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ABSTRACT

Autonomous robots have the potential to assist people to be more productive in factories, homes,

hospitals, and similar environments. Unlike traditional industrial robots that are pre-programmed

for particular tasks in controlled environments, modern autonomous robots should be able to per-

form arbitrary user-desired tasks. It is infeasible to endow robots with programs that can accom-

plish all possible tasks that users would desire. Thus, it is beneficial to provide pathways to enable

users to program an arbitrary robot to perform an arbitrary task in an arbitrary world. Advances in

robot Programming by Demonstration (PbD) has made it possible for end users to program robot

behavior for performing desired tasks through demonstrations. However, it still remains a chal-

lenge for users to program robot behavior in a generalizable, performant, scalable, and intuitive

manner.

In this dissertation, we address the problem of robot programming by demonstration in a declar-

ative manner by introducing the concept of Semantic Robot Programming (SRP). In SRP, we focus

on addressing the following challenges for robot PbD: 1) generalization across robots, tasks, and

worlds, 2) robustness under partial observations of cluttered scenes, 3) efficiency in task perfor-

mance as the workspace scales up from the tabletop to building scale, and 4) feasibly intuitive

modalities of interaction for end users to demonstrate tasks to robots.

Through SRP, our objective is to enable an end user to intuitively program a mobile manipu-

lator by providing a workspace demonstration of the desired goal scene. We use a scene graph to

semantically represent conditions on the current and goal states of the world, where each node de-

notes an object, and each edge denotes an inter-object spatial relation. To estimate the scene graph

given raw sensor observations, we bring together discriminative object detection and generative

xiii



state estimation for the inference of object classes and poses. By representing the scene graphs

with Planning Domain Definition Language, the robot can reason and plan actions to transit the

world from current to goal state. The proposed scene estimation method outperformed state of the

art in cluttered scenes. With SRP, we successfully enabled users to program a Fetch robot to set up

a kitchen tray on a cluttered tabletop in 10 different start and goal settings.

In order to scale up SRP from tabletop to large scale, we propose Contextual-Temporal Map-

ping (CT-Map) for semantic mapping of large scale scenes given streaming sensor observations.

We model the semantic mapping problem via a Conditional Random Field (CRF), which accounts

for spatial dependencies between objects in the scene. Over time, object poses and inter-object

spatial relations can vary due to human activities in the environment. To deal with such dynamics,

CT-Map maintains the belief over object classes and poses across an observed environment. We

present CT-Map semantically mapping cluttered rooms with robustness to perceptual ambiguities,

demonstrating higher accuracy on object detection and 6 DoF pose estimation compared to state

of the art neural network based object detector and commonly adopted 3D registration methods.

Towards SRP at the building scale, we explore notions of Generalized Object Permanence

(GOP) for robots to efficiently search for objects. We state the GOP problem as the prediction of

where an object can be located when it is not being directly observed by a robot. We model object

permanence via a factor graph inference model, with factors representing long-term memory, short-

term memory, and common sense knowledge over inter-object spatial relations. We propose the

Semantic Linking Maps (SLiM) model to maintain the belief over object locations while accounting

for object permanence through a CRF. Based on the belief maintained by SLiM, we present a hybrid

object search strategy that enables the Fetch robot to actively search for objects on a large scale,

with higher search success rate and less search time compared to state-of-the-art search methods.

xiv



CHAPTER 1

Introduction

1.1 Motivation

Programming robots to perform complex tasks is challenging for users who are non-experts in

robotics. There are various tasks that emerge in our daily activities across environments like homes,

hospitals, warehouses, and similar environments. Users should be able to deploy autonomous

robots and easily customize their behavior to accomplish these tasks. Rather than relying on experts

to program robots, as in traditional industrial settings, non-expert users should be able to intuitively

program robots to perform high-level tasks such as setting up a table and tidying up a living room.

In this dissertation, we focus on users programming robots to perform object arrangement

tasks. The Object arrangement domain involves tasks that are mainly concerned about object

poses and spatial relations between objects. The application scenarios of our work include (but are

not limited to) common task scenarios as shown in Figure 1.1. These domains include those where

Figure 1.1: Common object arrangement tasks in different context. (a) Organizing objects in
household environments (Boston Dynamics). (b) Arranging groceries on shelves in a supermarket
(Fetch Robotics). (c) Storing items into bins in a warehouse (XYZ Robotics).

1

https://www.bostondynamics.com/
https://fetchrobotics.com/
http://en.xyzrobotics.ai/


Figure 1.2: Interactive Task Learning (ITL) defines a three dimensional space of methods for robot
programming [91]. This dissertation focuses robot programming along the axes of Generalization
and Robustness that will improve future ease of interaction.

the user desires to arrange items in an household environment, arrange groceries on shelves in a

supermarket, or store items into bins in a warehouse.

There has been significant progress in robot programming [16], especially robot Programming

by Demonstration (PbD) [17] [9] in recent years, enabling non-expert users to program robot be-

haviors. In robot PbD, users program robot behavior through interactively demonstrating the task

to the robot. As shown in Figure 1.2, Laird et al. [91] casts robot PbD as one approach to Interactive

Task Learning (ITL). ITL defines three important metrics for evaluating different approaches (such

as PbD) to programming robot behavior: 1) Generalization for dynamic scalability to new tasks

with different types of knowledge; 2) Robustness in performance of tasks; 3) Ease of interaction

by end users. We focus our consideration of the state of the art on two of these three dimensions,

Generalization and Robustness.

We layout the literature of robot programming with respect to axes Generalization and Ro-

bustness, as visualized in Figure 1.3. With traditional programming languages such as C++ and
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Figure 1.3: A visualization of existing works for robot programming along the axes of General-
ization and Robustness.

Python, one can develop computer programs with high task performance and efficient execution

on a robot. However, it can be difficult to generalize such programs to different robots, tasks and

other environments. Furthermore, instead of directly interacting with robots to program their be-

havior, end users have to get over the barriers of traditional programming languages to program

robot behavior. In the future, end users should be able to program robot behavior in an intuitive,

generalizable and robust way with ultimate interactive task learning.

Programming by Demonstration (or interchangeably Learning from Demonstration) provides

the pathway towards ultimate interactive task learning. PbD systems enable end users to program

robots directly through demonstrations. End users can directly demonstrate to robots desired tra-

jectories for performing tasks through kinesthetic teaching. End users can also demonstrate steps

and/or goal of tasks to robots just as how one teaches kids about various tasks. PbD systems

provide more intuitive modality of interaction and better generalization to new tasks.

Kinesthetic PbD [63, 65, 25, 34, 83, 126] involves users demonstrating low-level motion tra-

jectories and/or a sequence of actions in the configuration space to complete a task. Users need
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to procedurally demonstrate the entire task for a later replay of the demonstrated behaviors on

robots. We refer to these works as forms of procedural robot PbD. The focus of kinesthetic PbD is

to learn the procedural behavior, thus, perception is usually assumed or simplified. Furthermore,

kinesthetic PbD requires a large amount of demonstrations for robots to generalize or interpolate

motion trajectories and action sequences to arbitrary world states. Consequently, the generaliza-

tion and robustness of kinesthetic PbD are limited to proprioceptive perception, configuration space

demonstrations, procedural programming, and replay of robot behavior.

We propose the next generation of PbD will enable users to program robot behavior through

declarative demonstrations in the workspace rather than the configuration space. In contrast to

procedural robot PbD, we focus on understanding the goal rather than the procedures of a task.

Once the goal is learned, the robot can reason how to then achieve the user’s intended outcomes.

We refer to works for learning goals from users demonstrations as declarative robot PbD.

For many tasks that users are faced with, we argue that it is the goal of the task, that mat-

ters the most, rather than the motion trajectories or the sequence of actions. There are existing

works [43, 5, 168, 30] on scene-level PbD where users demonstrate goal scenes, and the robot

should reproduce the goal scene. These works simplify the problem of perceiving the current

and goal scenes by using virtual environments, limiting objects to 2D domain, or assuming iso-

lated objects and clean background. As a result, these works have yet to generalize to real-world

unstructured environments. New methods are needed for handling perceptual uncertainty in clut-

tered scenes, such that the robot can robustly infer the goal of a task from user’s demonstrations

in workspace, as well as infer the current state of the world to reason and plan to perform the

demonstrated task.

Thus, we propose to bridge semantic mapping and declarative robot PbD for robustness under

perceptual uncertainty, as Semantic Robot Programming. In this dissertation, we use semantic

concepts such as objects and inter-object spatial relations to describe the goal of a tasks. In the

future, robots should be able to learn other types of semantic concepts such as cold and warm,

different styles of fried eggs, etc to enrich its own vocabulary to describe task goals. To move
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towards ultimate interactive task learning, we can further build semantic robot programming on

ideas from works in goal concept learning [28, 35, 99, 114].

1.2 Problem Statement: Semantic Robot Programming

This dissertation introduces SRP as a declarative approach to the problem of robot programming

from workspace demonstrations. Through SRP, we focus on understanding the goal of a user

demonstrated task in robot workspace and the current state of the world for robots to perform

the task. In SRP, robots observe the goal scene demonstrated by the user, as well as the initial

scene of the environment at a later time. This dissertation handles the perceptual uncertainty in

the observations, and grounds these observations with high-level representations of the goal and

initial state of the world. Based on the inferred goal and initial states, robots can plan and execute

goal-directed actions towards completing the task.

In a formal description of SRP, a user demonstrates the desired task to the robot and the obser-

vation of the demonstrated goal scene is ZG. At a later time, when the robot is asked to reproduce

the demonstrated task, the robot observes the initial scene ZI . SRP methods focus on estimating

the goal state sG and the initial world state sI , from which a sequence of actions {a1, a2, · · · , aN}

can be planned and executed to transit the world from state sI to sG. We assume that the robot is

equipped with primitive actions for picking and placing objects with known pre- and post- condi-

tions.

To robustly infer the goal and initial state from robot observations, we focus on dealing with

perception challenges caused by partial observations and perceptual ambiguity due to clutter. Fur-

thermore, in order to plan actions to interact with objects spread across the environment, robot

should model the uncertainty of objects that are out of its current field of view. To deal with this

challenge, we provide ways to maintain belief of objects that are not being directly observed.
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1.3 Contributions

To address the problem of SRP, this dissertation introduces methods for semantic mapping suitable

for declarative robot PbD. We posit semantic maps provide a generic abstraction layer for robot

programming. Such semantic abstractions can enable both declarative robot PbD and new forms

of procedural robot PbD. In object arrangement scenarios, a user can program a robot to perform

tasks in an unstructured environment through demonstration of goal scenes. By grounding the

demonstrated goal scene and current scene into semantic maps composed by objects along with

their axiomatic spatial relations, the robot is able to adapt to arbitrary start states of the world when

performing the demonstrated task. Furthermore, the robot can effectively perform the task in a

large workspace by maintaining probabilistic believes over objects locations when objects are not

being directly observed.

In particular, this dissertation makes the following contributions:

1. SRP: Semantic Robot Programming for Goal-Directed Manipulation (Chapter 3). We

introduce a new form of robot programming, Semantic Robot Programming, that enables

users to declaratively program robots to perform tasks through demonstrations of goal scenes.

With SRP, robots generalize to arbitrary start states of world when performing the demon-

strated task. To achieve this generalization, SRP abstracts scene graphs that represent the

goal and start state of the world from the observations of the demonstrated goal scene and

the current scene. A scene graph is composed by objects present in the scene along with their

poses, as well as the axiomatic spatial relations between objects. Abstracted scene graphs

for the current and goal scene can be further expressed in Planning Domain Definition Lan-

guage (PDDL). Thus, robots can plan high-level actions such as pick and place actions to

manipulate objects to transit the world from the start to the goal state, achieving the desired

inter-object spatial relations as demonstrated by the user. In order to robustly abstract the

scene graphs from observations under perceptual uncertainty, we combine discriminative

object detection and generative Bayesian state estimation for estimation of object classes
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and poses. With estimated object poses, we can derive axiomatic spatial relations between

objects based on heuristic geometric assertions.

2. CT-Map: Robust Contextual Temporal Semantic Mapping for Cluttered Scene at Scale

(Chapter 4). In order to capture the goal scene and current scene of the world at a larger scale,

we deal with a sequence of perception sensor data observed across the environment. We de-

velop an on line robust inference method for semantic mapping under perceptual uncertainty

present in cluttered scenes. CT-Map encodes the contextual dependencies between objects

and temporal dependencies of each object across consecutive frames in a Conditional Ran-

dom Field. Scene state is inferred in terms of objects classes and poses by maximizing the

overall posterior probability. Through CT-Map, robot can maintain and update the scene

estimates as new observations become available. In unstructured cluttered environments,

CT-Map is able to deal with perceptual uncertainty introduced by 1) partial observations

due to objects occluding each other, and 2) perceptual aliasing, e.g., ambiguity introduced

by objects that share similar appearance characteristics. We demonstrate that CT-Map im-

proved object detection and pose estimation beyond baseline methods that treat observations

as independent samples of a scene.

3. GOP/SLiM: Generalized Object Permanence with Semantic Linking Maps for Active

Visual Object Search (Chapter 5). As we scale up the robot programming framework to deal

with tasks in a large scale workspace (e.g. floor level), a critical issue is that visual sensors

usually have a limited field of view. When an object that is required for a task is not directly

observed in the current field of view, the robot should be able to predict where that object

can be located and efficiently search for it. We introduce Generalized Object Permanence

(GOP) as an understanding of an environment that drives predictions of object locations.

We computationally model GOP through a factor graph, by incorporating long-term, short-

term, and common-sense knowledge on inter-object spatial relations. We propose a semantic

mapping technique, Semantic Linking Maps (SLiM), that maintains the belief over objects
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locations while accounting for inter-object spatial relations modeled in GOP. Based on the

maintained belief over object locations in SLiM, robots can efficiently search for objects

required for a task through our proposed active visual search strategy.

8



CHAPTER 2

Related Work

This dissertation aims at enabling users to program robots to complete tasks. This chapter dis-

cusses related works in the context of robot programming. The major field that is related to this

dissertation is Programming by Demonstration (PbD) [9, 18]. In PbD, users program robot be-

havior through demonstrations. As pointed out by Laird et al. [91], Generalization, Robustness

and Ease of interaction are three important metrics for evaluating different approaches (such as

PbD) for interactive task learning. In this dissertation, we focus on laying out the related works

in PbD with respect two out the three important metrics, Generalization and Robustness. Ease of

interaction is not within the scope of evaluation in this dissertation.

We layout the related works in PbD with respect to the Generalization and Robustness axes, as

shown in Figure 1.3. The top right corner is the ultimate goal of the field, i.e., ultimate interactive

task learning. Taking the axis of Generalization as a reference, existing works mainly divides into

three categories:

• Procedural robot PbD focus on conveying the procedures or steps to complete a task to

the robot, and the robot should replay the programmed behavior at execution time. Existing

works in this category is concerned about teaching the robot how to complete a task.

• Declarative robot PbD focus on informing the robot about the goal of the task, and the

robot should accomplish the task through goal-directed behavior at execution time. Existing

works in this category is concerned about teaching the robot what is the goal of the task.
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• Goal Concept Learning focus on teaching robot certain concepts (e.g. color, location) to

represent goals. In contrast, the previous two categories assume known concepts that can be

used to properly represent goals.

Existing works in procedural robot PbD require procedural demonstrations from users for a

later replay of the procedural behavior on the robot. The primary focus is to learn to reproduce the

demonstrated behavior through trajectory learning. Instead, dealing with perception uncertainty if

not the core of these works, thus they rely on assumed or simplified perception.

For many tasks being studied in PbD, it is not necessarily the demonstrated procedures that

matters, instead, it is the goal of the task that matters. There have been some works in declarative

robot PbD focusing on inferring the goal of the task from demonstrations, and rely on planning

method to generate goal-directed behavior on the robot. However, existing works in declarative

robot PbD usually rely on assumed perception such as visual aids, or simplified perception with

singulated objects and clean background. This dissertation takes the approach of declarative robot

PbD, and is mainly concerned about inferring the goal of a a task from unstructured demonstra-

tions, and estimate the current state of the world under uncertainty, with which the robot can use a

planning method to generate goal-directed behavior to complete the task.

In the following sections, we will discuss related works in each of the three major categories:

procedural robot PbD, declarative robot PbD, and goal concept learning.

2.1 Procedural Robot Programming by Demonstration

Procedural robot Programming by Demonstration (PbD) methods teach robots how to accomplish a

task by communicating the steps or process required to complete the task. There have been works

in PbD mainly focusing on teaching the task procedures at two different levels: trajectory pro-

gramming via kinesthetic teaching and task structure programming. Existing works on trajectory

programming deal with low level procedures for executing an action, while other works on task

structure programming consider high level procedures that chain actions into a sequence for ac-
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complishing a task. There are also works that models the world dynamics, and use Reinforcement

Learning (RL) techniques to improve programmed robot behavior beyond user demonstrations.

2.1.1 Trajectory Programming via Kinesthetic Teaching

Given user demonstrations of a trajectory of a primitive action, trajectory programming methods

aim to learn the low-level skill by encoding the trajectory profile, and regenerate the trajectory at

execution time. Dynamical system based methods encode demonstrated trajectories by estimating

parameters in a dynamical system, or a distribution. Kormushev et al. [83] use Dynamic Movement

Primitive (DMP) [130] to encode full body trajectory on a humanoid for a board cleaning task. Park

et al. [128] and Paxton et al. [131] incorporated inverse optimal control and potential fields [75]

respectively to adapt learned DMPs to new environments with unseen obstacle configurations.

Khansari et al. [74] propose Stable Estimator of Dynamical Systems (SEDS) as a way to model

trajecotires via a non-linear, time-independent dynamical system. Instead of modeling trajectories

through SEDS, Butterfield et al. [25] learn a single-valued policy function that maps perception

to control signals from demonstrated trajectories. This method uses Gaussian process function

regressors to learn the policy function. Tanwani and Calinon et al. [161, 26] use Gaussian Mixture

Models (GMM) to capture the underlying distribution of demonstrated trajectories. Similarly,

Brandl and Peters et al. [22] deploy probabilistic motor primitives (ProMPs) [127] that maintains

a distribution over trajectories.

In contrast, Fod and Jenkins et al. [50, 66] automatically derive a library of coupled perceptual

and motor routines called perceptuo-motor primitives from human movement data, and use this

library of primitives for classifying and imitating humen movement demonstrations. In order to

discover primitives from demonstrated trajectories, Jenkins et al. [65] propose a spatial-temporal

extension to Isomap for automatically clustering time-series data such as human movements into

representative clusters, with each corresponding to a primitive action. Lee and Abbeel et al. [93]

directly transform a demonstrated trajectory to a new one that adapts to a new start state through

non-rigid registration. They register task relevant point cloud in current scene to the observed ones
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in demonstration, along with the corresponding trajectories. With the advances in deep neural net-

works, there have been works [95, 49, 185] that start to explore learning end-to-end mapping from

perception to motor data given example trajectories. This approach requires enormous amount of

data for training towards generalization.

Trajectories represented in the configuration space of the robot are limited to generalization

within the configuration space. However, robot actions should be generalized to different states in

the workspace, e.g., various object poses in the environment. Vochten et al. [175] propose an object

pose invariant trajectory representation and demonstrate on a pouring task. However, this method

requires manual specification of the reference frame defined on object parts for each particular

task. Dang and Allen [36] consider manipulation actions as a series of sequential rotations and

translations, e.g. bottle cap turning, and door sliding. Their approach automatically extract the

reference frame of various tasks in terms of translation and rotation axis. Their framework is well

suited for articulated object manipulation, but not generalized to other domains such as pick and

place tasks. Ureche and Billard et al. [171] extract the reference object at different states of a task

execution. However, the reference frame of a task is not necessarily associated with the overall

geometry of an object, but a particular part of the object instead.

2.1.2 Task Structure Programming

Often in times more than one primitive action is needed to accomplish a task. For example, in

the case of object stacking, one needs to first reach, grasp, then transport, and place. Program-

ming the task structure to the robot is teaching the robot about the high-level task plan or subtasks

to complete a task. Given continuous demonstrations of a task, Butterfield et al. [25], Niekum

et al. [125], Kulic et al. [88] and Zeng et al. [187] use Hidden Markov Models (HMM) to parse

the demonstrated trajectories into segments, where each trajectory segment can be modeled sep-

arately as introduced in section 2.1.1. Furthermore, transitions between motion primitives can be

modeled through HMM. In contrast, Akgun and Thomaz et al. [4] explore manual specification

of segment boundaries, i.e., keyframes, from the human-robot interaction perspective. Nicolescu
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et al. [124] enabled robots to learn high-level task plan from multiple user demonstrations. The

proposed method can take user’s feedback during robot practice trials and update the learned task

plan. Building on the developments in Neural Program Induction [136] where a latent program

representation is learned to generate program outputs, Xu et al. [183] infers a hierarchical task

structure from a raw video sequence of a demonstration through one-shot learning. Nevertheless,

this approach requires huge amount of meta-learning data towards generalization over adversarial

scenes.

Instead of replaying the demonstrated behavior by following the same order of actions, robots

should be able to adapt to different world states. Given large-scale distributed data collected from

human demonstration through a web-based interface, Crick et al. [34] learn decision trees to nav-

igate a robot through a maze. Decision trees enable the robot to adapt to different world states,

i.e., where the robot is located in the maze. Niekum et al. [126] construct a finite-state represen-

tation of a demonstrated task, which enables the robot to make decisions on next motion primitive

adaptively, and recover from errors. Konidaris et al. [80] construct a skill tree by grouping seg-

mented trajectories that underlay the same skill, and merging different groups together to form

a tree structure. Without explicit trajectory segmentation, Grollman and Jenkins [55] infer the

subtasks through maintaining a distribution of possible subtask partitions represented by mixture

of experts, where each expert is associated with a mapping from perception to action. Vondrak

et al. [176] proposed a state-space controller to learn biped control from human demonstrations.

The learned controller can be expressed as a finite state machine, which transits to atomic control

actions depending on timing or contact events. They were able to reproduce demonstrated human

motions such as walking and gymnastics on a virtual agent in different environments. French et

al. [51] learned behavior trees [41] [105] from multiple user demonstrations. End users can easily

interpret behavior trees to understand what the robot has learned from demonstrations. Recently,

Colledanchise et al. [33] have further shown that behavior trees are generalize other reactive robot

controller architectures such as subsumption architecture [23], behavior compositions [24] [106],

and decision trees [143].
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Other works focus on learning a symbolic representation of demonstrated action, and leave it

to a planner for deriving a task plan. Abdo et al. [2] infer preconditions and effects of actions from

a few demonstrations through clustering in the observation feature space. Similarly, Ahmadzadeh

et al. [3] extract the predicates for pre- and post-conditions of actions through the relative position

between objects and a known landmark. In addition to discovering the consistency in pre- and

post-action states as a way to ground the symbolic action, Jetchev et al. [67] propose to infer the

state abstraction into symbols that provides discriminative power for transition model and reward

learning.

There have been works in visual or graphical programming approaches [123, 8, 132] for pro-

gramming robot behaviors. These approaches assume existing library of pre-defined parameterized

actions. Users can interactively move action blocks to build a control flow graph, a finite state ma-

chine or behavior trees to create robot behaviors through a graphical user interface. Huang et

al. [62] allow creation of customized perceptual landmarks. However, registering the customized

perceptual landmark under different view points and scene clutter is challenging. Guadarrama et

al. [56] propose a natural language interface for programming the robot to rearrange objects in a

2D domain. They ground the spatial relations between isolated objects on a clean table given visual

observation and interpret the target object referred by the user based on the verbal description.

2.1.3 Reinforcement Learning on Programmed Behavior

Robot performance on the programmed behavior is limited by user demonstrations without fur-

ther learning. Reinforcement learning (RL) can be used to improve robot performance beyond

the demonstrations. The goal of a RL method is to derive a policy that maximizes the expected

accumulated discounted rewards. A policy is a mapping function from the state space to the robot

action space. Kober et al. [77] present a general survey of RL. Traditional RL methods do not scale

well with high dimensionality in state and actions space. Policy search methods [37] have been

commonly adopted to learn a policy in high dimensional state and action space, as often occurred

in robotics. User demonstrations can be used to initialize the policy, from which the robot can
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continue to improve upon through RL. Using user demonstrations for an initial policy can speed

up the policy learning process significantly compared to a random initial policy, especially in high

dimensional space. Kormushev et al. [82] enable a robot arm to do a dynamic pancake-flipping

task through RL on a motion trajectory encoded by DMP, where the DMP is initialized by user

demonstrations. Kroemer et al. [85] build a library of motion primitives encoded by DMP from

user demonstrations, and learn to sequence theses motion primitives together to perform different

manipulation tasks given a reward function.

2.2 Declarative Robot Programming by Demonstration

In many robotic tasks, it is not the motion trajectories or the sequence of actions that are of cen-

tral importance, but the goal of the task (e.g. setting up a dining table). Many different motion

trajectories can correspond to the same goal, such as in pick and place scenarios. A large amount

of demonstrations is required for trajectory-based programming to generalize over different world

states, e.g. various object poses in manipulation tasks. In addition, trajectory-based programmed

behavior on one robot can hardly generalize to another robot with different kinematics. Prepro-

gramming the sequence of actions for accomplishing a task does not generalize well to different

initial states of the world, where the same order of demonstrated actions may not apply. Ground-

ing the pre- and post-conditions of actions with predicates offers the potential to generalize over

different initial states when combined with a planner. However, existing works rely on simulation

environment, fiducial markers, or assume simple environment without scene clutter to ground sen-

sory data with predicates. On the other hand, as the dimension of the world state space increases,

more demonstrations are required for the predicates learning process, which essentially involves

identifying consistent patterns across the demonstrations in a unsupervised learning manner.

In contrast to procedural robot PbD that concerns about the trajectory or sequence of actions to

accomplish a task, declarative robot PbD focus on inferring the goal of a task from demonstrations.

In declarative robot PbD, robot accomplishes the task through goal-directed behavior instead of
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replaying programmed behavior as in procedural robot PbD. Given the inferred goal, robot can

either use planning methods or RL methods to achieve the goal. Thus, declarative robot PbD

generalizes well to different world states, i.e., can reproduce the inferred goal in any given situation,

without relying on user demonstrations to determine procedures towards a goal. Works presented

in this dissertation focus on inferring the goal from user demonstrations in workspace, and enabling

the robot to reproduce the inferred goal from arbitrary initial states of the world.

Existing works in declarative robot PbD have researched inferring goal conditions from demon-

strations. Given sensor observations of demonstrations of a task, the objective is to ground the

observations into symbols or predicates. This dissertation focus on grounding demonstrated goal

with symbols, and use symbolic planner to generate goal-directed behavior.

There have been works that ground the perceptual observations of demonstrated goals with

symbols, and then apply a symbolic planner to generate a sequence of actions starting from a new

initial state of world to the goal. The most related work to this dissertation in declarative robot

PbD is by Ekvall and Kragic [43]. They propose to learn the goal of a demonstrated task and

use a task planner to reach the goal from different initial states of the world. They demonstrated

their approach in a table setting example where the goal is represented by object poses in a abso-

lute world reference frame or relative object reference frame. However, their perceptual system

is only capable of dealing with isolated cuboid objects following a 2D layout on a clean table-

top, and they assume all objects are fully visible. The limitation of their perceptual system makes

it difficult to generalize to unstructured demonstrations in cluttered scenes, as well as tasks that

involves 3D spatial relations between objects. Akgun et al. [5] propose to simultaneously learn

actions and goals from demonstrations. They use HMMs to represent both the actions and goals

observed at manually specified key frames. The emissions are modeled as multivariate Gaussian

distributions, therefore goals are probabilistically represented with the emission mean and covari-

ance matrix. Their work assumes that demonstrations have a single object of attention. However,

varying attentions across multiple objects are usually involved a complex robotic task that requires

multiple steps. More importantly, their goal representation does not directly lead to a plan of the
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task execution. Consequently, their method does not generalize to new initial states.

As a large amount of user goal demonstrations in workspace becomes available through crowd-

sourcing, a goal template can be learned. Chung and Cakmak et al. [30] utilize crowdsourcing to

collect a rich set of goal demonstrations. The robotic task is to build a 2D object model on a table

with basic building lego blocks. There can be many different 2D configurations of the building

blocks that correspond to the same object model class. They model the goal for each object model

class through a generative graphical model where the distribution of local block patterns are cap-

tured. The goal of a user demonstration can be inferred by maximizing a posterior probability over

the object model classes. The robot can then pick a user demonstration from the inferred goal class

and reproduce the same 2D configuration. Nevertheless, their approach is limited to 2D and dis-

crete domain. Similarly, Toris et al. [168] learn a goal template for object arrangement tasks such

as setting up a table. The goal template is represented by GMM that express the absolute or relative

poses of objects. The frame of reference of placing each object is autonomously extracted through

ranking GMM clusters based on the variances. On the other hand, their approach does not allow

user customization of goal from the learned goal template. Moreover, their framework does not

handle perceptual understanding because the goal states are learned in a virtual environment. The

work presented in this dissertation is evaluated on the same domain of tasks, i.e., wide area pick

and place tasks, where robots need to move around the world to pick and place multiple objects. In

addition, this dissertation addresses inferring goal states from real sensor data under unstructured

demonstrations.

Similar to the related works mentioned in this section, this dissertation focus on inferring the

goal from user demonstrations in workspace. Rather than simplifying the perception problems

by simulation, virtual environment, limiting the objects to 2D domain, or isolated objects with

full visibility on a clean background, this dissertation handles raw sensory data from unstructured

demonstration on tasks that require 3D spatial understanding. Proposed approaches in this disser-

tation handle perceptual uncertainty from observations of cluttered scenes, and maintain a belief

over current states of the world from which robot can generate a goal-directed behavior.
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There are also works in developing dialogue systems for human to instruct robot to perform

tasks. Scheutz et al. [145, 146, 144] develop a framework for natural language dialogue interaction

called DIARC (short for Distributed Integrated Affect, Reflection, and Cognition). DIARC can

automatically convert natural language instructions into goals formally represented in computa-

tional tree logic. Mohan et al. [113] learn goal-oriented hierarchical tasks from situated interactive

instructions. They frame the task learning problem as an explanation-based learning problem, and

the robot agent is able to learn the structure of the task through interactively quering the instructor

for desciptions of the goals and choices of actions. Kirk et al. [76] learn the goal of tasks from

multi-modality including visual demonstrations and linguistic instructions. They show less words

are required to teach a task when visual demonstrations are also used for learning.

To push the boundaries of generalization of performing tasks across robots, Tenorth and Beetz

et al. [166, 15] propose KnowRob and Open-EASE with cross-platform formats for representing

knowledge and knowledge processing for autonomous personal robots. They propose to describe

knowledge in Description Logic with Web Ontology Language (OWL). Knowledge is represented

hierarchically with OWL in terms of classes, instances and properties. With robot perception

and control grounded in the knowledge base, their general knowledge processing mechanism can

reason about uncertainty and plan action efficiently.

2.3 Goal Concept Learning

Among the works in either procedural robot PbD or declarative robot PbD, it is assumed that

the robot has known concepts that can be used to properly represent the goals to be reproduced.

For example, in trajectory programming via kinesthetic teaching, the goal to be reproduced is the

robot arm trajectory in configuration space. In declarative robot PbD, the goal to be reproduced is

represented by a set of predicates defined on a set of pre-defined symbols.

There are cases where the robot is not given the proper state abstraction to represent the goals.

For example, the robot has a RGB camera but does not know the concept of “green”. In order to
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teach the robot tasks such as clean out all green blocks on table, one needs to teach the robot the

concept of “green” such that the robot can build on the learned concept to represent goals. There are

works focus on learning the proper state abstraction as a way to emerge new concepts, and there

are also works that represent the goal of a task as a reward function via Inverse Reinforcement

Learning (IRL) methods. Different goal representations result in different ways of deriving a task

plan towards the goal. The state of the art in these research directions is described below.

2.3.1 State Abstraction Learning

Without relying on pre-defined symbols such as object colors or positions, other researchers have

explored learning symbols or concepts from demonstrations, and use learned concepts to express

goals. Chao et al. [28] learn to ground concepts from demonstrations, and these concepts can

be used to transfer knowledge for expressing future tasks goals. They start with an initial set of

percepts, where each percept corresponds to a state abstraction function, along with an activation

function defined in the abstracted state space. Given the start and end frames of a demonstration,

they first identify the percepts that undergo state changes, then create new percepts by discovering

the consistant pattern in those percepts state values at start and end frames. They are able to ground

concepts by building up a library of percepts incrementally in a bottom up manner. The robot can

learn the goal of a task with the expressivity of the grounded concepts represented by percepts.

The design of the initial set of percepts is of critical importance in their approach. Their perceptual

system is limited to mostly planar objects in 2D domain and simple scenes without any clutter.

Similarly, Cubek et al. [35] propose to derive a symbolic description of task goals from perception.

They first extract key frames where an object velocity falls toward zero, then restore the values

of states at those key frames. They discover concepts by clustering in the state space using pre-

defined similarity distances. The critical point is to search for clusters under various projections

of the state space. However, there are many possible projections that can be applied on the state

space. Thus, their method easily becomes intractable as the state dimension grows.

Mohan et al. [114] and Lindes et al. [99] propose to interactively learn grounded representation

19



of words with situated interactive instruction. Robots can learn concepts efficiently because they

can interactively request more instructions on unknown or unclear concepts.

2.3.2 Inverse Reinforcement Learning

Instead of representing the demonstrated goal as predicates, researchers have explored inverse

reinforcement learning (IRL) [122] methods or similarly Inverse Optimal Control (IOC) [134] to

represent the goal as a reward or cost function. As introduced in section 2.1.3 on RL problems, a

policy is a function that maps from state to action space, and a reward function is a mapping from

state to reward value. The goal of RL methods are to learn a policy that maximize the expected

discounted rewards, such that a robot can perform a task following the policy. It can be seen that the

reward function is important for learning a policy towards performing a task, yet it is challenging

to manually designing a reward function that explicitly specifies the trade-offs between different

factors in completing a task.

Given observations of demonstrations of a task, IRL methods learn the reward function that

captures the goal, subgoals and constraints involved in the task. Learning the reward function of

a task instead of directly learning the policy offers better generalization over different states of

the world. Existing works [1, 149] learn reward functions for driving given expert demonstra-

tions. When expert demonstrations are difficult to provide, advices can be incorporated [79] in

addition to demonstrations while learning reward function. IRL methods require large amount of

demonstrations to learn a reward function that can reproduce the expert policy.
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CHAPTER 3

SRP: Semantic Robot Programming

We present the Semantic Robot Programming (SRP) [190] paradigm as a convergence of robot

programming by demonstration and semantic mapping. Unlike works in procedural robot pro-

gramming, we focus on understanding the goal rather than the motion trajectories or order of

actions of a demonstrated task. In SRP, a user can directly program a robot manipulator by demon-

strating a snapshot of their intended goal scene in workspace. The robot then parses this goal as a

scene graph comprised of object poses and inter-object relations, assuming known object geome-

tries. Task and motion planning is then used to generate goal-directed actions to realize the user’s

goal from an arbitrary initial scene configuration. Even when faced with different initial scene

configurations, SRP enables the robot to seamlessly adapt to reach the user’s demonstrated goal.

For scene perception, we present the Discriminatively-Informed Generative Estimation of Scenes

and Transforms (DIGEST) method to infer the initial and goal states of the world from RGBD

images. The efficacy of SRP with DIGEST perception is demonstrated for the task of tray-setting

with a Michigan Progress Fetch robot. Scene perception and task execution are evaluated with a

public household occlusion dataset and our cluttered scene dataset.

3.1 Introduction

Many service robot scenarios, such as setting up a dinner table or organizing a shelf, require a

computational representation of a user’s desired world state. For example, how is the dinner table

to be set, or how is the shelf to be organized. More specifically, what are the objects involved in the

21



task, what are the desired poses of those objects, and what are the important spatial relationships

between objects. Towards natural and intuitive modes of human-robot communication, we present

the Semantic Robot Programming (SRP) paradigm for declarative robot programming over user

demonstrated scenes. In SRP, we assume a robot is capable of goal-directed manipulation for

realizing an arbitrary scene state in the world. A user can program such goal-directed robots by

demonstrating their desired goal scene. SRP assumes such scenes can be perceived from partial

RGBD observations, which has proven a challenging problem in itself.

Goal-directed manipulation requires a true closing of the loop between perception and action,

beyond the existing intellectual silos. Advances in object detection [54, 137] from appearance

has improved greatly in filtering of background noise and focused attention to objects of interest.

However, the applicability of such vision-based methods robot perception remains unclear, espe-

cially for the purposes of goal-directed manipulation. This circumstance has given rise to new

approaches to semantic mapping [87, 141, 61] to computationally model a robot’s environment

into perceivable objects with robot-actionable affordances.

We posit semantic mapping offers a springboard to new forms of robot programming, such

as Semantic Robot Programming, where semantic maps provide a generic abstraction layer for

robot programming. In our approach to this problem, we must bridge the gap of interoperation

between semantic mapping and existing methods for goal-directed task planning [48, 92], grasp

planning [165] and motion planning [156]. There have been methods for scene estimation [158]

from robot RGBD sensing that used scene graphs expressed axiomatically as a semantic mapping

abstraction. This abstraction allowed for ready use with modern task, grasp, and motion planning

systems. The resulting of closing this loop with a semantic abstraction layer is envisioned to enable

portable robot-executable expressions accessible across a variety of modalities, including: natural

language, visual programming, and put-that-there gesturing [27, 72]. However, the computational

cost of inference over scenes is asymptotically intractable as the number of objects grows. Later

work by Narayanan et al. [119] has saved some computational cost by limiting the object pose

search region with integrated object detector. However, their work does not abstract the scene
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Figure 3.1: A robot preparing a tray through goal-directed manipulations. Given the observation of
the user desired goal state and the initial state of the tabletop workspace, the robot first perceives
the axiomatic scene graph of the goal and initial state, and then plan and execute goal-directed
actions to prepare the tray the way the user desires.

into a axiomatic scene graph for robotic goal-directed manipulation. Building on object pose

estimation work proposed by Sui et al. [158], we ground scene observations into axiomatic scene

graphs, where objects and inter-object relations are grounded with symbols.

The paradigm of Semantic Robot Programming for robot manipulators with a complementary

method for more tractable scene perception. SRP is a declarative approach to programming robots

through demonstration, where users only need to demonstrate their desired state of the world. SRP

is general across methods of perception, given the perceived scene is represented axiomatically.

For scene perception, we present the Discriminatively-Informed Generative Estimation of Scenes
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and Transforms (DIGEST) method to infer the initial and goal scene states for SRP from RGBD

images. DIGEST brings together discriminative object detection and generative pose estimation

for inference of 6 DOF object poses in cluttered scenes, assuming the number of objects is known.

Given perceived initial and goal scenes, the robot can plan and execute goal-directed manipulation

to autonomously transit the world from the initial to the goal state.

We evaluate the SRP paradigm in tray-setting task scenario with the Michigan Progress Fetch

robot (Figure 3.1). We benchmark the performance of DIGEST on a household occlusion dataset [6]

and our cluttered scene dataset. We demonstrate that SRP is effective in understanding the goal of

a task given a demonstrated snapshot of the goal scene. And, the robot is able to plan and execute

goal-directed manipulation actions to reach the goal from various initial states of the world. We

additionally found DIGEST performs favorably in comparison with state-of-the-art methods for

scene perception, such as D2P [120], with fewer assumptions of prior knowledge.

3.2 Related Work

SRP builds on much existing work in robot Programming by Demonstration (PbD) and scene

perception for manipulation. Similar to robot PbD, SRP aims to enable users to effectively com-

municate their objectives to robots for performing manipulation tasks. We posit advances in scene

perception for manipulation offers new avenues for extending the ease and intuitiveness of robot

PbD.

3.2.1 Programming by Demonstration

To improve communication of tasks from a user to a service robot, existing research has focused

on learning low-level skills from users. Different approaches have been proposed in Programming

by Demonstration (PbD) for low-level learning of skills, such as trajectories [118] [4] and control

policy [29] [55] in robot configuration space. These methods are inherently limited to world states

in workspace that are similar to the ones in the demonstrations. By representing the goal of a task
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in the workspace instead of in the configuration space, goal-directed manipulation can reason and

plan its actions to reach the goal from arbitrary initial world states.

Other work has focused on the high-level aspects of a task. Veeraraghavan et al. [172] propose

learning high level action plan for a repetitive ball collection task from demonstrations. Ekvall

et al. [43] focus on learning task goals and use a task planner to reach the goal. Chao et al. [28]

provide an interface for the user to teach task goals in a tabletop workspace. However, these meth-

ods wind up simplifying the scene perception problem by using planar objects, box-like objects

or objects with distinguishing colors, that are far from real world scenarios. Recently, Yang et

al. [184] have proposed learning action plans in real world scenario, similar to our robot program-

ming paradigm that works with real world objects.

3.2.2 Scene Perception for Manipulation

Being able to perceive objects in real world scenarios and act on them remains a challenge. Some

works are able to extract grasping point [31, 94, 164] in point cloud data, however, their methods do

not provide a structural understanding of the scene, failing to support goal-directed manipulation

on objects.

Although not directly targeted at scene perception for manipulation, work on object pose esti-

mation are highly related to our work. Feature-based object pose estimation methods suh as spin

images [69], FPFH [139], OUR-CVFH [7] and VFH [140], rely on feature matching between the

object model and observation, however, the problem is that the performance of feature-based meth-

ods degrades as the environment becomes more cluttered and key features are occluded. To deal

with occlusion, Zhang et al. [191] formulated a physics informed particle filter for grasp acquisi-

tion in planar scenes. Narayanan et al. proposed a generative approach named D2P [120], which

outperforms feature-based method OUR-CVFH on the household occlusion dataset [6]. D2P ren-

ders multiple scene hypotheses, and use A* to search for the hypothesis that best explains the

observation. Similarly, Sui et al. [159] proposed a generative approach for object pose estimation

in clutter. Their method used discriminative method such as neural network based object detectors
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to narrow down the search space in the generative approach. We have adopted the similar strat-

egy in our proposed scene estimation method DIGEST. In our experiments, we demonstrate that

DIGEST outperforms D2P on the household occlusion dataset.

To plan goal-directed manipulations, knowing the object poses is not sufficient, however. The

robot must have a structural understanding of the scene, that is, the inter-object spatial relations.

Given observations of the scene, our work estimates a scene graph that represent the scene struc-

ture. Liu et al. [101] also estimate a scene graph given observations, however, their approach

approximates objects as oriented bounding boxes. Sui et al. proposed a generative approach [158]

for scene graph estimation and use Markov Chain Monte Carlo to search for the best scene graph

hypothesis that explains the observations.

Both works by Narayanan et al. [120] and Sui et al. [158] assume that the robot knows what

objects are present in the scene, and objects are standing in their upright poses, thus both methods

can only estimate 3 DOF poses of objects (i.e., x, y, θ). However, these assumptions are too strong

in real world scenarios. Instead, our scene estimation method DIGEST does not rely on any of

these assumptions, and it can estimate 6 DOF poses of objects, as long as the number of objects in

the scene is known.

3.3 Problem Statement

SRP with DIGEST assumes the number of objects Nc present in the scene, 3D mesh models

M = {m1, · · · ,ml} for a set of objects. The robot is assumed capable of performing a set of

manipulation actions A = {a1, · · · , an} with known pre-conditions and post-conditions on these

objects. We assume as given RGB-D observation of the goal scene oG specified by the user at

time t, and the current scene oI at a later time t + T . The objective of SRP is to plan a sequence

of goal-directed manipulation actions {ai, · · · , aj} to rearrange objects in the world such that the

inter-object relations in sG are satisfied; where DIGEST infers the goal scene graph sG and the

initial scene graph sI , respectively.
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Figure 3.2: Our goal-directed robot programming has three stages: 1) Given the RGB-D observa-
tion of the goal and initial scene, we use the proposed scene estimation method DIGEST to detect
object and estimate the 6 DOF pose of objects; 2) Axiomatic scene graphs can be derived from
the estimated object poses, which express the inter-object spatial relations; 3) By describing the
goal and initial scene graph by PDDL, the robot uses a task planner (e.g., STRIPS) to plan and
execute a sequence of goal-directed actions to reorganize the objects in the scene, reaching the
same inter-object relations in the goal scene graph.

We use a list of axiomatic assertions to describe a scene as a scene graph. The scene state

at time t is expressed as a scene graph st = {vi(xt)}Ki=0, where vi ∈ {exist, clear, on, in} is an

axiomatic assertion parameterized by xt = {qjt}Ncj=0, with qjt denoting the pose of jth object at

time t, Nc being the number of objects, and K being the total number of axiomatic assertions.

In our work, the assertions are limited to spatial relations that can be tested geometrically. The 6

DOF pose qjt = [xjt , y
j
t , z

j
t , φ

j
t , ψ

j
t , θ

j
t ] of each object is estimated, consisting 3D position (xjt , y

j
t , z

j
t )

and orientation (φjt , ψ
j
t , θ

j
t ). The scene graph can be inferred from the estimated object poses, as

explained later in Section 3.4.2.

3.4 Methods

The SRP paradigm consists of the perception of goal and initial scene states, and the planning and

execution stages, as shown in Figure 3.2. Given observations of a cluttered scene, the genera-

tive sampling inference process over object poses is informed by detections from a discriminative
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object detector. A scene graph encoding inter-object relations is geometrically inferred from an

estimate of inferred object poses. The resulting scene graph is then expressed axiomatically for

use in task planning and execution.

3.4.1 DIGEST Cluttered Scene Estimation

Given observed RGB-D image pair of a cluttered scene at time t, the objective is to estimate

the object poses qjt , j = 1, · · · , Nc. We utilize the discriminative power of a pre-trained object

detector to first obtain a set of bounding boxes with object labels. These bounding boxes are used

to guide the generative process of scene hypotheses sampling. An overview of the cluttered scene

estimation is as illustrated in Figure 3.3.

3.4.1.1 Object Detection and Scene Hypotheses Generation

Given an RGB image, m bounding boxes are detected by the object detector. We use Bi (0 ≤ i ≤

m) to denote the bounding box. In the output of the object detector, each Bi is associated with a

list of object detection confidence v(Lj|Bi), where Lj is the object class. For each Bi, we generate

an object candidate Ci,

Ci = {arg max
Lj

v(Lj|Bi), Bi} (3.1)

which is a set including the object label with the highest confidence measure and the associated

bounding box. Form generated candidates, the number of scene hypotheses h equals toNc chooses

m, i.e.,

h =


(
m
Nc

)
if Nc ≤ m

1, otherwise
(3.2)

Thus, if the number of candidates is greater or equal to the number of objects in the scene, each

scene hypothesis Hi contains a combination of Nc candidates selected from m candidates. If

the number of candidates is less than Nc, just one scene hypothesis with m candidates will be

generated.
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Figure 3.3: The proposed DIGEST method for cluttered scene estimation. First, the observed RGB
image is passed through a R-CNN object detector trained on our grocery object dataset. The R-
CNN object detector outputs a set of bounding boxes, with associated object label and detection
confidence. Knowing the number of object present in the scene, possible scene hypotheses are enu-
merated, e.g., 4C3 = 4 scene hypotheses are generated in this example. For each scene hypothesis,
particle filtering is applied to estimate object poses that best explains the observed depth. After
convergence, DIGEST outputs the estimated object poses for the most likely scene hypothesis.

3.4.1.2 Bootstrap Filtering for Pose Estimation

Each scene hypothesis Hi is modeled as a random state variable xt, composed of a set of real-

valued object poses. Object poses are assumed to be statistically independent. We model the

inference of the state from robot observation as a Bayesian filter problem. Compared to traditional

Bayesian filter problems, we have only one observation: a snapshot of the scene instead of a

history of observations. Thus, we apply Iterated Likelihood Weighting [111] to bootstrap the

scene estimation process, where z1 = z2 = · · · = zt and the state transition in the action model is

replaced by a zero-mean Gaussian noise. We approximate the belief distribution by a collection of

N particles {x(j)
t weighted by w(j)

t }Nj=1,

p(xt|z1:t) ∝ p(zt|xt)
∑
j

w
(j)
t−1p(xt|x

(j)
t−1, ut−1) (3.3)

x
(j)
t ∼

∑
j

w
(i)
t−1p(xt|x

(i)
t−1, ut−1) (3.4)
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Figure 3.4: An axiomatic scene graph example. In the scene graph derived from the estimated
object poses, each node corresponds to an object, and each edge indicates the supporting relation
between objects. table is by default the root node.

as described by [38]. To evaluate the weight w(j)
t for particle x(j)

t , we render a depth image based

on the object poses in x(j)
t , and compare it against the observed depth image ẑ(j)

t ,

w
(j)
t = e−λr·d(z,r̂

(j)
t ) (3.5)

where λr is a constant scaling factor. d(z, r̂
(j)
t ) is the sum of the Euclidean distance between the 3D

points projected back from depth images z, r̂(j)
t , using the intrinsic parameters of the camera. Pose

estimation is performed over successive iterations that: 1) compute the weight of each particle, 2)

normalize the weights to one, 3) draw N particles by importance sampling, and 4) diffuse each

sampled particle by a zero-mean Gaussian noise. After maximum number of iterations, the most

likely particle as the scene estimate for scene hypothesis Hi:

xt = arg max
x

(j)
t

p(x
(j)
t |z1:t) (3.6)

3.4.1.3 Final Scene Ranking

After particle filtering for all scene hypotheses, we have a scene estimate xt for each scene hypoth-

esis. We then rank them based on the likelihood of each xt as computed earlier. The most likely xt

is taken as the scene estimate and is then used to derive the scene graph.
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3.4.2 Scene Graph Structure

The objects pose estimation of a cluttered scene can be turned into an axiomatic scene graph. We

use following axiomatic assertions: exist(qj) for the assertion that object j exists in the scene with

pose qj; clear(qi) for the assertion that the top of object i is clear and no other objects are stacked

on it; on(qi, qj) for the assertion that object i is stacked on object j; in(qi, qj) for the assertion that

object i is in object j. An example of a scene graph is given in Figure 3.4.

To assert the proximity relations between two objects i, j, we add a virtual object qγ with

geometry mγ into the scene graph, with mγ being a shape that can be arbitrarily defined based on

the application, and qγ being the identity pose in the frame of object i. Then, the proximity relation

between objects i, j can be encoded by {has(qi, qγ), in(qγ, qj)}, where has(qi, qγ) asserts that

object i has a virtual object qγ attached to its frame. When the parent object i is in a new location,

the robot can adapt to the new scenario by placing the child object j within the region of mγ

attached to the frame of i.

To determine the stacking relations between the objects, we use simple heuristics. In the 3D

mesh object models, the z-axis of each object is the gravitational axis when the object stands

upright. The dimensions {hx, hy, hz} of the 3D box that encloses each object model are given as

prior knowledge. In order to determine whether object i is being supported by another object, two

heuristics are tested: (1) if one of the object axes (e.g., x-axis) is aligned with the gravitational axis,

then the height hi of the 3D volume occupied by the object equals to the corresponding dimension

(e.g. hx) of the provided 3D enclosing box. A simple rule zi − htable > 0.5hi is used to determine

whether object i is being supported by another object; (2) if none of the object axes are aligned

with the gravitational axis, then object i is being supported by another object.

The set of objects that is being supported by other objects is sorted with increasing z values

of the object pose, and is denoted as Os, the remaining objects are denoted as Or. For each object

i ∈ Os, a heuristic measure is used to determine which object j ∈ Or is supporting i,

arg maxj f(rb(q
i), rt(q

j))
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where f(r1, r2) measures the overlapping area of two regions r1, r2, and rt(qi), rb(qi) represent

the projected region on the table of the top and bottom surface of object i, respectively. Once

the supporting object for i ∈ Os is identified, i is moved from set Os to Or. With the supporting

relation between a pair of objects i, j identified, the corresponding axiomatic assertion is expressed

as either on(qi, qj) or in(qi, qj), depending on the geometry type of the supporting object j being

convex or concave.

We can extend the current set of axiomatic assertions to a more extensive set that describes

the inter-object spatial relations in the scene graph in more detail, such as in front of, to the left

of, to the right of, and peg-in-hole relations, and even wrap around with deformable object, etc.

Depending on the domain of the task, the frame problem [107] can arise such that it can be tricky to

find adequate collections of axioms for viable description of the robot task domain. In the scope of

this dissertation, we focus on the robot task domain of rigid object organization tasks, i.e., putting

rigid objects into satisfying spatial relations relative to other objects, and we limit the inter-object

spatial relations of interest to on, in and proximity.

3.5 Implementation

3.5.1 RCNN object detector

We employ R-CNN [54] as our discriminative object detector as described in section 3.4.1.1. R-

CNN first generates object bounding boxes given an image, then for each bounding box, it outputs

the confidence measure through a deep convolutional neural network. For the sake of efficiency

and performance, we replace the original selective search [170] with EdgeBox [193] for object

proposal generation. We train an R-CNN object detector on our object dataset that includes 15

grocery objects. The dataset contains 8366 ground truth images (~557 average ground truth images

for one object) and 60563 background images. We fine tuned our object detector on a pre-trained

model on ImageNet [39].
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3.5.2 Particle filtering and parallelization

During bootstrap filtering for pose estimation as described in section 3.4.1.2. Each object in each

particle x(j)
t is initialized by candidate Ci in the scene hypothesis, the object label li determines

which 3D mesh object model to use, and the initial pose is uniformly sampled inside the bounding

box Bi. A parallel graphics engine rapidly renders depth images given all particles. CUDA is used

to compute the weights of all particles in parallel. Through our experiment, we fix particle filter

iteration to 400 and use 625 particles.

In the particle filtering process, the pose of each object is estimated sequentially. For example,

if there are four hypothesized objects and 400 particle filter iterations, the pose of the object with

the maximum detection confidence is estimated in the first 100 iterations. Then the pose of the

object with the 2nd largest detection confidence is estimated in the next 100 iterations, with the

first object fixed at the most likely pose. We carry on the estimation process iteratively for the

remaining objects.

We ran our experiments on a computer with i7 2.60GHz CPU and Nvidia GeForce GTX 980M.

It takes on average 30 seconds to finish 400 particle filter iterations for each scene hypothesis in

our robot experiments, and the bottleneck of computation time is the likelihood calculation of each

particle as discussed in Equation 3.5, and the rendering of depth images based on hypothesized

object classes and poses represented in each particle. A detailed breakdown of the runtime of a

typical particle filtering iteration is as shown in Figure 3.5.

The complexity of the scene estimation is O(NK min (mn,mm−n)), where N is the number

of particles, and K is the number of particle filtering iterations. O(min (mn,mm−n)) is the com-

plexity of
(
m
n

)
that corresponds to the number of combinatorial scene hypotheses, where m is the

number of detections in the observed scene, and n is known number of objects in the scene. As m

gets much larger than to n, the number of scene hypotheses gets large, techniques such as Markov

Chain Monte Carlo can be used to efficiently sample scene hypotheses rather than a brute force

search over the complete set of scene hypotheses.
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Figure 3.5: Runtime breakdown of a typical particle filtering iteration. Generate TF: time that
takes to prepare the transformation (TF) of object meshmodels for rendering; render: time that
takes to render the objects (there are in total 6611 vertices in objects mesh models in this particular
example). The rendering time increases approximately linearly as the total number of vertices to
be rendered increases; likelihood: time that takes to compute the likelihood; resampling: time that
takes to resample particles.

3.5.3 Planning and Execution

Given the observation of the goal state of the world, the robot estimates the goal scene graph, and

stores the desired inter-object relations by PDDL [110]. Similarly, the robot estimates and stores

the initial inter-object relations by PDDL. With sets of PDDL that describe the initial and goal

state, the robot uses a task planner to plan a series of goal-directed actions to rearrange objects

in the initial scene, such that the same inter-object relations in the goal scene graph are satisfied.

We use breadth first search STRIPS[47] as our task planner. Note that the robot does not need to

rearrange the objects with the exact same poses as in the goal scene, as long as the same inter-

object relations are achieved, similarly to how human would arrange a set of daily objects based
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on simple instructions.

The task planner gives a sequence of high-level pick-and-place actions. To pick an object, the

robot is given a set of pre-computed grasp poses of the object using [164], and uses Moveit! [155]

to check which grasp pose it can generate a collision-free trajectory for, and use that for grasping.

To place an object, the robot sample place poses in the empty space that satisfies the desired inter-

object relations, and again use the place pose it can generate a collision-free trajectory for.

3.6 Experiments

In our experiments, we first evaluate our scene estimation method on a public household occlusion

dataset and our cluttered scene dataset, and then evaluate our overall semantic robot programming

paradigm in tray setting tasks. DIGEST outperforms the state-of-the-art method D2P on the house-

hold occlusion dataset, and outperforms FPFH on our cluttered scene dataset. We demonstrate the

effectiveness of our system for programming a robot to complete various tray-setting tasks through

goal-directed manipulations. We run all experiments on a computer with an Titan X Graphics card

and CUDA 7.5.

3.6.1 DIGEST: Cluttered Scene Estimation

To evaluate DIGEST on pose estimation, we benchmarked the performance of DIGEST on two

different datasets: household occlusion dataset [6], and our cluttered scene dataset. The household

occlusion dataset contains objects standing up right, thus it only affords benchmarking on 3 DOF

object pose estimation. In our cluttered scene dataset, objects can be in arbitrary pose, and we use it

for benchmarking on 6 DOF object pose estimation. Object pose estimation accuracy is calculated

as the percentage of correctly localized objects over the total number of objects in the dataset. An

object is correctly localized if the pose error falls within certain position error threshold ∆t and

rotation error threshold ∆θ. The position error is the Euclidean distance error in translation; the

rotation error is the absolute angle error in orientation. For rotationally symmetric objects, the
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Figure 3.6: Object pose estimation benchmark of DIGEST on public household object dataset [6],
compared with three baseline methods: D2P, OUR-CVFH and BF-ICP for different correctness
criteria ∆t, ∆θ. DIGEST outperforms D2P for strict correctness criteria, and performs on par with
D2P for relaxed correctness criteria.

rotation error about the symmetric axis is ignored.

3.6.1.1 Household Occlusion Dataset – 3 DOF Object Poses

The household occlusion dataset contains 22 test scenes with 80 objects in total. The test scenes

include objects such as milk bottles, laundry items, mugs and etc; We compare DIGEST against

three baseline methods as described in [120], that is, D2P, OUR-CVFH [7], and Brute Force
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Figure 3.7: Object pose estimation benchmark of DIGEST on our cluttered scene dataset, compared
with baseline method FPFH under different correctness criteria ∆t, ∆θ. DIGEST outperforms
FPFH with large margin.

ICP (BF-ICP). D2P also uses an R-CNN object detector as part of their pose estimation process.

However, it is not clear what hyper parameters they choose during the training phase of the object

detector. In order to avoid bias in the training of the object detector, we use their object detector

on the household occlusion dataset.

When only little error is allowed for an estimated pose to be counted as correct, as shown in

the left upper plot in Figure 3.6, the accuracy of DIGEST is nearly twice the accuracy of D2P. As

we relax the tolerance on the pose estimation error, as shown in the other three plots in Figure 3.6,
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Figure 3.8: Our robot performing goal-directed manipulation (middle columns) to prepare a tray
(right) satisfying the user-demonstrated goal (left bottom).

DIGEST performs on par with D2P. Overall, DIGEST outperforms D2P since (1) DIGEST explores

the state space a lot more than D2P, as we do not discretize the state space, and (2) DIGEST does not

use ICP for local search, which D2P employs for pose estimation. In terms of run time, DIGEST

takes around 30 seconds (varying with the number of objects and the size of object mesh), which

is faster than 139.74 seconds reported in D2P.

3.6.1.2 Cluttered Scene Dataset – 6 DOF Object Poses

We collect a cluttered scene dataset with 16 different sceness, and 72 objects in total. This dataset

includes laundry, kitchen and toy items. The number of objects in each scene ranges from 3 to 7.

This dataset is much more challenging than the household object dataset, as the objects can have

random 6 DOF poses. We compare the performance of DIGEST with FPFH [139], as shown in

Figure 3.7.

3.6.2 Semantic Robot Programming: Tray Setting

We designed our experiments around a service robot scenario, as illustrated in Figure 3.1. The

robot needs to prepare a tray as specified by the user int the goal scene. We tested our system on

scenes of 4 to 6 objects including the tray, with different inter-object relations, such as stacking and

proximity relations. The robot is able to perceive the initial and goal state, then plan and execute

goal-directed actions to satisfy the inter-object relations in the goal scene graph.
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Figure 3.9: Our SRP system tested for 5 different tray preparation tasks. The left column shows
the goal scene. For each goal, the robot starts from two different initial states and successfully
performs goal-directed manipulations to prepare the tray. Depth images are rendered based on 6
DOF object poses output by DIGEST.

An example of SRP for goal-directed manipulation is shown in Figure 3.8. Based on the scene

graph inferred from the object pose estimates, the robot generates a sequence of goal-directed

actions to achieve the goal state. Our tray setting experiments are shown in Figure 3.9, and more

detail in this video1. The goal and start scenes are well estimated as a collection of 6DOF poses

of objects. The robot successfully sets up a tray as the user desired in 10 out of 10 different tray

setting experiments.

3.7 Conclusion

We have presented Semantic Robot Programming as a paradigm for users to easily program robots

in a declarative goal-directed manner. We demonstrate the effectiveness of SRP using the pro-

1https://youtu.be/ZJLD_6v88KA
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posed DIGEST scene perception method on two datasets of objects in occlusion and clutter: both

house occlusion dataset and our cluttered scene dataset. Through our approach to generative-

discriminative perception, SRP with DIGEST is able to perceive, reason, and act to realize an

arbitrary user-demonstrated goal in cluttered scenes.

SRP provides many interesting directions to pursue, such as motion planning over sequences of

general manipulation actions. Currently, grasp point localization [164] is used to select good grasp

poses for object picking. However, such selected grasp poses are not necessarily appropriate for a

later placement actions. Visual inspection on selected grasps is done before robot execution. Ide-

ally, appropriate grasp poses would be provided by a manipulation affordance mechanism, such as

Affordance Templates [58] associating robot action with an object. Such affordance mechanisms

would allow for investigation of more flexible task and motion planning over sequences of actions.

We further posit scene perception can be made to run in interactive-time through a thoughtful par-

allelized implementation, enabling potentially interactive planning and manipulation execution.
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CHAPTER 4

CT-Map: Contextual Temporal Semantic Mapping

In the previous chapter, an SRP framework was described for tabletop tasks on a manipulator robot.

In many tasks that a user would desire, a larger workspace beyond the tabletop can be involved.

For example, a user would like to program the robot to organize the living room rather than a single

tabletop. Due to the limited field of view of robot sensors, neither the demonstrated goal scene for

organizing the living room nor the current world state can be captured with a single observation.

Instead, the robot should infer either the goal or the current world state from multiple observations

across the scene. Thus, to scale SRP from tabletop scale to larger scale (e.g., room level), we would

need to scale up the scene perception system, and tabletop manipulation to mobile manipulation

actions. As a step towards SRP at large scale, this chapter discusses a semantic mapping approach

for scaling up the scene perception system, where objects are simultaneously detected and localized

given streaming observations across a scene. The issues for scaling up robot actions towards mobile

manipulation actions are later described in Chapter 5.

Given streaming observations from the robot perception sensor (e.g. RGB-D camera), we pro-

pose to semantically map an observed scene with simultaneously detected and localized objects

in an on-line fashion. The semantic map consists of a list of objects with their class labels and 6

degree-of-freedom poses. As new observation becomes available, our approach incrementally up-

dates the semantic map, and remains computationally tractable as the number of objects increases.

Unlike DIGEST (discussed in the previous chapter), where objects are treated independently during

the scene estimation process, we now explicitly model the dependencies between objects. Further,
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we will show how modeling the dependencies between objects can benefit the scene estimation

process.

We present a filtering-based method for semantic mapping to simultaneously detect objects and

localize their 6 degree-of-freedom pose, called Contextual Temporal Mapping (or CT-Map) [189].

We represent the semantic map in CT-Map as a belief over object classes and poses across an ob-

served scene. Inference for the semantic mapping problem is then modeled in the form of a Condi-

tional Random Field (CRF). CT-Map is a CRF that considers two forms of relationship potentials

to account for contextual relations between objects and temporal persistence of object poses, as

well as a measurement potential on observations. A particle filtering algorithm is then proposed

to perform inference in the CT-Map model. We demonstrate the efficacy of the CT-Map method

with a Michigan Progress Fetch robot equipped with a RGB-D sensor. Our results demonstrate

that the particle filtering based inference of CT-Map provides improved object detection and pose

estimation with respect to baseline methods that treat observations as independent samples of a

scene.

4.1 Introduction

For robots to effectively operate and interact with objects, they need to understand not only the

metric geometry of their surroundings but also its semantic aspects. When requested to organize a

room or search for an object, robots must be able to reason about object locations and plan goal-

directed mobile manipulation accordingly. We aim to enable robots to semantically map the world

at the object level, where the representation of the world is a belief over object classes and poses.

With the recent advances in object detection via neural networks, we have stronger building blocks

for semantic mapping. Yet, such object detections are often times noisy in the wild, due to biases

and insufficient diversity in training dataset. In our work, we aim to be robust to false detections

from such networks. We model the object class as part of our hidden state for generative inference,

rather than making hard decisions on class labels as given by the detector.

42



Figure 4.1: Robot semantically maps a student lounge in four different visits. Each column shows
an RGB snapshot of the environment, together with the corresponding semantic map composed by
the detected and localized objects. We propose Contextual Temporal Mapping (CT-Map) method to
simultaneously detect objects and localize their 6 DOF pose given streaming RGB-D observations.
To achieve this, we probabilistically formulate semantic mapping problem as a problem of belief
estimation over object classes and poses. We use Conditional Random Field (CRF) to model
contextual relations between objects and temporal consistency of object poses. (Best viewed in
color)

Given streaming RGB-D observations, our goal is to infer object classes and poses that explain

observations, while accounting for contextual relations between objects and temporal persistence

of object poses. Instead of assuming that every object is independent in the environment, we

aim to explicitly model the object-object contextual relations during semantic mapping. More

specifically, objects from the same category (e.g., food category) are expected to co-occur more

often than objects that belong to different categories. Additionally, physical plausibility should be

enforced to prevent objects from intersecting with each other, as well as floating in the air.

Temporal persistence of object poses also plays an important role in semantic mapping. We

assume smoothness between objects poses across consecutive frames. When objects are not being

directly observed, they could stay where they were observed in the past, or gradually change their

semantic locations over time. For example, a cereal box that was observed on a table can be

moved to a cupboard at a later time. Under cases of occlusion, modeling temporal persistence

can potentially help the localization of partially observed objects. Through temporal persistence

modeling, the robot could gain a notion of object permanence, i.e., believing that objects continue
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to exist even when they are not being directly observed.

Considering both contextual and temporal factors in semantic mapping, we propose the Con-

textual Temporal Mapping (CT-MAP) method to simultaneously infer object classes and poses.

Examples of semantic maps generated by CT-Map are shown in Figure 4.1. To avoid deterministi-

cally representing the world as a collection of recognized objects with poses, we maintain a belief

over the object classes and poses across observations.

For generative inference, CT-MAP probabilistically formalizes the semantic mapping problem

in the form of a Conditional Random Field (CRF). Dependencies in the CRF model capture the

following aspects: 1) compatibility between the latent semantic mapping variables and observa-

tions, 2) contextual relations between objects, and 3) temporal persistence of object poses. We

propose a particle filtering based algorithm to perform generative inference in CT-MAP, inspired

by Limketkai et al [97]. Note that the proposed inference algorithm is an instance of approximate

nonparametric belief propagation [157].

We evaluate the proposed semantic mapping method CT-MAP with the Michigan Progress

Fetch robot. The performance of CT-MAP is quantitatively evaluated in terms of object detection

and pose estimation accuracy. We show that CT-MAP is effective in simultaneously detecting and

localizing objects in cluttered scenes. We demonstrate object detection performance superior to

Faster R-CNN [138], and accurate 6 DOF object pose estimation compared to 3D registration

methods such as ICP, and FPFH [139]. We also highlight examples in which our method benefits

from modeling temporal persistence of object poses and object contextual relations.

4.2 Related Work

Our work semantically maps the world through simultaneous object detection and 6 DOF object

pose estimation. Contextual relations between objects and temporal persistence of object poses are

being modeled for better scene understanding. Here we discuss the related works in a) semantic

mapping, b) object detection and pose estimation, c) object contextual relations, and d) object
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temporal dynamics modeling.

Semantic Mapping Considering the plethora of work [84] in the field of semantic mapping

which vary in semantic representations, we limit our focus to the works that provide object-level

semantics. Works in semantic SLAM [13, 142, 21] demonstrated SLAM at the object level.

Similarly, we aim at providing a semantic map of the world at the object level, and we focus

on mapping while making use of existing metric slam method (e.g., ORB-SLAM [117]) to stay

localized.

A widely used approach for semantic mapping is to augment 3D reconstructed map with ob-

jects. Civera et al. [32] ran an object detection thread parallelly with a monocular SLAM thread.

They registered objects to the map by aligning the object faces relying on the SURF features. Ek-

vall et al. [42] actively recognized objects based on SIFT features, and integrated object recognition

with SLAM for triangulation of object locations. However, the methods of Civera et al. and Ekvall

et al. do not address with false detections, and their experiments were carried out in environments

with no clutter.

To be robust to false detections, Pillai et al. [133] proposed aggregating object evidence over

multiple frames to get better detection, compared to single frame object detection. However, their

method relied on 3D geometric segmentation that singulates objects from the background, which

is vulnerable when dealing with clutter. Sünderhauf et al. [160] combined object detection over

multiple frames and 3D geometric segmentation to get reasonable object boundaries. They pro-

duced 3D reconstructed map with object instance segments as central semantic entities. However,

their method did not provide object pose information, which is critical for robotic manipulation

tasks.

Other works have focused on scene labeling of 3D map as a parallel SLAM thread is running

in the background. Similar research has proposed different methods for single frame scene label-

ing [192, 154, 108, 180], and fused labels across multiple frames to generate a dense 3D semantic

map. Our work focus on detecting and localizing object entities in the environment, instead of
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dense labeling of every surfel or voxel in the reconstructed 3D map.

Object Detection and Pose Estimation Deep neural network based object detectors [135, 100,

138] are nowadays widely adopted for focusing attention in region of interest given an image.

Works in object pose estimation adopt these object detectors to get prior on object locations. Zeng

et al. [190] generated scene hypotheses based on object detections returned by R-CNN [54], and

they used Bayesian based bootstrap filter to estimate object poses. Similarly, Sui et al. [158] and

Narayanan et al. [121] proposed generative approach for object pose estimation given RGB-D ob-

servation. Discriminative object pose estimation methods use local [69, 139] or global [140, 7]

descriptors to estimate object poses via feature matching. However, feature-based methods are

sensitive to the clutterness in the environment. Our work takes the generative approach and builds

on Zeng et al. [190] for object pose estimation through Bayesian filtering, while [190] modeled ob-

jects independently and took single image at input, we model the contextual dependencies between

objects and temporal persistence of each object instance given streaming data.

Works that simultaneously detect and localize objects are highly related to our work. Xiang

et al. [181] proposed PoseCNN as a novel network for object detection and 6 DOF object pose

estimation given a RGB image. Tremblay et al. [169] and Tekin et al. [163] converted the problem

of simultaneous object detection and pose estimation into a problem of detecting the vertices of

object bounding cuboid. Unlike these works that take single image as input and outputs deter-

ministic estimate of object poses, our work maintains a belief over object classes and poses across

observations.

Given streaming data, Salas-Moreno et al. [142] assumed repeated object instances in the en-

vironment to effectively recognize and localize objects. However, their model lacks inter-object

dependences. Tateno et al. [162] incrementally segmented 3D surface reconstructed by an under-

lying SLAM thread, then 3D segments were recognized as objects and object poses were estimated

via 3D descriptor matching. Their work is similar to CT-Map in terms of the output. However, they

depend on 3D geometric segmentation which is not guaranteed to segment objects out in clutter.
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In addition, they require dense SLAM with small voxel size which is hard to scale.

Object Contextual Relations Contextual relations play a key role in modeling spatial relations

between objects for scene understanding. Koppula et al. [81] showed semantic labeling on point

clouds using co-occurrence and geometric relations between objects. Jiang et al. [68] explored

indirectly modeling object contextual relations by hallucinating human interactions with the en-

vironment. Similarly, [52, 60, 78, 45, 10] have proven modeling object-object and object-place

contextual relations to be useful in place recognition, object detection and object search tasks.

In our work, we mainly utilize object-object contextual relations in terms of co-occurrence and

geometric relations.

Object Temporal Dynamics Modeling We need to maintain the belief over object poses even

when objects are not being observed. Different types of the objects share different characteristics

of dynamics. For example, structural objects such as furnitures tend to stay approximately at

the same location, while small objects such as food items can often be moved from one place

to another. Bore et al. [20] proposed to learn long-term object dynamics over multiple visits of

the same environment. Toris et. al. [167] proposed a temporal persistence model to predict the

probability of an object staying at the location where it is last observed after certain time period.

We are inspired by the temporal persistence model proposed in [167], and we reason about the

possible locations of an object observed in the past based on the contextual relations between

objects.

4.3 Problem Formulation

We focus on semantic mapping at the object level. Our proposed CT-Map method maintains a

belief over object classes and poses across an observed scene. We assume that the robot stays

localized in the environment through an external localization routine (e.g., Beeson et al. [14] and

ORB-SLAM [117]). The semantic map is composed by a set of N objects O = {o1, o2, · · · , oN}.

47



Each object oi = {oc, og, oψ} contains the object class oc ∈ C, object geometry og, and object pose

oψ, where C is the set of object classes C = {c1, c2, · · · , cn}.

At time t, the robot is localized at xt. The robot observes zt = {It, St}, where It is the observed

RGB-D image, and St are semantic measurements. The semantic measurements sk = {ssk, sbk} ∈

St are returned by an object detector (as explained in section 4.5.1), which contains: 1) a object

detection score vector ssk, with each element in ssk denoting the detection confidence of each object

class, and 2) a 2D bounding box sbk.

We probabilistically formalize the semantic mapping problem in the form of a CRF, as shown

in Figure 4.2. Robot pose xt and observation zt are known. The set of objects O are unknown

variables. We model the contextual dependencies between objects and the temporal persistence of

each individual object over time. The posterior probability of the semantic map is expressed as:

p(O0:T |x0:T , z0:T ) =

1

Z

T∏
t=0

N∏
i=1

φp(o
i
t, o

i
t−1, u

i
t−1)φm(oit, xt, zt)

∏
i,j

φc(o
i
t, o

j
t) (4.1)

where Z is a normalization constant, and action applied to object oi at time t is denoted by uit.

φp is the prediction potential that models the temporal persistence of the object poses. φm is the

measurement potential that accounts for the observation model given 3D mesh of objects. φc is the

context potential that captures the contextual relations between objects.

4.3.1 Prediction Potential

We use two different prediction models for predicting object pose, depending on whether the object

is in the field of view or not. If the object is being observed, we model the action u as a continuous

random variable that follows a Gaussian distribution with zero mean and small variance Σ. This

assumption leads to prediction of small object movements in 3D to be modeled as:

oψt ∼ N (oψt−1, Σ)
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Figure 4.2: Graphical model of the semantic mapping problem. Observed variables are robot poses
xt and observations zt. Unknown variables are objects {o1, o2, · · · , oN}. We compute the posterior
over objects while modeling contexual relations between all pairs of objects at each time point, and
temporal persistence of each object across consecutive time points.

which allows us to express the prediction potential as:

φp(o
i
t, o

i
t−1, u

i
t−1) = exp(−(oψt − o

ψ
t−1)TΣ−1(oψt − o

ψ
t−1)) (4.2)

When object oi is not in the field of view for a significant period of time, it can be either located

at the same location or moved to a different location due to the actions applied by other agents. As

stated by Toris et al. [167], the probability of the object oi still being at the same location where

it was last seen is a function of time. To take into account the fact that object oi can be moved to

other locations, we model the temporal action ui with a discrete random variable {ustay, umove}.

Specifically, ustay denotes no action and the object stays at the same location, and umove denotes
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a move action is applied and the object is moved to other locations. And these high-level actions

follow certain distribution p(ui,∆t),

p(ui = ustay,∆t) = r1 + r2 exp(−∆t

µi
) (4.3)

p(ustay,∆t) + p(umove,∆t) = 1 (4.4)

where r1, r2 are constants, and ∆t is the time duration that object oi is not being observed. As

∆t increases, the probability of ustay decays, and eventually p(ustay,∆t) = r1 as ∆t → ∞. For

different objects oi, the coefficients µi that control the speed of the decay are different. We provide

heuristic µi for different objects in our experiments, while these coefficients can also be learned as

introduced by Toris et al. [167].

4.3.2 Measurement Potential

The measurement potential of object oit is expressed as:

φm(oit, xt, zt) =


δ, if oit is out of view

g(oit, xt, zt), otherwise

We use non-zero constant δ to account for cases where objects are not in the field of view.

g(oit, xt, zt) measures the compatibility between the observation zt and oit, xt,

g(oit, xt, zt) =
∑
sk∈St

h(oit, s
s
k)l(s

b
k, b(o

i
t, xt))f(oit, xt, It)

where h(oit, s
s
k) is the confidence score of class oct from the detection confidence vector ssk. Function

l evaluates the intersection over minimum area of two bounding boxes. b(oit, xt) is the minimum

enclosing bounding box of projected oit in image space based on xt.

We assume known 3D mesh models of objects. Function f(oit, xt, It) computes the similarity
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between the projected oit and It inside bounding box b(oit, xt), as explained in detail in section

4.5.2. In the case that robot has observed object oi in the past, and the belief over oi indicates that

it is in the field of current view of the robot. If the robot cannot detect object oi, then the object

could be occluded, in which case we use g(oit, xt, zt) = f(oit, xt, It) for the object to be potentially

localized.

4.3.3 Context Potential

There exist common contextual relations between object categories across all environments. For

example, a cup would appear on a table much more often than on the floor, and a mouse would

appear besides a keyboard much more often than besides a coffee machine. We refer to these

common contextual relations as category-level contextual relations. In a specific environment,

there exist contextual relations between certain object instances. For example, a TV always stays

on a certain table, and a cereal box is usually stored in a particular cabinet. We refer to these

contextual relations in a specific environment as instance-level contextual relations.

We manually encode category-level contextual relations as prior knowledge to our model,

which also can be learned from public scene dataset (e.g., McCormac et al. [109]). Because

instance-level contextual relations vary across different environments, these relations of a spe-

cific environment must be learned over time. The context potential is composed by category-level

potential φcat and instance-level potential φins,

φc(o
i
t, o

j
t) = w1φcat(o

i
t, o

j
t) + w2φins(o

i
t, o

j
t) (4.5)

We model φc(oit, o
j
t) as mixture of Gaussians, with φcat(oit, o

j
t) and φins(oit, o

j
t) each being a Gaus-

sian component.

In our experiments, we manually designed φcat as prior knowledge, and φins is updated via

Bayesian updates. The principle while designing φcat follows two constraints: 1) simple physical

constraints such as no object intersection is allowed, and objects should not be floating in the air,
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Algorithm 1: Particle filtering in CT-Map
Input: Observation zt, robot pose xt, particle set for each object

Qi
t−1 = {〈oi(k)

t−1, α
i(k)
t−1〉|k = 1, · · · ,M}

1 Resample M particles oi(k)
t−1 from Qi

t−1 with probability proportional to importance weights
α
i(k)
t−1 ;

2 for i = 1, · · · , N do
3 for k = 1, · · · ,M do
4 Sample oi(k)

t ∼ φp(o
i
t, o

i(k)
t−1, ut−1) ;

5 Assign weight αi(k)
t ∝ φm(o

i(k)
t , xt, zt)

∏
j∈Γ(i) φc(o

i(k)
t , ojt−1) ;

6 end
7 end

and 2) object pairs that belong to the same category co-occur more often than objects from different

categories.

4.4 Inference

We propose a particle filtering based algorithm to perform inference in CT-MAP, as given in Al-

gorithm 1. Nonparametric Belief Propagation [157] [64] is not directly applicable to our problem

because we are dealing with high-dimensional data. Sener et al. proposed recursive CRF [147]

that deals with discrete hidden state with forward-backward algorithm, while our hidden state is

mixed, i.e., object class label in discrete space and object pose in continuous space.

Instead of estimating the posterior of the complete history of objectsO1:T as expressed in Equa-

tion 4.1, CT-Map can recursively estimate the posterior of each object oit ∈ Ot. This approach to

inference is similar to the CRF-filter proposed by Limketkai et al. [97]. We represent the posterior

of object oit with a set of M weighted particles, i.e., Qi
t = {〈oi(k)

t , α
i(k)
t 〉|k = 1, · · · ,M}, where

o
i(k)
t contains object class and pose information as introduced in 4.3.1, and αi(k)

t is the associated

weight for the kth particle. In each particle filtering iteration, particles are first resampled based

on their associated weights, then propagated forward in time through object temporal persistence,

and re-weighted according to the measurement and context potentials.

We associate bounding boxes across consecutive frames based on their overlap. Only if a
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bounding box has been consistently associated for certain number of frames will we start initiating

object class and pose estimation for that bounding box. The initial set of particles given a detected

bounding box sbk are drawn as following: 1) first we sample the object class oc based on the

corresponding detection confidence score vector ssk; 2) then we sample the 6 DOF object pose

oψ inside sbk, by putting the object center around the 3D points at the center region of sbk, with

orientation uniformly sampled.

To sample the pose of oi(k)
t from φp(o

i
t, o

i(k)
t−1, ut−1) (Step 4 in Algorithm 1), there are two cases

as following:

• If oi(k)
t−1 is within the field of view of the robot, we sample oi(k)

t according to Equation 4.2.

• If oi(k)
t−1 is not within the field of view of the robot, we first sample the high-level action

{ustay, umove} according to Equation 4.3.

– If ustay is sampled, then oi(k)
t is sampled based on Equation 4.2.

– If umove is sampled, then another object oj is uniformly sampled from O \ oi, which

indicates the place that oi has been moved to. oi(k)
t is then sampled from the region that

oj can physically support.

In step 5 of Algorithm 1, we use Γ(i) to denote the indices of objects that are in the neigh-

borhood of object oi(k)
t . Because each neighbor object ojt−1 is represented by M particles, it is

computationally expensive to evaluate the context potential φc(o
i(k)
t , ojt−1) against each particle of

ojt−1. Thus, we only evaluate the context potential against the most likely particle of ojt−1. The

resulting complexity of the inference algorithm isO(NM), where N is the number of objects, and

M is the number of particles used to represent the belief for each object.

The proposed particle filtering based inference algorithm is an instance of nonparametric belief

propagation [157]. In contrast to the push message passing based belief propagation [157], our

sampling process in the space of a node is mainly driven by the marginal belief of that node, instead

of driven by the pairwise potential. This sampling process has proven to be more effective [40]

when the pairwise potential is not peaky.
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4.5 Implementation

4.5.1 Faster R-CNN object detector

We deploy Faster R-CNN [138] as our object detector. Given the RGB channel of our RGB-D

observation, we apply the object detector and get the bounding boxes from the region proposal net-

work, along with the corresponding class score vector. Then we apply non-maximum suppression

to these boxes and merge boxes that have Intersection Over Union (IoU) larger than 0.5. For train-

ing, our dataset has 970 groundtruth images for 13 object classes. Each image has around 10 la-

beled objects. We fine-tuned the object detector based on VGG16 [150] pretrained on COCO [98].

In case of overfitting, we fine-tuned the network for 3000 interations with 0.001 learning rate.

4.5.2 Similarity function

We assume as given the 3D mesh model of objects. Thus, we can render the depth image of oit

based on its object class oc and 6 DOF pose oψ in the frame of xt. With rendered depth image

I(oit, xt), we define the similarity function f(oit, xt, It) as

f(oit, xt, It) = e−λd(I(oit,xt),It) (4.6)

where λ is a constant scaling factor. d(I(oit, xt), It) is the sum of squared differences between the

depth values in observed and rendered depth images.

4.6 Experiments

We collected our indoor scene dataset with a Michigan Progress Fetch robot for evaluation on our

proposed CT-Map method. Our indoor scene dataset contains 20 RGB-D sequences of various

indoor scenes. We measure the quality of inference for various scenes in terms of 1) object de-

tection and 2) pose estimation. Thus, we follow the mean average precision (mAP) metric and 6
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Faster R-CNN T-Map CT-Map
mAP 0.607 0.715 0.871

Table 4.1: mAP on our scene dataset.

DOF pose estimation accuracy for benchmarking our method. We also show qualitative examples

of our semantic maps in Figure 4.1. More qualitative examples are provided in this video1. On

a computer with i7 2.60GHz CPU and Nvidia GeForce GTX 980M, our implementation of the

semantic mapping algorithm runs at 1 FPS (2 particle filtering iterations per frame) on average.

The complexity of the inference is as discussed previously.

Across all experiments, we use w1 = w2 = 0.5 in Equation 4.5 to treat category-level and

instance-level potentials equally. If an object has not been observed for infinite long period of

time, we assume that object has equal probabilities of either staying at the same location or not.

Thus, we use r1 = r2 = 0.5 in Equation 4.3.

4.6.1 Object Detection

We have noisy object detections coming from baseline Faster R-CNN object detector, while CT-

Map can correct some false detections by modeling the object class as part of our hidden state.

To evaluate the object detection performance of CT-Map, we take the estimated 6 DOF pose of

all objects in the scene at the end of each RGB-D sequence in our dataset, and project them back

onto each camera frame in that sequence to generate bounding boxes with class labels. We run two

semantic mapping processes by considering different sets of potentials: 1) Temporal Mapping (T-

Map): we consider prediction potential in the CRF model; 2) Contextual Temporal Mapping (CT-

Map): we consider both prediction and context potential in the CRF model, which is the proposed

method. For both T-Map and CT-Map, we include the measurement potential on observation.

We use mAP as our object detection metric. As shown in Table 4.1, T-Map improves upon

the baseline method Faster R-CNN by incorporating prediction and observation potentials, and

CT-Map improves the performance further by additionally incorporating context potential. Faster

1https://youtu.be/W-6ViSlrrZg
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R-CNN did not perform quite well on the test scenarios because the training data do not necessarily

cover the variances encountered at test time. Though the performance of Faster-RCNN can be

further improved by providing more training data, CT-Map provides more robust object detection

when training remains limited.

In some cases, objects are not being reliably detected by Faster R-CNN due to occlusion. If an

object has been observed in the environment in the past, our method makes predictions on locations

that objects can go by modeling the temporal persistence of objects. Thus, even if a detection is not

fired on the object due to occlusion, our method can still localize the object and claim a detection.

However, in cases where an object is severely occluded and the depth observation lacks enough

geometric information from the object, our method will not be able to localize the object. Example

detection results highlighting the benefits of the proposed method compared to baseline Faster

R-CNN are shown in Figure 4.4.

4.6.2 Pose Estimation

For each RGB-D sequence in our dataset, we locate the frames that each object is last seen, and

project the depth frame back into 3D point clouds using known camera matrix. We then manually

label the ground truth 6 DOF pose of objects. We compare the estimated object poses at the end of

each RGB-D sequence against the ground truth.

Pose estimation accuracy is measured as accuracy = Ncorrect
Ntotal

, where Ncorrect is the number

of objects that are considered correctly localized, and Ntotal is the total number of objects that

are present in the dataset. If the object pose estimation error falls under certain position error

threshold ∆t and rotation error threshold ∆θ, we claim that the object is correctly localized. ∆t is

the translation error in Euclidean distance, and ∆θ is the absolute angle difference in orientation.

For symmetrical objects, the rotation error with respect to the symmetric axis is ignored.

We apply the Iterative Closest Point (ICP) and Fast Point Feature Histogram (FPFH) [139]

algorithms as our baselines for 6 DOF object pose estimation. For each RGB-D sequence in our

dataset, we take the 3D point clouds of the labeled frame, and crop them based on ground truth
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bounding boxes. These cropped point clouds are given to the baselines as observations, along with

object 3D mesh models. ICP and FPFH are applied to register the object model to the cropped

observed point cloud. We allow maximum iterations of 50000.

Our proposed method CT-Map significantly outperforms ICP and FPFH by a large margin. As

our generative inference iteratively samples object pose hypotheses and evaluates them against the

observations, CT-Map does not suffer from local minima as much as discriminative methods such

as ICP and FPFH.

4.7 Conclusion

We propose a semantic mapping method CT-Map that simultaneously detects objects and localizes

their 6 DOF pose given streaming RGB-D observations. CT-Map represents the semantic map with

a belief over object classes and poses. We probabilistically formalize the semantic mapping prob-

lem in the form of a CRF, which accounts for contextual relations between objects and temporal

persistence of object poses, as well as measurement potential on observation. We demonstrate that

CT-Map outperforms Faster R-CNN in object detection and FPFH, ICP in object pose estimation.

As a step forward discussed in the next chapter, we would like to investigate the inference problem

of object semantic locations given partial observations of an environment, e.g., inferring a query

object to be on a dining table, or in a kitchen cabinet. Ideally, maintaining a belief over object

semantic locations can serve as a notion of generalized object permanence, and facilitate object

search tasks.
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CT-Map FPFH ICP

Figure 4.3: Object pose estimation of CT-Map, compared with FPFH and ICP based baselines.
Different plots correspond to different pose estimation correctness criteria defined by position error
threshold ∆t and rotation error threshold ∆θ. Our method outperforms FPFH and ICP with a large
margin.
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Figure 4.4: Mapping examples highlighting detection improvements: (a) raw detection results from
baseline Faster R-CNN; (b) detection results from T-Map when only considering measurement and
prediction potential; (c) detection results CT-Map when considering measurement, prediction and
context potential; (d) 6 DOF object pose estimates from CT-Map. We generate bounding boxes
in column (b) and (c) by projecting the localized 3D objects into 2D image space, and finding
the minimum enclosing boxes of the projections. The first row shows Faster R-CNN gives false
detection on the red bowl as ”loofah”, while both T-Map and CT-Map correct the wrong label
”loofah” into ”bowl”. The second row shows Faster R-CNN gives false detection on the shampoo
bottle as ”milk”, and T-Map fails to correct the wrong label because the geometry of milk and
shampoo is similar, while CT-Map successfully corrects the wrong label into ”shampoo” based on
the context. The third row shows Faster R-CNN does not detect the table due to the appearance
change induced by the table cloth, while both T-Map and CT-Map successfully detect and localize
the table. Because the table used to be observed around that location in the past, and our methods
benefit from modeling the temporal persistence of object poses. (Best viewed in color)
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CHAPTER 5

GOP/SLiM: Generalized Object Permanence with

Semantic Linking Maps for Active Visual Object

Search

In this chapter, we focus on bringing the overall SRP framework to a large scale (e.g. floor level).

Building on the SRP framework as discussed in chapter 3 and on-line semantic mapping approach

presented in chapter 4, we aim to enable a mobile manipulator robot to perform user desired tasks

at a large scale, given a user demonstrated goal scene. The robot sensor has a limited field of view,

leading to the cases where objects required for the user desired task are not within the field of view

at task execution time. Thus, the challenge is to effectively search and retrieve objects required for

the task from the environment.

Psychology research [57] [116] reveals that object permanence plays an important role in rea-

soning of object locations in cognitive development. Specifically, object permanence refers to the

understanding that an object that was observed continues to exist even it cannot be perceived. We

aim to model a generalized version of object permanence to reason about possible locations of

an object that may not have been observed in the environment before, and is currently not being

directly observed. Landmark objects can help this reasoning by narrowing down the search space

significantly. More specifically, we can exploit long-term occurrence history, short-term recent ob-

servations, and common sense knowledge about common spatial relations between landmark and

target objects. For example, seeing a table and knowing that cups can often be found on tables aids
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the discovery of a cup. Such correlations can be expressed as distributions over possible pairing

relationships of objects. We introduce Generalized Object Permanence (GOP) as the problem of

modeling such correlations. We propose to formally model generalized object permanence through

a factor graph. Each node in the factor graph corresponds to the spatial relation between a pair of

objects. Each node is associated with multiple factors with each representing a source of inter-

object relation information. Inference on the factor graph leads to marginal beliefs on inter-object

spatial relations between each pair of objects across the environment.

With modeled GOP, we propose an active visual object search method through our introduction

of the Semantic Linking Maps (SLiM) model [188]. SLiM simultaneously maintains the belief over

a target object’s location as well as landmark objects’ locations, while accounting for probabilistic

inter-object spatial relations. We build SLiM on CT-Map (as discussed in the previous chapter),

by extending CT-Map to consider probabilistic inter-object spatial relations. Based on SLiM, we

describe a hybrid search strategy that selects the next best view pose for searching for the target

object based on the maintained belief. We demonstrate the effectiveness of our SLiM-based search

strategy through comparative experiments in simulated environments. We further demonstrate the

real-world applicability of SLiM-based search in scenarios with a Fetch mobile manipulation robot.

5.1 Introduction

Being able to effectively search for objects in an environment is crucial for service robots to au-

tonomously perform tasks [73, 173, 59]. When asked where a target object can be found, humans

are able to give hypothetical locations expressed by spatial relations with respect to other objects.

For example, a cup can be found “on a table” or “near a sink”. Table and sink are considered land-

mark objects that are informative for searching for the target object cup. Robots should be able to

reason similarly about objects locations, as shown in Figure 5.1.

Previous works [78, 90, 167] assume landmark objects are static, in that they mostly remain

where they were last observed. This assumption can be invalid for dynamic landmark objects that
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change their location over time, such as chairs, food carts and toolboxes. Temporal assumptions

can mislead the search process if the prior on the landmarks’ locations is too strong. Further, there

also exists uncertainty in the spatial relations between landmark objects and the target object, and

between landmark objects themselves. For example, a cup can be “in” or “next to” a sink.

Considering the problem of dynamic landmarks, we propose the Semantic Linking Maps

(SLiM) model to account for uncertainty in the locations of landmark objects during object search.

Building on Lorbach et al. [104], we model inter-object spatial relations probabilistically via a

factor graph. The marginal belief on inter-object spatial relations inferred from the factor graph is

used in SLiM to account for probabilistic spatial relations between objects.

Using the maintained belief over target and landmark objects’ locations from SLiM, we pro-

pose a hybrid strategy for active object search. We select the next best view pose, which guides the

robot to explore promising regions that may contain the target and/or landmark objects. Previous

works [178, 53, 152, 11] have shown the benefit of purposefully looking for landmark objects (In-

direct Search) before directly looking for the target object (Direct Search). The proposed hybrid

search strategy draws insights from both indirect and direct search. We demonstrate the effective-

ness of the proposed hybrid search strategy in our experiments.

We describe the Semantic Linking Maps model as a Conditional Random Field (CRF). Our

description of SLiM as a CRF allows us to simultaneously maintain the belief over target and

landmark object locations with probabilistic modeling over inter-object spatial relations. We also

describe a hybrid search strategy based on SLiM that draws upon ideas from both indirect and direct

search representations. This SLiM-based search makes use of the maintained belief over objects’

locations by selecting the next best view pose based on the current belief. In our experiments, we

show that the proposed object search approach is more robust to noisy priors on landmark locations

by simultaneously maintaining belief over the locations of target and landmark objects.
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Figure 5.1: Robot tasked to find a coffee machine.

5.2 Related Work

Existing works have studied object search with different assumptions on prior knowledge of the

environment. Some assume priors on landmark objects’ locations in the environment, and utilize

the spatial relations between the target object and landmark objects to prioritize regions to search.

Kollar et al. [78] utilize object-object co-occurrences extracted from image tags on Flickr.com

to infer target object locations. Kunze et al. [90] expanded the generic notion of co-occurrences

to more restrictive spatial relations (e.g. “in front of”, “left of”), which provide more confined

regions to search, thus improving the search efficiency. Toris et al. [167] proposed to learn a

temporal model on inter-object spatial relations to facilitate search. These methods assume the
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landmark objects to be static, however, we believe accounting for the uncertainty in landmark

objects’ locations is important for object search.

Existing works have also explored known priors on spatial relations between landmark and

target objects. Given exact spatial relations between landmark and target objects, Sjöö et al. [152]

used an indirect object search strategy [178, 53], where the robot first searches for landmark ob-

jects, and then searches for a target object in regions satisfying given spatial relations. On the

other hand, given a probabilistic distribution over the spatial relations between objects, Aydemir et

al. [11] formulate the object search problem as a Markov Decision Process. In our work, we learn

the probabilistic inter-object spatial relations by building on ideas of Lorbach et al. [104], where

inter-object relations are being probabilistically modeled via a factor graph.

There are also works that do not assume prior knowledge of the environment. Researchers

have explored object search with visual attention mechanisms [148, 151, 112], such as saliency

detection. Similar to [78, 90], other research [103, 44, 70] utilizes object-object co-occurrences

to guide the search for a target object. Positive and negative detections of landmark objects will

result in an updated belief over the target object. We expand object-object co-occurrences to finer-

grained spatial relations between objects, i.e., “in”, “on”, “proximity”, “disjoint”, which specify

more confined regions for object search.

Other literature [177, 89, 174] has also explored object-place relations to facilitate object

search. Wang et al. [177] build a belief road map based on object-place co-occurrences for ef-

ficient path planning during object search. Kunze et al. [89] bootstraps commonsense knowledge

on object-place co-occurrences from the Open Mind Indoor Common Sense (OMICS) dataset.

Samadi learned similar knowledge by actively querying the World Wide Web (WWW). Our work

also takes object-place co-occurrences into account. Aydemir et al. [10] made use of place-place

co-occurrences to infer the type of the room next door, as the robot explores an environment during

search. Other research [182, 179, 96] enable robots to search for objects through manipulations of

objects to reveal objects in clutter.

From the perspective of planning for object search, we use a greedy strategy with a horizon of
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one step, similar to [90, 167, 12, 152, 103, 44]. Thus, the robot always selects the next best view

pose that maximize on our proposed utility function without accounting for expected accumulated

utility in the future. Other research [78, 177, 182, 179, 96, 11] account for expected accumulated

utility or cost in the future by path planning, or formulating a MDP or POMDP problem around

the object search task. Furthermore, object search tasks as well as mobile manipulation tasks in

general can benefit from task and motion planning [71]. Lo et al. [102] proposed task and motion

planning for task-oriented navigation tasks, which can also be extended for object search tasks to

minimize the travelled path during the search. Instead of designing integrated task and motion

planning systems for particular tasks, Srivastava et al. [153] provides a generic interface layer for

any off-the-shelf task planners and motion planners for task and motion planning.

5.3 Problem Statement

Let O = {o1, o2, · · · , oN} be the set of objects of interest, including landmark objects and the

target object for search. Given observations z0:T and robot poses x0:T , we aim to maintain the belief

over object locations P (OT |x0:T , z0:T ), while accounting for the probabilistic spatial relations Rij

between objects oi, oj ∈ O. For this work, we consider the set of spatial relations to be Rij ∈

{In, On, Contain, Support, Proximity, Disjoint}. For example, the relation Rij = In indicates that

object oi is inside object oj . The probabilistic spatial relations between object oi, oj is represented

by the belief over Rij , denoted as B(Rij).

Based on the maintained belief P (OT |x0:T , z0:T ), the robot searches for the target object by

selecting the next best view pose ranked by an utility function U : ~τ 7→ R. ~τ specifies the 6

DOF of camera view pose. The utility function U trades off between navigation cost and the

probability of search success. Upon a user request to find a target object, the robot iterates between

the belief update of objects’ locations and view pose selection, until the target object is found or

the maximum search time is reached.
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5.4 Semantic Linking Maps

For Semantic Linking Maps (SLiM), we consider inter-object spatial relations, while maintaining

the belief over target and landmark objects’ locations. Building on CT-Map [189] as discussed in

the previous chapter, we probabilistically formalize the object location estimation problem via a

Conditional Random Field (CRF). The model is now extended to account for probabilistic inter-

object spatial relations, as shown in Figure 5.2.

The posterior probability of the object locations O = {o1, o2, · · · , oN} is expressed as:

p(O0:T |x0:T , z0:T ) =

1

Z

T∏
t=0

N∏
i=1

φp(o
i
t, o

i
t−1)φm(oit, xt, zt)

∏
i,j

φc,B(Rij)(o
i
t, o

j
t) (5.1)

where Z is a normalization constant. Robot pose xt and observation zt are known. We assume that

the robot stays localized given a metric map of the environment.

φp(o
i
t, o

i
t−1) is the prediction potential that models the movement of an object over time. We

assume objects to remain static or move with temporal coherence during the search, i.e.

φp(o
i
t, o

i
t−1) = e−(oit−oit−1)TΣ−1(oit−oit−1)

φm(oit, xt, zt) is the measurement potential that accounts for the observation model, and zt =

{z1
t , z

2
t , · · · , zNt } is object detection at time t. Each zit represents (potentially noisy) detections

fired for object oi. At time t, because zit, o
j for j 6= i are independent, we simplify φm(oit, xt, zt) to

φm(oit, xt, z
i
t) s.t.,

φm(oit, xt, z
i
t) =



PFN , if oit ∈ Ei
t and zit = ∅

PTN , if oit /∈ Ei
t and zit = ∅

PTP , if π(oit) ∈ zit

PFP , otherwise

(5.2)

66



Figure 5.2: CRF-based SLiM model: (a) Known: {xt} robot poses, {zt} sensor observations;
Unknown: Ot = {o1

t , o
2
t , · · · , oNt }. (b) Plate notation: at time t, the spatial relations between each

object pair oi, oj is parameterized by the belief over their spatial relations B(Rij).

where PFN , PTN , PTP , PFP stands for the probability of false negative, true negative, true positive,

and false positive. Ei
t is the effective observation region for object oi given the robot’s camera pose

at time t. Note, the robot has a larger effective observation region for larger objects, because they

can be reliably detected from further away compared to small objects. π is the camera projection

matrix, and π(oit) ∈ zit denotes that the projected object lies in the detected bounding box in zit.

We model the spatial relations between objects with context potential φc,B(Rij). Here, we extend

φc from our previous work by paramtererizing it with the belief B(Rij) over the inter-object spatial

relation between oi, oj ,

φc,B(Rij) =
∑
r

B(Rij = r)φc,r(o
i
t, o

j
t , Rij = r) (5.3)

where r can take any value in the set of possible relations {In, On, Contain, Support, Proximity, Disjoint}.

For r ∈ {In, On, Contain, Support}, φc,r(oit, o
j
t , Rij = r) is equal to 1 if objects oit, o

j
t satisfy

the spatial relation given the width, length and height of the object, otherwise 0. For r = Proximity,
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φc,r(o
i
t, o

j
t , Rij = Proximity) corresponds to a Gaussian distribution that models ojt ∼ N (oit, Σij)

and Σij is determined by the size of objects oi, oj . The larger the size of oi, oj , the larger the

variance in Σij . For r = Disjoint, φc,r(oit, o
j
t , Rij = Disjoint) = 1−

∑
r 6=Disjoint

φc,r(o
i
t, o

j
t , Rij = r).

5.4.1 Inference

We propose a collaborative particle filtering based inference method for maintaining the belief over

object locations, as shown in Algorithm 2. Instead of estimating the posterior of the complete his-

tory of object locations p(O0:T |x0:T , z0:T ), we recursively estimate the posterior probability of each

object oit ∈ Ot, similarly to [189, 97]. The complexity of the inference algorithm is O(NKM2),

where N is the number of objects, K is the number of neighbor objects, and M is the number

of particles used to represent the belief of each object. In step 6 as described in Algorithm 2),

for each neighbor object, the context potential is computed between each of the M particle oi(k)

and object oj which is represented by M weighted particles oj(.), thus the quadratic term M2 in

the complexity. Further works can be done to decrease the complexity down to O(NKMC) by

sampling C representative and divergent particles among particles oj(.), where C is much less than

M .

We represent each object with M weighted particles. To deal with particle decay, for each

object oi, we reinvigorate the particles by sampling from known room areas, as well as sampling

around other objects oj based on B(Rij). Across our experiments, we use 100 particles for each

object, and we only establish the edge of context potential between objects oi, oj if 1 − B(Rij =

Disjoint) > 0.2. Examples of the belief update over time are available in Figure 5.3.

The proposed collaborative particle filtering based inference algorithm is an instance of ap-

proximate nonparametric belief propagation [157]. Similarly to CT-Map in previous chapter, our

sampling process in the space of a node is mainly driven by the marginal belief of that node, in-

stead of driven by the pairwise potential as in [157]. And this sampling process has proven to be

more effective [40] when the pairwise potential is not peaky.
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Algorithm 2: Inference of objects locations in SLiM.
Input: Observation zt, Robot pose xt,

Particle set for each object:
oit−1 = {〈oi(k)

t−1, α
i(k)
t−1〉|k = 1, · · · ,M}, i ∈ 1 : N

1 Resample M particles oi(k)
t−1 from oit−1 with probability proportional to importance weights

α
i(k)
t−1 ;

2 for i = 1, · · · , n do
3 for k = 1, · · · ,M do
4 Sample oi(k)

t ∼ φp(o
i
t, o

i(k)
t−1) ;

5 Assign weight αi(k)
t ∝ φm(o

i(k)
t , xt, zt)

∏
j∈Γ(i)

φc,B(Rij)(o
i(k)
t , ojt−1) ;

6 where φc,B(Rij)(o
i(k)
t , ojt−1) =

∑
r

M∑
l=1

B(Rij = r)α
j(l)
t−1φc,r(o

i
t, o

j
t , Rij = r)

7 end
8 end

Figure 5.3: Examples of belief updates in SLiM. given observations. Upper: Evolution of particles
of fridge, sink, coffee machine over time. Lower: RGB observation (with object detection) over
time. (Best viewed in color).

5.4.2 Probabilistic Inter-Object Spatial Relations

To get the belief over inter-object spatial relations B(Rij) for each object pair oi, oj ∈ O, we

model the generalized object permanence based on past observations of the environment and com-

mon sense knowledge on inter-object spatial relations. Building on preceding work by Lorbach et

al. [104], we model GOP through a factor graph as shown in Figure 5.4. We generalize [104] by
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Figure 5.4: The SLiM factor graph to model for Generalized Object Permanence. SLiM accounts
for various factors in the semantic relation Rij between any two objects, i and j: LT: long term
memory, ST: short-term memory, CS: common sense knowledge, LC: scene consistency.

relaxing the assumption on known spatial relations between landmark objects.

The factor graph G : {V,F,E} consists of variable vertices V = {Rij|∀i 6=j oi, oj ∈ O},

factor vertices F = {FCS, FLT , FST , FLC} and edges E which connect factor vertices with variable

vertices. Specifically, FCS : Rij 7→ R is a unary factor that considers commonsense knowledge on

spatial relation between objects,

FCS(Rij) = Frequency(Rij)

Similar to [104], we extract commonsense knowledge on Rij from the Google Image search

engine by counting the frequency of certain spatial relation between objects oi, oj . For example,

the frequency of Rcup,table = On is computed as the number of search results of a query “cup

on the table” divided by the number of search results of a query “on the table”. These extracted

frequencies can be noisy. For example, the frequency of “laptop on kitchen” is larger than 0.

However, it is not a valid expression because it refers to a laptop being on top of the room geometry

of a kitchen. We manually encode the FCS(Rij) for invalid expressions to 0.

FLT : Rij 7→ [0, 1] is a function that bookkeeps the frequency of occurrences of Rij in past

observation of the environment. This factor accounts for long term knowledge of inter-object
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relations based on past observations in the long run. For example, cereal is usually stored on a

particular cupboard, and silverware is usually stored in a particular drawer.

The short-term memory factor FST : Rij 7→ [0, 1] informs the reasoning about a particular

inter-object relation observed in the near past. Specifically, FST is modeled as

FST (Rij) = e−
∆t
µ (5.4)

where ∆t is the time that has past since last observing Rij . µ controls how fast the probability

of Rij decays from the short-term perspective. We provide heuristic µ in our experiments, while

these parameters can be learned as discussed by Toris. et al. [167].

FLC : (Rij, Rik, Rjk) 7→ {0, 1} is a triplet factor that considers logical consistency between a

triplet of objects oi, oj, ok,

FLC(Rij, Rik, Rjk) =


1, if consistent.

0, otherwise.

For example, if oi is in oj , and oj is in ok, then oi should be in ok to satisfy logical consistency,

i.e., FLC(Rij = In, Rik = In, Rjk = In) = 1. Previous work [104] assumes the spatial relations

between landmark objects to be known, and only relations Rtarget,j connecting target object otarget

and landmark object oj to be unknown. Their pairwise factor enforcing logical consistency is

a binary function FLC : (Rtarget,j, Rtarget,k) 7→ {0, 1}. In contrast, our formulation employs a

trinary factor FLC considering all possible combinations of (Rij, Rik, Rjk) and evaluating their

logical consistency.

By applying Belief Propagation [86] on the factor graph formulated as above, we can get the

marginal belief over inter-object relations B(Rij) between all object pairs. We use the libDAI [115]

library for inference. An example of the probabilistic inter-object spatial relations inferred from

the factor graph is as shown in Figure 5.6, and it is used in our experiments.
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5.5 Search Strategy

Based on the belief over the object locations, we actively search for the target object, by generat-

ing promising view poses and select the best one ranked by a utility function. Given the particle

set 〈o(k)
t , α

(k)
t 〉 of the target object o as being maintained in 5.4, we fit Gaussian Mixture Mod-

els (GMMs) through Expectation Maximization to the particles by auto selecting the number of

clusters [46],

〈o(k)
t , α

(k)
t 〉 ∼ 〈N (xn,Σn), ωn〉 (5.5)

5.5.1 View Pose Generation

For each Gaussian componentN (~xn,Σn), we generate a set of camera view pose candidates {~τ in =

(~cin,
~ψin)}, where ~cn and ~ψn denote the translation and the rotation of the camera respectively.

Initially, we sample the location of the camera ~cn evenly from a circle with a fixed radius

around the center ~xn of the Gaussian component, and assign a default value to rotation ~ψn. Note,

that these initially sampled view poses can put the robot in collision with the environment, and the

camera is not necessarily looking at ~xn. Thus, we formulate a view pose optimization problem

under constraints as below,

argmin
~τn

1− ~vn ·
~xn − ~cn
‖~xn − ~cn‖

s.t ~xn ∈ E~τn , c(~τn) > 0

where ~vn is the view direction given ~τn, E~τn denotes the effective observation region of the target

object at camera pose ~τn, and c : ~τ 7→ R is a function that computes a signed distance of a

configuration ~τ to the collision geometry of the environment.

5.5.2 View Pose Selection

We propose two different utility functions to rank the view pose candidates:
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5.5.2.1 Direct Search utility

UDS encourages the robot to explore promising areas that could contain the target object while

accounting for navigation cost,

UDS(~τk) = ωn + α
1

arctan(σdnav)
(5.6)

where ωn is the weight of the Gaussian component (as in (5.5)) that ~τk is generated from, and dnav

is the navigation distance from the current robot location to view pose ~τk. Parameter α trades off

between the probability of finding the target object and the navigation cost. Parameter σ determines

how quickly the arctan(σdnav) plateaus.

With UDS, the object search id direct because we are directly considering promising areas

represented by the GMMs for the target object.

5.5.2.2 Hybrid Search utility

UHS encourages the robot to explore promising areas that could contain the target object and/or

any landmark object, while accounting for navigation cost

UHS(~τk) = ωn + α
1

arctan(σdnav)

+ β max
j,n

CoOccur(o, oj)ωjn I
j
n

where the additional term compared to UDS acts to encourage the robot to also explore areas

that could contain landmark object oj which co-occurs with the target object o with probability

CoOccur(o, oj). Specifically, CoOccur(o, oj) = (1 − B(Rtarget,j = Disjoint)), and ωjn is the

weight of the n-th Gaussian component of GMMs fitted to the belief over the location of the

landmark object oj . And Ijn is 1 if the n-th Gaussian of object oj is within the effective observation

region at camera pose ~τk, otherwise 0.

UHS is inspired by the indirect object search strategy as studied in [53, 178]. Previous studies

73



Figure 5.5: Simulation experiments setup in Gazebo: an apartment-like environment with four
rooms. There are 6 landmark objects and 3 target objects: coffee machine, laptop, cup. Each target
object has two equally possible locations.

demonstrated that purposefully looking for an intermediate landmark object helps quickly narrow

down the search region for the target object if the landmark object often co-occurs with the target

object, thus improving the search efficiency.

With UHS, the object search can be considered hybrid because we are considering promising

areas represented by GMMs for both the target object (as in direct search) and landmark objects

that co-occur with the target object (as in indirect search).

In our experiments, we use a A∗ based planner to compute dnav. We empirically set α = 0.1,

β = 0.4 , and σ = 0.5 such that arctan(σdnav) plateaus as dnav goes beyond 3m.
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5.6 Experiments

We perform object search tasks in both simulation and real-world environments with a Fetch robot.

In the simulation experiments, we quantitatively benchmark various methods, including methods

that resemble previous works and our proposed method. In the real-world experiments, we demon-

strate qualitatively that the proposed method scales to real-world applications. In both simulation

and real-world experiments, the robot accelerates to at most 1m/s and turns at most at 1.7rad/s.

For the simulation experiments, we focus on evaluating the effectiveness of the proposed active

object search approach in unfamiliar environment, i.e., only common sense knowledge of inter-

object spatial relation is given when modeling the probabilistic inter-object spatial relations, and

no long-term or short-term memory is available.

For the real-world experiments, we examined the proposed active object search approach both

in unfamiliar and familiar environment. In addition, when long-term and short-term memory be-

come available, we demonstrated the advantage of modeling these types of memories as part of the

generalized object permanence, in comparison with object search without modeling these types of

memories. Our implementation of the proposed inference algorithm runs at 50 FPS on average

(for 5 objects case) on a computer with i7 2.60GHz CPU. And view pose selection step takes on

average 0.5 second once robot updates the belief over objects locations. We used a MPEPC based

controller proposed by Park et al. [129] to navigate robot from one pose to the next best view pose,

5.6.1 Simulation Experiments in Unfamiliar Environments

The simulation experiments are performed in an apartment-like environment (10mx11m) setup in

the Gazebo simulator, as shown in Figure 5.5. The room types and considered landmark objects

are annotated in Figure 5.5, along with the placements of target objects. The marginal belief Rij

inferred from the factor graph as explained in 5.4.2 is depicted in Figure 5.6.

We set up an object detector in simulation that returns a detection of an object, if the object is

in view, not fully occluded, and within the effective observation range. For large objects (e.g. sofa,
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Figure 5.6: Marginal belief on inter-object spatial relations, as well as object-room relations, in-
ferred from the factor graph as explained in Sec. 5.4.2. CM: coffee machine, CT: coffee table

Figure 5.7: Examples of search paths generated by each method while searching for cup. Meth-
ods from left to right: UDS, IDS-Known-Static, IDS-Known-Dynamic, IDS-Unknown, IHS-
Unknown. (Best viewed in color).

bed, fridge), mid-sized objects (e.g. desk, table, sink), and small objects (e.g. cup, laptop, coffee

machine), we assume an effective observation range of 5, 4m, 2.5m respectively.

We benchmark following methods:

• UDS: Uninformed direct search (Eq.5.6). The robot does not account for the spatial relations

between the target and landmark objects (omitting Eq. 5.3 in SLiM). This baseline represents

a naive approach for object search.

• IDS-Known-Static: Informed direct search (Eq.5.6) with a known prior on landmark object

locations. The robot assumes that landmark objects are static at the locations provided by
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Target
Object

Metrics UDS IDS known, IDS known, IDS unknown IHS unknown
static dynamic

Coffee
Machine

Views 7.83 6.17 4.67 6.33 3.67
Search Time (s) 107 76 60 75 50
Search Path (m) 8.68 6.70 5.80 6.74 4.93
Success Rate 1.0 1.0 1.0 1.0 1.0

Laptop

Views 11.00 12.50 7.17 5.67 4.17
Search Time (s) 197 222 124 91 78
Search Path (m) 28.27 26.86 13.13 7.69 8.40
Success Rate 0.83 0.50 1.00 1.00 1.00

Cup

Views 13.17 14.50 12.67 11.83 9.00
Search Time (s) 184 229 189 185 139
Search Path (m) 22.64 29.81 23.40 19.68 13.91
Success Rate 0.83 0.33 0.83 0.83 1.00

Table 5.1: Benchmark results for object search in simulation experiments. Among methods that
reached 100% success rate, IHS unknown successfully found target objects within the smallest
number of views and least search time.

the prior. This method resembles previous works [78, 90, 167].

• IDS-Known-Dynamic: Informed direct search (Eq.5.6) with a known prior on landmark

object locations. This is similar to IDS-Known-Static except that the robot does not assume

the landmark objects to remain at the locations expressed in the prior.

• IDS-Unknown: Informed direct search (Eq.5.6) without prior on landmark object locations.

The particles for landmark objects are initialized uniformly across the environment. This

method resembles previous works [103, 12].

• IHS-Unknown: Informed hybrid search (Eq.5.5.2.2) without prior on landmark object lo-

cations.

All methods except for UDS are using the full SLiM model. We assume that an occupancy-grid

map of the environment is given. We also assume that the room types are accurately recognized

across the environment. IDS-Known-∗ methods are provided with a noisy prior on landmark ob-

ject locations which differ from the actual locations, to emulate the common cases where perfect

knowledge about landmark locations is not available. For all methods, the particles for the target

object are initialized uniformly across the environment.

77



Figure 5.8: An unfamiliar environment that consists of kitchen and a living room.

For each target object, we run 6 trials per method. In each trial, the robot starts at the same

location, depicted in Figure 5.5. The object search is terminated if (1) the belief over the target

object location has converged or (2) the maximum search time of 5mins has been exceeded. A trial

is successful if the robot finds the target object before timeout.

The benchmark result is as shown in Table 5.1. Examples of the resulting search path from

each method are depicted in Figure 5.7. Per target object, we measure the average search success

rate of each method. Among the successful trials, we measure the average number of view poses,

average time taken, average distance travelled. As we can see, UDS is not as effective because

it is not making use of the spatial relations between the target objects and landmark objects in

the environment. Given a noisy prior on landmark object locations, IDS-Known-Dynamic outper-

forms IDS-Known-Static because it accounts for the uncertainty of the landmark object locations,

whereas IDS-Known-Static is misled by the noisy prior.

Given no prior information, IHS-unknown outperforms IDS-unknown because it encourages

the robot to explore promising regions that contain the target and/or useful landmark objects,

whereas IDS-unknown only considers promising regions that contain the target object. With IHS-

unknown, the robot benefits from finding landmark objects which help narrow down the search

region for the target object.

5.6.2 Real-World Experiments in Unfamiliar Environments

The real-world experiment is executed in an environment (8mx8m) that consists of a kitchen and

a living room, as shown in Figure 5.8. The target object is a cup. Landmark objects are a table,
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Figure 5.9: Map of our environment. Green: Conference Room 1 (CR1); Yellow: Conference
Room 2 (CR2); Red: Lounge Room (LR).

a sofa, a coffee machine and a sink. We run 10 trials of object search using IHS-Unknown. The

average success rate is 0.7 (7 out 10 trials), the average number of view poses is 4.86, the average

search time is 103s, and the average search path travelled is 8.32m. The failure cases were due

to false negative detection of the cup. Examples of real-world experiments with a Fetch robot is

included in this video1.

5.6.3 Real-World Experiments in Familiar Environments

To evaluate our method in familiar environments where the robot had accumulated past observa-

tions of surrounding environments, we perform multiple experiments on searching for various

target objects at a floor level in a building. All our experiments are performed using a fetch

robot in an environment with pre-mapped environment in 2D occupancy grid as shown in Fig-

ure 5.9. The environment involves three rooms, which are a lounge room (LR) and two con-

ference rooms (CR1, CR2), as shown in Figure 5.10. The conference rooms are located be-

sides each other, the aerial distance between them and the lounge measures 27 meters. We used

1https://youtu.be/uWWJ5aV6ScE
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Figure 5.10: A familiar environment that consists of a lounge room and conference rooms.

µ = 12, wLT = 50, wCC = 50, wST = 150 across our experiments. A video of our experiments is

available here2.

5.6.3.1 Experiment Setup

In our experiments, we task the robot with finding one of five target objects as listed below. The

objects are placed throughout the environment according to manually designed underlying location

distributions that is hidden from our system. Different objects engage different levels of uncertainty

in their location distributions, making some objects almost stationary and others highly uncertain.

Here is a brief overview of the manually designed underlying location distributions:

• Pringles can: Located exclusively in a cabinet in LR

• Popcorn box: Exclusively on table in LR.

• Coke can: Always located in LR. Often located on table (usually in a box on table). Less

often in box on the counter by the sink. Rarely directly on the counter.

• DVD: Equally distributed between counter tops in CR1 and CR2.

• TV Remote: Mostly located on table in LR, rest of the time on counter tops in either CR1

or CR2.

Aside from the target objects, the table in the lounge is moved locally frequently as well, as

tends to happen in a shared space like a lounge. To collect past observations of the environment
2https://youtu.be/h2lqP8fewJk
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Figure 5.11: GOP-Informed Search v.s. Uninformed Search. y–axis: average search time, with
95% confidence interval marked. x–axis: target objects (arranged in the order of increasing uncer-
tainty of their underlying distributions from left to right).

as used in our method, we drove the robot around the floor to visit CR1, CR2, LR multiple times

as the objects vary their locations based on their underlying distributions. The robot detects and

localizes the objects during these multiple visits based on [189], and derives the spatial relations

from their estimated 6 DOF poses based on simple geometric heuristics.

We carried out three sets of experiments to respectively highlight the benefits of incorporating

long term memory, short-term memory and scene graph structure during search. For each set of

experiments, we benchmark the search performance in terms of search time of our GOP-Informed

method against different baselines. All baselines use the same perception and control component

as our main method. We evaluate the observation controller qualitatively over the experiments.
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5.6.3.2 GOP-Informed Search v.s. Uninformed Search

In this set of experiments, we examine the benefit of incorporating long term memory during

search. The baseline method Uninformed Search models the possible metric locations of target

objects with GMMs purely based on common contextual relations. Because all rooms can po-

tentially contain the target object, as a result, the baseline method has equally weighted GMMs

spread across all rooms. At search time, the baseline method initially randomly selects a Gaus-

sian component in the GMMs for active perception, and then continues to perceive other Gaussian

components based on distance until the target object is found.

We carried out search experiments for all 5 target objects respectively. For each target object,

10 individual search trials were conducted for our method and the baseline. For each trial, tar-

get objects were placed in the environment following the underlying distribution as explained in

5.6.3.1. The average search time for all target objects is as shown in Figure 5.11. As we can see,

GOP-Informed Search outperforms the Uninformed Search for all target objects. For target objects

with low uncertainty in their underlying distributions (e.g. pringle, popcorn), our method signif-

icantly benefits from modeling the long term memory that captures frequent patterns in the scene

structure based on past observations. As the uncertainty of the underlying distributions of object

locations increases, the average search time of our method increases and approaches the baseline’s

performance for target objects such as remote.

5.6.3.3 GOP-Informed Search v.s. GOP-Informed Search w/o Short-Term Memory

In this set of experiments, we look into the benefit of incorporating short-term memory during

search. The baseline method GOP-Informed Search w/o ST is the same as GOP-Informed Search

except that no short-term memory is not being modeled.

We carried out search experiments with the target object being coke. To examine the benefit

of modeling the short-term memory, we let the robot observe one of the following inter-object

relations around 5 minutes before the search starts: A. on(coke, counter), B. on(box, counter).

Case A reflects a direct observation of the relation of coke and other object, case B reflects an
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Figure 5.12: GOP-Informed Search v.s. GOP-Informed Search w/o ST. y–axis: average search
time, with 95% confidence interval marked.

observation of an object that is highly correlated with coke (coke is often located in the box).

We conducted 10 individual search trials for GOP-Informed Search w/o ST and GOP-Informed

Search under case A and B. For each trial, we sample the places to put coke based on a decaying

probability (in Equation 5.4) of coke (or box) staying on the counter, with a ground truth value of

µ = 16 which is hidden from our system. If coke (or box) is sampled to be moved from the counter,

then the new location of coke is sampled based on objects underlying distribution as explained in

5.6.3.1 and the co-occurrences of coke and box.

The average search time is as shown in Figure 5.12. As we can see, when directly observed a

certain relation between the target object and other objects (case A), GOP-Informed Search outper-

forms GOP-Informed Search w/o ST. The baseline method was mainly driven by long-term mem-

ory and common contextual relation, leading the robot to perceive the table which is usually where

coke is semantically located. Even when the robot did not directly observed coke, but observed box

to be on counter, GOP-Informed Search still significantly outperforms the baseline method GOP-
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Figure 5.13: When searching for coke, robot observes sprite that co-occur often with coke. GOP-
Informed Search weighs the particles around the sprite more (warmer color means more particles)
compared to the direct search baseline. Best viewed in color.

Informed Search w/o ST. This is because the proposed factor graph captures the strong relation

in(coke, box) and propagates the information of on(box, counter) to on(coke, counter) through the

scene consistency factor.

5.6.3.4 GOP-Informed Search v.s. Direct Search

In this set of experiments, we seek to examine the benefit of using scene graph structure to guide

the search process. The baseline method Direct Search does not make sure of any notion of scene

graph structure, instead it directly metrically models the distribution of the target object loca-

tions. The metrical distribution of target object locations are approximated as GMMs from the

past observations. As a result, the baseline method directly tries to localize the target object in the

environment, without first localizing its parent objects.

We carried out search experiments for target object being coke. 10 individual trials were con-

ducted for GOP-Informed Search and Direct Search. The target object was placed in the environ-

ment following the underlying distribution as explained in 5.6.3.1. The average search time for our

method is 154.16s ± 33.83s, and Direct Search method achieved 201.43s ± 119.73s. The reason

why GOP-Informed Search outperforms the baseline Direct Search with less standard deviation is

mainly because of following factors:
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• GOP-Informed Search narrows down the search region for the target object by first localizing

its parent objects in the inferred scene graph. When the environment is cluttered, and the

variance of the object metric location distribution is large, the robot might end up spending

extra efforts observing other occupied regions rather than observing the parent object area

that is more likely to have the target object.

• GOP-Informed Search also considers possible neighbor objects that could co-occur with

target objects as part of the inferred scene graph. During the search, object poses particles

around the neighbor objects are weighted more than others. This is because that we account

for co-occurrences as part of the inter-object spatial relations. Thus the updated belief of

object locations motivates the robot to actively perceive the corresponding area with higher

confidence. The benefit is as highlighted in Figure 5.13.

5.7 Conclusion

We present an effective active object search approach through the introduction of GOP and the

SLiM model. We model GOP through a factor graph that accounts for long-term, short-term mem-

ory and common sense knowledge on inter-object spatial relations. SLiM simultaneously maintains

the belief over target object locations as well as landmark object locations, while accounting for

the probabilistic inter-object spatial relations between all object pairs modeled as GOP. Further, we

propose a hybrid search strategy that draws insights from both direct and indirect object search.

With quantitative experiments in simulation, we demonstrate the benefit of accounting for uncer-

tainty in landmark object locations when a noisy prior on their locations is given. When no prior

on landmark objects is given, we demonstrate that the proposed hybrid search strategy outperforms

a direct search strategy by encouraging the robot to explore areas that are promising and contain

not only the target object but also landmark objects. We also show the proposed object search

approach operating in real-world experiments.

85



CHAPTER 6

Discussion and Conclusion

6.1 Conclusion

This dissertation introduces Semantic Robot Programming (SRP) as a declarative approach to the

problem of robot programming from workspace demonstrations. SRP enables an intuitive modality

of interaction for end users to program robots by directly demonstrating goal scenes.

By bridging semantic mapping with robot PbD, we have enabled end users to program robots

under perceptual uncertainty in cluttered scenes. With SRP, we show a Fetch robot successfully

reproducing user intended goals with generalization across various initial state of the world. CT-

Map further enhances the ability of robots to learn a task at a large scale by semantically mapping

room scaled environments from streaming observations. We demonstrated CT-Map outperform-

ing state-of-the-art neural network based object detectors and commonly adopted 3D registration

method for localizing objects in a clutter. By modeling GOP and efficiently maintaining the belief

of objects via SLiM, robots are able to reason about objects that are not being directly observed.

When performing a user intended task at large scale, we have enabled robots to search for objects

needed for the task much more efficiently than state-of-the-art methods.

In sum, this dissertation has coined semantic mapping and robot PbD as semantic robot pro-

gramming, and provided a declarative approach to robot PbD that is generalizable to different

initial world states, robust to perceptual uncertainty in clutter, and efficient for tasks at large scale.

This dissertation provides interesting future pathways to pursue towards ultimate interactive task
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learning in robot PbD.

6.1.1 Future Works

There are many future directions that are worth further investigation. First, only one user demon-

stration of the goal scene is provided and the robot will reproduce a task that overfits to unin-

tentional scene structures in the demonstration. For example, the demonstrated goal scene might

contain non-task related objects. Secondly, the robot only reproduces the axiomatic spatial rela-

tions between objects as user demonstrated, regardless of the exact relative metric poses between

objects in the demonstration. However, the user might desire specific relative poses between ob-

jects. For example, the user would desire the fork to be placed on the left side of a plate, and the

knife to be on the right side of the plate, instead of any poses of the fork or the knife that satisfies

the proximity relation to the plate. To address above issue, the robot can take in multiple user

demonstrations and determine 1) task related objects; 2) the correct expressiveness level (metric or

axiomatic) of a particular edge between two object nodes in the scene graph. Interacting with the

user for feedback can also help disambiguate the goal of the task.

To extend the task domain beyond tasks that are only concerned about inter-object spatial

relations, such as cooking tasks, we need to 1) extend the scene graph representation to incorporate

other object states such as temperature, fill-level of a container object, and visual appearances in

addition to object poses; 2) extend the sensor modality to observe the object states from various

channels; 3) extend the action library beyond pick and place actions with affordance templates [58].

We have started exploring a new way to represent objects called Affordance Coordinate Frame

(ACF) [186] to generalize robotic manipulation to novel object instances. Instead of representing

one object with its 3D geometry model and pose, we propose to represent an object with its parts,

and compatibility between parts. Multiple ACFs can be registered to one object part. Manipulation

policies can be defined with respect to each ACF for robot to make use of the corresponding

affordance of the object.

As the robot performs a user demonstrated task, it is important to monitor the progress of the
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task and react to unexpected events. We can develop interactive perception [19] approaches to

monitor the scene state, and also action prediction models for detecting unexpected events, such

that the robot can robustly perform the task based on both reactive controller and re-planning when

needed.

Another particular interesting direction is to generalize a user demonstrated goal across differ-

ent object instances. For example, given multiple demonstrations of organizing a coffee table in a

living room with different object instances involved, the robot should be able to perform the same

organization task when object instances different from the ones in demonstrations are involved. As

a way to approach this problem, a similarity measurement between scene graphs can be developed

for user demonstrated task. The robot can then auto-propose scene graphs constructed from the

object instances present at execution time, and choose one scene graph for performing the task

based on the similarity measurements between the proposed and the demonstrated scene graphs.
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[32] J. Civera, D. Gálvez-López, L. Riazuelo, J. D. Tardós, and J. Montiel. Towards semantic
slam using a monocular camera. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pages 1277–1284. IEEE, 2011.

[33] M. Colledanchise and P. gren. How behavior trees modularize hybrid control systems and
generalize sequential behavior compositions, the subsumption architecture, and decision
trees. IEEE Transactions on Robotics, 33(2):372–389, April 2017.

[34] C. Crick, S. Osentoski, G. Jay, and O. C. Jenkins. Human and robot perception in large-
scale learning from demonstration. In 2011 6th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 339–346, March 2011.

[35] R. Cubek and W. Ertel. Conceptual similarity as a key to high-level robot programming by
demonstration. In Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on,
pages 1–6. VDE, 2012.

[36] H. Dang and P. K. Allen. Robot learning of everyday object manipulations via human
demonstration. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pages 1284–1289. IEEE, 2010.

[37] M. P. Deisenroth, G. Neumann, J. Peters, et al. A survey on policy search for robotics.
Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

91



[38] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile robots.
In IEEE International Conference on Robotics and Automation (ICRA 1999), May 1999.

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[40] K. Desingh, S. Lu, A. Opipari, and O. C. Jenkins. Efficient nonparametric belief prop-
agation for pose estimation and manipulation of articulated objects. Science Robotics,
4(30):eaaw4523, 2019.

[41] R. G. Dromey. From requirements to design: Formalizing the key steps. In First Interna-
tional Conference onSoftware Engineering and Formal Methods, 2003. Proceedings., pages
2–11. IEEE, 2003.

[42] S. Ekvall, P. Jensfelt, and D. Kragic. Integrating active mobile robot object recognition and
slam in natural environments. In Intelligent Robots and Systems, 2006 IEEE/RSJ Interna-
tional Conference on, pages 5792–5797. IEEE, 2006.

[43] S. Ekvall and D. Kragic. Robot learning from demonstration: a task-level planning ap-
proach. International Journal of Advanced Robotic Systems, 5(3):33, 2008.

[44] J. Elfring, S. Jansen, R. van de Molengraft, and M. Steinbuch. Active object search ex-
ploiting probabilistic object–object relations. In Robot Soccer World Cup, pages 13–24.
Springer, 2013.

[45] P. Espinace, T. Kollar, N. Roy, and A. Soto. Indoor scene recognition by a mobile robot
through adaptive object detection. Robotics and Autonomous Systems, 61(9):932–947, 2013.

[46] M. A. T. Figueiredo and A. K. Jain. Unsupervised learning of finite mixture models. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (3):381–396, 2002.

[47] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[48] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3):189–208, 1972.

[49] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via
meta-learning. arXiv preprint arXiv:1709.04905, 2017.
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[152] K. Sjöö, A. Aydemir, and P. Jensfelt. Topological spatial relations for active visual search.
Robotics and Autonomous Systems, 60(9):1093–1107, 2012.

[153] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined task and
motion planning through an extensible planner-independent interface layer. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 639–646, May 2014.

[154] J. Stückler, B. Waldvogel, H. Schulz, and S. Behnke. Dense real-time mapping of object-
class semantics from rgb-d video. Journal of Real-Time Image Processing, 10(4):599–609,
2015.

[155] I. A. Sucan and S. Chitta. Moveit! Online Available: http://moveit. ros. org, 2013.
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