone submodular. Now, since a weighted sum of

submodular functions is submodular, the following function is submodular:

∑
i∈H

pi ·
fi(E ∪ T )− fi(E)

1− fi(E)
+ Pr(

⋃
e∈T

Le(H))

which is equal to g(E,H)(T ).

In the following, we use cost and time interchangeably. We will refer to the outer-loop in

Algorithm 2 by phase and the inner-loop by iteration. Define L̄ := 2D · σ. Then we have

the following proposition:

Proposition II.10.2. All vertices that are added to E in the j-th phase are visited in π by

time L̄ · 2j.

Proof. In each phase k, we add D tours of cost at most 2kσ each. So a vertex that is added

in phase j is visited by time
∑j

k=0 2kD · σ ≤ 2j+1D · σ = L̄ · 2j.

Let ALG be the solution produced by Algorithm 2 and OPT be the optimal solution. For

any k = 0, 1, · · · , we define the following quantities:

• Ak is the set of uncovered scenarios of ALG at the end of phase k, and ak = Pr(Ak).

• Xk is the set of uncovered scenarios of OPT at time 2k−1, and xk = Pr(Xk). Note that

x0 = 1.
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Lemma II.11. The expected cost of ALG and OPT can be bounded as follows.

(2.15) CALG ≤ L̄
∑
k≥0

2kak + L̄ and COPT ≥
1

2

∑
k≥0

2k−1xk

Proof. By Proposition II.10.2, for all k ≥ 1 every scenario in Ak−1 \Ak in ALG is covered by

time L̄2k. So we can write exactly the same inequalities as in the proof of Lemma II.2.

As for ASR, in order to prove Theorem II.7, it suffices to prove:

Lemma II.12. For any k ≥ 0, we have ak ≤ 0.2ak−1 + 3xk.

2.3.2 Proof of Lemma II.12

Throughout this section we fix phase k to its value in Lemma II.12. Consider any iteration

u in phase k of the algorithm. ALG’s decision tree induces a partition of all the uncovered

scenarios at iteration u, where each part H consists of all scenarios that are at a particular

state (E,H) at the start of iteration u. Let Rk(u) denote the set of parts in this partition.

We also use Rk(u) to denote the collection of states corresponding to these parts. Note that

all scenarios in Ak appear in Rk(u) as these scenarios are uncovered even at the end of phase

k. Similarly, all scenarios in Rk(u) are in Ak−1.

The analysis is similar to that for Lemma II.3. Analogous to the quantity Z in the proof

of Lemma II.3, we will use:

Z̄ :=
D∑
u=1

∑
(E,H)∈Rk(u)

max
P∈A(E,H,k)

g(E,H)(P )(2.16)

Above, A(E,H, k) denotes the set of feasible tours to the SOP instance solved in iteration

u of phase k, and (E,H) denotes the state at the beginning of this iteration. We prove

Lemma II.12 by upper/lower bounding Z̄.

For any (E,H) ∈ Rk(u), note that E consists of all elements that have been selected

before iteration u. The set of elements that are selected at iteration u are not included in
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E. We also define TH(k) and Stemk(H) as in Section 2.2. Recall, TH(k) is the subtree of

OPT that corresponds to paths traced by scenarios in H up to time 2k−1; this only includes

elements that are completely selected by time 2k−1. And Stemk(H) is the path in TH(k)

that at each node (labeled e) follows the branch corresponding to H \ Le(H). Again we

also use Stemk(H) to denote the set of elements that are on this path. We will also use

the definition of “bad”, “okay” and “good” states from Definition II.4. Then, exactly as in

Proposition II.4.1 we have:

Proposition II.12.1. For any iteration u in phase k,
∑

(E,H)∈Rk(u)
(E,H):bad

Pr(H) ≤ 3xk.

Lemma II.13. We have Z̄ ≥ D · (ak − 3xk)/3.

Proof. Considering only the good/okay states in each Rk(u) in the expression (2.16):

Z̄ =
D∑
u=1

∑
(E,H)∈Rk(u)

max
P∈A(E,H,k)

(∑
i∈H

pi ·
fi(E ∪ P )− fi(E)

1− fi(E)
+ Pr(

⋃
e∈P

Le(H))

)

≥
D∑
u=1

∑
(E,H)∈Rk(u)
(E,H):okay

max
P∈A(E,H,k)

Pr

(⋃
e∈P

Le(H)

)

+
D∑
u=1

∑
(E,H)∈Rk(u)
(E,H):good

max
P∈A(E,H,k)

∑
i∈H

pi ·
fi(E ∪ P )− fi(E)

1− fi(E)

Fix any iteration u. For any state (E,H) ∈ Rk(u) define W (H) = Stemk(H) \ E. Note

that the cost of Stemk(H) is at most 2k−1, so the tour obtained by doubling this path is in

A(E,H, k): i.e. the tour originates from s and has cost at most 2k. We call this tour W (H).

Case 1. (E,H) is an okay state. Since W (H) ∈ A(E,H, k),

max
P∈A(E,H,k)

Pr

(⋃
e∈P

Le(H)

)
≥ Pr

 ⋃
e∈W (H)

Le(H)

 = Pr

 ⋃
e∈Stemk(H)

Le(H)

 ≥ Pr(H)

3

(2.17)
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The equality above uses ∪e∈ELe(H) = ∅ (by Proposition II.3.1), and the last inequality is

by Definition II.4 of an okay state.

Case 2. (E,H) is a good state. Below, we use F ⊆ H to denote the set of scenarios that

get covered in Stemk(H); by definition of a good state, we have Pr(F ) ≥ Pr(H)/3. Again

using W (H) ∈ A(E,H, k),

max
P∈A(E,H,k)

∑
i∈H

pi ·
fi(P ∪ E)− fi(E)

1− fi(E)
≥
∑
i∈H

pi ·
fi(W (H) ∪ E)− fi(E)

1− fi(E)

=
∑
i∈H

pi ·
fi(Stemk(H))− fi(E)

1− fi(E)
≥
∑
i∈F

pi = Pr(F ) ≥ Pr(H)

3
(2.18)

The first equality of (2.18) is by definition of W (H). The next inequality is based on the

fact that fi(Stemk(H)) = 1 for any i ∈ F and the last inequality is by definition of a good

state. Now, we combine (2.17) and (2.18) with the definition of Z̄:

Z̄ ≥
D∑
u=1

∑
(E,H)∈Rk(u)
(E,H):okay

Pr(H)

3
+

D∑
u=1

∑
(E,H)∈Rk(u)
(E,H):good

Pr(H)

3
(2.19)

=
D∑
u=1

Pr(Rk(u))−∑(E,H)∈Rk(u)
(E,H):bad

Pr(H)

3

≥
D∑
u=1

ak − 3xk
3

=
D · (ak − 3xk)

3

The first equality uses the fact that the states corresponding to each (E,H) ∈ Rk(u) are

exactly one of the types bad/okay/good. The last inequality uses Proposition II.12.1 and

that Rk(u) contains all scenarios in Ak.

Lemma II.14. We have Z̄ ≤ ak−1 · ρ(1 + ln 1
ε

+ logm).

Proof. For any scenario i ∈ Ak−1 (i.e. uncovered in ALG at the end of phase k − 1) let πi
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be the path traced by i in ALG’s decision tree, starting from the end of phase k − 1 to the

end of phase k or when i gets covered (whatever happens first). Formally, we represent πi

as a sequence of tuples (Eiu, Hiu, Piu) for each iteration u in phase k, where (Eiu, Hiu) is the

state at the start of iteration u and Piu is the new tour chosen by ALG at this state.

Recall that for any iteration u, every scenario in Rk(u) appears in Ak−1. So only scenarios

in Ak−1 can contribute to Z̄, because every part H in Rk(u) is a subset of Ak−1. Furthermore,

since ALG-SOP is a (ρ, σ)-bicriteria approximation algorithm, it selects paths Pu such that

ρ · g(E,H)(Pu) ≥ maxP∈A(E,H,k) g(E,H)(P ). So we can bound Z̄ from above as follows:

Z̄ =

D∑
u=1

∑
(E,H)∈Rk(u)

max
P∈A(E,H,k)

g(E,H)(P ) ≤ ρ ·
D∑
u=1

∑
(E,H)∈Rk(u)

g(E,H)(Pu)

≤ ρ ·
D∑
u=1

∑
(E,H)∈Rk(u)

(∑
i∈H

(
pi ·

fi(E ∪ Pu)− fi(E)

1− fi(E)

)
+ Pr(

⋃
e∈Pu

Le(H))

)

= ρ ·
D∑
u=1

∑
(E,H)∈Rk(u)

∑
i∈H

pi ·
(
fi(E ∪ Pu)− fi(E)

1− fi(E)
+ 1 [i ∈ ∪e∈PuLe(H)]

)

≤ ρ ·
∑

i∈Ak−1

pi ·

 ∑
(Eiu,Hiu,Piu)∈πi

(
fi(Piu ∪ Eiu)− fi(Eiu)

1− fi(Eiu)
+ 1[i ∈ ∪e∈PiuLe(Hiu)]

)(2.20)

= ρ ·
∑

i∈Ak−1

pi ·

 ∑
(Eiu,Hiu,Piu)∈πi

fi(Piu ∪ Eiu)− fi(Eiu)

1− fi(Eiu)
+

∑
(Eiu,Hiu,Piu)∈πi

1[i ∈ ∪e∈PiuLe(Hiu)]

(2.21)

where the inequality (2.20) is due to an interchange of summation and the fact that

each part H of Rk(u) is a subset of Ak−1. Now, fix any scenario i ∈ Ak−1. For the

first term in (2.21), we use Claim II.6.1 and the definition of ε in (2.1). This implies∑
(Eiu,Hiu,Piu)∈πi

fi(Piu∪Eiu)−fi(Eiu)
1−fi(Eiu)

≤ 1+ln 1
ε
. To bound the second term, note that if at some

iteration u with state (E,H) the algorithm selects subset Pu, and if scenario i ∈ ∪e∈PuLe(H)

then the number of possible scenarios decreases by at least a factor of two in path πi. So

such an event can happen at most log2m times along the path πi. Thus we can write
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∑
(Eiu,Hiu,Piu)∈πi

1[i ∈ ⋃e∈Piu Le(Hiu)] ≤ log2m. The lemma follows from (2.21).

Now we can complete the proof of Lemma II.12.

Proof. By Lemma II.13 and Lemma II.14 we have:

D · (ak − 3xk)/3 ≤ Z̄ ≤ ak−1 · ρ(1 + ln 1/ε+ logm) = ak−1 ·
D

15

Rearranging, we obtain ak ≤ 0.2 · ak−1 + 3xk as needed.

2.4 Applications

In this section we discuss various applications of ASR. For some of these applications,

we obtain improvements over previously known results. For many others, we match (or

nearly match) the previous best results using a simpler algorithm and analysis. Some of

the applications discussed below are new, for which we provide the first approximation

algorithms. Table 2.1 summarizes some of these applications. As defined, cost in ASR and

ASP is only incurred until the realized scenario i∗ gets covered and the algorithm may not

know this (see Section 2.1.1). This definition is suitable for the applications discssed in

Sections 2.4.1, 2.4.2, 2.4.3 and 2.4.10. However, for the other applications (Sections 2.4.4,

2.4.5, 2.4.6, 2.4.7, 2.4.8 and 2.4.9) the algorithm needs to know explicitly when to stop. For

these applications, we also mention the stopping criteria used and show that it coincides

with the (usual) criterion of just covering i∗. So Theorem II.1 or II.7 can be applied in all

cases.

2.4.1 Deterministic Submodular Ranking

In this problem we are given a set of n elements and m monotone submodular functions

f1, f2, . . . , fm where each fi : 2[n] → [0, 1]. We also have a non-negative weight wi associated

with each i ∈ [m]. The goal is to find a static linear ordering of the elements that minimizes
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Problem Previous best result Our result

Adaptive Multiple Intent Re-ranking - O(logK + logm)

Generalized Optimal Decision Tree - O(logm)

Decision Region Determination O(r logm) in exp time O(r logm) in poly time

Stochastic Knapsack Cover - O(logm+ logW )

Stochastic Matroid Basis - O(logm+ log q)

Adaptive Traveling Repairman Problem O(log2 n logm) O(log2+δn(logm+ log n))

Adaptive Traveling Salesman Problem O(log2 n logm) O(log2+δn(logm+ log n))

Table 2.1: Some applications of adaptive submodular ranking.

the weighted summation of functions’ cover time, where the cover time of a function fi

is the first time that its value reaches one. This is a special case of ASR where there is no

feedback. Formally, we consider the ASR instance with the same fis, G = ∅, and probabilities

pi = wi/(
∑n

j=1wj). Theorem II.1 directly gives anO(logm+log 1
ε
)-approximation algorithm.

Moreover, by observing that in (2.2) for any state (E,H) we have Le(H) = ∅, we can

strengthen the upper bound in Lemma II.6 to Z ≤ ak−1 · (1 + ln 1/ε). This implies that our

algorithm is an O(log 1
ε
)-approximation, matching the best result in [6] and [55].

2.4.2 Adaptive Multiple Intents Re-ranking.

This is an adaptive version of the multiple intents re-ranking problem, introduced in [7]

with applications to search ranking. There are n results to a particular search query, and

m different users. Each user i is characterized by a subset Si of the results that s/he is

interested in and a threshold Ki ≤ |Si|: user i gets “covered” after seeing at least Ki results

from the subset Si. There is also a probability distribution {pi}mi=1 on the m users, from

which the realized user i∗ is chosen. An algorithm displays results one by one and receives

feedback on e ∈ Si∗ , i.e. whether result e is relevant to user i∗. The goal is to find an

adaptive ordering of the results that minimizes the expected number of results to cover user

i∗. We note that the algorithm need not know when this occurs, i.e. when to stop.
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This can be modeled as ASR with results corresponding to elements U and users corre-

sponding to the m scenarios. The feedback values are G = {0, 1} and the feedback functions

are given by ri(e) = 1(e ∈ Si) for all i ∈ [m] and e ∈ U . For each scenario i ∈ [m],

the submodular function fi(S) = min(|S ∩ Si|, Ki)/Ki. Letting K = maxi∈[m] Ki, we can

see that the parameter ε is equal to 1/K. So Theorem II.1 implies an O(logK + logm)-

approximation algorithm. We note however that in the deterministic setting, there are better

O(1)-approximation algorithms in [9], [83] and [56]. These results are based on a different

linear-program-based approach: extending such an approach to the stochastic case is still an

interesting open question.

2.4.3 Minimum Cost Matroid Basis

Consider the following stochastic network design problem. We are given an undirected

graph (V,E) with edge costs. However, only a random subset E∗ ⊆ E of the edges are active.

We assume an explicit scenario-based joint distribution for E∗: there are m scenarios where

each scenario i ∈ [m] occurs with probability pi and corresponds to active edges E∗ = Ei.

An algorithm learns whether/not an edge e is active only upon testing e which incurs time

ce. An algorithm needs to adaptively test a subset S ⊆ E of edges so that S ∩ E∗ achieves

the maximum possible connectivity in the active graph (V,E∗), i.e. S ∩ E∗ must contain a

maximal spanning forest of graph (V,E∗). The objective is to minimize the expected time

before the tested edges achieve maximal connectivity in the active graph. The algorithm

need not know when this occurs, i.e. when to stop.

We can model this as an ASR instance with edges E as elements and scenarios as described

above. The feedback values are G = {0, 1} and ri(e) = 1(e ∈ Ei) for all i ∈ [m] and e ∈ E.

The submodular functions are fi(S) = ranki(S∩Ei)
ranki(Ei)

where ranki is the rank function of the

graphic matroid on (V,Ei). The fis are monotone and submodular due to the submodularity

of matroid rank functions. Moreover, the parameter ε is at least 1
q

where q = |V |. So
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Theorem II.1 implies an O(logm+ log q)-approximation algorithm. We note that the same

result also holds for a general matroid: where a random (correlated) subset of elements is

active and the goal is to find a basis over the active elements at minimum expected cost.

2.4.4 Optimal Decision Tree (ODT)

This problem captures many applications in active learning, medical diagnosis and databases;

see e.g. [20] and [27]. There are m possible hypotheses with a probability distribution {pi}mi=1,

from which an unknown hypothesis i∗ is drawn. There are also a number of binary tests;

each test e costs ce and returns a positive outcome if i∗ lies in some subset Ye of hypotheses

and a negative outcome if i∗ ∈ [m] \ Ye. It is assumed that i∗ can be uniquely identified by

performing all tests. The goal is to perform an adaptive sequence of tests so as to identify

hypothesis i∗ at the minimum expected cost.

This can be cast as an ASR instance as follows. We associate elements with tests U

and scenarios with hypotheses [m]. The feedback values are G = {0, 1} and the feedback

functions are given by ri(e) = 1(i ∈ Ye) which denotes the outcome of test e on hypothesis

i. In order to define the submodular functions, let

Te(i) =

 [m] \ Ye if i ∈ Ye

Ye if i 6∈ Ye
, ∀e ∈ U and i ∈ [m].

Then, for each scenario i ∈ [m], define the submodular function fi(S) = | ∪e∈S Te(i)| · 1
m−1

.

Note that at any point in the algorithm where we have performed a set S of tests, the

set
⋃
e∈S Te(i

∗) consists of all hypothesis that have a different outcome from i∗ in at least

one of the tests in S. So i∗ is uniquely identified after performing tests S if and only

if fi∗(S) = 1. The algorithm’s stopping criterion is the first point when the number of

compatible hypotheses/scenarios reaches one: this coincides with the point where fi∗ gets

covered. Note that the parameter ε is equal to 1
m

; so by Theorem II.1 we obtain an O(logm)-

approximation algorithm which is known to be best-possible (unless P=NP), as shown by
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[20]. Although this problem has been extensively studied, previously such a result was known

only via a complex algorithm in [49] and [26]. We also note that our result extends in a

straightforward manner to provide an O(logm) approximation in the case of multiway tests

(corresponding to more than two outcomes) as studied in [20].

Generalized Optimal Decision Tree Our algorithm also extends to the setting when we do

not have to uniquely identify the realized hypothesis i∗. Here we are given a threshold t such

that it suffices to output a subset H∗ of at most t hypotheses with i∗ ∈ H∗. This can be

handled easily by setting:

fi(S) = min

{
| ∪e∈S Te(i)| ·

1

m− t , 1

}
, for all S ⊆ U and i ∈ [m].

Note that this time we will have fi(S) = 1 if and only if at least m− t hypotheses differ

from i on at least one test in S; so this corresponds to having at most t possible hypotheses.

The algorithm’s stopping criterion here is the first point when the number of compatible

hypotheses is at most t: again, this coincides with the point where fi∗ gets covered. And

Theorem II.1 implies an O(logm)-approximation algorithm. To the best of our knowledge,

this is the first approximation algorithm in this setting.

2.4.5 Equivalence Class Determination

This is an extension of ODT that was introduced to model noise in Bayesian active

learning by [40]. As in ODT, there are m hypotheses with a probability distribution {pi}mi=1

and binary tests where each test e has a positive outcome for hypotheses in Ye. We are

additionally given a partition Q of [m]. For each i ∈ [m], let Q(i) be the subset in the

partition that contains i. The goal now is to minimize the expected cost of tests until we

recognize the part of Q containing the realized hypothesis i∗.

We can model this as an ASR instance with tests as elements and hypotheses as scenarios.
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The feedback functions are the same as in ODT. The submodular functions are:

fi(S) =
| ∪e∈S (Te(i) ∩Q(i)c)|

|Q(i)c| , for all S ⊆ U and i ∈ [m].

Above, Te(i) are as defined above for ODT and Ac denotes the complement of any set

A ⊆ [m]. Note that fis are monotone submodular with values between 0 and 1. Furthermore,

fi(S) = 1 means that Q(i)c ⊆ ∪e∈STe(i), which means that the set of compatible hypotheses

based on the tests S is a subset of Q(i). The algorithm’s stopping criterion here is the first

point when the set of compatible hypotheses is a subset of any Q(i), which coincides with

the point where fi∗ gets covered. Again, Theorem II.1 implies an O(logm)-approximation

algorithm. This matches the best previous result of [26], and again our algorithm is much

simpler.

2.4.6 Decision Region Determination

This is an extension of ODT that was introduced in order to allow for decision making

in Bayesian active learning. As elaborated in [58], this problem has applications in robotics,

medical diagnosis and comparison-based learning. Again, there are m hypotheses with a

probability distribution {pi}mi=1 and binary tests where each test e has a positive outcome for

hypotheses in Ye. In addition, there are a number of overlapping decision regions Dj ⊆ [m]

for j ∈ [t]. Each region Dj corresponds to the subset of hypotheses under which a particular

decision j ∈ [t] is applicable. The goal is to minimize the expected cost of tests so as to

find some decision region Dj containing the realized hypothesis i∗. Following prior work,

two additional parameters are useful for this problem: r is the maximum number of decision

regions that contain a hypothesis and d is the maximum size of any decision region. Our

main result here is:

Theorem II.15. There is an O(logm+min(d, r log d))-approximation algorithm for decision

region determination.
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This improves upon a number of previous papers on decision region determination (DRD).

[58] obtained an O(min(r, d) · log2 1
mini pi

)-approximation algorithm running in time expo-

nential in min(r, d). Then, [25] obtained an O(r · log2 1
mini pi

)-approximation algorithm for

this problem in polynomial time. The approximation ratio was later improved by [43] to

O(min(r, d) · logm) which however required time exponential in min(r, d). In contrast, our

algorithm runs in polynomial time.

Before proving Theorem II.15, we provide two different algorithms for DRD.

Approach 1: an O(r logm)-approximation algorithm for DRD. Here we model

DRD as ASR with tests as elements and hypotheses as scenarios. The feedback functions

are the same as in ODT. For each i ∈ [m] and j ∈ [t] such that i ∈ Dj define fi,j(S) =

|
⋃
e∈S(Te(i)∩Djc)|
|Djc| . Clearly fi,js are monotone submodular with values between 0 and 1. Also,

fi,j(S) = 1 means that Dj
c ⊆ ⋃e∈S Te(i), which means that the set of compatible hypotheses

based on the tests S is a subset of decision region Dj. However, we may stop when it is

determined that the realized hypothesis is in any one of the decision regions. This criterion

(for hypothesis i) corresponds to at least one fi,j(S) = 1 among {j : i ∈ Dj}. Using an idea

from [45], we can express this criterion as a submodular-cover requirement. Define:

fi(S) = 1−
∏
j:i∈Dj

(1− fi,j(S)), for all S ⊆ U and i ∈ [m].

One can verify that fi(S) = 1 if and only if ∃j : i ∈ Dj and fi,j(S) = 1. The algorithm’s

stopping criterion is the first point when the set of compatible hypotheses is a subset of

any decision region Dj, which coincides with the point where fi∗ gets covered. We can

also see that fi is monotone and submodular. Note that here the parameter ε is equal

to min
i

∏
j:i∈Dj

1
|Djc| , which is much smaller than in previous applications. Still, we have

ε = Ω(m−r). So in this case, Theorem II.1 implies an O(r logm)-approximation algorithm

where r is the maximum number of decision regions that contain a hypothesis.

Approach 2: an m-approximation algorithm for DRD. Here we use a simple greedy
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splitting algorithm. At any state with compatible scenarios H ⊆ [m] the algorithm selects

the minimum cost element that splits H. Formally, it selects:

arg min{ce : e ∈ U with H ∩ Ye 6= ∅ and H ∩ Y c
e 6= ∅}.

The algorithm terminates when the compatible scenarios H is contained in any decision

region.

As the number of compatible scenarios reduces by at least one after each chosen element,

the depth of the algorithm’s decision tree is at most m. Consider any depth k ∈ {1, · · ·m}

in this decision tree. Note that the states occurring at depth k induce a partition of all

scenarios I ⊆ [m] that are yet uncovered (at depth k). For each scenario i ∈ I, let Ri ⊆ I

denote all scenarios that are compatible with i at depth k, and let Ci denote the minimum

cost of an element that splits Ri. Note that all scenarios i occurring at the same state at

depth k will have the same Ri and Ci. Moreover, the kth element chosen by the algorithm

under any scenario i ∈ I costs exactly Ci. So the algorithm’s expected cost at depth k is

exactly
∑

i∈I pi ·Ci. The next claim shows that OPT ≥∑i∈I pi ·Ci, which implies that the

total expected cost of the algorithm is at most m ·OPT .

Claim II.15.1. The optimal cost of the DRD instance OPT ≥∑i∈I pi · Ci.

Proof. Consider any i ∈ I. Note that Ri ⊆ I ⊆ [m] does not contain any decision region

(otherwise i would have been covered before depth k which would contradict i ∈ I). So the

optimal solution must select some element that splits Ri in its decision path for scenario

i. As Ci is the minimum cost element that splits Ri, it follows that the optimal cost under

scenario i is at least Ci. The claim now follows by taking expectations.

Proof of Theorem II.15. This algorithm involves two phases. The first phase runs theO(logm)-
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approximation algorithm for generalized ODT (Section 2.4.4) on the given set of scenarios

and elements with threshold d (this step ignores the decision regions). Crucially, the optimal

value of this generalized ODT instance is at most that of the DRD instance. This follows

simply from the fact that every decision region has size at most d: so the number of compat-

ible scenarios at the end of any feasible DRD solution is always at most d. So the expected

cost in the first phase is O(logm) · OPT . At the end of this phase, we will be left with a

set M of at most d candidate scenarios and we still need to identify a valid decision region

within that set. Let {M1, · · ·Ms} denote the partition of the m scenarios corresponding to

the states at the end of the generalized ODT algorithm. So we have |Mk| ≤ d for all k ∈ [s].

Next, in the second phase, we run one of the above mentioned algorithms on the DRD

instance conditioned on scenarios M . For any k ∈ [s] let Ik denote the DRD instance

restricted to scenarios Mk where probabilities are normalized so as to sum to one. Crucially,

(2.22)
s∑

k=1

(∑
i∈Mk

pi

)
OPT (Ik) ≤ OPT,

where OPT is the optimal value of the original DRD instance. (2.22) follows directly by

using the optimal tree for the original DRD instance as a feasible solution for each instance

I1, · · · Is.

Note that the DRD instance in the second phase always has at most d scenarios as

maxsk=1 |Mk| ≤ d. So the two algorithms above have approximation ratios of O(r log d) and

d respectively on this instance. Combined with (2.22) it follows that the expected cost in

the second phase is O(min{r log d, d}) · OPT . Adding the cost over both phases proves the

theorem.
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2.4.7 Stochastic Knapsack Cover

In the knapsack cover problem, there are n elements, each with a cost and reward. We

are also given a target W and our goal is to choose a subset of elements with minimum total

cost such that the total reward is at least W . [54] gave a fully polynomial time approxima-

tion scheme for this problem. Here we consider a stochastic version of this problem where

rewards are random and correlated across elements. Previously, [29] considered the case of

independent rewards, and obtained a 3-approximation algorithm. We assume an explicit

scenario-based distribution for the rewards. Formally, there are m scenarios where each

scenario i ∈ [m] occurs with probability pi and corresponds to element rewards {ri(e)}ne=1.

We also assume that all rewards are integers between 0 and W . An algorithm knows the

precise reward of an element e ∈ [n] only upon selecting e. The goal is to adaptively select

a sequence of elements so as to achieve total reward at least W , at minimum expected cost.

To model this problem as an instance of ASR, elements and scenarios are as described

above. The feedback values are G = {0, 1, ...,W} and the feedback functions are the re-

wards ri(·) under each scenario i ∈ [m]. The submodular functions are fi(E) = min(1, 1
W
·∑

e∈E ri(e)), where ri(e) is the reward of element e under scenario i. Note that fi(E) = 1 if

and only if the total reward of elements in E is at least W , which is also used as the stop-

ping criterion for the algorithm. The parameter ε would be equal to w/W ≥ 1/W , where

w is the minimum positive reward. Using Theorem II.1, we obtain an O(logm + log W
w

)-

approximation algorithm.

We note that in the more general black-box distribution model (where we can only access

the reward distribution through samples), there are hardness results that rule out any sub-

polynomial approximation ratio by polynomial-time algorithms.
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2.4.8 Scenario Submodular Cover

This was studied recently by [43] as a way to model correlated distributions in stochastic

submodular cover.

We have a set U of elements with costs {ce}e∈U . Each element when selected, provides a

random feedback from a set G: the feedback is correlated across elements. We are given a

scenario-based distribution of elements’ feedback values. There are m scenarios with proba-

bilities {pi}mi=1, from which the realized scenario i∗ is drawn. Each scenario i ∈ [m] specifies

the feedback ri(e) ∈ G for each element e ∈ U . Let ∗ denote an unknown feedback value.

There is also a “state based” utility function f : (G ∪ {∗})U → Z≥0 and an integer target

Q. The function f is said to be covered if its value is at least Q. The goal is to (adaptively)

select a sequence of elements so as to cover f at the minimum expected cost.

It is assumed f is monotone and submodular: as f is not a usual set function, one

needs to extend the notions of monotonicity and submodularity to this setting. For any

g, g′ ∈ (G ∪ {∗})U , we say g′ is an extension of g and write g′ < g if g′e = ge for all e ∈ U

with ge 6= ∗. For any g ∈ (G ∪ {∗})U , e ∈ U and r ∈ G, define ge←r to be the vector which

is equal to g on all coordinates U \ {e} and has value r in coordinate e. Now, we say f is:

• monotone if receiving a feedback does not decrease its value, i.e. f(g′) ≥ f(g) for all

g′ < g.

• submodular if f(g′) − f(g′e←r) ≤ f(g) − f(ge←r) for all g′ < g, r ∈ G and e ∈ U with

g′e = ∗.

For any subset S ⊆ U and scenario i ∈ [m], define x(S, i) ∈ (G ∪ {∗})U as:

x(S, i)e =

 ri(e) if e ∈ S

∗ if e ∈ U \ S
.

Note that function f is covered by subset S ⊆ U if and only if f(x(S, i∗)) ≥ Q.
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We can model scenario submodular cover as an ASR instance with elements, scenarios

and feedback as above. The submodular functions are fi(S) = 1
Q
·min{f(x(S, i)), Q} for all

S ⊆ U and i ∈ [m]. It can be seen that each fi is monotone submodular (in the usual set

function definition). Moreover, the parameter ε ≥ 1/Q because function f is assumed to

be integer-valued. The algorithm’s stopping criterion is as follows. If S denotes the set of

selected elements and θe ∈ G the feedback from each e ∈ S then we stop when f(θ) ≥ Q

where θe = ∗ for all e ∈ U \ S. Clearly, this is the same point when fi∗ reaches one.

So Theorem II.1 implies an algorithm with approximation ratio of O(logm+log 1
ε
), which

is at least as good as the O(logm + logQ) bound in [43]. We might have 1
ε
� Q for some

functions f , in which case our approximation ratio is slightly better than the previous one.

2.4.9 Adaptive Traveling Salesman Problem

This is a stochastic version of the basic TSP that was studied in [49]. We are given a

metric (U ∪ {s}, d) where s is a root vertex, and there is demand at some random subset

S∗ ⊆ U of vertices. The demand distribution is scenario-based: each scenario i ∈ [m] occurs

with probability pi and has demand subset S∗ = Si. We get to know whether u ∈ S∗ or not

upon visiting vertex u ∈ U . The goal is to build an adaptive tour originating from s that

visits all the demands S∗ at minimum expected distance.

As described in [49] it suffices to solve the related “isolation problem” where one wants to

identify the realized scenario i∗ at minimum expected distance and then use an approximate

TSP to visit Si∗ . The isolation problem, which can be viewed as the metric version of ODT,

can be modeled as adaptive submodular routing (ASP) by considering vertices as elements

and scenarios as above. The feedback values are G = {0, 1}, and the feedback function is

ri(e) = 1(e ∈ Si) for all e ∈ U and i ∈ [m]. The submodular functions are exactly the same

as for the ODT problem (§2.4.4) where tests correspond to vertices: for each test e ∈ U ,

we use Ye = {i ∈ [m] : e ∈ Si}. Recall that parameter ε is equal to 1/m. So Corollary II.9
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implies an O(logm · log2+δn)-approximation algorithm. This almost matches the best result

known which is an O(log2 n logm)-approximation algorithm by [49].

Adaptive k-Traveling Salesman Problem. The input here is the same as adaptive TSP with

an additional number k, and the goal is to minimize the expected distance taken to cover

any k vertices of the demand subset S∗. As for adaptive TSP, we can model this problem

as an instance of ASP. The only difference is in the definition of the submodular functions,

which are now fi(T ) = min(|T∩Si|,k)
k

for T ⊆ U and i ∈ [m]. The algorithm stops at the first

point when it has visited k demand vertices, which is the same as fi∗ getting covered. Here,

parameter ε = 1/k and Corollary II.9 implies an O((logm+ log k) · log2+δn)-approximation

algorithm. To the best of our knowledge, this is the first approximation algorithm for this

problem.

2.4.10 Adaptive Traveling Repairman Problem

This is a stochastic version of the traveling repairman problem (TRP) which was also

studied in [49]. The setting is the same as adaptive TSP, but the objective here is to

minimize the expected sum of distances to reach the demand vertices S∗.

We now show that this can also be viewed as a special case of ASP. Let J be a given

instance of adaptive TRP with metric (U ∪{s}, d), root s and demand scenarios {Si ⊆ U}mi=1

with probabilities {pi}mi=1. Let q =
∑m

i=1 pi|Si|. We create an instance I of ASP with elements

U ,
∑m

i=1 |Si| scenarios and feedback values G = {0, 1}. For each i ∈ [m] and e ∈ Si we define

scenario he,i as follows:

• he,i has probability of occurrence pi/q.

• the submodular function fe,i(T ) = |{e} ∩ T | for T ⊆ U .

• re,i(e′) = 1(e′ ∈ Si) for e′ ∈ U .
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Note that the total probability of these
∑m

i=1 |Si| scenarios is one. The idea is that covering

scenario he,i in I corresponds to visiting vertex e when the realized scenario in J is i. Note

that for any i ∈ [m], the feedback functions for all the scenarios {he,i : e ∈ Si} are identical.

Claim II.15.2. OPT (I) = 1
q
·OPT (J ).

Proof. Consider an optimal solution R to the adaptive TRP instance J . For each scenario

i ∈ [m], let τi denote the tour (originating from s) traced by R; note that τi visits every

vertex in Si, and let Ce,i denote the distance to vertex e ∈ Si along τi. So OPT (J ) =∑m
i=1 pi

∑
e∈Si Ce,i. We can also view R as a potential solution for the ASP instance I. To

see that this is a feasible solution, note that the tour traced by R under scenario he,i (for

any i ∈ [m] and e ∈ Si) is precisely the prefix of τi until vertex e, at which point the tour

returns to s. So every scenario in I is covered. Moreover, the expected cost of R for I is

exactly
∑m

i=1

∑
e∈Si

pi
q
Ce,i = 1

q
·OPT (J ). This shows that OPT (I) ≤ 1

q
·OPT (J ).

Now, consider an optimal solution R′ to the ASP instance I. For each scenario he,i (with

i ∈ [m] and e ∈ Si), let σe,i denote the tour (originating from s) traced by R′ and let τe,i

denote the shortest prefix of σe,i that covers fe,i. Let C ′e,i denote the cost of the walk τe,i,

which is the cost under scenario he,i. So OPT (I) =
∑m

i=1

∑
e∈Si

pi
q
C ′e,i Note that for each

i ∈ [m], the tours {σe,i : e ∈ Si} are identical (call it σi) because the feedback obtained

under scenarios {he,i : e ∈ Si} are identical. So the walks {τe,i : e ∈ Si} must be nested.

We now view R′ as a potential solution for the adaptive TRP instance J . To see that this

is feasible, note that the tour traced under scenario i ∈ [m] is precisely σi which visits all

vertices in Si. Moreover, due to the nested structure of the walks {τe,i : e ∈ Si}, the distance
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to any vertex e ∈ Si under scenario i is exactly C ′e,i. So the expected cost of R′ for J is∑m
i=1 pi

∑
e∈Si C

′
e,i = q ·OPT (I). This shows that OPT (J ) ≤ q ·OPT (I).

Combining the above two bounds, we obtain OPT (I) = 1
q
·OPT (J ) as desired.

Moreover, ε = 1 for this ASP instance. Hence, Corollary II.9 implies an O(logm·log2+δn)-

approximation algorithm for adaptive TRP. Again, this almost matches the best result known

for this problem which is an O(log2 n logm)-approximation algorithm by [49]. While our

approximation ratios for adaptive TSP and TRP are slightly worse than those in [49], we

obtain these results as direct applications of more general framework (ASP) with very little

problem-specific work.

2.5 Experiments

We present experimental results for the Adaptive Multiple Intents Re-ranking (Adaptive

MIR), Optimal Decision Tree (ODT) and Generalized ODT problems. We use expected

number of elements as the objective, i.e. all costs are unit. The main difference between

ODT and Generalized ODT is in the stopping criteria, which makes their coverage functions

(fis) different. Recall that in ODT, our goal is to uniquely identify the realized scenario. As

discussed in Section 2.4.4:

(2.23) fi(S) = | ∪e∈S Te(i)| ·
1

m− 1
,

where Te(i) is the set of all scenarios which have a different outcome from scenario i on test

e. On the other hand, for Generalized ODT, we satisfy the scenario as soon as the number

of compatible scenarios is at most t, for some input parameter t. Here we have:

(2.24) fi(S) = min

{
| ∪e∈S Te(i)| ·

1

m− t , 1

}
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Furthermore, recall that as stated in Section 2.4.2, in Adaptive MIR the submodular function

for scenario i ∈ [m] over set S is defined as:

(2.25) fi(S) = min(|S ∩ Si|, Ki)/Ki

Where Si is the interest set of user i and Ki is the minimum number of relevant results that

this user wants to see to get covered.

2.5.1 Datasets

Real-world Dataset: For our experiments we used two real-world datasets. For Adap-

tive MIR, we use a data set called ML-100, which is the 100K example from the Movie-

Lens [52] repository. It contains 100,000 ratings on a scale of [1,5] from 943 users (scenarios)

on 1682 movies (elements) where each user has rated ≥ 20 movies. We binarized this dataset

by setting all ratings < 3 to 0, which left us with 82, 520 ratings, where the average user had

87.5 ratings with a standard deviation of 81.2, which suggests a highly-skewed distribution.

Now, we can consider each user as a scenario and each movie as an element. Furthermore, the

subset associated with a scenario is equivalent to the subset of movies that the corresponding

user has rated more than 2.

We use another data set for ODT and Generalized ODT, which is called WISER 1. It

contains information related to 79 binary symptoms (corresponding to elements in ODT)

for 415 chemicals (equivalent to scenarios in ODT) which is used in the problem of toxic

chemical identification of someone who has been exposed to these chemicals. This dataset

has been used for testing algorithms for similar problems in other papers, eg. [11], [12]

and [16]. For each symptom-chemical pair the data specifies whether/not that symptom is

seen for that chemical. However the WISER data has ‘unknown’ entries for some pairs. In

order to obtain instances for ODT from this, we generated 10 different datasets by assigning

1http://wiser.nlm.nih.gov/
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random binary values to the ‘unknown’ entries. Then we removed all identical scenarios:

otherwise ODT would not be feasible.

As probability distributions, we used permutations of the power-law distribution (Pr[X =

x] = Kxα) for α = 0,−1 and −2. For ODT and Generalized ODT, we use the power-law

distribution with α = −1/2 as well. Also, to be able to compare results meaningfully in

these two problems, the same permutation was used for each α across all 10 datasets.

Synthetic Dataset: For ODT and Generalized ODT, we also used a synthetic dataset

— SYN-K — that is parameterized by k; this is based on a hard instance for the greedy

algorithm [63]. Given k, this instance has m = 2k + 1 scenarios and n = k + 2 elements as

follows:
Scenario i ∈ [1, k] has positive feedback on element i and k + 1 and negative on the others.

Scenario i ∈ [k + 1, 2k] has positive feedback on element i− k and k + 2 and negative on the others.

Scenario 2k + 1 has negative feedback on all elements.

Also, the probabilities for the scenarios are as follows:

pi = pi+k = 2−i−2 for i ∈ [1, k − 1], pk = p2k = 2−k−1 and p2k+1 = 2−1.

2.5.2 Algorithms

In our experiments, we compare and contrast the results of four different algorithms for

each problem, three of which are common for all the problems:

• ASR: Our algorithm that uses the objective described in (2.2) with corresponding fis

described in equations (2.25), (2.23) and (2.24), for Adaptive MIR, ODT and General-

ized ODT respectively.

• Static: This is the algorithm from [6]. This algorithm is not feedback dependent

and uses a measure which is similar to the second term in our measure (2.2). More

specifically, this algorithm at each iteration chooses an element e that maximizes:

∑
i∈H

pi ·
fi(e ∪ E)− fi(E)

1− fi(E)
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with corresponding fis for each problem, described in equations (2.25), (2.23) and (2.24).

• AdStatic This is a modified version of the aforementioned Static algorithm. It uses

the observed feedback to skip redundant elements that have the same outcome on all

the uncovered compatible scenarios.

For Adaptive MIR, we also perform the following algorithm:

• Clustering: This algorithm uses k-Means [5] to a priori partition U into 10 clusters.

Each cluster cj, j ∈ [1, 10] is initially given a weight wcj = 1. To choose the next element

e ∈ U \ E, a cluster j ∈ [1, 10] is first chosen by sampling non-uniformly according to

wcj . Next, an element e ∈ cj is chosen uniformly at random. If e ∈ Si∗ , the cj is

rewarded by setting wcj = 2wcj , else cj is penalized by setting wcj = 0.5wcj .

For ODT and Generalized ODT, use the following algorithm as our fourth algorithm:

• Greedy: This is a classic greedy algorithm described in [63], [27], [1], [20], [44]. At each

iteration, it chooses the element which keeps the decision tree as balanced as possible.

More formally at each state (E,H) we choose an element e ∈ U \ E that minimizes:

|Pr(i ∈ H : ri(e) = 1)− Pr(i ∈ H : ri(e) = 0)|

While the rule is the same for ODT and Generalized ODT, the set of uncovered com-

patible scenarios may be different, which affects the sequence of chosen elements.

2.5.3 Results

The performance of these algorithms are reported in the tables below. We show normal-

ized costs which is the actual cost divided by the minimum cost over all algorithms to show

the differences better. The best algorithm is marked bold. For ODT and Adaptive MIR, we

also report (as “Best cost”) the actual minimum cost over the four algorithms.
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Alg

Ki |Si| [|Si|/2, |Si|) [|Si|/4, |Si|) [1, |Si|/2) [1, |Si|/4)

ASR 1.000 1.000 1.000 1.000 1.000

Clustering 1.100 1.132 1.143 1.359 1.584

Static 10.080 5.497 5.000 3.216 2.666

AdStatic 1.013 1.017 1.020 1.042 1.073

Bestcost 92.50 70.38 60.98 26.21 14.48

Table 2.2: Costs for Adaptive MIR on ML-100 dataset for uniform

distribution and some threshold Ki, which is randomly chosen

from the specified interval.

Alg

Perm
1 2 3

ASR 1.000 1.000 1.000

Clustering 1.116 1.095 1.103

Static 10.500 10.079 10.161

AdStatic 1.018 1.018 1.019

Bestcost 86.20 92.72 91.23

Table 2.3: Costs for Adaptive MIR on

ML-100 dataset for power law distri-

bution with α = −2, and Ki = |Si|.

Algorithm

Dataset
1 2 3 4 5 6 7 8 9 10

ASR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Greedy 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Static 1.179 1.189 1.180 1.211 1.190 1.191 1.218 1.166 1.193 1.203

AdStatic 1.035 1.038 1.033 1.036 1.033 1.033 1.043 1.035 1.032 1.036

Best cost 8.704 8.719 8.717 8.706 8.713 8.742 8.717 8.697 8.723 8.736

Table 2.4: Normalized costs for ODT with uniform distribution

Adaptive MIR: The results for this part is summarized in Table 2.2 and 2.3. As we can

see, ASR consistently performs better than all other algorithms in this setting, with AdStatic

is the second best. The performance of Static algorithm, which is significantly worse than

its counterparts demonstrates the importance of adaptive algorithms. Table 2.3 shows the

performance when Ki = |Si| and the scenarios are drawn from power-law distributions with

α = −2. For α = −2, three random permutations are used to test the stability of the

expected cost of each algorithm. The instability of the expected cost across permutations

of the scenario distributions is indicative of the inherent skew in the dataset. Still, ASR

consistently outperforms the other three algorithms.

Algorithm

Dataset
1 2 3 4 5 6 7 8 9 10

ASR 1.001 1.002 1.001 1.003 1.002 1.003 1.001 1.003 1.001 1.003

Greedy 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Static 1.203 1.207 1.193 1.231 1.214 1.191 1.233 1.222 1.262 1.222

AdStatic 1.069 1.063 1.065 1.059 1.066 1.058 1.067 1.063 1.071 1.069

Best cost 8.415 8.427 8.429 8.400 8.422 8.449 8.419 8.403 8.431 8.449

Table 2.5: Normalized costs for ODT with power-law distribution α = −1/2
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Algorithm

Dataset
1 2 3 4 5 6 7 8 9 10

ASR 1.038 1.051 1.010 1.000 1.005 1.000 1.024 1.027 1.041 1.006

Greedy 1.000 1.000 1.000 1.008 1.000 1.005 1.000 1.000 1.000 1.000

Static 1.308 1.361 1.320 1.320 1.284 1.336 1.335 1.345 1.339 1.383

AdStatic 1.199 1.250 1.193 1.209 1.149 1.195 1.198 1.237 1.187 1.237

Best cost 7.097 7.075 7.214 7.082 7.302 7.398 7.048 7.099 7.156 7.122

Table 2.6: Normalized costs for ODT with power-law distribution α = −1

Algorithm

Dataset
1 2 3 4 5 6 7 8 9 10

ASR 1.118 1.153 1.011 1.116 1.000 1.000 1.000 1.112 1.124 1.000

Greedy 1.000 1.000 1.000 1.000 1.050 1.193 1.096 1.000 1.000 1.011

Static 1.684 1.271 1.435 1.397 1.136 1.336 1.867 1.328 1.548 1.531

AdStatic 1.624 1.235 1.414 1.366 1.112 1.293 1.604 1.269 1.468 1.364

Best cost 3.721 4.085 4.753 4.149 5.884 4.195 4.267 4.373 4.224 4.952

Table 2.7: Normalized costs for ODT with power-law distribution α = −2

ODT: Table 2.4 shows the expected costs of these algorithms for the ODT problem

with uniform distribution. It turns out ASR and Greedy algorithms have the same cost for

all datasets, while they both outperform Static and AdStatic. Table 2.5 shows the results

when we have power-law distribution with α = −1/2. Greedy does slightly better than

ASR on all instances; both Greedy and ASR are much better than Static and AdStatic.

Table 2.6 has the results for power-law distribution with α = −1. Both Greedy and ASR

still outperform Static and AdStatic on all instances. ASR achieves the best solution on 2

out of 10 instances, whereas Greedy is the best on the others. Table 2.7 is for power-law

distribution with α = −2. Here, ASR is the best on 4 out of 10 instances, and again both

greedy and ASR outperform Static and AdStatic.

Alg

Th
1 2 3 4 5

ASR 1.000 1.000 1.000 1.000 1.001

Greedy 1.000 1.000 1.000 1.000 1.001

Static 1.192 1.088 1.111 1.061 1.008

AdStatic 1.035 1.040 1.088 1.050 1.003

Table 2.8: Average cost for Generalized ODT with

uniform distribution

Alg

Th
1 2 3 4 5

ASR 1.003 1.000 1.000 1.000 1.004

Greedy 1.000 1.005 1.010 1.007 1.002

Static 1.218 1.126 1.084 1.084 1.054

AdStatic 1.065 1.075 1.060 1.068 1.050

Table 2.9: Average cost for Generalized ODT with

power-law distribution α = −1/2
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Alg

Th
1 2 3 4 5

ASR 1.020 1.010 1.004 1.085 1.064

Greedy 1.001 1.004 1.010 1.000 1.000

Static 1.333 1.213 1.177 1.120 1.111

AdStatic 1.205 1.176 1.163 1.113 1.108

Table 2.10: Average cost for Generalized ODT with

power-law distribution α = −1

Alg

Th
1 2 3 4 5

ASR 1.063 1.048 1.074 1.041 1.043

Greedy 1.035 1.038 1.045 1.058 1.059

Static 1.453 1.356 1.324 1.285 1.258

AdStatic 1.375 1.342 1.315 1.282 1.256

Table 2.11: Average cost for Generalized ODT with

power-law distribution α = −2

Generalized ODT: For these tests, we report the average (normalized) costs for each

distribution and threshold. Each entry is an average over the 10 datasets. Table 2.8 is for

the uniform distribution, Table 2.9 is for power-law α = −1/2, Table 2.10 is for power-law

α = −1 and Table 2.11 is for power-law α = −2. ASR performs the best in about half the

settings, and Greedy is the best in the others. Note that the best average-number is more

than 1 in some cases: this shows that the corresponding algorithm was not the best on all

10 datasets. As for ODT, we see that both ASR and Greedy are better than Static and

AdStatic in all cases.

Results on synthetic data: Table 2.12 shows the results on the synthetic instances.

ASR and AdStatic have the best result simultaneously, and Greedy’s performance is much

worse. It is somewhat surprising that even Static performs much better than Greedy.

Dataset SYN-50 SYN-100 SYN-150 SYN-200

Alg

Th
1 3 5 1 3 5 1 3 5 1 3 5

ASR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Static 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09

AdStatic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Greedy 9.64 9.46 9.27 18.73 18.55 18.36 27.82 27.64 27.46 36.91 36.73 36.55

Table 2.12: Normalized cost for ODT (Threshold = 1) and Generalized ODT on SYN-K.

Summary: For Adaptive MIR, ASR consistently does better than all the other algo-

rithms, and AdStatic is the second best. For ODT and Generalized ODT, both ASR and
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Greedy perform well on the real dataset and the difference in their objectives is typically

small. The largest gaps were for ODT with power-law distribution α = −2 (Table 2.7) where

Greedy is 19% worse than ASR on data 6 and ASR is 15% worse than Greedy on data 2.

Combined with the fact that Greedy performs poorly on worst-case instances (Table 2.12),

ASR can be a good alternative for Greedy in practice.

We also observe that it is important to use adaptive algorithms, as Static consistently

performs the worst in all cases. For ODT, static is on average 30% worse than the best

algorithm, and for Generalized ODT it is on average 18% worse. In Adaptive MIR, Static

performance is highly dependent on the threshold and it can change from being 206% to

more than 10 times worse (1050%) than ASR.



CHAPTER III

Optimal Decision Tree with Noisy Outcomes

The results in this chapter appear in [59].

3.1 Introduction

The classic optimal decision tree (ODT) problem involves identifying an initially unknown

hypothesis x̄ that is drawn from a known probability distribution over a set of m possible

hypotheses. We can perform tests in order to distinguish between these hypotheses. Each test

produces a binary outcome (positive or negative) and the precise outcome of each hypothesis-

test pair is known beforehand.1 So an instance of ODT can be viewed as a ±1 matrix with

the hypotheses as rows and tests as columns. The goal is to identify hypothesis x̄ using the

minimum number of tests in expectation.

As a motivating application, consider the following task in medical diagnosis [67]. A doc-

tor needs to diagnose a patient’s disease by performing tests. Given an a priori probability

distribution over possible diseases, what sequence of tests should the doctor perform? An-

other application is in active learning [27]. Given a set of data points, one wants to learn a

classifier that labels the points correctly as positive and negative. There is a set of m possible

classifiers which is assumed to contain the true classifier. In the Bayesian setting, which we

consider, the true classifier is drawn from some known probability distribution. The goal is

1We consider binary test outcomes only for simplicity: our results also hold for finitely many outcomes.

56
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Figure 3.1: A binary classifier with a specified threshold. The label * can be either + or -.

to identify the true classifier by querying labels at the minimum number of points (in expec-

tation). Other applications include entity identification in databases [20] and experimental

design to choose the most accurate theory among competing candidates [40].

An important issue that is not considered in the classic ODT model is that of unknown

or noisy outcomes. In fact, our research was motivated by a dataset involving toxic chemical

identification where the outcomes of many hypothesis-test pairs are stated as unknown (one

of our experimental results is also on this dataset). We might need to consider noise in

Bayesian active learning to have a more robust model. For example, when we have linear

classifiers the label of the data points that fall very close to the boundaries of the classifiers

can change with a small perturbation. To avoid this, we can consider a threshold for the

minimum distance of the data points from a classifier to have an accurate label. So if a data

point’s distance to the true classifier is less than that threshold, the label can be unknown

(See Figure 3.1). Prior work incorporating noise in ODT [40] is restricted to settings with

very sparse noise. In this chapter, we design approximation algorithms for the noisy optimal

decision tree problem in full generality.
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We consider a standard model for persistent noise. Some outcomes (i.e., entries in the

hypothesis-test matrix) are random with a known distribution: for simplicity we treat each

noisy outcome as an unbiased ±1 random variable. Our results extend directly to the case

when each noisy outcome has a different probability of being ±1. Persistent noise means

that repeating the same test always produces the same ±1 outcome. We assume that the

instance is identifiable, i.e., a unique hypothesis can always be identified irrespective of the

noisy outcomes. (This assumption can be relaxed: see §3.5.)

We consider both non-adaptive policies (where the test sequence is fixed upfront) and

adaptive policies (where the test sequence is built incrementally and depends on observed

test outcomes). Clearly, adaptive policies perform at least as well as non-adaptive ones.2

However, non-adaptive policies are very simple to implement (requiring minimal incremental

computation) and may be preferred in time-sensitive applications. Our main contributions

are:

• an O(logm)-approximation algorithm for non-adaptive ODT with noise.

• an O(min(h, r) + logm)-approximation algorithm for adaptive ODT with noise, where

h (resp. r) is the maximum number of noisy outcomes for any hypothesis (resp. test).

• an O(logm)-approximation algorithm for adaptive ODT with noise when every test has

at least m−O(
√
m) noisy outcomes.

• experimental results on applications to toxic chemical identification and active learning.

We note that both non-adaptive and adaptive versions (even for usual ODT) generalize the

set cover problem: so an Ω(logm) approximation ratio is the best possible (unless P=NP).

Related Work The optimal decision tree problem (without noise) has been extensively

studied for several decades [34, 53, 67, 63, 1, 3, 21, 49]. The state-of-the-art result [49] is an

2There are also instances where the relative gap between the best adaptive and non-adaptive policies is Ω̃(m).
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O(logm)-approximation, for instances with arbitrary probability distribution and costs. It

is also known that ODT cannot be approximated to a factor better than Ω(logm), unless

P=NP [20].

The application of ODT to Bayesian active learning was formalized in [27]. There are also

several results on the statistical complexity of active learning. e.g. [8, 51, 72], where the focus

is on proving bounds for structured hypothesis classes. In contrast, we consider arbitrary

hypothesis classes and obtain computationally efficient policies with provable approximation

bounds relative to the optimal (instance specific) policy. This approach is similar to that in

[27, 44, 38, 40, 26, 58].

The noisy ODT problem was studied previously in [40]. Using a connection to adaptive-

submodularity [38], they obtained an O(log2 1
pmin

)-approximation algorithm for noisy ODT

in the presence of very few noisy outcomes; here pmin ≤ 1
m

is the minimum probability of

any hypothesis.3 In particular, the running time of the algorithm in [40] is exponential in

the number of noisy outcomes per hypothesis, which is polynomial only if this number is

at most logarithmic in the number of hypotheses/tests. Our result provides the following

improvements (i) the running time is polynomial irrespective of the number of noisy outcomes

and (ii) the approximation ratio is better by at least one logarithmic factor. We note that a

better O(logm) approximation ratio (still only for very sparse noise) follows from subsequent

work on the “equivalence class determination” problem by [26]. For this setting, our result

is also an O(logm) approximation, but the algorithm is simpler. More importantly, ours is

the first result that can handle any number of noisy outcomes.

Other variants of noisy ODT have also been considered, e.g. [69, 11, 24], where the goal

is to identify the correct hypothesis with at least some target probability. The theoretical

results in [24] provide “bicriteria” approximation bounds where the algorithm has a larger

3The paper [40] states the approximation ratio as O(log 1/pmin) because it relied on an erroneous claim in [38]. The correct

approximation ratio, based on [70, 39], is O(log2 1/pmin).
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error probability than the optimal policy. Our setting is different because we require zero

probability of error.

Many algorithms for ODT (including ours) rely on some underlying submodularity prop-

erties. We briefly survey some background results. The basic submodular cover problem

was first considered by [87], who proved that the natural greedy algorithm is a (1 + ln 1
ε
)-

approximation algorithm, where ε is the minimal positive marginal increment of the function.

[6] obtained an O(log 1
ε
)-approximation algorithm for the submodular ranking problem, that

involves simultaneously covering multiple submodular functions; [55] extended this result

to also handle costs. [71] studied an adaptive version of the submodular ranking problem,

which we explain in Chapter II. We utilize results/techniques from these papers.

Finally, we note that there is also work on minimizing the worst-case (instead of average

case) cost in ODT and active learning [68, 75, 46, 45]. These results are incomparable to

ours because we are interested in the average case, i.e. minimizing expected cost.

3.2 Problem Definition

We start with defining the optimal decision tree with noise (ODTN) formally. There

is a set of m possible hypotheses with a probability distribution {πx}mx=1, from which an

unknown hypothesis x̄ is drawn. There is also a set U = [n] of binary tests. Each test

e ∈ U is associated with a 3-way partition T+(e), T−(e), T ∗(e) of the hypotheses, where the

outcome of test e is (a) positive if x̄ lies in T+(e), (b) negative if x̄ ∈ T−(e), and (c) positive

or negative with probability 1
2

each if x̄ ∈ T ∗(e) (these are noisy outcomes). We assume that

conditioned on x̄, each noisy outcome is independent. We also use rx(e) to denote the part
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of test e that hypothesis x lies in, i.e.

rx(e) =


−1 if x ∈ T−(e)

+1 if x ∈ T+(e)

∗ if x ∈ T ∗(e)

While we know the 3-way partition T+(e), T−(e), T ∗(e) for each test e ∈ U upfront, we

are not aware of the actual outcomes for the noisy hypothesis-test pairs. It is assumed that

the realized hypothesis x̄ can be uniquely identified by performing all tests, regardless of

the outcomes of ∗-tests. This means that for every pair x, y ∈ [m] of hypotheses, there is

some test e ∈ U with x ∈ T+(e) and y ∈ T−(e) or vice-versa. The goal is to perform an

adaptive (or non-adaptive) sequence of tests to identify hypothesis x̄ using the minimum

expected number of tests. Note that expectation is taken over both the prior distribution of

x̄ and the random outcomes of noisy tests for x̄.

In our algorithms and analysis, it will be convenient to work with an expanded set

of hypotheses M . For a binary vector b ∈ {±1}U and hypothesis x ∈ [m], we say b is

consistent with x and denote b ∼ x, if be = rx(e) for each e ∈ U with rx(e) 6= ∗. Let

M = {(b, x) ∈ {±1}U × [m] : b ∼ x}, and Mx ⊆M be all copies associated with a particular

hypothesis x ∈ [m]; note that {Mx}mx=1 is a partition of M . Each “expanded” hypothesis

(b, x) ∈ M corresponds to the case where the true hypothesis x̄ = x and the test-outcomes

are given by b. We assign the probability qb,x = πx/2
hx to each (b, x) ∈ M , where hx is

the number of *-tests for x. Note that conditioned on x̄ = x, the probability of observing

outcomes b is exactly 2−hx ; so Pr[x̄ = x and test outcomes are b] = qb,x. For any (b, x) ∈ M

and e ∈ U , define rb,x(e) = b(e) to be the observed outcome of test e if x̄ = x and test-

outcomes are b. For every expanded hypothesis (b, x) ∈M and test e ∈ U , define

(3.1) Tb,x(e) =

 T+(e) if rb,x(e) = −1

T−(e) if rb,x(e) = +1

,
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which is the subset of (original) hypotheses that can definitely be ruled-out based on test e

if x̄ = x and the test-outcomes are given by b. Note that hypotheses in T ∗(e) are never part

of Tb,x(e) as their outcome on test e can be positive/negative (so they cannot be ruled-out).

For every hypothesis (b, x) ∈M , define a monotone submodular function fb,x : 2U → [0, 1]:

(3.2) fb,x(S) = |
⋃
e∈S

Tb,x(e)| ·
1

m− 1
, ∀S ⊆ U,

which equals the fraction of the m − 1 hypotheses (excluding x) that have been ruled-out

based on the tests in S if x̄ = x and test-outcomes are given by b. Assuming x̄ = x and

test-outcomes are given by b, hypothesis x is uniquely identified after tests S if and only if

fb,x(S) = 1.

A non-adaptive policy is specified by just a permutation of tests. The policy performs

tests in this sequence and eliminates incompatible hypotheses until there is a unique com-

patible hypothesis (which is x̄). Note that the number of tests performed under such a policy

is still random (depends on x̄ and outcomes of noisy tests). An adaptive policy chooses

tests incrementally, depending on prior test outcomes. The state of a policy is a tuple (E, d)

where E ⊆ U is a subset of tests and d ∈ {±1}E denotes the observed outcomes on tests in

E. An adaptive policy is specified by a mapping Φ : 2U × {±1}U → U from states to tests,

where Φ(E, d) is the next test to perform at state (E, d). Equivalently, we can view a policy

as decision tree with nodes corresponding to states, labels at nodes representing the test

performed at that state and branches corresponding to the ±1 outcome at the current test.

As the number of states can be exponential, we cannot hope to specify arbitrary adaptive

policies. Instead, we want implicit policies Φ, where given any state (E, d), the test Φ(E, d)

can be computed efficiently. This would imply that the total time taken under any outcome

is polynomial. We note that an optimal policy Φ∗ can be very complex and the map Φ∗(E, d)

may not be efficiently computable. We will still compare the performance of our (efficient)

policy to Φ∗.
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In this chapter, we consider the persistent noise model. That is, repeating a test e

with x̄ ∈ T ∗(e) always produces the same outcome. An alternative model is non-persistent

noise, where each run of test e with x̄ ∈ T ∗(e) produces an independent random outcome.

The persistent noise model is more appropriate to handle missing data. It also contains the

non-persistent noise model as a special case (by introducing multiple tests with identical

partitions). One can easily obtain an adaptive O(log2m)-approximation algorithm for the

non-persistent model that succeeds with high probability using existing algorithms for noise-

less ODT [21] and repeating each test O(logm) times. The persistent-noise model that we

consider is much harder.

3.3 Non-Adaptive Algorithm

Our algorithm is based on a reduction to the submodular ranking problem [6], defined

below.

Submodular Function Ranking (SFR) An instance of SFR consists of a ground set U of

elements and a collection of monotone submodular functions {f1, ..., fm}, fx : 2U → [0, 1],

with fx(∅) = 0 and fx(U) = 1 for all x ∈ [m]. Additionally, there is a weight wx ≥ 0 for

each x ∈ [m]. A solution is a permutation of the elements U . Given any permutation σ

of U , the cover time of function f is C(f, σ) := min{t |f(∪i∈[t]σ(i)) = 1} where σ(i) is

the ith element in σ. In words, it is the earliest time when the value of f reaches the unit

threshold. The goal is to find a permutation σ of [n] with minimal weighted cover time∑
x∈[m] w(x) · C(fx, σ). We will use the following result:

Theorem III.1 ([6]). There is an O(log 1
ε
)-approximation for SFR where ε is minimum

positive marginal increment of any function.

The non-adaptive ODTN problem can be expressed as an instance of SFR as follows. The
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elements are the tests U . For each hypothesis-copy (b, x) ∈ M there is a function fb,x (see

(3.2)) with weight qb,x. Based on the definition of these functions, the parameter ε = 1
m−1

.

To see the equivalence, note that a solution to non-adaptive ODTN is also a permutation

σ of U and hypothesis x is uniquely identified under outcome (b, x) exactly when function

fb,x has value one. Moreover, the objective of the ODTN problem is the expected number

of tests in σ to identify the realized hypothesis x̄, which equals

m∑
x=1

πx
∑
b∼x

2−hx · Cb,x(σ) =
∑

(b,x)∈M

qb,x · Cb,x(σ),

where Cb,x(σ) is the cover-time of function fb,x. It now follows that this SFR instance is

equivalent to the non-adaptive ODTN instance. However, we cannot apply Theorem III.1

directly to obtain an O(logm) approximation. This is because we have an exponential

number of functions (note that |M | can be exponential in m), which means that a direct

implementation of the algorithm from [6] requires exponential time. Nevertheless, we will

show that a variant of the SFR algorithm can be used to obtain:

Theorem III.2. There is an O(logm)-approximation for non-adaptive ODTN.

The SFR algorithm [6] is a greedy-style algorithm that at any point, having already chosen

tests E, assigns a score to each test e ∈ U \ E of

(3.3) GE(e) :=
∑

(b,x)∈M :fb,x(E)<1

qb,x
fb,x({e} ∪ E)− fb,x(E)

1− fb,x(E)
=

∑
(b,x)∈M

qb,x ·∆E(b, x, e),

(3.4) ∆E(b, x, e) =


fb,x({e}∪E)−fb,x(E)

1−fb,x(E)
, if fb,x(E) < 1;

0, otherwise.

where ∆E(b, x, e) is the “gain” of test e for the hypothesis-copy (b, x). At each step, the

algorithm chooses the test with the maximum score. However, we do not know how to



65

compute the score (3.3) in polynomial time. Instead, using the fact that GE(e) is the

expectation of ∆E(b, x, e) over the hypothesis-copies (b, x) ∈ M , we will show that we can

obtain a constant-approximate maximizer by sampling. Moreover, we use the following

extension of Theorem III.1, which follows directly from the analysis in [55].

Theorem III.3 ([6, 55]). Consider the SFR algorithm that selects at each step, an element

e with GE(e) ≥ Ω(1) ·maxe′∈U GE(e′). This is an O(log 1
ε
) approximation algorithm.

So, if we always find an approximate maximizer for GE(e) by sampling then Theorem III.2

would follow from Theorem III.3. However, this sampling approach is not sufficient because

it can fail when the value GE(e) is very small. In order to deal with this, a key observation is

that when the score GE(e) is small for all tests e then it must be that (with high probability)

the already-performed tests E uniquely identify hypothesis x̄. So any future tests would not

affect the expected cover time by much. This is formalized below.

As the realized hypothesis x̄ can always be identified uniquely, for any pair x, y ∈ [m] of

hypotheses, there is a test where x and y have opposite outcomes (i.e. one is + and the other

−). So there is a set L of at most
(
m
2

)
tests where hypothesis x̄ will be uniquely identified

by performing all the tests in L. The non-adaptive ODTN algorithm (Algorithm 3 below)

involves two phases. In the first phase, we run the SFR algorithm using sampling to get

estimates GE(e) of the scores. If at some step, the maximum sampled score is less than

m−5 then we go to the second phase where we perform all the tests in L and stop. The

number of samples used to obtain each estimate is polynomial in m; so the overall runtime

is polynomial.

We use the following sampling lemma, which follows from Chernoff bounds.

Lemma III.4. Let X be a [0, 1] bounded random variable with EX ≥ Ω(m−5). Let X̄ denote

the average of m6 many independent samples of X. Then Pr
[
X̄ /∈ [1

2
EX, 2EX]

]
≤ e−Ω(m).
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Algorithm 3 Non-adaptive ODTN algorithm.

1: initially E ← ∅ and sequence σ = ∅.
2: while E 6= U do (Phase 1 begins)

3: for each e ∈ U , compute an estimate GE(e) of the score GE(e) by sampling from M independently

N = m6 times.

4: let e∗ denote the test e ∈ U \ E that maximizes GE(e).

5: if GE(e) ≥ 1
4m
−5 then

6: update E ← E ∪ {e∗} and append e∗ to sequence σ.

7: else

8: exit the while loop. (Phase 1 ends)

9: end if

10: end while

11: append the tests in L \ E to sequence σ. (Phase 2)

12: output non-adaptive sequence σ.

Proof. Let X1, ..., XN be i.i.d. samples of random variable X where N = m6 is the number

of samples. Letting Y =
∑

i∈[N ] Xi, the usual Chernoff bound implies for any δ ∈ (0, 1),

Pr
(
Y /∈ [(1− δ)EY, (1 + δ)EY ]

)
≤ exp(−δ

2

2
· EY ).

Setting δ = 1
2

and using the assumption EY = N · EX = Ω(m), the lemma follows.

The next lemma shows that sampling does find an approximate maximizer unless the

score is very small, and also bounds the “failure” probability.

Lemma III.5. Consider any step in the algorithm with S = maxe∈U GE(e) and S̄ =

maxe∈U GE(e) with GE(e∗) = S̄. Call this step a failure if (i) S̄ < 1
4
m−5 and S ≥ 1

2
m−5, or

(ii) S̄ ≥ 1
4
m−5 and GE(e∗) < S

4
. Then the probability of failure is at most e−Ω(m).

Proof. We will consider the two types of failures separately. For the first type, suppose

S ≥ 1
2
m−5. Using Lemma III.4 on the test e ∈ U with GE(e) = S, we obtain

Pr[S̄ <
1

4
m−5] ≤ Pr[GE(e) <

1

4
m−5] ≤ e−Ω(m).

So the probability of the first type of failure is at most e−Ω(m).
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For the second type of failure, we consider two further cases:

• S < 1
8
m−5. For any e ∈ U we have GE(e) ≤ S < 1

8
m−5. Note that GE(e) is the

the average of m6 many independent samples each with mean GE(e). We now upper

bound the probability of the event Be that GE(e) ≥ 1
4
m−5. We first artificially increase

each sample mean to 1
8
m−5: note that this only increases the probability of event Be.

Now, using Lemma III.4 we obtain Pr[Be] ≤ e−Ω(m). By a union bound, it follows that

Pr[S̄ ≥ 1
4
m−5] ≤∑e∈U Pr[Be] ≤ e−Ω(m).

• S ≥ 1
8
m−5. Consider now any e ∈ U with GE(e) < S/4. By Lemma III.4 (artificially

increasing GE(e) to S/4 if needed), it follows that Pr[GE(e) > S/2] ≤ e−Ω(m). Now

consider the test e′ with GE(e′) = S. Again, by Lemma III.4, it follows that Pr[GE(e′) ≤

S/2] ≤ e−Ω(m). This means that test e∗ has GE(e∗) ≥ GE(e′) > S/2 and GE(e∗) ≥ S/4

with probability 1− e−Ω(m). In other words, assuming S ≥ 1
8
m−5, the probability that

GE(e∗) < S/4 is at most e−Ω(m).

Adding the probabilities over all possibilities for failures, the lemma follows.

Based on Lemma III.5, in the remaining analysis we condition on our algorithm encoun-

tering no failures: this occurs with probability 1− e−Ω(m).

Lemma III.6. Assume that there are no failures. Consider the end of phase 1 in our

algorithm, i.e. the first step with GE(e∗) < 1
4
m−5. The probability that the realized hypothesis

x̄ is not uniquely identified at this point is at most m−2.

Proof. Let E denote the set of all previous tests and z the probability of not identifying the

realized hypothesis x̄ after performing tests E. For a contradiction, suppose that z > m−2.
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Let px(y) = Prb∼x[y not ruled out by E|x̄ = x] denote the probability that when x̄ = x,

hypothesis y is not ruled out after performing tests E. Note that

z =
m∑
x=1

πx · Pr
b∼x

[E doesn’t rule out [m] \ x]

≤
m∑
x=1

πx
∑

y∈[m]\x

px(y)

≤ m

m∑
x=1

(
πx · max

y∈[m]\x
px(y)

)

It follows that there is some x ∈ [m] with πx · maxy∈[m]\x px(y) ≥ z
m2 . So there is some

x, y ∈ [m] with πx · px(y) ≥ z
m2 > m−4, where we used the assumption that z > m−2.

Recall that there is some test e′ that separates x and y deterministically. Let B′ = {b ∼

x : y 6∈ ∪e∈ETb,x(e)}. Note that
∑

b∈B′ qb,x = πx · px(y). For any b ∈ B′ we have (i)

y 6∈ ∪e∈ETb,x(e) which implies fb,x(E) and (ii) y ∈ Tb,x(e
′) (this is true for all b ∼ x).

Therefore ∆E(b, x, e′) ≥ 1
m−1

for all b ∈ B′, which implies:

GE(e′) ≥
∑
b∼x

qb,x∆E(b, x, e∗) ≥
∑
b∈B′

qb,x
1

m− 1
=
πx · px(y)

m− 1
> m−5.

So we obtain S = maxe∈U GE(e) ≥ m−5 and GE(e∗) < 1
4
m−5 (as this is the end of phase

1). This means that our algorithm has encountered a failure (see case (i) in Lemma III.5),

which is a contradiction to the “no failure” assumption.

Proof of Theorem III.2. Assume that there are no failures. We bound the expected

costs (number of tests) from phase 1 and 2 separately. By Lemma III.5, the test chosen in

each step of phase 1 is a 4-approximate maximizer (see case (ii) failure) of the score used in

the ASR algorithm. So, by Theorem III.3, the expected cost in phase 1 is at most O(logm)

times the optimum. By Lemma III.6, the probability of performing tests from phase 2 is at
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most m−2. As there are |L| ≤ m2 tests in phase 2, the expected cost is O(1). So we obtain

an O(logm)-approximation algorithm.

3.4 Adaptive Algorithms

Our adaptive algorithm chooses between two algorithms (ODTNr and ODTNh) based

on the noise sparsity parameters h (maximum number of noisy outcome per hypothesis),

and r (maximum number of noisy outcome per test). These two algorithms maintain the

posterior probability of each hypothesis based on the previous test outcomes, and use these

probabilities to calculate a “score” for each test. The score of a test has two components

(i) a term that prioritizes splitting the candidate hypotheses in a balanced way and (ii)

terms that correspond to the expected number of hypotheses eliminated. We maintain

the following information at each point in the algorithm: already performed tests E ⊆ U ,

compatible hypotheses H ⊆ [m] and the posterior probability for each x ∈ H. The main

difference between the two algorithms we have, is in the defining the metric for component

(i).

The high-level idea in both algorithms is to view any ODT instance I as a suitable

instance J of adaptive submodular ranking (ASR). Then we will use and modify an existing

framework of analysis of ASR from Chapter II.

An equivalent ASR instance J . This involves the expanded hypothesis set M = ∪mx=1Mx

where Mx are all copies (b, x) of hypothesis x ∈ [m]. Each hypothesis (b, x) ∈ M occurs

with probability qb,x = πx/2
hx . To reduce notation, we use q(S) =

∑
(b,x)∈S qb,x for any

subset S ⊆ M . Each hypothesis (b, x) is also associated with: (i) submodular function

fb,x : 2U → [0, 1] and (ii) feedback function rb,x : U → {+,−} where rb,x(e) is the outcome of

test e under hypothesis (b, x). The goal in the ASR instance is to adaptively select a subset

S ⊆ U such that the value fb,x(S) = 1 for the realized hypothesis (b, x). The objective is to
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minimize the expected cost E[|S|]. Note that hypothesis (b, x) is covered when fb,x(E) = 1,

which is equivalent to identifying hypothesis x ∈ [m] when the test outcomes are given by b.

Lemma III.7. The ASR instance J is equivalent to ODT instance I.

Proof. We will show that any feasible decision tree for instance J (resp. I) is also feasible

for instance I (resp. I) with the same objective. In one direction, let T be a decision

tree for ASR instance J . For any hypothesis (b, x) ∈ M let Pb,x denote the unique path

traced in T and let Sb,x denote the tests performed. Then we have fb,x(Sb,x) = 1 which

means
⋃
e∈Sb,x Tb,x(e) = [m] \ x. Now consider T as a decision tree for the ODTN instance

I. Condition on hypothesis x ∈ [m] and outcomes b on the ∗-tests for x, which occurs with

probability qb,x = πx/2
hx . Then, it is clear that the feedback from any test e is rb,x(e) and so

the path traced in T is just Pb,x. Moreover, the set of incompatible hypotheses based on test

e is Tb,x(e). So the set of incompatible hypotheses at the end of Pb,x is
⋃
e∈Sb,x Tb,x(e) = [m]\x,

which means x is identified. Taking an expectation over all x and b, it follows that T is a

feasible decision tree for I with cost at most that for instance J .

In the other direction, let T ′ be any decision tree for instance ODTN I. Again condition

on hypothesis x ∈ [m] and outcomes b on the ∗-tests for x (with probability qb,x). Then a

unique path P ′b,x is traced in T ′, and let S ′b,x denote the tests on this path. As before, the

set of incompatible hypotheses at the end of P ′b,x is
⋃
e∈S′b,x

Tb,x(e) = [m] \ x because x is

identified. Now consider T ′ as a decition tree for ASR instance J . Under hypothesis b, x, it

is clear that path P ′b,x is traced and so tests S ′b,x are selected. It follows that fb,x(S
′
b,x) = 1

which means that hypothesis b, x is covered at the end of P ′b,x. So T ′ is a feasible decision
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tree for J . Taking expectations, the cost for J is at most that for instance I.

3.4.1 O(h+ logm)-Approximation Algorithm

This algorithm is based on directly applying the ASR algorithm from Chapter II on

instance J . It is described in Algorithm 4 below. This involves maintaining the set H ′ ⊆M

of all compatible and uncovered hypotheses-copies, and iteratively selecting the test e with

maximum score (3.6).

Algorithm 4 Algorithm for ASR instance J from Chapter II.

1: initially E ← ∅, H ′ ←M .

2: while H ′ 6= ∅ do

3: for any test e ∈ U , let Le(H
′) be the smaller cardinality set among:

(3.5) {(b, x) ∈ H ′ : rb,x(e) = +1} and {(b, x) ∈ H ′ : rb,x(e) = −1} .

4: select test e ∈ U \ E that maximizes:

(3.6) q (Le(H
′)) +

∑
(b,x)∈H′

qb,x ·
fb,x(e ∪ E)− fb,x(E)

1− fb,x(E)
.

5: remove incompatible and covered hypotheses from H ′ based on the feedback from e.

6: E ← E ∪ {e}
7: end while

One issue that we need to handle is that the size of the expanded hypothesis set M

is exponentially large; recall that |M | ≤ 2h · m. So direct use of this algorithm requires

exponential time in maintaining H ′ and computing the score (3.6). However, we can use the

structure of instance J to implicitly perform these calculations in polynomial time.

Maintaining and using H ′. We just maintain the number nx = |Mx ∩H ′| of copies of each

original hypothesis x ∈ [m]. In each iteration, after performing test e, this number nx (for

x ∈ [m]) can be easily updated as follows:

If rx(e) = ∗ then nx reduces by factor 2; otherwise nx remains the same.
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For any test e, we can also implicitly describe set Le(H
′) in (3.5) as follows. Note that

|{(b, x) ∈ H ′ : rb,x(e) = +1}| =
∑

x∈[m]:rx(e)=+1

nx +
1

2

∑
x∈[m]:rx(e)=∗

nx.

Similarly,

|{(b, x) ∈ H ′ : rb,x(e) = −1}| =
∑

x∈[m]:rx(e)=−1

nx +
1

2

∑
x∈[m]:rx(e)=∗

nx.

So the smaller of the two sets in (3.5) can be described by the smaller of the above two

expressions that involve nxs. Moreover, if Le(H
′) corresponds to the +1 outcome, we can

calculate

q(Le(H
′) =

∑
x∈[m]:rx(e)=+1

πx
2hx
· nx +

1

2

∑
x∈[m]:rx(e)=∗

πx
2hx
· nx.

If Le(H
′) corresponds to the −1 outcome then there is a similar expression.

Computing the score (3.6). We already discussed how to calculate q(Le(H
′)). So it only

remains to calculate the second term in (3.6). Let H = {x ∈ [m] : Mx ∩ H ′ 6= ∅} = {x ∈

[m] : nx ≥ 1} denote the compatible (original) hypotheses, i.e. those with at least one copy

in H ′. For each hypothesis x ∈ H let px = nx · πx2hx
. To reduce notation we use the shorthand

p(S) =
∑

x∈S px for any subset S ⊆ [m]. Note that px/p(H) equals the posterior probability

of hypothesis x ∈ H, based on all previously observed test outcomes. We will show that the

second term in (3.6) is equal to:

(3.7)

|T−(e) ∩H|
|H| − 1

· p
(
T+(e) ∩H

)
+
|T+(e) ∩H|
|H| − 1

· p
(
T−(e) ∩H

)
+

1

2

|H \ T ∗(e)|
|H| − 1

· p (T ∗(e) ∩H) .

We first prove the following lemma that relies on the definitions of fb,x, Tb,x etc.

Lemma III.8. Consider any state (E,H ′) of Algorithm 4 and (b, x) ∈ H ′. The following

are true:
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1.
⋃
e∈E Tb,x(e) = [m] \H. So fb,x(E) = m−|H|

m−1
.

2. For any e ∈ U , fb,x(E ∪ e)− fb,x(E) =
|H∩Tb,x(e)|

m−1
.

3. If x ∈ H ∩ T+(e) then fb,x(E ∪ e)− fb,x(E) = |H∩T−(e)|
m−1

.

4. If x ∈ H ∩ T−(e) then fb,x(E ∪ e)− fb,x(E) = |H∩T+(e)|
m−1

.

5. If x ∈ H ∩ T ∗(e) then

∑
(b,x)∈H′x

qb,x (fb,x(E ∪ e)− fb,x(E)) =
1

2

∑
(b,x)∈H′x

qb,x

( |H ∩ T−(e)|
m− 1

+
|H ∩ T+(e)|
m− 1

)
,

where H ′x = Mx ∩H ′.

Proof. (1) As (b, x) ∈ H ′, the outcome of each test e ∈ E must have been rb,x(e). By

definition, Tb,x(e) consists of all hypotheses y ∈ [m] with ry(e) 6= ∗ and ry(e) 6= rb,x(e). So⋃
e∈E Tb,x(e) ⊆ [m] is precisely the set of incompatible hypotheses at this state. In other

words,
⋃
e∈E Tb,x(e) = [m] \H and fb,x(E) =

|
⋃
e∈E Tb,x(e)|
m−1

= m−|H|
m−1

.

(2) The set of hypotheses in H that are compatible with (b, x) after test e are H \Tb,x(e).

So based on (1) we can write:

fb,x(E ∪ e)− fb,x(E) =
m− |H \ Tb,x(e)|

m− 1
− m− |H|

m− 1
=
|H \ Tb,x(e)| − |H|

m− 1
=
|H ∩ Tb,x(e)|

m− 1
.

(3-4) These follow directly from (2) using the definition of Tb,x(e).

(5) It is easy to see (as observed before) that half the hypothesis-copies (b, x) ∈ H ′∩Mx =

H ′x have rb,x(e) = +1 (which implies Tb,x(e) = T−(e)) and the rest have rb,x(e) = −1 (which

implies Tb,x(e) = T+(e)). So using (2),

∑
(b,x)∈H′x

qb,x (fb,x(E ∪ e)− fb,x(E)) =
∑

(b,x)∈H′x
b(e)=−1

qb,x

( |H ∩ T+(e)|
m− 1

)
+
∑

(b,x)∈H′x
b(e)=+1

qb,x

( |H ∩ T−(e)|
m− 1

)
,
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which proves the statement as exactly half the copies in H ′x have b(e) = +1.

Lemma III.9. The second term in (3.6) equals (3.7) for any state (E,H ′) of Algorithm 4

and test e.

Proof. Consider any x ∈ H. By its definition, we have px =
∑

(b,x)∈H′∩Mx
qb,x. Now using

Lemma III.8, we have the following three cases:

• If x ∈ H ∩ T+(e) then

∑
(b,x)∈H′∩Mx

qb,x

(
fb,x(E ∪ e)− fb,x(E)

1− fb,x(E)

)
= px ·

|H ∩ T−(e)|
|H| − 1

.

• If x ∈ H ∩ T−(e) then

∑
(b,x)∈H′∩Mx

qb,x

(
fb,x(E ∪ e)− fb,x(E)

1− fb,x(E)

)
= px ·

|H ∩ T+(e)|
|H| − 1

.

• If x ∈ H ∩ T ∗(e) then

∑
(b,x)∈H′∩Mx

qb,x

(
fb,x(E ∪ e)− fb,x(E)

1− fb,x(E)

)
=
px
2
· |H ∩ T

−(e)|+ |H ∩ T+(e)|
|H| − 1

.

Summing over all x ∈ H, it follows that the second term in (3.6) equals (3.7).

Therefore, we have proved:

Theorem III.10. There is an O(h + logm)-approximation algorithm for adaptive ODTN,

where h is the maximum number of noisy outcomes for a hypothesis.

Proof. Consider the ASR instance J and Algorithm 4. As discussed above, this algorithm

can be implemented in polynomial time. Using the result from Chapter II it follows that

this algorithm has an O(log |M | + log 1/ε) = O(h + logm) approximation ratio, because

|M | ≤ 2h ·m and ε ≥ 1/m.
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3.4.2 O(r + logm)-Approximation Algorithm

This algorithm is based on a different definition of the “score” in Algorithm 4. In partic-

ular, we change (3.5) and (3.6) as described in Algorithm 5 below.

Algorithm 5 Modified algorithm for ASR instance J .

1: initially E ← ∅, H ′ ←M .

2: while H ′ 6= ∅ do

3: H ← {x ∈ [m] : Mx ∩H ′ 6= ∅}.
4: for each test e ∈ U , let Le(H) be the smaller cardinality set among T+(e) ∩H and T−(e) ∩H.

5: for each test e ∈ U , define

(3.8) L′e(H
′) = {(b, x) ∈ H ′ : x ∈ Le(H)} = H ′ ∩

(
∪x∈Le(H)Mx

)
.

6: select test e ∈ U \ E that maximizes:

(3.9) q (L′e(H
′)) +

∑
(b,x)∈Mx∩H′

qb,x ·
fb,x(e ∪ E)− fb,x(E)

1− fb,x(E)
.

7: remove incompatible and covered hypotheses from H ′ based on the feedback from e.

8: E ← E ∪ {e}
9: end while

As for Algorithm 4, this algorithm can also be implemented in polynomial time. Recall

that we maintain and use H ′ implicitly as follows. For each original hypothesis x ∈ [m], we

store nx = |Mx ∩H ′|. So H = {x ∈ [m] : nx ≥ 1} and for any test e ∈ U , Le(H) is defined

as the smaller of the sets {x ∈ [m] : rx(e) = +1, nx ≥ 1} and {x ∈ [m] : rx(e) = −1, nx ≥ 1}.

This suffices to describe L′e(H
′) implicitly. Moreover, for each x ∈ [m] we store px = nx · πx2hx

;

note that px/p(H) is the current posterior probability of any hypothesis x ∈ H. Note that

the “score” (3.9) in this algorithm differs from (3.6) only in the first term: we now use

q(L′e(H
′)) instead of q(Le(H

′)). Therefore, as shown in §3.4.1, the second term in (3.9)

(which is also the second term in (3.6)) equals (3.7). For easier reference, the polynomial

time implementation is described explicitly in Algorithm 6. Note that we keep track of

H and {px}mx=1 directly without using the numbers {nx}mx=1. Also, the stopping criterion

remains the same because H ′ = ∅ if and only if |H| = 1. To see this, note that hypothesis-
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copy (b, x) is covered exactly when H = {x} and H ′ consists of all compatible uncovered

hypothesis-copies.

Algorithm 6 Polynomial time implementation.

1: initially E ← ∅, H ← [m] and px ← πx for all x ∈ [m].

2: while |H| > 1 do

3: for any test e ∈ U , let Le(H) be the smaller cardinality set among T+(e) ∩H and T−(e) ∩H
4: select test e ∈ U \ E that maximizes:

(3.10) p (Le(H)) +
|T−(e) ∩H|
|H| − 1

·p
(
T+(e) ∩H

)
+
|T+(e) ∩H|
|H| − 1

·p
(
T−(e) ∩H

)
+

1

2

|H \ T ∗(e)|
|H| − 1

·p (T ∗(e) ∩H) .

5: if outcome of test e is + then

6: update H ← H \ T−(e)

7: else

8: update H ← H \ T+(e)

9: end if

10: E ← E ∪ {e}
11: for x ∈ H do

12: if rx(e) = ∗ then

13: px ← px/2

14: end if

15: end for

16: end while

We will show the following result:

Theorem III.11. Algorithm 6 is a polynomial-time O(r + logm)-approximation algorithm

for adaptive ODTN, where r is the maximum number of noisy outcomes per test.

Using the equivalence of Algorithms 6 and 5, it suffices to prove the approximation ratio

for Algorithm 5 applied to the ASR instance J . The proof is very similar to the analysis

in Chapter II. So we only provide an outline of the overall proof, while emphasizing the

differences. Let ALG denote the policy described in Algorithm 5 and OPT the optimal

adaptive policy. For k = 0, 1, · · · , define the following quantities:

• Ak ⊆ M is the set of uncovered hypotheses in ALG at time L · 2k, and ak = q(Ak) is

the total probability of these hypotheses.

• Yk is the set of uncovered hypotheses in OPT at time 2k−1, and yk = q(Yk) is the total
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probability of these hypotheses.

Here L = O(r + logm). The key step is to show:

(3.11) ak ≤ 0.2ak−1 + 3yk, for all k ≥ 1.

As shown in Chapter II, this suffices to show that Algorithm 5 is an O(L)-approximation

algorithm, which implies Theorem III.11. In order to prove (3.11) we use the quantity:

Z :=

L2k∑
t>L2k−1

∑
(E,H′)∈R(t)

max
e∈U\E

 ∑
(b,x)∈L′e(H′)

qb,x +
∑

(b,x)∈H′
qb,x ·

fb,x(e ∪ E)− fb,x(E)

1− fb,x(E)

(3.12)

Above, R(t) denotes the set of states (E,H ′) that occur at time t in ALG. (3.11) will

be proved by separately lower and upper bounding Z. Recall the following Lemma from

Chapter II:

Lemma II.5. We have Z ≥ L · (ak − 3yk)/3.

Although the definition of L′e(H
′) is different here, the proof of this lower bound is identical

to what presented in Chapter II and we do not repeat it here. The proof of the upper bound

(analogous to Lemma II.6 in Chapter II) requires new ideas, and is shown below.

Lemma III.12. We have Z ≤ ak−1 · (1 + lnm+ r + logm).

Proof. For any hypothesis (b, x) ∈ Ak−1 (i.e. uncovered in ALG by time L2k−1) let σb,x be

the path traced by (b, x) in ALG’s decision tree, starting from time 2k−1L and ending at 2kL

or when (b, x) gets covered. Recall that for any L2k−1 < t ≤ L2k, any hypothesis in H ′ for

any state in R(t) appears in Ak−1. So only hypotheses in Ak−1 can contribute to Z and we

rewrite (3.12) as:

Z =
∑

(b,x)∈Ak−1

qb,x ·
∑
e∈σb,x

(
fb,x(e ∪ E)− fb,x(E)

1− fb,x(E)
+ 1[(b, x) ∈ L′e(H ′)]

)

≤
∑

(b,x)∈Ak−1

qb,x ·

 ∑
e∈σb,x

fb,x(e ∪ E)− fb,x(E)

1− fb,x(E)
+

∑
e∈σb,x

1[(b, x) ∈ L′e(H ′)]

(3.13)
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Above, for any e ∈ σb,x we use (E,H ′) to denote the state at which e is selected.

Fix any hypothesis (b, x) ∈ Ak−1. For the first term, we use Lemma III.13 below and

the definition of ε. This implies
∑

e∈σb,x
fb,x(e∪E)−fb,x(E)

1−fb,x(E)
≤ 1 + ln 1

ε
≤ 1 + lnm as parameter

ε ≥ 1/m for fb,x.

Now, we bound the second term by proving the inequality below:

(3.14)
∑
e∈σb,x

1[(b, x) ∈ L′e(H ′)] ≤ r + logm

To prove this inequality, consider hypotheses in H ′. Now, if hypothesis (b, x) ∈ L′e(H ′) when

ALG selects test e, then x would be in Le(H). Suppose Le(H) = T+(e) ∩H; the other case

is identical. Let De(H) = T−(e) ∩ H and Se(H) = T ∗(e) ∩ H. As x ∈ Le(H), it must be

that path σb,x follows the + branch out of e. Also, the number of candidate hypotheses on

this path after test e is

|Le(H)|+ |Se(H)| ≤ |Le(H)|
2

+
|De(H)|

2
+ |Se(H)| = |H|

2
+
|Se(H)|

2
≤ |H|

2
+
r

2
.

The first inequality uses the definition of Le(H) and the last inequality uses the bound of r

on the number of hypotheses with ∗ outcomes. Hence, each time that (b, x) ∈ L′e(H ′) along

path σb,x, the number of candidate hypotheses changes as |Hnew| ≤ 1
2
|Hold|+ r

2
. This implies

that after log2m such events, |H| ≤ r. Let σ′b,x denote the portion of path σb,x after |H|

drops below r. Note that each time (b, x) ∈ L′e(H ′) we have Le(H) 6= ∅: so |H| reduces by

at least one after each such test e. Hence
∑

e∈σ′b,x
1[(b, x) ∈ L′e(H ′)] ≤ r. As the portion of

path σb,x until |H| ≤ r contributes at most log2m to the left-hand-side in (3.14), the total

is at most r + log2m as needed.
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Lemma III.13 ([6]). Let f : 2U → [0, 1] be any monotone function with f(∅) = 0 and

ε = min{f(S ∪ {e})− f(S) : e ∈ U, S ⊆ U, f(S ∪ {e})− f(S) > 0}. Then, for any sequence

∅ = S0 ⊆ S1 ⊆ · · ·Sk ⊆ U of subsets, we have
∑k

t=1
f(St)−f(St−1)

1−f(St−1)
≤ 1 + ln 1

ε
.

Setting L = 15(1 + lnm + r + log2m) and applying Lemmas II.5 and II.6 completes the

proof of (3.11) and hence Theorem III.11.

Tight Example. Our analysis above is tight, as shown by the following instance with

r = m where the algorithm’s cost is Ω(m) times the optimum. The instance has m = 6k+ 1

hypotheses, which are partitioned into A = {a1, · · · a3k}, B = {b1, · · · , b3k−3}, C = {c1, c2, c3}

and {c∗}. The probability of hypothesis c∗ is 1 − ε and each of the other hypotheses has

probability ε
6k

. We will use ε = k−3 → 0. We also have four types of tests (unspecified

hypotheses have ∗ outcomes).

• α-tests: for each j ∈ [k], test αj is +1 on C ∪ {c∗} and −1 on {a3j−2, a3j−1, a3j}.

• β-tests: for each j ∈ [k − 1], test βj is +1 on C ∪ {c∗} and −1 on {b3j−2, b3j−1, b3j}.

• γ-tests: for each pair s, t 6= c∗ of hypotheses there is a test that is +1 on s and −1 on t.

• Test δ is +1 on A and −1 on all other hypotheses. Test δ′ is +1 on B and −1 on all

others. Test δ′′ is +1 on C and −1 on all others.

Bound on the Optimal Cost: We first perform tests δ, δ′ and δ′′. If all three outcomes

are −1 then we identify hypothesis c∗ uniquely; this happens with probability 1− ε. Other-

wise, we continue to perform all the γ-tests which suffices to identify the realized hypothesis

(this happens with total probability ε). The expected cost is at most 3 + ε ·m2 = O(1) using
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ε = 1/k3.

Cost of our Algorithm: We will only describe the sequence of tests under realized

hypothesis c∗, which will provide a lower bound on the algorithm’s cost. We claim that the

algorithm will select tests α1, β1, α2, β2, · · ·αk−1, βk−1. We show this by induction. Consider

the candidate hypotheses H at any point in this sequence. Note that the alternating choice of

α and β tests implies that we will always have {c∗}∪C ∈ H and either |H∩A| = 3+ |H∩B|

or |H ∩A| = |H ∩B|. In either case, the “lighter” side of test δ is always H ∩A, the lighter

side of test δ′ is always H ∩ B and the lighter side of test δ′′ is always C. In particular, for

any test e ∈ {δ, δ′, δ′′} we have c∗ 6∈ Le(H) and the score of e in Equation (3.10) is:

p(Le(H)) +
|T+(e) ∩H|
|H| − 1

· p(T−(e) ∩H) +
|T−(e) ∩H|
|H| − 1

· p(T+(e) ∩H) ≤ ε+
1

2
+ ε.

Above we used the fact that hypothesis c∗ does not lie in the lighter side and it has probability

1 − ε (so the total remaining probability is at most ε). On the other hand, the score of all

remaining α and β tests will be equal (by symmetry) and has value at least 1− ε as c∗ lies

in the lighter side of these tests. Finally, all γ-tests have a score of at most ε + 1
2
. So the

algorithm can choose any remaining α or β test at this point, proving the inductive step.

Thus the expected cost of our algorithm is at least (1− ε)(2k − 2) = Ω(m).

Combined algorithm. By simply using the better of the two ODTN algorithms, we obtain:

Corollary III.14. There is an O(min(h, r) + logm)-approximation algorithm for adaptive

ODTN, where h is the maximum number of noisy outcomes per hypothesis, and r is the

maximum number of noisy outcomes per test.
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3.5 Handling Non-Identifiable Instances

We have assumed so far that the true hypothesis x̄ can always be uniquely identified. In

other words, for every pair x, y of hypotheses, there is some test e that distinguishes them

deterministically, i.e. x ∈ T+(e) and y ∈ T−(e) or vice versa. In this section, we show

that we can still obtain non-adaptive and adaptive algorithms (similar to Theorem III.2 and

Corollary III.14) without this assumption. However, it is necessary to change the stopping

criterion as we will have to stop with multiple compatible hypothesis on some decision paths.

Define a similarity graph G on m nodes (corresponding to hypotheses) with an edge

(x, y) if there is no test separating x and y deterministically. Our algorithms’ performance

guarantees will now also depend on the maximum degree d of G; note that d = 0 in the

perfectly identifiable case. For each hypothesis i ∈ [m], let Di ⊆ [m] denote the set containing

i and all its neighbors in G. We now define two stopping criteria as follows:

• The neighborhood stopping criterion involves stopping when the set H of compatible

hypotheses is contained in some Di, where i might or might not be the true hypothesis

x̄.

• The clique stopping criterion involves stopping when H is contained in some clique of

G.

Note that clique stopping is clearly a stronger notion of identification than neighborhood

stopping. That is, if the clique-stopping criterion is satisfied then so is the neighborhood-

stopping criterion. We obtain a non-adaptive algorithm with approximation ratio O((d +
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1) logm) for neighborhood-stopping and an adaptive algorithm with approximation ratio

O(d+ min(h, r) + logm) for clique-stopping as well as neighborhood-stopping.

Non-adaptive algorithm. Here, we apply the approach using submodular ranking using

different submodular functions. In particular, for each (b, x) ∈ M and i ∈ [m], we define a

submodular function:

f ib,x(S) = |
⋃
e∈S

Tb,x(e) ∩Di| ·
1

m− |Di|
, ∀S ⊆ U,

where Di = [m] \ Di. Assuming x̄ = x and test-outcomes are given by b, we know x ∈ Di

after tests S if and only if f ib,x(S) = 1. We now define fb,x to be the “OR combination” of

functions f ib,x where x ∈ Di, i.e.,

fb,x(S) = 1−
∏
i:x∈Di

(1− f ib,x(S)), ∀S ⊆ U.

This function ensures that fb,x(S) = 1 if and only if f ib,x(S) = 1 for some i ∈ [m]. Moreover,

this function fb,x is monotone and submodular; see [45]. The minimum positive marginal

increment ε = m−d as |{i : x ∈ Di| ≤ d for all x ∈ [m]. The non-adaptive algorithm is then

identical to that in § 3.3 and we obtain an O(log 1
ε
) approximation, i.e.,

Theorem III.15. There is a non-adaptive O(d logm) approximation algorithm for ODTN

with the neighborhood-stopping criterion.

Adaptive algorithm Here, we run a two-phase algorithm. In the first phase, we identify

some subset N ⊆ [m] containing x̄ with |N | ≤ d + 1. This involves an ASR instance J ′ on

the expanded hypothesis set M (as in § 3.4) but with the following submodular function for
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each (b, x) ∈M .

fb,x(S) = |
⋃
e∈S

Tb,x(e)| ·
1

m− d− 1
, ∀S ⊆ U.

Note that any adaptive policy for ODTN with either neighborhood-stopping or clique-

stopping is also feasible for the ASR instance J ′. The proof is identical to that of Lemma III.7.

Moreover, Algorithm 4 and 5 are also applicable to ASR instance J ′ (the only difference

to instance J is the definition of the functions fb,x). The parameter ε = 1
m−d−1

≥ 1
m

. So,

taking the better of Algorithms 4 and 5, we obtain an O(min(r, h) + logm)-approximation

algorithm for J ′. Because the optimal value of instance J ′ is at most the optimal value

OPT of the ODTN instance, the expected cost in this phase is O(min(r, h) + logm) ·OPT

Then, in the second phase, we run a simple splitting algorithm that iteratively selects any

test e that splits the current set H of candidate hypotheses, i.e. H∩T+
e 6= ∅ and H∩T−e 6= ∅.

The second phase continues until H is contained in (i) some clique (for clique-stopping) or (ii)

some subset Di (for neighborhood-stopping). Because, the number of compatible hypotheses

|H| ≤ d + 1 at the start of this phase, there are at most d iterations and the expected cost

is at most d ≤ d ·OPT . Combining both phases, we obtain:

Theorem III.16. There is an adaptive O(d + min(h, r) + logm)-approximation algorithm

for ODTN with the clique-stopping or neighborhood-stopping criterion.

3.6 Adaptive Algorithm with Large Number of Noisy Outcomes

Our adaptive algorithms in the previous sections have a performance guarantee that

depends on the noise sparsity min(r, h). This performance guarantee deteriorates when
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there are a large number of noisy outcomes. In this section we consider ODTN instances

with a large number of noisy outcomes, and obtain an approximation algorithm that relies

on different ideas.

We define an α-sparse (α ≤ 1/2) ODTN instance as follows. There is a constant C

such that max{|T+(e)|, |T−(e)|} ≤ C · mα for all tests e ∈ U . In words, the number of

deterministic outcomes is at most 2Cmα for every test. Our main result here is:

Theorem III.17. There is an adaptive O(logm)-approximation algorithm for ODTN on

any α-sparse instance, where α ≤ 1
2
.

We first make some simple observations related to α-sparse instances.

Proposition III.18. The optimal value OPT ≥ Ω(m1−α) for any α-sparse instance.

Proof. By definition of α-sparse instances, the maximum number of candidate hypotheses

that can be eliminated after performing a single test is mα. As we need to eliminate m− 1

hypotheses irrespective of the realized hypothesis x̄, we need to perform at least m−1
mα

=

Ω(m1−α) tests under every x̄.

Proposition III.19. Consider any W ⊆ U and X ⊆ [m]. For y ∈ X, let κ(y) = |{e ∈ W :

ry(e) 6= ∗}| denote the number of tests in W for which y has ±1 outcome. Then, the number

of hypotheses in X with κ(y) > |W |/2 is at most 2Cmα.

Proof. Let X ′ = {y ∈ X : κ(y) > |W |/2}. Then:

|X ′| · |W |
2

<
∑
y∈X

κ(y) =
∑
e∈W

|{y ∈ X : ry(e) 6= ∗}| ≤ |W | · Cmα.
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Rearraging, we get |X ′| ≤ 2Cmα as needed.

Main Idea. Consider the following naive algorithm: if H denotes the current set of candidate

hypotheses, we choose a test e ∈ U such that 1
2
|T+(e) ∩ H| + 1

2
|T−(e) ∩ H| is maximized.

Roughly speaking, this maximizes the expected number of hypotheses ruled out at each step.

This algorithm can have a large cost. Nevertheless, it turns out that it makes good progress

towards identifying hypotheses x ∈ T ∗(e); this is made formal in via the stochastic set cover

instances in §3.6.1 and Lemma III.23. In particular, if at any point in this algorithm, a

constant fraction of the tests so far have been ∗-tests for some hypothesis x then we can

show that the algorithm has “low” cost conditioned on the true hypothesis x̄ = x. In order

to handle hypotheses y with only a small fraction of ∗-tests, we modify the algorithm at all

power-of-two steps: so the total number of modified step is O(logm). At each modified step,

we collect O(mα) many hypotheses Z with the smallest number of ∗-tests performed so far,

and check if x̄ ∈ Z. This is formalized in the algorithm Member(Z) in §3.6.2, where we also

show that the additional cost incurred in each modified step is O(mα). Finally, using the

lower bound in Proposition III.18 we can prove the O(logm) approximation ratio.

3.6.1 Relation to Stochastic Set Cover

We now establish a crucial relation to the stochastic set cover (SSC) problem [66, 55] and

also state a useful result on SSC. This forms the basis of our algorithm.

An instance of SSC consists of a groundset V and k stochastic sets S1, · · ·Sk each of

which is a subset of V . The distribution of each set Si is known to the algorithm and the

distributions of different sets are independent of each other. The instantiation of each set
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is only known after it is selected. The goal is to find an adaptive policy that minimizes the

expected number of sets to cover V . A natural adaptive greedy algorithm is known to be

an O(logm)-approximation where m = |V | [66, 55]. At any point in this policy, if A ⊆ V

denotes the uncovered element s then we choose the set Si∗ that maximizes the expected

number of new elements covered, i.e. i∗ = arg maxki=1 E[|Si ∩ A|]. At any such step, we call

a set β-greedy if it has expected coverage at least a 1/β fraction of the maximum. We need

an extension of this result that involves picking β-greedy sets at just some constant fraction

of the steps. Formally, call an SSC policy (β, ρ) greedy if for every t ≥ 1, at least t/ρ steps

among the first t steps involve picking a β-greedy set. The following result follows from a

slight modification of the analysis in [55].

Theorem III.20 ([55]). For any stochastic set cover instance, a (β, ρ) greedy policy costs

at most O(βρ logm) times the optimum.

We now derive a lower bound on the optimal ODTN value in terms of certain SSC

instances. For any x ∈ [m], let SSC(x) denote the stochastic set cover instance with

groundset V = [m] \ {x} (i.e. all hypotheses other than x) and sets U (i.e. all tests)

where

Se(x) =



T+(e) with prob. 1 if x ∈ T−(e)

T−(e) with prob. 1 if x ∈ T+(e)

T−(e) or T+(e) with prob. 1
2

each if x ∈ T ∗(e)

, ∀e ∈ U.

Lemma III.21. OPT ≥∑x∈[m] πx ·OPTSSC(x).
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Proof. Consider any feasible decision tree T for the ODTN instance and any hypothesis x ∈

[m]. If we condition on x̄ = x then T corresponds to a feasible adaptive policy for SSC(x).

This is because (i) for any outcome-vector b ∼ x, the tests performed in T must rule-out all

the hypotheses [m]\x and (ii) the hypotheses ruled-out by any test e (conditioned on x̄ = x)

is a random subset that has the same distribution as Se(x). Formally, let Pb,x denote the path

traced in T under test outcomes b ∼ x, and |Pb,x| the number of tests performed along this

path. Then, this policy for SSC(x) has cost
∑

b∼x 2−hx ·|Pb,x| as Pr[observing outcomes b|x̄ =

x] = 2−hx . So OPTSSC(x) ≤
∑

b∼x 2−hx · |Pb,x|. Taking expectations over x ∈ [m] the lemma

follows.

3.6.2 A Low-Cost Membership Oracle

One subroutine in our algorithm is an “oracle” called “Member”, which takes a (small)

subset Z ⊆ [m] as input, and decides whether x̄ ∈ Z.

Note that steps 3, 9 and 18 are well-defined because the ODTN instance is assumed to be

identifiable. If there is no new test in step 3 with T+(e) ∩ Z ′ 6= ∅ and T−(e) ∩ Z ′ 6= ∅, then

we must have |Z ′| = 1. If there is no new test in step 9 with z 6∈ T ∗(e) then we must have

identified z uniquely, i.e. Y = ∅. Finally, in step 18, we use the fact that there are tests that

deterministically separate every pair of hypotheses.

Lemma III.22. If x̄ ∈ Z, then Member(Z) declares x̄ = z with probability one; otherwise,

Member(Z) declares x̄ /∈ Z with probability at least 1−m−2. Moreover, the expected cost of

Member(Z) is O(|Z|+mα).
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Algorithm 7 Member(Z) oracle that checks if x̄ ∈ Z.

1: initialize Z ′ ← Z.

2: while |Z ′| > 1 do

3: choose any new test e ∈ U with both T+(e) ∩ Z ′ 6= ∅ and T−(e) ∩ Z ′ 6= ∅,
4: let R be the set of hypotheses ruled out, let Z ′ ← Z ′\R.

5: end while

6: let Z ′ = {z} at this step.

7: initialize k ← 0 and Y ← {x ∈ [m] \ {z} : x not ruled out so far}.
8: while Y 6= ∅ and k ≤ 4 logm do

9: choose any new test e ∈ U with z /∈ T ∗(e).
10: if outcome of test e is inconsistent with z then

11: declare “x̄ 6∈ Z” and stop.

12: else

13: let R be the set of hypotheses ruled out, Y ← Y \R and k ← k + 1.

14: end if

15: end while

16: if Y = ∅ then declare “x̄ = z” and stop.

17: let W ⊆ U denote the tests performed in step 9 and

(3.15) S = {y ∈ [m] : ry(e) = rz(e) for at least 2 logm tests e ∈W}.

18: for each y ∈ S, choose any test that deterministically separates y and z; let W ′ ⊆ U denote the set of

these tests.

19: if all tests in W ∪W ′ had an outcome consistent with z then

20: declare “x̄ = z”.

21: else

22: declare “x̄ /∈ Z”.

23: end if
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Proof. If x̄ ∈ Z then it is clear that z = x̄ in step 6 and Member(Z) declares x̄ = z.

Now consider the case x̄ 6∈ Z. Recall that z ∈ Z denotes the unique hypothesis that

is still compatible in step 6. Note that Y denotes the set of compatible hypotheses among

[m] \ {z}: so it always contains x̄. Hence, Y 6= ∅ in step 16, which implies that k = 4 logm.

Recall the definition of set S from (3.15).

Case 1 If x̄ 6∈ S then we have x̄ ∈ T ∗(e) for at least 2 logm tests e ∈ W . As z has a deterministic

outcome for each test in W , the probability that all outcomes in W are consistent with

z is at most m−2. So with probability at least 1 −m−2, some test in W must have an

outcome (under x̄) inconsistent with z, and based on step 19, we would declare x̄ /∈ Z.

Case 2 If x̄ ∈ S then we will identify correctly that x̄ 6= z in step 19 as one of the tests in

W ′ (step 18) separates x̄ and z deterministically. So in this case we will always declare

x̄ /∈ Z.

In order to bound the cost, note that the number of tests performed are at most: |Z| in

step 3, 4 logm in step 9 and |S| in step 18. The key step is to bound |S|, for which we use

Proposition III.19 with tests W and hypotheses X = [m]. Note that the tests in step 18 are

only performed if Y 6= ∅ in step 16: so we must have |W | = k = 4 logm. In the notation of

Proposition III.19, we have S = {y ∈ X : κ(y) > |W |/2} as |W | = 4 logm. It now follows

that |S| ≤ 2Cmα. Hence the total number of tests is |Z|+ 4 logm+ |S| = O(|Z|+mα).

3.6.3 The Main Algorithm

We now describe the overall algorithm.

Note that the membership oracle is invoked O(logm) times as the total number t of tests
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Algorithm 8 Overall algorithm for large number of noisy outcomes.

1: initialize compatible hypotheses H ← [m], weights wx = 0 for x ∈ H, number of tests t← 0.

2: while |H| > 1 do

3: if t is a power of 2 then

4: let Z ⊆ A be the subset of 2Cmα hypotheses with lowest wx.

5: call Member(Z): if it identifies some Z-hypothesis as x̄ then stop.

6: end if

7: perform test e ∈ U maximizing 1
2 (|T+(e) ∩H|+ |T−(e) ∩H|).

8: update wx ← wx + 1 for each for each x ∈ T ∗(e).
9: remove incompatible hypotheses from H (based on the test e outcome).

10: t← t+ 1.

11: end while

used is always at most m. Using Lemma III.22, it is clear that x̄ is identified correctly with

probability at least 1− 1
m

. We now analyze the cost. The oracle Member is always invoked

on |Z| = O(mα) hypotheses. Using Lemma III.22, the expected number of tests due to

step 4 is O(mα logm). In the rest of this section, we will bound the expected cost due to

tests in step 7.

Truncated Decision Tree. Let A denote the decision tree corresponding to our algorithm.

We only consider tests that correspond to step 7. For any expanded hypothesis (b, x) ∈ M

let Pb,x denote the path traced in A; so |Pb,x| is the number of tests performed in step 7

under hypothesis (b, x). We will work with a truncated decision tree Ā, defined below.

Fix any (b, x) ∈M . For any t ≥ 1, let θb,x(t) denote the fraction of the first t tests in Pb,x

that are ∗-tests for hypothesis x. Recall that Pb,x only contains tests from step 7. Let ρ = 4

and

(3.16) define tb,x = max

{
t ∈ {20, 21, · · · , 2logm} : θb,x(t

′) ≥ 1

ρ
for all t′ ≤ t

}
.

If tb,x > |Pb,x| then set tb,x = |Pb,x|. The truncated decision tree Ā is the subtree of A
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consisting of the first tb,x tests along path Pb,x, for each (b, x) ∈M .

Relating costs of A and Ā. We show that the expected cost of A is at most twice that of

Ā.

Lemma III.23. For each (b, x) ∈M , the number of tests performed |Pb,x| ≤ 2 · tb,x. Hence,

the expected cost of A is at most twice that of Ā.

Proof. For the first statement, fix any (b, x) ∈ M . Recall that Pb,x only contains tests from

step 7. We only need to consider the case that tb,x < |Pb,x|/2. Let t′b,x = 2 · tb,x which is a

power-of-2. By (3.16) we know that there is some k with tb,x < k ≤ t′b,x and θb,x(k) < 1/ρ.

Hence θb,x(t
′
b,x) <

2
ρ
< 1

2
.

Consider the point in the algorithm after performing the first t′b,x tests (call them W ) on

Pb,x. Because t′ex is a power-of-two, the algorithm calls the member oracle in this iteration.

Let X be the compatible hypotheses after the t′b,x-th test on Pb,x. Because θb,x(t
′
b,x) < 1/2, at

most |W |/2 tests in W are ∗-tests for hypothesis x: in other words the weight wx ≤ |W |/2

at this point in the algorithm. Let

X ′ =

{
y ∈ X : W has at most

|W |
2
∗ -tests for y

}
=

{
y ∈ X : wy ≤

|W |
2

}
.

Using Proposition III.19 with W and X, it follows that |X ′| ≤ 2Cmα. Hence the number

of hypotheses y ∈ X with wy ≤ |W |/2 ≤ wx is at most 2Cmα, and so x ∈ Z (recall that

Z consists of 2Cmα hypotheses with the lowest weight). This means that after step 4, we

would have correctly identified x̄ = x and so Pb,x ends. Hence |Pb,x| ≤ t′b,x. The first part of

the lemma now follows from the fact that t′b,x ≤ 2 · tb,x.
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The second statement in the lemma follows by taking expectation over all (b, x) ∈M .

Bounding cost of Ā. Here we use the relation to stochastic set cover. Recall the instances

SSC(x) for x ∈ [m]. A key observation is:

Lemma III.24. Consider step 7 in the main algorithm, where H denotes the set of compat-

ible hypotheses and e is the chosen test. For any x ∈ T ∗(e),

1

2

(
|T+(e) ∩H|+ |T−(e) ∩H|

)
= E[|Se(x) ∩ (H \ x)|] ≥ 1

2
·max
d∈U

E[|Sd(x) ∩ (H \ x)|].

Proof. Note that E[|Se(x) ∩ (H \ x)|] = 1
2

(|T+(e) ∩H|+ |T−(e) ∩H|) because x ∈ T ∗(e).

We consider two cases for test d ∈ U .

• If x ∈ T ∗(d) then

E[|Sd(x)∩(H\x)|] =
1

2

(
|T+(d) ∩H|+ |T−(d) ∩H|

)
≤ 1

2

(
|T+(e) ∩H|+ |T−(e) ∩H|

)
,

by the choice of e in step 7.

• If x ∈ T+(d) ∪ T−(d) then

E[|Sd(x) ∩ (A \ x)|] ≤ max{|T+(d) ∩H|, |T−(d) ∩H|} ≤ |T+(d) ∩H|+ |T−(d) ∩H|,

which is at most |T+(e) ∩H|+ |T−(e) ∩H| by the choice of e.

In either case, we obtain the lemma.

Fix any hypothesis x ∈ [m] and consider decision tree Āx obtained by conditioning Ā

on x̄ = x. The truncation (3.16) and Proposition III.24 together imply that Āx is a (2, ρ)
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greedy policy for SSC(x). Now, using Theorem III.20, the expected cost of Āx is O(logm) ·

OPTSSC(x).

Taking expectations over x ∈ [m], the expected cost of Ā is O(logm)
∑m

x=1 πx ·OPTSSC(x),

which is O(logm) ·OPT by Lemma III.21. Combined with Lemma III.23, the expected cost

of A is at most O(logm) ·OPT . This bounds the cost dues to tests in step 7. Finally, adding

in the contribution from step 4, we obtain an expected cost of

O(logm) · (mα +OPT ) ≤(as α< 1
2

) O(logm) · (m1−α +OPT ) ≤
(Prop. III.18)

O(logm) ·OPT.

This completes the proof of Theorem III.17.

3.7 Extensions

Non-binary outcomes. We can also handle tests with an arbitrary set Σ of outcomes

(instead of ±1). This requires extending the outcomes b to be in ΣU and applying this

change to the definitions of sets Tb,x (3.1) and submodular function fb,x (3.2).

Non-uniform noise distribution. Our results extend directly to the case where each noisy

outcome has a different probability of being ±1. Suppose that the probability of every noisy

outcome is between δ and 1−δ. Then Theorems III.2 and III.14 continue to hold (irrespective

of δ), and Theorem III.17 holds with a slightly worse O(1
δ

logm) approximation ratio.

3.8 Experiments

We implemented our algorithms, and performed experiments on real-world and synthetic

data sets. We compared our algorithms’ cost (expected number of tests) with an information
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theoretic lower bound on the optimal cost and show that the difference is negligible. Thus,

despite our logarithmic approximation ratios, the practical performance can be much better.

Chemicals with Unknown Test Outcomes One application of ODT is identifying chemical

or biological materials. We considered a data set called WISER4 ( and we call it WISER-

ORG here), which includes 400+ chemicals (hypothesis) and 78 binary tests. Every chemical

has either positive, negative or unknown result on each test. We have performed our algo-

rithms on both the original instance, in which some chemicals are not perfectly identifiable,

and a modified version. In the modified version, to ensure every pair of chemicals can be

distinguished, we removed the chemicals that are not identifiable from each other to obtain

WISER-ID dataset with 255 chemicals (to do this, we used a greedy rule that iteratively

drops the highest-degree hypothesis in the similarity graph).

Random Binary Classifiers with Margin Error We construct a dataset containing 100

two-dimensional points, by picking each of their attributes uniformly in [−1000, 1000]. We

also choose 2000 random triples (a, b, c) to form linear classifiers ax+by√
a2+b2

+ c ≤ 0, where

a, b← N(0, 1) and c← U(−1000, 1000). The point labels are binary and we introduce noisy

outcomes based on the distance of each point to a classifier. Specifically, for each threshold

d ∈ {0, 5, 10, 20, 30} we define dataset CL-d that has a noisy outcome for any classifier-point

pair where the distance of the point to the boundary of the classifier is smaller than d. In

order to ensure that the instances are perfectly identifiable, we remove “equivalent” classifiers

4https://wiser.nlm.nih.gov
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and we are left with 234 classifiers.

Distributions For the distribution over the hypotheses we have considered permutations of

power law distribution (Pr[X = x;α] = βx−α) for α = 0, 0.5 and 1. Note that, α = 0 corre-

sponds to uniform distribution. To be able to compare the results across different classifiers’

datasets meaningfully, we have considered the same permutation in each distribution.

Algorithms We implement the following algorithms: the adaptiveO(r+logm)-approximation

(ODTNr), the adaptive O(h+ logm)-approximation (ODTNh), the non-adaptive O(logm)-

approximation (Non-Adap) and a slightly adaptive version of Non-Adap (Low-Adap). Al-

gorithm Low-Adap considers the same sequence of tests as Non-Adap while (adaptively)

skipping non-informative tests based on observed outcomes. The implementations of the

adaptive and non-adaptive algorithms are available online.5 We also consider three differ-

ent stopping criteria: unique stopping for perfectly identifiable instances, neighborhood and

clique stopping (defined in Section 3.5) for WISER-ORG dataset.

Algorithm

Data
WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

Low-BND 7.994 7.870 7.870 7.870 7.870 7.870

ODTNr 8.357 7.910 7.927 7.915 7.962 8.000

ODTNh 9.707 7.910 7.979 8.211 8.671 8.729

Non-Adap 11.568 9.731 9.831 9.941 9.996 10.204

Low-Adap 9.152 8.619 8.517 8.777 8.692 8.803

Table 3.1: Cost of Different Algorithms for α = 0 (Uniform Distribution).

5https://github.com/FatemehNavidi/ODTN ; https://github.com/sjia1/ODT-with-noisy-outcomes
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Algorithm

Data
WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

ODTNr 0.008 0 0 0.002 0.003 0.006

ODTNh 0.01 0 0 0 0.004 0.01

Non-Adap 1.463 0.937 1.047 1.092 1.056 1.158

Low-Adap 0.0317 0.0685 0.0541 0.0760 0.0206 0.0550

Table 3.2: Standard Deviation of Different Algorithms for α = 0 (Uniform Distribution).

Algorithm

Data
WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

Low-BND 7.702 7.582 7.582 7.582 7.582 7.582

ODTNr 8.177 7.757 7.780 7.789 7.831 7.900

ODTNh 9.306 7.757 7.829 8.076 8.497 8.452

Non-Adap 11.998 9.504 9.500 9.694 9.826 9.934

Low-Adap 8.096 7.837 7.565 7.674 8.072 8.310

Table 3.3: Cost of Different Algorithms for α = 0.5.

Algorithm

Data
WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

Low-BND 6.218 6.136 6.136 6.136 6.136 6.136

ODTNr 7.367 6.998 7.121 7.150 7.299 7.357

ODTNh 8.566 6.998 7.134 7.313 7.637 7.915

Non-Adap 11.976 9.598 9.672 9.824 10.159 10.277

Low-Adap 9.072 8.453 8.344 8.609 8.683 8.541

Table 3.4: Cost of Different Algorithms for α = 1.

Parameters

Data
WISER-ORG WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

r 388 245 0 5 7 12 13

Avg-r 50.46 30.690 0 1.12 2.21 4.43 6.54

h 61 45 0 3 6 8 8

Avg-h 9.51 9.39 0 0.48 0.94 1.89 2.79

Table 3.5: Maximum and Average Number of Stars per Hypothesis and per Test in Different Datasets.

Results Tables 3.1, Tables 3.3 and Tables 3.4 show the expected costs of different algo-

rithms on all uniquely identifiable datasets when the parameter α in the distribution over

hypothesis is 0, 0.5 and 1 correspondingly. These tables also report values of an information
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Algorithm Neighborhood Stopping Clique Stopping

ODTNr 11.163 11.817

ODTNh 11.908 12.506

Non-Adap 16.995 21.281

Low-Adap 16.983 20.559

Table 3.6: Cost of Algorithms on WISER-ORG dataset with Neighborhood and Clique Stopping for Uniform

Distribution.

theoretic lower bound (the entropy) on the optimal cost (Low-BND). We also report the

sample standard deviation of all algorithms for uniform distribution in Tables 3.2. Since

the approximation ratio of some of our algorithms are dependent on maximum number of

unknown outcomes per hypothesis (h) and maximum number of unknown outcomes per test

(r), we also have included these parameters as well as their average values. Table 3.6 sum-

marizes the results on WISER-ORG with clique and neighborhood stopping criteria. We

can see that ODTNr consistently outperforms the other algorithms and is very close to the

lower bound. Note that WISER-ORG dataset that is used to produce results in Table 3.6

has m = 414 hypotheses and d = 54 in its similarity graph, while WISER-ID in Table 3.1 is

perfectly identifiable with m = 255 hypotheses.



CHAPTER IV

A Priori Traveling Repairman Problem

The results in this chapter appear in [42].

4.1 Introduction

A priori optimization ([15]) is an elegant model for stochastic combinatorial optimization,

that is particularly useful when one needs to repeatedly solve instances of the same opti-

mization problem. The basic idea here is to reduce the computational overhead of solving

repeated problem instances by performing suitable pre-processing using distributional infor-

mation. More specifically, in an a priori optimization problem, one is given a probability

distribution Π over inputs and the goal is to find a “master solution” τ . Then, after observ-

ing the random input A (drawn from the distribution Π), the master solution τ is modified

using a simple rule to obtain a solution τA for that particular input. The objective is to

minimize the expected value of the master solution. For a problem with objective function

φ, we are interested in:

min
τ :master solution

EA←Π [φ(τA)] .

This chapter studies the a priori traveling repairman problem. The traveling repairman

98
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problem (TRP) is a fundamental vehicle routing problem that involves computing a tour

originating from a depot/root that minimizes the sum of latencies (i.e. the distance from

the root on this tour) at all vertices. The TRP is also known as the traveling deliveryman

or minimum latency problem, and has been studied extensively, see e.g. [73], [33], [36]. In

the a priori TRP, the master solution τ is a tour visiting all vertices, and for any random

input (i.e. subset A of vertices), the solution τA is simply obtained by visiting the vertices

of A in the order given by τ .

An a priori solution is advantageous in settings when we repeatedly solve instances of the

TRP that are drawn from a common distribution. For example, we may need to solve one

TRP instance on each day of operations, where the distribution over instances is estimated

from historical data. Using an a priori solution saves on computation time as we do not have

to solve each instance from scratch. Moreover, for vehicle routing problems (VRPs) there

are also practical advantages to have a pre-planned master tour, e.g. drivers have familiarity

with the route followed each day. See [76], [19], and [31] for more discussion on the benefits

of a pre-planned VRP solution.

4.1.1 Problem Definition.

The traveling repairman problem (TRP) is defined on a finite metric (V, d) where V is a

vertex set and d : V × V → R+ is a distance function. We assume that the distances are

symmetric and satisfy triangle inequality. There is also a designated root vertex r ∈ V . The

goal is to find a tour τ originating from r that visits all vertices. The latency of any vertex v

in tour τ is the length of the path from r to v along τ . The objective in TRP is to minimize
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the sum of latencies of all vertices.

In the a priori TRP, in addition to the above input we are also given activation probabil-

ities {pv}v∈V at all vertices; we use Π to denote this distribution. In this chapter, as in most

prior works on a priori optimization, we assume that the input distribution Π is indepen-

dent accross vertices. So the active subset A ⊆ V contains each vertex v ∈ V independently

with probability pv. A solution to a priori TRP is a master tour τ originating from r and

visiting all vertices. Given an active subset A ⊆ V , we restrict tour τ to vertices in A (by

shortcutting over V \ A) to obtain tour τA, again originating from r. See Figure 4.1 for an

example. For each v ∈ A, we use LATAτ (v) to denote the latency of v in tour τA. We also

use LATAτ =
∑

v∈A LAT
A
τ (v) for the total latency under active subset A ⊆ V . The objective

is to minimize

ELATτ = EA←Π

[
LATAτ

]
= EA←Π

[∑
v∈A

LATAτ (v)

]
.

v1

v2

v3

v4

v5

r

v1

v2

v3

v4

v5

r

Figure 4.1: From left to right: the master tour τ and tour τA for active set A = {v2, v4, v5}

There are two ways to evaluate an algorithm’s approximation ratio for this problem. One

option is to compare the expected cost of the a priori tour to the optimal offline solution,
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which is the optimal a priori TRP solution:

OPT = min
τ

ELATτ

The second option is to compare the expected cost of the a priori tour with the re-

optimization cost, which involves computing the optimal TRP solution for every possible

active subset A ⊆ V . Formally, let OPTA denote the optimal total latency of TRP instance

with demands at subset A ⊆ V . Then, the re-optimization cost is:

ROPT = EA[OPTA] =
∑
A⊆V

∏
u∈A

pu
∏

w∈V \A

(1− pw)

 · OPTA .
Note that the term in the parenthesis is the probability that A is the active subset. As OPTA

is the minimum total latency on set A, for any tour τ we have:

OPTA ≤
∑
v∈A

LATAτ (v)

In particular if τ is the optimal master tour, this results in:

ROPT ≤ OPT

4.1.2 Results.

Our main results in this chapter are the first constant-factor approximation for the a priori

TRP with respect to the optimal offline solution, as well as the first O(log(n))-approximation

algorithm with respect to the re-optimization solution. In Section 4.2 we explain the algo-

rithm and analysis for the first result. More precisely we prove the following theorem:

Theorem IV.1. There is a constant-factor approximation algorithm for the a priori traveling

repairman problem under independent probabilities.
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Previously, [84] obtained such a result under the restriction that all activation probabilities

are identical, and posed the general case of non-uniform probabilities as an open question–

which we resolve. Our result adds to the small list of a priori VRPs with provable worst-case

guarantees: traveling salesman, capacitated vehicle routing and traveling repairman.

In fact, we obtain Theorem IV.1 by a generic reduction of a priori TRP from non-uniform

to uniform probabilities, formalized below.

Theorem IV.2. There is a (6.27ρ)-factor approximation algorithm for the a priori traveling

repairman problem under independent probabilities, where ρ denotes the best approximation

ratio for the problem under uniform probabilities.

Clearly, Theorem IV.1 follows by combining Theorem IV.2 with the constant-factor ap-

proximation algorithm for a priori TRP under uniform probabilities by [84]. As the constant

factor in [84] for uniform probabilities is quite large, there is the possibility of improving it us-

ing a different algorithm: Theorem IV.2 would be applicable to any such future improvement

and yield a corresponding improved result for non-uniform probabilities.

In Section 4.3, we state an algorithm and compare its solution to the re-optimization

solution. More formally, we prove the following theorem:

Theorem IV.3. There is an O(log n)-approximation algorithm for the a priori traveling re-

pairman problem under independent probabilities with respect to the re-optimization solution,

where n denotes the number of vertices.

To do that, first we provide a constant-factor approximation algorithm with respect to



103

the re-optimization solution if our metric is a relaxed 2-Hierarchically well Separated Tree

(2-HST). More specifically, we show the following theorem:

Theorem IV.4. There is a constant-factor approximation algorithm for the a priori traveling

repairman problem with a relaxed 2-HST metric under independent probabilities with respect

to the re-optimization solution.

Then, we prove the following result:

Theorem IV.5. If there is an O(α)-approximation algorithm for a priori TRP on a re-

laxed 2-HST w.r.t the re-optimization solution, then there is an O(α · log n)-approximation

algorithm for a priori TRP on a general metric w.r.t the re-optimization solution.

Finally, by combining the above Theorems, we can prove Theorem IV.3.

4.1.3 Related Work.

The a priori optimization model was introduced in [57] and [13], see also the survey

by [15]. These papers considered the setting where the metric is itself random and carried

out asymptotic analysis (as the number of vertices grows large). They obtained such results

for the minimum spanning tree, traveling salesman, capacitated vehicle routing and traveling

salesman facility location problems.

Approximation algorithms for a priori optimization are more recent: these can handle

arbitrary problem instances. Such results are known for the traveling salesman problem

(TSP), capacitated VRP and traveling repairman (TRP). We briefly discuss them below.
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The a priori TSP has been extensively studied. In particular, there is a randomized 4-

approximation algorithm for independent probabilities by [79]. The same paper also gave

a deterministic 8-approximation algorithm; the constant was later improved to 6.5 in [85].

These algorithms were based on a random-sampling approach ([47, 86]) that was previously

used in other network design problems. For arbitrary (black-box) distributions, [77] gave a

randomized O(log n)-approximation algorithm which actually does not even need any knowl-

edge on the distribution. Later, [41] proved an Ω(log n) lower bound on the approximation

ratio of any deterministic algorithm for a priori TSP under arbitrary distributions.

The capacitated VRP with stochastic demands ([14]) is another well-studied a priori

optimization problem. Here, we have a vehicle with limited capacity Q at the root that

needs to satisfy demands at various vertices. The demand at each vertex is an independent

random variable with a known distribution. A master solution to this problem is a tour τ

that visits every vertex; after demands are observed, the vehicle visits vertices in the same

order as τ while performing additional refill-trips to the root whenever it runs out of items.

The objective is to minimize the total length of the tour. A 2.5-approximation algorithm

for this problem in the case of identical demand distributions was given in [14]. Later, [48]

obtained a randomized 2.5-approximation algorithm for this problem under non-identical

distributions.

The a priori TRP was recently studied in [84], where a constant-factor approximation

algorithm was obtained for the case of uniform independent probabilities. They left open the

problem under non-uniform probabilities: Theorem IV.2 resolves this positively. The algo-
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rithm in [84] was based on many ideas from the deterministic TRP, but it needed stochastic

counterparts of various properties. As noted in [84], their proof relied heavily on the proba-

bilities being uniform and it was unclear how to handle non-uniform probabilities.

We note that the deterministic traveling repairman problem (TRP) has been studied

extensively, both in exact algorithms ([73, 33, 88]) and approximation algorithms ([17], [36],

[4], [22]). It was shown to be NP-hard even on weighted trees by [81], and a polynomial time

approximation scheme (PTAS) on such metrics was given by [82]. On general metrics, the

best approximation ratio known is 3.59 due to [22]; it is also known that one cannot obtain

a PTAS.

4.2 A Priori TRP with Respect to the Optimal Offline Solution

Consider an instance I of a priori TRP on metric (V, d) with probabilities {pv}v∈V . We

show how to “reduce” this instance to one with uniform probabilities, which would prove

Theorem IV.2. Our approach is natural: we replace each vertex v ∈ V with a group Sv

of co-located vertices, where each new vertex is active with a uniform probability p. Let

J denote the new instance and (V̂ , d) the new metric. Intuitively, when p is chosen much

smaller than the pvs and |Sv| ≈ pv/p, the scaled uniform instance J should behave similar to

I. However, proving such a result formally requires significant technical work. For example,

the master tour found by an algorithm for the scaled (uniform) instance might not visit

all the co-located copies consecutively. We define a consecutive master tour for J as one

that visits all co-located vertices consecutively. Then, we show an approximate equivalence
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between (i) master tours in I and (ii) consecutive master tours in J . This relies on the

independence across vertices and the correspondence between the events “vertex v is active

in I” and “at least one vertex of Sv is active in J ”. This is formalized in Section 4.2.2.

Then, we show in Section 4.2.4 that any master tour for instance J can be modified to a

“consecutive” master tour with the same or better overall expected latency. Finally, in order

to maintain a polynomial-size instance J (this is reflected in the choice of p), we need to

take care of vertices with very small probability separately. In Section 4.2.3 we show that

the overall effect of the small-probability vertices is tiny if they are visited in non-decreasing

order of distances at the end of our master tour.

Algorithm 9 Reducing non-uniform instance I to uniform instance J
1: Y ← {v ∈ V | pv < 1/n2} denotes the low probability vertices.

2: X ← {v ∈ V | pv ≥ 1/n2} denotes all other vertices.

3: p← 1
n minv∈X pv

4: Construct instance J with vertex set V̂ that contains for each v ∈ X, a set Sv of tv = dpvp e copies of v.

The distance between any two vertices of Sv is zero for all v ∈ X. The distance between any vertex of

Su and any vertex of Sv is d(u, v). All vertices in V̂ have a uniform activation probability p.

5: Run any approximation algorithm for uniform a priori TRP on J to obtain master tour π̂.

6: Run procedure MakeConsecutive(π̂) to ensure that π̂ visits each group Sv consecutively.

7: Obtain tour π by visiting vertices of X in the same order that Svs are visited in π̂.

8: Extend π by visiting vertices w ∈ Y in non-decreasing order of d(r, w), to obtain tour π̄.

9: return π̄.

Algorithm 9 describes the reduction formally. In Step 6, Algorithm 9 relies on a procedure

MakeConsecutive that modifies tour π̂ such that it visits all copies of the same node

consecutively. We will prove Theorem IV.2 by analyzing this algorithm.

4.2.1 Overview of Analysis.

We first assume that the master tour π̂ on instance J already visits copies of each vertex

consecutively: so there is no need for Step 6. We split this proof into two parts corresponding
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to the X-vertices (normal probabilities) and Y -vertices (low probabilities). The analysis for

X-vertices (Section 4.2.2) is the main part, where we show that the optimal values of I and

J are within a constant factor of each other. In Lemma IV.8 we show that a constant-factor

perturbation in probabilities of V will only change the cost of any solution (including the

optimal) by a constant factor. Then we prove (in Lemma IV.9) that the optimal value of

instance J is within a constant factor of the optimal value of I: although J has many

more vertices than I, the proof exploits the fact that the expected number of active vertices

is roughly the same as I. Lemma IV.10 proves the other direction for the cost of our

algorithm, i.e. the cost of Algorithm 9 for I is at most that of the consecutive master tour

for J . To handle the Y -vertices, we use a simple expected distance lower-bound to show (in

Section 4.2.3) that visiting Y at the end of our tour only adds a small factor to the overall

expected cost.

Note that we assumed above that the master tour π̂ visits copies of each vertex con-

secutively. It is possible that the algorithm for uniform a priori TRP in [84] already has

this property, in which case the analysis outlined above suffices. However, by providing an

explicit subroutine (MakeConsecutive) that ensures this consecutive property, our ap-

proach can be combined with any algorithm for uniform a priori TRP. The details of the

MakeConsecutive procedure and its analysis appear in Section 4.2.4.

4.2.2 Analysis for Vertices in X.

Here we analyze the steps of the algorithm that deal with vertices in X, i.e. with prob-

ability at least 1
n2 . In order to reduce notation, we will assume here that X = V which is
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the entire vertex set. Recall that p = 1
n
· minv∈V pv . Also define p̄v = min

{
(1 + 1

n
)pv, 1

}
,

tv = dpv/pe and qv = 1− (1− p)tv for each v ∈ V . We will refer to the instances on metric

(V, d) with probabilities {pv}v∈V , {qv}v∈V and {p̄v}v∈V as Ip, Iq and Ip̄ respectively. Note

that the original instance is I = Ip. For simplicity we use p,q and p̄ to refer to the vector

of probabilities for each corresponding distribution.

Lemma IV.6. For any v ∈ V , we have pv(1− 1
e
) ≤ qv ≤ p̄v ≤ pv(1 + 1

n
).

Proof. Note that for every real number x we have 1 +x ≤ ex: using x = −p and raising both

sides to the power of tv we obtain (1− p)tv ≤ e−ptv . Now we have:

qv = 1− (1− p)tv ≥ 1− e−ptv ≥ 1− e−p·
pv
p = 1− e−pv ≥ (1− 1

e
)pv .

The second inequality uses tv = dpv/pe and the last one uses 1 − e−x ≥ (1 − 1/e)x for

any x ∈ [0, 1] with x = pv. Now, to prove the other inequality we consider the bionomial

expansion of (1− p)tv and cut it off for the powers greater than 1. So we have:

qv = 1− (1− p)tv ≤ 1− (1− ptv) = ptv ≤ p(
pv
p

+ 1) ≤ pv +
pv
n

= pv(1 +
1

n
) .

Combined with the fact that qv ≤ 1, we obtain qv ≤ p̄v.

Lemma IV.7. Let π be any master tour on (V, d). Consider two probability distributions

given by {qv}v∈V and {p̄v}v∈V such that 0 ≤ qv ≤ p̄v ≤ 1 for each v ∈ V . Then the expected

latency of π under {qv}v∈V is at most that under {p̄v}v∈V .

Proof. Let function f(p1, · · · pn) denote the expected latency of π as a function of vertex

probabilities {pv}. We will show that all partial derivatives of f are non-negative. This
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would imply the lemma.

We can express f as a multilinear polynomial

f(p) =
∑
A⊆V

∏
u∈A

pu
∏

w∈V \A

(1− pw)

 · LATAπ .
Recall that LATAπ is the total latency of vertices in active set A in the shortcut tour πA. So

the vth partial derivative is:

∂f

∂pv
=
∑

A⊆V \v

∏
u∈A

pu
∏

w∈V \A\v

(1− pw)

(LATA∪vπ − LATAπ
)
.

For any A ⊆ V \ v, it follows by triangle inequality that LATA∪vπ ≥ LATAπ . This shows that

each term in the above summation is non-negative and so ∂f
∂pv
≥ 0.

Lemma IV.8. Let π be any master tour on (V, d). Consider two probability distributions

given by {qv}v∈V and {p̄v}v∈V and some constant β ≤ 1 such that βp̄v ≤ qv ≤ p̄v for each

v ∈ V . Then the expected latency of π under {qv}v∈V is at least β3 times that under {p̄v}v∈V .

Proof. Let function f(p1, · · · pn) denote the expected latency of π under probabilities {pv}v∈V .

For q and p̄ as in the lemma, we will show f(q) ≥ β3 · f(p̄). To this end, we now view f as

the expected sum of terms corresponding to all possible edges used in the shortcut tour πA

(where A is the active set). Renumber the vertices as 1, 2, · · ·n in the order of appearance in

π; so the root r is numbered 1. For any i, j ∈ [n] let Iij denote the indicator random variable

for (ordered) edge (i, j) being used in the shortcut tour πA. For any j ∈ [n], let Nj denote
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the number of active vertices among {j, j + 1, · · ·n}. Then, the total latency of tour πA is

∑
1≤i<j≤n

d(i, j) · Iij ·Nj .

Under probabilities q, for any i < j we have E[Iij] = qi ·qj ·
∏j−1

k=i+1(1−qk) which corresponds

to the event that i and j are active but all vertices between i and j are inactive. Moreover,

E[Nj|Iij = 1] = 1 +
∑n

`=j+1 q` using the independence across vertices. So we can write:

f(q) =
∑

1≤i<j≤n

d(i, j)·E[Iij]·E[Nj|Iij = 1] =
∑

1≤i<j≤n

d(i, j)·qi ·qj ·
j−1∏
k=i+1

(1−qk)
(

1 +
n∑

`=j+1

q`

)
.

Note that for any i < j, using the fact that β · p̄ ≤ q ≤ p̄ we have:

qi · qj ·
j−1∏
k=i+1

(1− qk)
(

1 +
n∑

`=j+1

q`

)
≥ β3 · p̄i · p̄j ·

j−1∏
k=i+1

(1− p̄k)
(

1 +
n∑

`=j+1

p̄`

)
.

This implies f(q) ≥ β3 · f(p̄) as desired.

Lemma IV.9. Instances I and J in Algorithm 9 satisfy

OPT(J ) ≤
(

e

e− 1

)(
1 +

1

n

)4

· OPT(I) .

Proof. Recall the three instances I = Ip, Iq and Ip̄ on the metric (V, d). Using q ≤ p̄

(Lemma IV.6) and Lemma IV.7 we have OPT(Iq) ≤ OPT(Ip̄). Further, using p ≤ p̄ ≤

(1+1/n)p and Lemma IV.8 we have OPT(Ip̄) ≤ (1+1/n)3OPT(Ip). So we obtain OPT(Iq) ≤

(1 + 1/n)3 · OPT(I).

For α = e
e−1

(1 + 1
n
), we will show that OPT(J ) ≤ α · OPT(Iq) which would prove the

lemma. Recall that instance J is defined on the “scaled” vertex set V̂ = ∪v∈V Sv. Let π be

an optimal master tour for instance Iq and π̂ be its corresponding master tour for J : i.e. π̂
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visits each group Sv consecutively at the point when π visits v. It suffices to show that the

expected latency ELATπ̂ of tour π̂ for J is at most α · ELATπ, where ELATπ is the expected

latency of tour π for Iq.

Let A ⊆ V and Â ⊆ V̂ denote the random active subsets in the instances Iq and J

respectively. For any v ∈ V , let Ev denote the event that Sv ∩ Â 6= ∅; note that these events

are independent. Moreover, for any v ∈ V , PrÂ[Ev] = PrÂ[Sv ∩ Â 6= ∅] = qv = PrA[v ∈ A].

Let ELATπ̂(w) = EA←Π

[∑
v∈Sw LAT

A
π̂ (v)

]
denote the total expected latency of vertices of Sw

in tour π̂. Fix any vertex w ∈ V : we will show that ELATπ̂(w) is at most α · ELATπ(w),

where ELATπ(w) is the expected latency of vertex w in π. Summing over w ∈ V , this would

imply ELATπ̂ ≤ α · ELATπ, and hence OPT(J ) ≤ α · OPT(Iq).

Consider now a fixed w ∈ V . Note that the probability distribution of the vertices in

V \ {w} whose groups (in V̂ ) have at least one vertex in Â is identical to that of A \ {w}.

In other words, the random subset {v ∈ V \ {w} : Ev occurs for Â ⊆ V̂ \ Sw} has the

same distribution as random subset A \ {w}. Below, we couple these two distributions: We

condition on the events Ev for all v ∈ V \{w} (for tour π̂) which corresponds to conditioning

on A \ {w} being active (for tour π). Under this conditioning (denoted E), the latency of

any active Sw vertex in π̂ is deterministic and equal to the latency of w (if it is active) in π;

let L(π,w | E) denote this deterministic value. So the conditional expected latency of w is

L(π,w | E) · Pr[w ∈ A] = L(π,w|E) · qw where we used the independence of A \ {w} and the

event w ∈ A. Similarly, the total conditional expected latency of Sw in π̂ is

L(π,w|E) · E[|Â ∩ Sw|] = L(π,w|E) · (ptw) ≤ L(π,w|E) · (pw + p) .
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The equality above uses the independence of {Ev : v ∈ V \ {w}} and Â ∩ Sw, and the

inequality uses tw = dpw/pe. Thus, the total conditional expected latency of Sw in π̂ is

at most pw+p
qw

times the conditional expected latency of w in π. Deconditioning, we obtain

ELATπ̂(w) ≤ pw+p
qw
· ELATπ(w). Using Lemma IV.6, pw+p

qw
≤ e

e−1
(1 + p/pw) ≤ e

e−1
(1 + 1/n) =

α. So LATπ̂(w) ≤ α · LATπ(w) as needed.

Lemma IV.10. Consider any consecutive master tour π̂ on instance J with expected latency

ALG(J ). Then the expected latency of the resulting master tour π on instance I is

ALG(I) ≤
(

e

e− 1

)3(
1 +

1

n

)3

· ALG(J ) .

Proof. Let ALG(Ip), ALG(Iq) and ALG(Ip̄) denote the expected latency of master tour π

under probabilities p, q and p̄ respectively. Below we use α = e
e−1

(1 + 1
n
). Using p ≤ p̄

and Lemma IV.7 we have ALG(Ip) ≤ ALG(Ip̄). Using 1
α
· p̄ ≤ q ≤ p̄ (Lemma IV.6)

and Lemma IV.8, we have ALG(Ip̄) ≤ α3 · ALG(Iq). Combining these bounds, we have

ALG(I) ≤ α3 · ALG(Iq). Finally, it is easy to see that ALG(Iq) ≤ ALG(J ) as the probability

of having at least one active vertex in group Sv (for any v ∈ V ) in J is exactly equal the

probability (qv) of visiting v in Iq.

4.2.3 Overall Analysis Including Vertices in Y .

Now we have the tools to finish the proof of Theorem IV.2 assuming the tour π̂ in J is

consecutive. Recall that π is the tour corresponding to π̂ on vertices X and π̄ is the extended

tour that also visits the vertices Y .
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First, the analysis for the vertices X (Lemmas IV.9 and IV.10) yields:

Corollary IV.11. The tour π on vertices X satisfies

EA

[ ∑
v∈A∩X

LATAπ (v)

]
≤ (1 + o(1))

(
e

e− 1

)4

ρ · OPTX ,

where ρ is the approximation ratio for uniform a priori TRP and OPTX is the optimal value

of the instance restricted to vertices X.

After extending tour π to π̄, we can write the final expected latency as

(4.1) ALG(I) = EA

[ ∑
v∈A∩X

LATAπ̄ (v) +
∑

v∈A∩Y

LATAπ̄ (v)

]
= EA

[ ∑
v∈A∩X

LATAπ (v)

]
+ EA

[ ∑
v∈A∩Y

LATAπ̄ (v)

]

where A ⊆ V is the active subset. The last equality uses the fact that π̄ visits all vertices

of X (along π) before Y . The first term above can be bounded by Corollary IV.11. We now

focus on the second term involving vertices Y .

Let L denote the length of tour π̄ before visiting the first Y -vertex; note that this is

a random variable. Clearly E[L] is at most the expected total latency of the X-vertices.

Consider any v ∈ Y : by the ordering of the Y -vertices in master tour π̄,

LATAπ̄ (v) ≤ (L+ (2Nv + 1) · d(r, v)) · 1v∈A ,

where Nv is the number of active Y -vertices appearing before v. Taking expectations,

E[LATAπ̄ (v)] ≤ pv · E[L] + pv · d(r, v) · (2E[Nv] + 1) ≤ pv · E[L] + pv · d(r, v) · (2n · 1

n2
+ 1)

= pv · E[L] + pv · d(r, v) · (1 + o(1)),

The first inequality uses the fact that L, Nv and 1v∈A are independent. The second inequality

uses that Nv is the sum of at most n Bernoulli random variables each with probability at

most 1
n2 .
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Summing over all v ∈ Y , we obtain

EA

[ ∑
v∈A∩Y

LATAπ̄ (v)

]
≤
(∑
v∈Y

pv

)
· E[L] + (1 + o(1))

∑
v∈Y

pv · d(r, v)

≤ 1

n
· E[L] + (1 + o(1))

∑
v∈Y

pv · d(r, v)

where the last inequality uses pv ≤ 1/n2 for all v ∈ Y .

Let EX denote the expected latency of the X-vertices: this is the first term in the right-

hand-side of (4.1). Recall that E[L] ≤ EX . Using the above bound on the latency of

Y -vertices,

ALG(I) ≤ EX +
1

n
· EX + (1 + o(1))

∑
v∈Y

pv · d(r, v)

= (1 + o(1))

(
EX +

∑
v∈Y

pv · d(r, v)

)

≤ (1 + o(1))

(
e

e− 1

)4

ρ ·
(
OPTX +

∑
v∈Y

pv · d(r, v)

)
(4.2)

≤ (1 + o(1))

(
e

e− 1

)4

ρ · OPT.(4.3)

Above, inequality (4.2) uses Corollary IV.11. Inequality (4.3) uses the fact that the latency

contribution of Y -vertices in any master tour is at least
∑

v∈Y pv · d(r, v) and the latency of

X-vertices is clearly at least OPTX . This completes the proof of Theorem IV.2 assuming that

π̂ visits each group Sv consecutively. The next section shows that this consecutive property

can always be ensured.

4.2.4 Ensuring the Consecutive Property.

The main result here is:
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Theorem IV.12. Consider any instance J of uniform a priori TRP on vertices ∪v∈XSv

where the vertices in Sv are co-located for all v ∈ X. There is a polynomial time algorithm

that given any master tour τ , modifies it into a consecutive tour having expected latency at

most that of τ .

While this result is intuitive, we note that it is not obvious to prove. This is because an

optimal TRP solution can be fairly complicated even on simple metrics: for example, the

optimum may cross itself several times on a line-metric ([2]) and the problem is NP-hard

even on tree-metrics ([81]).

Algorithm 10 describes the procedure used to establish Theorem IV.12. We use Π to

denote the distribution of active vertices, where each vertex has independent probability p.

It is obvious that each iteration of the while-loop decreases the number k of parts of Sz:

so this procedure ends in polynomial time and produces a master tour that visits each Sv

consecutively. The key part of the proof is in showing that the expected latency does not

increase.

Algorithm 10 Algorithm to obtain a consecutive master tour.

ProcedureMakeConsecutive(τ):

1: for z ∈ V do

2: Let C1
z , C

2
z , ..., C

k
z be the minimal partition of Sz, where for every i ∈ [k], the vertices in Ciz appear

consecutively in tour τ .

3: while there exists Ciz and Cjz with i 6= j do

4: Construct tour τi from τ by relocating vertices Cjz immediately after Ciz
5: Construct tour τj from τ by relocating vertices Ciz immediately before Cjz
6: τ ← argminτ∈{τi,τj}EA←Π

[
LATAτ

]
7: Update k ← k − 1 and the new partition of Sz.

8: end while

9: end for
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Figure 4.2: From left to right: tours τ, τi and τj

Lemma IV.13. Let Ci
z and Cj

z be two parts of Sz with respect to the current tour τ in

procedure MakeConsecutive. Then we have:

EA←Π

[
LATAτ

]
≥ min(EA←Π

[
LATAτi

]
,EA←Π

[
LATAτj

]
).

Proof. Let |Ci
z| = ki and |Cj

z | = kj. Without loss of generality we assume that τ visits Ci
z

before Cj
z . To reduce notation we use V to denote the vertex set of instance J and let

U = Ci
z ∪ Cj

z . Recall that LATAπ (w) is the latency of vertex w in tour π when the subset A

of vertices is active; also LATAπ =
∑

w∈A LAT
A
π (w). For any R ⊆ V and S ⊆ R we use the

notation p(S,R) = p|S| · (1 − p)|R\S| for the probability that S is the set of active vertices

amongst R.

It suffices to show EA←Π

[
LATAτ

]
is at least a convex combination of EA←Π

[
LATAτi

]
and

EA←Π

[
LATAτj

]
. More specifically we show that:

EA←Π

[
LATAτ

]
≥ λ · EA←Π

[
LATAτi

]
+ (1− λ) · EA←Π

[
LATAτj

]
.

where λ ∈ [0, 1] is a value that will be set later. The above inequality is equivalent to proving
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the following:

∑
A⊆V

p(A, V )LATAτ ≥
∑
A⊆V

p(A, V )
(
λ · LATAτi + (1− λ) · LATAτj

)
.

Let us define B = A \ U and C = A ∩ U . Basically C is the subset of active vertices among

U = Ci
z ∪ Cj

z , and B is the subset of active vertices among the rest of V . Then we can

re-write the above inequality as follows:∑
B⊆V \U p(B, V \ U)

∑
C⊆U p(C,U)LATB∪Cτ

≥
∑

B⊆V \U

p(B, V \ U)
∑
C⊆U

p(C,U)
(
λ · LATB∪Cτi

+ (1− λ) · LATB∪Cτj

)
.

Therefore, it is enough to prove:

(4.4)
∑
C⊆U

p(C,U)LATB∪Cτ ≥
∑
C⊆U

p(C,U)
(
λ · LATB∪Cτi + (1− λ) · LATB∪Cτj

)
, ∀B ⊆ V \ U.

In the rest of this proof we fix a subset B ⊆ V \ U . This can be viewed as conditioning

on the event “B is the active set of vertices within V \ U”; we denote this event by EB. Let

the order of visited vertices of B ∪U in τ be B1, C
i
z, B2, C

j
z , B3 where B1, B2, B3 are ordered

sets of vertices that form a partition of B. Therefore, together with Ci
z and Cj

z they form a

partition of B ∪ U . See Figure 4.2 for an example.

If B2 = ∅ then all three tours τ , τi and τj become identical when restricted to B ∪ C for

any C ⊆ U . So (4.4) is satisfied with an equality in this case. Below we assume B2 6= ∅. We

will prove the inequality (4.4) by considering the latency contributions of vertices in each of

the 5 different parts B1, B2, B3, C
i
z, C

j
z .

We define lw := LATB∪{w}τ (w) for all w ∈ V and

(4.5) Ti := LATB∪C
i
z

τ (w) ∀w ∈ Ci
z, and Tj := LATB∪C

j
z

τ (w) ∀w ∈ Cj
z .



118

Basically Ti (resp. Tj) is the length of the path in τ from the root to any vertex in Ci
z

(resp. Cj
z) when the active vertices are B ∪ Ci

z (resp. B ∪ Cj
z). Note that Tj ≥ Ti by

triangle inequality. Also, let LBπ (w) be the expected latency of any vertex w for any tour

π ∈ {τ, τi, τj} conditioned on the event EB. More formally:

LBπ (w) =
∑
C⊆U

p(C,U)LATB∪Cπ (w), ∀w ∈ V .

Finally, defining the following terms will help us simplify our notation:

(4.6) ∆i := LATB∪C
i
z

τ (w)− LATBτ (w) = LATB∪C
i
z

τ (w)− lw ∀w ∈ B2 ∪B3 .

(4.7) ∆j := LATB∪C
j
z

τ (w)− LATBτ (w) = LATB∪C
j
z

τ (w)− lw ∀w ∈ B3.

Note that ∆i (resp. ∆j) corresponds to the increase in latency (conditioned on EB) of any

vertex appearing after Ci
z (resp. Cj

z) if some vertex in Ci
z (resp. Cj

z) is active. Note that the

right hand side in (4.6) is the same for any w in the given set and as a result independent of

w; the same observation is true for (4.7). Moreover, by triangle inequality, having a superset

of active vertices can only increase the latency of any vertex: so ∆i and ∆j are non-negative.

Table 4.1 lists the expected latency of vertices in each of the five different parts, condi-

tioned on EB. We use αi = 1− (1− p)ki and αj = 1− (1− p)kj as the probabilities of having

at least one active vertex in parts Ci
z and Cj

z respectively.

We first prove the lemma assuming the entries stated in the table. Then we explain why

each of these table entries is correct, which would complete the proof.
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Tour π

Type
B1 B2 B3 Ciz Cjz

τ lw lw + ∆iαi lw + ∆iαi + ∆jαj Tip Tjp+ ∆iαip

τi lw lw + ∆i(αi + αj − αiαj) lw + ∆i(αi + αj − αiαj) Tip Tip

τj lw lw lw + ∆j(αi + αj − αiαj) Tjp Tjp

Table 4.1: The values of LBπ (w) for w ∈ B1 ∪B2 ∪B3 ∪ Ciz ∪ Cjz , and π ∈ {τ, τi, τj}

Completing proof of Lemma IV.13 using Table 4.1.

We now prove (4.4) for a suitable choice of λ ∈ [0, 1]. The value λ will not depend on the

subset B: so (as discussed before) we can take an expectation over B to complete the proof

of the lemma.

Choosing any λ such that λ ≤ αi
αi+αj−αiαj and 1− λ ≤ αj

αi+αj−αiαj , it follows from the first

three columns of Table 4.1 (for B1, B2 and B3) that:

(4.8) LBτ (w) ≥ λ · LBτi(w) + (1− λ) · LBτj(w), ∀w ∈ B.

Next we show that the total latency contribution from U satisfies a similar inequality:

(4.9)
∑
w∈U

LBτ (w) ≥ λ ·
∑
w∈U

LBτi(w) + (1− λ) ·
∑
w∈U

LBτj(w).

To see this, note from the last two columns of the table that

∑
w∈U

LBτ (w) ≥ ki · Tip+ kj · Tjp,
∑
w∈U

LBτi(w) = (ki + kj)Tip,
∑
w∈U

LBτj(w) = (ki + kj)Tjp .

So, to prove (4.9) it suffices to show kiTip+ kjTjp ≥ (ki + kj)(λTi + (1− λ)Tj)p. Using the

fact that Ti ≤ Tj, it suffices to show kj ≥ (ki + kj)(1− λ). In other words, choosing λ such

that 1− λ ≤ kj
ki+kj

, we would obtain (4.9).
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Finally, adding the inequalities (4.8) and (4.9) (which account for the latency contribution

from all active vertices) we would obtain (4.4). We only need to ensure that there is some

choice for λ satisfying the conditions we assumed, namely:

λ ≤ αi
αi + αj − αiαj

, 1− λ ≤ αj
αi + αj − αiαj

, and 1− λ ≤ kj
ki + kj

.

It can be verified directly that λ = 1−(1−p)ki
1−(1−p)ki+kj

satisfies these conditions. We provide more

explanations about our choice of λ after completing the proof.

Obtaining the entries in Table 4.1.

Below we consider each vertex-type separately.

Vertices w ∈ B1. By construction of τi and τj it is obvious that τ, τi and τj are identical

until visiting any w ∈ B1. So for any C ⊆ U and π ∈ {τ, τi, τj} we have LATB∪Cπ (w) =

LATBτ (w) = LATB∪{w}τ (w) = lw. This means that LBπ (w) = lw for all π ∈ {τ, τi, τj}.

Vertices w ∈ B2. Consider first tour τ . Note that if there is at least one active vertex in

Ci
z (which happens with probability αi) then the latency of any w ∈ B2 will be LATB∪C

i
z

τ (w).

However, if all vertices in Ci
z are inactive (which happens with probability 1− αi) then the

latency of w would be LATBτ (w). Now using (4.6) we have:

LBτ (w) = LATB∪C
i
z

τ (w) · αi + lw · (1− αi) = (lw + ∆i) · αi + lw · (1− αi) = lw + ∆iαi .

Now, we can use a similar logic for τi. Here, if there is any active vertex in U = Ci
z ∪ Cj

z

(with probability αi + αj − αiαj) the latency of w is LATB∪Uτi
(w), and if all of U is inactive

the latency is lw. Note that by definition of τ and τi and the fact that all vertices in Ci
z
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appear consecutively on both tours, LATB∪Uτi
(w) = LATB∪C

i
z

τi
(w) = LATB∪C

i
z

τ (w). So we have

LBτi = lw + ∆i(αi + αj − αiαj).

Finally, by definition of τj we have LATB∪Cτj
(w) = LATBτ (w) = lw for any C ⊆ U . So

LBτj(w) = lw.

Vertices w ∈ B3. Consider first tour τ . The latency of such a vertex w is:

• lw if all of U = Ci
z ∪ Cj

z is inactive,

• LATB∪C
i
z

τ (w) if some vertex in Ci
z is active and all of Cj

z is inactive,

• LATB∪C
j
z

τ (w) if some vertex in Cj
z is active and all of Ci

z is inactive, and

• LATB∪C
i
z∪C

j
z

τ (w) if some vertex in Ci
z and some vertex in Cj

z are active.

Therefore, we can write LBτ (w) as:

lw(1− αi)(1− αj) + LATB∪C
i
z

τ (w)αi(1− αj) + LATB∪C
j
z

τ (w)αj(1− αi) + LATB∪Uτ (w)αiαj .

From (4.6) and (4.7) we have LATB∪C
i
z

τ = lw + ∆i and LATB∪C
j
z

τ = lw + ∆j. Also, since we

assumed that B2 6= ∅, we have LATB∪Uτ = lw + ∆j + ∆i. Combined with the above equation,

LBτ (w) = lw + ∆iαi + ∆jαj .

Now for tour τi the latency would be equal to LATB∪C
i
z

τ (w) = lw + ∆i if there is at

least one active vertex among U which happens with probability αi + αj − αiαj. Otherwise

it would be just lw. So LBτi = lw + ∆i(αi + αj − αiαj). Similarly, for tour τj we have

LBτj = lw + ∆j(αi + αj − αiαj).
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Vertices w ∈ Ciz. We start with tour τ . If w /∈ C then LATB∪Cτ (w) = 0. Otherwise, w is

active and using (4.5) we have LATB∪Cτ (w) = LATB∪C
i
z

τ (w) = Ti. So LBτ (w) = Tip.

As Ci
z appears in the same position in tours τ and τi, we also have LBτi(w) = Tip.

In tour τj, part Ci
z has moved to the position of part Cj

z in τ . Here, when w ∈ C we have

LATB∪Cτj
(w) = Tj. So LBτj(w) = Tjp.

Vertices w ∈ Cjz . As in the previous case, we have LBτi(w) = Tip and LBτj(w) = Tjp.

Now, consider tour τ . First note that if w /∈ C, LATB∪Cτ (w) = 0. Below we consider the

cases that w is active, which happens with probability p. If there is at least one active vertex

in Ci
z (which happens independently with probability αi) we have LATB∪Cτ (w) = lw + ∆i =

Tj + ∆i. And if there is no active vertex in Ci
z (with probability 1 − αi), then we have

LATB∪Cτ (w) = lw = Tj. So

LBτ (w) = pαi · (Tj + ∆i) + p(1− αi) · Tj = Tjp+ ∆iαip .

This completes the proof of all cases in Table 4.1, and hence Lemma IV.13.

4.2.5 Choice of λ in Proof of Lemma IV.13

Here we show that λ = 1−(1−p)ki
1−(1−p)ki+kj

(where 0 ≤ p ≤ 1) satisfies the following inequalities:

λ ≤ αi
αi + αj − αiαj

(4.10)

1− λ ≤ αj
αi + αj − αiαj

(4.11)

1− λ ≤ kj
ki + kj

(4.12)
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where αi = 1− (1− p)ki and αj = 1− (1− p)kj .

We define function f(k) = 1− (1− p)k. Then we can write:

λ =
f(ki)

f(ki + kj)
, αi = f(ki), αj = f(kj)

Clearly,

(4.13) f(ki + kj) = f(ki) + f(kj)− f(ki)f(kj)

Now, we can re-write inequality (4.10) as:

f(ki)

f(ki + kj)
≤ f(ki)

f(ki) + f(kj)− f(ki)f(kj)

which is true by equation ((4.13)).

For inequality (4.11), we rewrite it as:

1− f(ki)

f(ki + kj)
≤ f(kj)

f(ki) + f(kj)− f(ki)f(kj)
=

f(kj)

f(ki + kj)

⇔ f(ki + kj) ≤ f(ki) + f(kj) ,

which is true by (4.13) and the fact that f(k) ≥ 0 for every k.

It remains to show the correctness of inequality (4.12) which can be written as:

f(ki)

f(ki + kj)
≥ ki
ki + kj

⇔ f(ki)

ki
≥ f(ki + kj)

ki + kj
.

So it is enough to show that g(k) = f(k)
k

is decreasing, or equivalently g′(k) ≤ 0. We can

write:

g′(k) =
kf ′(k)− f(k)

k2
=

(1− p)k(1− k log(1− p))− 1

k2

≤ (1− p)k · e−k log(1−p) − 1

k2
= 0 .

Above we used the inequality 1 + x ≤ ex for all real x.
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4.3 A Priori TRP with Respect to the Re-Optimization Solution

Similar to Section 4.2, we consider an instance I of a priori TRP on metric (V, d) with

probabilities {pv}v∈V . In this section we provide an algorithm for a priori TRP and show

it has O(log n) approximation ratio with respect to the re-optimization solution, where n is

the number of vertices. Recall that the re-optimization cost is:

ROPT =
∑
A⊆V

∏
u∈A

pu
∏

w∈V \A

(1− pw)

 · OPTA ,
where OPTA denotes the optimal value of the TRP instance with demands at subset

A ⊆ V .

As mentioned before, first we provide a constant-factor approximation algorithm with re-

spect to the re-optimization solution if our metric is a relaxed 2-Hierarchically well Separated

Tree (2-HST).

Definition IV.14. A 2-HST is a tree metric rooted at s such that:

1. for every vertex v ∈ V , all edges incident to v except for the one that lies on s− v path

has the same weight, and

2. cost of edges on any root to leaf path decrease by a factor of two in each step.

See Figure 4.3 for an illustration of a 2-HST.

Definition IV.15. A relaxed 2-HST is a tree metric rooted at s such that:

1. for every vertex v ∈ V \ {s}, all edges incident to v except for the one that lies on s− v

path has the same weight, and
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Figure 4.3: Illustration of a 2-HST metric

2. cost of edges on any root to leaf path decrease by a factor of two in each step.

The difference is that in a relaxed 2-HST, the edges incident to the root need not have

equal weights.

After proving that the approximation ratio of our algorithm for a relaxed 2-HST with

root s is constant with respect to the re-optimization solution, we show how we can change

our metric to a relaxed 2-HST, such that we only lose a factor of O(log n). In this part, we

use the famous tree-embedding algorithm from [32]. Then we modify the resulting 2-HST

to obtain a relaxed 2-HST rooted at r, and show how we can use their result to compare the

expected a priori solution and the re-optimization solution of these metrics.

4.3.1 Algorithm for a Relaxed 2-HST

We now assume that the metric is induced by a relaxed 2-HST. This is given by an edge-

weighted tree T = (V,E) of the following form. The tree T is rooted at r ∈ V and the depth

of any vertex u is the length of the r − u path in T . We note that r is also the root for the

a priori TRP instance. For any u ∈ V let Tu ⊆ V denote all the vertices that appear at or

below u in T . The metric on T is ` : V × V → R+, where `(u, v) is the total weight of u− v
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path in T . Note that since T is a tree, if (u, v) is an edge, then `(u, v) is the weight of this

edge. For any vertex u 6= r its parent edge is the edge incident to u that lies on the u − r

path; all other edges incident to u are its child edges. For every vertex u 6= r, all its child

edges have the same weight and the weight of its parent edge is 2 times that of any child

edge. Note that the edges incident to r may have different weights. Finally the distance

d(u, v) between any pair u, v ∈ V of vertices is just the total weight on the u− v path in T .

The core of our algorithm is based on grouping vertices into clusters so that: (1) the

latencies of the vertices in the same cluster are close to each other, and (2) total probability

of each cluster is constant. Then we contract each cluster to form a single vertex and

find a tour for the deterministic TRP on these new “clusters”. In our original metric, this

would correspond to a tour, where clusters are visited in the same order as the obtained

deterministic tour, and vertices in each cluster are visited in an arbitrary order. Finally we

take care of vertices that are not part of any cluster by appending them to this tour in an

increasing order of their distance to the root. Here is a formal description of this algorithm:
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Figure 4.4: Forming cluster Ci and adding the corresponding vertex ci

Algorithm 11 A priori solution on HSTs.

1: Set M ← ∅ and tree T ′ ← T
2: for i = 1, 2, · · · do

3: Find vertex vi ∈ V of maximum depth such that
∑
w∈Tvi

\M pw ≥ 1.

4: If vi = r then exit the for-loop.

5: Choose S ⊆ {u ∈ V : u child of vi, Tu \M 6= ∅} such that:

1 ≤
∑
u∈S

∑
w∈Tu\M

pw ≤ 2

6: Set cluster Ci =
⋃
u∈S Tu \ M , private edges Ei = {(vi, u) : u ∈ S} and M ←M ∪ Ci.

7: Let τi denote any tour in T on vertices {vi} ∪ Ci originating from vi.

8: In tree T ′, add a new vertex ci connected to vertex vi; the weight of this new edge `(vi, ci) is the same

as other child edges of vi. (See Figure 4.4)

9: end for

10: Let N denote the number of clusters formed above.

11: Find an approximately optimal tour δ for the deterministic TRP instance on tree metric T ′ with root r

and vertices {ci}Ni=1.

12: Let π be the tour obtained by appending tours {τi}Ni=1 in the order that their corresponding cluster

vertex is visited in δ.

13: Let U denote all the children of the root r, and cluster Bu = Tu \M for each u ∈ U .

14: Let σ be the tour in T visiting each cluster {Bu : u ∈ U} in increasing order of `(r, u).

15: Combine a priori tours π and σ into a single tour τ using Lemma IV.31.

The clusters {Ci}Ni=1 are called heavy clusters (each such cluster has total probability
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at least one). The clusters {Bu}u∈U are called light clusters (each such cluster has total

probability less than one).

4.3.2 Analysis for Heavy Clusters

Here, we assume I only results in heavy clusters and we complete the analysis for all

clusters in Section 4.3.3 and 4.3.4. For the analysis, we define a new instance J of a

priori TRP on the tree metric T ′ where each vertex ci has activation probability qi =

1−∏v∈Ci(1− pv). All the other vertices have 0 activation probability in instance J . Note

that qi is exactly the probability that there is some active vertex in cluster Ci in the original

instance I. We first make the following simple observations.

Observation IV.16. For each i ∈ [N ], all the private edges Ei have the same weight.

Proof. Consider the iteration when cluster i is formed. Recall that Ei = {(vi, u) : u ∈ S}

where vi ∈ V \ r and S is a subset of vi’s children. By Definition IV.15, all the child edges

at vi have the same weight. This proves the claim.

Below, for any i ∈ [N ], wi denotes the (common) weight of all edges in Ei.

Observation IV.17. The private edges {Ei}Ni=1 are pairwise disjoint.

Proof. First, note that the cluster vertices {Ci}Ni=1 are clearly pairwise disjoint. Now consider

the iteration when cluster i is formed. Recall that S is some subset of vi’s children and cluster

Ci contains all remaining vertices in
⋃
u∈S Tu. Therefore, at the end of this iteration, we have

Tu \M = ∅ for all u ∈ S. So for any cluster j formed later, j’s private edges cannot contain

any Ei-edge.
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Note that the new tree T ′ contains the original tree T . We will use ` to also denote the

distance in the new tree-metric T ′.

Observation IV.18. For any i ∈ [N ] and z ∈ Ci, the distance `(ci, z) ≤ 3`(ci, vi) in

tree-metric T ′.

Proof. Consider the iteration when cluster i is formed. Recall that the new vertex ci in tree

T ′ is connected to the vertex vi (chosen in step 3). By Definition IV.15, the weights on the

path from vi to z in T are geometrically decreasing by factor 2 in each step. So the distance

`(vi, z) ≤ 2`(ci, vi), and we have the distance `(ci, z) ≤ `(ci, vi) + `(vi, z) ≤ 3`(ci, vi).

Observation IV.19. For each i ∈ [N ] and walk ρ in tree T originating from r and visiting

some Ci-vertex, we have ρ ∩ Ei 6= ∅.

Proof. This follows from the fact that Ei cuts all paths from r to Ci in tree T . So path ρ

must contain some Ei-edge.

Observation IV.20. For any v ∈ V and walk ρ in tree T from r to v, the length of ρ is at

least
∑

i∈[N ]:ρ∩Ci 6=∅ `(vi, ci).

Proof. Let I = {i ∈ [N ] : ρ ∩ Ci 6= ∅}. By Observation IV.19, ρ ∩ Ei 6= ∅ for each i ∈ I.

Moreover, by Observation IV.17, the edges ρ ∩ Ei are disjoint for i ∈ I. So the length of ρ

is at least
∑

i∈I `(vi, ci) where `(vi, ci) is the weight of any Ei-edge.

Observation IV.21. For any i ∈ [N ], the expected cost of tour τi restricted to active vertices

is at most 12`(vi, ci).
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Proof. Consider the iteration when cluster i is formed. Recall that tour τi is on vertices

vi ∪Ci. By the structure of tree T based on Definition IV.15, the distance between any pair

of vertices in vi ∪ Ci is at most 4`(vi, ci). If A ⊆ V denotes the set of active vertices, the

cost of τi restricted to A∩ (vi ∪Ci) is at most 4`(vi, ci) · (1 + |A∩Ci|). So the expected cost

restricted to active vertices is at most

4`(vi, ci)

(
1 +

∑
z∈Ci

pz

)
≤ 12`(vi, ci),

where we used the fact that the total probability in each cluster is at most two.

Lemma IV.22. The re-optimization cost of instance J is at most 7 · ROPT.

Proof. Let A ⊆ V and I ⊆ [N ] denote the active subsets in the instances I and J respec-

tively. For any i ∈ [N ], by definition of qi we have PrI [i ∈ I] = qi = PrA[Ci ∩ A 6= ∅]. For

any A ⊆ V let γ(A) = {i ∈ [N ] : Ci ∩ A 6= ∅}. As the random set A is independent across

vertices V , the distribution of γ(A) is identical to that of I. So

(4.14) EI [optimal latency of I in T ′] = EA[optimal latency of γ(A) in T ′].

For each A ⊆ V , let ρA denote the TRP tour corresponding to OPTA; so the latency of

ρA is OPTA. Using this, we construct a TRP tour in T ′ that visits vertices {ci : i ∈ γ(A)}.

First, choose an arbitrary vertex ui ∈ Ci ∩ A for each i ∈ γ(A) and let ρ′A denote tour ρA

restricted to {ui : i ∈ γ(A)}. By triangle inequality, the visit-time of each ui in ρ′A is at most

that in ρA. Note that ρ′A is also a valid tour in T ′ as tree T ⊆ T ′. We now modify tour ρ′A

in tree T ′ by adding paths from ui to ci and ci to ui at the point when ui is visited, for each
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i ∈ γ(A). Let ρ′′A denote the resulting tour. We will show that:

(4.15) the visit-time of ci in ρ′′A ≤ 7× (visit-time of ui in ρ′A) , ∀i ∈ γ(A).

Fix any i ∈ γ(A). Let Ki ⊆ γ(A) denote the indices that are visited at or before ui in ρ′A.

So all the vertices {uj : j ∈ Ki} are visited in tour ρ′A before ui. By Observation IV.20, the

visit-time t′i of ui in ρ′A is at least
∑

j∈Ki `(vj, cj). By definition of tour ρ′′A, the visit-time t′′i

of ci is at most t′i + 2
∑

j∈Ki `(uj, cj) ≤ t′i + 6
∑

j∈Ki `(vj, cj) where the last inequality is by

Observation IV.18. It now follows that t′′i ≤ 7 · t′i which proves (4.15).

Now, using (4.15), the latency of tour ρ′′A is at most 7 times that of tour ρ′A (and also ρA).

So the optimal latency for visiting γ(A) in T ′ is at most 7 · OPTA. Combined with (4.14),

the lemma follows.

Lemma IV.23. Let τ1 and τ2 be two tours from root r visiting disjoint subsets of vertices

V1 and V2. Let L1 (resp. L2) denote the total latency of tour τ1 (resp. τ2). Then, there is

a single tour τ from r visiting V1 ∪ V2 of total latency at most 16(L1 + L2). Moreover, the

tour τ can be found in polynomial time.

Proof. For each k ≥ 0, let τ1(k) denote the maximal prefix of tour τ1 of length at most 2k.

Define τ2(k) similarly. Tour τ is obtained as follows. For each k = 0, 1, · · · : follow τ1(k) and

return to r, then follow τ2(k) and return to r. We now bound the latency of τ . Consider

any vertex v ∈ V1 (the case v ∈ V2 is symmetric). Let k be the smallest value such that

v ∈ τ1(k). Then, the latency of v in τ1 is at least 2k−1. By construction, the latency of v

in τ is at most 2
∑k

j=0 2j+1 ≤ 2k+3 which is at most 16 times v’s latency in τ1. Adding the
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contribution over all v ∈ V1 ∪ V2 yields the lemma.

Lemma IV.24. Consider two instances of a priori TRP on the same metric (V, d) but

different probability distributions {p′v}v∈V and {pv}v∈V where 0 ≤ pv ≤ p′v ≤ 1 for each

v ∈ V . Then, the re-optimization cost under {pv}v∈V is at most that under {p′v}v∈V .

Proof. Let function f(p1, · · · pn) denote the re-optimization cost of the instance on metric

(V, d) as a function of vertex probabilities {pv}v∈V . We can express f as a multilinear

polynomial

f(p) =
∑
A⊆V

∏
u∈A

pu
∏

w∈V \A

(1− pw)

 · OPTA .
We will show that all partial derivatives of f are non-negative. This would imply the lemma.

Now, the vth partial derivative is:

∂f

∂pv
=
∑

A⊆V \v

∏
u∈A

pu
∏

w∈V \A\v

(1− pw)

(OPTA∪v − OPTA
)
.

For any A ⊆ V \ v, note that we can shortcut the solution corresponding to OPTA∪v over v,

to obtain a feasible solution for subset A. By triangle inequality, the cost of this solution is

at most OPTA∪v. So OPTA ≤ OPTA∪v. This shows that each term in the above summation

is non-negative and so ∂f
∂pv
≥ 0.

Lemma IV.25. The optimal cost of the deterministic TRP for TRP instance with demands

{ci}Ni=1 is O(1) · ROPT.

Proof. Let ROPT′ denote the re-optimization cost of instance J . By the construction of

clusters Ci, we have qi = 1 −∏v∈Ci(1 − pv) ≥ 1 − e−
∑
v∈Ci

pv ≥ 1 − 1/e for all i ∈ [N ]. Let
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J ′ denote the a priori TRP instance on T ′ with activation probability 1
2

for each of {ci}Ni=1.

The re-optimization cost of J ′ is:

(4.16)
1

2N

∑
X⊆[N ]

OPTX ≤ ROPT′,

where the inequality is by Lemma IV.24. Above, OPTX is the optimal cost for the TRP

instance on T ′ with active vertices {ci : i ∈ X}.

For any X ⊆ [N ], let τ1(X) (resp. τ2(X)) denote the optimal TRP tour for active set X

(resp. [N ] \ X). Note that the total latency of τ1(X) and τ2(X) are OPTX and OPTN\X

respectively. By Lemma IV.23, there is a tour τ(X) that visits all the vertices {ci}Ni=1 with

latency at most 16(OPTX +OPTN\X). The optimal value of the deterministic TRP instance

on tree T ′ is clearly at most:

min
X⊆[N ]

16(OPTX + OPTN\X) ≤ 16

2N

∑
X⊆[N ]

(OPTX + OPTN\X) =
32

2N

∑
X⊆[N ]

OPTX

Which is at most 32 ·ROPT′ by inequality 4.16. Now, as ROPT′ ≤ 7 ·ROPT by Lemma IV.22,

we can conclude the proof.

Lemma IV.26. The expected latency cost of a priori tour π is O(1) · ROPT.

Proof. Recall that δ is an O(1)-approximately optimal deterministic TRP tour visiting

{ci}Ni=1 in tree T ′. Fix any i ∈ [N ] and let Ki ⊆ [N ] index the vertices visited by δ at

or before ci, so we have i ∈ Ki. The visit-time of ci in δ is ti ≥
∑

j∈Ki `(vj, cj). Note that the

tour must visit vertex vi immediately before visiting ci (recall that ci is a leaf node connected

to vi). Recall that π is the master tour that visits all the vertices V by visiting tours τi in
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the same order as δ visits clusters cis. Recall that τi is a tour on vertices {vi}∪Ci originating

from vi. Note that π returns to vi after traversing each τi.

For any subset A ⊆ V of active vertices, the latency of π for A can be upper-bounded as

follows:

For each i ∈ [N ], let Ti denote the visit-time of vertex vi (after completing τi) in π. We

can bound

E[Ti] ≤ ti +
∑
j∈Ki

EA[cost of τj restricted to A] ≤ ti + 12
∑
j∈Ki

`(vj, cj) ≤ 13ti,

where the second inequality is by Observation IV.21.

Fix any i ∈ [N ]. Note that the latency of each active vertex in τi is at most Ti. For any

v ∈ Ci, the tours obtained by restricting π to active sets A and A \ v differ by at most two

edges: moreover, these edges are between vertices of vi ∪ Ci and so each such edge has the

cost at most 2`(vi, ci). Hence E[Ti|v ∈ A] ≤ E[Ti] + 4`(vi, ci) for any v ∈ Ci. We can now

upper bound the expected latency from Ci-vertices as

∑
v∈Ci

Pr[v ∈ A] · E[Ti|v ∈ A] ≤
(∑
v∈Ci

Pr[v ∈ A]

)
(E[Ti] + 4`(vi, ci))

≤ 2 · (E[Ti] + 4`(vi, ci)) ≤ 26ti + 8`(vi, ci) ≤ 34ti.

The last inequality uses the fact that ti ≥ `(vi, ci) as the edge (vi, ci) must be traversed to

reach ci.

Finally, the expected total latency of π is at most 34
∑N

i=1 ti. Note that
∑N

i=1 ti is the total

latency of the deterministic tour δ, which is O(1) · ROPT by Lemma IV.25. This completes

the proof.
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4.3.3 Analysis for Light Clusters

Here we define a new instance K of a priori TRP on the star-metric with center r and

leaves U with edge-weights {`(r, u) : u ∈ U}. Each vertex u ∈ U is active with probability

qu = 1 −∏v∈Bu(1 − pv). Note that qu is exactly the probability that there is some active

vertex in cluster Bu in the original instance I. To reduce notation we also use wu := `(r, u)

for u ∈ U .

Observation IV.27. The re-optimization cost of K is at most ROPT.

Proof. Let A ⊆ V and K ⊆ U denote the active subsets in instances I and K. For any

A ⊆ V let γ(A) = {u ∈ U : Bu∩A 6= ∅}. As the random set A is independent across vertices

V , the distribution of γ(A) is identical to that of K. So it suffices to bound the expected

latency of γ(A). Fix any A ⊆ V and let ρA denote the TRP tour corresponding to OPTA;

so the latency of ρA is OPTA. For each u ∈ γ(A), note that ρA must visit u before the

vertices Bu ∩ A. So the total latency of γ(A)-vertices in this tour is at most OPTA. Taking

expectation over A, the claim follows.

Let σ′ be the a priori tour for instance K that visits vertices u ∈ U in increasing order of

wr,u. For each u ∈ U let Su ⊆ U be the vertices that appear before u in σ′.

Observation IV.28. The expected latency of a priori tour σ′ equals the re-optimization cost

of K. Hence,
∑

u∈U qu

(
wu + 2

∑
j∈Su qjwj

)
≤ ROPT

Proof. Let K ⊆ U denote the active subset in K. It is clear that the optimal latency tour

in any star metric involves visiting the leaves in increasing order of distance from the root.
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This is indeed the tour obtained by restricting σ′ to K. This proves the first statement.

Note that the expected visit-time of vertex u in σ′ conditioned on u ∈ K is exactly

wu+2
∑

j∈Su qjwj: this is because all other vertices are active independently. So the expected

latency of σ′ is ∑
u∈U

qu

(
wu + 2

∑
j∈Su

qjwj

)
.

Combined with Observation IV.27 this proves the second statement.

Observation IV.29. For any u ∈ U we have p(Bu) ≥ qu ≥ (1− 1/e) · p(Bu).

Proof. The inequality qu ≤ p(Bu) follows by union bound. For the other inequality,

qu = 1−
∏
v∈Bu

(1− pv) ≥ 1− e−p(Bu) ≥ (1− 1/e) · p(Bu),

where the first inequality uses 1 +x ≤ ex (for all x) and the second inequality uses 1− e−x ≥

(1− 1/e) · x for x ∈ [0, 1] and the fact that p(Bu) ≤ 1.

Lemma IV.30. The expected latency of tour σ, obtained in step 14 of Algorithm 11, is at

most 6e
e−1

ROPT.

Proof. Consider any u ∈ U and vertex v ∈ Bu. Conditioned on v being active, its expected

visit-time in σ is at most d(r, v) + 2
∑

j∈(Su∪u)

∑
z∈Bj pz · d(r, z). This follows from the

fact that the only vertices visited before v are the active vertices in ∪j∈(Su∪u)Bj and these

vertices are active independently. For each z ∈ Bj, by the structure of tree T it follows

that d(r, z) ≤ 2wj. So the expected visit-time of v conditioned on being active is tv ≤



137

2wu + 4
∑

j∈(Su∪u) p(Bj) · wj ≤ 6wu + 4
∑

j∈Su p(Bj) · wj. By Observation IV.29,

tv ≤ 6wu +
4e

e− 1

∑
j∈Su

qj · wj, ∀v ∈ Bu, u ∈ U.

Recall from Observation IV.28 that the expected visit-time of vertex u ∈ U in tour σ′

(conditioned on being active) is t′u := wu+2
∑

j∈Su qjwj. So we have tv ≤ 6 · t′u for all v ∈ Bu

and u ∈ U . So the expected latency of σ is at most:

∑
u∈U

∑
v∈Bu

pv · tv ≤ 6
∑
u∈U

p(Bu) · t′u ≤
6e

e− 1

∑
u∈U

qu · t′u ≤
6e

e− 1
· ROPT.

The second inequality is by Observation IV.29 and the last one is by Observation IV.28.

4.3.4 Combining the Two A priori Tours

Here we show that any two a priori tours can be combined to obtain a new a priori tour

of expected cost O(1) times the total. This is used in step 15 of Algorithm 11 to combine π

and σ into one.

Lemma IV.31. Let π and σ be two a priori tours visiting disjoint subsets of vertices V1 and

V2. Let L1 (resp. L2) denote the expected latency of tour π (resp. σ). Then, there is a single

a priori tour τ visiting V1 ∪ V2 of expected latency at most 19(L1 + L2). Moreover, the tour

τ can be found in polynomial time.

Proof. For each v ∈ V1, let πv denote the prefix of a priori tour π from r until v and let Ev

be the expected length of πv restricted to active vertices (note that the end point need not

be v). Note that Ev is monotonically non-decreasing along tour π. Moreover, the expected

arrival-time of v (conditioned on being active) in π is at least Ev. Similarly, we define Ev

for v ∈ V2 based on tour σ.
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For each k ≥ 0, let π(k) denote the maximal prefix of a priori tour π such that Ev ≤ 2k

for each v ∈ π(k). Define σ(k) similarly. A priori tour τ is obtained as follows. For each

k = 0, 1, · · · : follow π(k) and return to r, then follow σ(k) and return to r.

Consider any vertex v ∈ V1 (the case v ∈ V2 is symmetric). Let tv be the expected

arrival-time of v in π (conditioned on being active); note that tv ≥ max{Ev, `(r, v)}. Let

k be the smallest value such that v ∈ π(k); so Ev ≥ 2k−1. We now bound the expected

arrival-time t′v of v (conditioned on being active) in τ . For any j < k, the expected length

due to π(j) (or σ(j)) is at most 2 · 2j as its vertices are active independent of v. Let

fv denote the expected length (conditioned on v being active) due to π(k). Then t′v ≤

2
∑k

j=0 2j+1 + fv ≤ 2k+3 + fv. Below, we will bound fv ≤ 2k + `(r, v), which would imply

t′v ≤ 9 · 2k + `(r, v) ≤ 19 ·max{2k−1, `(r, v)} ≤ 19tv. Taking expectations and adding over all

v ∈ V1 ∪ V2 yields the lemma.

It remains to show fv ≤ 2k + `(r, v). Let A denote the active subset and u ∈ A be the

active vertex immediately before v in π(k). Let F denote the path π(k) until u, restricted

to A; and let `(F ) be its length. Then, the length of π(k) until v (again restricted to A) is:

Lv = `(F ) + `(u, v) ≤ 2 · `(F ) + `(r, v),

where we used the triangle inequality: the distance `(u, v) is at most the length of path F

in reverse (from u to r) plus edge (r, v). Taking expectations,

fv = E[Lv|v ∈ A] ≤ 2 · E[`(F )|v ∈ A] + `(r, v) = E[`(F )] + `(r, v) ≤ 2k + `(r, v).

The second equality is because path F is independent of v being active. The last inequality
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is because F is a sub-path of π(k) restricted to A, which has expected length at most 2k.

This shows that τ gives a constant-factor approximation algorithm for a priori TRP with

respect to the re-optimization, which is what we wantd to prove in Theorem IV.4.

4.4 Converting the Metric to a Relaxed 2-HST

In this section, we prove Theorem IV.5 and conclude the chapter:

Theorem IV.5. If there is an O(α)-approximation algorithm for a priori TRP on a re-

laxed 2-HST w.r.t the re-optimization solution, then there is an O(α · log n)-approximation

algorithm for a priori TRP on a general metric w.r.t the re-optimization solution.

To do this, we explain how we convert any general metric (V, d) to a relaxed 2-HST

(T , `T ). First, we use the algorithm from [32] to change metric (V, d) to a 2-HST (T ′, `T ′)

and use Theorem 2 from [32] which is restated as follows:

Theorem IV.32. For every metric (V, d), the algorithm in [32] finds a set of 2-HST metrics

S ′, with distribution D such that:

1. ∀(T ′, `) ∈ S ′, all vertices in V are leaves of T ′

2. ∀u,w ∈ V, ∀(T ′, `T ′) ∈ S ′ : `T ′(u,w) ≥ d(u,w)

3. ∀u,w ∈ V : E`T ′ [`T ′(u,w)] = O(log n)d(u,w)

Then, we change the set S ′ to a set S of relaxed 2-HSTs with the same distribution. The

reason we do this is to make r ∈ V which is a leaf in 2-HST T ′ the root of the relaxed 2-HST

T . So, we prove the following lemma:
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Lemma IV.33. For every metric (V, d) with root r ∈ V , we can find a set of relaxed 2-HST

metrics S, with distribution D such that:

1. ∀(T , `) ∈ S, T is rooted at r and all vertices in V \ {r} are leaves of T

2. ∀u,w ∈ V, ∀(T , `T ) ∈ S : `T (u,w) ≥ d(u,w)

3. ∀u,w ∈ V : E`T [`T (u,w)] = O(log n)d(u,w)

Proof. We apply the algorithm in [32] to find a set of 2-HST metrics S ′, with distribution

D. Recall that by Definitions IV.14 and IV.15, the main difference between a 2-HST and

a relaxed 2-HST is that in a relaxed 2-HST the edges incident to root need not to have

equal weights. Consider an arbitrary (T ′, `T ′) ∈ S ′ and let s denote the root of T ′. By

Theorem 4.4 all vertices in V , including r, are leaves of T ′. We consider the r− s path P in

T ′ as a sequence of vertices r = v0, v1, v2, ..., vk−1, vk = s. For every i ∈ [k] ∪ {0}, let T ′vi be

the subtree rooted at vi. We define H0 = T ′v0 = {r}, and Hi = T ′vi \ T ′vi−1
∀i ∈ [k]. So Hi

is a subtree rooted at vi. Now, we contract all vertices in P and let this new vertex be the

root r of T ′. See Figure 4.5 for an illustration.

We multiply the weight of each edge by a factor 3 and define (T , `T ) to be the resulting

metric. Note that r is the new root and every leaf of T ′ except for r is a leaf of T . So all

vertices in V \ {r} are leaves of T , and condition 1 holds. To prove condition 2, consider

arbitrary vertices w, u ∈ V . If u,w ∈ Hi for some i, then by our construction we have

`T (u,w) = 3`T ′(u,w), and by Theorem 4.4 we have:

d(u,w) ≤ `T ′(u,w) ≤ `T (u,w)
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(r =)v0

(s =)vk

H1 Hk−1 Hk

v1

vk−1

H1

Hk−1

Hk

r

Figure 4.5: From left to right: the initial 2-HST and its corresponding relaxed 2-HST

Now, assume u ∈ Hi and w ∈ Hj for some i, j : i < j. We can write:

`T ′(u,w) = `T ′(u, vi) + `T ′(vi, vj) + `T ′(vj, w)

= `T (u, r)/3 + `T ′(vi, vj) + `T (r, w)/3(4.17)

Since w ∈ {r}∪ (V \P ), w 6= vj, and since all children of a node in T ′ have equal length,

we have:

`T ′(vj, vj−1) ≤ `T ′(vj, w)

Consider the vj −w path in T ′ and let z be the child of vj that lies on this path. We can

write:

(4.18) `T ′(vj, w) ≥ `T ′(vj, z) = `T ′(vj, vj−1)

Where the last inequality is based on Definition IV.14 that states all edges incident to a

vertex in a 2-HST need to have equal weights.

Recall that distances are decreasing by a factor of 2, as we go deeper in tree T ′, and since
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i < j:

`T ′(vj, vi) = `T ′(vj, vj−1) + `T ′(vj−1, vj−2) + ...+ `T ′(vi+1, vi)

= `T ′(vj, vj−1) + 1/2 · `T ′(vj, vj−1) + ...+ 1/2j−i`T ′(vj, vj−1)

≤ 2`T ′(vj, vj−1) ≤ 2`T ′(vj, w)(4.19)

Note that the last inequality is due to equation (4.18). Now, by combining equations

(4.17) and (4.19), we obtain:

`T ′(u,w) ≤ `T (u, r)/3 + 2`T ′(vj, w) + `T (r, w)/3

= `T (u, r)/3 + 2`T (r, w)/3 + `T (r, w)/3

≤ `T (u, r) + `T (r, w) = `T (u,w)

Where the equality is obtained by the fact that `T (r, w) = 3`T ′(vj, w). Now, by Theo-

rem 4.4, this results in:

d(u,w) ≤ `T ′(u,w) ≤ `T (u,w)

Which completes our proof for condition 2. Now we prove the last condition. Note that to

construct T from T ′, first we contracted some vertices, which does not increase any distance

in the metric. Then we multiplied each distance by a factor 3. So we for any u,w ∈ V can

write:

`T (u,w) ≤ 3`T ′(u,w)

Now, by Theorem 4.4 we can write:

E`T [`T (u,w)] = O(E`T ′ [`T ′(u,w)]) = O(log n)d(u,w)
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which shows condition 3 and completes the proof of this lemma.

Now, we are ready to complete the proof of Theorem IV.5.

Proof. Consider an instance I of a priori TRP on general metric (V, d) with probabilities

{pv}v∈V . By Lemma 4.4 we can find a set of relaxed 2-HST metrics S, with distribution

D with the mentioned conditions. Fix some (T , `T ) ∈ S, and consider an instance IT on

(T , `T ) with probabilities {pv}v∈T , where pv = 0 ∀v ∈ T \V . For any a priori TRP instance

J , let ROPT(J ) denote the re-optimization solution. For any master tour τ , we define

LATτ (v) and LATτ (v) to be the latency of vertex v in tour τ with respect to metric d and `T

respectively. By the theorem’s assumption, for any metric (T , `T ) there is some master tour

π(T ) for which:

EA

[∑
v∈A

LATπ(T )A(v)

]
≤ O(α) · ROPT(IT )

We take expectation from both sides with respect to `T to obtain:

(4.20) E`T

[
EA

[∑
v∈A

LATπ(T )A(v)

]]
≤ O(α) · E`T [ROPT(IT )]

Consider the tour π(T )V on instance I. Note that as we have pv = 0 for every v ∈ T \ V ,

shortcutting π(T ) and π(T )V on every set A ← Π result in the same tour π(T )A. By

Theorem 4.4, we know that for every u,w ∈ V , we have d(u,w) ≤ `T (u,w), and as a result

LATπ(T )A(v) ≤ LATπ(T )A(v). So we can write:

EA

[∑
v∈A

LATπ(T )A(v)

]
≤ EA

[∑
v∈A

LATπ(T )A(v)

]
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And by taking expectation with respect to `T ← D from both sides we obtain:

E`T

[
EA

[∑
v∈A

LATπ(T )A(v)

]]
≤ E`T

[
EA

[∑
v∈A

LATπ(T )A(v)

]]

Which is true as LATπ(T )A(v) is independent of `T . Now, by combining the above inequality

and equation (4.20), we get:

E`T

[
EA

[∑
v∈A

LATπ(T )A(v)

]]
≤ O(α)E`T [ROPT(IT )](4.21)

So to conclude the proof, it is enough to show:

(4.22) E`T [ROPT(IT )] ≤ O(log n)ROPT(I)

Let δ(A) be the optimal deterministic tour for vertices A on metric d; therefore the total

latency of δ(A) is at most the optimal deterministic TRP solution for vertices A on metric

`T and we have:

ROPT(IT ) ≤ EA

[∑
v∈A

LATδ(A)(v)

]

By taking expectation with respect to `T from both sides we get:

E`T [ROPT(IT )] ≤ E`T

[
EA

[∑
v∈A

LATδ(A)(v)

]]

E`T [ROPT(IT )] ≤ EA

[∑
v∈A

E`T
[
LATδ(A)(v)

]]
(4.23)

Also, by condition 3 of Lemma 4.4, we have E`T [`T (u,w)] = O(log n)d(u,w) ∀u,w ∈ V .

Therefore for every A ⊆ V and v ∈ A:

E`T [LATδ(A)(v)] = O(log n)LATδ(A)(v)
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Now, we combine this with equation (4.23):

E`T [ROPT(IT )] ≤ O(log n)EA

[∑
v∈A

LATδ(A)(v)

]
= O(log n)ROPT(I)(4.24)

And the proof is complete by using equations (4.21), (4.24) as follows:

E`T

[
EA

[∑
v∈A

LATπ(T )A(v)

]]
≤ O(α)E`T [ROPT(IT )]

≤ O(α log n)ROPT(I)

Note that we obtain a randomized master tour π(τ) as T is a random tree metric. As

discussed in [32] the number of trees in S is O(n log n). So we can enumerate all such trees

in polynomial time and choose T ∈ S that leads to the minimum objective for π(T ) = π∗

to obtain a deterministic algorithm. So we get:

EA

[∑
v∈A

LATπ∗A(v)

]
≤ O(α log n)ROPT(I)

The results in this chapter appear in [42].



CHAPTER V

Conclusion

In this dissertation, we focused on three problems in stochastic optimization, where more

information about the random data is revealed over time.

In Chapter II, we studied a general sequential decision making problem, Adaptive Sub-

modular Ranking, where we repeatedly choose from a set of weighted decisions to cover a

random scenario. We also studied the routing version of this problem, where the solution was

an adaptive path of decisions. We obtained polylogarithmic-factor approximation algorithms

for both versions. We also implemented our algorithm on real-world and synthetic data sets,

and found good empirical performance. One possible future direction, is to consider the

case where the feedback is noisy or missing. This is motivated by the fact that in many

applications (such as search ranking), the feedback comes from users and it might be prone

to error.

In Chapter III, we considered the Optimal Decision Tree problem, which is an special

case of Adaptive Submodular Ranking, in presence of noise. In this problem, we choose

tests sequentially to identify a random scenario. We gave the first approximation algorithms
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for this problem that can handle any number of noisy outcomes in both the non-adaptive

and adaptive settings. We also presented the result of implementing these algorithms and

showed how close it is to an information theoretic lower bound. We found that in practice,

our algorithms can do much better than the approximation guarantee. One way to extend

this work, is by considering the case where we need to choose a batch of tests rather than a

single test. So we receive feedback from the whole batch simultaneously after its selection,

which can help us in choosing the next batch. This is motivated by the active learning

application, where labels of data points are obtained manually - which is often done in

batches.

In Chapter IV, we studied A Priori Traveling Repairman Problem, where a random

subset of vertices is active. The goal was to find a master tour such that the expected cost

of its shortcut tour over active vertices is minimized. To evaluate the performance of an

algorithm, we compared to (1) the expected cost of an optimal master tour, and (2) the “re-

optimization” solution which is the expected cost of the optimal tour over active vertices. We

gave a constant-factor approximation algorithm with respect to the optimal master tour and

a logarithmic-factor approximation algorithm with respect to the re-optimization solution.

A natural future direction is to find a constant-factor approximation algorithm with respect

to the re-optimization solution or provide a lower bound based on the gap between the two

solutions.
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