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ABSTRACT

This dissertation examines the role of investors’ belief formation in asset valuation.

In the first chapter, I document that subjective bond risk premia implied by survey

forecasts of future Treasury yields are acyclical at the one-year horizon. This is in

stark contrast to large countercyclical variation in objective risk premia fitted from

in-sample predictive regressions of future bond excess returns. This difference in risk

premia implies a wedge between subjective and objective expectations of future short

rates, which I show is predictable by trend and cycle components of macroeconomic

forecasts. I show that these empirical findings can be explained with a learning model

in which the agent filters latent trend and cycle components of fundamentals in real

time, while an econometrician analyzing the data ex-post has full knowledge of the

data-generating processes. The model also yields predictions, consistent with the data,

on the joint behavior of the unconditional yield curve slope, the cyclicality of short-rate

and macroeconomic expectation wedges, and the cyclicality of objective risk premia.

My results suggest that equilibrium models of bond risk premia should target acyclical

subjective risk premia and expectation formation, rather than ex-post in-sample fitted

risk premia from predictive regressions.

The second chapter (co-authored with Stefan Nagel) builds on recent evidence that

lifetime experience shapes individuals’ macroeconomic expectations and it explores the

asset-pricing implications of this evidence for the aggregate US stock market. We study

an economy in which a representative agent learns—but with fading memory—about

xi



the constant underlying endowment growth rate. The agent downweighs observations

in the distant past but is otherwise Bayesian in evaluating uncertainty. The model

explains both standard asset pricing facts and investor expectations within a simple

and tractable framework, in which subjective belief dynamics are constrained by sur-

vey data. In the model, fading memory implies perpetual learning and permanently

high subjective uncertainty about long-run growth, but the subjective equity premium

is virtually constant. In contrast, an econometrician who knows the true long-run

growth will find a high and strongly countercyclical objective equity premium which is

predictable. Consistent with this theory, we show empirically that experienced payout

growth (an exponentially weighted average of past growth rates) is negatively related to

future stock market excess returns, predicts survey expectation errors, and is positively

related to aggregate analyst forecasts of long-run earnings growth.

In the third chapter, I argue that econometricians find high returns from trading on

the profitability anomaly because investors in real time failed to spot profitable firms

that are difficult to analyze. I document that the Fama-French three-factor alphas

of the profitability anomaly only exist among firms with high information frictions,

proxied by young age, high forecast dispersion, high past return volatility, and/or

high option-implied volatility. The results are robust to excluding micro-firms and

using different measures of profitability. Short-sale constraints, liquidity, and financial

distress do not fully account for the alphas. I show that the empirical pattern is

consistent with a noisy rational expectations equilibrium model in which investors use

profitability as a noisy signal to learn about future firm payoffs.

xii



CHAPTER I

Expectation Formation in the Treasury Bond

Market

1.1 Introduction

The nature of predictable variation in excess returns on US Treasury bonds re-

mains to be understood.1 Previous studies exploring predictive regressions of future

bond excess returns generally conclude that bond risk premia (fitted future excess re-

turns) are time-varying and countercyclical (Cochrane and Piazzesi 2005; Cieslak and

Povala 2015). Leading rational expectations models interpret this evidence as investors

requiring a time-varying risk compensation and provide explanations of these cyclical

variations by introducing either time-varying prices of risk (Wachter 2006) or quanti-

ties of risk (Bansal and Shaliastovich 2013). A key assumption of this interpretation

is that the in-sample regressions fitted by an econometrician with hindsight accurately

capture the expectations investors have when they price bonds in real time. A number

of studies have challenged this assumption by documenting large persistent yield sur-

vey forecast errors made by professional forecasters (Froot 1989; Piazzesi et al. 2015;

Cieslak 2018), which indicate very different pricing dynamics perceived in real time.

1For example, the one-year excess return on a 10-year Treasury bond is earned from borrowing at
the one-year rate, buying a 10-year Treasury bond, and selling it after one year.
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In this paper, I show that allowing for a belief wedge in macroeconomic expectations

between real-time investors and econometricians has the potential to reconcile survey

and predictive regression evidence. I distinguish subjective pricing dynamics, which

are determined by the subjective macroeconomic expectations of investors, from objec-

tive pricing dynamics, which are measured by econometricians with access to future

realizations of data. Empirically, I show that the macroeconomic expectation wedge

manifests itself in predictable pricing errors from the econometrician’s point of view.

Theoretically, I study a learning model that allows for this expectation wedge and show

that its asset-pricing implications are consistent with the empirical findings.

I start the analysis by studying the behavior of subjective risk premia implied by

real-time yield forecasts. An immediate observation is that subjective risk premia

are less volatile and cyclical than their objective counterparts (Piazzesi et al. 2015),

even more so after adjusting for potential measurement errors. To study the possible

determinants of movements in subjective risk premia, I regress them on a host of macro

and yield variables related to trend, cycle, volatility, and uncertainty. Notably, the long-

term trend in inflation levels captures most of the variation, while the evidence is mixed

for other categories of variables. This is in stark contrast to objective risk premia, for

which trend variables capture substantially less variation than cycle variables.

To see how much cyclical variation we should explain in subjective risk premia, I test

whether yield forecasts reject the Expectation Hypothesis (EH) under the subjective

measure, à la Froot (1989). The subjective EH states that under the null of constant

subjective risk premia, forecasts of future long yields should (approximately) move one-

for-one with current long yields. For the period 1987 to 2018, the subjective EH cannot

be rejected for long yields with maturities of five years or above at any forecast horizon

and the regression coefficients are very close to the subjective null. In addition, at the

one-year horizon—the typical holding period studied in the literature—the subjective

2



EH cannot be rejected at the 10%-significance level for all maturities above one year.

Thus, subjective risk premia at the one-year horizon are acyclical. To the extent that

survey forecasts do not systematically deviate from market expectations, this suggests

that models of bond risk premia should not target cyclical variation.

The question now arises as to why risk premia behave differently under subjective

and objective expectations. I use the insight that long-maturity yields can be decom-

posed into expectations about future short rates and future excess returns (Campbell

and Ammer 1993). Since real-time investors and the econometrician observe the same

current long-maturity yields, but have very different expectations of future excess re-

turns, they must have very different expectations of future short rates. Using long-term

survey forecasts, I show that subjective expectations of long-term short rates are tightly

linked to subjective expectations of long-term real GDP growth and inflation, which

are mainly characterized by low-frequency trend movements. In contrast, realized fu-

ture short rates over long horizons are much less affected by current expectations of

long-term real GDP growth, but are driven by a multi-decade-long decline in long-run

inflation levels that is not anticipated by real-time investors. The trend components

in macroeconomic expectations also show up in short-term short-rate survey forecasts

and have predictive power for short-rate forecast errors.

These empirical findings emphasize the importance of recognizing the wedge be-

tween subjective and objective expectations, which is assumed away in rational ex-

pectations models. This leads me to construct a learning model that highlights this

expectation wedge and to study its asset-pricing implications. In the economy, ex-

ogenous real growth consists of a constant long-run trend and an ARMA(1, 1) cycle

component that is negatively auto-correlated at all lags (Clark 1987). I assume that the

econometrician has full knowledge of the data-generating processes. A representative

agent, however, cannot directly observe the trend and cycle components in aggregate

3



growth and has to rely on standard Kalman filtering to form her beliefs about future

dynamics. In addition, to capture the time-varying long-term forecasts observed in

the data, I assume that the agent subjectively perceives a stochastic trend that follows

an AR(1) process. This difference in perceived trend process between the agent and

the econometrician leads to a perpetual belief wedge. In the steady state, subjective

uncertainties of future real growth do not change over time, which implies constant

subjective risk premia. Thus, variations in bond prices are all driven by time-varying

subjective growth expectations. With full knowledge, the econometrician anticipates

future revisions in subjective expectations and finds bond price variation to be pre-

dictable.2 Thus, the setting of the model is consistent with the evidence from survey

data and predictive regressions.

The auto-correlation structures of subjective trend and cycle components play im-

portant roles in model dynamics. For a concrete example, consider a bad current

realization of aggregate real growth. In this unobserved components model, the agent

only perceives a single bad aggregate belief shock and revises both her current trend

and cycle expectations downwards. Since trend growth is positively auto-correlated,

this makes the agent pessimistic about all future trend growth rates. The intertemporal

smoothing motive thus makes long-maturity bonds more attractive. In addition, since

the agent perceives future bad news from trend expectation shocks to always happen in

a high marginal utility state, it implies that risk accumulates over time. This leads to

a stronger precautionary saving motive at longer horizons, which makes long-maturity

bonds even more attractive. This trend effect is stronger if trend expectations are more

sensitive to the initial bad aggregate news or if the perceived trend process is more per-

sistent. The same logic holds true for negatively auto-correlated cycle expectations in

the opposite direction, as the initial bad news makes the agent optimistic about future

2A similar setting is applied to an exogenous inflation process whose shocks are uncorrelated with
real growth shocks. For parsimony, I do not discuss it here.

4



cycle growth while perceived risk dissipates over time. This cycle effect makes long-

maturity bonds less attractive and is stronger if cycle expectations are more sensitive

to the initial bad aggregate news or if the perceived cycle process is more persistent.

The relative strength of the trend and cycle effects determines both the agent’s level

of optimism about future aggregate growth and the amount of risk perceived in the

long-term.

This economic mechanism yields novel predictions on the joint behavior of the un-

conditional yield curve slope, the cyclicality of short-rate and macroeconomic expec-

tation wedges, and the cyclicality of objective risk premia under the econometrician’s

measure. Specifically, if the cycle effect outweighs the trend effect, the agent perceives

less risk and has a lower hedging demand at longer horizons. This depresses prices of

long-maturity bonds and raises their yields relative to short-maturity bonds. There-

fore, the unconditional term structure of yields is upward-sloping.3 In addition, when

the agent is overly pessimistic relative to the objective forecast, she overestimates the

amount of mean-reversion and becomes overly optimistic about future growth. The

intertemporal smoothing motive pushes up her expectations for future short rates and

depresses current prices of long-maturity bonds. The econometrician anticipates that

the agent will be disappointed next period, indicating a lower short rate and higher

prices of long-maturity bonds going forward. Thus, the short-rate expectation wedge

(objective minus subjective) is procyclical, the objective risk premium is countercycli-

cal, and both are predictable by macroeconomic expectation wedges.

The relative strength of the trend and cycle effects depends on model parameters of

subjective dynamics, which I identify using short- and long-term macroeconomic survey

forecasts. Identified parameter values suggest that the agent’s cycle expectations are

3Under the econometrician’s measure, the agent on average makes the correct forecasts of fu-
ture aggregate growth. Thus the intertemporal smoothing motive plays no role in determining the
unconditional yield curve slope.
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much more sensitive than trend expectations to aggregate belief shocks , while having

a lower persistence. Overall, the parameters support a stronger cycle effect. Thus,

the model generates an upward-sloping yield curve, procyclical short-rate expectation

wedges, and countercyclical objective risk premia, all of which are consistent with

empirical evidence from survey and yield data. The model has several additional

predictions—on the determinants of yield movements, the correlation between short-

rate and macroeconomic expectation wedges, and the signs of macro trend expectations

in bond return predictive regressions—for which I find support in the data.

This paper is mainly connected to three strands of the literature. On the em-

pirical side, it builds on previous work that studies investors’ real-time expectations

using survey data. Piazzesi et al. (2015) document that subjective risk premia are less

volatile and cyclical than their objective counterparts. I complement their study by

showing that subjective risk premia are acyclical and that their movements are not

captured by the various volatility and uncertainty measures examined. In addition, I

study how short-rate expectations and expectation errors are linked to macroeconomic

expectations and how these findings can be reconciled in an equilibrium model. Cies-

lak (2018) documents persistent forecast errors in federal fund rates and shows that

these forecast errors induce ex-post return predictability, especially for short-maturity

bonds. By studying long-term survey forecast data, I further document the role of

macro trend expectations in short-rate expectations under the subjective measure. I

also explain why short-rate forecast errors (objective minus subjective) are procyclical.

Froot (1989) shows that the subjective EH cannot be rejected for long-maturity yield

survey forecasts from 1969 to 1986. I provide true out-of-sample evidence that the

subjective EH still holds for the non-overlapping period from 1987 to 2018, indicating

that absence of cyclicality is a robust feature of subjective risk premia. Wang (2019)

documents that short rate forecasts underreact to new information while long yield

6



forecasts overreact and provides an explanation based on forecasters’ misestimation of

auto-correlations.

Several papers also study equilibrium models of expectation formation and their

implications for yield movements. Piazzesi and Schneider (2006) consider a learning

model in an affine state-space setting, but do not investigate trend expectations. Com-

pared to their framework, my model yields tractable closed-form solutions that can

be used to jointly study risk premia and expectation wedges. Hasler et al. (2019)

study the unconditional term structure of interest rates by examining a model of real

endowment growth in which the agent learns about the latent stochastic trend and

cycle components in a continuous-time Bayesian setting. An important distinction

here is that trend growth rates under the data-generating process are actually con-

stant. Thus, there is a belief wedge between the econometrician and the representative

agent, even though the learning is optimal under the subjective measure. This belief

wedge is crucial to reconciling both survey evidence and predictive regression results.

Zhao (2019) uses a constant-gain learning model to link trend and cycle movements in

Treasury yields to learning from stable and transitory components in macroeconomic

variables, but he studies neither bond risk premia nor forecast errors. In addition,

the unconditional term structure of interest rates in his model is generated from am-

biguity aversion, which is a different mechanism. More broadly, my paper fits into

the growing literature of general equilibrium asset-pricing models that deviate from

the rational expectations framework (Timmermann 1993; Lewellen and Shanken 2002;

Collin-Dufresne et al. 2016b; Nagel and Xu 2019).

My model also provides a potential explanation for the role of macro trends in bond

return predictive regressions. A number of studies (Cieslak and Povala 2015; Jørgensen

2018; Bauer and Rudebusch 2019) have documented that including long-term trends

in inflation and real GDP growth strongly increases the predictive power of future
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bond excess returns. My model generates this predictability by linking macro trends

to expectation wedges. It also makes testable predictions for the signs of macro trends

in these regressions.

The rest of the paper proceeds as follows. Section 1.2 describes the data and its

treatment. Section 1.3 documents the distinct behavior of subjective and objective

risk premia. Section 1.4 links this difference to short-rate forecast errors, which are

predictable by macroeconomic expectations. Section 1.5 builds a model that highlights

the role of macro expectation wedges in reconciling the empirical findings. Section 1.6

identifies model parameters and tests additional predictions. Section 1.7 concludes.

1.2 Data

1.2.1 Survey forecasts

For short-term interest rate expectations, I use yield forecasts from the Blue Chip

Financial Forecasts (BCFF) survey.4 This survey publishes monthly forecasts of about

45 professional forecasters from leading financial institutions. I use forecasts for 3-

month, 6-month, and 1-year Treasury bills (tbill), as well as 2-year, 5-year, and 10-year

Treasury notes. These forecasts have been consistently published since January 1988,

with forecast horizons up to four quarters ahead.5 I use the consensus forecasts from

BCFF, defined as the average of individual forecasts.

The publisher of BCFF also conducts another survey, Blue Chip Economic Indica-

tors (BCEI), which targets a similar group of professional forecasters. BCEI primarily

focuses on macroeconomic variables, including real GDP growth and inflation, and

has published forecasts of 3-month Treasury bill rates since October 1980.6 Forecasts

4Other studies that use yield forecast data from BCFF include Kim and Orphanides (2012), Piazzesi
et al. (2015), Cieslak (2018), Giacoletti et al. (2018), and Buraschi et al. (2019).

5Forecasts for 3-month tbill rates have been published since November 1982.
6Before January 1982, BCEI used the 6-month commercial paper rate as a proxy for the short-
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up to four quarters ahead have been consistently available at monthly frequency since

October 1980.

For long-term forecasts, I use the semi-annual survey results from both BCFF

and BCEI starting with October 1983, which ask respondents to forecast the annual

averages of the following five calendar years, as well as the 6- to 10-years-ahead (or

7- to 11-years-ahead) five-year averages (long-term average) on selected yields and

macroeconomic variables. Before December 1996, both surveys were conducted in

March and October. BCFF then switched the survey months to June and December.

Thus, by combining data from BCFF and BCEI, I effectively have quarterly long-term

forecast observations after 1996. For the period before 1996, I interpolate the bi-annual

data to get quarterly observations.

In some of the following exercises, monthly zero-coupon yield forecasts with constant

forecast horizons are needed. However, two complications arise due to the features of

the BCFF survey. First, forecasts are made for average realizations over a calendar

quarter instead of a specific month. This introduces a time-varying forecast horizon

inside the same survey quarter. For example, the one-quarter-ahead forecasts published

in January and February are both made for average realizations over April, May, and

June. Second, BCFF only provides par yield forecasts for Treasury securities with

maturities above one year. To deal with these issues, I interpolate available yield

forecasts along both maturities and forecast horizons and bootstrap the zero-coupon

forecasts. More details are given in Appendix A.4. Table 1.2, Panel A, shows that

bootstrapped yield forecasts have first and second moments similar to those of observed

yields during the same period.

Short-term forecasts of real GDP growth and inflation are supplemented with mean

forecasts from the Survey of Professional Forecasters (SPF) to extend the sample period

term interest rate. I show in the online supplementary appendix that 3-month Treasury bill rates and
6-month commercial paper rates during that period are very similar.
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back to 1968. SPF also provides quarterly 3-month tbill forecasts beginning in 1981.

Finally, I supplement short-term forecasts on 3-month tbill rates using data from

the Goldsmith-Nagan (GN) survey.7 This is a quarterly survey of a selected panel of

approximately 50 market professionals who have subscribed to the Goldsmith-Nagan

Bond and Money Market Letter. The survey was conducted, from 1969 to 1986, late in

the last month of each quarter for forecasts of the last business day of the following two

quarters. The online supplementary appendix shows that at the one-quarter horizon,

forecasts are very similar across GN, BCFF, and SPF during the overlapping period.

Table 1.1 summarizes the frequency, survey timing, and forecast dates across sur-

veys. Appendix A.1 provides more details on each survey.

1.2.2 Interest rate data

For monthly zero-coupon nominal Treasury yields, I use data from Liu and Wu

(2019) with maturities ranging from one month to 30 years at one-month intervals.8

If daily zero-coupon nominal Treasury yields are needed, I use data from Gürkaynak

et al. (2007), available from the Federal Reserve Board. The Liu and Wu (2019) data

has the advantage that it simultaneously captures the very short and very long ends of

the yield curve. In addition, the maturity availability at one-month intervals is crucial

for a bootstrap method that will be introduced later. Other data on observed yields

and bond portfolio returns are from standard sources, described in Appendix A.1.

1.2.3 Macroeconomic data

To avoid look-ahead bias introduced by revisions, I use vintage series from the real-

time dataset for macroeconomics available from the Philadelphia Fed to construct year-

on-year real GDP growth, employment growth, and inflation. I assume that forecasters

7I thank Kenneth Froot for kindly sharing the data with me.
8I thank the authors for making the data available on their website.

10



in surveys published in the middle month of a calendar quarter have access to the first

estimate of real GDP for the previous quarter, which is released by the Bureau of

Economic Analysis.9 For more details, see Appendix A.1.

1.3 Behavior of Subjective Risk Premia

1.3.1 A comparison of objective and subjective risk premia

I denote the continuously compounded nominal yield on an n-maturity zero-coupon

bond as ynt . The one-period short rate is denoted with it ≡ y1
t . The realized m-period

excess return from holding an n-maturity zero-coupon bond from t to t+m is

rxnt,t+m = nynt − (n−m)yn−mt+m −mymt . (1.1)

The m-period subjective risk premia on an n-maturity zero-coupon bond can be cal-

culated by taking the subjective expectations of both sides of Equation (1.1):

Ẽtrxnt,t+m = nynt − (n−m)Ẽtyn−mt+m −mymt , (1.2)

where Ẽt[·] denotes the expectation of a real-time agent. I use bootstrapped m-period-

ahead forecasts on n-maturity zero-coupon yields as the measure of Ẽtynt+m. The sample

period is from December 1987 to December 2018. In terms of time t yield information,

I assume that forecasters observe realizations of end-of-the-third-week yields in survey

months, based on the survey timing described in Table 1.1.10 However, becasue the

zero-coupon yields from Liu and Wu (2019) are only available at monthly frequency, I

match the survey forecast published in month t to end-of-month yields in month t− 1.

9This assumption is consistent with the documentation of SPF.
10BCFF also publishes this information along with yield forecasts. For example, in the February

2015 publication, the history of yield average is reported until the week ending January 23.
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Using daily data from Gürkaynak et al. (2007) and matching forecasts to the third-

week values of yields in month t − 1 do not materially change the conclusions of the

following analysis.

The objective risk premia are fitted from predictive regressions with future excess

returns as dependent variables using data from November 1971 to December 2018, for

which zero-coupon yields for maturities up to 15 years are available. Using Et to denote

the expectations of an econometrician, objective risk premia are

Etrxnt,t+m = nynt − (n−m)Etyn−mt+m −mymt . (1.3)

For predictors, I use the cycle factor from Cieslak and Povala (2015). To improve

the fitting performance for short-maturity bonds, I also include the macro factor from

Ludvigson and Ng (2009), which has been shown to have the strongest predictive

power for two-year bonds. Appendix A.5 documents the construction and performance

of these factors.

The first two columns of Table 1.2, Panel B, provide summary statistics of one-year-

holding-period risk premia. Across maturities, subjective risk premia are much smaller

in magnitude. For example, subjective risk premia on 10-year zero-coupon bonds are

1.58% (annualized) on average , while objective risk premia during the same period

are 5.31% (annualized). Subjective risk premia are also less volatile, with standard

deviations that are roughly one-half those of their objective counterparts. These results

are consistent with Piazzesi et al. (2015). Figure 1.1 compares the maturity-weighted

average of subjective and objective risk premia for maturities from 2 to 10 years, defined

as Ẽtrxt+1 ≡ 1
9

∑10
n=2 Ẽtrxnt+1/n and Etrxt+1 ≡ 1

9

∑10
n=2 Etrxnt+1/n, respectively. It is

visible that average subjective risk premia are less cyclical, especially during recessions.
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1.3.1.1 Measurement errors in subjective risk premia

Since subjective risk premia are calculated from small spreads between current long

yields and long-yield survey forecasts, which are then scaled by maturity, small mea-

surement errors in survey forecasts can induce large variation in subjective risk premia.

The measurement errors can come from multiple sources. First, treating consensus sur-

vey forecasts as the market expectations of a single agent can introduce aggregation

errors.11 Second, due to the limited availability of maturities and lack of knowledge of

true forecast horizons, the interpolated zero-coupon yield survey forecasts are contami-

nated by interpolation errors. Third, forecasters in the same survey month are unlikely

to make forecasts on the same day, making the conditioning yield information vary

across individual forecasts. From matching yield forecasts to a single current yield,

some errors are introduced in implied risk premia.

To alleviate this concern, I first follow Froot (1989) to compute a “cleaned” mea-

sure of subjective risk premia by regressing them on the current 1- and 10-year yields

(including a constant) and using the fitted values. Column (3) in Table 1.2, Panel B,

shows that this approach captures around 60% of the variation in subjective risk premia

across maturities. For a fair comparison, I run a similar regression for the cycle factor

and use the fitted values. The top panel in Figure 1.2 shows that the business-cycle

variation in the cycle factor is still preserved, while the cyclical variation in subjective

risk premia is largely eliminated and the “cleaned” measure exhibits a strong downward

trend.

A related concern is raised in Cieslak and Povala (2015) who conclude, based on a

strong positive correlation between average subjective risk premia and the cycle factor,

that subjective risk premium is “a noisier measure of the bond risk premium”. In my

11See, for example, Rubinstein (1974) and Buraschi et al. (2019). The aggregation errors are distinct
from rounding errors introduced by averaging individual forecasts, which, as I show in simulations,
are very small.
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sample, subjective risk premia and the cycle factor do have a positive correlation of

0.57. However, Column (4) in Table 1.2, Panel B, shows that the cycle factor only

explains around 30% of variation in subjective risk premia and that fitted components

are even less volatile, with standard deviations further reduced by one-half. The bottom

panel in Figure 1.2 shows that the cycle factor does not capture the trend component

in subjective risk premia, which is what drives most variation.

Finally, I directly compare yield forecasts under the subjective and objective ex-

pectations. The objective yield forecasts are calculated from predicted future excess

returns, Etrxnt,t+m, using Equation (1.3)

Etynt+m =
(n+m)yn+m

t −mymt − Etrxn+m
t,t+m

n
. (1.4)

If subjective risk premia are simply objective risk premia plus measurement errors, we

should expect ∆n
t,m ≡ Ẽtynt+m−Etynt+m not to be systematically different from zero. The

solid lines in Figure 1.3 examine ∆n
t,m for 2- and 10-year yields at one-year horizon. We

see that there is a persistent wedge between subjective and objective yield forecasts,

especially during recessions. To partially address the concern that consensus forecasts

may be a biased measure of market expectations, I also compare the top- and bottom-

10 average forecasts from BCFF to objective forecasts.12 Their differences provide the

boundaries of the shaded areas in Figure 1.3. We see that even for these relatively

extreme forecasts, there is a sizable wedge during recessions.

12Note that BCFF provides only top- and bottom-10 average forecasts for par yields, which are
different from zero-coupon yields. I make the assumption that the distance between top/bottom
average forecasts and consensus par yield forecasts is equal to the distance between hypothetical
top/bottom average zero-coupon yield forecasts and consensus zero-coupon yield forecasts.
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1.3.1.2 What explains movements in subjective risk premia?

I next study the possible economic determinants of movements in subjective risk

premia. I run regressions of maturity-weighted average subjective risk premia, Ẽtrxt+1,

on a host of variables from previous literature. Motivated by Piazzesi et al. (2015),

who use a band pass filter to decompose risk premia into statistical “trend” and “cy-

cle” components, I first study economic measures of trends and cycles, then the vari-

ables that relate to volatilities (Duffee 2002) and uncertainty (Bansal and Shaliastovich

2013). All explanatory variables are standardized to have a unit standard deviation

in order to compare coefficients across regressions. I perform the same regressions for

average objective risk premia, Etrxt+1. To examine a longer sample period, I com-

bine six-month-ahead forecasts from BCFF and GN on 1-year yields. This enables

me to construct the six-month-holding-period subjective risk premia on 1.5-year zero-

coupon bonds since 1969 at quarterly frequency. Objective risk premia for the same

maturity and holding period are constructed from quarterly predictive regressions of

six-month-ahead future excess returns.

Table 1.3, Panel A, reports the regression results of trend-related variables, includ-

ing yield level and trend inflation from Cieslak and Povala (2015).13 Average subjective

risk premia since 1987 are strongly positively related to the yield level and trend infla-

tion, which both explain more than 50% of the variation. These trend variables also

capture around 20% of the variation in 1.5-year bond risk premia for the longer sample

period since 1969. In comparison, objective risk premia do not have a significant trend

component.

The second set of variables relates to cyclical movements. I consider yield slope and

year-on-year employment growth.14 To isolate the cyclical movements, I include trend

13Yield level is defined as the first principle component of 1-, 2-, 5-, 7-, 10-, and 15-year zero-coupon
yields. Trend inflation is constructed as the exponentially weighted average of past inflation.

14Yield slope is the second principle component of 1-, 2-, 5-, 7-, 10-, and 15-year zero-coupon
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inflation in all regressions (Cochrane 2015). Table 1.3, Panel B, shows that subjective

risk premia do display some countercyclical movement based on the statistical signifi-

cance of coefficients at conventional levels. However, the explained R2 does not increase

much (only around 3%) and the magnitudes of the coefficients are much smaller than

those from trend regressions. In stark contrast, the inclusion of cyclical measures in

regressions for objective risk premia drastically increase the explained R2 by 40% to

50% and the coefficients are both statistically and economically significant.

I next consider volatility-related variables. Since the mid-1980s, we have observed

a reduction in macroeconomic volatility (Bernanke 2004), which may contribute to the

decline in subjective risk premia. Table 1.3, Panel C, fails to find strong evidence that

subjective risk premia are related to measures of interest rate volatility, real volatility,

or inflation volatility.15 The coefficients are all small in magnitude and the explained

R2 is at most 12 percent.16

Finally, I examine measures that relate to uncertainty or forecast dispersion, includ-

ing the Economic Policy Uncertainty Index from Baker et al. (2016), macro forecast

uncertainty from Bansal and Shaliastovich (2013), and macro forecast dispersion from

SPF.17 Table 1.3, Panel D, shows mixed evidence on whether subjective risk premia

are correlated with forecast uncertainty or forecast dispersion. For example, forecast

uncertainty on inflation captures 16% of the variation, while uncertainty on real GDP

yields. I use the negative of employment growth in the regression to make the independent variable
countercyclical.

15I use two measures of interest rate volatility. The first is physical volatility, defined as the first
principle component of intra-month sums of daily squared zero-coupon yield changes for maturities
from 1 to 10 years. The second measure is risk-neutral volatility, defined as the 10-year Treasury VIX
obtained from Choi et al. (2017) and the Chicago Board Options Exchange (CBOE). Real and inflation
volatility are rolling sums of monthly squared values of the “real” factor (“F1,” as in Ludvigson and
Ng 2009) and core inflation over a window of 24 months, respectively.

16In untabulated results, coefficients on physical interest rate volatility and real volatility do be-
come statistically significant at the 95%-confidence level once trend inflation is controlled, but the
magnitudes of the coefficients are still small, with no significant improvements in R2.

17For macroeconomic variables, I consider real GDP growth and inflation. Forecast dispersion is
defined as the difference between the 75th and 25th percentiles of individual forecasts in the cross-
section.
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growth only accounts for 5 percent. When it comes to forecast dispersion, however,

dispersion on real GDP growth now explains a much larger fraction of the variation

than dispersion on inflation does. The explanatory power of forecast uncertainty for

objective risk premia is consistent with Bansal and Shaliastovich (2013).

To summarize, the regression results suggest that subjective risk premia are mainly

driven by a trend component, which closely tracks the trend in long-run inflation levels

and is not captured by the measures of volatility or uncertainty examined here.

1.3.2 Amount of cyclical variation in subjective risk premia: The Expec-

tation Hypothesis test

I further quantify the cyclical variations in subjective risk premia through the lens

of the Expectation Hypothesis(EH), which has been widely tested in the literature (e.g.,

Campbell and Shiller 1991). The EH states that if expected excess returns on a long-

maturity bond are constant, the expected changes in future long yields should move

one-for-one with changes in current yield spread. To see this, I rearrange Equation

(1.2) to obtain

Ẽtyn−mt+m − ymt =
n

n−m
(ynt − ymt )︸ ︷︷ ︸

Scaled yield spread

−
Ẽtrxnt,t+m
n−m

≡ Sn,mt + cn,m. (1.5)

I test the above form of the EH by running the following regression

Ẽtyn−mt+m − ymt = β0 + β1S
n,m
t + εt. (1.6)
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Under the null that m-period subjective risk premia on an n-maturity zero-coupon

bond are constant over time, the econometrician should find β1 = 1.18 Note that

becasue this is a contemporaneous regression, the finite-sample Stambaugh (1999) bias

studied in Bekaert et al. (1997) does not apply.

Given that I have only a small sample, inference based on the asymptotic dis-

tribution of a test statistic may have an incorrect size. I address this issue using a

nonparametric bootstrap approach from Crump and Gospodinov (2019) and make in-

ference based on bootstrapped p-values. Appendix C.2 provides more details of this

bootstrap approach.

Based on survey data availability, I consider m = 3, 6, and 12 months and n = 6,

12, 24, 60, and 120 months.19 Table 1.4, Panel A, suggests that the EH is only rejected

for short-maturity yields at short horizons of less than one year. For long-maturity

yields with maturities of five years or above, the EH is not rejected at any horizon

based on bootstrapped p-values, with coefficients very close to 1. In addition, at one-

year horizon, which is the typical holding period studied in the literature, the EH is

not rejected at the 10%-significance level for all maturities above one year. However,

we cannot directly claim that subjective risk premia are constant, since this is not a

necessary condition for β1 = 1 in Equation (1.6). By not rejecting β1 = 1, we can only

conclude that the covariance of subjective risk premia with the yield spread is zero; that

is, subjective risk premia are acyclical. To see how reasonable it is to describe subjective

18An equivalent form of the EH is

Ẽtyn−mt+m − ynt =
m

n−m
(ynt − ymt ) + cn,m,

which is the form typically tested in the literature (Wachter 2006; Gabaix 2012; Bansal and Shalias-
tovich 2013). The online supplementary appendix shows that, given a small sample, the slope coef-
ficient from the above regression is more sensitive to measurement errors in the dependent variable
than Euqation (1.6) (but size and power are the same for these two forms).

19For m = 3, I need interpolated zero-coupon yield forecasts with maturities at three-month inter-
vals. I do not use the approximation as in Campbell and Shiller (1991), which Bekaert et al. (1997)
show can lead to an upward bias even asymptotically. Rather, I again estimate a Diebold and Li
(2006) model for maturities at three-month intervals.

18



risk premia as constants, I construct the counterfactual one-year-ahead survey forecasts

implied by constant subjective risk premia

Ẽ∗tynt+1 ≡
(n+ 1)yn+1

t − y1
t − Ẽ∗rxn+1

t+1

n
, (1.7)

where Ẽ∗rxnt+1 is the sample average of one-year-holding-period subjective risk premia

on an n-maturity bond. Figure B.1 suggests that Ẽ∗tynt+1 provides a reasonable fit of

consensus forecasts. Froot (1989) provides similar evidence that long-maturity yield

survey forecasts from GN do not reject the EH during a non-overlapping sample period

from 1969 to 1986. Thus, the analysis here provides true out-of-sample evidence that

absence of cyclicality is a robust feature of subjective risk premia.

For comparison, I also test the EH under the objective measure using future realized

yields as dependent variables. To correct for the finite-sample bias, I use the first-order

approximation method from Bekaert et al. (1997).20 Table 1.4, Panel B, shows that the

bias-adjusted coeffcients are uniformly negative across horizons and yield maturities,

indicating a strong rejection of the EH under the objective measure and large cyclical

variation in objective risk premia.

1.4 Difference in Risk Premia: The Role of Expectation Er-

rors

The natural question then is: what gives rise to the distinct behaviors of subjective

and objective risk premia? I use the insight that bond yields can be decomposed into

short-rate expectations and average risk premia over the life of the bond (Campbell and

Ammer 1993; Duffee 2018) and link the distinction in risk premia to the difference in

20This method assumes an AR(1) process for the short rates (one-month zero-coupon yields). Table
B.2 reports the estimation results of the short-rate process. The formulas for the first-order approxi-
mation of biases are referred to Bekaert et al. (1997).
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short-rate expectations. For concreteness, consider the following yield decomposition:

ynt =
1

n
Êt

(
n−1∑
k=0

it+k

)
︸ ︷︷ ︸

Average future short rates

+
1

n
Êt

(
n−1∑
k=0

rxn−kt+k+1

)
︸ ︷︷ ︸

Average risk premia

, (1.8)

where Êt denotes a generic expectation (Appendix A.2 provides detailed derivations).

Performing this decomposition under both subjective and objective expectations and

taking difference, we have

Ẽt

(
n−1∑
k=0

it+k

)
− Et

(
n−1∑
k=0

it+k

)
︸ ︷︷ ︸

Difference in short rate expectations

= Et

(
n−1∑
k=0

rxn−kt+k+1

)
− Ẽt

(
n−1∑
k=0

rxn−kt+k+1

)
︸ ︷︷ ︸

Difference in expected future excess returns

. (1.9)

Thus, difference in expected future excess returns should be perfectly negatively corre-

lated with difference in short-rate expectations. Cieslak (2018) provides such evidence

using survey forecasts of the federal funds rate from BCFF. She documents that short-

term forecast errors in short rates are predictable by cyclical real-activity variables and

that the fitted short-rate wedge has strong predictive power for future excess returns

on short-maturity bonds. Thus, Equation (1.9) provides a good description for a small

n.

For a large n, however, short-rate expectation errors in the long-term also matter. In

the following sections, I study long-term survey forecasts of short rates from BCFF and

BCEI to shed light on how long-term short-rate expectation behaves and its possible

economic determinants.

1.4.1 Trend and cycle in subjective short-rate expectations

To measure subjective short-rate expectations, I use survey forecasts of 3-month

tbill rates, for which both short- and long-term forecasts are available from BCFF and
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BCEI. Figure 1.4 plots the one-year-ahead and long-term average survey forecasts, with

a comparison to prevailing 3-month tbill rates in the survey month. Short-term survey

forecasts at the one-year horizon have strong cyclical variations that track prevailing

rates. In comparison, long-term average survey forecasts mainly exhibit a strong time-

varying trend that is less affected by current economic conditions. For example, in

December 2008, the 3-month tbill rate effectively reached zero (0.03%), while the survey

still predicted an average 4.1% rate for 7 to 11 years ahead. This trend expectation

becomes increasingly important for survey forecasts beyond a one-year horizon. Table

B.3, Panel A, reports regression results of survey forecasts at different horizons on long-

term average survey forecasts and current-quarter survey forecasts (nowcasts), with the

latter used as a proxy for cycle expectations. The magnitude of coefficients and the

statistical significance of long-term average survey forecasts increase monotonically as

forecast horizon increases. Thus, it is useful to understand how this trend expectation

of future short rates is formed for a real-time agent.

1.4.1.1 Links to subjective macroeconomic expectations

Most consumption-based asset-pricing models link short-rate expectations to ex-

pected conditional means of real endowment growth and inflation (Wachter 2006;

Bansal and Shaliastovich 2013). I follow Bansal and Shaliastovich (2013) in mea-

suring subjective real endowment growth expectations with survey forecasts of real

GDP growth.21 Long-term average survey forecasts of real GDP growth and inflation,

beginning with 1983, are available for the same set of forecasters from BCFF and BCEI.

The following analyses focus on subjective expectations measured by survey forecasts.

Figure 1.5, top panel, suggests that the downward trend in long-term short-rate

expectations is accompanied by a similar downward trend in long-term inflation ex-

21To my knowledge, consumption forecasts are available from SPF and BCEI only for personal
consumption expenditures, which include durable goods.
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pectations. This observation echoes the findings of Cieslak and Povala (2015), who

document that long-term survey inflation expectations correlate with low-frequency

movements in yield levels. Figure 1.5, bottom panel, plots the residuals of regressing

long-term short-rate expectations on long-term inflation expectations.22 The residuals

still exhibit some low-frequency movements that seem to co-move with long-term real

GDP growth expectations (with a correlation of 0.56).23 Table B.3, Panel B, shows

that, even for short-rate forecasts at a one-year horizon, long-term macroeconomic

expectations capture a large fraction of the variation, with nowcasts capturing the

remaining higher-frequency movements.

1.4.2 Predicting short-rate forecast errors using subjective macroeconomic

expectations

The previous section shows that trend and cycle components in subjective macroe-

conomic expectations are reflected in subjective short-rate expectations. Here, I ex-

amine short-rate forecast errors to study how those components enter into short-rate

dynamics under the objective expectations. I first study one-year-ahead 3-month tbill

rate forecast errors. With a slight abuse of notation, the quarterly forecast errors are

defined as

FEt(it+4) ≡ it+4 − Ẽtit+4, (1.10)

where it+4 is the within-quarter average tbill rate realized four calendar quarters ahead

of quarter t and Ẽtit+4 is the four-quarter-ahead quarter-average forecast taken directly

22The coefficient on long-term inflation expectations is 1.47. The adjusted R2 of the regression is
0.81.

23Table B.3, Panel B, provides regression-based evidence that long-term survey forecasts of short
rates are linked to long-term survey forecasts of real GDP growth and inflation. Information in fore-
casts of near-term real GDP growth and inflation does not add significant explanatory power once
long-term macroeconomic expectations are controlled. The caveat here is that long-term expecta-
tions may be non-stationary, which gives rise to the spurious regression problem. I therefore rely on
visualizations to show the correlated movements.
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from BCFF. Survey forecasts are sampled in the middle month, when advance estimates

of last-quarter real GDP growth are released from the Bureau of Economic Analysis.

The sample period is from 1983Q3 to 2018Q4, for which long-term macroeconomic

forecasts are available.

Instead of directly using long-term macroeconomic forecasts, I follow Orphanides

and Wei (2012) and Cieslak and Povala (2015) in using proxies for long-term subjective

expectations. This is based on two considerations. First, survey forecasts—especially

long-term forecasts—are inevitably contaminated with measurement errors. It is possi-

ble that measurement errors in short-rate and macroeconomic forecasts from the same

survey are contemporaneously correlated. Thus, in regressions with survey forecasts

at both sides, the coefficients are biased in an unknown way. In this sense, the proxies

are used as instrumental variables. Second, the use of proxies extends the available

sample period for later analyses, to the extent that they are also informative in early

periods. The proxies for long-term subjective expectations of real GDP growth, gLTt ,

and inflation, πLTt , are constructed as the exponentially weighted average of past data

realizations:

gLTt = νggt + (1− νg)gLTt−1 = νg

∞∑
k=0

(1− νg)kgt−k, (1.11)

πLTt = νππt + (1− νπ)πLTt−1 = νπ

∞∑
k=0

(1− νπ)kπt−k, (1.12)

where νg and νπ are constant weights placed on the most recent observations for real

GDP growth and for inflation, respectively. The above specifications map to a constant-

gain learning rule, which is widely used in the literature (Orphanides and Williams

2005; Branch and Evans 2006). Appendix A.7 provides more details on estimating

weights and constructing proxies. As a measure of cycle expectations, I use current-

quarter forecasts (nowcasts) from SPF.
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I run regressions of the form

FEt(it+4) = γ0 + γ1LTt + γ2Nowcastt + εt, (1.13)

for real GDP growth and inflation. To improve the small-sample inference for predictive

regressions, I also provide bootstrapped p-values, using the bootstrap method from

Greenwood and Vayanos (2014). More details about that method are provided in

Appendix A.8.

Table 1.5, Panel A, shows that trend and cycle components of subjective real GDP

growth expectations do have predictability for short-term short-rate forecast errors.

When both components are included in the regressions, they can jointly explain about

12% of the variation and their coefficients are both statistically significant. Univari-

ate regressions using trend and cycle components individually produce similar R2. In

addition, the slope coefficient of the trend component in the univariate regression is

statistically significant at the 10% level based on bootstrapped p-values. To give an

idea of the economic significance, Figure 1.6 plots the predicted forecast errors from

univariate regressions, with a comparison to the measure from Cieslak (2018).24 The

figure shows that the subjective real GDP growth trend captures the low-frequency

movements in short-term short-rate forecast errors. However, subjective inflation ex-

pectations do not seem to have predictability for short-term short-rate forecast errors.

One possible explanation is that survey inflation forecasts in the short-term are accu-

rate compared to model-based forecasts using historical inflation and other nonsurvey

information (Ang et al. 2007; Chernov and Mueller 2012).

To investigate long-term forecast errors, I use five-year-ahead annual average fore-

casts of 3-month tbill rates from BCFF and BCEI. The choice of a five-year horizon

is to minimize the effect of time-varying forecast horizons (see Section 1.2.1). I use

24Cieslak (2018) uses lagged short rates and year-on-year employment growth as predictors.
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20-quarter-ahead within-quarter average tbill rates for future realizations.25 Columns

(1) and (2) in Table 1.5, Panel B, show that the subjective long-term inflation expec-

tation, πLT , has strong predictability for short-rate realizations in the distant future.

This predictability comes from the multi-decade-long decline in long-run inflation levels

observed by the econometrician. In comparison, subjective real GDP growth expecta-

tion in the short and long terms do not have any predictability for distant-future short

rates. Turning to forecast errors, Columns (4) and (5) in Table 1.5, Panel B, show that

πLT continues to be a strong predictor, indicating that the real-time forecaster does not

anticipate the same future decline in long-run inflation levels that the econometrician

does; that is, the trend inflation wedge strongly predicts long-term short-rate forecast

errors. Column (3) in Table 1.5, Panel B, shows that the subjective trend expectation

of real GDP growth is a marginally significant predictor of long-term short-rate forecast

errors.

1.5 A Model of Macroeconomic Expectation Formation

The above empirical evidence emphasizes the importance of recognizing the wedge

between subjective and objective expectations. Specifically, subjective risk premia at

the one-year horizon are acyclical, with little co-movement with the volatility and un-

certainty measures examined so far. At the same time, long-term subjective expecta-

tions of macroeconomic variables and short rates strongly co-move, with subjective

macroeconomic expectations having predictive power for short-rate forecast errors.

Since rational expectations models assume away such an expectation wedge, I con-

struct a learning model in this section to highlight the role of the expectation wedge

in reconciling the evidence from survey data and predictive regressions.

25I do not use the calendar year average which introduces a severe overlapping problem in predictive
regressions. But results are similar when calendar year averages are used.
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The model is set up in an endowment economy with a representative agent and is

built on the widely adopted, unobserved components (UC0) model from Clark (1987)

in order to introduce trend and cycle components as observed from macroeconomic

forecasts.

1.5.1 Real endowment growth and inflation

Following Clark (1987), the data-generating process (DGP) of real endowment level,

Gt, is described as

Gt = ψt + Ct, (1.14)

where

ψt = µ+ ψt−1 + ξt, ξt ∼ N (0, σ2
ξ ), (1.15)

Ct = ρcCt−1 + ζt, ζt ∼ N (0, σ2
ζ ), (1.16)

are the levels of local trend and AR(1) cycle, respectively.26 The implied real endow-

ment growth, gt, under the DGP is:

gt ≡ Gt −Gt−1 = µ+ ct + ξt, (1.17)

where ct ≡ Ct − Ct−1 is the cycle growth. I assume that the econometrician has full

knowledge of the DGP and can directly observe Ct.
27

The representative agent, however, cannot directly observe the trend and cycle

components from aggregate realizations. In addition, she perceives a stochastic drift in

the trend level. This is motivated by the observed time-varying long-term macroeco-

26The terminology comes from Clements et al. (2012).
27This is mainly a simplifying assumption to focus on the learning problem of the representative

agent.
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nomic forecasts in Figure 1.5 and is similar to the “shifting endpoints” assumption in

Kozicki and Tinsley (2001). The dynamics under the representative agent’s subjective

expectations are:

Gt = ψ̃t + C̃t, (1.18)

where

ψ̃t = µ̃t + ψ̃t−1 + ξ̃t, ξ̃t ∼ N (0, σ̃2
ξ ), (1.19)

µ̃t = φµµ̃t−1 + (1− φµ)µ+ ω̃t, ω̃t ∼ N (0, σ̃2
ω), (1.20)

C̃t = ρ̃cC̃t−1 + ζ̃t, ζ̃t ∼ N (0, σ̃2
ζ ). (1.21)

Note that ρ̃c is not necessarily equal to ρc.
28 The implied real endowment growth under

subjective expectations is:

gt = µ̃t + c̃t + ξ̃t, (1.22)

where c̃t ≡ C̃t − C̃t−1 is the perceived cycle growth.

Two key assumptions of subjective dynamics are addressed here. First, I assume

that the perceived cycle level, C̃t, follows an AR(1) process. This implies that the

perceived cycle growth follows an ARMA(1, 1) process with negative auto-correlations

at any given lag.29 In previous literature, it is more standard to assume an AR(2)

process for C̃t (Harvey 1985), which aims to also capture the positive auto-correlations

at short lags (usually one lag) of c̃t. For the purpose of my model, because nega-

tive auto-correlations in perceived cycle growth are more crucial, I choose the AR(1)

specification for parsimony.30 The second assumption is that the perceived stochastic

28Piazzesi et al. (2015) show that in an affine state-space model, ρc = ρ̃c if and only if subjective
forecast errors are state-independent.

29The cycle growth is stationary but not invertible. The auto-correlation function is acf(k) =
ρ̃k−1c

ρ̃c−1
2 < 0 for any lag k.

30In the online supplementary appendix, I have solved a version of the model with cycle levels
following an AR(2) process. The model yields qualitatively similar predictions.
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drift, µ̃t, follows a stationary AR(1) process which mean-reverts around the true trend

growth rate, µ. In contrast to a random walk setting in which future trend growth

rates follow a martingale and can drift unboundedly, the AR(1) specification anchors

the very long-run expectation of trend growth rate. Real-world examples that could

justify this assumption include Fed forward guidance and a priori judgments of plau-

sible ranges (for example, that post-war real GDP growth never exceeds 15%). In a

Bayesian learning setting, µ can be interpreted as the mean of the informative prior,

with φµ measuring its precision.31 With a lower φµ, the prior is more informative and

posterior expectations put less weight on µ̃t.

Since trend and cycle components are not directly observable, the agent applies

the standard Kalman filter (Hamilton 1994) to form her beliefs about each component,

based on past observations of aggregate growth. For simplicity, I assume that the agent

is endowed with an infinite history of observations on gt, Ht ≡ {gt−j}∞j=0, and that the

Kalman filter is in the steady state.32 I show in Appendix A.3.1 that the subjective

optimal forecasts of the latent variables evolve as

µ̂t = φµµ̂t−1 + (1− φµ)µ+ νµ (gt − µ̂t−1 − ĉt−1) , (1.23)

ĉt = ρ̃cĉt−1 − νc (gt − µ̂t−1 − ĉt−1) , (1.24)

where µ̂t ≡ Ẽ[µ̃t+1|Ht] and ĉt ≡ Ẽ[c̃t+1|Ht] are the perceived conditional means of

future trend and cycle growth, respectively. The Kalman gain parameters, νµ and νc,

are both positive.33 This is because a lower-than-expected realization of gt indicates a

lower-than-expected current trend growth (µ̃t) or a lower-than-expected current cycle

growth (c̃t) or both. Given that these two components are not directly observable, the

31Nagel and Xu (2019) provide such an interpretation in a constant-gain learning setting.
32This assumption also avoids the need to specify an initial starting point from a given sample

period.
33Note that there is a negative sign before νc.
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agent perceives only a single aggregate bad shock and will revise both expectations

downwards. Since trend growth is positively auto-correlated, this will drive down

all future trend growth expectations, implying νµ > 0. For cycle growth, however,

the negative auto-correlations will drive up future expectations of cycle growth and

νc > 0 after adjusting for its negative sign in Equation (1.24). The resulting predictive

distribution of next-period real endowment growth is

gt+1|Ht ∼ N
(
µ̂t + ĉt , σ̃

2
g

)
, (1.25)

where σ̃2
g > σ̃2

ξ .

To price nominal assets, I introduce an exogeneous inflation process with the DGP:

πt = τ + κt + ηt, ηt ∼ N (0, σ2
η), (1.26)

Kt = ρκKt−1 + ιt, ιt ∼ N (0, σ2
ι ), (1.27)

where κt ≡ Kt −Kt−1. This specification nests the IMA(1, 1) model studied in Stock

and Watson (2007) with ρκ = 1. The agent similarly perceives a stochastic drift in the

trend growth rate,

πt = τ̃t + (K̃t − K̃t−1) + η̃t, η̃t ∼ N (0, σ̃2
η) (1.28)

τ̃t = φτ τ̃t−1 + (1− φτ )τ + ε̃t, ε̃t ∼ N (0, σ̃2
ε), (1.29)

K̃t = ρ̃κK̃t−1 + ι̃t, ι̃t ∼ N (0, σ̃2
ι ). (1.30)

With the steady-state Kalman filter, the subjective optimal forecasts, given an infinite
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history of observations It ≡ {πt−k}∞k=0, evolve as

τ̂t = φτ τ̂t−1 + (1− φτ )τ + ντ (πt − τ̂t−1 − κ̂t−1) , (1.31)

κ̂t = ρ̃κκ̂t−1 − νκ (πt − τ̂t−1 − κ̂t−1) , (1.32)

where τ̂t ≡ Ẽ[τt+1|It] and κ̂t ≡ Ẽ[κt+1|It]. Both Kalman gain parameters, ντ and τκ,

are positive. The predictive distribution of πt+1 is

πt+1|It ∼ N
(
τ̂t + κ̂t , σ̃

2
π

)
, (1.33)

where σ̃2
π > σ̃2

η. More details are given in Appendix A.3.1.

1.5.2 Stochastic discount factor and short rates

I assume that the representative agent evaluates real payoffs with Epstein–Zin re-

cursive preferences (Epstein and Zin 1989). The value function is

Vt =

[
(1− δ)G

1− 1
ψ

t + δẼt[V 1−γ
t+1 ]

1− 1
ψ

1−γ

] 1

1− 1
ψ

, (1.34)

where δ denotes the time discount factor, γ the risk aversion parameter, and ψ the

elasticity of intertemporal substitution. Note that the continuation value is evaluated

under the agent’s subjective expectation Ẽt.

I follow Bansal and Yaron (2004) to solve the model with log-linearization as in

Campbell and Shiller (1988). Appendix A.3.2 shows that the real log stochastic dis-

count factor (SDF) can be written as

mt+1 = µ̃m −
1

ψ
(µ̂t + ĉt)− ξσ̃gε̃t+1, (1.35)
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where µ̃m and ξ > 0 are constants and {ε̃t} are standard normal shocks under the

agent’s subjective expectations. The nominal log SDF is

m$
t+1 = mt+1 − πt+1. (1.36)

The real and nominal short rates are obtained from the conditional means of real

and nominal SDF, respectively, as

it = −µ̃m +
1

ψ
(µ̂t + ĉt)−

1

2
ξ2σ̃2

g , (1.37)

i$t = −µ̃m +
1

ψ
(µ̂t + ĉt) + (τ̂t + κ̂t)−

1

2
ξ2σ̃2

g −
1

2
σ̃2
π. (1.38)

Thus, real short rates are high when the agent perceives a high aggregate real growth in

the next period (intertemporal smoothing). The nominal short rates are additionally

affected by perceived future inflation.

1.5.3 Bond pricing

I conjecture that log prices of the real and nominal bonds with maturity n, pnt , and

p$,n
t are affine functions of the state variables (µ̂t, ĉt, τ̂t, κ̂t):

pnt = an + bnµ̂t + cnĉt, (1.39)

p$,n
t = a$

n + b$
nµ̂t + c$

nĉt + d$
nτ̂t + e$

nκ̂t. (1.40)

The coefficients are solved recursively by applying the subjective Euler equations as

bn = b$
n = −

1− φnµ
1− φµ

1

ψ
, cn = c$

n = −1− ρ̃nc
1− ρ̃c

1

ψ
, (1.41)

d$
n = −1− φnτ

1− φτ
, e$

n = −1− ρ̃nκ
1− ρ̃κ

, (1.42)
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and the expressions for an and a$
n are given in Appendix A.3.3. Note that all coefficients

are negative due to the intertemporal smoothing motive.

1.5.4 Term structure of interest rates

The log real and nominal yields are obtained from log bond prices as

ynt = − 1

n
pnt , y

$,n
t = − 1

n
p$,n
t , (1.43)

and we can calculate the real and nominal term spread, snt ≡ ynt − y1
t and s$,n

t ≡

y$,n
t − y

$,1
t , as

snt = qn +

[
1−

1− φnµ
n(1− φµ)

]
1

ψ
(µ− µ̂t)−

[
1− 1− ρ̃nc

n(1− ρ̃c)

]
1

ψ
ĉt, (1.44)

s$,n
t = snt + q$

n +

[
1− 1− φnτ

n(1− φτ )

]
(τ − τ̂t)−

[
1− 1− ρ̃nκ

n(1− ρ̃κ)

]
κ̂t, (1.45)

where qn and q$
n are maturity-specific constants. For large n, the real term spread

(without the constant term) is approximately −(µ̂t + ĉt)/ψ, or −Ẽtgt+1/ψ. Thus the

model predicts a countercyclical term spread, which is high when the real endowment

growth expectation is low. The same cyclicality applies to the nominal term spread,

with additional variation driven by the inflation expectation.

As we will see later, the model has two key parameters

λg,n ≡ bnνµ − cnνc =
1

ψ

(
1− ρ̃nc
1− ρ̃c

νc −
1− φnµ
1− φµ

νµ

)
, (1.46)

λπ,n ≡ d$
nντ − e$

nνκ =
1− ρ̃nκ
1− ρ̃κ

νκ −
1− φnτ
1− φτ

ντ . (1.47)

For conciseness, I focus on discussion of Equation (1.46), as the same intuition applies to

Equation (1.47). Recall that trend growth expectations are positively auto-correlated
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while cycle growth expectations are negatively auto-correlated. Given a worse-than-

expected realization of aggregate real growth, the agent revises downwards both trend

and cycle expectations for the current period, as discussed in Section 1.5.1. Since trend

growth is positively auto-correlated, this makes the agent pessimistic about all future

trend growth rates. As a result, the prices of long-maturity bonds increase due to

the intertemporal smoothing motive. The coefficient bnνµ measures the sensitivity of

n-maturity bond prices to the trend expectation shock, which is a fraction, νµ, of the

initial bad aggregate shock. In addition, the agent perceives future trend expectation

shocks to be positively auto-correlated, implying that risk accumulates over time. The

coefficient bnνµ also measures the risk accumulation from n− 1 to n periods ahead. In

this sense, bnνµ represents an additional precautionary saving motive from period to

period, which also drives up long-maturity bond prices. Both motives are stronger if

trend expectations are more sensitive to the initial bad aggregate news (νµ is high) or

if the perceived trend process is more persistent (φµ is high). In contrast, the negative

auto-correlations in perceived cycle growth make both motives to work in the opposite

direction, with a higher cnνc indicating lower long-term saving and hedging needs.

This depresses long-maturity bond prices. The coefficient λg,n measures the net effect

of trend and cycle expectation shocks on intertemporal smoothing and precautionary

saving motives. In the case of λg,n > 0, long-maturity bonds are less attractive than

short-maturity bonds.

Thus, the model is able to generate upward-sloping unconditional real and nominal

term structures under the objective expectation, as shown by the following theorems

(proofs are given in Appendix A.3.6).

Theorem I.1. If

0 < λg,n < 2ξ , ∀n ≥ 1, (1.48)
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we have

E[snt ] > 0, ∀n > 1; (1.49)

that is, the unconditional real term structure is upward-sloping. In addition,

0 < λg,∞ < 2ξ (1.50)

is a sufficient and necessary condition for the limiting unconditional real term spread,

limn→∞ E[snt ], to be positive.34

Under the objective expectation, the agent on average makes the correct forecasts.

Thus, from the econometrician’s point of view, the intertemporal smoothing motive

does not play a role in determining the unconditional yield curve slope. Similarly, for

the nominal term structure, we have

Corollary I.2. If

0 < λπ,n < 2, ∀n ≥ 1, (1.51)

we have

E[s$,n
t ] > E[snt ], ∀n > 1; (1.52)

that is, the unconditional nominal term structure is more upward-sloping than the real

one. In addition,

0 < λπ,∞ < 2 (1.53)

is a sufficient and necessary condition for the limiting unconditional nominal term

spread, limn→∞ E[s$,n
t ], to be larger than the real counterpart.

Corollary I.2 shows that parameters of subjective inflation processes determine the

additional slope in the nominal term structure relative to the real one. Thus, this

34Note that for reasonable parameter values, λg,n is approximately monotone in n, and Equation
(1.50) can be used as a simple measure to judge the unconditional slope of the real term structure.
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model is flexible in generating different patterns of nominal and real term structure;

for example, a flat real term structure and an upward-sloping nominal term structure

at the same time.

1.5.5 Cyclicality of macroeconomic and short-rate expectation wedges

The difference in perceived pricing dynamics between the representative agent and

the econometrician is purely driven by expectation wedges of real growth and inflation.

In this section, I study the cyclicality of macroeconomic expectation wedges, then of

short-rate expectation wedges.

Given the assumed symmetry between real endowment growth and inflation dy-

namics, I focus, for conciseness, on real endowment growth, gt. The expectation wedge

of gt is defined as

Etgt+1 − Ẽtgt+1 = µ− µ̂t + cet − ĉt ≡ ∆µ,t + ∆c,t, (1.54)

where cet ≡ E[ct+1|Ht] = (ρc − 1)ct and where ∆µ,t = µ− µ̂t and ∆c,t = cet − ĉt are the

trend and cycle wedge, respectively. If there were no cycle components in the model,

objective expectations of future growth would be determined only by trend growth ex-

pectations which are the constant µ. Subjective expectations, however, would be low

during bad times and the expectation wedge Etgt+1− Ẽtgt+1 = ∆µ,t would be counter-

cyclical. With cycle components, both objective and subjective growth expectations

are time-varying, and the expectation wedge has an additional component that relates

to cycle wedge ∆c,t.

The cyclicality of ∆c,t depends on the subjective and objective persistence of cycle

processes, ρ̃c and ρc, and on the Kalman gain parameter νc. For a concrete exam-

ple, assume that ∆c,t−1 = 0 holds. With a low realization of gt or, equivalently, ct
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both the agent and the econometrician will expect a future mean-reversion in cycle

growth, the magnitude of which depends (negatively) on cycle persistence. While the

econometrician perceives

cet = (ρc − 1)ct = ρcc
e
t−1︸ ︷︷ ︸

reversion from old belief

+ (ρc − 1)ζt︸ ︷︷ ︸
reversion from new shock

, (1.55)

the agent perceives

ĉt = ρ̃cĉt−1︸ ︷︷ ︸
reversion from old belief

+ (−νc)ζ∗t︸ ︷︷ ︸
reversion from new shock

. (1.56)

Thus, the mean-reversion comes from two sources: previous belief and newly observed

bad shock. In the special case of ρc = ρ̃c, the contribution of mean-reversion from

previous belief is the same for the econometrician and the agent, and cycle wedge is

determined by how much news is incorporated in updating beliefs. If the agent does

not update her cycle belief strongly—that is, if νc is small—she will underestimate the

magnitude of mean-reversion relative to the econometrician and the cycle wedge will

appear to be countercyclical. If ρ̃c is further increased, the agent will also underestimate

mean-reversion from previous belief and make the cycle wedge more countercyclical,

provided ĉt−1 is low.

To summarize, the trend wedge is always countercyclical, while the cycle wedge

can be either procyclical or countercyclical depending on model parameters. Thus,

the cyclicality of the aggregate growth expectation wedge is not uniquely determined.

However, based on parameter estimations and empirical evidence that will be intro-

duced later, both the model and the data support a countercyclical expectation wedge

at least for the real endowment growth.

Next, I study short-rate expectation wedges. In the model, forecasting short rates is
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equivalent to forecasting state variables (µ̂, ĉ, τ̂ , κ̂). Expressions of subjective forecasts

can be easily derived from the Kalman updating rules, which evolve as AR(1) processes.

The expressions for objective forecasts, however, are complicated and need to be derived

from recursions (see Appendix A.3.4.2). This is because the econometrician has to keep

track of how the representative agent incorporates aggregate news into her trend and

cycle expectations over time. I therefore examine here the one-period-ahead short-rate

forecast error, for which a simple expression can be derived:

Eti$t+1 − Ẽti$t+1 = −λg,1
(
Etgt+1 − Ẽtgt+1

)
− λπ,1

(
Etπt+1 − Ẽtπt+1

)
. (1.57)

If λg,1 > 0 or νc > νµ, the one-period short-rate expectation wedge is negatively

correlated with the real growth expectation wedge. This happens through the in-

tertemporal smoothing motive, whose direction is determined by the reversal effect

from cycle expectation shocks. When the agent is overly pessimistic about next-period

real growth—that is, when Etgt+1 − Ẽtgt+1 is high—she will overestimate the amount

of mean-reversion and be overly optimistic about gt+2, implying too high a short-rate

expectation, Ẽti$t+1. When time t+ 1 arrives, however, the agent recognizes her growth

expectation error and prices a lower short rate instead. This revision in subjective

expectations is anticipated by the econometrician, who has full knowledge.

For long-term short-rate expectation wedges, I rely on calibration, since simple

closed-form expressions are not available. Appendix A.3.4.2 shows that, generally, the

expectation wedge is a function of (cet , κ
e
t , ĉt, µ̂t, κ̂t, τ̂t). Figure B.3 plots the coefficients

of µ̂t, ĉt, and the negative of cet as an illustration.35 The coefficients of ĉt and −cet

are very similar, indicating a cancellation effect if subjective and objective cycle ex-

pectations are similar. The coefficient of µ̂t is positive at shorter horizons and turns

35The parameter values are close to estimations that will be introduced later. I choose φµ = 0.96,
ρ̃c = 0.82, ρc = 0.75, νµ = 0.02 , and νc = 0.2.
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negative at longer horizons, due to model assumptions that trend growth rates are more

persistent under the subjective expectation. In addition, cycle coefficients decay more

quickly than trend coefficients, implying a more important role for trend expectation

wedges at longer horizons.

1.5.6 Subjective and objective risk premia

Finally, I study model-implied risk premia on nominal bonds, which are studied em-

pirically in this paper. Because shocks in the model are homoskedastic, the subjective

uncertainties perceived by the agent remain constant over time in the assumed steady

state. As a result, the agent requires constant subjective risk premia on zero-coupon

bonds:

Ẽtrnt+1 − i$t +
1

2
ṽar(rnt+1) = ξλg,n−1σ̃

2
g + λπ,n−1σ̃

2
π. (1.58)

In comparison, the objective risk premia are time-varying, and co-move with macroe-

conomic expectation wedges between the econometrician and the representative agent:

Etrnt+1 − i$t +
1

2
var(rnt+1) = Cn + λg,n−1

(
Etgt+1 − Ẽtgt+1

)
+ λπ,n−1

(
Etπt+1 − Ẽtπt+1

)
,

(1.59)

where Cn is a maturity-specific constant (more details are in Appendix A.3.5). Thus,

if λg,n > 0, objective risk premia are countercyclical.36 The same intuition invoked

in previous sections applies here. When λg,n > 0, the net effect of trend and cycle

expectation shocks decreases the agent’s long-term saving needs, given that she is

overly pessimistic relative to the objective forecast. This is because she overestimates

the amount of mean-reversion and becomes overly optimistic about future growth. The

intertemporal smoothing motive depresses current prices of long-maturity bonds. With

36Provided Etgt+1 − Ẽtgt+1 is countercyclical. See discussion in Section 1.5.5.
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full knowledge, the econometrician anticipates that the agent will be disappointed next

period, indicating higher prices of long-maturity bonds going forward and higher future

excess returns.

1.5.7 Summary of model predictions

To summarize, the model yields novel predictions on the joint behavior of the

unconditional term structure of interest rates, the cyclicality of macroeconomic and

short-rate expectation wedges, and the cyclicality of objective risk premia, all of which

are testable in the data.

Specifically, if λn,g > 0, the unconditional term structure of real interest rates is

upward-sloping, the short-term short-rate expectation wedge is negatively correlated

with the real growth expectation wedge, and objective risk premia are countercyclical.

A similar conclusion applies to inflation dynamics.

1.6 Identifying Parameters and Testing Additional Predic-

tions

In this section, I identify model parameters, using only macroeconomic variables

and survey forecasts, to examine whether my model’s predictions are consistent with

bond prices.

For parameters under the objective measure, I consider the estimates in Grant and

Chan (2017) of a UC0-AR(2) model, which is the closest to my setting.37 The model

assumes that real GDP levels can be described, as in Equations (1.14) and (1.15),

but with cycle levels following an AR(2) process. To map AR(2) estimates to my

AR(1) setting, I consider an approximation described in Appendix A.9, which maps

37I thank the authors for making the code available on their website.
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the persistence coefficients by ignoring the auto-correlation structure in the shocks.38

I also apply the above approximation to the estimates of log CPI. Table 1.6, Panel A,

reports the original AR(2) estimates and their mapping to an AR(1) setting.

Parameters under the subjective measure are identified from both short- and long-

term survey forecasts of real GDP growth and inflation at quarterly frequency. I use a

step-by-step GMM estimation approach to reduce the burden of numerical optimiza-

tion. I first identify trend-related parameters from long-term annual average forecasts

from BCFF and BCEI. Using real GDP growth as an example, Appendix A.3.4 shows

that if ρ̃c is much smaller than φµ, we approximately have

Ẽtgt+j = φj−1
µ µ̂t + (1− φj−1

µ )µ (1.60)

for large j. This implies the following moment conditions for long-term forecasts:

Ẽtḡannualt+n+m − φ4m
µ Ẽtḡannualt+n − (1− φ4m

µ )µ = 0, (1.61)

where Ẽtḡannualt+n is the n-year-ahead annual average forecast in quarter t and the pa-

rameters are in quarterly values. I estimate the model with 2-, 3-, 4-, and 5-year-ahead

annual averages and the long-term average. These averages yield four moment condi-

tions to be used to identify two parameters. Table 1.6, Panel B, shows that the model

provides a reasonable fit to long-term annual average forecasts. The model is not re-

jected for either the real GDP growth or inflation forecasts, based on p-values. The

true means of real GDP growth and inflation are estimated to be annualized 2.61%

and 2.76%, respectively. For inflation, the estimated mean is higher than the Fed’s

2% target rate set in 2012, which is reasonable given that my sample encompasses the

high-inflation period in the early 1980s.

38The accuracy of this approximation does not affect the later analyses.
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I next identify cycle-related parameters, using short-term survey forecasts from

BCEI and SPF. Still from Appendix A.3.4, I identify cycle expectations using

Ẽtc̃t+h ≡ ρh−1
c ĉt = Ẽtgt+h − φh−1

µ µ̂t − (1− φh−1
µ )µ, h ≥ 1, (1.62)

with estimated trend expectations. The moment conditions for cycle expectations

satisfy

Ẽtc̃t+h+j − ρ̃jcẼtc̃t+h = 0. (1.63)

However, in the finite sample, it is unlikely that ET [Ẽtc̃t+h] = 0. Thus I allow a constant

term in the moment conditions and estimate instead

Ẽtc̃t+h+j − ρ̃jcẼtc̃t+h − (1− ρ̃jc)xc = 0, (1.64)

which is implied by an AR(1) model with a drift. Table 1.6, Panel B, shows that the

AR(1) model of cycle expectations is not rejected. In addition, the cycle processes under

subjective expectations appear to be more persistent than their objective counterparts.

Finally, I identify Kalman gain parameters, using belief shocks gt−Ẽt−1gt, which are

directly observable. From Equations (1.23) and (1.24), I run the following regressions:

µ̂t − φµµ̂t−1 = κµ,0 + κµ,1

(
gt − Ẽt−1gt

)
+ ηt, (1.65)

ĉt − ρ̃cĉt−1 = κc,0 + κc,1

(
Ẽt−1gt − gt

)
+ ιt. (1.66)

Note that I use Ẽt−1gt−gt in Equation (1.66) to be consistent with the negative sign of

νc in Equation (1.24). Since µ̂t, φµ, ĉt, and ρ̃c are all estimated, the dependent variables

of the above regressions are inevitably contaminated with measurement errors. The

estimation noise is especially large for Equation (1.65), given the high persistence of µ̂t.

41



However, Table 1.6, Panel B, shows that the estimated value, ν̂µ = 0.022, is reasonable

compared to the model-free estimate in Appendix A.7. In addition, νc is fairly precisely

estimated to be 0.182. Since Kalman gain parameters are positively correlated with

volatilities of subjective shocks, this suggests that subjectively the cycle growth is

much more volatile than the trend growth. Parameters of the subjective and objective

inflation dynamics are identified similarly.

Based on the identified parameters from Table 1.6, a simple calculation shows that

ψλg,∞ = 0.41 , λπ,∞ = 2.77. (1.67)

Thus, Theorem I.2 and Corollary I.2 predict an upward-sloping real term structure and

a more upward-sloping nominal term structure. This is consistent with the observation

that from January 1999 to December 2018, the average real spread between 20- and

2-year yields is 1.43%, using the TIPS data from Gürkaynak et al. (2010), and that

the average nominal spread for the same maturities is 2.06%.39

1.6.1 Testing additional predictions

1.6.1.1 Yield movements

Appendix A.3.3 shows that nominal bond yields are functions of trend and cycle

expectations of real growth and inflation:

y$,n
t ≡ −

1

n
p$,n
t = −a

$
n

n
+

1− φnµ
n(1− φµ)

1

ψ
µ̂t +

1− ρ̃nc
n(1− ρ̃c)

1

ψ
ĉt +

1− φnτ
n(1− φτ )

τ̂t +
1− ρ̃nκ

n(1− ρ̃κ)
κ̂t.

(1.68)

39Ang et al. (2008) estimate the unconditional real (nominal) spread between 5-year and 3-month
yields to be around 1.3% (6.5%) using data from 1952Q2 to 2004Q4.
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Thus, the coefficients of regressing nominal yields on trend expectations should decline

with maturity and should decline more quickly if trend expectation persistence φ is

low. Trend parameter estimations from Table 1.6 suggest that the coefficients of µ̂t

should decline more quickly with maturity than those of τ̂t. Using proxies for long-term

expectations constructed earlier, as in Appendix A.7, I perform the following regression

at quarterly frequency:

y$,n
t = β0 + β1,ng

LT
t + β2,nπ

LT
t + εt (1.69)

for nominal yields with maturities of 1 to 15 years from 1971Q4 to 2018Q4 (yields

are sampled in the middle month of a calendar quarter). Figure B.5 shows that both

estimates, β̂1,n and β̂2,n, are statistically significantly different from zero for all matu-

rities considered. In addition, β̂1,n declines more quickly than β̂2,n, consistent with the

observation that φµ < φτ .
40

Equation (1.68) also shows that regression residuals from Equation (1.69) should

contain important information about cycle expectations. To separate real growth and

inflation cycle expectations, I do not use nominal yields, but rather perform a regression

of 2-year TIPS yields on gLT and use the regression residuals as real-yield-implied cycle

expectations of real GDP growth. Figure B.6 shows that this yield-implied measure

co-moves with survey-implied cycle expectations, except during the 2007–2008 financial

crisis.41

40Jørgensen (2018) documents a similar pattern and interprets inflation trend as a level factor and
real growth trend as a slope factor. But he does not explain why this is the case.

41The distinct behavior during the 2007–2008 financial crisis could be due to a large liquidity
premium in TIPS yield (D’Amico et al. 2018).
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1.6.1.2 Cyclicality of short-rate and macroeconomic expectation wedges

Given the identified parameters, we should anticipate a negative relation between

short-rate and macroeconomic expectation wedges in the short term, as suggested by

Equation (1.57).

I consider the short-term expectation wedges of real GDP growth but not inflation

given the ample evidence that short-term survey forecasts of inflation are accurate

from the econometrician’s point of view (for a review, see Duffee 2018); that is, I

assume that the short-term inflation expectation wedge is zero. To construct objective

expectations of real GDP growth, Etgt+1, I follow a large literature in using yield spread

as a predictor (for a review, see Stock and Watson 2003) while controlling for lagged

real GDP growth realizations:

gt+1 = γ0 + γ1gt + γ2s
$,n
t + εt+1. (1.70)

Note that this is also the approach used by the Cleveland Fed.42 Under the null of

the model, Equation (1.70) also works since yield spread reflects the agent’s macroe-

conomic expectations, which incorporate information on real growth and inflation. To

avoid seasonality effects, I use year-on-year growth and run one-year-ahead predictive

regressions at quarterly frequency. The yield spread is defined as the difference between

7-year and 3-month zero-coupon yields, for which observations back to 1964 are avail-

able, and is sampled in the middle month of a calendar quarter.43 Table B.4 shows that

yield spread is a significant predictor of future real GDP growth. To be consistent with

the year-on-year growth specification, I use the average of one- to four-quarter-ahead

survey forecasts as the measure of subjective expectations, Ẽtgt+1.

42https://www.clevelandfed.org/en/our-research/indicators-and-data/

yield-curve-and-gdp-growth
43Fama and Bliss (1987) suggest that long-maturity yields are not reliable before 1964.
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Following Cieslak (2018), I construct the objective expectations of short rates,

Eti$t+1, from one-year-ahead predictive regressions of within-quarter average 3-month

tbill rates with lagged average rates and year-on-year employment growth as predictors.

The subjective short-rate expectations, Ẽti$t+1, are simply the one-year-ahead survey

forecasts of 3-month tbill rates taken from BCEI.

Figure 1.7 shows that short-rate and real GDP growth expectation wedges are

strongly negatively correlated at a one-year horizon. The regression

Eti$t+1 − Ẽti$t+1 = α0 + α1

(
Etgt+1 − Ẽtgt+1

)
+ εt (1.71)

yields an estimate of α̂1 = −0.25 with a Newey-West t-statistic (6-quarter lag) of -2.73

and an adjusted R2 of 0.14. Thus, the evidence is consistent with Equation (1.57),

which also suggests that real GDP growth expectation wedges are countercyclical.

1.6.1.3 Objective risk premia predictability

A number of studies (Cieslak and Povala 2015; Jørgensen 2018; Bauer and Rude-

busch 2019) have documented that including long-term trends in inflation and real

GDP growth strongly increases the predictive power of future bond excess returns in

addition to yield curve principle components (PCs); that is, the spanning hypothesis is

rejected. My model generates this predictability by linking the macroeconomic trends

to expectation wedges as shown in Equation (1.59) (ignoring the constant term):

Etrnt+1 − i$t +
1

2
var(rnt+1) = λg,n−1 (µ− µ̂t + cet − ĉt) + λπ,n−1 (τ − τ̂t + κet − κ̂t) .

(1.72)

Thus, if λg,n−1 > 0, the subjective real growth trend expectation enters into the return

predictability regression with a negative sign. Since the spanning hypothesis holds in
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my model, I test whether subjective trend expectations have predictability for future

bond excess returns without controlling for yield curve PCs. Given the low-frequency

nature of trend expectations, I use a long history of bond excess returns from Fama

bond portfolios and use gLT and πLT as proxies (see Appendix A.7). The predictive

regression is performed at a one-year horizon, using data from 1964 to 2018.

Table 1.7 shows that the real GDP growth trend expectation is a significant pre-

dictor of future excess returns, especially for bonds with longer maturities. Also, the

predictive sign is negative, consistent with the model’s prediction. In comparison,

inflation trend expectation does not have predictability. However, given the earlier

observation that subjective risk premium co-moves positively with the inflation trend,

this implies that the difference between objective and subjective risk premium is still

negatively correlated with the inflation trend expectation. Thus, this pattern can still

be consistent with an extended version of the model where this trend in subjective risk

premium is accounted for.

1.7 Conclusion

This paper shows that allowing for a wedge between subjective and objective

macroeconomic expectations can reconcile bond prices and survey data. Subjective

bond risk premia implied by real-time survey forecasts of future yields are acycli-

cal, while short-rate forecast errors are predictable by trend and cycle components of

macroeconomic forecasts. These findings challenge the assumption of rational expecta-

tions models that the ex-post risk premia fitted from in-sample predictive regressions

accurately reflect the risk compensation required by investors in real time. Departing

from the canonical rational expectations framework, I focus on modeling the expecta-

tion wedge between the real-time agents and the econometrician in a highly tractable

equilibrium. In my model, the risk compensation required by the agent is constant
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by construction and variation in yields is driven purely by time-varying subjective

macroeconomic expectations. Given that the agent has to learn about macroeconomic

dynamics in real time while the econometrician has the advantage of hindsight, future

revisions in the agent’s expectations are anticipated by the econometrician. Thus, fu-

ture yield changes appear to be predictable from the econometrician’s point of view,

as they are in the data. Also, the model can generate predictions that are consistent

with several stylized facts in the Treasury bond market.

Overall, my results suggest that with the help of survey data, equilibrium models

of bond pricing could explore differences between subjective and objective dynamics

and provide a unified explanation of many empirical patterns we have observed in the

Treasury bond market.
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1.8 Table and Figures

Table 1.1: Description of Surveys

This table summarizes the basic information of the surveys. For concreteness, I use the survey
published in 1984Q2 (and 1984M6 for monthly surveys) as an illustrative example.

Frequency Survey time Forecast date

BCFF Monthly 1984M5 last week Quarterly average

BCEI Monthly 1984M6 first week Quarterly average

SPF Quarterly 1984M5 first half Quarterly average

GN Quarterly 1984M6 Last business day
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Table 1.2: Moments of Yield Forecasts and Implied Risk Premia

Panel A reports the moments of bootstrapped constant-horizon zero-coupon yield forecasts, with
sample means in the first row and sample standard deviations in parentheses. All values are in
annualized percentage points. 3-month tbill rate forecasts are from October 1982 to December 2018.
Yield forecasts for other maturities are from December 1987 to December 2018. “Data” reports
moments calculated from observed yields during each sample period that is matched to the survey
sample.

Columns (1) and (2) in Panel B report means and standard deviations of monthly subjective and
objective risk premia for bond maturities with 2, 5, and 10 years. All values are in annualized
percentage points. The sample period is from December 1987 to December 2018. Subjective risk
premia are calculated from consensus yield forecasts using Equation (1.2), while objective risk premia
are fitted from predictive regressions using the cycle factor from Cieslak and Povala (2015) and the
macro factor from Ludvigson and Ng (2009) as predictors. Columns (3) and (4) report moments of
“cleaned” subjective risk premia, which are fitted values from regressing subjective risk premia on
current long/short yields and the cycle factor, respectively.

A. Yield Forecast Moments
Survey Data

1Q 2Q 3Q 4Q 5Q

n = 3M∗ 4.08 4.15 4.23 4.33 4.43 4.26
(3.17) (3.07) (2.98) (2.89) (2.79) (3.59)

n = 1Y 3.39 3.49 3.61 3.74 3.87 3.41
(2.44) (2.38) (2.30) (2.20) (2.10) (2.59)

n = 5Y 4.27 4.36 4.46 4.56 4.66 4.33
(2.14) (2.08) (2.00) (1.93) (1.86) (2.33)

n = 10Y 4.83 4.91 4.99 5.07 5.15 4.98
(1.90) (1.84) (1.78) (1.72) (1.67) (2.08)

B. Risk Premia Moments

(1) (2) (3) (4)

Subjective Objective Cleaned sub. Cycle fitted

Mean S.D. Mean S.D. Mean S.D. R2 Mean S.D. R2

n = 2Y 0.21 0.54 0.90 0.85 0.21 0.42 0.60 0.21 0.27 0.25

n = 5Y 0.38 1.86 2.96 3.00 0.38 1.47 0.63 0.38 1.06 0.32

n = 10Y 1.58 3.86 5.31 6.04 1.58 3.00 0.60 1.58 2.20 0.32
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Table 1.3: Subjective and Objective Risk Premia Movements

This table reports the regression results of subjective and objective risk premia on yield and macroe-
conomic variables, Êtrx

n
t+1 = β0 + β′1Xt + εt. For “average”, I use the maturity-weighted average of

monthly 1-year-holding-period risk premia on 2- to 10-year zero-coupon bonds. The sample period is
from December 1987 to December 2018. For “n = 1.5Y ,” I use quarterly 6-month-holding-period risk
premia on 1.5-year zero-coupon bonds. The sample period is from 1969Q4 to 2018Q4. All explanatory
variables are standardized to have a unit standard deviation. Detailed definitions of explanatory vari-
ables are given in Section 1.3.1.2. Newey-West t-statistics with 18-month (6-quarter for “n = 1.5Y ”)
lags are reported in parentheses.

Subjective Ẽtrxnt+1 Objective Etrxnt+1

Average n = 1.5Y Average n = 1.5Y

Coeff. R2 Coeff. R2 Coeff. R2 Coeff. R2

Panel A: Trend

Yield level 0.26 0.53 0.58 0.19 0.18 0.09 -0.04 -0.00
(8.48) (5.94) (1.76) (-0.34)

Trend inflation 0.26 0.55 0.58 0.19 0.16 0.07 -0.11 0.01
(7.22) (5.49) (1.51) (-0.96)

Panel B: Cycle (controlling for trend inflation)

Yield slope 0.06 0.58 0.17 0.20 0.44 0.62 0.51 0.39
(2.93) (1.48) (9.02) (8.73)

(-)Employ. growth 0.06 0.58 0.02 0.18 0.38 0.47 0.34 0.18
(3.06) (0.19) (6.67) (3.20)

Panel C: Volatility

Yield volatility 0.08 0.04 0.20 0.02 0.19 0.10 0.06 -0.00
(1.75) (2.47) (2.47) (0.54)

Treasury VIX 0.13 0.12 0.27 0.22
(3.24) (3.54)

Real volatility 0.07 0.03 0.31 0.05 0.30 0.27 0.06 0.00
(1.11) (2.12) (3.51) (0.71)

Inflation volatility 0.10 0.08 0.30 0.05 0.18 0.10 0.00 -0.01
(1.49) (1.77) (1.90) (0.01)

Panel D: Uncertainty/Forecast Dispersion

Policy uncertainty -0.04 0.01 0.01 -0.00
(-1.04) (0.18)

rGDP uncertainty 0.08 0.05 0.10 0.00 -0.28 0.23 -0.43 0.27
(1.63) (0.57) (-3.89) (-3.74)

CPI uncertainty 0.14 0.16 0.25 0.03 -0.12 0.04 -0.34 0.17
(2.78) (1.51) (-1.37) (-2.85)

rGDP dispersion 0.15 0.18 0.20 0.02 0.14 0.06 -0.36 0.19
(4.78) (1.36) (1.60) (-4.76)

CPI dispersion 0.08 0.05 0.12 0.04
(1.99) (1.72)
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Table 1.4: Expectation Hypothesis Tests

This table reports the regression results of the EH test for survey yield forecasts and future realized
yields, as in Equation (1.6). Panel A reports the results for survey yield forecasts. Bootstrapped p-
values following Crump and Gospodinov (2019) are in brackets. The sample period is from December
1987 to December 2018. Panel B reports the results for future realized yields. The bias-adjusted slope
coefficients following the first-order approximation method in Bekaert et al. (1997) are reported in
brackets. Newey-West standard errors with 18-month lags are reported in parentheses for both panels.

A. Survey Expectation Ẽtyn−mt+m − ymt = β0 + β1
n

n−m (ynt − ymt ) + ηt.

m = 3M m = 6M m = 12M

n = 6M 0.34
(s.e.) (0.14)
[p-value] [0.04]

n = 12M 0.56 0.24
(s.e.) (0.07) (0.10)
[p-value] [0.01] [0.00]

n = 24M 0.75 0.64 0.53
(s.e.) (0.04) (0.07) (0.12)
[p-value] [0.02] [0.03] [0.11]

n = 60M 0.92 0.90 0.92
(s.e.) (0.04) (0.05) (0.07)
[p-value] [0.53] [0.50] [0.66]

n = 120M 0.93 0.94 0.98
(s.e.) (0.03) (0.04) (0.05)

[p-value] [0.42] [0.56] [0.86]

B. Objective Expectation yn−mt+m − ymt = β0 + β1
n

n−m (ynt − ymt ) + εt+m.

1972M1 - 2018M12 1987M12 - 2018M12

m = 3M m = 6M m = 12M m = 3M m = 6M m = 12M

n = 6M 0.32 0.81
[adj. β] [-1.70] [-2.23]

(s.e.) (0.23) (0.21)

n = 12M 0.53 0.26 0.89 0.89
[adj. β] [-1.47] [-1.74] [-2.13] [-2.14]
(s.e.) (0.13) (0.19) (0.14) (0.31)

n = 24M 0.73 0.52 0.23 0.87 0.74 0.71
[adj. β] [-1.25] [-1.46] [-1.76] [-2.12] [-2.25] [-2.30]
(s.e.) (0.08) (0.12) (0.27) (0.12) (0.24) (0.42)

n = 60M 0.86 0.73 0.52 0.89 0.78 0.69
[adj. β] [-1.04] [-1.17] [-1.38] [-1.98] [-2.09] [-2.19]
(s.e.) (0.03) (0.06) (0.14) (0.05) (0.10) (0.17)

n = 120M 0.90 0.82 0.67 0.93 0.86 0.77
[adj. β] [-0.88] [-0.96] [-1.12] [-1.76] [-1.83] [-1.93]
(s.e.) (0.02) (0.04) (0.08) (0.03) (0.05) (0.08)
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Table 1.5: Predicting Short-rate Expectation Errors with Subjective Macroeconomic
Expectations

This table reports regression results of 3-month Treasury bill (tbill) rate forecast errors on macroeco-
nomic expectations. Long-term expectations (LT) are proxied by exponentially weighted averages of
past data realizations, as in Equations (1.11) and (1.12). Nowcasts are the current-quarter forecasts
from SPF. Expectations related to real GDP growth and inflation are indicated by g and π, respec-
tively. In Panel A, I run the 1-year-ahead short-rate forecast error (realization minus forecast) on
LT and on nowcasts of real GDP growth and inflation. In Panel B, the realization, it+5, is defined
as the 20-quarter-ahead within-quarter average tbill rate. The forecast, Ẽtit+5, is the 5-year-ahead
tbill rate forecast from BCFF and BCEI. The sample period is from 1983Q3 to 2018Q4. Newey-West
t-statistics with 6-quarter lags are reported in brackets. Bootstrapped p-values following Greenwood
and Vayanos (2014) are reported in parentheses.

Panel A: 1-year-ahead Forecast Error it+1 − Ẽtit+1

g π

(1) (2) (3) (4) (5) (6)

LT -1.25 -1.11 0.05 0.06

[t-stat] [-1.49] [-2.15] [0.30] [0.30]
(b.s. p) (0.12) (0.08) (0.69) (0.74)

Nowcast 0.23 0.30 0.02 -0.01

[t-stat] [2.37] [2.95] [0.19] [-0.09]
(b.s. p) (0.05) (0.03) (0.82) (0.93)

Obs. 138 138 138 138 138 138
Adj. R2 0.05 0.05 0.12 0.00 0.00 0.00

Panel B: 5-year-ahead Forecast Error it+5 − Ẽtit+5

Realizations it+5 Forecast error

(1) (2) (3) (4) (5)

LT g -0.82 -2.52 -1.90

[t-stat] [-0.77] [-2.33] [-2.13]
(b.s. p) (0.59) (0.12) (0.13)

LT π 1.46 0.74 0.70

[t-stat] [9.04] [4.38] [4.46]
(b.s. p) (0.00) (0.02) (0.01)

Nowcast g 0.00

[t-stat] [0.01]
(b.s. p) (0.99)

Nowcast π 0.87

[t-stat] [3.84]
(b.s. p) (0.02)

Obs. 122 122 122 122 122
Adj. R2 0.72 0.17 0.16 0.35 0.43
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Table 1.6: Identifying Parameters

This table reports the identified parameters under objective and subjective expectations. Panel A
reports estimated trend and cycle parameters using the UC0-AR(2) model from Grant and Chan
(2017) for real GDP and CPI from 1947 to 2018. ρc and ρκ are implied persistence coefficients using
an AR(1) approximation described in Appendix A.9. Panel B reports the iterative GMM estimations
of trend and cycle parameters using quarterly short- and long-term forecasts of real GDP growth and
inflation from 1983 to 2018. The moment conditions are outlined in Section 1.6. Gain parameters are
identified with the following regressions:

µ̂t − φµµ̂t−1 = α0 + α1

(
gt − Ẽt−1gt

)
+ εt

and
ĉt − ρ̃cĉt−1 = β0 + β1

(
Ẽt−1gt − gt

)
+ ηt

and similarly for inflation. Estimated α̂1 and β̂1 correspond to νµ and νc, respectively. Newey-West
standard errors with 6-quarter lags are reported in parentheses.

Panel A: Objective Measure

Trend Cycle Volatility

g µ ρc,1 ρc,2 ρc σξ σζ

0.811 1.525 -0.555 0.763 0.574 0.655

(0.039) (0.088) (0.093) (0.107) (0.108)

π τ ρκ,1 ρκ,2 ρκ ση σι

0.903 1.739 -0.750 0.870 0.442 0.532

(0.033) (0.072) (0.0720) (0.066) (0.075)

Panel B: Subjective Measure

Trend Cycle Gain

g µ φµ ρ̃c νµ νc

0.653 0.963 0.818 0.022 0.182

(0.085) (0.116) (0.069) (0.017) (0.065)

p-value [0.27] [0.24]

Adj. R2 0.00 0.06

π τ φτ ρ̃κ ντ νκ

0.690 0.982 0.939 0.029 0.267

(0.002) (0.042) (0.044) (0.012) (0.054)

p-value [0.25] [0.71]

Adj. R2 0.01 0.27
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Table 1.7: Predicting Returns with Subjective Trend Expectations

Dependent variable is the 1-year-holding-period excess returns of Fama bond portfolios, which are
calculated from the monthly Fama bond portfolio returns from CRSP. “Short Maturity,” “Medium
Maturity,” and “Long Maturity” correspond to portfolios with maturities of 1 to 2 years, 5 to 10
years, and above 10 years, respectively. Portfolio returns are scaled by average bond maturities for
comparison. gLT and πLT are proxies for subjective trend expectations of real GDP growth and
inflation, respectively. The details of their construction are given in Appendix A.7. All explanatory
variables are standardlized to have a unit standard deviation. Coefficients are multiplied with 100. The
sample period is from 1964Q1 to 2018Q4. Newey-West t-statistics with 6-quarter lags are reported in
brackets. Bootstrapped p-values following Greenwood and Vayanos (2014) are reported in parentheses.

Short Maturity Medium Maturity Long Maturity

(1) (2) (3) (1) (2) (3) (1) (2) (3)

gLT -0.30 -0.27 -1.61 -1.62 -2.49 -2.39

[t-stat] [-1.79] [-1.59] [-2.93] [-2.73] [-2.33] [-2.43]

(b.s. p) (0.08) (0.13) (0.00) (0.01) (0.02) (0.01)

πLT 0.22 0.18 0.08 -0.13 -0.99 -0.57

[t-stat] [0.91] [0.74] [0.08] [-0.21] [-0.66] [-0.52]

(b.s. p) (0.37) (0.47) (0.94) (0.83) (0.49) (0.56)

Observations 216 216 216 216 216 216 185 185 185

Adj. R2 0.03 0.01 0.03 0.06 0.00 0.06 0.05 0.00 0.05
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Figure 1.1: Comparison of Subjective and Objective Risk Premia

This figure plots the maturity-weighted average of 1-year-holding-period subjective and
objective risk premia, defined as

Ẽtrxt+1 ≡
1

9

10∑
n=2

Ẽtrxnt+1/n , Etrxt+1 ≡
1

9

10∑
n=2

Etrxnt+1/n.

The maturities of bonds included in the average are from 2 to 10 years. The red line
plots Ẽtrxt+1. Individual subjective risk premia are constructed using yield forecasts
from BCFF:

Ẽtrxnt+1 ≡ nynt − (n− 1)Ẽtyn−1
t+1 − y1

t .

The sample period is from December 1987 to December 2018. The blue line plots
Etrxt+1. Individual objective risk premia, Etrxnt+1, are constructed as the fitted values
from regressing 1-year-ahead individual bond excess returns on the cycle factor from
Cieslak and Povala (2015) and the macro factor from Ludvigson and Ng (2009), using
data from November 1971 to December 2018.
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Figure 1.2: Comparison of “Cleaned” Subjective and Objective Risk Premia

In the top panel, the red line plots the fitted values from regressing the maturity-
weighted average subjective risk premia, Ẽtrxt+1, on contemporaneous 1- and 10-year
yields (including a constant). The blue line plots the fitted values from a similar
regression but with the cycle factor as the depedent variable. In the bottom panel, the
red line plots the fitted values from regressing the maturity-weighted average subjective
risk premia on the cycle factor. The blue line plots the cycle factor for comparison.
The sample period is from November 1971 to December 2018 for blue lines and from
December 1987 to December 2018 for red lines.
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Figure 1.3: Forecasts Implied by Objective Risk Premia

The solid blue lines plot the difference between survey forecasts of 1-year-ahead n-
maturity yields from BCFF, Ẽtynt+1, and counterfactual 1-year-ahead forecasts implied
by objective risk premia:

Etynt+1 ≡
(n+ 1)yn+1

t − y1
t − Etrxn+1

t+1

n
.

Objective risk premia on an n-maturity zero-coupon bond, Etrxnt+1, are fitted using the
cycle factor from Cieslak and Povala (2015) and the macro factor from Ludvigson and
Ng (2009). The blue shaded areas are bounded by the difference between top-/bottom-
10 average forecasts (also from BCFF) and Etynt+1. The upper panel uses 2-year yield
(3-year yield before December 1987) and the bottom uses 10-year yield. The sample
period is from December 1984 to December 2018 and December 1987 to December 2018
for the upper and bottom panels, respectively.

57



1980 1985 1990 1995 2000 2005 2010 2015
0

2

4

6

8

10

12

14

16

18

20

A
nn

ua
liz

ed
 %

Figure 1.4: Short- and Long-term Forecasts of Short Rates

The figure plots the short- and long-term forecasts of 3-month Treasury bill (tbill) rates
from BCFF and BCEI. The black line plots the prevailing 3-month tbill rates in the
survey month (month of making forecasts). The red line plots forecasts of the 5-year
averages for 7 to 11 years ahead. The blue line plots the 1-year-ahead forecasts. The
sample period for long-term average forecasts is from 1983Q3 to 2018Q4. The sample
period for 1-year-ahead forecasts is from September 1980 to December 2018.
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Short Rate and Inflation
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Short-rate Residual and Real GDP growth

Figure 1.5: Long-term Forecasts of Short Rates and Macroeconomic Variables

In the top panel, the blue and red lines plot the long-term average (LT) forecasts of
3-month Treasury bill (tbill) rates and inflation, respectively. In the bottom panel, the
red line plots the LT forecasts of real GDP growth. The blue line plots the residuals
of regressing LT forecasts of tbill rates on LT forecasts of inflation. The sample period
is from 1983Q3 to 2018Q4.
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Figure 1.6: Fitted Short-rate Forecast Errors Using Macroeconomic Expectations

The figure plots the fitted values of regressing the forecast error of the 1-year-ahead
3-month Treasury bill (tbill) rate, FEt(it+1), on subjective expectations of real GDP
growth. The forecast error FEt(it+1) is defined as the within-quarter average tbill
rate realized 4 calendar quarters ahead of quarter t minus the 1-year-ahead quarter-
average forecast directly taken from BCFF. The blue line uses nowcasts from SPF as
the indepedent variable. The red line uses gLT (the exponentially weighted average
of past real GDP growth rates) as the independent variable. The black dotted line
uses the lagged tbill rate and the year-on-year employment growth rate as independent
variables following Cieslak (2018). The sample period is from 1983Q3 to 2018Q4.
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Figure 1.7: Short-rate and Macroeconomic Expectation Wedges

The figure plots the expectation wedges of 3-month Treasury bill (tbill) rate, Eti$t+1 −
Ẽti$t+1, and of real GDP growth, Etgt+1 − Ẽtgt+1 (taking the negative). Etgt+1 is the
fitted value from the following regression:

gt+1 = γ0 + γ1gt + γ2s
$,n
t + εt+1.

Ẽtgt+1 is the average of 1- to 4-quarter-ahead survey forecasts of real GDP growth.
The sample period is from 1968Q4 to 2018Q4. Eti$t+1 is constructed from 1-year-ahead
predictive regressions of within-quarter average 3-month tbill rates with lagged average
rates and year-on-year employment growth as predictors, as in Cieslak (2018). Ẽti$t+1 is
the 1-year-ahead survey forecasts of 3-month tbill rates taken from BCEI. The sample
period is from 1980Q3 to 2018Q4.
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CHAPTER II

Asset Pricing with Fading Memory

2.1 Introduction

The predictably counter-cyclical nature of the equity risk premium continues to be

a major challenge in asset pricing. Researchers have proposed rational expectations

models that generate time-variation in the equity premium by introducing modifica-

tions into the representative agent’s utility (Campbell and Cochrane 1999; Barberis

et al. 2001) or by introducing persistence and stochastic volatility into the endowment

growth process (Bansal and Yaron 2004). A key feature of these rational expectations

models is that the representative agent knows the objective probability distribution

she faces in equilibrium: subjective and objective expectations are the same. There-

fore, the agent is fully aware of the counter-cyclical nature of the equity premium

and knows the values of the parameters driving this process. This is a troubling fea-

ture of these models on two levels—conceptual and empirical. Conceptually, it is not

clear how an agent could come to possess so much knowledge about parameters when

econometricians struggle to estimate such parameters with much precision even from

very long time-series samples (Hansen 2007). Empirically, surveys of investor return

expectations from a number of sources fail to find evidence that investors’ return ex-

pectations are counter-cyclical. If anything, the survey data indicate pro-cyclicality
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(Vissing-Jorgensen 2004; Amromin and Sharpe 2014; Greenwood and Shleifer 2014).

Learning about the parameters of the asset payoff process offers a potential solution

to both parts of this conundrum. Learning allows for subjective parameter uncertainty

and a wedge between the subjective expectations of agents within the model and the

objective expectations that an econometrician outside of the model could estimate from

a large sample of data generated by the economy ex post. In such a learning model, the

dynamics of subjective beliefs and asset prices depend crucially on the specification of

agents’ memory. The modeling of memory determines how experienced historical data

feeds into beliefs, decisions, and prices. A standard assumption would be that agents

retain full memory of all observations experienced in the past. But full memory is,

in an application, neither well defined—does it start at the start of today’s electronic

records of stock prices and dividends? when the first stock market opened? some other

time?—nor necessarily empirically plausible.

In this paper, we study asset prices when the representative agent learns with

gradually fading memory. Our approach is grounded in micro-evidence from house-

hold portfolio choice and survey expectations data showing that individuals learn from

experience—that is, their expectations are shaped by data realized during their life-

times, and most strongly by recently experienced data (Malmendier and Nagel 2011;

Malmendier and Nagel 2015).1 Malmendier and Nagel (2015) further show that when

individuals learn from life-time experiences, the dynamics of their average expecta-

tion can be approximated very closely by a constant-gain learning scheme in which a

data point’s influence on beliefs gradually fades over time as it recedes into the past.

Abstracting from generational heterogeneity, we use this insight and consider a rep-

resentative agent who learns with constant gain. This allows us to obtain a highly

1A growing body of evidence also suggests that extrapolation from experience helps understand the
expectations and behavior of professionals. See, e.g., Greenwood and Nagel (2009) for mutual fund
managers, Andonov and Rauh (2019) for pension fund return expectations, and Malmendier et al.
(2019a) for inflation expectations of members of the Federal Reserve’s Open Market Committee.
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tractable model that nevertheless captures what may be, for the purposes of asset

pricing, the essential aspect of learning from experience: the gradual loss of memory.

The decaying memory of observations in the past is the only modification to an oth-

erwise standard Bayesian parameter learning model. As a consequence of the memory

decay, learning is perpetual and there is a persistent time-varying wedge between the

agent’s subjective beliefs and the objective beliefs implied by the true parameters of the

process generating the asset payoffs. Importantly, however, by retaining everything else

from the standard Bayesian set up, we are able to analyze the asset pricing effects of

posterior subjective uncertainty under constant-gain learning. Based on this approach,

the dynamics of asset prices and survey expectations can be reconciled within a simple

setting with IID endowment growth, recursive utility with constant risk aversion, and

a representative agent who learns with fading memory about the mean endowment

growth rate.

We start the analysis by documenting several new facts about equity market returns

and subjective stock return expectations. We look at the data through the lens of a

simple reduced-form framework that combines a present-value identity with constant-

gain learning about the growth rate of dividends. Constant-gain learning implies that

investors’ subjective expectation of long-run dividend growth is equal to an exponen-

tially weighted average of past dividend growth rates, which we label experienced payout

growth. For the purpose of this initial analysis, we exogenously fix the subjective risk

premium demanded by investors and the risk-free rate to be constant. Under objective

expectations, then, the resulting equity premium is counter-cyclical. For example, after

a string of positive growth innovations, investors are subjectively optimistic about the

mean growth rate, the equity price is high, and subsequent returns are low because the

investors’ optimistic expectations are likely disappointed ex post.

How quickly memory of past realized growth rate observations decays is determined
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by a gain parameter in the belief-updating rule. This parameter plays a key role in our

analysis as it determines the volatility and persistence of the price-dividend ratio and

the strength of return predictability. We do not tweak this parameter to fit asset prices.

Instead, we rely on the estimates in Malmendier and Nagel (2011, 2015) from survey

data to pin down the value of this parameter at 0.018 for quarterly data. This means

that the agent’s posterior mean growth rate in the current quarter puts a weight of

0.018 on the most recent quarterly growth rate surprise and 1− 0.018 on the posterior

mean from the prior quarter. Experienced payout growth is therefore a slow-moving

variable. We construct it empirically with dividend data going back to the 19th century.

We use the experienced payout growth series to uncover three novel empirical facts

that are consistent with the predictions of this constant-gain learning model. First,

experienced payout growth is strongly negatively related to subsequent stock returns in

excess of the risk-free rate. Remarkably, unlike most existing equity return predictors

in the literature, this one does not use information on price levels, just information

from the past history of asset payouts. Second, using data on individuals’ subjective

expectations of stock market excess returns, we find that they are basically unrelated to

experienced payout growth. As a consequence, there is a wedge between subjective and

objective expectations of excess returns that generates subjective expectations errors

that are predictable by experienced payout growth. Third, subjective expectations

of growth in fundamentals, proxied by long-term earnings forecasts of stock market

analysts, are strongly positively related to experienced payout growth.

We then construct a structural asset-pricing model that matches these empirical

regularities as well as other standard stylized asset pricing facts. A representative agent

with recursive utility and constant risk aversion learns with fading memory about the

mean of IID endowment growth. We keep the gain parameter fixed at the same value

as in our reduced-form analysis. Equity is a levered claim to the endowment. Because
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of fading memory, learning is perpetual, the economy is stationary, and the agent’s

subjective uncertainty about long-run growth is high, which generates a high equity

premium. The real risk-free rate varies slowly over time, but its volatility is low,

consistent with empirical data.

The dynamics of risk premia in the model are in line with our empirical findings.

Objectively, excess returns are predictable by experienced payout growth or the price-

dividend ratio—without the subtle persistent components in the endowment process

(and the agent’s knowledge of these) in Bansal and Yaron (2004) (BY) or time-varying

risk aversion built into the agent’s preferences as in Campbell and Cochrane (1999)

(CC). From the agent’s subjective viewpoint, the world looks different. Subjective

expected excess returns are virtually unrelated to experienced payout growth, consis-

tent with the survey data. This wedge between subjective and objective expectations

generates a strong negative relationship between subjective expectations errors and

experienced payout growth. Thus, our model reconciles the evidence from returns data

and surveys of investor return expectations.

Our model also addresses the Sharpe Ratio variability puzzle highlighted in Lettau

and Ludvigson (2010). The leading rational expectations models by CC and BY im-

ply that the conditional equity premium and conditional market return variance are

almost perfectly positively correlated. In CC, this happens because at times when risk

aversion is high, it is also very volatile. In BY, the reason is that stochastic volatility

in endowment growth is the driver of the time-varying equity premium. As a conse-

quence, variation in conditional market return variance dampens the variability of the

Sharpe Ratio relative to the variability of the conditional equity premium. Empiri-

cally, however, the first and second moments of market excess returns conditioned on

the price-dividend ratio or experienced payout growth are basically uncorrelated. Our

model is consistent with this empirical observation: subjective belief dynamics gener-
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ate predictable variation in the objective equity premium, but without simultaneous

variation in the volatility of equity returns, which generates a volatile Sharpe Ratio.

The model also matches the lack of out-of-sample predictability found empirically

in Welch and Goyal (2007). In our model simulations, standard out-of-sample tests

show no out-of-sample stock return predictability for empirically realistic sample sizes,

even though returns are truly predictable under the objective distribution. While an

econometrician can find predictable returns in sample by studying data ex post, it

would be difficult, even with full memory, for the econometrician to construct a viable

trading strategy in real time that takes advantage of the fading-memory agent.

To understand the economic mechanism generating investor belief and asset price

dynamics in the model, it is useful to contrast it with a model in which constant-gain

learning is an optimal Bayesian approach for tracking a random-walk component of

growth rates. For appropriately chosen volatility of the random-walk increments, this

alternative model would produce the same dynamics of investor beliefs about long-

run growth. Thus, one can think of investors in our model as forming beliefs under

the perception that endowment growth has a random-walk component. However, for

the model’s predictions about predictability of stock returns and subjective forecast

errors it is crucial that the actual endowment growth rate is IID. The resulting wedge

between subjective and objective expectations is key and makes the model predictions

very different from models in which constant-gain learning is optimal based on the

actual law of motion.

This highlights an important difference relative to the large literature on constant-

gain learning in macroeconomics (see Evans and Honkapohja (2001) for an overview).

The typical motivation for constant-gain learning in this literature is structural change

that renders long-distant historical data irrelevant, but it has been difficult to relate the

gains that best explain survey forecasts of macroeconomic data to the gains that would
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be optimal given the degree of structural change in the forecasted time series (Branch

and Evans 2006; Berardi and Galimberti 2017). In our case, fading memory reflects

the fact that individuals rely on their life-time experiences when forming expectations,

which is why we tie our gain parameter to earlier estimates from survey expectations

microdata, not to the degree of structural change in the underlying time series. Our

paper shares this focus on memory formation with a recent emerging literature on the

topic in economics (e.g., Azeredo da Silveira and Woodford 2019; Bordalo et al. 2019b;

and Kahana and Wachter 2019).

Our model builds on earlier work that has used different approaches to investi-

gate the asset pricing implications of learning from experience. Collin-Dufresne et al.

(2016a), Ehling et al. (2017), Malmendier et al. (2019b), Schraeder (2015), and Nakov

and Nuño (2015) use an overlapping generations (OLG) approach to study learning-

from-experience effects in asset pricing. The advantage of the OLG approach is that

it maps very closely to the empirical work in Malmendier and Nagel (2011, 2015) that

studied between-cohort heterogeneity in experiences, expectations, and choices. More-

over, these models produce interesting implications for cross-sectional heterogeneity in

portfolio choices and wealth. The downside is that model solution requires simplifica-

tions that make a quantitative mapping to empirical data difficult.2 By abstracting

from cross-cohort heterogeneity, we also employ a simplified approach, but one that

delivers quantitatively realistic asset-pricing predictions. Our model is highly tractable

and should therefore be well suited for further extensions such as, for example, to study

production and real investment.

Our model shares many elements with full-memory Bayesian parameter learning

2For example, Collin-Dufresne et al. (2016a) use two overlapping cohorts and objective and sub-
jective risk premia jump every 20 years when there is a generational shift; Ehling et al. (2017) assume
log utility, Schraeder (2015) and Malmendier et al. (2019b) work with CARA preferences in partial
equilibrium with an exogenous risk-free rate, and the model in Nakov and Nuño (2015) has risk-neutral
agents.

68



models, especially the IID-normal model in Collin-Dufresne et al. (2016b), but the

fading memory feature avoids the arguably unrealistic implication of these models that

learning effects disappear and risk premia decrease deterministically over time as the

agent acquires more data (see, also, Timmermann (1993) and Lewellen and Shanken

(2002) for partial equilibrium models with full memory). The fading memory model

also avoids the problem of having to take a stand on what “year zero” is in an empirical

implementation of a full-memory Bayesian learning model. And the gain parameter

that determines memory can be pinned down based on microdata estimates.

Our model is also related to, but also in important ways different from recent

models with extrapolative expectations. In Barberis et al. (2015) some investors ex-

trapolate from stock price changes in recent years, which helps match the evidence in

Greenwood and Shleifer (2014) that lagged stock market returns from the past few

years are positively related to subjective expected returns. Jin and Sui (2019) build a

representative agent model with return extrapolation. While these models can match

the strong correlation of survey measures of subjective expected returns with lagged

one-year stock market returns, they produce the counterfactual prediction that stock

market excess returns are predictable by lagged one-year returns and that the price-

dividend ratio quickly mean-reverts. The experienced growth measures in our setting

put much greater weight on more distant observations in the past. As a consequence,

the price-dividend ratio and objective expected returns in our model vary at a lower

frequency, much close to the high persistence of the price-dividend ratio observed in

the data. But our model cannot produce the correlation of one-year past returns with

subjective expected returns. In Hirshleifer et al. (2015) and Choi and Mertens (2019),

extrapolation occurs at low frequency, like in our model. A key difference is that in our

model the agent perceives and prices subjective long-run growth rate uncertainty which

allows us to generate a high equity premium in an IID economy. In Adam et al. (2017),
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agents know the expected growth rate of dividends, but they don’t know the pricing

function that maps expected fundamentals into prices, and they use an exponentially-

weighted average of past price growth to forecast future prices. Matching the empirical

equity risk premium in their model requires that subjective volatility of one-period

ahead consumption growth far exceeds the actual volatility in the data. In our model,

perceived short-run consumption volatility is very close to the objective volatility. The

riskiness of equity in our model instead arises from subjective long-run growth rate

uncertainty.

2.2 Facts about Subjective and Objective Expectations of Re-

turns and Payoffs

Before looking at asset pricing with learning from experience within a structural

asset-pricing framework, we start by laying out some empirical facts about stock market

returns and investor return expectations from survey data that we want our asset-

pricing model to match.

We consider a setting in which investors are learning about the mean growth rate

µd of log real stock market payouts, d,

∆dt = µd + εt, (2.1)

where ε is an IID shock. The microdata evidence in Malmendier and Nagel (2011,

2015) suggests that individuals form expectations from data they observe throughout

their lifetimes and, within their life-time data set, with more weight on relatively recent

data. In our analysis, we focus on the dynamics of the average individual’s expectation

in such a learning-from-experience setting. Malmendier and Nagel (2015) show that if

individuals in different birth cohorts learn from their life-time experience, their average
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belief is described very well by a constant-gain learning rule. Applied in our setting

here, this means that the perceived growth rate µ̃d evolves as

µ̃d,t+1 = µ̃d,t + ν(∆dt+1 − µ̃d,t), (2.2)

and where ν is the (constant) gain parameter (see, e.g., Evans and Honkapohja (2001)).

As this expression shows, µ̃d is updated every period based on the observed surprise

∆dt+1 − µ̃d,t. How much this surprise shifts the growth rate expectation depends on

ν. Malmendier and Nagel (2015) show that ν = 0.018 for quarterly data fits the

dynamics of the average belief in inflation expectations microdata (and this value is

also within the range of estimates obtained from microdata on household investment

decisions in Malmendier and Nagel (2011)). Iterating on (2.2) one can see that µ̃d,t is an

exponentially-weighted average of past ∆d observations. In this way, the constant-gain

updating scheme (2.2) captures the memory-loss implied by learning from experience

and generational turnover. The more observations recede into the past, the lower the

weight on these observations. In contrast, with full-memory Bayesian learning, the

posterior mean would be formed by taking an equal-weighted average of all observed

growth-rate realizations.

As a preliminary step, we explore some basic asset pricing implications when in-

vestors form expectations as in (2.2). At time t, they price stocks based on their

growth rate expectation µ̃d,t. For now, we further assume that they price in a constant

risk premium θ and a constant real risk-free rate rf under their subjective beliefs. As

we will show later, these assumptions are very close to the subjective belief dynamics

that we obtain for a representative agent in a fully specified asset-pricing model with

constant-gain learning and priced subjective uncertainty about long-run growth.

Now apply a Campbell and Shiller (1988) approximate present-value identity, used
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as in Campbell (1991) to decompose return innovations into changes in expectations

about future growth rates and changes in return expectations. Under the investors’

subjective expectations, denoted Ẽ[.], the innovation in stock returns is

rt+1 − Ẽtrt+1 = (Ẽt+1 − Ẽt)
∞∑
j=0

ρj∆dt+1+j (2.3)

=
ρ

1− ρ
(µ̃d,t+1 − µ̃d,t) + ∆dt+1 − µ̃d,t (2.4)

=

(
1 +

ρν

1− ρ

)
(∆dt+1 − µ̃d,t). (2.5)

Under the investors’ subjective beliefs there is no term for the revision of return ex-

pectations because subjective return expectations stay fixed at θ + rf . Under these

subjective beliefs, all variance of unexpected returns is due to revisions in forecasts

of future cash flows. Adding investors’ subjectively expected return we obtain total

realized returns

rt+1 =

(
1 +

ρν

1− ρ

)
(∆dt+1 − µ̃d,t) + θ + rf . (2.6)

Now consider an econometrician who knows (from a large sample of data) the true

growth rate µd. Taking expectations of (2.6) under these objective beliefs yields

Etrt+1 − rf = θ +

(
1 +

ρν

1− ρ

)
(µd − µ̃d,t), (2.7)

where the term in parentheses times µd − µ̃d,t represents the subjective growth-rate

expectations revision that the econometrician anticipates, on average, in the next pe-

riod, given her knowledge of µd. This expression shows that the econometrician should

find returns to be predictable. Specifically, µ̃d,t should predict future excess returns

negatively.

Moreover, while subjective excess return expectations are constant, the expectations
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error Etrt+1− Ẽtrt+1 should be predictable by µ̃d,t. We can see this by subtracting the

subjective equity premium Ẽtrt+1 − rf = θ from (2.7). We obtain

Etrt+1 − Ẽtrt+1 =

(
1 +

ρν

1− ρ

)
(µd − µ̃d,t). (2.8)

In summary, this reduced-form analysis suggests three empirical relationships that

we now investigate before moving on to explaining these within a structural asset-

pricing framework: (i) excess returns should be predictable by µ̃d,t; (ii) subjective

expectations errors should be predictable by µ̃d,t; and, most basically, (iii) subjective

cash-flow growth expectations should be positively related to µ̃d,t.

2.2.1 Measurement of experienced growth

To estimate the relationship between a slow-moving predictor like µ̃d,t and future

returns in (2.7), we want to use the full history of returns back to the start of the CRSP

database in 1926. And to implement the constant-gain learning scheme in (2.2), we

need a long history of past observations on stock market fundamentals. For example, to

compute µ̃d,t in 1926, we then need data on stock market payout growth, ∆d, stretching

back at least an additional 50 years, up to the point where the weights become close

to negligible.

From 1926 onwards, we obtain quarterly observations of aggregate ∆d on the CRSP

value-weighted index. We use a payout series, constructed as in Bansal et al. (2005),

that includes repurchases in addition to dividends. Shifts from dividends to stock

repurchases (e.g., motivated by tax changes) in the last few decades of the sample

could otherwise distort the link between our payout measure and the stock market

fundamentals that we want to proxy for. In the early decades in the sample, the role

of repurchases is negligible. Prior to 1926, we use data on household dividend receipts
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from tax data in Piketty et al. (2017) for the period 1913 to 1926, and data on aggregate

corporate non-farm non-financial dividends from Wright (2004) for the period 1900 to

1913. We deflate payout growth with CPI inflation rates and calculate per-capita real

growth rates. For the period from 1871 to 1900 we use per-capita real GDP growth

rates from Barro and Ursúa (2008) as proxy for ∆d. Appendix C.1.1 provides more

details on the construction of the ∆d times series. We then use this series to calculate

experienced payout growth based on the recursion in (2.2) and we label it µ̃d,t.

The experienced growth measure based on corporate payouts is likely imperfect.

While the inclusion of repurchases may help alleviate distortions in the time-series

properties caused by shifts in payout policies, some distortions likely remain. Moreover,

the pre-1926 payout data is of lower quality than the CRSP data. For these reasons,

we also construct an alternative measure, experienced real returns, µ̃r,t, that represents

a weighted average of past log real stock market index returns. From the point it

becomes available in 1926, we use quarterly returns on the CRSP value-weighted stock

market index. Before that, we use data from Shiller (2005) back to 1871 to construct

quarterly returns on the S&P Composite index up to 1926. We deflate returns with

the CPI inflation series from Shiller (2005). For averages taken over long periods, real

payout growth and real returns should be highly correlated and hence µ̃r,t should cap-

ture similar information as µ̃d,t.
3 While experienced returns have some advantages as

a measure of experienced fundamentals growth, there are also some potential short-

comings because asset price movements unrelated to fundamentals could contaminate

µ̃r. For example, sentiment shocks that are orthogonal to fundamentals could cause

3To check this, we simulated dividend growth and returns from eqs. (2.1) and (2.5) in 1,000
samples of 360 quarters plus 400 quarters as a burn-in period to compute µ̃d and µ̃r at the start
of the estimation sample. How well µ̃r,t tracks µ̃t depends on the gain parameter ν. For the value
ν = 0.018 that we work with here, the correlation is a very high 0.82. Other parameters like µd, the
variance of ε, θ, rf , or ρ do not influence this correlation. Thus, the approach of using µ̃r to capture
the time-series dynamics of µ̃d should work well. We confirm this again below when we study µ̃r in
data simulated from our asset-pricing model.
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movements in asset prices (that we accumulate in µ̃r) and future objective expected

returns (a dependent variable in our regressions below). For this reason, we use both

measures, µ̃d and µ̃r, in our tests.

2.2.2 Return predictability

Table 2.1 presents predictive regressions along the lines suggested by (2.7). In Panel

A, we use µ̃d as a predictor, in Panel B we use µ̃r. Both predictors are constructed

with data up to the end of quarter t. The dependent variable is the quarterly return

on the CRSP value-weighted index in quarter t+ 1 in excess of the three-month T-bill

yield at the end of quarter t. Based on eq. (2.7), the present-value model in (2.7)

would predict an OLS slope coefficient of -2.78 (with ν = 0.018 and ρ = 0.99, which

is the quarterly value implied by the value of ρ = 0.964 for annual data reported in

Campbell (2000)).

As Panel A shows, our estimates in the full 1927-2016 period are roughly in line

with this predicted value. To account for small-sample biases in predictive regressions,

we run bootstrap simulations as in Kothari and Shanken (1997) to compute a bias

adjustment and a bootstrap p-value. Appendix C.2 provides details on these bootstrap

simulations. With µ̃d as the only predictor, we get an OLS coefficient estimate of

−5.79. Bias-adjustment shrinks the coefficient only slightly to −5.71, which is bigger

in magnitude than the predicted value of −2.78. Based on the bootstrapped p-value

of < 0.01, we can reject the no-predictability null at high levels of confidence.

One potential issue with these regressions is that the experienced real growth vari-

ables could be distorted by recent unexpected inflation. If companies are sluggish to

adjust nominal payout growth one-for-one with inflation, a burst of recently high in-

flation would temporarily depress the real experienced payout growth that we measure

with our simple exponentially-weighted average, but not necessarily the real funda-
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mentals growth that investors truly experience. For this reason, column (2) therefore

adds the average log CPI inflation rate during quarters t − 3 to t to the regression.

The coefficient for experienced real payout growth gets somewhat more negative, but

not by much.

Column (3) adds the log price-dividend ratio to the regression. As a test of

the economic story that we propose here, adding the price-dividend ratio, or other

fundamentals-price ratios, to the regression is not really meaningful. The price-dividend

ratio should—following the usual present-value identity logic—pick up essentially any

variation in objective expected returns, and so it should also absorb predictability as-

sociated with µ̃d. However, as a purely descriptive empirical matter, it is useful to

know whether experienced dividend growth adds any forecasting power over and above

the log price-dividend ratio, p − d. Column (3) suggests that it does. In fact, in the

presence of experienced payout growth and inflation in the regression, p − d is not a

significant predictor and does not raise the R2 compared with column (2).

Column (4) re-runs the regressions of column (2) for the post-World War II sample

to address a potential concern that the results could be driven by the Great Depression

period. The estimated slope coefficient of −2.99 is now very close to the predicted value

of −2.78. Adding p−d in column (5) takes away a substantial part of the predictability

in this shorter sample. Of course, as we have noted above, µ̃d or p− d should capture

the same information and the learning-from-experience theory does not imply that µ̃d

should necessarily have incremental predictive power over and above p− d.

Panel B uses experienced real returns, µ̃r, as a proxy for experienced stock market

fundamentals growth. For the full sample in column (1), we obtain a bias-adjusted point

estimate of -1.74 that is highly statistically significant. The remaining columns show

that adding inflation and p−d and focusing on the post-1945 sample slightly strengthens

the predictive relationship between experienced real stock returns and future excess
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stock returns.

Figure 2.1 shows that experienced real payout growth and future excess returns

are also strongly correlated at much longer prediction horizons. In this figure, we plot

the predicted 5-year excess log return based on the bias-adjusted fitted values from

column (1) in Panel A of Table 2.1, and iterating on it using the AR(1) dynamics of

the experienced growth updating rule (2.2) with AR coefficient 1 − ν = 0.982. For

comparison, we then plot the actual future 5-year cumulative excess log returns in

quarters t + 1 to t + 20. As the figure shows, there is a strong positive correlation.

Time periods in which predicted returns were low also tend to be periods when subse-

quent five-year excess returns were poor. For example, low experienced payout growth

correctly forecasted high excess returns following the last three recessions in the early

90s, early 2000s, and in the financial crisis. That the cycles in expected excess returns

line up so well with cycles in experienced growth is remarkable because we did not pick

the ν parameter value—and hence the degree of smoothing implied by the weights—to

match asset prices, but we fixed it at a value obtained from earlier microdata evidence.

Moreover, unlike most return predictors in the literature, µ̃d does not include price

level information and hence it does not automatically pick up expected return shocks

that affect prices.

Overall, the evidence indicates that experienced growth of stock market fundamentals—

whether proxied for by experienced real payout growth or experienced real returns—is

strongly predictive of stock market excess returns, consistent with a model in which

investors use experienced growth to forecast future growth in fundamentals.

2.2.3 Subjective expectation error predictability

Subjective belief dynamics are a key feature of the economic effects we explore in this

paper. For this reason, we want to confront our model with data on individual investor
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return expectations from surveys. We need a relatively long time series of survey

expectations because the experienced growth variables that we focus on to explain

dynamics change only slowly over time. For this reason, we put together survey data

from several sources that spans the period 1972 to 1977 and 1987 to 2016. We focus

on surveys that target a representative sample of the U.S. population, supplemented

with two surveys of brokerage and investment firm customers.

Several of the surveys in our data elicit respondents’ expected stock market returns,

in percent, over a one-year horizon (UBS/Gallup survey, 1998-2007, monthly; Vanguard

Research Initiative survey of Vanguard customers in Ameriks et al. (2016), one survey

in 2014; surveys of Lease et al. (1974) and Lewellen et al. (1977), annual, 1972 and

1973). To extend these series, we bring in data from three additional surveys that don’t

elicit the percentage expected return but ask respondents to provide the probability

of a rise in the stock market over a one-year horizon (Michigan Survey of Consumers,

monthly 2002-2016) or the categorial opinion whether they expect stock prices to rise,

or stay about where they are, or decline over the next year (Conference Board Survey,

monthly 1987-2016;4 Roper Center Surveys, annual, 1974-1977). We impute a time-

series of implied percentage expected return from these alternative series. Roughly,

the approach involves projecting the average expected returns each period from the

first set of surveys on the coarser expectations measures in the second set of surveys,

using periods of overlapping coverage to estimate the projection. Appendix C.1.2

provides more detail.5 We average the expectations within calendar quarters to obtain

4The data was kindly provided by The Conference Board.
5Greenwood and Shleifer (2014) use two different data sources to cover time periods prior to

the 1990s. From the mid-1980s onwards, they use the American Association of Individual Investors
Investor (AAII) Sentiment Survey. The AAII survey is conducted among members of the AAII and
it records responses of members that self-select into participation. Respondents state whether they
are “bullish” or “bearish” about the stock market. We prefer the Conference Board survey for this
time period as it is based on a representative sample of the U.S. population. For the early part of
their sample starting in the 1960s, Greenwood and Shleifer use the Investors’ Intelligence newsletter
sentiment. For consistency over time, we prefer to stick to individual investor surveys in all time
periods. The Roper and Lewellen et al. surveys give us at least partial coverage of the 1970s.
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a quarterly series.

We start the analysis by looking at the time-series relationship between experienced

growth and subjective expected excess returns. In the present-value model we have

sketched above, the level of asset prices is affected by the experience-driven optimism

or pessimism of investors. But the subjective expected excess return on the stock

market, Ẽtrt+1 − rf , is constant. At each point in time, assets are priced such that

subjective expected returns equal the (constant) equity premium required by investors.

This will also be approximately true in our full model below, though not exactly.

As Panel A of Table 2.2 shows, subjective expected excess returns also seem to be

approximately constant empirically at the frequencies that are relevant for our theory.

In this table, we show the results of regressions of one-year excess return expectations

in quarter t on experienced real payout growth or experienced real returns up to the

end of quarter t − 1. We calculate subjective expected excess returns by subtracting

the average one-year Treasury yields measured at the beginning of the survey months

within each quarter. As Panel A shows there is only a weak, and statistically not

significant, positive relationship between µ̃d and subjectively expected excess returns.

Column (4) repeats this analysis with experienced real returns as the key explanatory

variable. The results are very similar to those in column (1).

Looking at past returns over a much shorter time window, Greenwood and Shleifer

(2014) find that survey return expectations are positively related to returns. As column

(2) shows, we also find this in our data (which partly overlaps with Greenwood and

Shleifer’s) when we introduce the past 12-month return on the CRSP value-weighted

index as an explanatory variable. The estimated coefficient on this lagged return is

about three standard errors bigger than zero and the R2 is substantially higher than

in column (1). Column (3) and (5) show that when experienced growth variables

and lagged returns are used jointly, the experienced growth effect remains very weak.
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The important take-away is that in terms of the lower frequency movements that are

captured by the experienced growth variables and that we focus on in our analysis,

the subjective equity premium in the survey data is close to acyclical. That there are

short-run fluctuations in subjective return expectations with one-year lagged returns

is also interesting, but this is not a fact that we try to explain in this paper.

We now turn to the prediction, based on equation (2.7), that µ̃d and µ̃r should

predict expectation errors. We calculate the expectation error rt+1− Ẽtrt+1 on the left-

hand side of (2.7) by subtracting the one-year survey expected return from the realized

one-year return from the beginning of quarter t+1 to the end of quarter t+4. The fact

that survey expectations in Panel A are unrelated to experienced growth combined with

the fact in Table 2.1 that future returns are negatively related to experienced growth

implies that the expectations error should be negatively related to experienced growth.

However, since the survey data is restricted to the 1970s and 1987-2016, the samples in

Table 2.1 and 2.2 cover very different periods. For this reason, it is still useful to check

whether there is actually a negative relationship in the part of the sample in which

survey data is available.

Panel B of Table 2.2 shows that this is the case. There is a strong negative relation-

ship between µ̃d or µ̃r and the expectations error. When experienced growth is high,

return expectations are predictably too optimistic. Since the prediction horizon is one

year rather than the one-quarter horizon in the return prediction regressions in Table

2.1, the coefficient that we would expect, if these relations are stable across samples,

is about four times the coefficient in Table 2.1. The results in Panel B show that this

is approximately true.
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2.2.4 Subjective long-run growth expectations

In the last part of our empirical analysis, we look at proxies for subjective payout

growth expectations. The surveys that provide subjective return expectations unfortu-

nately do not elicit respondents’ views about future cash-flow growth. For this reason,

we follow Sharpe (2002) and use financial analysts’ long-term earnings growth fore-

casts aggregated at the market level as a proxy for investors’ subjective payout growth

expectations.6 We start with analysts’ monthly median forecasts of long-run earnings

per-share (EPS) growth. According to I/B/E/S, they represent forecasts over a horizon

of between three to five years.

We aggregate across stocks by forming a value-weighted average each month, using

current-year forecasted total earnings for each stock as weights. We then average the

monthly aggregated growth rate forecasts within each quarter, which yields a time se-

ries from quarter 1984:3 to 2016:4. We construct expected long-term real EPS growth,

expressed in terms of per-quarter growth rates, by subtracting CPI inflation expec-

tations from the Survey of Professional Forecasters issued in the quarter prior to the

issuance of the analyst forecast.7 Appendix C.1.3 provides more detail on the procedure

to construct these measures.

According to the constant-gain updating scheme in (2.2), subjective long-term

growth expectations should be positively related to experienced payout growth. This

is what we find. Figure 2.2 provides a visual impression of the positive co-movement

of the two series. Column (1) in Table 2.3 shows the results of regressions of analysts’

long-term expectations in quarter t on experienced payout growth constructed from

6La Porta (1996) and Bordalo et al. (2019a) also use analyst long-term earnings growth expectations
to measure investor expectations of future stock fundamentals, but they focus on a cross-sectional
analysis while here we analyze time-series relationships at the aggregate level.

7We use the SPF forecast from the prior quarter to make sure analysts have access to this informa-
tion. Stock analysts are presumably not experts in inflation forecasting and rely on other forecasters
for macro forecast inputs.
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realized growth rates up to quarter t − 1. We find that there is a positive relation-

ship with a coefficient of 0.30 that is statistically significant at conventional levels (s.e.

0.15).

While the results in column (1) are qualitatively consistent with constant-gain learn-

ing from payout growth, the coefficient estimate is lower than predicted. According to

the constant-gain updating scheme in (2.2), subjective long-term growth rate expecta-

tions should be equal to experienced payout growth and hence the coefficient should

be unity. As we will show below, in our full asset-pricing model, where dividends have

some tendency to mean-revert, we actually expect a coefficient slightly lower than unity

(about 0.89 with µ̃d as predictor and 0.68 with µ̃r), but still substantially higher than

the point estimate in column (1). There is one complication, however, in mapping

the constant-gain learning scheme to the data. The setup in (2.1) and (2.2) is based

on growth rates that are perceived as IID. In contrast, empirically, aggregate earnings

changes have a sizable transitory component at short horizons of one to four quarters

that is predictable by past earnings (Kothari et al. 2006) and by stock returns in recent

quarters (Sadka and Sadka 2009). Analysts’ aggregate short-term earnings forecasts

vary over time to capture such short-horizon earnings growth predictability (Choi et al.

2016). If analysts’ long-term forecasts, gLTt , are also influenced to some extent by such

short-run predictability that is absent from our constant-gain learning framework, this

could distort our estimates.8 To be more precise, suppose

gLTt = (1− β)g∞t + βgSTt , (2.9)

where g∞t is the unobserved long-run forecast undistorted by short-run expectations,

8Whether long-term forecasts are influenced by these short-term components is an open question.
According to I/B/E/S, analysts should report long-term forecasts that represent expected growth
“over the company’s next full business cycle” (Reuters 2009), but it is not clear to what extent
analysts are actually implementing this guidance.
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which receives weight 1 − β, and gSTt is the short-run forecast, which receives weight

β. Our constant-gain learning framework suggests g∞t = µ̃d,t, but if gSTt is correlated

with µ̃d,t, a regression of gLTt on µ̃d,t will yield biased estimates.

For this reason, column (2) in Table 2.3 adds the aggregate one-year forecast as a

control variable to the regression. The one-year forecast represents the expected real

growth rate from current fiscal year to next fiscal year EPS, aggregated in the same way

as we described for long-term growth expectations, and similarly expressed in terms

of per-quarter growth rates. By controlling for the one-year forecast, we ask whether

experienced payout growth explains long-term growth expectations holding fixed the

potentially distorting short-term forecast components. In this specification, we obtain

a much higher coefficient of 0.61 (s.e. 0.18) for the experienced payout growth variable

and the one-year forecast obtains a coefficient of 0.28 (s.e. 0.09) which suggests that

the long-term forecast puts a plausible weight of around one quarter on the short-term

forecast. The implied coefficient in a regression of g∞t on µ̃d,t is 0.61/(1− 0.28) = 0.85,

which suggests that the results are very close to the predictions of the constant-gain

learning model once one controls for the distorting effect of short-horizon predictability.

Column (3) adds the most recent one-year lagged return to the regression, which

has little effect. Columns (4) to (6) repeat the analysis with experienced real returns

in place of experienced payout growth and the results are very similar. In column (5),

we obtain an implied coefficient in a regression of g∞t on µ̃r,t of 0.52/(1− 0.05) = 0.64.

Overall, the evidence on subjective expectations of growth in stock market fundamen-

tals is broadly in line with the predictions of the constant-gain learning scheme.

2.3 Asset Pricing Model

We now develop these ideas more fully in a representative-agent endowment econ-

omy.
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2.3.1 Learning with fading memory

Endowment growth follows an IID law of motion

∆ct+1 = µ+ σεt+1, (2.10)

where {εt} is a series of IID standard normal shocks. The agent knows that ∆ct+1 is

IID, and she also knows σ, but not µ. The agent relies on the history of past endowment

growth realizations, Ht ≡ {∆ct,∆ct−1, . . . }, to form an estimate of µ.

We assume that the agent learns with constant gain and hence fading memory.

Unlike in standard constant-gain learning models, however, we retain the modeling of

the full posterior distribution—and hence the agent’s subjective uncertainty—of the

Bayesian approach. To do so, we use a weighted likelihood that has been used in the

theoretical biology literature to model memory decay in organisms (Mangel 1990). An

agent who has seen an infinite history of observations on ∆c, but with fading memory,

forms a posterior

p(µ|Ht) ∝ p(µ)
∞∏
j=0

[
exp

(
−(∆ct−j − µ)2

2σ2

)](1−ν)j

, (2.11)

where 1 − ν is a positive number close to one (ν = 0 is the standard full memory

Bayesian case where observations are equally weighted). Thus, (1 − ν)j represents a

(geometric) weight on each observation. This weighting scheme assigns smaller weights

the more the observation recedes into the past. With a prior

µ ∼ N (µ0, σ
2
0) (2.12)
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held before seeing any data we then obtain the posterior

µ|Ht ∼ N

(
σ2

0

νσ2 + σ2
0

µ̃t +
νσ2

νσ2 + σ2
0

µ0,

(
1

σ2
0

+
1

νσ2

)−1
)
, (2.13)

where

µ̃t = ν

∞∑
j=0

(1− ν)j∆ct−j. (2.14)

The variance of the posterior is the same as if the agent had observed, and retained

fully in memory with equal weights, S ≡ 1/ν realized growth rate observations. In

our case, the actual number of observed realizations is infinite, but the loss of memory

implies that the effective sample size is finite and equal to S.

Due to the limited effective sample size, the prior beliefs retain influence on the

posterior. For now, however, we work with an uninformative prior (σ0 → ∞) and

hence the posterior

µ|Ht ∼ N (µ̃t, νσ
2). (2.15)

We will return to the informative prior case when we consider versions of the model that

generalize our baseline assumption about the elasticity of intertemporal substitution.

With this uninformative prior, the posterior mean is updated recursively as

µ̃t = µ̃t−1 + ν(∆ct − µ̃t−1). (2.16)

Thus, the µ̃t resulting from this weighted-likelihood approach with an uninformative

prior is identical to the perceived µ that one obtains from the constant-gain updating

scheme (2.2) with gain ν. However, in contrast to standard constant-gain learning

specifications in macroeconomics that focus purely on the first moment, we obtain a

full posterior distribution. For the purpose of asset pricing, the subjective uncertainty

implied by the posterior distribution can be crucial.
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We further get the predictive distribution

∆ct+j|Ht ∼ N
(
µ̃t, (1 + ν)σ2

)
, j = 1, 2, ..., (2.17)

where the variance of the predictive distribution reflects not only the uncertainty due

to future εt+j shocks, but also the uncertainty about µ. We denote expectations under

the predictive distribution with Ẽt[·]. To understand better how the stochastic nature

of the endowment process looks like from the agent’s subjective viewpoint, we can

rewrite (2.16) as

µ̃t+1 = µ̃t + νσ
√

1 + νε̃t+1, where ε̃t+1 =
∆ct+1 − µ̃t
σ
√

1 + ν
, (2.18)

and ε̃t+1 is N (0, 1) distributed and hence unpredictable under the agent’s time-t pre-

dictive distribution.

Under Bayesian learning with full memory, the agent’s information would be rep-

resented by a filtration and posterior beliefs would follow a martingale under this

filtration. With fading memory, however, the posterior in periods t + j > t will be

formed based on information that is different, but not more informative about µ than

the information available to the agent at time t. Hence, the information structure is

not a filtration. For this reason, the time-t agent anticipates that µ̃t+j in the future

may vary from period to period, but she knows that this variation will be stationary

and there is no convergence to µ in the long run. Consistent with stationarity, the

time-t agent perceives future increments ε̃t+j, j = 1, 2, ... in (2.18) as negatively seri-

ally correlated (see Appendix C.3 for more details) and not as martingale differences.9

9At time t, the agent however cannot make use of this serial correlation by using ε̃t to forecast
ε̃t+1, because ε̃t is not observable to the agent. To figure it out, the agent would need full memory
to compare µ̃t with µ̃t−1, but under constant-gain learning this is not possible. As a consequence,
Ẽt[µ̃t+1] = µ̃t remains the agent’s posterior mean.
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When we calculate asset prices in this model, we therefore cannot directly rely on cer-

tain laws like the law of iterated expectations (LIE) that require a filtration or results

that presume martingale posteriors. This requires special care in evaluating valuation

equations.

2.3.2 Valuation

The valuation approach we use throughout the paper is a “resale” valuation ap-

proach. To illustrate, consider the valuation at date t of a claim to consumption at

date t + 2. Under resale valuation, the agent at t prices the asset under the time-t

predictive distribution of the stochastically discounted t+ 1 asset value,

PR,t = Ẽt
[
Mt+1|tẼt+1

[
Mt+2|t+1Ct+2

]]
, (2.19)

where we use Mt+j|t to denote the one-period stochastic discount factor (SDF) from

t+ j − 1 to t+ j that applies given the agent’s predictive distribution at t.

An alternative way of valuing this claim would be a “buy-and-hold” valuation,

where the agent values the asset based on the stochastically discounted payoff under

the time-t predictive distribution

PH,t = Ẽt[Mt+1|tMt+2|tCt+2], (2.20)

In a full-memory Bayesian setting, the LIE would apply in the valuation equation of

PR,t with the result that PR,t = PH,t, but with fading memory the information structure

is not a filtration and the LIE typically fails to hold.10 As a consequence PR,t 6= PH,t.

The valuation discrepancy between the two valuation approaches arises because the

10For subjective expectations of linear functions of ∆c, we still get an LIE, e.g., ẼtẼt+1∆ct+2 =
Ẽt∆ct+2, but the LIE does not hold for nonlinear functions of ∆c, e.g., ẼtẼt+1[exp(a + b∆ct+2)] 6=
Ẽt[exp(a+ b∆ct+2)].
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agent at t and at t+ 1 sees the statistical properties of the shock ε̃t+2 differently. The

buy-and-hold valuation incorporates the negative serial correlation of ε̃t+1 and ε̃t+2. In

contrast, the resale valuation at t is based on the anticipation that the value of the

asset at date t + 1 will be determined by an agent—or a future self of the agent—

who perceives ε̃t+2 as unpredictable. Thus, the resale valuation is based on a chain of

valuations that each views the one-period ahead ε̃ shock as unpredictable.

We work with the resale valuation approach below, for two reasons. First, the resale

valuation is time-consistent. In contrast, if the asset was priced at time t at the buy-

and-hold valuation and the anticipation of a predictable ε̃t+2, and time moves on to

t+ 1, the agent would, after memory loss, suddenly find ε̃t+2 unpredictable. Thus, the

agent would then agree with a valuation based on an unpredictable ε̃t+2, but this is not

consistent with the buy-and-hold valuation at t. Second, the resale valuation also fits

with the underlying motivation of our model as an approximation for experience-based

learning in an overlapping generations model in which actual resale would occur when

generations turn over.

2.3.3 Kalman filtering interpretation

The updating scheme in (2.16) is reminiscent of optimal filtering in the case of a

latent stochastic trend. Indeed, if the agent perceived µ to follow a random walk—

i.e., as µt = µt−1 + ζt, where ζ is an IID-normal shock—rather than a constant as in

(2.10), application of the steady-state Kalman filter yields exactly the same posterior

distribution as in (2.15). With appropriate choice of the volatility of the ζ shocks, and

as long as the actual law of motion is still (2.10) with constant µ, the dynamics of

the posterior beliefs would be the same as in our fading memory model (see Appendix

C.4 for more details). The predictive distribution of one-period ahead endowment

growth, and, as a consequence, asset prices under resale valuation would be the same
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as well.11 This is useful for technical purposes because it allows us to map our frame-

work into one in which the information structure is a filtration and it is Markovian.

Through this mapping, we can use results from Hansen and Scheinkman (2012) to

determine parameter restrictions that are sufficient for existence of equilibrium. While

this reinterpretation is convenient for technical reasons, optimal Kalman filtering does

not explain the micro-evidence on learning from experience that motivates our fading

memory approach. For this reason, we stick to the fading memory interpretation in

the discussion of our model.

2.3.4 Stochastic discount factor

We assume that the representative agent evaluates payoffs under recursive utility

as in Epstein and Zin (1989), with value function

Vt =

[
(1− δ)C

1− 1
ψ

t + δẼt[V 1−γ
t+1 ]

1− 1
ψ

1−γ

] 1

1− 1
ψ

, (2.21)

where δ denotes the time discount factor, γ relative risk aversion for static gambles and

ψ the elasticity of intertemporal substitution (EIS). Note that the agent evaluates the

continuation value under her subjective expectations Ẽt[.]. We apply the same resale

valuation approach that we use for asset pricing to this continuation value as well.

In our baseline model, we set ψ = 1. Iterating on the value function as in Hansen

et al. (2008), but here under the agent’s predictive distribution, we then obtain the log

SDF that prices assets under the agent’s subjective beliefs,

mt+1|t = µ̃m − µ̃t − ξσε̃t+1, (2.22)

11However, for the asset-pricing predictions to remain the same, it is crucial that (2.10), with
constant µ, remains the actual law of motion. As we will show below, the time-varying wedge µ̃t − µ
between subjective and objective beliefs plays an important role in generating volatile asset prices and
predictable excess returns. Without this wedge, there would be no return predictability.
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with

µ̃m = log δ − 1

2
(1− γ)2(νUv + 1)2(1 + ν)σ2, (2.23)

ξ = [1− (1− γ)(νUv + 1)]
√

1 + ν, (2.24)

Uv =
δ

1− δ
. (2.25)

Details are in Appendix C.5.1. This SDF implies the risk-free rate

rf,t = −µ̃m + µ̃t −
1

2
ξ2σ2. (2.26)

2.3.5 Pricing the consumption claim

We can now solve for the consumption-wealth ratio, ζ ≡ Wt/Ct, and the subjective

risk premium for the consumption claim. Using (2.18), we can express the log of the

return on the consumption claim as

rw,t+1 = µ̃t +
√

1 + νσε̃t+1 + log

(
ζ

ζ − 1

)
. (2.27)

Applying the subjective pricing equation Ẽt[Mt+1|tRW,t+1] = 1, we can solve for the

wealth-consumption ratio

ζ =
1

1− δ
. (2.28)

Thus, as in the rational expectations case, ψ = 1 implies a constant and finite consumption-

wealth ratio. In the posterior distribution in (2.15), extremely large values of µ have

greater than zero probability. The agent therefore also assigns some probability mass

to extremely large future µ̃t+j. However, since ψ = 1 implies that rf,t+j moves one-for-

one with µ̃t+j, the effect of high subjectively expected growth rates on the value of the

consumption claim is exactly offset by a high future risk-free rate. As a consequence,
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the wealth-consumption ratio is constant and finite.

Evaluating the subjective pricing equation for RW,t+1 again, now using the fact that

ζ is constant, we can solve for the subjective risk premium of the consumption claim

log Ẽt[Rw,t+1]− rf,t = ξ
√

1 + νσ2, (2.29)

which is constant over time. In contrast, the objective risk premium under the econo-

metrician’s measure, generated by data sampled from this economy, is time-varying:

taking the objective and subjective expectations and variance of (2.27), we can cal-

culate the wedge between subjective and objective expectations, and combining with

(2.29), we obtain the objective risk premium

logEt[Rw,t+1]− rf,t = ξ
√

1 + νσ2 − 1

2
νσ2 + µ− µ̃t, (2.30)

where the time-varying wedge µ− µ̃t reflects the disagreement between the econometri-

cian and the agent about the conditional expectation of rw,t+1. The wedge is observable

to the econometrician who knows µ, but since Ẽt[µ] = µ̃t the wedge is zero from the

viewpoint of the agent at time t.

2.3.6 Pricing the dividend claim

We now turn to pricing the dividend claim, which is the main focus of our analy-

sis. Dividends in our model are a levered claim to the endowment. We assume that

dividends and endowment are cointegrated. Specifically, we assume

∆dt+1 = λ∆ct+1 − α(dt − ct − µdc) + σdηt+1, α > 0, (2.31)
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similar to Bansal et al. (2007). We assume that µdc, λ, and α are known to the agent.

The agent’s learning problem is focused on the unknown µ.

Cointegration is economically realistic, and it is of particular importance in a model

like ours with subjective growth rate uncertainty. Since the price of a dividend claim is

convex in dividend growth rates, the subjective growth rate uncertainty in this model

could cause the price to be infinite. For the consumption claim this issue was resolved by

setting ψ = 1. However, leverage magnifies the convexity effect and without sufficiently

strong cointegration, the price of the equity claim explodes even if the consumption

claim has a finite price. In our quantitative implementation, we will assume that α

is very small and so dividends and consumption can drift away from each other quite

far, but we keep α sufficiently big to yield a finite price-dividend ratio with empirically

reasonable moments. Appendix C.5.3 provides more detail.

The price of the n-period dividend strip is

P n
t ≡ Ẽt[Mt+1|tẼt+1[· · · Ẽt+n−1[Mt+n|t+n−1Dt+n]]]. (2.32)

As we discussed earlier, when we evaluate these expectations, we do so by iterating

backwards from the payoff at t + n, evaluating one conditional expectation at a time

without relying on the LIE. Taking logs and evaluating (2.32), we obtain

pnt − dt = [1− (1− α)n] (ct − dt + µdc +
λ− 1

α
µ̃t) + nµ̃m +

1

2
(Anσ

2 +Bnσ
2
d), (2.33)

where, for very large n, approximately

An ≈ n

[√
1 + ν

(
1 + ν

λ− 1

α

)
− ξ
]2

, (2.34)

and Bn, which does not grow with n, becomes very small relative to An (see Appendix
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C.5.3).

The analytical solution for dividend strip prices is useful for understanding the

behavior of subjective and objective risk premia in this model. Consider the one-period

return on the “infinite-horizon” dividend strip

R∞t+1 ≡ lim
n→∞

P n−1
t+1 /P

n
t . (2.35)

As we show in Appendix C.5.3, we can use equation (2.33) to find the one-period

subjective risk premium for this claim

log Ẽt[R∞t+1]− rf,t =

[
1 + ν

λ− 1

α

]
ξ
√

1 + νσ2. (2.36)

For γ ≥ 1, ξ is a positive constant. We observe from the above that lowering α raises

the subjective risk premium because it enhances the persistence of the leverage effect

by weakening the forces of cointegration. The subjective risk premium is positively

related to ν because higher ν implies a smaller effective sample size used to estimate

µ and hence higher subjective uncertainty about µ.

While the subjective risk premium is constant, the objective risk premium is

logEt[R∞t+1]− rf,t =

[
1 + ν

λ− 1

α

]
ξ
√

1 + νσ2 − 1

2
ν

(
1 + ν

λ− 1

α

)2

σ2

+

(
1 + ν

λ− 1

α

)
(µ− µ̃t), (2.37)

and hence time-varying with the wedge µ̃t − µ: the more optimistic the agent rel-

ative to the econometrician, the lower the objective expected excess return. Thus,

learning induces return predictability. And unlike Bayesian learning with full memory

as in Collin-Dufresne et al. (2016b) where return predictability dies out in the long-

run, learning with constant gain means that the learning effects (and hence return
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predictability) are perpetual.

As equation (2.37) shows, leverage λ > 1 magnifies the time-variation in the ob-

jective risk premium. With λ = 1, or for a consumption strip, all variation would

come purely from excess variation in the risk-free rate: objective expected returns on

the consumption strip are constant because the ratio of its price to consumption is

constant and the objective expected growth rate of ∆c is constant, while the risk-free

rate rises with µ̃t. With leverage, however, the price of a dividend claim rises with µ̃t,

which produces additional variation in the objective risk premium.

Like the long-horizon claim, shorter-horizon claims also have a constant subjective

risk premium. For example, a one-period claim with return R1
t+1 ≡ Dt+1/P

1
t , has the

constant subjective risk premium

log Ẽt[R1
t+1]− rf,t = λξ

√
1 + νσ2. (2.38)

The ex-dividend price of the equity claim, i.e., the claim to the entire stream of

dividends, is simply the sum of prices of dividend strips

Pt =
∞∑
n=1

P n
t . (2.39)

We compute the sum in (2.39) numerically using the analytical solution for dividend

strips. Details are in Appendix C.5.4.

Our result that the subjective risk premium is constant for short and long-maturity

dividend strips does not imply that the subjective risk premium for the whole stream

of dividends is constant. We solve for the subjective risk premium of the equity claim

numerically using methods from Pohl et al. (2018) (see Appendix C.5.4). As we report

below, we find a slightly positive relationship between µ̃t and the subjective equity

risk premium. This arises from the fact that the contribution of long-horizon claims
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to the overall value of the portfolio of strips gets bigger when µ̃t is higher: due to

exponentiating, the effect of a rise of µ̃t on long-horizon equity is bigger than on short-

horizon equity. As a consequence, the claim on the whole stream behaves more like

long-horizon equity when µ̃t is high and is subjectively priced more like long-horizon

equity, i.e., with a higher risk premium if α < ν.

2.3.7 Solving the model with ψ > 1 and an informative prior

When ψ 6= 1, and the prior is diffuse, the consumption-wealth ratio is no longer

finite. For example, if ψ > 1, the effect of high subjectively expected growth rates

on the value of the consumption claim is no longer fully offset by a high future risk-

free rate, which causes the consumption-wealth to explode. Earlier work has resolved

this through truncation of the state space (Collin-Dufresne et al. 2016a) or limiting

the time horizon over which growth is uncertain (Pastor and Veronesi 2003a; Pastor

and Veronesi 2006). We take a different approach by endowing the agent with an

informative prior. In our fading memory model, this approach is effective in preventing

the explosion of the consumption-wealth ratio because future agents never gain more

precise information about µ than the current agent has. As a consequence, the weight

on the prior does not decay and the current agent anticipates that the posterior means

of the agents pricing the asset at times in the future will always have a similarly strong

tilt towards the prior mean.

Our approach is similar in spirit to the state-space truncation approach—both

methods effectively pull the perceived distribution of future posterior means towards

economically plausible growth rates—but it is far more tractable in our setting. We

center the prior distribution at the true mean µ, but this is not essential. Since we

work with high prior variance, the prior will remain almost uninformative. Therefore,

setting the prior mean to any value in an economically plausible neighborhood around
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µ would deliver similar results.

Given the prior in (2.12) with µ0 = µ, we obtain the posterior

µ|Ht ∼ N

(
φµ̃t + (1− φ)µ,

(
1

σ2
0

+
1

νσ2

)−1
)
, where φ ≡ σ2

0

νσ2 + σ2
0

. (2.40)

The perceived consumption growth can be represented as

∆ct+1 = φµ̃t + (1− φ)µ+
√

1 + φνσε̃t+1, (2.41)

where ε̃t+1 is N (0, 1) distributed under the agent’s time-t predictive distribution. With

an informative prior we have φ < 1 and so the volatility of the subjectively unexpected

endowment growth is lower than in the diffuse prior case where φ = 1. We solve this

version of the model with log-linearization. Details, including parameter restrictions

sufficient for existence of equilibrium, are provided in Appendix C.6.

2.4 Calibration and Evaluation

Table 2.4 summarizes the parameter values we use in our baseline quantitative

analysis. We fix the gain parameter ν at the value that Malmendier and Nagel (2015)

estimated from survey data on inflation expectations. For the endowment process and

preferences, we set most parameters to the same values as in Bansal et al. (2012) and

Collin-Dufresne et al. (2016a).

We set σd to a relatively low value of 1% quarterly. At this value, dividend volatility

in the model will be smaller than in the data. However, it will allow us to roughly

match the volatility of µ̃d in the data, which is more important for our purposes. We

cannot match both at the same time because in our model ∆d is IID whereas in the data

∆d has substantial negative autocorrelation, which implies that a lot of this dividend
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growth volatility cancels out when we form the long-run weighted average µ̃d. For this

reason, it makes more sense to calibrate our IID dividend process to the volatility of

µ̃d, which reflects permanent shocks, rather than the volatility of ∆d in the data, which

is influenced by a substantial transitory component.

In our baseline specification, we set ψ = 1, but we also report some results for

the ψ = 1.5 case. We choose the remaining parameters γ and α to get a realistic

equity premium and equity volatility. We work with a relatively low risk aversion of

γ = 4. The value α = 0.001 satisfies the condition required for a finite price of the

dividend claim in Appendix C.5.3 and it implies dividends can wander quite far away

from consumption (but not as far as in models without cointegration such as Bansal

et al. (2012)).

2.4.1 Unconditional moments

We simulate the model at a quarterly frequency. Table 2.5 reports the annualized

population moments estimated from an extremely long sample simulated from the

model. We also show empirical moments for the 1927 to 2016 period for comparison.

As we anticipated, the volatility of ∆d in the model is lower than in the data, but

the volatility of µ̃d is close to the data, and actually even a bit higher. This reinforces

our earlier point that much of the volatility of ∆d in the data is due to transitory

components.

In terms of unconditional asset pricing moments, the model produces a high equity

premium (7.16%) and Sharpe Ratio (0.54) that are quite close to the empirical estimates

in the first column. Return volatility and the volatility of the log price-dividend ratio

are lower than in the data. The version of the model with ψ = 1.5 in the third column

gets somewhat closer to the empirical values.

97



The model also produces a low subjective real risk-free rate with low volatility.12

The volatility of rf in the data (2.47%) is higher than in the model (0.51%), but one

should keep in mind that the inflation expectations are estimated with error and this

measurement error contributes at least some of the empirically observed volatility in

rf . The low volatility of rf is a virtue of the model (which is why Campbell and

Cochrane (1999), for example, specifically reverse-engineer their model to produce a

constant risk-free rate).

Overall, the model provides a reasonably good fit to standard unconditional asset

pricing moments. However, the most interesting predictions of the model concern time-

variation in objective and subjective conditional moments, which we turn to next.

2.4.2 Predictability of excess returns

We now evaluate time-variation in the objective equity premium. In our model,

this time-variation is induced by subjective belief dynamics rather than time-varying

risk aversion or time-varying objective risk that generate time-varying risk premia in

rational expectations models and this mechanism leads us to construct new return

predictors µ̃d and µ̃r.

Table 2.6 presents the results from predictive regressions of log excess returns on

the equity claim in data simulated from the model. The estimates in this table are the

model-implied counterpart to the empirical predictive regression results in Table 2.1.

The first block of rows presents mean coefficients and adj. R2 from regressions with

µ̃d as predictor variable. In column (1), the prediction horizon is one quarter, as in

Table 2.1. We find coefficients on µ̃d that are about half as big as those we found in

12For the purpose of this moments comparison, we calculate the subjective real risk-free rate in the
data using expected inflation expectation an AR(1) constant-gain learning inflation forecast with gain
ν = 0.018. Malmendier and Nagel (2015) show that this AR(1) constant-gain learning forecast fits
household inflation expectations from the Michigan Survey of Consumers well (and we can construct
it in the decades before survey data becomes available).
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the empirical data including the Great Depression, but quite close to the estimate from

the post-WWII sample. Since the volatility of µ̃d is somewhat higher in the calibrated

model than in the full empirical sample, this means that the variation in the objective

risk premium in our model is at least roughly similar to the variation in the data.

Similar comments apply to the estimates with µ̃r as predictor presented in the second

block of rows.

Columns (2) and (3) show the regression coefficients when returns are measured

over longer horizons of one and five years, respectively. These estimate the persistence

in the expected returns in the model. For example, the coefficients in column (3) where

the prediction horizon is 20 times longer than in column (1) are only slightly smaller

than 20 times the coefficients in column (1). On this dimension, the model also fits well

with the empirical data. We didn’t explicitly report the empirical predictive regressions

for horizons beyond one quarter, but Figure 2.1 earlier showed how predicted 5-year

returns line up well with realized 5-year returns.

The bottom block of rows shows regressions with p − d as predictor. The regres-

sion coefficients of around −0.06 are somewhat larger than in the empirical data, but

certainly of the right order of magnitude.

Columns (4) to (6) repeat this analysis with ψ = 1.5 and an informative prior with

φ = 0.99. Return predictability with µ̃d gets somewhat stronger and closer to the

empirical magnitudes that we found in the full sample in Table 2.1. But overall, the

effects of changing the EIS are quite small.

2.4.3 Predictability of subjective expectations errors

To replicate the subjective expectations error regressions that we ran on the empir-

ical data, we use the model-implied subjective equity premium as dependent variable,

calculated as explained in Section 2.3.6. Table 2.7 is the simulated counterpart to the
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empirical results in Table 2.2. Panel A shows that the model-generated data yields a

relationship between subjective expected excess returns and experienced returns that

is weakly positive and quantitatively similar to the empirical estimates. The empirical

point estimate in column (1) of Table 2.2, with µ̃d as predictor, is 0.31, while the re-

gression on model-generated data in column (1) of Table 2.7 yields a mean coefficient of

0.83. With µ̃r as predictor in column (4), the simulated data yields a mean coefficient

of 0.60, close to the empirical estimate of 0.86 in Table 2.2, column (4). But it is also

useful to keep in mind that the volatility of subjective expected returns in the simu-

lated data is tiny relative to the volatility of objective expected returns. Therefore,

the take-away from this analysis is that subjective expected excess returns both in the

data and the model are nearly constant.13

In Panel B, with subjective expectations errors as dependent variable, the mean

coefficient on µ̃d in column (1) is very similar to its empirical counterpart of −12.34

in Table 2.2. With µ̃r as a predictor in column (4), the model-implied coefficients

are about half as big as the empirical ones, so the empirical experienced real returns

variable may capture some additional expectations errors beyond those implied by our

model.

Summing up, the dynamics of subjective and objective expected returns in the

model are broadly consistent with the empirical data. Objectively, excess returns are

strongly predictable by µ̃d and µ̃r, while subjective expected excess returns are largely

acyclical.

13A comparison of the predictive regression coefficients in Tables 2.6 and 2.7 shows that objective
expected returns at a one-year horizon have a volatility that is more than 10 times as high (absolute
regression coefficient of 9.24 times volatility of quarterly µ̃d of 0.39% ≈ 3.60%) as the volatility of
subjective expected returns (regression coefficient of 0.83 times volatility of quarterly µ̃d ≈ 0.32%).
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2.4.4 Subjective long-run growth expectations

As the final piece of our comparison of the model with our earlier empirical estimates

from the reduced-form framework, we look at the dynamics of subjective dividend

growth expectations.

By iterating on eqs. (2.16) and (2.31) we can construct, at every point in time in

our simulations, the representative agent’s subjective expectation of average log div-

idend growth over the next 20 quarters (1,000 simulations of the model for 50,000

periods). The 20-quarter forecast horizon corresponds roughly to the analyst forecast

horizon in our analysis in Table 2.3. In each simulation run, we regress this subjective

dividend growth expectation at time t on µ̃d,t or µ̃r,t. We obtain coefficients of 0.899

and 0.683. These values are extremely close to the implied coefficients of 0.85 and

0.64 that we obtained in Table 2.3 after adjusting for the distortionary effects of tran-

sitory predictable components in earnings on the analyst forecasts. Thus, our model

quantitatively matches the dynamics of long-term forecasts of growth in stock market

fundamentals by stock market analysts.

2.5 Relationship between First and Second Moments of Eq-

uity Returns

Another interesting implication of our model that we have not discussed so far is

that its predictions about the relationship between conditional first and second mo-

ments of equity market returns are sharply different from those of the leading rational

expectations asset pricing models by CC and BY. In CC and BY, the conditional equity

premium is approximately linearly and positively related to conditional equity return

variance. In CC, this happens because at times when risk aversion is high, it is also

very volatile. In BY, the reason is that stochastic volatility in endowment growth is
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the driver of the time-varying equity premium.14 Therefore, variables like p − d that

predict excess returns should also predict equity market return variance with the same

sign—but empirical data does not support this prediction. This gives rise to what

Lettau and Ludvigson (2010) have termed the Sharpe Ratio variability puzzle: These

models make the empirically counterfactual prediction that positive co-movement of

conditional first and second moments should dampen the variability of the Sharpe

Ratio compared with the variability in expected excess returns.

Table 2.8 shows a similar empirical result when we use experienced payout growth,

µ̃d, as a predictor variable. The dependent variable in these regressions is the sum

of squared daily log returns of the CRSP value-weighted index in quarter t + 1, i.e.,

an estimate of quarterly realized variance. Recall that µ̃d predicts returns with a

negative sign. However, as column (1) and (4) show, there is a weakly positive, but

not statistically significant relationship between µ̃d and next-quarter variance both in

the full sample and the post-WW II sample. The magnitude of the point estimate is

small: a one standard deviation increase in µ̃d is associated with an increase of 0.15

percentage points in conditional quarterly return variance, which is about 10% of the

sample standard deviation of the return variance. Using p−d as a predictor in columns

(2) and (5), the picture is mixed. In the full sample, p−d predicts volatility negatively,

but the coefficient estimate is not statistically significant. In the post-WW II period,

the estimate is statistically significant, but it is positive, which is inconsistent with the

CC and BY models. Columns (3) and (6) control for the risk-free rate because p − d

and the real risk-free rate together should span the state variables in the BY model,

but this has little effect on the coefficient of the p−d ratio. Overall, there is no support

for the prediction of the CC and BY models that the conditional equity premium has

strong positive correlation with conditional market return variance. At low frequencies

14For the BY model, compare equations (A13) and (A14) in the appendix of BY. For the CC model
one can infer the positive and close to linear relationship by comparing Figures 4 and 5 in CC.
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captured by the slow-moving predictors µ̃d and p − d, there is not any co-movement

between equity premium and volatility.

In contrast to CC and BY, our model is consistent with this empirical result. Learn-

ing with fading memory generates predictable variation in the objective equity pre-

mium, but without simultaneous variation in equity market return variance.15 The

decoupling objective and subjective beliefs allows the model to also decouple condi-

tional equity return volatility and the objective conditional equity premium.

2.6 Lack of Out-of-Sample Return Predictability

Welch and Goyal (2007) show that the simple trailing sample mean of past returns

often beats an out-of-sample predictive regression forecast as a predictor of future

returns. Since the representative agent in our model discards historical information

at a relatively high rate (the half-life in terms of the observation’s weight in the log

likelihood is about 10 years), one might suspect that a predictive regression run in real

time, but with full memory of past data, should be able to identify the agent’s errors

and hence predict returns out-of-sample better than the sample mean. However, as we

show now, this is not the case.

We apply the Goyal and Welch analysis to simulated data from our model. We run

10,000 simulations of a 360-quarter sample period with a 400-quarter burn-in period

to compute µ̃d at the start of each sample. Within each 360-quarter sample, we then

examine the in-sample explanatory power of the predictive regression by plotting the

cumulative squared demeaned excess returns minus the cumulative squared full-sample

regression residual from the beginning to the end of the sample. The predictive regres-

15Our model actually produces a positive relationship between µ̃d and conditional variance of the
equity claim return, but the effect is very weak, somewhat similar to the weak empirical relationship
in Table 2.8. Subjective and objective conditional variance of dividend strip returns are constant over
time. However, higher subjectively expected growth implies higher weight of riskier longer-horizon
dividend strips in the equity claim’s value and hence higher variance of the return on the equity claim.
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sion is run at quarterly frequency with the sum of four-quarter log excess returns from

t + 1 to t + 4 as dependent variable and p − d or µ̃d as predictor. The blue line in

the upper half of each plot in Figure 2.3 shows the average path across all simulations

of this in-sample cumulative squared errors difference. The upward slope of this line

and the fact that it ends up, on the right-hand side, above zero, both with p− d as a

predictor (top) and µ̃d (bottom), indicates that the in-sample R2 is greater than zero.

To assess the out-of-sample performance with each 360-quarter sample, we use

a recursively expanding window, starting out at 80 quarters, to estimate the sample

mean and the predictive regression. We calculate the next period out-of-sample squared

prediction error of the trailing sample mean as a forecaster minus the squared prediction

error of the fitted predictive regression. We cumulate these squared error differences

forward and we average the resulting paths across all simulations. The red lines in the

lower half of each plot in Figure 2.3 show that this path is, on average, in negative

territory, which means that the predictive regression forecast underperforms the trailing

sample mean as a forecaster. That the slope is still negative on average towards the

end of the sample period shows that even after having observed almost 90 years of

data, the trailing sample mean is typically still a better forecaster.

Thus, even though there is true return predictability in this model under the econo-

metrician’s objective probability measure, this predictability is not exploitable in real-

time for typical sample sizes. The data generated by the model is therefore consistent

with the lack of out-of-sample predictability found empirically by Welch and Goyal

(2007).

The out-of-sample exercise also demonstrates that it would not be easy for the

agent within the model to recognize that the loss of memory and the resulting reliance

on relatively recent experiences in estimating endowment growth rates is detrimental

to forecast performance. In this sense, one can interpret our model as a near-rational
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model.

2.7 Conclusion

We have shown that learning with fading memory can reconcile asset prices and

survey expectations in a highly tractable framework. In our model, asset prices are

volatile because subjective growth expectations are time-varying. Risk premia are high

because subjective long-run growth rate uncertainty is high. The model produces real-

istic asset price behavior in a simple setting with IID endowment growth and constant

risk aversion. While objective expected excess returns are strongly counter-cyclical,

subjective beliefs about stock market excess returns are slightly pro-cyclical. As a con-

sequence, subjective expectations errors are predictable, as they are in the survey data.

As predicted by the model, long-run weighted averages of past real per-capita payout

growth or past real stock index returns are a good empirical predictor of excess returns

and subjective expectations errors. Unlike in leading rational expectations explana-

tions of return predictability, and consistent with the data, movements in objective

expected excess returns in our model are not associated with movements in conditional

market return volatility.

Because memory of past data fades away, subjective beliefs about long-run growth

fluctuate perpetually in our model. That these belief fluctuations persist is plausible

because it would be difficult for an agent to detect that the loss of memory is detrimen-

tal to her investment decisions. While returns generated by our model economy are

predictable to an econometrician examining a sample ex post, standard out-of-sample

tests show that they are not predictable in real time in typical sample sizes, consistent

with the empirical lack of out-of-sample predictability. Overall, these results suggest

that subjective belief dynamics could be central to asset pricing and that learning with

fading memory can provide a unifying account of many asset pricing phenomena and
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the evidence on subjective beliefs about stock returns in investor surveys.

106



2.8 Tables and Figures

Table 2.1: Predicting Returns with Experienced Real Growth

Dependent variable is the log return of the CRSP value-weighted index in quarter t+1 in excess of the
return on a 3-month T-bill. In Panel A, experienced payout growth denotes a long-run exponentially
weighted average of overlapping quarterly observations of four-quarter per-capita repurchase-adjusted
real dividend growth rates leading up to and including quarter t, constructed with weights implied by
constant gain learning with quarterly gain ν = 0.018. In Panel B, experienced returns are constructed
analogously as an exponentially weighted average of quarterly log stock market index returns (S&P
Composite before 1926; then CRSP value-weighted index). Inflation is measured as the average log
CPI inflation rate during the four quarters t − 3 to t; p − d refers to the log price-dividend ratio of
the CRSP value-weighted index at the end of quarter t. The table shows slope coefficient estimates,
with bootstrap bias-adjusted coefficient estimates in brackets. Intercepts are not shown. Bootstrap
p-values are shown in parentheses. The reported R2 are based on bias-adjusted estimates.

(1) (2) (3) (4) (5)
1927-2016 1927-2016 1927-2016 1946-2016 1946-2016

Panel A: Predicting returns with experienced real payout growth

Experienced real payout growth -5.79 -6.25 -5.82 -2.99 -1.29
[bias-adj. coeff.] [-5.71] [-6.14] [-5.40] [-2.82] [-1.14]
(p-value) (0.00) (0.00) (0.00) (0.04) (0.29)

Inflation -0.73 -0.71 -1.60 -2.13
[bias-adj. coeff.] [-0.75] [-0.73] [-1.68] [-2.14]
(p-value) (0.10) (0.13) (0.01) (0.00)

p− d -0.01 -0.04
[bias-adj. coeff.] [0.01] [-0.02]
(p-value) (0.56) (0.04)

Observations 360 360 360 284 284
R2 0.033 0.037 0.034 0.027 0.044

Panel B: Predicting returns with experienced returns

Experienced real returns -2.36 -2.58 -2.22 -3.17 -2.38
[bias-adj. coeff.] [-1.74] [-1.79] [-2.06] [-2.21] [-2.26]
(p-value) (0.02) (0.02) (0.05) (0.01) (0.03)

Inflation -0.60 -0.57 -2.47 -2.78
[bias-adj. coeff.] [-0.57] [-0.50] [-2.42] [-2.76]
(p-value) (0.19) (0.21) (0.00) (0.00)

p− d -0.01 -0.03
[bias-adj. coeff.] [0.00] [-0.01]
(p-value) (0.44) (0.04)

Observations 360 360 360 284 284
R2 0.015 0.017 0.016 0.045 0.061
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Table 2.2: Survey Return Expectations and Experienced Real Growth

In Panel A, the dependent variable is the average subjective expected stock return of survey respon-
dents in quarter t minus the one-year treasury yield at the end of quarter t− 1, which we regress on
experienced real payout growth or experienced real returns leading up to and including quarter t− 1.
Lagged one-year return refers to the return of the CRSP value-weighted index over the four quarters
t− 4 to t− 1. In Panel B, the dependent variable is the expectation error, i.e., the realized return on
the CRSP value-weighted index during quarters t + 1 to t + 4 minus the subjective expected return
of survey respondents in quarter t. We use expectations data up to and including quarter 2016:4.
Newey-West standard errors are reported in parentheses (12 lags in Panel A; 6 lags in Panel B).

(1) (2) (3) (4) (5)

Panel A: Subjective expected excess returns

Experienced real payout growth 0.31 0.37
(0.97) (0.91)

Experienced real returns 0.86 0.38
(0.63) (0.76)

Lagged one-year return 0.03 0.03 0.03
(0.01) (0.01) (0.01)

Constant 0.05 0.05 0.05 0.04 0.05
(0.01) (0.00) (0.01) (0.01) (0.01)

Observations 125 125 125 125 125
Adj. R2 -0.004 0.075 0.073 0.031 0.073

Panel B: Expectation error: Realized - subj. expected

Experienced real payout growth -12.34 -12.59
(6.75) (6.80)

Experienced real returns -14.27 -15.47
(6.48) (7.08)

Lagged one-year return -0.10 -0.12 0.07
(0.14) (0.15) (0.13)

Constant 0.12 0.03 0.14 0.25 0.27
(0.06) (0.03) (0.06) (0.09) (0.10)

Observations 125 125 125 125 125
Adj. R2 0.055 0.002 0.060 0.106 0.102
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Table 2.3: Long-Run Growth Expectations and Experienced Real Growth

The dependent variable is an aggregate of I/B/E/S analysts long-term earnings-per-share (EPS)
growth forecast, deflated using CPI inflation expectations from the Survey of Professional forecasters
from the quarter prior to the EPS forecast date. Each month, we collect the median forecasts for
each individual stock, form a value-weighted average across stocks using each stock’s monthly median
forecasts of current fiscal year earnings as the weight, with the sample restricted to stocks with positive
current year forecasted earnings. We then average the resulting monthly time-series observations
within calendar quarters 1984:3 to 2016:4. We regress the dependent variable measured in quarter t,
and expressed as a per-quarter growth rate, on experienced real payout growth or experienced real
returns leading up to and including quarter t− 1. The one-year EPS forecast is the expected growth
rate from current fiscal year to next fiscal year earnings, averaged across stocks in the same way as
the long-term forecast. Lagged one-year return refers to the return of the CRSP value-weighted index
over the four quarters t − 4 to t − 1. Newey-West standard errors are reported in parentheses (24
lags).

(1) (2) (3) (4) (5) (6)

Experienced real payout growth 0.30 0.61 0.62
(0.15) (0.18) (0.20)

Experienced real returns 0.55 0.52 0.64
(0.14) (0.13) (0.16)

One-year EPS growth forecast 0.28 0.29 0.05 0.08
(0.09) (0.11) (0.05) (0.05)

Lagged one-year return -0.00 -0.01
(0.00) (0.00)

Constant 0.02 0.02 0.01 0.01 0.01
(0.00) (0.00) (0.00) (0.00) (0.00)

Observations 130 130 130 130 130 130
Adjusted R2 0.077 0.308 0.312 0.355 0.362 0.452
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Table 2.4: Baseline Model Parameters

This table reports the parameters values we use in the baseline calibration of our model at a quarterly
frequency. The gain parameter ν is fixed at the value that Malmendier and Nagel (2015) estimated
from survey data on inflation expectations. For endowment process parameters and preferences, we
set most at the same values as in Bansal et al. (2012) and Collin-Dufresne et al. (2016a).

Parameter Symbol Value Source

Belief updating

Gain ν 0.018 MN (2016) (survey data)

Endowment process

Leverage ratio λ 3 CJL (2017)
Dividend cointegration parameter α 0.001
Mean consumption growth µ 0.45% CJL (2017)
Consumption growth volatility σ 1.35% CJL (2017)
Dividend growth volatility σd 1%

Preferences

Risk aversion γ 4
EIS ψ 1
Time discount factor δ 0.9967 BKY (2012)
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Table 2.5: Unconditional Moments

The second column in this table presents the model population moments obtained as average across
1,000 simulations of the model for 50,000 periods plus a 2,000-period burn-in period to compute µ̃, µ̃d
and µ̃r at the start of each sample, using a diffuse prior (φ = 1) and ψ = 1. The third column shows
results for the model with ψ = 1.5 and an informative prior with φ = 0.99. The first column shows
the corresponding empirical moments from the data for the 1927 to 2016 period. For the empirical
versions of µ̃d and µ̃r, we use data from 1871 to 1926 as pre-sample information to calculate their
values at the start of the sample in 1927. Consumption growth is calculated from quarterly real
per-capita consumption expenditure on nondurables and services in chained 2012 dollars from NIPA
for 1947-2016, annual NIPA data on nondurables and services expenditure from 1929 to 1947, and
annual real per-capita consumption expenditure from Barro and Ursúa (2008) for 1926 to 1929. In
both columns, returns are annualized as follows: The means of risky returns are multiplied by four and
standard deviation multiplied by two. For the risk-free rate, µ̃, and µ̃d we multiply quarterly means
and standard deviations by four. We estimate the empirical moments of ∆c from four-quarter changes
of quarterly log nondurables and services consumption and those of ∆d from four-quarter changes in
the log of repurchase-adjusted dividends on the CRSP value-weighted index. The simulated statistics
for p − d use a four-quarter trailing sum of dividends in the calculation of p − d, just like in the
empirical version of p− d.

Data Model Model
1927-2016 ψ = 1, φ = 1 ψ = 1.5, φ = 0.99

E(∆c) 1.84 1.80 1.80
σ(∆c) 2.72 2.70 2.70
E(∆d) 2.38 1.80 1.80
σ(∆d) 13.31 8.35 8.35

σ(µ̃) - 0.51 0.51
ρ(µ̃) - 0.98 0.98
σ(µ̃d) 1.32 1.55 1.55
ρ(µ̃d) 0.97 0.98 0.98

corr(µ̃, µ̃d) - 0.96 0.96
corr(µ̃, µ̃r) - 0.85 0.77

E(Rm −Rf ) 8.11 7.16 7.75
σ(Rm −Rf ) 22.41 13.31 16.35
SR(Rm −Rf ) 0.36 0.54 0.47

E(p− d) 3.40 2.81 2.98
σ(p− d) 0.44 0.14 0.22
ρ(p− d) 0.97 0.91 0.94

E(rf ) 0.67 1.64 0.61
σ(rf ) 2.47 0.51 0.34
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Table 2.6: Predictive Regressions in Simulated Data

This table reports the mean return predictability regression coefficients and adj. R2 across 10,000
simulations of the model for 360 quarters plus a 400-quarter burn-in period to compute µ̃d and µ̃r
at the start of each simulated sample. The dependent variable is the log excess return on the equity
claim. The predictors µ̃d and µ̃r are constructed as the exponentially-weighted average of experienced
payout growth and experienced log returns, respectively, with gain parameter ν = 0.018. Each block
of rows represents regressions with a different (single) predictor variable. Columns (1) to (3) show
results using a diffuse prior (φ = 1) and ψ = 1. Columns (4) to (6) show the corresponding results for
ψ = 1.5 and an informative prior with φ = 0.99.

ψ = 1, φ = 1 ψ = 1.5, φ = 0.99

1Q 1Y 5Y 1Q 1Y 5Y
(1) (2) (3) (4) (5) (6)

µ̃d -2.40 -9.24 -38.37 -3.07 -11.78 -48.84
R2
adj 0.01 0.05 0.21 0.01 0.05 0.22

µ̃r -1.51 -5.79 -23.77 -1.48 -5.64 -23.12
R2
adj 0.01 0.03 0.15 0.01 0.03 0.14

p− d -0.06 -0.22 -0.93 -0.05 -0.20 -0.82
R2
adj 0.01 0.04 0.18 0.01 0.05 0.21
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Table 2.7: Dynamics of Subjective Expectations of Excess Returns in Simulated Data

This table reports the mean estimates from regressing subjective expected excess returns and expec-
tation errors on µ̃d, µ̃r, and 1-year lagged log returns from 10,000 simulations of 360 quarters with a
400-quarter burn-in period, using the model with a diffuse prior (φ = 1) and ψ = 1. In Panel A, the
dependent variable is (Ẽt[Rm,t+1])4 − (Rf,t)

4, which we regress on experienced real returns leading
up to and including quarter t, and/or lagged one-year log returns over the four quarters t− 3 to t. In

Panel B, the dependent variable is the expectation error, defined as
∏4
i=1Rm,t+i − (Ẽt[Rm,t+1])4.

(1) (2) (3) (4) (5)

Panel A: Subjective expected excess returns

µ̃d 0.83 0.83
µ̃r 0.60 0.62
rt−3,t 0.01 0.00 0.00

R2
adj 0.93 0.08 0.93 0.83 0.83

Panel B: Expectation error: Realized - subj. expected

µ̃d -10.75 -11.05
µ̃r -6.80 -7.24
rt−3,t -0.06 0.02 0.03

R2
adj 0.05 0.01 0.06 0.04 0.04
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Table 2.8: Predicting Market Return Variance

Dependent variable is the sum of squared daily log returns of the CRSP value-weighted index in quarter
t + 1. Experienced (“Exp.”) real payout growth denotes a long-run exponentially weighted average
of overlapping quarterly observations of four-quarter per-capita repurchase-adjusted real dividend
growth rates leading up to and including quarter t, constructed with weights implied by constant
gain learning with quarterly gain ν = 0.018; p− d refers to the log price-dividend ratio of the CRSP
value-weighted index at the end of quarter t. For readability of the estimates, we use (p− d)/100 as
predictor variable. Newey-West standard errors with six lags are shown in parentheses.

(1) (2) (3) (4) (5) (6)
1927-2016 1927-2016 1927-2016 1946-2016 1946-2016 1946-2016

Exp. payout growth 0.47 0.41
(0.41) (0.35)

(p− d)/100 -0.30 -0.30 0.41 0.40
(0.42) (0.40) (0.12) (0.12)

Real risk-free rate 0.21 -0.17
(0.26) (0.14)

Constant 0.00 0.02 0.02 0.00 -0.01 -0.01
(0.00) (0.02) (0.01) (0.00) (0.00) (0.00)

Observations 360 360 360 284 284 284
Adjusted R2 0.012 0.008 0.016 0.015 0.033 0.044
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Figure 2.1: Predicted Five-year Excess Returns and Subsequent Actual Cumulative
Five-year Excess Returns

Predicted returns are calculated based on bootstrap bias-adjusted coefficients from the
predictive regression of log excess returns on experienced real payout growth shown
in column (1) of Table 2.1, Panel A, applied to experienced payout growth in quarter
t, and iterating using an AR(1) with AR coefficient 1 − ν = 0.982 to obtain 5-year
forecasts. The actual cumulative five-year excess returns refers to the sum of excess
log returns on the CRSP value-weighted index in quarters t+ 1 to t+ 20.
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Figure 2.2: Experienced Real Payout Growth and Analysts’ Long-run Earnings Growth
Expectations

The figure shows the value-weighted I/B/E/S long-term earnings-per-share growth
forecast, value-weighted across stocks based on forecasted current year total earnings.
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Figure 2.3: Out-of-sample Predictive Performance

In-sample and out-of-sample performance of predictors p− d and µ̃d from 10,000 simu-
lations of 360 quarters with a 400-quarter burn-in period to compute µ̃d at the start of
each sample. The IS line plots the cumulative squared demeaned excess returns minus
the cumulative squared full-sample regression residual. The OOS line plots the cu-
mulative squared prediction errors of conditional mean minus the cumulative squared
prediction errors of predictors. Both lines are the average path across simulations.
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CHAPTER III

An Information-based Theory of the Profitability

Anomaly

3.1 Introduction

Firms with high profitability earn substantially higher future stock returns than

firms with low profitability, even after controlling for Fama and French (1993) three

factors. This empirical pattern has been referred to as the “profitability” anomaly

and has attracted a lot of attention in the literature (Fama and French 2015; Hou

et al. 2014). The profitability anomaly yields a premium that is both statistically and

economically large (Novy-Marx 2013), is robust to different measures of profitability

(Ball et al. 2016), and it has low trading costs and a high strategy capacity (Novy-Marx

and Velikov 2015).1

The strong empirical performance of the profitability anomaly has generated a lot

of interest in understanding its underlying economic mechanism. In the rational ex-

pectations framework, it has been argured that profitable firms are intrinsictlly riskier

than unprofitable firms. For example, Kogan and Papanikolaou (2013) and Kogan

1For example, Ball et al. (2016) document a three-factor-adjusted return spread of monthly 0.89%
with a t-statistic of 8.48 between portfolios of the most and the least profitable firms. Novy-Marx and
Velikov (2015) shows that the gross profitability strategy as in Novy-Marx (2013) has a capacity of
around $130 billions, which is among the highest of considered strategies.
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et al. (2019) find that profitable firms are more exposed to investment-specific shocks

and demand shocks. Deng (2019) argues that the difference in risk exposure is partic-

ularly large in highly competitive industries. Deviating from the rational expectations

framework, explanations are proposed based on sentiment (Stambaugh et al. 2012; Lam

et al. 2016), analyst bias (Bouchaud et al. 2019), and investors’ inattention (Wang and

Yu 2015).

In this paper, I contribute to this debate by documenting a new empirical pattern

of the profitability anomaly. I show that the Fama-French three-factor (FF3F) alphas

of the profitability anomaly exist only among firms with high information frictions

(IF), proxied by young age, high forecast dispersion, high past return volatility, or high

option-implied volatility. In the double-sorting portfolio analysis, the FF3 alphas of the

long-short profitability portfolios are insignificant both economically and statistically

in low-IF quintiles, but are as high as monthly 1.46% (t-statistics 4.06) in high-IF

quintiles. This pattern persists with different measures of profitability (Novy-Marx

2013; Ball et al. 2016). Given that my sample tiltes towards firms that are either

followed by stock analysts or issuing options, the pattern is also robust to excluding

small and micro firms. In addition, I show that the a level factor captures most (about

60%) cross-sectional variation in proxies of information frictions. Using factor loadings,

I construct a firm-level variable that captures the main variation, which I refer to as the

“PIF” measure. In the double-sorting analysis, I show that the FF3F alphas increase

monotonically with PIF quintiles for all three meaures of profitability. The highest

FF3F alphas are obtained with the Ball et al. (2016) cash-based operating profitability

anomaly in the highest PIF quintile with a monthly value of 1.38% (t-statistics 3.64).

Also, I show that the stock analysts’ forecast errors of firms in the highest PIF tercile

do not converge to zero as forecast horizon shorterns, which is in contrast to firms in

the lower PIF terciles.
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Next, I investigate possible explanations that can account for this empirical pattern.

I consider both empirically and theoretically motivated explanations. One possible

explanation is that the profitability anomaly comes from the investors’ sentiment, and

firms with high IFs are also firms subject to high sentiment. Combined with short-sale

constraints (Nagel 2005; Pontiff 2006), the profitability anomaly persists in high IF

quintiles. I show that a range of measures of short-sale constraints and trading costs

do not differ materially between long and short legs of the profitability anomaly in

the high PIF quintile. Moreover, both long and short legs contribute significant FF3F

alphas to the performance of the profitability anomaly in the high PIF quintile. Thus,

the sentiment with short-sale constraints do not seem to be a main driving force of this

empirical pattern. I also consider the explanation based on financial distress, following

the argument in Avramov et al. (2009) and Avramov et al. (2013). I show that the

emprical pattern is still present after dropping out stressed firms. Finally, I show that

the investment-based model (Lin and Zhang 2013; Hou et al. 2014) and the sticky

analyst model (Bouchaud et al. 2019) do not direcly speak to the empirical pattern

documented here.

Finally, I provide an information-based model in the spirit of Admati (1985) to

qualitatively reconcile the results. In the model, the investors are trying to learn about

asset payoffs realized in the future from current price and a private signal in a Bayesian

way. The IF is modeled as a high average posterior uncertainty across investors or a low

average signal precision. Thus, the price of firms with high IFs reflect less information

from payoff signals. In other words, among firms with high IFs, firms with high (low)

payoffs are under-valued (over-valued) from an ex post point of view. Thus, for an

econometrician who examines the data and use lagged payoff potential to measure

the profitability of a firm, she will find the cross-sectional return predictability of the

lagged profitability signal to be stronger among firms with higher IFs, consistent with
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the emprical pattern documented here.

My paper is related to the growing literature that studies the underlying economic

mechanism of the profitability anomaly. As mentioned in the beginning, explanations

in the rational expectations framework include Kogan and Papanikolaou (2013), Ko-

gan et al. (2019), and Deng (2019). Behavioral explanations includeStambaugh et al.

(2012), Lam et al. (2016)), Bouchaud et al. (2019)), and Wang and Yu (2015). The

closest paper to mine is Wang and Yu (2015), who document that the ROE anomaly

is much stronger among small, young, and volatile firms. They find that this strong

performance mainly comes from the short legs, consistent with the idea that this over-

pricing is not corrected due to short-sale constraints. The distinction here is that I

instead find both long and short legs contribute significant alphas to the strong per-

formance of a wide range of profitability anomalies, suggesting this story may not be

at play.

The rest of the paper is organized as follows. Section 3.2 describes the data. Sec-

tion 3.3 documents the main empirical results that the profitability anomaly performs

drastically among firms with high and low IFs. Section 3.4 explores possible explana-

tions in the previous literature. Section 3.5 builds a simple information-based modelto

qualitatively accoount for the empirical pattern. Section 3.6 concludes.

3.2 Data

The data come from Compustat, CRSP, I/B/E/S, and OptionMetrics. The sample

period is from July 1963 to December 2016.

3.2.1 Equity price and accounting data

The sample includes all the non-financial ordinary common shares traded on NYSE,

AMEX, and NASDAQ.
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Delisting returns are taken from CRSP. If a delisting return is missing and the

delisting is performance-related, I follow Shumway (1997) and Shumway and Warther

(1999) to use a delisting return of -30% for stocks traded on NYSE and AMEX and a

delisting return of -55% for stocks traded on NASDAQ.

I consider three measures of profitability from the literature (Novy-Marx 2013; Ball

et al. 2016), namely the gross profitability (GP/A), the operating profitability (OP),

and the cash-based operating profitability (C-OP). These measures are accounting-

based and change at an annual frequency. I replicate all three anomalies in Table E.1

and confirm the findings of original papers.

I also construct other market-based and balance-sheet-based characteristics of stocks,

which are summarized in Appendix D.1.

The Fama-French five factors are directly taken from Kenneth French’s website.2

3.2.2 Proxies of information frictions

To construct proxies of information frictions, I follow Pastor and Veronesi (2003b)

and Zhang (2006) to consider age, analyst forecast dispersion, and past return volatility.

In addition, I use near-the-money call-option-implied volatility as a measure of forward-

looking uncertainty. All proxies change at a monthly frequency except the age, which

changes at an annual frequency. The detailed definitions of these variables are described

below.

Age is defined as the number of years since a firm’s first appearance in the CRSP

or COMPUSTAT database, or the number of years since a firm’s first appearance on

CRSP, whichever is earlier, following Pastor and Veronesi (2003b).

The analyst forecast dispersion is constructed using analysts forecasts of earnings-

per-share for individual firms from I/B/E/S database. I consider analyst forecasts

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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of both the first fiscal year and long-term growth rate. The standard deviations are

obtained from the unadjusted summary file to avoid rounding errors from adjustments.

For standard deviations of fiscal-year-one forecasts, I scale them by the absolute value

of mean forecasts (Diether et al. 2002). Because the long-term forecast is for growth

rates, it is already comparable across firms and no further scaling is needed (Zhang

2006).

Past return volatility is calculated as the standard deviations of weekly excess re-

turns in previous year, following Zhang (2006).

The near-the-money call-option-implied volatility is obtained from OptionMetrics.

I apply the same option filters as in Christoffersen et al. (2017), which require options

have days to maturity between 30 days to 365 days, moneyness between 0.9 to 1.1,

and implied volatility between 5% and 150%. The near-the-money call-option-implied

volatility for an individual firm is then weighted using open interest across options.3

3.3 Empirical Analysis

In this section, I document my main empirical findings. I will first show that

the profitability anomaly remains a prominent anomaly. I will then show that the

profitability anomaly performs distinctly between firms with high and low information

frictions. This pattern is robust to different measures of profitability and information

frictions.

3.3.1 Prominence of the profitability anomaly

The profitability anomaly still poses a challenge for the latest work-horse factor

models include the FF5F model from Fama and French (2015) and the q-factor model

3The caveat here is that the volatility calculated is under the risk-neutral measure and thus contains
a risk premium component.
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from Hou et al. (2014). The alphas of quintile long-short portfolios from Column (1),

(3), and (5) in Table 3.1 are controlled for the FF5F model. They remain economi-

cally and statistically significant across all three measures of profitability. A similar

observation holds for the q-factor model. Column (2), (4), and (6) in Table 3.1 show

that only the GP/A anomaly is able to be explained away by the q-factor model in

terms of statistical significance. This is surprising given that these models explicitly

incorporate a profitability factor.4

3.3.2 Initial portfolio-sorting analysis

This section investigates the performance of the profitability anomaly across firms

with different information frictions by using a portfolio-sorting approach. I do an inde-

pendent double-sorting with respect to proxies of profitability and information frictions

(IF). Firms with non-missing characteristics are sorted into twenty-five portfolios based

on the quintiles of the ranked values. I use NYSE breakpoints and value-weighted re-

turns following Hou et al. (2018). Given the number of proxies, this approach yields

fifteen combinations of double-sortings. Most combinations are balanced monthly due

to the monthly-changing IF signals (except age).

Table 3.2 reports the excess returns of independently double-sorted portfolios.

Across different combinations of PROF and IF, return spreads from long-short prof-

itability portfolios that are both statistically and economically significant only emerge

in groups of stocks with high IF. For example, the return spread from long-short gross

profitability portfolios among firms with the lowest one-year analyst forecast dispersion

(1YFD) is essentially 0% (t-statistics -0.01). But the return spread among firms with

highest 1YFD is monthly 0.51% (t-statistics 2.22). Across all combinations, the high-

est return spread is monthly 1.27% (t-statistics 4.01) from long-short C-OP portfolios

4Hou et al. (2018) arrive at a similar conclusion that profitability anomalies remain significant to
the q-factor model.
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formed within firms with highest option-implied volatility.

Spreads in excess returns can come from different exposures to other factors. I

next study the alphas of long-short portfolios after controlling for the Fama-French

three factors. Table 3.3 shows that the economic and statistical significance of FF3F

alphas both increase when moving from firms with low IF to those with high IF. For

most combinations considered, the FF3F alphas are insignificant among firms with

the lowest IF, while the most economically and statistically significant FF3F alphas

concentrate among firms with high IF. For example, the highest FF3F alphas are

obtained from long-short C-OP portfolios among firms with highest option-implied

volatility, which are monthly 1.46% (t-statistics 4.06). In stark comparison, the FF3F

alphas from portfolios sorting on the same profitability measure are merely monthly

-0.17% (t-statistics -0.89) among firms with the lowest option-implied volatility.

3.3.3 Use principle components of IF proxies

For a parsimonious way to summarize the information contained in various IF

proxies, I utilize the principal components (PCs) of these measures. To facilitate the

extraction, I first perform a log transformation of the IF proxies. This is to ensure

the skewness of these variables do not affect the linear projection used in the principal

component analysis (PCA). The histograms from Figure E.1 show that the transformed

variables are approximately normally distributed.

Figure E.2 shows that there is a strong level factor of the IF proxies I have consid-

ered.5 The first PC, xt, explains 56.3% of the variation in co-movement of IF proxies.

To come up with a single measure for each individual firm in each month, I define a

“PIF” measure as:

PIFt,i =
5∑

k=1

e1
kIFt,k, (3.1)

5Here I pool all individual firms together to do PCA.
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where e1
k denotes the first PC’s loading on the k-th IF proxy in the pooling PCA, and

IFt,k is the value of the firm’s k-th IF proxy at time t. {PIFt,i} will serve as a firm-level

sum-all measure of IF.

To have a non-missing PIF measure, the firm is required to: 1) followed by stock

analysts and have both one-year ahead forecast and long-term growth forecast; 2) have

outstanding stock options. This biases the sample towards big stocks, which further

alleviates the concern that my result is driven by micro-cap stocks. Figure E.3 shows

that the available stocks in the restricted sample still account for at least 65% and as

high as 90% of total market capitalization over the sample period.

Table 3.4 reports the excess returns and FF3F alphas of the independently double-

sorted portfolios on profitability measures and PIF. For C-OP, there is only statistically

significant return spread among firms with the highest PIF; for GP/A and OP, there is

no statistically significant return spread for any PIF quintile but the spreads increase

almost monotonically with PIF. In terms of FF3F alphas, they all become statistically

insignificant once the long-short portfolios are constructed among low-PIF firms. The

highest alpha is still achieved from long-short C-OP portfolios in the fifth PIF quintile,

which amounts to monthly monthly 1.38% (t-statistics 3.64). Moreover, the long leg

of profitability strategy consistently contributes a sizable alpha.

For parsimony, I focus on using C-OP as the profitability measure, given that C-OP

is the highest-alpha-generating anomaly out of the three (also see Table 3.1).

I visualize the economic magnitude of difference in anomaly performance across PIF

quintiles. I plot the cumulative (sum of log) returns and FF3F alphas of these portfolios

in Figure 3.1 and Figure 3.2, with a comparison to the original C-OP anomaly as in Ball

et al. (2016). Figure 3.2 shows that the investors can earn much higher FF3F alphas

by investing only among the firms with the highest IF and trading on the C-OP signal.

In addition, the cumulative FF3F alphas of the long and short legs of the portfolios
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are plotted in Figure 3.3. Figure 3.3 shows that the cumulative alphas of both the long

and short legs of the C-OP portfolios are highest among highest PIF quintiles.

3.3.4 Interpretation of IF proxies

The IF proxies I use can signal various aspects that differ across firms. For example,

analyst forecast dispersion has been interpreted as a proxy of disagreement or infor-

mation uncertainty (Diether et al. 2002; Patton and Timmermann 2010; Yu (2011));

option-implied volatility contains a risk premium component that reflects investors’

risk attitude; age can relate to firm growth (Haltiwanger et al. 2013) or liquidity. In

this section, I provide some evidence that support the interpretation that PIF can act

as a proxy for information friction or difficulty of learning by examining how forecast

errors evolve over time.

The forecast error is defined as

Forecast Error =
Meanadj − Actualadj

|Actualadj|
. (3.2)

I follow Diether et al. (2002) to combine information from unadjusted summary file

and unadjusted detail history actuals from I/B/E/S and use CFACSHR from CRSP to

adjust for share splits. I drop forecast errors with absolute values that are bigger than

one to limit the effect of outliers, which amount to approximately 7% of total obser-

vations. I also drop stocks covered with less than three analysts. The forecast horizon

is defined as the number of months between forecast issuing date and actual earnings

announcement date (I/B/E/S variables “anndats” and “statpers”). Forecast errors are

value-weighted by market capitalizations across firms for each forecast horizon.

Figure 3.4 plots the aggregate forecast errors for three PIF groups with 30th and

70th percentile as cutoff points. The figure yields the following observations. First,
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stock analysts on average are optimistic, consistent with previous literature (Bondt

and Thaler 1990). Moreover, The magnitude of forecast errors are smaller for firms in

the lower PIF tercile. For example, at the five-month horizon, average forecast errors

of firms in the highest tercile are roughly twice of those of firms in the first and second

tercile. Finally, the average forecast errors converge to zero as forecast horizon shortens

for the lower PIF terciles, but the average forecast errors stay above zero for firms in

the highest PIF tercile even for very short forecast horizons.

3.4 Possible Explanations

In this section, I examine whether existing explanations for the profitability anomaly

from the literature can account for the empirical pattern that I have documented in the

previous section. I consider both empirically and theoretically motivated explanations.

3.4.1 Short-sale constraints

Given that high PIF firms are young and volatile, one possibility is that PIF is

a proxy for the short-sale constraints and my results indicate that the profitability

anomaly represents mispricing (Stambaugh et al. 2012).

I first use instituitional ownership as a proxy for short-sale constraints (Nagel 2005).

Table 3.5, Panel B, shows that there is no material difference in institutional ownership

between long and short legs in the high PIF quintile. For example, in the highest PIF

quintile, the average institutional ownership is 66% for low C-OP firms and 62% for

high C-OP firms. I then consider transaction and holding costs as another source of

friction (Pontiff 2006). Table 3.5, Panel C and D, show that there is also no material

difference in idiosyncratic volatility or bid-ask spread between long and short legs in

the high PIF quintile.6 This indicates that short-sale constraints may not be the reason

6I follow Pontiff (2006) to use idiosyncratic volatility as a proxy for holding costs.
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behind the high FF3F alphas of the profitability anomaly in the highest PIF quintile.

In addition, Table 3.4 shows that the long leg of the profitability anomaly, which

is not subject to the short-sale constraints, contributes significantly to the FF3F al-

phas. For example, for the C-OP anomaly in the highest PIF quintile, the short leg

contributes a monthly alpha of -0.78% (t-statistics -2.64) while the long leg contributes

a comparable 0.59% (t-statistics 2.36).

3.4.2 Financial distress

Avramov et al. (2009) and Avramov et al. (2013) argue that the performance of

many anomalies are derived from high credit risk firms with deteriorating conditions.

To test whether the PIF is just a proxy for financial distress and signals the high

credit risk firms, I redo the portfolio sorting analysis after dropping the worst-rated

firms.7 Without the “worst-rated” firms, the remaining sample is considerably smaller

judged by the number of firms and all three profitability anomalies become weaker in

terms of FF3F alphas. To avoid portfolios that are too sparse, I use tercile-sorting on

PIF with 30th and 70th percentiles as breakpoints.

Table 3.6 shows that the empirical pattern documented in the previous section

persists. The OP and C-OP anomalies only have a statistically significant FF3F

alpha–monthly 0.65% with t-statistics 2.23 and monthly 0.77% with t-statistics 2.67,

respectively–in the highest PIF tercile, while the FF3F alphas of GP/A increase with

PIF (but are all statistically insignificant).

3.4.3 Investment-based models

Lin and Zhang (2013) and Hou et al. (2014) motivate the inclusion of a profitability

7Following Avramov et al. (2009) and Avramov et al. (2013), I use S&P Long-Term Domestic Issuer
Credit Rating from Compustat and label firms with a rating of BB+ or below as the “worst-rated”
firms.
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factor to capture the cross-section of stock returns in an investment-based framework.

The expected stock return for firm i in their two-period setting, E0ri,1, satisfies:

E0ri,1 =
E0Πi,1

1 + a(Ii,0/Ki,0)
(3.3)

where E0Πi,1 is the expected profitability, a is a constant that determines the adjust-

ment cost, Ii,0 is the investment in the first period, and Ki,0 is the firm’s capital in the

first period.

To map to the empirical setting, previous work uses current profitability to proxy

for the expected profitability. Thus, to be consistent with the empirical pattern doc-

umented in the previous section, it should be the case that current profitability only

serves as a good proxy of expected profitability spread when PIF is high. This obser-

vation is not a priori clear in the standard investment-based framework.

3.4.4 Analyst bias

Bouchaud et al. (2019) considers a model of sticky expectation to explain the pres-

ence of the profitability anomaly. In their framework, the analysts have sticky expec-

tation and underreact to information in past earnings. As a result, past profits predict

future returns

cov(Rt+1, πt) = (1 +mρ)
ρ

1− λρ2
λ2σ2

u, (3.4)

with m = 1−λ
1+r−ρ . Here πt is the current profit, ρ is the persistence of firm’s profitability,

σu is the standard deviation of the signal, r is the required rate of return from the

investors, and a higher λ indicates a higher degree of stickiness of investors’ expectation.

This model shows that when the profitability signal is more volatile (a high σu), the

signal has a stronger predicting power for future stock returns. Thus, if the model

provides an explanation for the empirical pattern here, it should be the case that
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profitability is much more volatile in the highest PIF quintile. Still, the central focus

of Bouchaud et al. (2019) is the stickiness λ but not σu.

3.5 A Simple Information-based Model

In the previous section, we see that most existing explanations–either empirically

or theoretically motivated–do not directly speak to or fully account for the observation

that the profitability anomaly only performs well in the high PIF quintiles.

In this section, I propose a simple information-based model in the spirit of Admati

(1985) that can generate qualitative predictions that are consistent with the empirical

patterns I have documented.

Environment The model has two periods. There is a continuum of investors

indexed by j ∈ [0, 1]. The investors trade in period 1 and consume in period 2. Each

investor can invest her initial wealth Wj,0 between a riskless asset and N risky assets.

In period 2, the riskless asset pays r units and risky asset n pays f units of the single

consumption good.8 I assume that the stochastic payoffs f ∼ N (0, Σ). The riskless

asset is taken to be the numeraire and the price vector of the risky assets is denoted

as p. The risky assets have stochastic supplies x̄+ x, where x̄ is a constant vector and

x ∼ N (0, σ2
xIN).

Preference The investors have mean-variance preference with absolute risk aver-

sion parameter ρ. They choose portfolio holdings qj to maximize their utility:

Uj = ρẼj[Wj]−
ρ2

2
Ṽj[Wj] (3.5)

subject to the budget constraint Wj = rW0 +q′j(f−pr). For simplicity, I have assumed

Wj,0 = W0,∀j. Ẽj(·) and Ṽj(·) denote the mean and variance expected by investor j,

8Here r is exogenously given.
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respectively.

Information The true mean and variance of asset payoffs are common knowledge

to investors but the realization of those payoffs, f , are unknown in period 1. Each

investor has a private signal in period 1 that is informative of future payoff realizations

f , ηj ∼ N (f,Σηj).

Equilibrium Following Veldkamp (2011), with Bayesian belief updating and mar-

ket clearing, a rational expectations equilibrium can be characterized by the investors’

portfolio choices, {qj}, and the price vector, p:

qj =
1

ρ
Σ̂−1
j

(
Ẽj[f ]− pr

)
, ∀j (3.6)

p =
1

r
(A+Bf + Cx), (3.7)

where

Ẽj[f ] = Σ̂j(Σ
−1
ηj ηj + Σ−1

p ηp) , Σ̂−1
j = Σ−1 + Σ−1

ηj + Σ−1
p , (3.8)

A = −ρΣ̄x̄ , B = IN − Σ̄Σ−1 , Σ̄−1 =

∫
Σ̂−1
j dj, (3.9)

ηp = rp− A , Σp = Var(rp− A). (3.10)

Econometrician’s problem Now consider an outside econometrcian who simply

examines the data ex post. She is able to observe the realized asset returns, f − pr, in

period 2. To summarize the information in the cross-section of returns, she uses a lagged

signal of realized payoffs f , ζ ∼ (f,Σζ). This maps to the earlier empirical exercise of

using a certain profitability signal to predict the cross-section of stock returns, as long

as the profitability measure is informative of future cash flows from the stocks. It can
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be shown that

β ≡ Cov(ζ, f − pr)
V (ζ)

= Σ̄Σ−1 V (f)

V (f) + Σζ

(3.11)

=

(
IN + ΣΣ̄−1

η +
1

ρ2σ2
x

ΣΣ̄−1′

η Σ̄−1
η

)−1
V (f)

V (f) + Σζ

, (3.12)

where Σ̄−1
η =

∫
Σ−1
ηj dj and V (·) Note that β represents the coefficient from regressing

future realized returns on the lagged payoff signal.

Model’s predictions Focusing on the coefficient β, this model yields several pre-

dictions. First, β increases in the payoff volatility under the econometrician’s measure,

V (f). This echoes the prediction from Bouchaud et al. (2019) (see Section 3.4.4 for

more details). Second, β increases in investors’ average posterior uncertainty, Σ̄, and

decreases in their average signal precision, Σ̄−1
η . This is the key message from the model:

for firms with higher uncertainty, the payoff signal predicts more strongly future asset

returns. This is consistent with the empirical pattern documented in previous sections

if we interpret PIF to be a proxy of information friction that makes the firms hard to

learn.

3.6 Conclusion

This paper documents that the Fama-French three-factor (FF3F) alphas of the

profitability anomaly exist only among firms with high information frictions (IF), prox-

ied by young age, high forecast dispersion, high past return volatility, and/or high

option-implied volatility. The FF3 alphas of the long-short profitability portfolios are

insignificant both economically and statistically in low-IF quintiles, but are as high

as monthly 1.46% (t-statistics 4.06) in high-IF quintiles. The results are robust to ex-

cluding micro-firms and using different measures of profitability. Short-sale constraints,

financial distress, and standard investment-based framework do not fully account for

133



or directly speak to this empirical pattern.

Instead of a risk-based explanation, I show that this empirical pattern is consistent

with a noisy rational expectations equilibrium model in which investors learn about

future firm payoffs from private signals and market prices. The model predicts that for

firms with higher posterior uncertainty or lower signal precision, the econometrician

should find a stronger relation between profitability measure and future returns.
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3.7 Tables and Figures

Table 3.1: Capturing the Profitability Anomaly

This table reports alphas of profitability anomaly portfolios with respect to FF5F model from Fama
and French (2015) and q-4 model from Hou et al. (2014). The measures of profitability include gross
profitability (GP/A), operating profitability (OP), and cash-based operating profitability (C-OP). The
definitions of these measures follow Novy-Marx (2013) and Ball et al. (2016), with a modification to
GP/A where gross profit is deflated by the lagged book value of total assets. Portfolios are quintile-
sorted on a given meausre of profitability with NYSE breakpoints. Portfolio returns are value-weighted
by market capitalizations. Alphas are reported in monthly percentage points. Newey-West t-statistics
with a lag of 12 months are reported in brackets. The sample period is from July 1963 to December
2016.

GP/A OP C-OP

Portfolios FF5F q-4 FF5F q-4 FF5F q-4
(1) (2) (3) (4) (5) (6)

Low -0.10 -0.03 -0.18 -0.13 -0.26 -0.20
[-1.76] [-0.37] [-2.50] [-1.31] [-3.62] [-2.44]

2 -0.13 -0.05 -0.13 -0.10 -0.21 -0.17
[-1.56] [-0.55] [-1.87] [-1.06] [-3.42] [-2.16]

3 -0.05 0.03 -0.04 0.04 -0.06 -0.01
[-0.88] [0.39] [-0.75] [0.60] [-1.13] [-0.15]

4 0.00 0.04 -0.02 -0.00 -0.02 0.01
[0.06] [0.54] [-0.38] [-0.06] [-0.37] [0.22]

High 0.28 0.21 0.19 0.18 0.23 0.23
[3.91] [2.32] [3.89] [2.64] [4.98] [3.40]

High - Low 0.38 0.24 0.37 0.31 0.49 0.43
[3.67] [1.68] [3.99] [2.47] [5.11] [3.54]
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Table 3.5: Characteristics of Portfolios Independently Double-Sorted on C-OP and PIF

This table reports the characteristics of anomaly portfolios that are independently double-sorted on C-
OP and PIF. PIF is defined as in Equation (3.1) using the first PC of the log of IF proxies. Portfolios
are quintile sorted on each dimension. NYSE breakpoints are used and characteristics are value-
weighted. Market capitalization are in billions. The sample starts from February 1996 to December
2016.

C-OP

PIF Low 2 3 4 High

Panel A.1: Market Capitalization

Low 380 295 475 588 890

2 188 247 377 463 622

3 176 212 249 333 658

4 153 178 173 277 834

High 225 168 162 221 565

Panel B: Institutional Ownership

Low 0.54 0.57 0.56 0.60 0.58

2 0.64 0.64 0.61 0.62 0.63

3 0.66 0.65 0.66 0.65 0.60

4 0.68 0.68 0.66 0.67 0.57

High 0.66 0.66 0.67 0.66 0.62

Panel C: Idiosyncratic Volatility

Low 0.010 0.011 0.011 0.011 0.010

2 0.013 0.013 0.012 0.012 0.012

3 0.014 0.014 0.014 0.014 0.014

4 0.017 0.016 0.016 0.016 0.016

High 0.021 0.020 0.020 0.020 0.019

Panel D: Bid-Ask Spread

Low 0.021 0.021 0.021 0.021 0.020

2 0.025 0.024 0.022 0.023 0.024

3 0.026 0.026 0.025 0.026 0.026

4 0.031 0.029 0.030 0.030 0.030

High 0.037 0.035 0.036 0.037 0.036
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Figure 3.1: Cumulative Excess Returns of C-OP Portfolios Across PIF Quintiles

This figure plots the cumulative (sum of log) returns of C-OP long-short portfolios
across PIF quintiles. The sample starts from February 1996 to December 2016.
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Figure 3.2: Cumulative FF3F Alphas of C-OP Portfolios Across PIF Quintiles

This figure plots the cumulative (sum of log) FF3F alphas of C-OP long-short portfolios
across PIF quintiles. The FF3F loadings are estimated with full sample. The sample
starts from February 1996 to December 2016.
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Figure 3.3: Cumulative FF3F Alphas of C-OP Long/Short Legs Across PIF Quintiles

This figure plots the cumulative (sum of log) FF3F alphas of long/short legs of C-OP
long-short portfolios across PIF quintiles. The FF3F loadings are estimated with full
sample. The sample starts from February 1996 to December 2016.
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Figure 3.4: Evolution of Forecast Errors Across Uncertainty Groups

This figure plots how forecast errors, defined as share adjusted forecasts minus share
adjusted actual earnings scaled by absolute value of share adjusted actual earnings,
evolves before announcement date. The forecast errors at each horizon are market-
capitalization weighted. Firms are allocated into each tercile based on PIF using 30th
and 70th cutoff points. The maximum forecast horizon is 12 months.
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APPENDIX A

Expectation Formation: Data Construction,

Derivations, and Proofs

A.1 Data Sources

A.1.1 Surveys

Blue Chip Financial Forecasts. The Blue Chip Financial Forecasts (BCFF) is a

monthly survey of about 45 professional forecasters from leading financial institutions,

beginning in November 1982. The survey is typically published on the first day of the

month and based on responses collected during the last week of the previous month.

The participants are asked to provide forecasts of a given variable in the following quar-

ters, up to six quarters ahead. The survey covers interest rate forecasts of the federal

fund rate, 3-month/6-month/1-year Treasury bills, and 2-year/5-year/10-year/30-year

Treasury notes. The survey also includes forecasts of real/nominal GDP growth and

CPI.

For long-term forecasts of the same variables, BCFF has provided the results of a

semi-annual long-range consensus survey since October 1983. Before December 1996,

the long-range surveys were typically published in March and October (except for 1985,

which were published in March and November). The publishing months switched to

June and December beginning in December 1996 (one exception is the January 2003

long-range survey). Forecasts are made for the annual averages of selected variables
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for the following five years. The survey has also provided a 5-year average forecast for

the next 6 to 10 years (or the next 7 to 11 years) since 1986.

Blue Chip Economic Indicator. The Blue Chip Economic Indicators (BCEI) is a

monthly survey of about 50 professional forecasters from leading financial institutions,

beginning in August 1976. The survey is typically published on the tenth day of the

month and based on responses collected during the first week of the same month. The

survey includes forecasts for real GDP growth, CPI, and 3-month Treasury bill rates.

BCEI has published a semi-annual long-range survey in March and October consis-

tently since October 1983. Long-range surveys from BCEI and BCFF have the same

forecast horizons.

Survey of Professional Forecasters. The Survey of Professional Forecasters (SPF) is

a quarterly survey of professional forecasters maintained by the Philadelphia Fed that

covers a wide range of macroeconomic variables and selective yields (3-month Treasury

bills and 10-year Treasury bonds). The survey published in a given quarter is based on

questionnaires sent to the panelists during the end of the first month and collected no

later than the middle month. The documentation available on the Philadelphia Fed’s

website provides more details of the survey.1

Goldsmith-Nagan Survey. The Goldsmith-Nagan (GN) survey is a quarterly survey

of a selected panel of approximately 50 market professionals who have subscribed to

the Goldsmith-Nagan Bond and Money Market Letter. The survey is conducted late in

the last month of each quarter for forecasts of a set of interest rates on the last business

day of the coming quarter and of the quarter following. Friedman (1980) and Froot

(1989) provide more details on the survey. The data is kindly provided by Kenneth

Froot.

A.1.2 Interest rates

Zero-coupon Treasury yields. Monthly nominal zero-coupon Treasury yields are

from Liu and Wu (2019), with maturities ranging from 1 month to 30 years at one-

month intervals. The data is available from the authors’ website.2

Daily nominal zero-coupon Treasury yields are from Gürkaynak et al. (2007), avail-

able from the Federal Reserve Board.

1https://www.philadelphiafed.org/-/media/research-and-data/real-time-center/

survey-of-professional-forecasters/spf-documentation.pdf?la=en
2https://sites.google.com/view/jingcynthiawu/yield-data
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Daily real zero-coupon yields calculated from TIPS are from Gürkaynak et al.

(2010), available from the Federal Reserve Board.

For nominal zero-coupon yields before 1972, I use data from McCulloch and Kwon

(1993) beginning in 1952.

Fama bond portfolio returns. Monthly Fama bond portfolio returns for different

yield maturities are obtained from CRSP.

1-month risk-free rate. Monthly 1-month risk-free rates are obtained from CRSP.

3-month Treasury bill rate. I use the monthly secondary market rates since January

1954 from the H.15 Selected Interest Rates, available from the Federal Reserve Board.

A.1.3 Macro variables

Inflation. Inflation is constructed from the monthly core Consumer Price Index

(CPI) from January 1957 to December 2018, available from the Bureau of Labor Statis-

tics. For January 1947 to December 1956, I use the all-items CPI, also obtained from

the Bureau of Labor Statistics. For inflation before 1947, I use the CPI from Shiller

(2005).

Real GDP. The quarterly vintages of real GNP/GDP (ROUTPUT) are obtained

from the Real-Time Data Set for Macroeconomists, available from the Philadelphia Fed

for 1965Q4 to 2018Q4.

Employment growth. The monthly vintages of nonfarm payroll employment (EM-

PLOY) are from the Real-Time Data Set for Macroeconomists, available from the

Philadelphia Fed for December 1964 to December 2018.

A.2 Yield Decompositions

This section provides derivations regarding yield decompositions. Basic notation:

• ynt : yield on a nominal zero-coupon bond with a unit payoff upon maturity at

t+ n.

• pnt : log price of a nominal zero-coupon bond defined as above. pnt = −nynt .

• it: nominal short rate. it = y1
t .

• snt : term spread as the difference between an n-maturity yield and the short rate.

snt = ynt − it.
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• fn,mt : forward rate at time t on an n-maturity bond, m periods into the future

(the bond matures at t+ n+m). fn,mt = 1
n
[(m+ n)ym+n

t −mymt ].

I define an m-holding-period return and the excess return on an n-maturity bond

realized at time t+m, respectively, as

rnt,t+m = pn−mt+m − pnt = nynt − (n−m)yn−mt+m , (A.1)

rxnt,t+m = pn−mt+m − pnt + pmt = nynt − (n−m)yn−mt+m −mymt . (A.2)

For one-period returns and excess returns, I use the simplified notations rnt+1 and rxnt+1.

Solving forward with m = 1 yields

pnt = −nynt = −
n−1∑
k=0

rn−kt+k+1

= −
n−1∑
k=0

(
rxn−kt+k+1 + it+k

)
. (A.3)

Taking a generic expectation, Êt , of both sides yields

ynt =
1

n
Êt

(
n−1∑
k=0

it+k

)
+

1

n
Êt

(
n−1∑
k=0

rxn−kt+k+1

)

=
1

n
Êt

(
n−1∑
k=0

it+k

)
+

1

n
Êt

(
n∑
k=1

rxkt+n−k+1

)

≡ 1

n
Êt

(
n−1∑
k=0

it+k

)
+ tpnt . (A.4)

The last term is typically referred to as the “term premium”.
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A.3 Model Solutions

A.3.1 Kalman filtering

A.3.1.1 Real endowment growth

The agent at time t subjectively perceives

gt = µ̃t + (C̃t − C̃t−1) + ξ̃t, ξ̃t ∼ N (0, σ̃2
ξ ), (A.5)

µ̃t = φµµ̃t−1 + (1− φµ)µ+ ω̃t, ω̃t ∼ N (0, σ̃2
ω), (A.6)

C̃t = ρ̃cC̃t−1 + ζ̃t, ζ̃t ∼ N (0, σ̃2
ζ ). (A.7)

The standard state-space representation with lagged variables in the measurement

equation is

gt − µ = H ′Bt + ξt, (A.8)

Bt+1 = FBt + ψt+1, (A.9)

where H = (1, 1,−1)′, and

Bt =

µ̃t − µC̃t

C̃t−1

 , F =

φµ 0 0

0 ρ̃c 0

0 1 0

 , ψt =

ω̃tζ̃t
0

 . (A.10)

I denote the conditional expectation, given an infinite history of observations Ht ≡
{gt−k}∞k=0, as

B̂t+s|t ≡ Ẽ[Bt+s|Ht]. (A.11)

Following Hamilton (1994), the conditional minimum variance estimate of Bt+1 in the

steady-state evolves as

B̂t+1|t = FB̂t|t−1 +K(gt − µ−H ′B̂t|t−1), (A.12)

where K is the Kalman gain matrix. The steady-state MSE matrix, P ≡ Ẽ[(Bt+1 −
B̂t+1|t)(Bt+1−B̂t+1|t)

′], and the Kalman gain matrix, K ≡ (νµ , νc,1 , νc,2)′, are obtained
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from the following equations:

P = F
[
P − PH(H ′PH + σ̃2

ξ )
−1H ′P

]
F ′ +Q, (A.13)

K = FPH(H ′PH + σ̃2
ξ )
−1, (A.14)

where

Q =

σ̃
2
ω 0 0

0 σ̃2
ζ 0

0 0 0

 . (A.15)

Note that Equation (A.14) implies νc,2 = νc,1/ρ̃c and that it can be shown that Ĉt+1|t =

ρ̃cĈt|t. Denoting µ̂t ≡ µ̂t+1|t and ĉt ≡ Ĉt+1|t − Ĉt|t, Equation (A.12) can be written as

µ̂t = φµµ̂t−1 + (1− φµ)µ+ νµ
(
gt − µ̂t−1 − ĉt−1

)
, (A.16)

ĉt = ρ̃cĉt−1 − νc
(
gt − µ̂t−1 − ĉt−1

)
, (A.17)

where

νc = νc,2 − νc,1. (A.18)

The predictive distribution of gt+1 is

gt+1|Ht ∼ N
(
µ̂t + ĉt , σ̃

2
g

)
, (A.19)

where

σ̃2
g = H ′PH + σ̃2

ξ . (A.20)

A.3.1.2 Inflation

The equations for the subjective dynamics of inflation are:

πt = τ̃t + (K̃t − K̃t−1) + η̃t, η̃t ∼ N (0, σ̃2
η), (A.21)

τ̃t = φτ τ̃t−1 + (1− φτ )τ + ε̃t, ε̃t ∼ N (0, σ̃2
ε), (A.22)

K̃t = ρ̃κK̃t−1 + ι̃t, ι̃t ∼ N (0, σ̃2
ι ). (A.23)

Similarly, the steady-state MSE matrix, Pπ, and Kalman gain matrix, Kπ, are
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obtained from the following equations

Pπ = Fπ
[
Pπ − PπHπ(H ′πPπHπ + σ̃2

η)
−1H ′πPπ

]
F ′π +Qπ, (A.24)

Kπ = FπPπHπ(H ′πPπHπ + σ̃2
η)
−1, (A.25)

where

Fπ =

φτ 0 0

0 ρ̃κ 0

0 1 0

 , Qπ =

σ̃
2
ε 0 0

0 σ̃2
ι 0

0 0 0

 . (A.26)

Denote Kπ ≡ (ντ , νκ,1 , νκ,2)′. Given an infinite history of observations It =

{πt−k}∞k=0, the optimal forecasts τ̂t ≡ Ẽt[τt+1|It] and κ̂t ≡ Ẽ[Kt+1|It]− Ẽ[Kt|It] are:

τ̂t = φτ τ̂t−1 + (1− φτ )τ + ντ
(
xt − τ̂t−1 − κ̂t−1

)
, (A.27)

κ̂t = ρ̃κκ̂t−1 − νκ
(
xt − τ̂t−1 − κ̂t−1

)
, (A.28)

where

νκ = νκ,2 − νκ,1. (A.29)

The predictive distribution of πt+1 is

πt+1|It ∼ N
(
τ̂t + κ̂t , σ̃

2
π

)
, (A.30)

where

σ̃2
π = H ′πPπHπ + σ̃2

η. (A.31)

A.3.2 Stochastic discount factor

The Epstein-Zin real log SDF can be written as

mt+1 = θ log δ − θ

ψ
gt+1 + (θ − 1)rw,t+1 (A.32)

with θ = (1− γ)/(1− 1/ψ).

I log-linearize the return on wealth as

rw,t+1 = k0 + k1zt+1 − zt + gt+1, (A.33)

where zt ≡ log((Wt − Xt)/Xt). I conjecture that zt is linear in the state variable µ̂t
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and ĉt:

zt = A0 + A1µ̂t + A2ĉt. (A.34)

By applying the subjective pricing equation to rw,t+1, it can be shown that

A0 =
log δ + k0 + k1A1(1− φµ)µ+ 1

2
θ(1− 1/ψ + k1A1νµ − k1A2νc)

2σ̃2
g

1− k1

, (A.35)

A1 =
1− 1/ψ

1− k1φµ
, A2 =

1− 1/ψ

1− k1ρ̃c
, (A.36)

where

z̄ = A0 + A1µ , k1 =
exp(z̄)

1 + exp(z̄)
, k0 = log(1 + ez̄)− z̄k1. (A.37)

Thus, the real log SDF is

mt+1 = µ̃m −
1

ψ
(µ̂t + ĉt)− ξσ̃g δ̃t+1, (A.38)

where {δ̃} are i.i.d. standard normal shocks under the subjective measure and

Λ = 1− 1/ψ + k1A1νµ − k1A2νc, (A.39)

µ̃m = log δ − 1

2
θ(θ − 1)Λ2σ̃2

g , (A.40)

ξ = (1− θ)Λ +
1

ψ
. (A.41)

The nominal log SDF is

m$
t+1 = mt+1 − πt+1. (A.42)

The real short rate is

it ≡ y1
t = −µ̃m +

1

ψ
(µ̂t + ĉt)−

1

2
ξ2σ̃2

g . (A.43)

and the nominal short rate is

i$t = −µ̃m +
1

ψ
(µ̂t + ĉt) + (τ̂t + κ̂t)−

1

2
ξ2σ̃2

g −
1

2
σ̃2
π. (A.44)
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A.3.3 Bond pricing

A.3.3.1 Real bonds

I conjecture that the log real bond prices are affine functions of the state variables

(µ̂t, ĉt):

pnt = an + bnµ̂t + cnĉt. (A.45)

Through the recursive subjective Euler equations,

pnt = log Ẽt[exp(mt+1 + pn−1
t+1 )], (A.46)

the coefficients are obtained as

an = nµ̃m −
(
n−

1− φnµ
1− φµ

)
µ

ψ
+

1

2

n∑
k=1

(−ξ + bk−1νµ − ck−1νc)
2σ̃2

g , (A.47)

bn = −
1− φnµ
1− φµ

1

ψ
, cn = −1− ρ̃nc

1− ρ̃c
1

ψ
. (A.48)

The real yields are obtained as

ynt ≡ −
1

n
pnt = −an

n
+

1− φnµ
n(1− φµ)

1

ψ
µ̂t +

1− ρ̃nc
n(1− ρ̃c)

1

ψ
ĉt. (A.49)

The real yield spread is

snt ≡ ynt − y1
t =

1

2
ξ2σ̃2

g −
1

2n

n∑
k=1

(−ξ + bk−1νµ − ck−1νc)
2σ̃2

g

+

[
1−

1− φnµ
n(1− φµ)

]
1

ψ
(µ− µ̂t)−

[
1− 1− ρ̃nc

n(1− ρ̃c)

]
1

ψ
ĉt. (A.50)

By taking n to infinity, we have

lim
n→∞

snt =
1

2

(
2ψξ +

νµ
1− φµ

− νc
1− ρ̃c

)(
νc

1− ρ̃c
− νµ

1− φµ

)
σ̃2
g

ψ2

+
1

ψ
(µ− µ̂t − ĉt). (A.51)

156



A.3.3.2 Nominal bonds

Similarly, I conjecture that the log nominal bond prices are affine functions of the

state variables (µ̂t, ĉ
∗
t , τ̂t, κ̂

∗
t ); that is:

p$,n
t = a$

n + b$
nµ̂t + c$

nĉt + d$
nτ̂t + e$

nκ̂t. (A.52)

The coefficients are obtained from recursive subjective Euler equations as

a$
n = nµ̃m −

(
n−

1− φnµ
1− φµ

)
µ

ψ
+

1

2

n∑
k=1

(−ξ + b$
k−1νµ − c$

k−1νc)
2σ̃2

g

−
(
n− 1− φnτ

1− φτ

)
τ +

1

2

n∑
k=1

(−1 + d$
k−1ντ − e$

k−1νκ)
2σ̃2

π, (A.53)

b$
n = bn = −

1− φnµ
1− φµ

1

ψ
, c$

n = cn = −1− ρ̃nc
1− ρ̃c

1

ψ
, (A.54)

d$
n = −1− φnτ

1− φτ
, e$

n = −1− ρ̃nκ
1− ρ̃κ

. (A.55)

The nominal yields are obtained as

y$,n
t ≡ −

1

n
p$,n
t = −a

$
n

n
+

1− φnµ
n(1− φµ)

1

ψ
µ̂t +

1− ρ̃nc
n(1− ρ̃c)

1

ψ
ĉt +

1− φnτ
n(1− φτ )

τ̂t +
1− ρ̃nκ

n(1− ρ̃κ)
κ̂t.

(A.56)

The nominal yield spread is

s$,n
t ≡ y$,n

t − y
$,1
t = snt +

1

2
σ̃2
π −

1

2n

n∑
k=1

(−1 + d$
k−1ντ − e$

k−1νκ)
2σ̃2

π

+

[
1− 1− φnτ

n(1− φτ )

]
(τ − τ̂t)−

[
1− 1− ρ̃nκ

n(1− ρ̃κ)

]
κ̂t. (A.57)

By taking n to infinity, we have

lim
n→∞

s$,n
t = lim

n→∞
snt + τ − τ̂t − κ̂t

+
1

2

(
2 +

ντ
1− φτ

− νκ
1− ρ̃κ

)(
νκ

1− ρ̃κ
− ντ

1− φτ

)
σ̃2
π. (A.58)
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A.3.4 Forecasts and forecast errors

A.3.4.1 Forecasts of future endowment growth and inflation

Based on the filtering results, the subjective forecasts of future endowment growth

and inflation are:

Ẽtµt+j = φj−1
µ µ̂t + (1− φj−1

µ )µ , Ẽtct+j = ρ̃j−1
c ĉt, (A.59)

Ẽtgt+j = φj−1
µ µ̂t + (1− φj−1

µ )µ+ ρ̃j−1
c ĉt, (A.60)

and

Ẽtτt+j = φj−1
τ τ̂t + (1− φj−1

τ )τ , Ẽtκt+j = ρ̃j−1
κ κ̂t, (A.61)

Ẽtπt+j = φj−1
τ τ̂t + (1− φj−1

τ )τ + ρ̃j−1
κ κ̂t. (A.62)

In comparison, an econometrician who has full knowledge sees

Etgt+j = µ+ ρj−1
c cet , Etπt+j = τ + ρj−1

κ κet , (A.63)

where cet = (ρc − 1)ct and κet = (ρκ − 1)κt.

A.3.4.2 Forecasts of future state variables

Under the subjective measure,

Ẽtµ̂t+j = φjµµ̂t + (1− φjµ)µ , Ẽtĉt+j = ρ̃jcĉt, (A.64)

Ẽtτ̂t+j = φjτ τ̂t + (1− φjτ )τ , Ẽtκ̂t+j = ρ̃jκκ̂t. (A.65)

Under the objective measure, the expressions are derived from iterations with the

following forms:

Etµ̂t+j = ag,jµ+ bg,jc
e
t + cg,jµ̂t + dg,j ĉt, (A.66)

Etĉt+j = eg,jµ+ fg,jc
e
t + gg,jµ̂t + hg,j ĉt. (A.67)
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Similarly, we have

Etτ̂t+j = aπ,jτ + bπ,jκ
e
t + cπ,j τ̂t + dπ,jκ̂t, (A.68)

Etκ̂t+j = eπ,jτ + fπ,jκ
e
t + gπ,j τ̂t + hπ,jκ̂t. (A.69)

Here, I only provide formulas for the special case j = 1:

Etµ̂t+1 = (φµ − νµ)µ̂t + (1− φµ + νµ)µ+ νµc
e
t − νµĉt, (A.70)

Etĉt+1 = (ρ̃c + νc)ĉt − νccet − νc(µ− µ̂t), (A.71)

and similarly for inflation. The online supplementary appendix provides more details.

A.3.4.3 Short-rate forecast errors

I focus on forecast errors of nominal short rates since they are directly observable.

For one-period-ahead, by combining Equation (A.44) and results from Section A.3.4.2,

we have

Eti$t+1 − Ẽti$t+1 =
1

ψ
(νµ − νc) [µ+ cet − µ̂t − ĉt]

+ (ντ − νκ) [τ + κet − τ̂t − κ̂t] . (A.72)

For relatively long-term horizons, the general expressions are

Eti$t+j − Ẽti$t+j =
1

ψ

(
a∗g,jµ+ b∗g,jc

e
t + c∗g,jµ̂t + d∗g,j ĉt

)
+
(
a∗π,jτ + b∗π,jκ

e
t + c∗π,j τ̂t + d∗π,jκ̂t

)
, (A.73)

with

a∗g,j = ag,j + eg,j − (1− φjµ) , b∗g,j = bg,j + fg,j, (A.74)

c∗g,j = cg,j + gg,j − φjµ , d∗g,j = dg,j + hg,j − ρ̃jc, (A.75)

and similarly for inflation. Since simple closed-form expressions are not available, I rely

on numerical calculations. For very long-term horizons, the forecast errors converge to

zero.
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A.3.5 Objective and subjective risk premia

I focus on risk premia on nominal bonds. The realized one-period log return on a

n-maturity zero-coupon bond is

rnt+1 ≡ p$,n−1
t+1 − p$,n

t = a$
n−1 − a$

n + b$
n−1(1− φµ)µ+ d$

n−1(1− φτ )τ

+
1

ψ
(µ̂t + ĉt) + (b$

n−1νµ − c$
n−1νc) (gt+1 − µ̂t − ĉt)

+ (τ̂t + κ̂t) + (d$
n−1ντ − e$

n−1νκ) (πt+1 − τ̂t − κ̂t) . (A.76)

Thus, the subjective risk premium is

Ẽtrnt+1 − i$t +
1

2
ṽart(r

n
t+1) = ξ(b$

n−1νµ − c$
n−1νc)σ̃

2
g + (d$

n−1ντ − e$
n−1νκ)σ̃

2
π, (A.77)

which is a maturity-specific constant.

Under the objective expectation, the risk premium is

Etrnt+1 − i$t +
1

2
vart(r

n
t+1) =An + (b$

n−1νµ − c$
n−1νc) [µ+ cet − µ̂t − ĉt]

+Bn + (d$
n−1ντ − e$

n−1νκ) [τ + κet − τ̂t − κ̂t] , (A.78)

where

An =
1

2
ξ2σ̃2

g +
1

2
(b$
n−1νµ − c$

n−1νc)
2(σ2

ξ + σ2
ζ )−

1

2
(−ξ + b$

n−1νµ − c$
n−1νc)

2σ̃2
g , (A.79)

Bn =
1

2
σ̃2
π +

1

2
(d$
n−1ντ − e$

n−1νκ)
2(σ2

η + σ2
ι )−

1

2
(−1 + d$

n−1ντ − e$
n−1νκ)

2σ̃2
π. (A.80)

A.3.6 Proofs of theoretical results

Proof of Theorem I.1: Under the objective expectation, from Equation (A.16)

and (A.17), we have

E[µ̂t] = µ , E[ĉt] = 0. (A.81)

The latter equation holds because the unconditional mean of Ct is zero. Thus, Equation

(A.50) implies

E[nsnt ]−E[(n− 1)sn−1
t ] =

1

2
ξ2σ̃2

g −
1

2
(−ξ+ bn−1νµ− cn−1νc)

2σ̃2
g > 0, ∀n > 1, (A.82)
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provided (−ξ + bn−1νµ − cn−1νc)
2 < ξ2. Thus, if

(−ξ + bn−1νµ − cn−1νc)
2 < ξ2, ∀n > 1, (A.83)

or

0 < bn−1νµ − cn−1νc < 2ξ, ∀n > 1, (A.84)

we have

E[nsnt ] > E[(n− 1)sn−1
t ] > · · · > E[s1

t ] = 0, (A.85)

which implies E[snt ] > 0. In addition, Equation (A.51) shows that

lim
n→∞

E[snt ] =
1

2

(
2ψξ +

νµ
1− φµ

− νc
1− ρ̃c

)(
νc

1− ρ̃c
− νµ

1− φµ

)
σ̃2
g

ψ2
> 0 (A.86)

if and only if

0 <
νc

1− ρ̃c
− νµ

1− φµ
< 2ψξ. (A.87)

Proof of Corollary I.2: From Equations (A.50) and (A.57), we have

E[s$,n
t − snt ] =

1

2
σ̃2
π −

1

2n

n∑
k=1

(−1 + d$
k−1ντ − e$

k−1νκ)
2σ̃2

π. (A.88)

Thus, if

(−1 + d$
n−1ντ − e$

n−1νκ)
2 < 1, ∀n > 1, (A.89)

or

0 < d$
n−1ντ − e$

n−1νκ < 2, ∀n > 1, (A.90)

we have

E[n(s$,n
t − snt )] > E[(n− 1)(s$,n−1

t − sn−1
t )] > · · · > E[s$,1

t − s1
t ] = 0, (A.91)

which implies E[s$,n
t ] > E[snt ]. In addition, Equation (A.58) and (A.51) imply that

lim
n→∞

E[s$,n
t ] > lim

n→∞
E[snt ] (A.92)

if and only if

0 <
νκ

1− ρ̃κ
− ντ

1− φτ
< 2. (A.93)
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A.4 Interpolation and Bootstrapping of BCFF Yield Forecast

Data

Here, I describe in detail how I construct month-end zero-coupon yield forecasts of

constant forecast horizons using BCFF data.

A.4.1 Treatment of forecasts for the current quarter

Denote the current-quarter forecasts made in the first, second, and third month of

a calendar quarter as F 0
1 , F 0

2 , and F 0
3 .

For F 0
2 and F 0

3 , the forecasters already have knowledge of yield realizations in the

previous month(s) at the time of making forecasts. To arrive at true forward-looking

forecasts, I need to adjust the quarter-average forecasts to account for past realizations.

For F 0
2 , the forecasters have knowledge of the first-three-week average of yields in

the first month, ȳ1,3week (BCFF also publishes this information in the middle month.)

I calculate the forward-looking measure as
3F 0

2−ȳ1,3week
2

and treat it as a forecast of the

end of the second month. The effective forecast horizon is one month.

For F 0
3 , the forecasters have knowledge of yield averages in the first month, ȳ1, and

the first-three-week in the second month, ȳ2,3week (BCFF also publishes this information

in the middle month.) I calculate the forward-looking measure as 3F 0
3 − ȳ2,3week − ȳ1

and treat it as a forecast of the end of the third month. The effective forecast horizon

is one month.

For F 0
1 , no adjustment for past realizations is needed. I treat it as a forecast of the

end of the second month. The effective forecast horizon is two months.

A.4.2 For constant forecast horizons

I follow Kim and Orphanides (2012) by treating the quarter-average forecasts as

forecasts made for the middle month and interpolating between mid-quarter points

to get constant-horizon forecasts. For example, I assume that the 1-quarter-ahead

forecast published in January is made for May and has an effective 5-month forecast

horizon.3 Thus, the effective forecast horizons of forecasts made in the first month

range from 5 to 17 months. I then interpolate along adjacent horizons to get constant-

horizon forecasts with 3-month to 18-month horizons using a smooth spline. Forecasts

3Chun (2010) looks at quarterly average and treats the effective forecast horizon in that example as
three months, which is the distance between the beginning of the publication month and the beginning
of the forecast quarter.
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of 18-month horizons are only interpolated after January 1997, when 5-quarter-ahead

forecasts (in BCFF terms) are available.

A.4.3 Bootstrap to get zero-coupon yield forecasts

BCFF only provides par yield forecasts for Treasury securities with maturities above

one year. To get implied zero-coupon yield forecasts, I first fit a Nelson-Siegel model for

6-month, 1-year, 2-year, 5-year, and 10-year Treasury yields. I exclude yield forecasts

of 3-month Treasury bills and 30-year Treasury bonds because the Nielson-Siegel model

has difficulty fitting the very short end of the observed yield curve (Gürkaynak et al.

2007). Due to the limited availability of yield maturities, I follow Diebold and Li

(2006) in applying a simple regression method instead of a numerical optimization

approach. I choose 2 years as the maturity at which the loading on the medium-term

factor achieves its maximum, since 2-year forecasts are directly observable. The choice

of this 3-factor model seems reasonable given that the first two principle components

summarize about 99.8% of the cross-sectional variation in yield forecasts across all

forecast horizons.4 The zero-coupon yield forecasts are then bootstrapped from fitted

par yield forecasts (see Equations 2 and 7 in Gürkaynak et al. 2007).

A.5 Objective Risk Premia Construction

To construct the objective risk premia, I use the fitted values from predictive re-

gressions of future bond excess returns on the cycle factor from Cieslak and Povala

(2015) and the macro factor from Ludvigson and Ng (2009).

For the cycle factor, I project yields with maturities of 1, 2, 5, 7, 10, and 15

years on the trend inflation defined as in Cieslak and Povala (2015).5 The regression

residuals are then used to construct the short cycle, c
(1)
t , and average cycle, ct. The

cycle factor is obtained by regressing the maturity-weighted average excess returns,

rxt+1 ≡ 1
14

∑15
k=2 rx

k
t+1/k, on lagged cycle variables

rxt+1 = γ0 + γ1ct + γ2c
(1)
t + εt+1 (A.94)

4For example, the first (second) principal component explains 96.4% (3.5%) of the cross-sectional
variation in my sample for 1-year-ahead forecasts from December 1987 to December 2018.

5Cieslak and Povala (2015) use 20-year bond instead of 15-year bond. I choose 15-year bond here
because the 20-year zero-coupon yield is only available starting from July 1981.
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and

ĉf t = γ̂0 + γ̂1ct + γ̂2c
(1)
t . (A.95)

For the macro factor, I use a similar approach and regress the average excess returns

on the principle components from Ludvigson and Ng (2009):

rxt+1 = β0 + β1F̂1t + β2F̂
3
1t + β3F̂2t + β4F̂3t + β5F̂4t + β6F̂8t + ut+1 (A.96)

and

F6t = β̂0 + β̂1F̂1t + β̂2F̂
3
1t + β̂3F̂2t + β̂4F̂3t + β̂5F̂4t + β̂6F̂8t. (A.97)

Finally, the objective risk premia are constructed by running predictive regressions

of individual bonds’ excess returns on these two factors and using the fitted values

rxnt+1 = α1ĉf t + α2F6t + ηt+1 (A.98)

and

Etrxnt+1 = α̂1ĉf t + α̂2F6t. (A.99)

Table B.1 reports the performance of these factors.

A.6 Bootstrap for the Expectation Hypothesis Test

The bootstrap is carried out as follows: First, the m-period ahead-forecasts on

n-maturity yields under the null are calculated, using Equation (18), as

Ẽnullt ynt+m = ymt +
n+m

n
(yn+m
t − ymt ) + ĉn+m,m, (A.100)

where ĉn+m,m is the sample mean of scaled subjective risk premia. The forecast residuals

under the null are thus defined as

em,nt ≡ Ẽtynt+m − Ẽnullt ynt+m. (A.101)

Next, I follow Crump and Gospodinov (2019) in using a nonparametric method to

construct bootstrapped yields. The main idea of their approach is to represent forward

short rates from period t + n − 1 to t + n, f 1,n−1
t , as the sum of “difference returns,”
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drnt :

f 1,n−1
t ≡ nynt − (n− 1)yn−1

t = fNt−N+n −
N−n−1∑
k=0

drn+1+k
t−k , (A.102)

where

drnt ≡ rnt − rn−1
t . (A.103)

The bootstrapped yields are re-constructed by resampling the following matrix of

forward rates and difference returns with a block bootstrap and conditioning on the

first observation:

Z =



fN2 − fN1 dr2
2 dr3

2 · · · drN2 x12 · · · xK2

fN3 − fN2 dr2
3 dr3

3 · · · drN3 x13 · · · xK3

· · · · · · · · · · · · · · · · · · · · · · · ·
fNt − fNt−1 dr2

t dr3
t · · · drNt x1t · · · xKt

· · · · · · · · · · · · · · · · · · · · · · · ·
fNT − fNT−1 dr2

T dr3
T · · · drNT x1T · · · xKT


, (A.104)

where {xkt} are additional variables that can be resampled at the same time to preserve

the cross-section correlation structure.6 More details can be found in Crump and

Gospodinov (2019). I choose {xkt} = {em,nt : m ∈M, n ∈ N} where M and N are sets

of forecast horizons and yield maturities considered, respectively.

Given a resampled matrix Z∗, I can use the reconstructed yields, {yn,∗t }, and forecast

residuals, {em,n,∗t }, to calculate bootstrapped forecasts as

Ẽ∗tynt+m = ym,∗t +
n+m

n
(yn+m,∗
t − ym,∗t ) + em,n,∗t . (A.105)

Finally, I re-run the regressions, as in Equation (1.6), and record the Newey-West

t-statistics with respect to the null hypothesis β = 1 in the bootstrapped samples.

The bootstrapped p-values are obtained by comparing the sample t-statistic to the

distribution of bootstrapped t-statistics.

6The block length is determined as in Politis and White (2004). I thank Andrew Patton for making
the Matlab code available online.

165



A.7 Proxies for Long-term Macroeconomic Expectations

Proxies of long-term macroeconomic expectations are constructed as the exponen-

tially weighted average of past data realizations

gLTt = νggt + (1− νg)gLTt−1 = νg

∞∑
k=0

(1− νg)kgt−k, (A.106)

πLTt = νππt + (1− νπ)πLTt−1 = νπ

∞∑
k=0

(1− νπ)kπt−k, (A.107)

for real GDP growth and inflation, respectively. To avoid an arbitrary truncation of the

sum, I use a very long history of past observations on real GDP growth and inflation,

up to the point at which the weights become close to negligible for initial observations.

From 1947 onwards, I use quarterly vintages of first-release values from the Philadelphia

Fed for real GDP growth and lagged log changes in core CPI for inflation.7 Before

1947, I use real GDP growth from the Maddison Project Database (Bolt et al. 2018),

available at the University of Groningen, and historical CPI from Shiller (2005).8 The

gain parameters are estimated to match long-term survey forecasts from 1983 to 2018

at νg = 0.025 and νπ = 0.045 in quarterly updating terms. These values are close to

estimates in the previous literature that match 1-year-ahead forecasts (for a review, see

Cieslak and Povala 2015). Figure B.2 plots the fitted proxies for long-term expectations

with a comparison to survey data. Regressions show that gLT (πLT ) explains the long-

term average forecasts of real GDP growth (inflation) with a coefficient of 0.96 (0.85)

and R2 of 0.57 (0.87), indicating a high informativeness.

A.8 Bootstrap for Predictive Regressions

I use a bootstrap approach that follows Greenwood and Vayanos (2014). The boot-

strapped samples are constructed by re-drawing dependent variables and predictors

with a circular block bootstrap. The optimal block length is determined as in Poli-

tis and White (2004). The sample Newey-West t-statistic is calculated with respect

7SPF (a) sends survey questionnaires after the Bureau of Economic Analysis releases the advance
estimate to the public and (b) collects questionnaires before the second releases. More information
can be found in the documentation of SPF.

8CPI is not subject to revisions (Croushore and Stark 2001). Real GDP growth from the Maddison
Project Database is estimated based on historical benchmarks to reflect historical living standards
(Bolt et al. 2018). Thus, the effect of look-ahead bias is unknown but arguably not large.
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to the null that slope coefficient β1 is zero. Since the bootstrapped samples are not

simulated under the null, the bootstrapped Newey-West t-statistics are calculated with

respect to the null that the bootstrapped estimate β∗1 is equal to the sample estimate β̂1

(MacKinnon 2009). The bootstrapped p-values are obtained by comparing the sample

Newey-West t-statistic to the distribution of bootstrapped t-statistics.

A.9 An AR(1) Approximation of AR(2) Processes

Assume xt follows an AR(2) process

(1− ρx,1L− ρx,2L2)xt = ζt, (A.108)

where L is the lag operator and ζt is an i.i.d. shock. If ρx,1 and ρx,2 are such that

ρx,1 ≈ 2ρx , ρx,2 ≈ −ρ2
x (A.109)

for some ρx, we can write Equation (A.108) approximately as

(1− ρxL)2xt = ζt, (A.110)

or

(1− ρxL)xt = ζ∗t , (A.111)

with ζt = ζ∗t − ρxζ∗t−1. It is easy to see that {ζ∗t } cannot have a zero auto-correlation.

However, I make the AR(1) approximation that ρx ≈ ρx,1
2

by ignoring the auto-

correlation structure.
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APPENDIX B

Expectation Formation: Additional Results

B.1 Additional Results
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Table B.2: Short-Rate Process

This table reports the AR(1) estimation results of the 1-month zero-coupon yields from Liu and
Wu(2019)

y1t+1 = µ+ ρy1t + σεt+1.

The bias-adjusted coefficients are calculated from sample estimates ρ̂, µ̂, and σ̂ as

ρ = (ρ̂+ 1/T )/(1− 3/T ),

µ = µ̂(1− ρ)/(1− ρ̂),

σ = σ̂[(1− ρ2)/(1− ρ̂2)]
1
2 .

The sample period is from January 1972 to December 2018.

1972M1 - 2018M12

ρ̂ 0.9860

Bias-adj ρ 0.9930

µ̂ 0.0638

Bias-adj µ 0.0317

σ̂ 0.5857

Bias-adj σ 0.4137
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Table B.3: Trend and Cycle in Short-Rate Expectations

Panel A reports results of regressing 3-month Treasury bill (tbill) rate forecasts at different horizons
on long-term average forecasts (forecasts for 7- to 11-year-ahead averages) and nowcasts (forecasts
for the current quarter). Newey-West t-statistics with 6-quarter lags are reported in brackets. The
sample period is from 1983Q3 to 2018Q4, for which long-term average forecasts are available.
Panel B reports results of 1-year and long-term average forecasts of tbill rates on short- and long-term
forecasts of real GDP growth (g) and inflation (π). Newey-West t-statistics with a 6-quarter lag are
reported in brackets. The sample period is from 1980Q4 to 2018Q4 and 1983Q3 to 2018Q4 for 1-year
and long-term average forecasts, respectively.

Panel A: Trend and cycle in tbill rate forecasts

(1) (2) (3) (4) (5)

1Q 2Q 4Q 2Y 5Y

LT avg. -0.06 -0.04 0.16 0.60 0.88

[-3.03] [-0.93] [1.85] [6.50] [13.59]

Nowcast 1.01 0.99 0.85 0.48 0.06

[97.37] [43.69] [17.09] [6.85] [2.69]

Obs. 142 142 142 142 142

Adj. R2 0.99 0.99 0.98 0.94 0.98

Panel B: Links to macroeconomic expectations

1-year tbill LT avg. tbill

(1) (2) (3) (1) (2) (3)

LT avg. g 3.64 2.87 1.30 1.15

[5.44] [4.20] [4.43] [3.38]

LT avg. π 1.37 1.23 0.78 0.75

[18.03] [13.12] [8.98] [8.89]

Nowcast
g

0.30 0.21 0.17 0.05

[1.55] [3.48] [1.08] [0.79]

Nowcast
π

1.16 0.23 0.57 0.06

[8.33] [2.91] [4.32] [0.83]

Obs. 153 153 153 142 142 142

Adj. R2 0.89 0.56 0.91 0.88 0.36 0.89
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Table B.4: Constructing Objective Real GDP Growth Expectations

This table reports the results of 1-year-ahead predictive regressions for real GDP growth

gt+1 = γ0 + γ1gt + γ2s
$,n
t + εt+1.

gt is the year-on-year real GDP growth and s$,nt is the difference between 7-year and 3-month zero-
coupon yields. The regressions are performed at quarterly frequency from 1964Q1 to 2018Q4. Newey-
West t-statistics with 6-quarter lags are reported in brackets.

(1) (2) (3)

Yield spread 0.68 0.74

[2.98] [3.42]

Lagged obs. 0.15 0.21

[1.61] [2.04]

Obs. 216 216 216

Adj. R2 0.14 0.02 0.18
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Figure B.1: Forecasts Implied by Constant Subjective Risk Premia

The solid blue lines plots the difference between real-time survey forecasts of n-maturity
yields from BCFF, Ẽtynt+1, and forecasts implied by constant subjective risk premia:

Ẽ∗tynt+1 ≡
(n+ 1)yn+1

t − y1
t − Ẽ∗t rxn+1

t+1

n
.

Here, constant subjective risk premia on an n-maturity zero-coupon bond, Ẽ∗t rxnt+1,

are sample averages of Ẽtrxnt+1. The blue shaded areas are bounded by the difference

between top-/bottom-10 average forecasts (also from BCFF) and Ẽ∗tynt+1. The upper
panel uses 2-year yield and the bottom uses 10-year yield. The sample period is from
December 1987 to December 2018.
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Figure B.2: Proxies for Long-term Macroeconomic Expectations

This figure compares the long-term average macroeconomic forecasts from blue chip
surveys and proxies constructed as the exponentially-weighted average of past data
realizations

gLTt = νggt + (1− νg)gLTt−1 = νg

∞∑
k=0

(1− νg)kgt−k,

πLTt = νππt + (1− νπ)πLTt−1 = νπ

∞∑
k=0

(1− νπ)kπt−k.

Here g and π denote real GDP growth and inflation, respectively. To avoid an arbitrary
truncation of the sum, I use a very long history of past observations on real GDP
growth and inflation, up to the point at which the weights become close to negligible
for initial observations. Descriptions of data used are given in Appendix A.7. The gain
parameters are estimated to match long-term survey forecasts from 1983 to 2018 at
νg = 0.025 and νπ = 0.045 in quarterly updating terms.
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Figure B.3: Function Coefficients of Model-implied Short-rate Expectation Wedges

This figure plots the coefficients of µ̂t (c∗g,j), ĉt (d∗g,j), and the negative of cet (−b∗g,j)
in the following function of model-implied short-rate expectation wedges at different
horizons:

Eti$t+j − Ẽti$t+j =
1

ψ

(
a∗g,jµ+ b∗g,jc

e
t + c∗g,jµ̂t + d∗g,j ĉt

)
+
(
a∗π,jτ + b∗π,jκ

e
t + c∗π,j τ̂t + d∗π,jκ̂t

)
.

The parameter values are

φµ = 0.96 , ρ̃c = 0.82 , ρc = 0.75, , νµ = 0.02 , νc = 0.2.
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Figure B.4: Model-implied Trend and Cycle Expectations

This figure plots the model-implied trend and cycle expectations in real GDP growth
and inflation. For the top two panels, I plot model-implied long-term average forecasts,
with a comparison to observed data. For the bottom two panels, I plot ĉt and κ̂t. The
sample period is from 1983Q3 to 2018Q4.
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Figure B.5: Nominal Yields’ Loading on Trend Expectations

This figure plots the loadings of nominal yields on trend expectations of real GDP
growth and inflation. The trend expectations are proxied by gLT and πLT . I consider
nominal yields with maturities from 1 to 15 years. The shaded areas are bounded by
± 2 standard errors of the coefficient estimates. The sample period is from 1971Q4 to
2018Q4, with yield data sampled in the middle month of a calendar quarter.
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Figure B.6: Comparison of Implied Real Growth Cycle Expectation

This figure plots the real GDP growth cycle expectations implied by TIPS and survey
forecasts. The blue line plots the residuals from regressing 2-year TIPS yield on gLT .
The red line plots the survey-implied cycle expectations from Section 1.6.
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APPENDIX C

Fading Memory: Data Construction, Derivations,

and Proofs

C.1 Data

C.1.1 Financial market data

Population. We obtain quarterly data on the population of the United States from
1947 onwards from the FRED database at the Federal Reserve Bank of St. Louis. For
1871 to 1946, we obtain annual population numbers from the Historical Statistics of
the United States, available at https://hsus.cambridge.org/.

Stock index returns. We calculate quarterly stock index returns from 1871 to 1925
using data from Shiller (2005) back to 1871. From 1926 onwards, we use quarterly
returns on the value-weighted CRSP index.

Inflation. We use the Consumer Price Index (CPI) series (and the pre-cursors of
the official CPI) in Shiller’s data set to deflate returns and the payout growth series
that we describe next.

Payouts. From 1926 onwards, we calculate quarterly aggregate dividends using
the lagged total market value of the CRSP value-weighted index and the difference
between quarterly returns with and without dividends. Furthermore, working with
the monthly CRSP individual stock files and following Bansal et al. (2005), we use
reductions in the shares outstanding (after adjusting for stock splits, stock dividends,
etc. using the CRSP share adjustment factors) as reported by CRSP to calculate
stock repurchases. To eliminate the effect of data errors (there are instances where the
shares outstanding drop by a huge amount and jump back up a few months later), we
drop observations where the shares outstanding fall by more than 10 percent within
one month. Repurchases account for an economically significant share of payouts only
from the 1980s onwards. We aggregate the sum of dividends and repurchases across
firm within each month and then at the aggregate level within each quarter. Dividing
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Figure C.1: Dividend Growth from Three Data Sources

by the size population at each point in time, we obtain per-capita payouts. To avoid
seasonality effects, we compute growth rates as the four-quarter change in log per-capita
aggregate payouts, divided by four.

Prior to 1926, we use annual data on aggregate household dividend receipts from
tax data in Piketty et al. (2017) for the period 1913 to 1926. While this data source
covers only the portion of dividends received by households, its advantage is that it
is based on high-quality administrative data. As long as the share of total aggregate
dividends received by households does not change much from year to year, the growth
rates calculated from this data set should approximate well the growth rates in total
aggregate dividends. Figure C.1 suggests that this is the case: in years when the
Piketty-Saez data overlaps with CRSP, the per-capita growth rates obtained from the
two data sets are closely aligned.

For the period from 1900 to 1913, we use a series of annual aggregate corporate
non-farm non-financial dividends from Wright (2004). Figure C.1 shows that the per-
capita growth rates calculated from the Wright data are, with a few exceptions, very
close to those from the Piketty-Saez data. For the period from 1871 to 1900, we use
real per-capita GDP growth rates from Barro and Ursúa (2008) (which are in turn
based on Balke and Gordon (1989)) as proxy for ∆d from 1871 to 1900.

Bond and bill yields. To calculate subjectively expected excess return from survey
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expectations, we use the one-year constant maturity Treasury yield, obtained from
FRED database at the Federal Reserve Bank of St. Louis. To calculate quarterly
stock market index excess returns back to 1926, we use the three-month T-Bill yield
series from Nagel (2016), extended until the end of 2016 with 3-month T-bill yields
from the FRED database (where we convert the reported discount yields into effective
annual yields).

C.1.2 Survey data on return expectations

Three surveys provide us with direct measures of percentage expected stock market
returns over a one-year horizon: UBS/Gallup (1998-2007, monthly); Vanguard Re-
search Initiative (VRI) survey of Ameriks et al. (2016) (2014, one survey); and Surveys
of Lease et al. (1974) and Lewellen et al. (1977) (one survey per year in 1972 and 1973).
In part of the sample, the UBS/Gallup survey respondents report only the return they
expect on their own portfolio. We impute market return expectations by regressing
expected market returns on own portfolio expectations using the part of the sample
where both are available and using the fitted value from this regression when the mar-
ket return expectation is not reported. The VRI survey asks about expected growth
in the Dow Jones Industrial Average (DJIA). Since the DJIA is a price index, we add
to the price growth expectation the dividend yield of the CRSP value-weighted index
at the time of the survey. Figure C.2 shows the time series of expectations from these
surveys.

In the next step, we use the data from the Michigan Survey of Consumers (MSC).
The MSC elicits the perceived probability that an investment in a diversified stock
fund would increase in value over a one-year horizon. For comparability with the other
surveys above, which are all based on surveys of people that hold stocks, we restrict the
sample to respondents that report to hold stocks (as the MSC does for the aggregate
stock market beliefs series that they publish on their website). To impute percentage
expectations, we regress the percentage expectations from the UBS/Gallup and VRI
surveys on the MSC probability. The red line in Figure C.2 shows the resulting fitted
value. In the periods when the series overlaps with the UBS/Gallup and VRI samples,
the fit is very good, indicating that the simple imputation procedure delivers reasonable
results. In time periods when the UBS/Gallup and VRI surveys are not available, we
use this fitted value.

Finally, we bring in data from the Conference Board (1986-2016, monthly) and
Roper surveys (1974-1997, one survey per year). These surveys elicit respondents sim-
ple categorical beliefs about whether the “stock prices” will likely increase, decrease,
or stay the same (or whether they are undecided, which we include in the “same” cat-
egory). We construct the ratio of the proportion of those who respond with “increase”
to the sum of the proportions of “decrease” and “same.” We then regress the expected
return series that we obtained from the surveys above on this ratio. More precisely,
since the Conference Board and Roper surveys ask about stock price increases, we sub-
tract the current dividend yield of the CRSP value weighted index from the dependent

181



.0
5

.1
.1

5
Ex

pe
ct

ed
 R

et
ur

ns

1970m1 1980m1 1990m1 2000m1 2010m1 2020m1
Month

UBS-Gallup LLS JF
VRI Michigan
Roper Conference Board

Figure C.2: Expected Return Imputation

.

variable in this regression and we add it back to the fitted value. The green line in
Figure C.2 shows the fitted value from this regression for the Conference Board series
and the four squares show the fitted value for the Roper surveys. Except for a relatively
short period around the year 2000, the fitted series tracks the expected returns from
UBS/Gallup, MSC, and VRI very well. In time periods when the UBS/Gallup, MSC
and VRI surveys are not available, we use this fitted value.

C.1.3 Analysts long-term earnings expectations

We collect the median of analysts’ stock-level long-term median earnings-per-share
(EPS) growth forecasts from the I/B/E/S Unadjusted US Summary Statistics database,
focusing on U.S. firms with earnings forecasts in U.S. dollars. The data is available at a
monthly frequency starting in December 1981, but shares outstanding information that
we need to aggregate across stocks becomes available only in September 1984 for all but
10% of stocks covered by I/B/E/S. We therefore start the sample in September 1984.
We also collect the median forecasts of current fiscal year EPS. We use those to calcu-
late forecasted current year total earnings by multiplying forecasted EPS with shares
outstanding. We aggregate across stocks by forming a value-weighted average each
quarter using total forecasted current fiscal year earnings as the weight. Stocks with
negative values of this weight variable are excluded. We then aggregate the monthly
long-term EPS growth forecasts across months within each calendar quarter.
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We also collect the median forecasts for next fiscal year EPS. We calculate the
growth rate from current year to next-year earnings. We then aggregate the data,
across stocks, then within quarter, in the same way as described above for the long-
term forecasts.

We convert these nominal expected growth rates to real expected growth rates by
deflating with inflation forecasts from the Survey of Professional Forecasters (SPF),
which we obtain from the Federal Reserve Bank of Philadelphia.1 We use the one-year
and ten-year CPI median inflation forecasts in the quarter prior to the quarter in which
the analyst forecast is made. The 10-year forecast is available in the SPF only starting
in quarter 1991:4. Prior to this date we use the extended series constructed by the
Philadelphia Fed from the Blue Chip Economic Indicators and the Livingston survey
that is available on the same website. In quarters when the extended series has missing
values, we substitute the value from the previous quarter.

Long-term earnings growth rates in the I/B/E/S data are meant to represent an
expected growth rate over the next three to five years, or a “full business cycle” (see,
e.g., Sharpe (2002)). To deflate with an expected inflation rate that approximates this
forecast horizon, we subtract the average of the one-year and ten-year inflation forecast
from the long-term earnings forecast. We subtract the one-year inflation forecast from
the one-year earnings growth forecast. As a last step, we convert the real expected
earnings growth series to quarterly frequency by dividing the annualized numbers by
four.

C.2 Bootstrap Simulations for Predictive Regressions

Our bootstrap simulations closely follow those in Kothari and Shanken (1997), but
extended to multiple predictor variables. We start by estimating AR(1) processes
for the predictor variables and we add 1/T to the slope coefficient to perform first-
order bias-adjustment (and we adjust the intercept accordingly). We also estimate the
predictive regression for returns by OLS and record the residuals.

Using these bias-adjusted coefficients from the estimated AR(1) for the predictors,
we then simulate a VAR(1) with a diagonal coefficient matrix, where the innovations
are the bootstrapped residuals from the estimated AR(1). As in Kothari and Shanken
(1997), we condition on the first observation of the predictor time series. We preserve
contemporaneous correlations of the innovations by drawing vectors of residuals for the
different predictors.

Based on the simulated predictor series, we then also simulate two return series by
combining the predictor time-series with bootstrapped residuals from the predictive
regression. For the first return series, we set the predictive regression slope coefficients
equal to the OLS predictive regression estimate, i.e., we simulate under the alternative.
For the second series, we set the predictive regression slope coefficients equal to zero,

1Available at https://www.philadelphiafed.org/research-and-data/real-time-center/

survey-of-professional-forecasters/historical-data/inflation-forecasts
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i.e., in this case we are simulating under the null hypothesis of no predictability.
We use the described approach to simulate 10,000 bootstrap samples of predictors

and the two returns series. We then run the predictive regressions on the bootstrap
samples and record the regression coefficients and t-statistics. We obtain the predictive
regression bias-adjustment by comparing the mean slope coefficients from the bootstrap
samples with the first return series (alternative) to the OLS estimate. We obtain the
p-values by comparing the sample predictive regression t-statistic to the quantiles of
the distribution of the t-statistic in the bootstrap regressions with the second return
series (null).

C.3 Properties of the Predictive Distribution

We describe now the properties of ε̃t+j, j = 1, 2, ... under the time-t predictive
distribution.

We first show that the subjective conditional variance of ε̃t+j is decreasing in the
forecast horizon. First note the perceived consumption growth process has the following
autocovariance structure

˜covt(∆ct+i,∆ct+j) = νσ2, j > i ≥ 1, (C.1)

which arises from the agent’s uncertainty about µ. From the definition of ε̃, we obtain

ε̃t+i =
∆ct+i − µ̃t+i−1√

1 + νσ
.

=
∆ct+i − ν∆ct+i−1 − (1− ν)µ̃t+i−2√

1 + νσ
.

=
∆ct+i − ν

∑i−1
j=1(1− ν)j−1∆ct+i−j − (1− ν)i−1µ̃t√

1 + νσ
. (C.2)

Because of the constant autocovariance structure of perceived consumption growth,

ṽart(ε̃t+i−1) = ṽart

(
∆ct+i−1 − ν

∑i−2
j=1(1− ν)j−1∆ct+i−1−j√

1 + νσ

)

= ṽart

(
∆ct+i − ν

∑i−2
j=1(1− ν)j−1∆ct+i−j√

1 + νσ

)
, (C.3)

and

ṽart(ε̃t+i) = ṽart(ε̃t+i−1) + ν2(1− ν)2i−4 − 2ν2

1 + ν
(1− ν)2i−4

= ṽart(ε̃t+i−1)− 1− ν
1 + ν

ν2(1− ν)2i−4, i ≥ 2. (C.4)
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This leads to

ṽart(ε̃t+i) = 1− 1− ν
1 + ν

ν2 1− (1− ν)2i−2

1− (1− ν)2
, (C.5)

which decreases over time and converges to 1− 1−ν
1+ν

ν
2−ν .

Using these results, we can calculate the time-t perception of the autocovariance of
future ε̃t+i,

˜covt(ε̃t+i, ε̃t+i+1)

= ˜covt

(
∆ct+i − ν

∑i−1
j=1(1− ν)j−1∆ct+i−j√

1 + νσ
,
∆ct+i+1 − ν

∑i−1
j=1(1− ν)j−1∆ct+i+1−j√

1 + νσ

)
=− 1

1 + ν
+ (1− ν)ṽart(ε̃t+i)

=− ν2

1 + ν
− (1− ν)2

1 + ν
ν2 1− (1− ν)2i−2

1− (1− ν)2
< 0. (C.6)

i.e., it is negative, as we claimed in the main text.

C.4 Kalman Filtering Interpretation

Here we show that our model can be mapped into a full memory model that is
equivalent in terms of the relevant subjective belief dynamics and asset prices. In this
equivalent version of the model, the agent perceives a latent AR(1) trend growth rate
and she uses the Kalman filter to optimally track this latent trend, while objectively
the trend growth rate is constant. The agent uses full memory and the information
structure is a filtration and it is Markovian. In the agent’s subjective view, past data
gradually loses relevance for forecasting not because of fading memory but because it
is perceived as irrelevant given the perceived stochastic drift over time in the trend
growth rate.

C.4.1 Diffuse prior

Suppose the agent at time t perceives the law of motion

∆ct = µt + ξt, ξt ∼ N (0, σ2
ξ ), (C.7)

µt+1 = µt + ζt+1, ζt+1 ∼ N (0, σ2
ζ ), (C.8)

where the agent knows σ2
ξ and σ2

ζ , but not µt. With diffuse prior and an infinite
history, Ht, of observed data on ∆c, the predictive distribution can be obtained from
the steady-state Kalman filter (see, e.g., Hamilton (1994)) as

µt+1|Ht ∼ N (µ̂t+1|t, ω
2 + σ2

ζ ), (C.9)

185



where the optimal forecast µ̂t+1|t ≡ Ê(µt+1|Ht) evolves as

µ̂t+1|t = µ̂t|t−1 +K(∆ct − µ̂t|t−1), (C.10)

with

K =
ω2 + σ2

ζ

ω2 + σ2
ζ + σ2

ξ

, (C.11)

and
ω2 = Kσ2

ξ . (C.12)

Thus the predictive distribution of ∆ct+1 at time t is

∆ct+1 ∼ N (µ̂t+1|t, ω
2 + σ2

ζ + σ2
ξ ). (C.13)

To map into our fading memory setup, we choose

K = ν, σ2
ξ = (1− ν2)σ2, σ2

ζ = ν2(1 + ν)σ2. (C.14)

The time-t predictive distribution of ∆ct+1 then is exactly the same as in our fading
memory setting. The time-t predictive distribution of ∆ct+j for j > 1 is different
from the fading memory setting, though, because here the agent perceives µ̃t as a
martingale and the predictive distribution inherits these martingale dynamics, while
in our fading memory setting the predictive distribution converges to a stationary one
at long horizons. For pricing, however, this difference in the perceived distribution for
j > 1 does not matter, because under resale valuation, pricing is based on a chain
of valuations of one-period ahead payoffs from selling the asset. Thus, pricing in this
perceived stochastic trend setting here is the same as in our fading memory setting.

C.4.2 Informative prior

Suppose the agent at time t perceives the law of motion

∆ct = µt + ξt, ξt ∼ N (0, σ2
ξ ), (C.15)

µt+1 = (1− h)µ+ hµt + ζt+1, ζt+1 ∼ N (0, σ2
ζ ), (C.16)

where 0 ≤ h < 1 and the value of h is known to the agent. Steady-state Kalman filter
updating yields optimal forecasts of the state as

µ̂t+1|t = (1− h)µ+ hµ̂t|t−1 +K(∆ct − µ̂t|t−1), (C.17)
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with

K = h
σ2
ζ + h2ω2

σ2
ζ + σ2

ξ + h2ω2
, (C.18)

ω2 = Kσ2
ξ/h. (C.19)

Iterating yields

µ̂t+1|t =
1− h

1− h+K
µ+K

∞∑
j=0

(h−K)j∆ct−j. (C.20)

The predictive distributions are

µt+1|Ht ∼ N (µ̂t+1|t, h
2ω2 + σ2

ζ ), (C.21)

and
∆ct+1|Ht ∼ N (µ̂t+1|t, h

2ω2 + σ2
ζ + σ2

ξ ). (C.22)

We can map this into our fading memory setup with informative prior by choosing

K = φν, h = 1− ν + φν, σ2
ξ =

1− ν
1− ν + φν

(1 + φν)σ2 (C.23)

to obtain equivalence in terms of the relevant subjective belief dynamics and asset
prices.

C.5 Model Solution for ψ = 1

C.5.1 Stochastic discount factor

Following Hansen et al. (2008), we start with value function iteration

vt =
δ

1− γ
log Ẽt[e(1−γ)(vt+1+∆ct+1)], (C.24)

where vt = log(Vt/Ct) and Vt is the continuation value. We conjecture the solution to
be linear in the state variable, i.e.

vt = µv + Uvµ̃t. (C.25)

Plugging in the conjectured solution we get

Uv =
δ

1− δ
, (C.26)

and

µv =
1

2
(1− γ)Uv(νUv + 1)2(1 + ν)σ2. (C.27)
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We obtain the log SDF

mt+1|t = log

(
δ
Ct
Ct+1

(Vt+1)1−γ

Ẽt[(Vt+1)1−γ]

)
= log δ −∆ct+1 + (1− γ) log(Vt+1)− log Ẽt[(Vt+1)1−γ]

= log δ −∆ct+1 + (1− γ)(vt+1 + ct+1)− log Ẽt(e(1−γ)(vt+1+ct+1))

= µ̃m − µ̃t − ξσε̃t+1, (C.28)

where

µ̃m = log δ − 1

2
(1− γ)2(νUv + 1)2(1 + ν)σ2, (C.29)

ξ = [1− (1− γ)(νUv + 1)]
√

1 + ν. (C.30)

C.5.2 Consumption claim valuation

Let ζ ≡ Wt/Ct. The return on the consumption claim is

RW,t+1 ≡
Wt+1

Wt − Ct
=
Ct+1

Ct

ζ

ζ − 1
, (C.31)

and in logs,

rw,t+1 = ∆ct+1 + log(ζ/(ζ − 1))

= µ̃t +
√

1 + νσε̃t+1 + log(ζ/(ζ − 1)). (C.32)

Plugging the return on the consumption claim into the Euler equation and taking logs,

log(ζ/(ζ − 1)) = −µ̃m + ξ
√

1 + νσ2 − 1

2
(1 + ν)σ2 − 1

2
σ2ξ2

= − log δ, (C.33)

which we can solve for the wealth-consumption ratio

ζ =
1

1− δ
. (C.34)

That the consumption-wealth ratio is constant can also be seen by valuing con-
sumption strips. Denoting with w1

t the log of the component of time-t wealth that
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derives from the one-period ahead endowment flow, we have

w1
t − ct = log Ẽt

[
Mt+1|t

Ct+1

Ct

]
= log Ẽt

[
exp(µ̃m + (

√
1 + ν − ξ)σε̃t+1

]
= µ̃m +

1

2
(
√

1 + ν − ξ)2σ2, (C.35)

i.e., w1
t − ct is constant. It does not vary with µ̃t because, going from the first to the

second line, −µ̃t in mt+1|t cancels with µ̃t in ∆ct+1. Working through the valuation
equation backwards in time, we obtain the price of an n-period consumption strip

wnt − ct = nµ̃m +
n

2
(
√

1 + ν − ξ)2σ2. (C.36)

Plugging in the solutions for µ̃m and ξ from the previous subsection, we get

wnt − ct = n log δ. (C.37)

Summing the value of consumption strips at all horizons strips yields the consumption-
wealth ratio in (C.34).

C.5.3 Dividend strip valuation

By analyzing dividend strips that are claims to single dividends in the future, we
can transparently analyze the conditions needed for a finite price. The price of the
n-period dividend strip is

P n
t ≡ Ẽt[Mt+1|tẼt+1[· · · Ẽt+n−1[Mt+n|t+n−1Dt+n]]]. (C.38)

As we discussed earlier, when we evaluate these expectations, we do so by iterating
backwards from the payoff at t + n, evaluating one conditional expectation at a time
without relying on the Law of Iterated Expectations (LIE).

Taking logs and evaluating (C.38), we obtain

pnt − dt = [1− (1− α)n] (ct − dt + µdc +
λ− 1

α
µ̃t) + nµ̃m +

1

2
(Anσ

2 +Bnσ
2
d), (C.39)

where

An =
n−1∑
k=0

{√
1 + ν

[
ν(λ− 1)

1− (1− α)k

α
+ (λ− 1)(1− α)k + 1

]
− ξ
}2

, (C.40)

and

Bn =
1− (1− α)2n

1− (1− α)2
. (C.41)
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For very large n, approximately,

An ≈ n

[√
1 + ν

(
1 + ν

λ− 1

α

)
− ξ
]2

, (C.42)

and Bn, which does not grow with n, becomes very small relative to An. Thus for the
price to be well-defined, we need the terms that grow with n in (C.39) to be (weakly)
negative. Using (2.34), we see that this requires

µ̃m +
1

2

[√
1 + ν

(
1 + ν

λ− 1

α

)
− ξ
]2

σ2 ≤ 0. (C.43)

In our calibration, we will work with a value for α that satisfies this condition.
As equation (2.33) shows, the dividend strip log price-dividend ratio is increasing

in µ̃t if λ > 1, i.e., if the dividend claim is levered. With λ = 1 the effect of a higher
expected growth rate of dividends would be offset by a higher risk-free rate, just like
it is for the consumption claim. With leverage, the effect of higher expected dividend
growth is stronger than the risk-free rate effect. Since dividends and consumption
are co-integrated and hence have the same growth rate in the long-run, the reason
why the agent can expect the dividend and consumption growth rates to differ for a
substantial period of time may not be immediately obvious. When the agent revises
upward her posterior mean µ̃t, then her expectation of the dividend growth rate in
the next period gets revised upward by λ − 1 times the revision in µ̃t. She expects
that over the near future dividend growth will exceed consumption growth, leading to
a rise in d − c. Eventually, the higher log dividend-consumption ratio will—through
the cointegration relationship in (2.31)—generate enough negative offset to bring the
dividend growth rate back down to µ̃t. Thus, she expects the process to settle down
with similar mean growth rates, but at a higher d−c.2 Is it economically plausible that
the agent perceives higher unconditional mean economic growth to be associated with
a higher dividend-consumption ratio? It is impossible to answer this question within
a model with exogenous endowment flow. In Appendix C.7 we present calculations
based on a Ramsey-Cass-Koopmans model with endogenous investment and production
that suggests that a positive relationship between growth and the capital income to
consumption ratio is indeed plausible.

To get the expected returns of dividend strips, we start with (2.33) to compute
returns. For the one-period claim, we get

r1
t+1 = λ∆ct+1 − (λ− 1)µ̃t − µ̃m −

1

2

(√
1 + νλ− ξ

)2

σ2. (C.44)

2A similar mechanism is at work in Collin-Dufresne et al. (2016a), but there dividends and con-
sumption are not cointegrated, and so d − c can grow without bound, but the unconditional mean
growth rate of consumption (and hence dividends) is truncated.
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Subtracting rf,t = −µ̃m + µ̃t − 1
2
ξ2σ2 yields

r1
t+1 − rf,t = λ(∆ct+1 − µ̃t)−

1

2

(√
1 + νλ− ξ

)2

σ2 +
1

2
ξσ2. (C.45)

The subjective conditional variance of r1
t+1 is (1+ν)λ2σ2, and so, after taking subjective

expectations of (C.45), we obtain

log Ẽt[R1
t+1]− rf,t = λξ

√
1 + νσ2. (C.46)

The objective conditional variance of r1
t+1 is only λ2σ2, and so taking objective expec-

tations of (C.45) yields,

logEt[R1
t+1]− rf,t = λξ

√
1 + νσ2 − 1

2
νλ2σ2 + λ(µ− µ̃t). (C.47)

For the infinite-horizon claim, again starting from (2.33), we get

r∞t+1 = ∆ct+1 +
λ− 1

α
(µ̃t+1 − µ̃t)− µ̃m −

1

2

[√
1 + ν

(
1 + ν

λ− 1

α

)
− ξ
]2

σ2, (C.48)

and, after subtracting the risk-free rate,

r∞t+1−rf,t = ∆ct+1 +
λ− 1

α
(µ̃t+1− µ̃t)− µ̃t−

1

2

[√
1 + ν

(
1 + ν

λ− 1

α

)
− ξ
]2

σ2 +
1

2
ξ2σ2.

(C.49)

The subjective conditional variance of r1
t+1 is (1+ν)

(
1 + ν λ−1

α

)2
σ2 and therefore, after

taking subjective expectations of (C.49), we obtain

log Ẽt[R∞t+1]− rf,t =

[
1 + ν

λ− 1

α

]
ξ
√

1 + νσ2. (C.50)

The objective conditional variance of r∞t+1 is only
(
1 + ν λ−1

α

)2
σ2, and so taking objec-

tive expectations of (C.49) yields

logEt[R∞t+1]− rf,t =

[
1 + ν

λ− 1

α

]
ξ
√

1 + νσ2 − 1

2
ν

(
1 + ν

λ− 1

α

)2

σ2

+

(
1 + ν

λ− 1

α

)
(µ− µ̃t). (C.51)

C.5.4 Numerical solution

We use the analytical solutions for dividend strip prices to numerically compute the
price, Pt, of the equity claim to the whole stream of dividends. For n > J and some
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big enough J , equation (2.33) implies that

P n
t ≈ Cte

µdc+
1
2

1
1−(1−α)2

σ2
d+λ−1

α
µ̃t exp(nµ̃m +

1

2
Anσ

2), n > J, (C.52)

where we approximate

An ≈ AJ + (n− J)[
√

1 + ν(ν
λ− 1

α
+ 1)− ξ]2, n > J. (C.53)

We can show that

Pt ≈

(
J∑
n=1

P n
t

)
+ CtVJ exp

(
µdc +

1

2

1

1− (1− α)2
σ2
d +

λ− 1

α
µ̃t

)
, (C.54)

with

VJ =
exp

(
(J + 1)µ̃m + 1

2
AJσ

2 + 1
2
[
√

1 + ν(ν λ−1
α

+ 1)− ξ]2σ2
)

1− exp
(
µ̃m + 1

2
[
√

1 + ν(ν λ−1
α

+ 1)− ξ]2σ2
) . (C.55)

We implement this by choosing a J big enough so that the value of Pt we obtain is not
sensitive anymore to further changes in J . In our calibration, this requires J ≈ 7, 000.

We further use numerical methods to solve for the subjective equity premium in
the ψ = 1 case. We follow the approach of Pohl et al. (2018). When ψ = 1, the
wealth-consumption ratio is a constant

log
Wt − Ct
Ct

= log
δ

1− δ
, (C.56)

and we only need to solve for the log price-dividend ratio. The log P/D ratio should
be a function of both µ̃ and dt − ct, i.e.

log
Pt
Dt

= H(µ̃t, dt − ct). (C.57)

In this case, because there are two state variables, the basis functions are now

ψij(µ̃, dt − ct) ≡ Λi(µ̃)Λj(dt − ct), (C.58)

where Λi denotes the Chebyshev polynomials. We will approximate the log P/D ratio
as

Ĥ(µ̃, dt − ct;βm) =

n1−1∑
i=0

n2−1∑
j=0

βm,ijψij(µ̃, dt − ct). (C.59)
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Rewrite the subjective Euler equation

Ẽt[Mt+1Rm,t+1] = 1 (C.60)

as

0 = I(µ̃t, dt − ct)

≡ Ẽt[eµ̃m−µ̃t−ξσεt+1+∆dt+1
eH(µ̃t+1,dt+1−ct+1) + 1

eH(µ̃t,dt−ct)
]− 1

= eµ̃m+(λ−1)µ̃t−α(dt−ct−µdc)Ẽt[e(λ
√

1+ν−ξ)σε̃t+1+σdηt+1
eH(µ̃t+1,dt+1−ct+1) + 1

eH(µ̃t,dt−ct)
]− 1. (C.61)

We evaluate the function I(µ̃t, dt− ct) on the two-dimensional grid of µ̃t and dt− ct
and use the two-dimensional Gaussian quadrature approach to calculate the expecta-
tion part as an integral. Following Pohl et al. (2018), the numerical solution is imple-
mented by the “fmincon” solver with the SQP algorithm in Matlab. We minimize a
constant subject to the nonlinear constraints implied by Equation (C.61). We choose
the degree of approximation, i.e., n1 and n2, such that the log P/D ratio computed
using the projection method is closest to the analytically computed log P/D ratio as
in Equation (C.54) in terms of the RMSE,

RMSEpd =

√√√√1

t

t∑
j=1

(pdAnalyticalj − pdProjectionj )2, (C.62)

where pdAnalyticalt is calculated from dividend strip prices as in (C.54). We explore
different combinations of n1 and n2 up to a maximal degree of 8 and we choose the
combination that minimizes RMSEpd. Table C.1 summarizes the parameter choices
for this numerical procedure.

After we obtain the coefficients for H(µ̃t, dt − ct), we can calculate the subjective
equity return as

Ẽt[Rm,t+1] = Ẽt[e∆dt+1
eH(µ̃t+1,dt+1−ct+1) + 1

eH(µ̃t,dt−ct)
]

= eλµ̃t−α(dt−ct−µdc)Ẽt[eλ
√

1+νσε̃t+1+σdηt+1
eH(µ̃t+1,dt+1−ct+1) + 1

eH(µ̃t,dt−ct)
]. (C.63)

C.6 Model Solution for ψ 6= 1

C.6.1 Existence

Hansen and Scheinkman (2012) provide sufficient conditions for existence of equi-
librium in a Markovian setting with Epstein-Zin preferences. As we show in Appendix
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Table C.1: Parameter Values for Projection Method with ψ = 1

Parameter Symbol Value

Grid for µ̃t [µ− 4σ(µ̃), µ+ 4σ(µ̃)] [0.00 , 0.01]
Grid for dt − ct [E(dc)− 4σ(dc), E(dc) + 4σ(dc)] [-5.5 , -3.9]
# of points for Gaussian-Quad sampling v 200
Degrees of approximation for µ̃t n1 3
Degrees of approximation for dt − ct n2 3

RMSEpd across simulations
Mean 0.008

Median 0.008
Max 0.038

C.4, our fading memory model can be mapped into an equivalent full memory model
in which the information structure is a filtration and Markovian. This allows us to use
the results in Hansen and Scheinkman (2012) to derive parameter restrictions sufficient
to ensure existence of equilibrium.

In our equivalent “Kalman filtering” economy, we only have one state variable,
which is {µ̂t+1|t} as in Equation (C.17). This equation also shows that ∆ct+1 can be
written as a function of µ̂t+2|t+1 and µ̂t+1|t. In addition, given the Markov property of
{µ̂t+1|t}, Assumption 1 in Hansen and Scheinkman (2012) is satisfied.

To distinguish the perceived time-t predictive distribution for ∆ct+j in this “Kalman
filtering” economy here from the fading memory economy, we denote the subjective
expectation here as Ẽ∗. The Perron-Frobenius eigenvalue equation of interest is

T v(x) = exp(η)v(x), v(·) > 0, (C.64)

where
T f(x) = Ẽ∗

[
f(µ̂t+2|t+1) exp [(1− γ)∆ct+1] |µ̂t+1|t = x

]
. (C.65)

Another random variable of interest is

Nt+1 =
e(1−γ)∆ct+1v(µ̂t+2|t+1)

exp(η)v(µ̂t+1|t)
. (C.66)

Hansen and Scheinkman (2012) show that solutions exist for our model if the fol-
lowing additional assumptions are met:

Assumption 1.

log δ +
η

θ
< 0. (C.67)
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Assumption 2.
lim
t→∞

Ẽ∗[Nt+1v(µ̂t+2|t+1)−1/θ|µ̂1|0 = x] <∞. (C.68)

Assumption 3.
lim
t→∞

Ẽ∗[Nt+1v(µ̂t+2|t+1)−1|µ̂1|0 = x] <∞. (C.69)

To derive the explicit expressions of constraints in our model, we first calculate the
Perron-Frobenius eigenvalue function v. We can show that (one of) the solution is

v(x) = exp

(
1− γ
ν − φν

x

)
, (C.70)

η = (1− γ)µ+
1

2

(
1− γ
1− φ

)2

(1 + φν)σ2. (C.71)

With some algebra, both Assumption 2 and Assumption 3 can be reduced to the
form

lim
t→∞

Ẽ∗
[

exp
(
k1∆ct+1 + k2µ̂t+1|t

)∣∣∣µ̂1|0 = x
]
<∞, (C.72)

for some corresponding pairs of constants (k1, k2).
With the Wold representation, we have

µ̂t+1|t = [1− (h−K)L]−1K∆ct, (C.73)

∆ct+1 = [1− (h−K)L]−1K∆ct + τt+1, (C.74)

∆ct =
[
1 + (1− hL)−1KL

]
τt, (C.75)

where {τt−j} are uncorrelated with variance (1 + φν)σ2. It suffices to show that

lim
t→∞

Ẽ∗
[

exp
(
k [1− (h−K)L]−1K

[
1 + (1− hL)−1KL

]
τt
)]
<∞, (C.76)

or
lim
t→∞

Ẽ∗
[

exp
(
kK(1− hL)−1τt

)]
<∞. (C.77)

As long as h < 1, we have

lim
t→∞

Ẽ∗
[

exp
(
kK(1− hL)−1τt

)]
(C.78)

= lim
t→∞

Ẽ∗
[

exp
(
kK

∞∑
j=0

hjLjτt
)]

(C.79)

= exp

(
1

2
k2K2

∞∑
j=0

h2j(1 + φν)σ2

)
<∞. (C.80)
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Finally, Assumption 1 translates to

log δ +

(
1− 1

ψ

)[
µ+

1

2

1− γ
(1− φ)2

(1 + φν)σ2

]
< 0, (C.81)

and this is the only parameter constraint we apply to our model to ensure existence of
equilibrium.

C.6.2 Log-linearized solution

We solve the model for ψ 6= 1 using log-linearization along similar lines as, e.g., in
Beeler and Campbell (2012). We can write the Epstein-Zin log SDF as

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rw,t+1, (C.82)

with θ = 1−γ
1−1/ψ

.
We log-linearize the return on wealth and the return on the equity claim as

rw,t+1 = k0 + k1zt+1 − zt + ∆ct+1, (C.83)

rm,t+1 = kd,0 + kd,1zd,t+1 − zd,t + ∆dt+1, (C.84)

where zt ≡ log((Wt − Ct)/Ct) and zd,t ≡ log(Pt/Dt). We then conjecture zt and zd,t
are linear in the state variables

zt = A0 + A1φµ̃t, (C.85)

zd,t = Ad,0 + Ad,1φµ̃t + Ad,2(dt − ct). (C.86)

By applying the subjective pricing equation to both rw,t+1 and rm,t+1, we can show
that

A0 =
log δ + k0 + (1− φ)(1− k1 + νk1)µA1 + 1

2
(1− 1/ψ + φνk1A1)2θ(1 + φν)σ2

1− k1

,

(C.87)

A1 =
1− 1/ψ

1− (1− ν + φν)k1

, (C.88)
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and

Ad,0 =
θ log δ + (θ − 1)k0 + (θ − 1)(k1 − 1)A0 + kd,0 + (1− φ)(1− kd,1 + νkd,1)µAd,1

1− kd,1
(C.89)

+
(θ − 1)k1ν(1− φ)µA1 + (kd,1Ad,2 + 1)αµdc + 1

2
(kd,1Ad,2 + 1)2σ2

d

1− kd,1
(C.90)

+
1
2
[θ − 1− θ/ψ + λ+ (λ− 1)kd,1Ad,2 + φν(kd,1Ad,1 + (θ − 1)k1A1)]2(1 + φν)σ2

1− kd,1
,

(C.91)

Ad,1 =
λ− 1/ψ + (λ− 1)kd,1Ad,2

1− (1− ν + φν)kd,1
, (C.92)

Ad,2 =
α

(1− α)kd,1 − 1
. (C.93)

Applying the subjective pricing equation to the risk-free payoff, we obtain

rf,t =− log δ +
1

ψ
[φµ̃t + (1− φ)µ] (C.94)

+
1

2
(1− γ)

(
1

ψ
− γ
)(

1 +
k1φν

1− (1− ν + φν)k1

)2

(1 + φν)σ2 (C.95)

− 1

2

[(
1

ψ
− γ
)(

1 +
k1φν

1− (1− ν + φν)k1

)
− 1

ψ

]2

(1 + φν)σ2. (C.96)

We solve for the log-linearization coefficients by iterating on

z̄ = A0 + A1φµ, (C.97)

k1 =
exp(z̄)

1 + exp(z̄)
, (C.98)

k0 = log(1 + ez̄)− z̄k1, (C.99)

and

z̄d = Ad,0 + Ad,1φµ+ Ad,2E[dt − ct], (C.100)

kd,1 =
exp(z̄d)

1 + exp(z̄d)
, (C.101)

kd,0 = log(1 + ez̄d)− z̄dkd,1, (C.102)

until we reach fixed points of k0, k1, kd,0, and kd,1, determined by a difference of less
than 10−6.

We then simulate the model and construct µ̃t. To calculate the objective risk
premium, we directly use the return on equity claim as in (C.84) and the risk-free

197



rate as in (C.96). To calculate subjective expected return, we take the subjective
expectation of Equation (C.84) to yield

Ẽt[rm,t+1] =
φ

ψ
µ̃t + Ãd,0, (C.103)

where

Ãd,0 = (kd,1 − 1)Ad,0 + kd,0 + (kd,1Ad,2 + 1)αµdc (C.104)

+ (1− φ)µ [kd,1Ad,1φν + (λ− 1)kd,1Ad,2 + λ] . (C.105)

As a result, with log-linearization, the model implies a constant subjective premium.

C.7 Capital Income to Consumption Ratio in Ramsey-Cass-
Koopmans Model

To illustrate plausible properties of the dividend-consumption ratio in a model in
which investment and production is endogenous, this section presents a calculation of
the capital income to consumption ratio in the Ramsey-Cass-Koopmans model with
Cobb-Douglas technology based on Barro and i Martin (2004), Chapter 2. For ease
of comparison, we use their notations here: IES 1/θ, interest rate r, capital and con-
sumption in efficiency units k̂ and ĉ, productivity growth rate x, population growth
rate n, time discount rate ρ, capital share α and depreciation rate δ. Consistent with
our baseline calibration, we set 1/θ = 1.

Solving their equations (2.24) and (2.25) for ĉ and k̂ with the left-hand side equal
to zero in the steady state, and using the property of Cobb-Douglas technology that
f ′(k̂)/α = f(k̂)/k̂, we use this solution to calculate the ratio of capital income to
consumption as

rk̂ = (x+ ρk̂)/ĉ. (C.106)

Taking the derivative with respect to the productivity growth rate x, we obtain a
positive derivative if

n− ρ <
(

1

α
− 1

)
δ. (C.107)

With an annual population growth rate of n = 0.01, and ρ slightly bigger than 1% as in
our calibration, the left-hand side is negative and so (since 0 ≤ α ≤ 1 and δ > 0) this
inequality always holds. With typical values of δ = 0.05 and α = 0.4, the inequality
holds unless population growth rates are implausibly high (more than 8% for ρ = 0.01)
or the time discount rate implausibly low.
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APPENDIX D

Profitability Anomaly: Data Construction

D.1 Construction of Characteristics

This section describes the construction of market-based and balance-sheet-based
characteristics of stocks. For balance-sheet-based characteristics, I assume the infor-
mation in fiscal year t-1 is known in June of year t.

Market-based

1. Following Ang et al. (2006), idiosyncratic volatility (Ivol) is estimated using daily
log excess return from Fama-French three-factor model using one-month window
(22 trading days) and requiring at least 17 trading days of non-missing data.

2. Bid-ask spread is the monthly average of daily 2× |Bid− Ask|/|Bid+ Ask|.

3. Dollar volume is the trailing 6-month average of share trading volume times
prices.

Balance-sheet–based

Number of institutional investors and percentage of institutional ownership are
obtained from Thompson Reuters 13F Holdings database which covers from January
1980 to December 2016.

The construction of following characteristics follows Freyberger et al. (forthcoming)
and Green et al. (2017):

1. Book equity (BE) is shareholder equity (SH) plus deferred taxes (DT), minus
preferred stocks (PS). Data from Davis et al. (2000) is supplemented, which is
available from Kenneth French’s website.1

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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2. Market equity (ME) is common shares outstanding (SHROUT) times price (PRC)
from CRSP.

3. Book-to-market ratio is book equity (BE) at the end of fiscal year t− 1 dividend
by market equity (ME) at the end of December in year t − 1 to avoid a short
momentum position.

4. Shareholder equity (SH) is as given in Compustat (SEQ) if available, or else
common equity plus the carrying value of preferred stock (CEQ + PS) if available,
or else total assets minus total liabilities (AT - LT).

5. Deferred taxes (DT) is deferred taxes and investment tax credits (TXDITC) if
available, or else deferred taxes and/or investment tax credit (TXDB and/or
ITCB).

6. Preferred stock is redemption value (PSTKRV) if available, or else liquidating
value (PSTKL) if available, or else carrying value (PSTK).

7. Fiscal year-end market equity (MVE F) is common shares outstanding (CSHO)
times fiscal year-end close price (PRCC F).

8. Cash dividend yield is defined as dividends (DVT) dividend by Fiscal year-end
market equity (MVE F).

9. Repurchase (REP) is positive change in Treasury stock (TSTKC) when the firm
is not using retirement method, or positive difference between purchase of com-
mon and preferred stocks (PRSTKC) and sale of common and preferred stocks
(SSTK), following Fama and French (2001).

10. Leverage (LEV) is the ratio of long term debt and debt in current liabilities
(DLTT and DLC) to shareholders’ equity (SH), long term debt and debt in
current liabilities.
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APPENDIX E

Profitability Anomaly: Additional Results

E.1 Additional Tables and Figures
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Table E.1: Replicating the Profitability Anomalies

This table reports the excess returns, alphas, and characteristics of profitability anomaly portfolios.
Characteristics include the average profitability measure (Prof.), portfolio size (ME, in billions of
dollars), average firm size (Size, in millions of dollars), and average number of firms. Portfolios
are quintile sorted on profitability proxies using NYSE breakpoints and portfolio returns are value-
weighted. Excess returns and alphas are reported in monthly percentage points. Newey-West standard
errors with a lag of 12 months are reported in brackets. The sample is from July 1963 to December
2016.

FF3F alphas and factor loadings Portfolio Characteristics

Portfolios re α MKT SMB HML Prof. ME Size n

Panel A: Gross Profitability

Low 0.42 -0.15 0.92 -0.00 0.26 0.11 725 1143 582
[-2.23] [57.96] [-0.15] [6.51]

2 0.50 -0.08 1.01 -0.07 0.23 0.22 831 1775 496
[-1.09] [35.92] [-1.93] [5.32]

3 0.60 0.05 0.98 0.04 0.10 0.34 943 1809 538
[0.87] [47.18] [1.31] [2.17]

4 0.50 0.06 0.99 -0.01 -0.17 0.49 1263 1981 620
[1.09] [49.39] [-0.49] [-4.44]

High 0.62 0.28 0.94 -0.04 -0.36 0.81 1434 1740 773
[4.11] [42.43] [-1.37] [-9.67]

High - Low 0.20 0.43 0.02 -0.04 -0.62
[3.98] [0.66] [-0.70] [-10.14]

Panel B: Operating Profitability

Low 0.40 -0.28 1.08 0.19 0.21 0.06 514 512 936
[-3.19] [44.26] [5.57] [4.59]

2 0.53 -0.06 0.93 0.03 0.30 0.12 568 1258 457
[-1.09] [56.63] [0.68] [5.51]

3 0.58 0.04 0.95 -0.06 0.19 0.16 820 1807 469
[0.76] [44.72] [-1.68] [3.92]

4 0.60 0.09 0.98 -0.05 0.07 0.21 1109 2261 489
[1.89] [65.56] [-2.16] [1.76]

High 0.53 0.18 0.97 -0.06 -0.35 0.37 2185 3137 657
[3.98] [70.02] [-3.57] [-20.27]

High - Low 0.14 0.46 -0.11 -0.26 -0.56
[4.43] [-3.59] [-6.24] [-11.93]

Panel C: Cash-based Operating Profitability

Low 0.29 -0.37 1.12 0.27 0.06 0.02 513 483 963
[-4.73] [39.12] [5.44] [1.47]

2 0.41 -0.17 0.97 0.06 0.19 0.10 622 1275 477
[-3.22] [54.46] [2.20] [4.36]

3 0.52 -0.00 0.93 -0.06 0.19 0.14 758 1713 462
[-0.08] [51.13] [-1.82] [4.44]

4 0.55 0.08 0.97 -0.08 0.09 0.18 1150 2313 480
[1.59] [70.65] [-3.53] [3.26]

High 0.63 0.23 0.96 -0.08 -0.32 0.31 2152 3233 617
[5.38] [73.87] [-4.41] [-19.33]

High - Low 0.33 0.64 -0.18 -0.36 -0.34
[3.22] [6.24] [-4.87] [-6.19] [-7.54]
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Figure E.1: Principle Component Analysis of IF Proxies

This figure plots the histograms of log-transformed fiscal year 1 EPS forecast dispersion
(1YFD), long-term growth EPS forecast dispersion (LTGFD), at-the-money option-
implied volatility (OIV), and lagged weekly return volatility (RetVol).
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Figure E.2: Principle Component Analysis of Uncertainty Proxies

This figure plots the percentage of variance explained by each principle component of
log-transformed fiscal year 1 EPS forecast dispersion, long-term growth EPS forecast
dispersion, at-the-money option-implied volatility, lagged weekly return volatility, and
age.
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Figure E.3: Market Capitalization of Stocks with Non-missing PIF

This figure plots the total market capitalization of stocks with non-missing PIF measure
as a fraction of total market capitalization. The sample starts from February 1996 to
December 2016.
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